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Abstract

Authenticated Encryption (AE) is a symmetric key cryptographic primitive that ensures

confidentiality and authenticity of processed messages at the same time. The research

of AE as a primitive in its own right started in 2000.

The security goals of AE (such as NAE, MRAE, OAE, RAE or the RUP) were captured

in formal definitions in the tradition provable security, where the security of a scheme is

formally proven assuming the security of an underlying building block. The prevailing

syntax moved to nonce-based AE with associated data (which is an additional input that

gets authenticated, but not encrypted). Other types of AE schemes appeared as well,

e.g. ones that supported stateful sessions.

Numerous AE schemes were designed; in the early years, these were almost exclusively

blockcipher modes of operation, most notably OCB in 2001, CCM in 2003 and GCM in

2004. At the same time, issues were discovered both with the security and applicability

of the most popular AE schemes, and other applications of symmetric key cryptography.

As a response, the Competition for Authenticated Encryption: Security, Applicability,

and Robustness (CAESAR) was started in 2013. Its goals were to identify a portfolio

of new, secure and reliable AE schemes that would satisfy the needs of practical applic-

ations, and also to boost the research in the area of AE. Prompted by CAESAR, 57

new schemes were designed, new types of constructions that gained popularity appeared

(such as the Sponge-based AE schemes), and new notions of security were proposed

(such as RAE). The final portfolio of the CAESAR competition should be announced in

2018.

In this thesis, we push the state of the art in the field of AE in several directions. All of

them are related to provable security in one way or another.

We propose OMD, the first provably secure dedicated AE scheme that is based on

a compression function. We further modify OMD to achieve nonce misuse-resistant

security (MRAE). We also propose another provably secure variant of OMD called pure

OMD, which enjoys a great improvement of performance over OMD.

Inspired by the modifications that gave rise to pure OMD, we turn to the popular

Sponge-based AE schemes and prove that similar measures can also be applied to the

keyed Sponge and keyed Duplex (a variant of the Sponge), allowing a substantial increase

of throughput without an impact on security.

We then address definitional aspects of AE. We critically evaluate the security notion of
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Abstract

OAE, whose authors claimed that it provides the best possible security for online schemes

under nonce reuse. We challenge these claims, and discuss what are the meaningful

requirements for online AE schemes. Based on our findings, we formulate a new definition

of online AE security under nonce-reuse, and demonstrate its feasibility.

We next turn our attention to the security of nonce-based AE schemes under stretch

misuse; i.e., when a scheme is used with varying ciphertext expansion under the same

key, even though it should not be. We argue that varying the stretch is plausible,

and formulate several notions that capture security in presence of variable stretch. We

establish their relations to previous notions, and demonstrate the feasibility of security

in this setting.

We finally depart from provable security, with the intention to complement it. We

compose a survey of universal forgeries, decryption attacks and key recovery attacks on

3rd round CAESAR candidates.

Keywords: Authenticated Encryption, Provable Security, Misuse Resistance, CAE-

SAR competition, Compression Function, Sponge Construction, Full-state Absorption,

Online Authenticated Encryption, Variable Tag Length, Cryptanalysis
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Abstrakt

Authentifizierte Verschlüsselung (AE, aus dem englischen “Authenticated Encryption”)

ist ein symmetrisches Kryptosystem das gleichzeitig Vertraulichkeit, Authentizität und

Integrität sicherstellt. Die Forschung an AE als einer eigenständigen Verschlüsselungsart

begann im Jahr 2000.

Die Sicherheitsziele von AE wurden in formalen Definitionen in der Tradition der be-

weisbaren Sicherheit festgehalten (wie zum Beispiel MRAE, OAE, RAE oder die RUP-

Begriffe). Die vorherrschende Syntax wurde zu Nonce-basierender AE mit zugehörigen

Daten verschoben. Die zugehörige Daten sind eine zusätzliche Eingabe, die authenti-

fiziert, aber nicht verschlüsselt wird. Andere Arten von AE-Schemata erschienen, zum

Beispiel diejenigen, die Sitzungen unterstützten.

Zahlreiche AE-Schemata wurden entworfen; in den Anfangsjahren waren dies fast

ausschließlich Betriebsmodi von Blockchiffren. Beispiele solchen Betriebsmodi sind OCB

aus dem Jahr 2001, CCM vorgestellt im Jahr 2003 und GCM von 2004. Gleichzeitig

wurden Probleme mit der Sicherheit und Anwendbarkeit der beliebtesten AE-Schemata

und anderen Anwendungen der Kryptographie mit symmetrischen Schlüsseln entdeckt.

Im Jahr 2013 wurde der CAESAR Wettbewerb (aus dem englischen “Competition

for Authenticated Encryption: Security, Applicability, and Robustness”) gestartet. Sein

Ziel war es, ein Portfolio neuer, sicherer, praktischer und zuverlässiger AE-Schemata zu

identifizieren. Auf Anregung von CAESAR wurden 57 neue Schemata entworfen, neue

Konstruktionen, die an Popularität gewannen (wie die sogenannten Sponge-basierten

AE-Systeme), erschienen, und neue Sicherheitsbegriffe (wie RAE) wurden vorgeschlagen.

Das endgültige Portfolio des CAESAR-Wettbewerbs sollt im Jahr 2018 bekannt gegeben

werden.

In dieser Arbeit treiben wir den Stand der Technik in dem Gebiet der AE in mehreren

Richtungen voran. Alle präsentierten Ergebnisse beziehen sich auf die eine oder andere

Weise auf die nachweisbare Sicherheit.

Wir schlagen OMD vor, das erste beweisbar sichere dedizierte AE-Schema, das auf

einer Komprimierungsfunktion basiert. Wir modifizieren OMD weiter, um Nonce Miss-

brauch-Widerstandsfähigkeit zu erreichen. Wir schlagen auch eine andere beweisbar

sichere OMD-Variante vor, die eine deutliche Verbesserung der Leistung gegenüber OMD

bietet.

Inspiriert von den Modifikationen, die zu “pure OMD” geführt haben, beweisen wir,
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Abstrakt

dass ähnliche Maßnahmen auch auf den beliebten “keyed Sponge” und “keyed Duplex”

(eine Variante der Sponge-konstruktion) angewendet werden können, die ihre Leistung

verbessern, ohne Auswirkungen auf die Sicherheit zu haben.

Wir bewerten dann den Sicherheitsbegriff OAE kritisch. Seine Authoren behaupteten,

dass OAE die bestmögliche Sicherheit für Online-Schemata unter Nonce-Wiederverwen-

dung bietet. Wir stellen diese Behauptung in Frage und formulieren eine neue Definition

der Online-AE-Sicherheit unter Nonce-Missbrauch-Widerstandsfähigkeit.

Wir lenken dann unsere Aufmerksamkeit auf die Sicherheit von Nonce-basierten AE-

Schemata unter “Stretch Missuse.” Wir argumentieren, dass “Stretch Missuse” plausibel

ist und formulieren mehrere Begriffe, die Sicherheit bei “Stretch Misuse” erfassen.

Wir verlassen schließlich die beweisbare Sicherheit, um sie zu ergänzen. Wir stellen

eine Übersicht der universellen Fälschungen, Entschlüsselungsangriffen und Brute-Force-

Angriffen auf Kandidaten in der dritten Runde CAESARs zusammen.

Schlüsselwörter: Authentifizierte Verschlüsselung, Beweisbare Sicherheit, CAESAR

Wettbewerb, Vollzustandsabsorption, Missbrauch-Widerstandsfähigkeit, Sponge, Kom-

primierungsfunktion, Online Authentifizierte Verschlüsselung, Variable Taglänge, Kryp-

toanalyse
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Chapter 1
Introduction

The subject of this thesis lies in the field of cryptography. The word cryptography

originates from the Greek words kryptos (meaning “hidden”) and graphein (meaning “to

write”) [Mer09]. This etymology fittingly describes the goal of ancient cryptography:

to ensure confidentiality of information when facing an adversary who may eavesdrop

on the channel through which the information is being sent. This had been its only

goal from the time of ancient “secret codes” and ciphers that appeared in the Hebrew,

Egyptian, Mesopotamian or Greek cultures, all the way to the early 20th century, when

the arts1 of cryptography and cryptanalysis suddenly gained a lot more importance, due

to the invention of radio communication [Kah96].

In 1945, Claude Shannon wrote the paper titled “A Mathematical Theory of Crypto-

graphy” [Sha45] (the paper was publicly disclosed in 1949 [Sha49]), which is arguably

one of the cornerstones of cryptography as a scientific discipline. In it, Shannon presen-

ted the first mathematical model of cryptosystems coupled with a formal definition of

their security. Shannon’s work focused on secrecy, i.e., confidentiality [Sti95, Bau01].

Some 35 years later, another fundamental goal of modern cryptography received formal

treatment when G. J. Simmons presented his theory for ensuring authenticity (i.e., cor-

rect determination of the origin) of information [Sim84]. Closely related to authenticity,

and sometimes conflated with it, is the goal of ensuring integrity of information, i.e.,

preventing information from being maliciously modified by an adversary.

Originally, all of cryptographic work was done in the symmetric key setting: for

example, to enforce confidentiality of their communication, two parties, call them Alice

and Bob, first exchange a secret value, called secret key. Alice then applies a symmetric

encryption scheme that maps each message (also called plaintext) to a ciphertext using

the secret key, such that only a person in possession of the same secret key will be able

to extract the original messages from the ciphertexts. An example of an early symmetric

encryption primitive is the Data Encryption Standard [Des77].

This changed when Diffie and Hellman introduced the concept of public key crypto-

1Cryptography could not yet be considered a science.
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graphy in their seminal paper from 1976 [DH76], which eliminated the need for cum-

bersome exchange of secret keys. Soon after, Rivest, Shamir and Adleman designed the

first public key cryptosystem [RSA78].

In 1982, Goldwasser and Micali proposed the notion of semantic security for public

key cryptosystems [GM82], which captured a strong but natural form of confidentiality

protection in a precise, formal definition. They further proposed the first probabilistic

cryptosystem and proved that it is semantically secure under the assumption that the

problem of deciding quadratic residuosity (in a specific type of rings of modular integers)

is hard. Thus they laid foundations of the rigorous research methods called provable

security.2 In 1997, Bellare, Desai, Jokipii and Rogaway extended the provable security

treatment to symmetric encryption [BDJR97].

In the last four decades, cryptography has evolved significantly. On one hand, the way

cryptography is used changed: while at the beginning of the 20th century, the almost

exclusive users of cryptography were military and intelligence agencies, today everyone

is (unknowingly) using cryptography, which is ubiquitous in modern technology [KL14].

On the other hand, the field of cryptography itself grew and developed. The list of goals

cryptography now seeks to achieve has grown considerably, well beyond the fundamental

trilogy of confidentiality, integrity and authenticity. Today it is extended by privacy,3

non-repudiation, unpredictability, or fair termination, just to name a few.

Even though there are so many different security goals to pursue, and despite the

fact that the public key cryptography is more convenient to set up, the symmetric key

cryptographic primitives that ensure confidentiality, authenticity and integrity are still

among very active research topics of modern cryptography, mainly because of their

relevance to practice.

Before authenticated encryption. Achieving confidentiality and authenticity/in-

tegrity4 by symmetric key primitives belongs to the most fundamental, and oldest topics

in cryptography. They were traditionally studied and achieved separately.

Confidentiality has mainly been achieved with help of streamciphers and blockciphers.

Streamciphers are inspired by the one-time pad.5 A streamcipher, such as RC4 or

ChaCha [Ber08], takes a fixed-size secret key and a fixed-size, non-repeating initialisa-

tion vector (a nonce) as inputs, and generates a pseudorandom string of (practically)

arbitrary length that is used to “mask” a message, typically by the means of bitwise

XOR. A blockcipher maps a fixed-size plaintext and a fixed-size secret key to a fixed-

size output block. The most notable example for a blockcipher is AES [DR02, Pub01].

To act on arbitrary length messages, blockciphers are typically used in so-called modes

2We note that there are some controversies regarding the interpretation and practical relevance of
provable security. We touch upon this in Chapter 10.

3In this single case, we do not mean confidentiality, but rather the ability of a user to control the
spread of information about themselves.

4From this point, we merge the authenticity and integrity into a single goal, as one is almost never
useful without the other. We refer to the joint goal interchangeably by authenticity or integrity.

5Which was proven perfectly secure by Shannon [Sha45].
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of operation, such as the CTR mode or CBC mode [Dwo01], which use a blockcipher as

a blackbox subroutine to construct more general encryption schemes.

The authenticity of messages has typically been achieved with help of Message Authen-

tication Codes (MACs). A MAC produces a fixed-size, hard-to-predict authentication

tag as a function of a secret key and a message. MACs were most often constructed

as modes of operation of blockciphers (e.g., the CBC-based MACs [BKR00, Dwo16]),

but also other primitives such as compression functions [BCK96] or possibly stream-

ciphers [CW77, WC81].

Confidentiality and authenticity were also captured by separate security notions. Con-

fidentiality was formalized in several notions, most notably the Left-or-Right, or Real-or-

Random indistinguishability [BDJR97]; informally, both of them imply that an adversary

who can ask for encryptions of messages of his/her choice cannot tell if the ciphertexts

he/she is getting back truly encrypt his/her inputs. The security of MACs was captured

by the notions of unforgeability and pseudo-random function [BKR00]; the former re-

quires that an adversary which can ask for tags of arbitrary messages cannot produce a

fresh, valid message-tag pair, while the latter is a stronger notion that requires that the

given MAC “behaves” as a random function.

Unlike in the theoretical work, such a clear separation of confidentiality and authenti-

city seldom occurs in practice. In most conceivable applications, one will need to ensure

confidentiality in conjunction with authenticity (and integrity). In the absence of a

systematic treatment, users of cryptography had to resort to ad-hoc measures, such as

inserting redundancy into plaintexts and encrypting them with some encryption scheme,

to achieve the two said properties. These failed more often than not.

The best example of such a failure is perhaps the Wired Equivalent Privacy protocol

(WEP) used by the 802.11 wireless network standard. Here, the Cyclic Redundancy

Check (a linear function of the plaintext) had been appended to the plaintext, and

the resulting string was encrypted with the streamcipher RC4. The integrity protec-

tion of this construct was completely void, as demonstrated by Borisov, Goldberg and

Wagner [BGW01]. Another such failure was the CBCC scheme, which appended to a

message the XOR-sum of all its blocks, and applied the CBC mode to the result. This

one was shown to be flawed by Menezes, van Oorschot, and Vanstone [MvOV96].

Even combining a secure encryption scheme with a secure MAC was not sure to yield

a secure result. Canvel, Hiltgen, Vaudenay and Vuagnoux showed that an unfortunate

interaction between a MAC and the padding used for the CBC mode allowed an ad-

versary to compromise the confidentiality of plaintext in practical attacks on SSL and

IPSec [Vau02, CHVV03].

Authenticated encryption. The unsatisfied need for a tool that would simultan-

eously provide both confidentiality and authenticity was picked up by the research com-

munity in 2000; Katz and Yung [KY00] and independently Bellare with Rogaway [BR00]

stated the first formal security notions for what is today called authenticated encryption

(AE). In that same year, Bellare and Namprempre formally analysed the security of
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generic composition, showing that given a secure probabilistic encryption scheme and a

secure MAC, the Encrypt-then-MAC construction will yield a secure AE scheme.

In 2001, Jutla proposed IACBC and IAPM [Jut01], the first two provably secure ded-

icated AE schemes. In the same year, Rogaway, Bellare, Black and Krovetz designed

OCB [RBBK01], one of the most popular dedicated AE schemes. In 2002, Rogaway put

forward the syntax and security notion for nonce-based authenticated encryption with as-

sociated data, an additional input to the encryption algorithm that should be authentic-

ated along with the message, but not encrypted [Rog02]. This syntax and security notion

have become the most popular design target so far. Several other dedicated AE schemes

followed soon after, most notably the Counter with CBCMAC (CCM) [WHF03b] and

Galois/Counter Mode (GCM) [MV04]. All of the early AE schemes of importance were

designed as blockcipher modes of operation.

Simultaneously with this burst of research activity, authenticated encryption also en-

joyed a quick deployment in real-world applications. CCM appears in IEEE 802.11i,

IPsec ESP and IKEv2, while GCM appears in NIST SP 800-38D. ISO/IEC 19772:2009

defines six AE schemes (five dedicated AE designs and one generic composition method).

However, soon after the first wave of dedicated AE schemes, a series of new prob-

lems with (some of) those schemes and with the applications of symmetric crypto-

graphy in general were discovered. Complaints about the security and/or applicability

of CCM [RW03] and GCM [Jou06, Fer05, Saa12, IOM12] were raised and a collection

of failures of symmetric cryptography was documented by Bernstein [Ber14b]. Rogaway

and Shrimpton pointed out that most of the existing nonce-based AE schemes com-

pletely collapse if nonces get misused (i.e., repeated) and defined nonce-misuse resistant

security as a solution for this [RS06b].

CAESAR competition. All these shortcomings indicated the need for further re-

search in the field of authenticated encryption. To both boost the research, and to

provide solutions for these problems, the Competition for Authenticated Encryption:

Security, Applicability, and Robustness (CAESAR) was launched in 2013. It’s official

goal was to “identify a portfolio of authenticated ciphers that (1) offer advantages over

AES-GCM and (2) are suitable for widespread adoption” [Ber14a]. The final portfolio

was supposed to be identified in three rounds, each taking about a year.

The candidates submitted to CAESAR were required to comply with the specified

syntax,6 to ensure authenticity of all non-key inputs, and to protect confidentiality of

the plaintext and so-called “secret message number.” [Ber14a]. Each candidate was also

required to clearly indicate the amount of data that can be securely processed with a

single secret key, and whether the candidate

1. required that the nonce (“public message number” in CAESAR) never repeats, or

6This was essentially an extension of the syntax for nonce-based AE by Rogaway, optionally augmen-
ted by a “secret message number”. It must be noted that the addition of the secret message numbers
was not received very well [NRS13].
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2. is nonce-misuse resistant in the sense defined by Rogaway and Shrimpton, or

3. “provides some intermediate level of robustness against message-number reuse, in

which case [the candidate] must specify what that level of robustness is.”

The boost in research activity was immediate: 57 candidates were submitted to the first

round of CAESAR. Out of these, 9 candidates were withdrawn by their designers during

the first round, mostly due to the discovery of serious flaws [Viz16]. The remaining

48 designs showed a great diversity of low-level primitives, construction paradigms and

targeted security notions. There were:

• 21 blockcipher-based schemes,

• 3 designs based on (dedicated) tweakable blockciphers,

• 7 designs based on previously existing streamciphers,

• 9 “Sponge”-based schemes,

• 3 modes of cryptographic permutations (not based on the Sponge),

• a single candidate based on a keyed compression function,

• 3 candidates based on a dedicated primitive that did not fall into any of the,

previous categories

• a single candidate not based on any symmetric key primitive [Viz16].

While the prevailing construction type were by far blockcipher modes of operation, we see

that a good number of other constructions based on different primitives appeared as well.

Among these, the most popular were the schemes inspired by the Sponge construction.

The Sponge is a mode of operation for a keyless cryptographic permutation, originally

designed for cryptographic hashing.

The most frequently targeted security notion among the 48 candidates was the (ba-

sic) security of nonce-based AE defined by Rogaway [Rog02], and 5 candidates tar-

geted the nonce-misuse resistant security [RS06b]. Another security notion that was

very popular among the 1st round CAESAR candidates was the then-newly-defined no-

tion of online misuse resistant AE (OAE), targeted by 4 submissions. Security notions

prompted by the discussions around the start of CAESAR competition were the Robust

AE security [HKR15] and the security of AE under the release of unverified plaintext

(RUP) [ABL+14a]. Most 1st round candidates were supported by proofs in (in the sense

of provable security), but there were also those who only made claims accompanied with

direct cyptanalysis.

In July 2015, 29 candidates advanced to the 2nd round of CAESAR. All candidates

were allowed to introduce updates, two submissions were merged into a single one based

on the suggestion of the committee (CLOC and SILC), and two candidates merged into

a single submission at the end of the second round (and formed COLM). In March 2018,

7 finalists were announced.

5



Outline of the thesis. The work that resulted in this dissertation started together

with the CAESAR competition, and finished shortly before the CAESAR finalists were

announced; the author of the thesis was thus fortunate to participate in this second

big wave of research in authenticated encryption—probably even the bigger of the two.

Thanks to this, the author was able to work on several exciting topics which are not

all closely related to one another, but which can all be labelled as topics in (or related

to) provable security. As a result, the material contained in this thesis is quite diverse.

The covered results are therefore presented in three parts, each of them dedicated to a

different aspect of research on AE.

In Part I, we discuss construction of AE schemes. In Part II we switch from designing

schemes to definitional work and propose new security models. In Part III, we depart

further away from provable security and focus on cryptanalysis.

We introduce the notation and the general security model used in the thesis in Chapter 2.

We also cover some low-level symmetric key primitives and the pre-CAESAR notions of

AE security in the same chapter.

Part I. The first three chapters in this part are dedicated to compression function-

based authenticated encryption. In Chapter 3, we introduce Offset Merkle-Damg̊ard

(OMD), the first dedicated AE scheme based on a keyed compression function, and a

2nd round CAESAR candidate. We propose two misuse-resistant variants of OMD in

Chapter 4. In Chapter 5, we introduce pure OMD, which folds the processing of associ-

ated data into the main encryption-core of the original OMD scheme. In these chapters,

we give descriptions of the proposed schemes, and prove their security. For OMD and

pure OMD, we discuss their performance, as indicated by results from experimental

measurements. We also briefly consider OMD from the perspective of the CAESAR

competition.

We then turn to sponge-based AE schemes in Chapter 6, and propose algorithmic

modifications to the Sponge and Duplex constructions that allow to greatly increase the

throughput of the said constructions. We prove that the proposed modifications do not

impact security, and demonstrate how this is beneficial for sponge-based AE.

Part II. In Chapter 7, we critically examine the security notion of Online AE [FFL12]

that claims to imply nonce misuse resistance for AE schemes with online encryption.

We point out several flaws and shortcomings due to which, in our opinion, the notion

does not deliver on the intuition that it promises to capture. We propose an alternative,

a security definition called OAE2, which comes as close to nonce misuse resistance as it

is possible for online AE schemes. We demonstrate the feasibility of OAE2 security by

constructing a secure instance.

We keep to the definitional work in Chapter 8. We consider a new type of misuse:

varying the ciphertext expansion of a nonce-based AE scheme with a single key. We

investigate implications of this misuse on security of nonce-based AE schemes and present

plausible attacks which apply to many existing schemes, even if they apply some heuristic
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countermeasures. We then proceed to formalizing the security of nonce-based AE with

variable ciphertext expansion, and establish the relations between our newly proposed

notions and the previously existing ones. We demonstrate that our notion of security is

achievable by presenting a secure scheme.

Part III. We attempt to complement the results of provable security in Chapter 9 by

making a survey of actual security of all 3rd round CAESAR candidates, CCM and GCM

to nonce-misuse and attacks with high data complexity. In the process, we describe a

few new attacks. Our result is an overview that compares attacks in terms of their

impact, complexity, and type of adversarial powers. It provides fine-grained information

on “robustness” of CAESAR candidates beyond what is indicated by their claims.

Finally, we conclude in Chapter 10 and state open problems.
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Chapter 2
Preliminaries

This chapter introduces the notations and definitions used in the rest of this thesis. In

Section 2.1, we introduce basic concepts and notations used throughout this dissertation.

In Section 2.2, we briefly discuss the formal treatment we apply analysing the security

of cryptographic constructions. In Section 2.3 we formally define several cryptographic

primitives and their security. In Section 2.4 we formally define syntax of schemes for

authenticated encryption, and define several notions of security for such schemes.

2.1 Notations

Sampling, sets and integers. We let a ←$ S denote sampling a random variable

S and storing the result in the variable a. If S is a finite set, we denote by a ←$ S
sampling an element of S uniformly at random. For a finite set S, we let |S| denote its

cardinality.

We let N denote the set of all natural numbers {0, 1, 2, . . .} and N+ the set of all

positive natural numbers N\{0}. For any two pairs of integers (i, j), (i′, j′) ∈ N, we say

that (i′, j′) < (i, j) if either i′ < i, or if i′ = i and j′ < j. We say that (i′, j′) ≤ (i, j)

if (i′, j′) < (i, j) or if (i′, j′) = (i, j). In other words, we use lexicographic ordering to

determine ordering of integer-tuples.

Binary strings. All strings are binary strings, i.e. strings over the alphabet {0, 1}.
We let |X| denote the length of a string X. We let ε denote the empty string of length

0. We let {0, 1}∗ denote the set of all strings of arbitrary finite lengths (s.t. ε ∈ {0, 1}∗),
we let {0, 1}∞ denote the set of all infinite strings and we let {0, 1}n denote the set

of all strings of length n for a non-negative integer n. We further let {0, 1}≤n denote⋃n
i=0{0, 1}i, the set of all strings of length equal or smaller than n, and we identify

{0, 1}<n with {0, 1}≤n−1 for n ≥ 2. We also let {0, 1}≥n denote the set of all strings of

at least n bits
⋃∞
i≥n{0, 1}i.
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Concatenation and substrings. We denote the concatenation of two strings X and

Y by X‖Y , or by XY if the meaning of the notation is clear from the context. For an

m-bit string X = X[m− 1] · · ·X[0] we let X[i · · · j] = X[i] · · ·X[j] denote a substring of

X, for m − 1 ≥ i ≥ j ≥ 0; by convention we let X[i · · · j] = ε if i < 0 and X[i · · · j] =

X[i · · · 0] if j < 0. We further let left` (X) = X[(m − 1) . . . (m − `)] denote the `

leftmost bits of X and rightr (X) = X[(r − 1) . . . 0] the r rightmost bits of X, such that

X = leftχ (X) ‖right|X|−χ (X) for any 0 ≤ χ ≤ |X|.

Length of blockwise common prefix. Given two strings X,Y , let

llcpb (X,Y ) = max
i≥0
{i : lefti·b (X) = lefti·b (Y )}

denote the length of the longest common prefix between X and Y in b-bit blocks. For
a string X and a non-empty set of strings {Y1, . . . , Yn} let

llcpb (X;Y1, . . . , Yn) = max {llcpb (X,Y1) , . . . , llcpb (X,Yn)} .

Encodings, number of trailing zeros and partitioning of strings. For a non-

negative integer i ∈ N let 〈i〉m denote the binary representation of i as an m-bit string.

For a string X = X[m − 1] · · ·X[0], let int(X) =
∑m−1

i=0 X[i]2i denote the non-negative

integer represented by X.

Let ntz(i) denote the number of trailing zeros (i.e., the number of rightmost bits

that are zero) in the binary representation of a positive integer i. E.g. ntz(7) = 0

and ntz(12) = 2. Let bn denote the string obtained by concatenating n copies of a bit

b ∈ {0, 1}.
For X ∈ {0, 1}∗ let X1‖X2 · · · ‖Xm

b← X denote partitioning X into blocks such that

|Xi| = b for 1 ≤ i ≤ m−1 and |Xm| ≤ b; let m = |X|b denote length of X in b-bit blocks

(i.e., |X|b = d|X|/be).

XOR and binary shifts. For two strings X and Y with |X| = |Y |, we let X &Y

denote the result of the bitwise and operation applied to X and Y .

For two strings X and Y , with |X| ≤ |Y |, let the notations X ⊕Y and Y ⊕X both

denote the bitwise xor ofX and left|X| (Y ). Clearly, ifX and Y have the same length then

X ⊕Y matches the usual bitwise xor. For any string X, this implies X ⊕ ε = ε⊕X = ε.

For a string X, let X�n = right|X|−n (X) ‖0n denote the left-shift operation, where

the n leftmost bits are discarded and the n vacated rightmost bits are set to 0. We

let X�n = 0n‖left|X|−n (X) denote the (unsigned) right-shift operation where the n

rightmost bits are discarded and the n vacated leftmost bits are set to 0. We letX�s n =

(left1 (X))n ‖left|X|−n (X) denote the signed right-shift operation where the n rightmost

bits are discarded and the n vacated left bits are filled with the original leftmost bit

(which is considered as the sign bit); for example, 1001100 �s 3 = 1111001. If the
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leftmost bit of X is 0 then we have X �s n = X � n.

Finite fields. For a positive integer n, let GF(2n) denote the Galois Field with 2n

elements. An element α in GF(2n) is represented as a formal polynomial α(X) =

αn−1X
n−1 + · · ·+ α1X + α0 with binary coefficients.

We can assign an element α ∈ GF(2n) to an integer i ∈ {0, . . . , 2n − 1} in the natural

way. A natural assignment of an element α exists for any string s ∈ {0, 1}n. With an

abuse of notation, we sometimes refer to the elements of GF(2n) directly by strings in

{0, 1}n, or integers in {0, . . . , 2n − 1}, if the context does not allow ambiguity.1

The addition “⊕” and multiplication “·” of two field elements in GF(2n) are defined as

usual. For the representation of GF(2256) we use the polynomial P256(X) = X256+X10+

X5 +X2 +1, and for GF(2512) we use the polynomial P512(X) = X512 +X8 +X5 +X2 +1

as the modulus used in the field multiplications.

We note that from the perspective of implementation, it is easy to multiply an arbit-

rary field element α by the element identified with 2 (i.e., X). For example, in GF(2256)

using P256(X) the doubling2 operation can be described as follows:

2 · α =

{
α� 1 if left1 (α) = 0

(α� 1)⊕ 024510000100101 if left1 (α) = 1
(2.1)

= (α� 1)⊕((α�s 255) & 024510000100101) (2.2)

The error symbol. The special symbol ⊥ signifies either an error or that the value

of a variable or a function at some input is undefined.

Arrays and vectors. An array S stores associations (X,Y ) between elements of a

set of indices X ∈ D and a set of values Y ∈ R. An array S can also be thought of

as function S : D → R ∪ {⊥} that can be dynamically modified. We assume all the

standard operations over the arrays: efficient random read and write access, and adding

or removing elements.

We denote by S ← array(D) initializing S to an empty array with the set of indices D.

An empty array contains no association. Given an array S and some X ∈ D for which

an association with some Y was stored in S, we let S[X] = Y . If no association was

stored for X, we let S[X] = ⊥ by convention. This means that for an empty array S,

S[X] = ⊥ for all X ∈ D. Given an array S, we let |S| denote the number of associations

stored in S, i.e., the number of X ∈ D such that S[X] 6= ⊥. We assume that the memory

needed to store S is equal to γ · log(|D|) · |{X ∈ D | S[X] 6= ⊥}| for some constant γ.

We conflate vectors with lists, i.e., we do not understand a vector as an element of a

vector space in the algebraic sense, unless explicitly stated otherwise. Given a set R, a

1We adopt this rather abusive notation because it is very common in the works on AE and tweakable
blockciphers.

2We note that here doubling does not mean “adding an element to itself” but the multiplication by
the GF(2n)-element that can be represented by the integer 2, i.e., the formal polynomial α(X) = X.
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vector V ∈ R∗ is simply a tuple that contains a non-negative number of ordered elements

of R. We let |V | denote the number of elements in the vector V . We let Λ denote the

empty vector with |Λ| = 0 for any R. For a vector V , we let V [i] denote the ith element

of V for 1 ≤ i ≤ |V |, and we let V [i..j] denote the vector (V [i], V [i + 1], . . . , V [j]) for

1 ≤ i < j ≤ |V |. We let V [i . . . i] = V [i] by convention. For i ≥ j we let Λ = V [i..j] by

convention. For a vector V ∈ R∗ and an element X ∈ R, we let V ‖X denote the vector

(V [1], . . . , V [|V |], X).

Functions, permutations and injections. For a bijective function π : S → S, we

denote its inverse by π−1 : S → S, i.e., for all s ∈ S we have π−1(π(s)) = s.

For a finite set S, we let Perm(S) denote the set of all permutations of S. For a

positive n, we let Perm(2n) = Perm({0, 1}n).

For a set D and a finite set R, we let Func(D,R) denote the set of all functions from

D to R, and if D = R, we simply use Func(D) instead of Func(D,D). In particular,

we let Func(D, 2n) = Func(D, {0, 1}n), and Func(2m, 2n) = Func({0, 1}m, {0, 1}n), and

Func(2n) = Func({0, 1}n) for positive integers m and n.

For two finite sets D and R with |D| ≤ |R|, we let Inj(D,R) denote the set of all

injective functions from D to R. In particular, we let Inj(2m, 2n) = Inj({0, 1}m, {0, 1}n)

for positive integers m and n with m ≤ n.

For a positive integer τ , we let Inj(τ) denote the set of all τ -expanding injections, i.e.,

the set of functions f : {0, 1}∗ → {0, 1}∗ s.t. for all M ∈ {0, 1}∗ we have |f(M)| = |M |+τ
and for all M 6= M ′ ∈ {0, 1}∗ we have f(M) 6= f(M ′).

We additionally define so called “tweakable” version of the set of permutations and

the set of functions. For a set T and a finite set S, we let P̃erm(T ,S) denote the set

of all functions f : T × S → S such that for all T ∈ T , f(T, ·) is a permutation of

S. In particular, we let P̃erm(T , 2n) = P̃erm(T , {0, 1}n) for a positive integer n. For a

π̃ ∈ P̃erm(T ,D), we let π̃T(X) = π̃(T, X).

A set of functions from D to R tweaked by T is identical to Func(T × D,R). We

define the corresponding notation nevertheless, as it will be useful in Chapters 3, 4

and 5. For a set T and two positive integers m,n, we let F̃unc(T , 2m, 2n) stand for

Func(T × {0, 1}m, {0, 1}n), such that we treat the elements of the domain T × {0, 1}m

as tweak-message pairs. For an f̃ ∈ F̃unc(T , 2m, 2n), we let f̃T(X) = f̃(T, X).

Note that for a f̃ ∈ F̃unc(T , 2m, 2n), we can interpret π̃ = (π̃T(·))T∈T as a collection

of functions indexed by T. This interpretation will be used in particular if the notation

F̃unc(T , 2m, 2n) appears.

Algorithms and oracles. We let A O1(·),...,Or(·) denote that an algorithm A has black-

box access to algorithms O1, . . . ,Or such that it can feed inputs to and observe corres-

ponding outputs of each Oi for i = 1, . . . , r. We call O1, . . . ,Or the oracles of A . When

A runs Y ← Oi(X) with an input X, we say that A makes a query to Oi, or that A

queries Oi with X. We call Y response to A ’s query.
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We let A O1(·),...,Or(·)(X) ⇒ a denote the event that an algorithm A that is fed an

input X and that has black-box access to oracles O1, . . . ,Or outputs the value a.

We let S ←$ S : A O1(·),...,Or(·)() denote sampling the variable S according to S, and

then running A with its oracles, such that the variable S is implicitly accessible by the

oracles, and may or may not be given to A .

We note that this simple notation will only be used if A ’s oracles are simple enough

to leave no room for ambiguity. For more complex scenarios, the interaction between an

adversary and a set of oracles will be treated explicitly using the game-playing framework

defined in Section 2.2.

2.2 Security Framework

In this section, we briefly discuss the approach we adopt for the formal treatment of

security analyses in this thesis.

Model of computation. Unless stated otherwise, all algorithms are understood to

be executed in the same, fixed RAM model of computation, and represented using the

same algorithm encoding. By convention, the time complexity of an algorithm A is the

worst-case running time of A plus the size of the description of A.

Concrete security. We apply the concrete security-treatment [BDJR97] when defin-

ing and analysing security of cryptographic primitives, as opposed to the asymptotic

security treatment that is usual for public-key cryptography. We analyse the security of

cryptographic constructions against adversaries whose resources (time complexity, data

complexity etc.) are parameterized, and the upper bounds on the adversarial advantage

are expressed as concrete functions of these parameters. Loosely speaking, adversarial

advantage is a measure of how likely it is that an adversary is able to “break” a scheme,

the meaning of “breaking” being scheme-dependent.

The reason for applying the concrete security treatment is twofold. Primarily, there

is only a (small) finite number of instances of virtually any symmetric key construction.

In particular, the security level guaranteed by these instances cannot be scaled at whim,

which makes asymptotic security analysis meaningless. The concrete security analysis

also gives a much more tangible assessment of a construction’s actual level of resilience

to attacks.

Indistinguishability. When formally defining the meaning of security for a crypto-

graphic primitive, it is often convenient to do so through the black-box indistinguishab-

ility of a construction Π (that realizes the given primitive) from an idealized version of

the primitive, i.e., a reference object with the same input/output interface.

The idealized version of the primitive (call it Π̄) usually possesses a perfect version

of the security properties that we would like Π to have. We then evaluate Π’s security

through an experiment, where we give an adversary A oracle access to either Π keyed
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with a random K (sampled from the corresponding key space K), or to Π̄ selected from

the distribution Π̄ associated to the idealized object. Depending on the primitive, the

adversary has access to one or more oracles, and its goal is to distinguish whether it is

interacting with Π or Π̄. That is, A outputs a single bit at the end of its interaction

with the oracles. We (typically) measure the (in)security of Π as an expression of the

form

Pr[K ←$ K : A ΠK ⇒ 1]− Pr[Π̄←$ Π̄ : A Π̄ ⇒ 1]

(where we are abusing the notation slightly), called the adversarial advantage.

The harder it is for an adversary to distinguish the actual keyed construction Π from

the idealized version Π̄, the more faithfully Π approximates the ideal reference Π̄, and

the smaller the advantage. Informally speaking, if the adversarial advantage is low for all

possible adversaries whose computational resources (running time, memory complexity,

the data complexity of the oracle queries) are limited by some reasonable upper bound,

we say that Π is secure.

We note that if the idealized reference object Π̄ is chosen appropriately, any valid

attack that can be mounted with black-box access to Π can be turned into a black-

box distinguisher. The absence of efficient distinguishers then necessarily implies the

absence of any other efficient attacks. The tricky part of this approach is the choice of

an appropriate reference object.

The concept of indistinguishability will be used to define the security of most of the

cryptographic primitives in this thesis.

Adversarial powers. When analysing security of certain primitives, we consider ad-

versaries who are given privileges of varying potency.

For primitives such as blockciphers, encryption-only schemes or authenticated encryp-

tion schemes, the adversary A may only be allowed to query the encryption algorithm.

In that case, we say that A mounts a chosen plaintext attack (CPA). If the adversary

can query both the encryption and the decryption algorithm, we say that it mounts a

chosen ciphertext attack (CCA).

When choosing a set of “reasonable” adversaries for defining security of a primitive,

we distinguish two cases. If we only consider adversaries that run in time that is limited

by some constant t, we talk about computational security, as the primitive in question

is only expected to resist attackers with a limited amount of computational power. Un-

less indicated otherwise, an adversary should always be assumed to be computationally

restricted.

If we allow adversaries to run in unrestricted (but finite) time, we talk about infor-

mation-theoretic security. We refer to such computationally unrestricted adversaries as

information-theoretic adversaries.

We note that when considering an information-theoretic adversary, it can be assumed

to be deterministic without loss of generality (for a simple proof see the paper by Chen
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and Steinberger [CS14]).

Game-playing framework. We use the game-playing methodology [BR06] to define

security of cryptographic primitives and to conduct provable security analysis.

A game is an algorithm that consists of a collection of procedures; it describes a

security experiment. An adversary A is a possibly randomized algorithm, that is left to

interact with one or more procedures of the game called oracles. A game is executed in

three phases.

First, a procedure called initialize is executed to set up the game and produce an

initial input for A . Then A is run with this input and left to interact with the oracles

defined by the game. At the end of this interaction, A produces an output value. This

value is passed to a procedure called finalize which then produces the final output of the

game.

Overloading the notation, we let A G ⇒ a denote the event that the finalize procedure

outputs the value a when running a game G with an adversary A .

If the initialization procedure is a dummy algorithm with no instructions, we may omit

it completely. Similarly, if the finalization procedure is not specified, then we default to

a dummy procedure that simply forwards the output of the adversary.

To describe the games, we will often use pseudo code, similar to that proposed by

Bellare and Rogaway [BR06]. If the game is simple enough so that there is no risk of

ambiguity, we dispense with the pseudo code and describe the game using simple “math-

ematical” notation. An example of the latter are the security definitions in Section 2.3.

The fundamental lemma of game-playing. We can apply the fundamental lemma

of game-playing when we wish to upper-bound the quantity

Pr[A G1 ⇒ a]− Pr[A G2 ⇒ a]

for an adversary A and two games G1 and G2 that are identical-until-bad.

We call two games G1 and G2 identical-until-bad if the two games are syntactically

identical except when a boolean flag bad (which exists in both of them) is set to true.

More precisely, G1 and G2 are identical-until-bad if their code is the same except inside

if -blocks that always set the flag bad to true if entered. The fundamental lemma says

that the advantage that an adversary can obtain in distinguishing a pair of identical-

until-bad games is at most the probability that its execution sets bad in one of the games

(either game will do).

Lemma 2.1 (Fundamental lemma of game-playing [BR06]). Let G1 and G2 be identical-

until-bad games, let a be any value, and let A be an adversary. Then we have

Pr[A G1 ⇒ a]− Pr[A G2 ⇒ a] ≤ Pr[A Gi sets bad],

where i ∈ {1, 2} and where A Gisets bad denotes the event that the flag bad is set to true

when the procedure finalize of Gi is called.
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Coefficient-H technique When analysing the indistinguishability of two games X

and Y such that the oracles of X have identical interfaces with the oracles of Y , we can

make use of the Patarin’s Coefficient-H technique [Pat08a]; more precisely, a revisited

formulation of it by Chen and Steinberger [CS14].

Consider a fixed information-theoretic adversary A , which is w.l.o.g. deterministic,

and whose goal is to distinguish the two games X and Y . Then we typically seek an

upper bound for the quantity

∆A (X;Y ) =
∣∣Pr
[
A X ⇒ 1

]
− Pr

[
A Y ⇒ 1

]∣∣ .
A ’s interaction with any of the two games X or Y can be summarized in a transcript

τ . A transcript is an ordered collection of A ’s oracle queries and the corresponding

responses A received back form the oracles.

Given the game X and the adversary A , we can define the random variable DA
X as

the transcript produced when we run A X . We define the random variable DA
Y similarly.

The domain of both DA
X and DA

Y is the set of all possible transcripts that A can produce

when interacting with either X or Y . The probability distribution of DA
X is defined over

the random coins of X (recall that A is deterministic), and similarly, the distribution

of DA
Y is defined over the coins of Y .

A transcript τ is called Y -attainable if Pr
[
DA
Y = τ

]
> 0, meaning that it can occur

during the interaction of A with Y . The Coefficient-H technique states the following

(for the proof of which we refer to Chen and Steinberger [CS14]).

Lemma 2.2 (Coefficient-H Technique [Pat08a, CS14]). Consider a fixed deterministic

adversary A . Let T = Tgood∪Tbad be a partition of the set of all Y -attainable transcripts

T . If there exists an ε such that for all τ ∈ Tgood,

Pr
[
DA
X = τ

]
Pr
[
DA
Y = τ

] ≥ 1− ε,

then ∆A (X;Y ) ≤ ε+ Pr
[
DA
Y ∈ Tbad

]
.

The two partitions of T are labelled as Tgood and Tbad to increase the intuitiveness of

the proof. The transcripts in Tgood are “good” in the sense that they give us a high value

of Pr [DX = τ ]/Pr [DY = τ ] and thus small ε while the “bad” transcripts from Tbad fail

to do so.

We further note that in place of the game X we usually have a cryptographic construc-

tion, and in place of Y its idealized reference. Therefore, we often refer to the former as

the “real world” and to the latter as the “ideal world”.

2.3 Low-Level Primitives

In this section, we define the syntax and security of low-level cryptographic primitives

that will be used in the remaining chapters.
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Blockciphers. Blockciphers are one the most common building blocks of other sym-

metric primitives. A blockcipher allows to encrypt bitstrings of fixed size, so called

blocks, into ciphertexts of the same size, in an invertible way.

A blockcipher is a pair of deterministic algorithms B : K × {0, 1}n → {0, 1}n and
B−1 : K×{0, 1}n → {0, 1}n such that B maps a secret key K ∈ K and a plaintext block
X ∈ {0, 1}n to a ciphertext block B(K,X) ∈ {0, 1}n, and such that for every K ∈ K
and X ∈ {0, 1}n we have

B−1(K,B(K,X)) = X.

That is, B must be efficiently invertible.3

We let BK(X) = B(K,X) and similarly B−1
K (X) = B−1(K,X). We call n, a positive

integer, the blocksize of B and K, a finite set, the key space of B. We note that we

typically have K = {0, 1}k for some positive integer k. We further note that the required

invertibility of B implies that for every K ∈ K, both B(K, ·) and B−1(K, ·) are necessarily

permutations of {0, 1}n. We use B to denote both the blockcipher and its encryption

algorithm.

We quantify the security of a blockcipher through the notion of computational in-

distinguishability from a random permutation (RP). The intuition behind this notion

is the following. When keyed with a secret key, the blockcipher (with a blocksize of n

bits) must necessarily be a permutation of {0, 1}n. An ideal blockcipher should behave

completely “random” beyond this constraint. To an adversary who only sees the keyed

blockcipher as a black box, the best possible blockcipher will look identical to a random

permutation of {0, 1}n.

Definition 2.3 ((S)PRP security). Given a blockcipher B : K × {0, 1}n → {0, 1}n and

an adversary A that has black-box access to B, we define the advantage of A in breaking

the security of B in a chosen plaintext attack as

Advprp
B (A ) = Pr

[
K ←$ K : A BK(·) ⇒ 1

]
− Pr

[
π ←$ Perm(2n) : A π(·) ⇒ 1

]
.

If the advantage Advprp
B (A ) ≤ ε for every adversary A with running time and query

complexity bounded by t and q respectively, we say that B is a (ε, t, q)-secure pseudoran-

dom permutation (PRP).

For an adversary A that has black-box access to B and B−1, we define the advantage
of A in breaking the security of B in a chosen ciphertext attack as

Advsprp
B (A ) = Pr

[
K ←$ K : A BK(·),B−1

K (·) ⇒ 1
]
−Pr

[
π ←$ Perm(2n) : A π(·),π−1(·) ⇒ 1

]
.

If the advantage Advsprp
B (A ) ≤ ε for every adversary A with running time bounded by

t, and encryption and decryption query complexity bounded by qe and qd respectively, we

say that B is a (ε, t, qe, qd)-secure strong pseudorandom permutation (SPRP).

3We note that this notation is slightly abusive as B−1 is not an inverse of B in the strictest sense.
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Remark 1. We note that we may simply measure the adversarial resources by q = qe+qd
for SPRP security.

Tweakable blockciphers Tweakable blockciphers are an extension of blockciphers

that adds an extra input: the tweak [LRW02]. Changing the tweak with the same key in

a tweakable blockcipher should mimic the effects of re-keying it with independent keys.

A tweakable blockcipher is a pair of efficient deterministic algorithms B̃ : K × T ×
{0, 1}n → {0, 1}n and B̃

−1
: K × T × {0, 1}n → {0, 1}n, such that B̃ maps a secret

key K ∈ K, a tweak T ∈ T and a plaintext block X ∈ {0, 1}n to a ciphertext block

B̃(K,T,X) ∈ {0, 1}n, and such that for every K ∈ K, T ∈ T and X ∈ {0, 1}n we have

B̃
−1

(K,T,B(K,T,X)) = X.

That is, B̃ must be efficiently invertible.

We let B̃
T

K(X) = B̃K(T,X) = B(K,T,X) and similarly B̃
−1

K
T (X) = B−1

K (T,X) =

B−1(K,T,X). We call n, a positive integer, the blocksize of B̃, we call K, a finite set,

the key space of B̃, and we call T , a finite set, the tweak space of B̃. Again, we typically

have K = {0, 1}k for some positive integer k. Similarly to blockciphers, the invertibility

implies that for every K ∈ K and T ∈ T , both B̃(K,T, ·) and B̃
−1

(K,T, ·) are necessarily

permutations of {0, 1}n. We use B̃ to denote both the tweakable blockcipher and its

encryption algorithm.

We measure the security of a tweakable blockcipher through its computational indis-

tinguishability from a random tweakable permutation.

Definition 2.4 ((S)TPRP security). Given a tweakable blockcipher B̃ : K×T ×{0, 1}n →
{0, 1}n and an adversary A that has black-box access to B̃, we define the advantage of

A in breaking the security of B̃ in a chosen plaintext attack as

Advp̃rp

B̃
(A ) = Pr

[
K ←$ K : A B̃K(·,·) ⇒ 1

]
−Pr

[
π̃ ←$ P̃erm(T , 2n) : A π̃(·,·) ⇒ 1

]
.

If the advantage Advp̃rp

B̃
(A ) ≤ ε for every adversary A with running time and query

complexity bounded by t and q respectively, we say that B̃ is a (ε, t, q)-secure tweakable

pseudorandom permutation (TPRP).

For an adversary A that has black-box access to B̃ and B̃
−1

, we define the advantage
of A in breaking the security of B̃ in a chosen ciphertext attack as

Advs̃prp

B̃
(A ) = Pr

[
K ←$ K : A B̃K(·,·),B̃−1

K (·,·) ⇒ 1
]
− Pr

[
π̃ ←$ P̃erm(T , 2n) : A π̃(·,·),π̃−1(·,·) ⇒ 1

]
.

If the advantage Advs̃prp

B̃
(A ) ≤ ε for every adversary A with running time bounded by t,

and encryption and decryption query complexity bounded by qe and qd respectively, we say

that B̃ is a (ε, t, qe, qd)-secure strong tweakable pseudorandom permutation (STPRP).

Remark 2. We note that we may simply measure the adversarial resources by q = qe+qd
for STPRP security.
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Pseudorandom functions. Another frequently used tool in symmetric cryptography

is a keyed function that maps inputs from a (potentially infinite) domain D to a set of

fixed-size strings.

A keyed function is an efficient algorithm F : K×D → {0, 1}n that maps a secret key

K and an input X to an output string F (K,X). We call K, a finite set, the key space

of F and require that n is a positive integer. If D = {0, 1}m with m > n, we call F a

compression function. We let FK(X) = F (K,X).

We quantify the security of keyed functions through their indistinguishability from a

random function (RF) of the same signature. Intuitively, a good keyed function should

produce outputs that look “random” and independent of the inputs. We note that the

distribution of a “uniformly” chosen function F : D → {0, 1}n is meaningful even if the

domain D is not finite; for every preimage X ∈ D, the distribution of the image F (X)

is independent and uniform in {0, 1}n.

Definition 2.5 (PRF security). Given a keyed function F : K × D → {0, 1}n and an

adversary A that has black-box access to F , we define the advantage of A in breaking

the security of F as

Advprf
F (A ) = Pr

[
K ←$ K : A FK(·) ⇒ 1

]
− Pr

[
f ←$ Func(D, 2n) : A f(·) ⇒ 1

]
.

If the advantage Advprf
F (A ) ≤ ε for every adversary A with time complexity, query

complexity and data complexity (in bits) of all its queries limited by t, q and σ respectively,

we say that F is a (ε, t, q, σ)-secure pseudorandom function (PRF).

Remark 3. We note that the accounting of resources for PRF security of keyed functions

may differ slightly from what we stated in Definition 2.5. In particular, we may measure

data complexity in blocks of bits rather than bits (e.g. for blockcipher-based construction),

or we may add other resource parameters (such as maximal length of any query).

Tweakable keyed functions While it is possible to define the security of a tweakable

PRF, the security notion would completely overlap with the notion of a PRF. This is

because the idealized reference object, a “tweakable” random function, is the same as a

random function from the set of function whose domain is augmented by a set of tweaks.

However, we sometimes refer to keyed functions (and random functions with the same

signature) as“tweakable” to emphasize that their domains are of the form T ×D for some

sets T andD and their inputs logically consist of“tweaks”T ∈ T and“data”X ∈ D. For a

tweakable keyed function F : K×(T ×D)→ R, we let F TK(X) = FK(T,X) = F (K,T,X).

RP-RF switch. One of the best known results in provable security says that a PRP

secure blockcipher is also a provably secure PRF with the same signature, albeit with a

birthday-bounded loss of security [BR06]. This is formalized in Lemma 2.6, where we

only focus on the information-theoretic part of the problem.
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Lemma 2.6 (RP-RF switch). Let n be a positive integer, and let A be an information

theoretic adversary that makes no more than q queries. Then

Pr
[
π ←$ Perm(2n) : A π(·) ⇒ 1

]
− Pr

[
f ←$ Func(2n) : A f(·) ⇒ 1

]
≤ q2

2n+1
.

Almost universal and almost XOR universal hash functions. Both almost uni-

versal and almost XOR universal hash functions (AXU) are keyed functions that pos-

sesses certain statistical properties.

An ε-almost universal hash function is a keyed function H : K ×M → {0, 1}n with

M ⊂ {0, 1}∗ that maps a key K and a string M to a hash H(K,M), such that the

distribution of hashes (defined over the randomness of the key) is almost uniform. That

is, we have for every M ∈M and every h ∈ {0, 1}n that

Pr [K ←$ K : H(M) = h] ≤ ε.

An ε′-AXU hash function is a keyed function H ′ : K′×M′ → {0, 1}n′ withM′ ⊂ {0, 1}∗

that maps a key K ′ and a string M ′ to a hash H ′(K ′,M ′), such that the distribution of

xors of hashes (defined over the randomness of the key) is almost uniform. That is, we

have for every M ′1 6= M ′2 ∈M′ and every h′ ∈ {0, 1}n′ that

Pr
[
K ′ ←$ K′ : H ′(M ′1)⊕H ′(M ′2) = h′

]
≤ ε′.

We note that a keyed function can be ε-almost universal and ε′-AXU at the same time

for two (potentially different) smallest values ε and ε′.

2.4 Authenticated Encryption

In this section, we state the definition of the most common syntax and security notions

of AE schemes.

Syntax. We follow the four-input syntax for AE schemes with associated data as
defined by Rogaway [Rog02]. A scheme for authenticated encryption (AE) with asso-
ciated data (AD) is a triple Π = (K, E ,D). The key space K is a set endowed with a
probabilistic distribution, and E and D are two efficient, deterministic algorithms. If K is
finite and it is not said otherwise, we assume the distribution is uniform. The encryption
algorithm E : K×N ×A×M→ C maps a key K ∈ K, a nonce4 N ∈ N , AD A ∈ A and
a plaintext (or a message) M ∈M to a ciphertext C ∈ C. The sets N , A, M and C are
respectively called nonce space, AD space, message space, and ciphertext space. They
are all subsets of {0, 1}∗.5 The decryption algorithm D : K × N × A × C → M× {⊥}
maps a key K ∈ K, a nonce N ∈ N , AD A ∈ A and a ciphertext C ∈ C to either a

4We understand the term “nonce” as a value that ought not to repeat, but may (and if it does, it is
considered a misuse of the “nonce”).

5It may seem unfair that only the key space gets to be included in Π explicitly, while the nonce, AD
and message spaces do not. Perhaps it is because K is the equivalent of the key generator algorithm.
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plaintext M ∈ M, or to the distinguished symbol ⊥ used to signal an authentication
error. We let

EN,AK (M) = EK(N,A,M) = E(K,N,A,M) and DN,AK (C) = DK(N,A,C) = D(K,N,A,C).

To avoid pathological corner-cases, we require for every M ∈ {0, 1}∗ that if M ∈ M
then M ′ ∈M for all M ′ ∈ {0, 1}|M |. We also require that for all K ∈ K, N ∈ N , A ∈ A
and M ∈ M, the ciphertext expansion (a.k.a. stretch) is positive and only depends on

the AD and the length of the plaintext, i.e., |E(K,N,A,M)| = |M |+λ(A, |M |) for some

function λ : A× N→ N.

We note that in most cases, the ciphertext expansion is a non-negative constant τ ,

i.e., we have λ(A,m) = τ for any (A,m). We will assume that the stretch is equal to

a non-negative constant τ unless explicitly stated otherwise. We further note that the

ciphertext C is often composed of a core ciphertext C ′ that encrypts the message and

an authentication tag T , i.e., E(K,N,A,M) = C ′‖T with |C ′| = |M | and |T | = τ .

We finally require that Π meets the correctness requirement: for every K ∈ K, N ∈ N ,

A ∈ A and M ∈ M, we must have D(K,N,A, E(K,N,A,M)) = M . In other words,

any valid ciphertext must always decrypt correctly.

As we will almost exclusively discuss AE schemes that can process associated data

in this thesis, we will refer to AE schemes with associated data simply as AE schemes.

In the case that a message-only AE scheme will be considered, this will be made clear

explicitly.

Security of nonce-based AE schemes. A secure nonce-based AE scheme provides

strong confidentiality and authenticity guarantees, as long as the user of the scheme

ensures that each call to the encryption algorithm is done with a unique nonce. There are

two security definitions for nonce based AE schemes that formalize this intuition. They

can be seen as two variants of the same notion however, as they are shown equivalent

(see Lemma 2.9).

In both of these security notions, the requirement about the freshness of the nonces is

modelled as an assumption about the adversary, who is thought to be nonce-respecting. A

nonce-respecting adversary is any algorithm that, given oracle access to a keyed instance

of a scheme Π, uses a fresh nonce with each query to the encryption oracle it makes. We

stress that the adversary is free to repeat nonces in decryption queries.

Two-requirement nonce-based AE security. The original two-requirement variant

formalized by Rogaway [Rog02] consists of two standalone definitions. The confidenti-

ality of a scheme Π is captured through indistinguishability of ciphertexts from random

strings in a CPA by a nonce-respecting adversary, formalized in games priv-R and

priv-I defined in Figure 2.1.

The authenticity is formalized as integrity (unforgeability) of ciphertexts, where an

adversary plays the game auth defined in Figure 2.1 and its goal is to find a new

ciphertext tuple that decrypts correctly.
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Definition 2.7 (PRIV and AUTH AE security [Rog02]). Given a nonce-based AE

scheme Π = (K, E ,D) with a constant ciphertext expansion τ and an adversary A ,

we define the advantage of A in breaking the confidentiality of Π in a chosen plaintext

attack (with help of the games priv-R and priv-I in Figure 2.1) as

Advpriv
Π (A ) = Pr[A priv-RΠ ⇒ 1]− Pr[A priv-IΠ ⇒ 1].

We define the advantage of an adversary A ′ in breaking the authenticity of Π in a chosen

ciphertext attack (wit help of the game auth in Figure 2.1) as

Advauth
Π (A ′) = Pr[A ′

authΠ forges]

where “A ′ forges” denotes the event that the Dec oracle returns a value different from

⊥.

If Advpriv
Π (A ) ≤ ε for all adversaries A whose running time is limited by t, and

whose query complexity and data complexity (in bits) in all queries is limited by q and

σ respectively then we say that Π is a (ε, t, q, σ)-PRIV secure nonce-based AE scheme.

If Advauth
Π (A ′) ≤ ε′ for all adversaries A ′ whose running time is limited by t′, and

whose encryption and decryption query complexity is bounded by q′e and q′d respectively,

and whose data complexity (in bits) in all queries is limited by σ′ then we say that Π is

a (ε′, t′, q′e, q
′
d, σ
′)-AUTH secure nonce-based AE scheme.

Remark 4. We note that the accounting of resources of an adversary against an AE

scheme may slightly differ from what we state in the security definitions. For example we

may count the total number of queries q = qe+qd only, or keep track of data complexities

in encryption and decryption queries separately. We may also measure the data com-

plexities in blocks of bits rather than bits, or introduce new parameters, such as maximal

lengths of queries.

This applies to all definitions of AE security in this section.

All-in-one nonce-based AE security. The second variant of the nonce-based AE

security notion captures both confidentiality and authenticity of the scheme in a single

all-in-one security definition [RS06b]. The notion is based on the indistinguishability

of the real scheme from a pair of oracles that idealize the security properties of AE, a

random-strings oracle for encryption queries, and an always-reject oracle for decryption

queries. This is formally defined by the games nae-R and nae-I in Figure 2.2.

Definition 2.8 (NAE security [RS06b]). Given a nonce-based AE scheme Π = (K, E ,D)

with a constant ciphertext expansion τ and an adversary A , we define the advantage of

A in breaking the AE security of Π in a chosen ciphertext attack (with help of the games

nae-R and nae-I in Figure 2.2) as

Advnae
Π (A ) = Pr[A nae-RΠ ⇒ 1]− Pr[A nae-IΠ ⇒ 1].
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proc initialize priv-RΠ

K ←$ K
X ← ∅

proc Enc(N,A,M)
if N ∈ X then

return ⊥
X ← X ∪ {N}
C ← E(K,N,A,M)
return C

proc initialize priv-IΠ

X ← ∅

proc Enc(N,A,M)
if N ∈ X then

return ⊥
X ← X ∪ {N}
C ←$ {0, 1}|M |+τ
return C

proc initialize authΠ

K ←$ K
X ← ∅, Y ← ∅

proc Enc(N,A,M)
if N ∈ X then

return ⊥
X ← X ∪ {N}
C ← E(K,N,A,M)
Y ← Y ∪ {(N,A,C)}
return C

proc Dec(N,A,C)
if (N,A,C) ∈ Y then

return ⊥
return D(K,N,A,C)

Figure 2.1 – Two-requirement definition of NAE security for a scheme Π =
(K, E ,D) with ciphertext expansion τ .

If Advnae
Π (A ) ≤ ε for all adversaries A whose running time is limited by t, and whose

encryption and decryption query complexity is bounded by qe and qd respectively, and

whose data complexity (in bits) in all queries is limited by σ, then we say that Π is an

(ε, t, qe, qd, σ)-secure nonce-based AE scheme.

Equivalence of the all-in-one and two-requirement nonce-based AE notions.

Rogaway and Shrimpton, who introduced the all-in-one definition of AE security, proved

that the PRIV+AUTH security is equivalent with the NAE security. That is, if both

the PRIV advantage and the AUTH advantage is small for all reasonable adversaries,

then necessarily must also be the NAE advantage, and similar inequalities apply in the

opposite direction. This is expressed formally in Lemma 2.9.

Lemma 2.9 (Corollary of Propositions 8 and 9 [RS06b]). Let Π = (K, E ,D) be a

nonce-based AE scheme, and A be an adversary that runs in time t and asks qe and qd
encryption and decryption queries, respectively, that have a total data complexity of σ

bits. Then we have

Advnae
Π (A ) ≤ Advpriv

Π (B) + Advauth
Π (C )
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proc initialize nae-RΠ

K ←$ K
X ← ∅, Y ← ∅

oracle Enc(N,A,M)
if N ∈ X then

return ⊥
X ← X ∪ {N}
C ← E(K,N,A,M)
Y ← Y ∪ {(N,A,C)}
return C

oracle Dec(N,A,C)
if (N,A,C) ∈ Y then

return ⊥
return D(K,N,A,C)

proc initialize nae-IΠ

X ← ∅

oracle Enc(N,A,M)
if N ∈ X then

return ⊥
X ← X ∪ {N}
C ←$ {0, 1}|M |+τ
return C

oracle Dec(N,A,C)
return ⊥

Figure 2.2 – All-in-one definition of NAE security for a scheme Π = (K, E ,D) with
ciphertext expansion τ .

for some B that runs in time bounded by t + γ1 · (qe + σ) for a positive constant γ1

and asks qe queries of no more than σ bits, and some C that runs in time bounded by

t+γ2 ·(qe+qd+σ) for a positive constant γ2 and asks qe and qd encryption and decryption

queries, respectively, of no more than σ bits in total.

Let further B′ be an adversary that runs in time t′1, asks q encryption queries that

have a total data complexity of σ′e bits, and C ′ be an adversary that runs in time t′2 and

asks q′e and q′d encryption and decryption queries, respectively, that have a total data

complexity of σ′ bits. Then we have

Advpriv
Π (B′) ≤ Advnae

Π (A ′1) and Advauth
Π (C ′) ≤ Advnae

Π (A ′2)

for some A ′1 that runs in time bounded by t′1 + γ′1 · (q′ + σ′e) for a positive constant γ′1
and asks q′ encryption queries of no more than σ′e bits in total, and some A ′2 that runs

in time bounded by t′2 + γ′2 · (q′e + q′d + σ′) for a positive constant γ′2 and asks q′e and q′d
encryption and decryption queries, respectively, of no more than σ′ bits in total.

Nonce misuse-resistant AE security. In 2006, Rogaway and Shrimpton pointed out

that while simple and generally reasonable, the requirement that nonces do not repeat

for encryption queries cannot always be met in practice [RS06b]. This may happen

e.g. due to an erroneous implementation, a looping counter, insufficient entropy when

using a random value as the nonce, or when cloning a virtual machine with a long-term

symmetric key. A nonce repetition meant a complete loss of security for all nonce-based

AE schemes at the time.

Rogaway and Shrimpton proposed to design AE schemes that achieve the NAE se-
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curity with unique nonces, and that only suffer the unavoidable loss of security when

the nonces repeat; that the ciphertexts repeat whenever the full triple of inputs is re-

peated. This intuition is formalized in the security notion of nonce misuse-resistant AE

(MRAE) using the games mrae-R and mrae-I in Figure 2.3. These two games are

almost identical to those used to define NAE security (see Definition 2.8), except that

now the adversary can repeat nonces, but is forbidden to repeat a triple (N,A,M), for

which it knows the reply trivially.

Definition 2.10 (MRAE security [RS06b]). Given a nonce-based AE scheme Π =

(K, E ,D) with a constant ciphertext expansion τ and an adversary A , we define the

advantage of A in breaking the nonce misuse-resistant AE security of Π in a chosen

ciphertext attack (with help of the games mrae-R and mrae-I in Figure 2.3) as

Advmrae
Π (A ) = Pr[A mrae-RΠ ⇒ 1]− Pr[A mrae-IΠ ⇒ 1].

If Advmrae
Π (A ) ≤ ε for all adversaries A whose running time is limited by t, and

whose encryption and decryption query complexity is bounded by qe and qd respectively,

and whose data complexity (in bits) in all queries is limited by σ then we say that Π is

a (ε, t, qe, qd, σ)-secure MRAE scheme.

proc initialize mrae-RΠ

K ←$ K
X ← ∅, Y ← ∅

oracle Enc(N,A,M)
if (N,A,M) ∈ X then

return ⊥
C ← E(K,N,A,M)
X ← X ∪ {(N,A,M)}
Y ← Y ∪ {(N,A,C)}
return C

oracle Dec(N,A,C)
if (N,A,C) ∈ Y then

return ⊥
return D(K,N,A,C)

proc initialize mrae-IΠ

X ← ∅

oracle Enc(N,A,M)
if (N,A,M) ∈ X then

return ⊥
C ←$ {0, 1}|M |+τ
X ← X ∪ {(N,A,M)}
return C

oracle Dec(N,A,C)
return ⊥

Figure 2.3 – Nonce misuse-resistant AE (MRAE) security game for a scheme
Π = (K, E ,D) with ciphertext expansion τ .

Rogaway and Shrimpton pointed out that an MRAE scheme can alternatively be

characterized as a pseudo-random injection (PRI) with constant stretch that is tweaked

by the nonce and the associated data.

27



Informally, the best possible instance of an MRAE scheme would realize an independ-

ent random injective mapping from {0, 1}m to {0, 1}m+τ for every m s.t. {0, 1}m ⊆ M
and for every nonce N ∈ N and AD A ∈ A. The injectivity is required for the correct-

ness of the decryption, and the encryption should otherwise be random. We can then

measure the security of an actual MRAE scheme through its indistinguishability from a

tweakable random injection with the same signature.

Definition 2.11 (PRI security [RS06b]). Given a nonce-based AE scheme Π = (K, E ,D)

with a constant ciphertext expansion τ and an adversary A , we define the advantage of

A in breaking the pseudo-random injection security of Π in a chosen ciphertext attack

(with help of the games pri-R and pri-I in Figure 2.4) as

Advpri
Π (A ) = Pr[A pri-RΠ ⇒ 1]− Pr[A pri-IΠ ⇒ 1].

If Advpri
Π (A ) ≤ ε for all adversaries A whose running time is limited by t, and whose

encryption and decryption query complexity is bounded by qe and qd respectively, and

whose data complexity (in bits) in all queries is limited by σ then we say that Π is a

(ε, t, qe, qd, σ)-secure PRI.

proc initialize pri-RΠ

K ←$ K

oracle Enc(N,A,M)
return E(K,N,A,M)

oracle Dec(N,A,C)
return D(K,N,A,C)

proc initialize pri-IΠ

for N,A ∈ N ×A do
fN,A ←$ Inj(τ)

oracle Enc(N,A,M)
return fN,A(M)

oracle Dec(N,A,C)
if ∃M ∈M s.t. fN,A(M) = C then

return M
else

return ⊥

Figure 2.4 – Pseudo-random injection (PRI) security game for a scheme Π =
(K, E ,D) with ciphertext expansion τ .

Rogaway and Shrimpton showed that with growing stretch τ , the notions of MRAE

and PRI converge. This is because the MRAE notion is aspirational, in the sense that it

is impossible for an AE scheme that meets the correctness requirement to have an MRAE

advantage of 0; the ciphertexts cannot be uniform because of the necessary injectivity

of encryption, and valid ciphertext tuples must exist (so it is impossible to reject every

possible adversarial forgery attempt).

This intuition is formally stated in Lemma 2.12. We note that the quantitative differ-

ence between the MRAE and the PRI advantage vanishes with increasing τ . The larger
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τ , the less likely we are observe collisions in random strings with length ≥ τ and the less

likely it is to find an image of a random injection.

Lemma 2.12 (Theorem 7 [RS06b]). Let Π = (K, E ,D) be a nonce-based AE scheme,

with stretch τ and A be an adversary that asks qe and qd encryption and decryption

queries, respectively, so q = qe + qd queries in total. Let further s = minM∈M(|M |) be

the length of the shortest possible plaintext. Then we have∣∣∣Advmrae
Π (A )−Advpri

Π (A )
∣∣∣ ≤ q2

22+τ+1
+

4 · qd
2τ

.
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Chapter 3
OMD: a Compression Function-based

Scheme for Authenticated Encryption

This chapter is dedicated to Offset Merkle-Damg̊ard (OMD), which is the first dedicated

scheme for authenticated encryption based on a compression function.

The work presented in this chapter is a result of joint work with Simon Cogliani, Diana-

Stefania Maimut, David Naccache, Rodrigo Portella do Canto, Reza Reyhanitabar and

Serge Vaudenay which was published in SAC 2014 [CMN+14].

The implementations presented in Section 3.7 were developed by Robin Ankele and

Ralph Ankele [AA14], Johan Droz [Dro15], and Martin Georgiev [Geo15] as parts of

student projects (co-)supervised by the author of this thesis.

Organization of the Chapter. We start with a brief overview of the related work

in Section 3.1 and a summary of the contribution in Section 3.2.

We introduce OMD in Section 3.3. We give a description of OMD in Section 3.4 and

discuss OMD as a candidate in the CAESAR competition in Section 3.5. We give the

security analysis of OMD in Section 3.6 and discuss its performance in Section 3.7.

3.1 Related Work

OMD follows the four-input syntax for nonce-based AE schemes with associated data

by Rogaway [Rog02] (see Section 2.4).

The security notion targeted by OMD is the nonce-based AE security proposed by

Rogaway [Rog02] (see Section 2.4). The core of the encryption in OMD is inspired by the

Merkle-Damg̊ard hash construction [Dam89, Mer89], while the use of whitening offsets

is mainly inspired by OCB [RBBK01, Rog04a, KR11]. The recommended instances of

OMD are based on the compression functions of the standard hash functions SHA256

and SHA512 [oST12]. The assumption that when keyed, the compression functions of the

SHA2-family are secure PRFs is not unprecedented; for example Bellare uses a similar
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assumption on SHA1 to prove the security of NMAC and HMAC [Bel06a].

3.2 Contribution

In this chapter, we present a novel, dedicated AE scheme called Offset Merkle-Damg̊ard,

a mode of operation for a keyed compression function. OMD competed in the CAESAR

competition and finished as a second round candidate.

We show that OMD is NAE secure, assuming the underlying compression function is a

secure PRF. We also investigate the performance of optimized software implementations

of OMD.

To our best knowledge, OMD is the first AE scheme based on a (keyed) compression

function; this work adds compression functions to the list of low-level primitives that

can be used to construct practical and secure AE schemes. We thus contribute to

cryptographic diversity, which helps to limit the global impact of devastating attacks.

Beyond demonstrating the mere feasibility of AE based on compression functions,

the instances of OMD based on the compression functions of SHA256 and SHA512

also provide a large quantitative security margin while delivering a decent performance,

especially on high-end CPU’s with suitable instruction extension sets.

3.3 Offset Merkle-Damg̊ard

Offset Merkle-Damg̊ard (OMD) is a nonce-based AE scheme. Unlike the majority of

other AE schemes (that were designed before and during the CAESAR competition),

which are either blockcipher-based or permutation-based, OMD is designed as a mode of

operation for a compression function. The motivation for using a compression function

as a low-level primitive is manifold:

1. the cryptographic community has spent more than two decades on public research

and standardization activities on hash functions resulting to development of a rich

source of secure and efficient compression functions;

2. the standard SHA family of algorithms is heavily employed in many of the most

common cryptographic applications and one can easily use off-the-shelf, highly

optimized implementations of these functions [GYG12, GCG12];

3. Intel has recently introduced new instruction extensions that support performance

acceleration of SHA-1 and SHA-256 on next-generation processors [GGY+13];

4. having a set of AE schemes based on a large number of different primitives con-

tributes to cryptographic diversity, which we feel is of importance, as an almost

exclusive use of a single primitive can have catastrophic consequences if the security

of that primitive collapses;
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5. we believe that having a diverse set of AE schemes, based on different primitives,

can be interesting from a practical viewpoint, providing the opportunity to choose

among the AE algorithms based on what primitives have already been available

and implemented on the platform of choice and to reuse such implementations.

We designed OMD to be provably secure, keeping several functional features, as well as

performance in mind. Some of the interesting features of OMD, and its instantiations

OMD-sha256 and OMD-sha512, are as follows:

Provable Security in the Standard Model. OMD achieves its security goals (con-

fidentiality and authenticity) provably, based on the assumption that its underlying

keyed compression function is a PRF, an assumption which is among the well-known

and widely-used ones [Bel06b]. From a theoretical point of view this is an advantage

compared to permutation-based AE schemes whose security proofs are done in the ideal

permutation model, and thus have no formal ties with the security of the cryptographic

permutation that they actually use.

High Quantitative Security Level. When implemented with an off-the-shelf com-

pression function such as those of the standard SHA family [oST12], OMD can achieve

much higher security level compared to AES-based schemes. The proven security of

OMD-sha256 and OMD-sha512 falls off in about σ2

2256 and σ2

2512 , respectively, where σ

is the total number of calls to the compression function. In comparison, for the same

key size and tag size, the proven security of all the standardized blockcipher-based AE

schemes using AES (e.g. all five dedicated schemes specified in ISO/IEC 19772:2009)

falls off in about σ′2

2128 where σ′ is the total number of calls to AES. We note that it is

possible to get blockcipher-based AE schemes with (high) beyond birthday-bound se-

curity, but the existing schemes with beyond birthday-bound security have a degraded

efficiency [Iwa06, LPRM07, Iwa08, LST12].

Online. OMD encryption is online; that is, it outputs a stream of ciphertext as a

stream of plaintext arrives with a constant latency and using constant memory. After

receiving an indication that the plaintext is over, the final part of ciphertext together

with the tag is output. OMD decryption is internally online: one can generate a stream

of plaintext bits as the stream of ciphertext bits comes in, but no part of the plaintext

stream will be returned before the whole ciphertext stream is decrypted and the tag is

verified to be correct.

Flexible Parameters. OMD-sha256 can support any key length up to 256 bits, tag

length up to 256 bits, and nonce length up to 255 bits. OMD-sha512 can support any

key length up to 512 bits, tag length up to 512 bits, and nonce length up to 511 bits.

These upper bounds on the parameters’ length will satisfy the required security level

of almost any imaginable application today and well beyond. The lower bounds on the

parameters’ lengths should be selected based on the specific security level sought by an
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application; for instance, most applications would not use keys shorter than 128 bits,

tags shorter than 32 bits and nonces shorter than 64 bits.

3.4 Description

OMD is has two parameters; to instantiate it, one must specify a keyed compression

function F : K× ({0, 1}n×{0, 1}m)→ {0, 1}n and fix a tag length τ ≤ n. For simplicity,

we assume that the key space is K = {0, 1}k. We require that m ≤ n. We let OMD[F, τ ]

denote the OMD mode of operation using the keyed compression function FK and the

fixed tag length τ . We note that assuming the input of F to be composed of pairs of n-bit

and m-bit blocks (most often chaining and data blocks) is without loss of generality, as

a keyed compression function with a monolithic message domain {0, 1}m+n can be used

as one with a structured domain without loss of security.

At the first glance, imposing m ≤ n may look odd as compression functions usually

have a larger data block length than its output (chaining) block length, but we note

that in practice, the compression functions of standard hash functions (e.g. SHA-1 or

the SHA-2 family) are keyless. Therefore one needs to use k bits of their b-bit data

block to get a keyed function. So, there will be no waste in each call to the compression

function if m = n and b = n + k; for example, when the key length is 256 bits and the

compression function of SHA-256 is used.

An overview. An instance OMD[F, τ ] has a key space K = {0, 1}k, and can work

with any AD space A ⊆ {0, 1}≤(m+n)·2n−4
and any message space M ⊆ {0, 1}≤m·2n−4

.

We let `max = maxX∈A∪M(|X|m) denote the upper bound on the maximum number of

blocks in any input to the encryption algorithm. The nonce space is the set of ν-bit

strings N = {0, 1}ν for an integer 1 ≤ ν < n.1

The encryption algorithm of OMD[F, τ ] inputs four arguments (a secret key K, a

nonce N , associated data A, a message M), and outputs a tagged ciphertext C = C‖T ∈
{0, 1}|M |+τ . The decryption algorithm of OMD[F, τ ] takes as input four arguments (a

secret key K, a nonce N , associated data A, a tagged ciphertext C‖T ), and either

outputs the whole message M ∈ {0, 1}|C|−τ at once, or an error message (⊥) in case of

an authentication error.

Internally, the encryption algorithm splits the message M in blocks M1, . . . ,M`
m←

M and processes them using a sequence of chained calls to F similar to the Merkle-

Damg̊ard construction for hashing [Dam89, Mer89]. The main differences with this hash

construction are that:

• the intermediate chaining values are used as keystream bits for encryption,

• (a part of) the input is masked with key-dependent whitening offsets upon every

call to F (hence the name).

1In theory, OMD[F, τ ] can be used with a nonce space N = {0, 1}<n, but we prefer N = {0, 1}ν for
simplicity.

36



OMD: a Compression Function-based Scheme for Authenticated Encryption

The AD processing is inspired by a Wegman-Carter MAC [CW77, WC81] that uses F to

compute an almost XOR universal hash of the AD, and masks the hash with the partial

tag computed in the message processing.

Figure 3.1 illustrates the encryption algorithm of OMD[F, τ ]. The decryption al-

gorithm is straightforward to derive. It is almost the same as the encryption algorithm,

except for a tag comparison (verification) at the end of the decryption process. A formal

algorithmic description of OMD[F, τ ] is provided in Figure 3.2.

In the rest of this chapter, when partitioning a string C into blocks of m bits, such

that |C| 6≡ m (mod m), we denote the final (incomplete) block interchangeably with C`
and C∗; i.e. C = C1‖ · · · ‖C` or C = C1‖ · · · ‖C`−1‖C∗.

Computing the masking values. As seen from the description of OMD in Figure 3.1,

before each call to the underlying keyed compression function we xor a masking value

denoted as ∆N,i,j (the top and middle parts of Figure 3.1) or ∆̄i,j (the bottom part of

Figure 3.1) to the input of F . The purpose of these masks is to randomize each call to

F ; in Section 3.6 it will be shown that they in fact allow to extend the domain of F . In

the following, we describe how these masks are generated.

There are different ways to compute the masking values to satisfy both the security

and efficiency criteria [Rog04a, CS08, KR11]. We use the method used in OCB3 [KR11].

In the following, all multiplications are in GF(2n).

Initialization. In a one-time initialization phase, we compute the derived key L∗,

and an array of L∗-dependent values L[0], . . . , L[dlog2(`max)e]. The initial key-

dependent value is defined as L∗ = FK(0n, 0m). We then let L[0] = 4 · L∗, and

L[i] = 2 · L[i− 1] for i ≥ 1. We note that the values L[i] can be preprocessed and

stored (for a fast implementation) in a table of dlog2(`max)e entries, where `max is

the bound on the maximum number of blocks in any message or AD. Alternatively,

(if there is a memory restriction) they can be computed on-the-fly for i ≥ 1. It is

also possible to precompute and store some values and then compute the others

as needed on-the-fly.

Masking sequence for processing the message. We compute the masks ∆N,i,j for

every query. We define the initial mask ∆N,0,0 = FK(N‖10n−1−ν , 0m). Then for

i ≥ 1 we let

∆N,i,0 = ∆N,i−1,0 ⊕ L[ntz(i)], and

∆N,i,1 = ∆N,i,0 ⊕ 2 · L∗, and

∆N,i,2 = ∆N,i,0 ⊕ 3 · L∗.

Masking sequence for processing the associated data. We likewise compute the

masks ∆̄i,j for every query. We define ∆̄0,0 = 0n and let for i ≥ 0:

∆̄i,0 = ∆̄i−1,0 ⊕ L[ntz(i)], and

∆̄i,1 = ∆̄i,0 ⊕ L∗ .
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Encrypting a message whose length is a multiple of the block length. No padding is
needed.
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Encrypting a message whose length is not a multiple of the block length. The final

message block is padded to make it a full block
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Computing Ta for an associated data whose length is a multiple of the input length
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Computing Ta for an associated data whose length is not a multiple of the input length.
The final block is padded to make it a full block .
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T
The T is computed as XOR of Te

and Ta truncated to τ bits.

Figure 3.1 – The encryption algorithm of OMD[F, τ ] using a keyed compression
function FK : ({0, 1}n × {0, 1}m)→ {0, 1}n and a fixed tag length τ , where m ≤ n. We
refer the reader to Section 2.1 regarding the convention for the xor operation.
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1: algorithm Initialize(K)
2: L∗ ← FK(0n, 0m)
3: L[0]← 4 · L∗
4: for i← 1 to dlog2(`max)e do
5: L[i] = 2 · L[i− 1]
6: end for
7: return
8: end algorithm

1: algorithm HASHK(A)
2: b← n+m

3: A1‖A2 · · ·A`−1‖A`
b← A

4: Ta ← 0n

5: ∆← 0n

6: for i← 1 to `− 1 do
7: ∆← ∆⊕ L[ntz(i)]
8: Left← Ai[b− 1 · · ·m]
9: Right← Ai[m− 1 · · · 0]

10: Φ← FK(Left⊕∆,Right)
11: Ta ← Ta ⊕ Φ
12: end for
13: if |A`| = b then
14: ∆← ∆⊕ L[ntz(`)]
15: Left← A`[b− 1 · · ·m]
16: Right← A`[m− 1 · · · 0]
17: Φ← FK(Left⊕∆,Right)
18: Ta ← Ta ⊕ Φ
19: else
20: ∆← ∆⊕ L∗
21: Apad ← A`‖10b−|A`|−1

22: Left← Apad[b− 1 · · ·m]
23: Right← Apad[m− 1 · · · 0]
24: Φ← FK(Left⊕∆,Right)
25: Ta ← Ta ⊕ Φ
26: end if
27: return Ta
28: end algorithm

1: algorithm EK(N,A,M)
2: if ν > n− 1 then
3: return ⊥
4: end if
5: M1‖M2 · · ·M`−1‖M`

m←M
6: ∆← FK(N‖10n−1−ν , 0m)
7: H ← 0n

8: ∆← ∆⊕ L[0]
9: H ← FK(H ⊕∆, 〈τ〉m)

10: for i← 1 to `− 1 do
11: Ci ← H ⊕Mi

12: ∆← ∆⊕ L[ntz(i+ 1)]
13: H ← FK(H ⊕∆,Mi)
14: end for
15: C` ← H ⊕M`

16: if |M`| = m then
17: ∆← ∆⊕ 2 · L∗
18: Te ← FK(H ⊕∆,M`)
19: else
20: ∆← ∆⊕ 3 · L∗
21: Mpad ←M`‖10m−|M`|−1

22: Te ← FK(H ⊕∆,Mpad)
23: end if
24: Ta ← HASHK(A)
25: T ← (Te ⊕ Ta)[n− 1 · · ·n− τ ]
26: C← C1‖C2‖ · · · ‖C`‖T
27: return C
28: end algorithm

1: algorithm DK(N,A,C)
2: if ν > n− 1 or |C| < τ then
3: return ⊥
4: end if
5: C1‖C2 · · ·C`−1‖C`‖T

m← C
6: ∆← FK(N‖10n−1−ν , 0m)
7: H ← 0n

8: ∆← ∆⊕ L[0]
9: H ← FK(H ⊕∆, 〈τ〉m)

10: for i← 1 to `− 1 do
11: Mi ← H ⊕ Ci
12: ∆← ∆⊕ L[ntz(i+ 1)]
13: H ← FK(H ⊕∆,Mi)
14: end for
15: M` ← H ⊕ C`
16: if |C`| = m then
17: ∆← ∆⊕ 2 · L∗
18: Te ← FK(H ⊕∆,M`)
19: else
20: ∆← ∆⊕ 3 · L∗
21: Mpad ←M`‖10m−|M`|−1

22: Te ← FK(H ⊕∆,Mpad)
23: end if
24: Ta ← HASHK(A)
25: T ′ ← (Te ⊕ Ta)[n− 1 · · ·n− τ ]
26: if T ′ = T then
27: return M ←M1‖M2‖ · · · ‖M`

28: else
29: return ⊥
30: end if
31: end algorithm

Figure 3.2 – Definition of OMD[F, τ ], using a keyed compression function F : K ×
({0, 1}n × {0, 1}m)→ {0, 1}n with K = {0, 1}k and m ≤ n, and tag length τ ≤ n.
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3.5 OMD in CAESAR Competition

OMD competed as one of the 57 candidates in the CAESAR competition. It entered

the second round, among the 29 second round candidates, and did not advance to the

third round. As for all other candidates, a set of concrete instances had to be proposed

for OMD. Moreover, both reference, hardware and software implementations needed to

be provided for each of these instances.

Recommended instances of OMD. We recommend to instantiate OMD with the

compression functions of the SHA-256 and SHA-512 hash functions from NIST FIPS

PUB 180-4 [oST12].

Our primary recommendation to instantiate OMD is called OMD-sha256, and uses

the underlying compression function of SHA-256 [oST12]. This is intended to be the

appropriate choice for implementations on 32-bit machines. The compression function

of SHA-256 is a map sha-256 : {0, 1}256 × {0, 1}512 → {0, 1}256. It takes a 256-bit

chaining block X and a 512-bit message block Y as input, and it outputs a 256-bit

digest Z, i.e. let Z = sha-256(X,Y ).

To use OMD with sha-256, we use the first 256-bit argument X for chaining values

as usual. In our notation (see Figure 3.1) this means that n = 256. We use the 512-bit

argument Y (the message block in sha-256) to input both a 256-bit message block and the

key K which can be of any length k ≤ 256 bits. If k < 256 then let the key be K||0256−k.

That is, we define the keyed compression function FK : {0, 1}256 × {0, 1}256 → {0, 1}256

needed in OMD as FK(H,M) = sha-256(H,K||0256−k||M) .

The parameters of OMD-sha256 are as follows:

• The message block length in bits is m = 256.

• The key length in bits can be 80 ≤ k ≤ 256; but k < 128 is not recommended. If

needed, we pad the key K with 0256−k to make its length exactly 256 bits.

• The nonce (public message number) length in bits can be 96 ≤ ν ≤ 255. We always

pad the nonce with 10255−ν to make its length exactly 256 bits.

• The associated data block length in bits is 2n = 512.

• The tag length in bits can be 32 ≤ τ ≤ 256; but it must be noted that the selection

of the tag length directly affects the achievable security level (see Section 3.6).

Our secondary recommendation to instantiate OMD is called OMD-sha512, and uses

the underlying compression function of SHA-512 [oST12]. This is intended to be the

appropriate choice for implementations on 64-bit machines. The compression function of

SHA-512 is a map sha-512 : {0, 1}512×{0, 1}1024 → {0, 1}512. On input a 512-bit chaining

block X and a 1024-bit message block Y , it outputs a 512-bit digest Z = sha-512(X,Y ).

To use OMD with sha-512, we use the first 512-bit argument X for chaining values as

usual. In our notation (see Figure 3.1) this means that n = 512. We use the 1024-bit
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argument Y (the message block in sha-512) to input both a 512-bit message block and the

key K which can be of any length k ≤ 512 bits. If k < 512 then let the key be K||0512−k.

That is, we define the keyed compression function FK : {0, 1}512 × {0, 1}512 → {0, 1}512

needed in OMD as FK(H,M) = sha-512(H,K||0512−k||M).

The parameters of OMD-sha512 are set as follows:

• The message block length in bits is m = 512.

• The key length in bits can be 80 ≤ k ≤ 512; but k < 128 is not recommended. If

needed, we pad the key K with 0512−k to make its length exactly 512 bits.

• The nonce (public message number) length in bits can be 96 ≤ ν ≤ 511. We always

pad the nonce with 10511−ν to make its length exactly 512 bits.

• The associated data block length in bits is 2n = 1024.

• The tag length in bits can be 32 ≤ τ ≤ 512; but it must be noted that the selection

of the tag length directly affects the achievable security level (see Section 3.6).

For both compression functions, we propose named instances that further fix all the

remaining parameters. These are listed in Table 3.1. The motivation for the choice of

these combinations of parameters is the following. For the key length, we require at least

128 bits, scaling up to the maximal length allowed by each compression function. The

nonce length starts at 96 bits, which means 296 distinct nonces. This should suffice for

any imaginable application. However, longer nonces are considered too, which can be

convenient in some situations, e.g. if the nonce consists of a device-specific prefix and a

counter. Choosing the tag length means making a trade-off between security level and

efficiency. We therefore provide a relatively broad scale of tag lengths, allowing to tune

this trade-off to fit the application. We do not, however, recommend tags shorter than

64 bits.

Instance Comp. func. Key len. Nonce len. Tag len.

omdsha256k128n96tau128 sha-256 128 96 128
omdsha256k128n96tau64 sha-256 128 96 64
omdsha256k128n96tau96 sha-256 128 96 96
omdsha256k192n104tau128 sha-256 192 104 128
omdsha256k256n104tau160 sha-256 256 104 160
omdsha256k256n248tau256 sha-256 256 248 256
omdsha512k128n128tau128 sha-512 128 128 128
omdsha512k256n256tau256 sha-512 256 256 256
omdsha512k512n256tau256 sha-512 512 256 256

Table 3.1 – Named instances of OMD and the values of paramters associated to
each instance. The instances are ordered from the primary recommendation to the least
recommended instance.
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Software and hardware implementations. We provide a reference implementa-

tion in the C language for both OMD-sha256 and OMD-sha512. Two optimized im-

plementation for the x86 64 architecture were provided both OMD-sha256 and OMD-

sha512. Optimized implementations for the ARM and MIPS architectures were addi-

tionally provided for OMD-sha256. The software implementations are further discussed

in Section 3.7.

Hardware implementations of OMD-sha256 for the Virtex 6, Virtex 5, Stratix IV and

Stratix V FPGA families [Die16] were designed by William Diehl [DG17].

3.6 Security Analysis

In this section, we prove upper bounds on the PRIV and AUTH adversarial advantage

for OMD, reducing its security to the security of the underlying compression function

as a PRF. We first show that OMD instantiated with a random function provides near-

optimal security (because of the `max in the authenticity bound), and then use a sequence

of standard hybrid arguments to relate this result to the security of an actual instance.

The formal statement about the security of OMD can be found in Theorem 3.1.

Theorem 3.1. Fix n ≥ 1 and τ ∈ {0, 1, · · · , n}. Let F : K×({0, 1}n×{0, 1}m)→ {0, 1}n

be a keyed function, where 1 ≤ m ≤ n. Let A be a CPA adversary that runs in time t,

makes qe encryption queries that induce no more than σe n calls to F in total, such that

no individual input (AD or message) is more that `max m-bit blocks long. Let further A ′

be a CCA adversary that runs in time t′, makes q′e encryption queries and q′d decryption

queries that induce no more than σ′ calls to F in total, such that no individual input is

more that `′max m-bit blocks long. Then

Advpriv
OMD[F,τ ](A ) ≤ Advprf

F (B) +
3σ2

e

2n

Advauth
OMD[F,τ ](A

′) ≤ Advprf
F (B′) +

3σ2

2n
+
qd`max

2n
+
qd
2τ

for some B that makes 2 · σe queries and runs in time t+ γ · n · σ for some constant γ,

and B′ that makes 2 · σ′ queries and runs in time t′ + γ′ · n · σ′ for some constant γ′.

OMD[F, τ ] OMD[F̃ , τ ] OMD[R̃, τ ]
Lemma 3.4 Lemma 3.3

Lemma 3.2

Figure 3.3 – An overview of the proof of Theorem 3.1.

Proof. The proof is obtained by the combing Lemmas 3.2, 3.3 and 3.4, as illustrated in

Figure 3.3.
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Generalized OMD using a Random Function. Figure 3.4 shows the OMD[R̃, τ ]

scheme, which is a generalization of OMD[F, τ ] that replaces F and the masking offsets

by a tweakable random function R̃ ←$ F̃unc(T , 2m+n, 2n). The tweak space T consists

of five mutually exclusive sets of tweaks; namely, T = N × N× {0} ∪ N × N× {1} ∪
N ×N×{2} ∪ N×{0} ∪ N×{1}. These sets correspond to the sets of labels we used

to define the offsets in OMD[F, τ ]. These labels now take on the role of tweaks. More

precisely, a call to F masked with ∆N,i,j is replaced by a call to R̃N,i,j and a call to F

masked with ∆̄i,j is replaced by a call to R̃i,j .

Lemma 3.2. Let OMD[R̃, τ ] be the scheme shown in Figure 3.4. Let A be an informa-

tion theoretic CPA adversary that makes qe encryption queries such that they induce no

more than σe n calls to F in total, and such that no individual input (AD or message) is

more that `max blocks long. Let further A ′ be an information theoretic CCA adversary

that makes q′e encryption queries and q′d decryption queries such that they induce no

more than σ′ calls to F in total, and such that no individual input is more that `′max
blocks long. Then

Advpriv

OMD[R̃,τ ]
(A ) = 0,

Advauth
OMD[R̃,τ ]

(A ′) ≤ qd`max
2n

+
qd
2τ
.

Proof. The proof of the privacy bound is straightforward. The adversary A asks (en-

cryption) queries (N1, A1,M1) · · · (N qe , Aqe ,M qe) where all Nx values (for 1 ≤ x ≤ qe)

are distinct, as the adversary A is nonce respecting. Referring to Figure 3.4, this means

that we are evaluating the function R̃Nx,i,j on a single input for each (Nx, i, j), hence

the images that the adversary sees (i.e. Cx for 1 ≤ x ≤ qe) are independent uniformly

random values.

The authenticity bound can be shown by a straightforward, but lengthy case analysis.

First we consider the single-decryption-query case where an adversary A ′′ only makes

one decryption (verification) query, and then we use the generic result of Bellare et

al. [BGM04] to get a bound against any adversary A ′ that makes multiple (say qd)

verification queries.

The adversary A ′′ makes encryption queries (N1, A1,M1) · · · (N qe , Aqe ,M qe). We

let M i = M i
1 · · ·M i

`i
or M i = M i

1 · · ·M i
`i−1M

i
∗ denote the message blocks and Ai =

Ai1 · · ·Aiai or Ai = Ai1 · · ·Aiai−1A
i
∗ be the associated data blocks in the ith query. Let

Ci = Ci‖T i be the ciphertext returned to A ′′ upon query (N i, Ai,M i). That is, we

use superscripts to indicate query numbers and subscripts to denote the block indices

in each query. We additionally let Hx
i denote the chaining value that is fed to R̃N

x,i+1,0

along with Mx
i for i = 1, . . . , ` − 1. The value H` is fed to RN

x,`,j for j ∈ {1, 2} and

H0 = 0n. A special case occurs if |Mx| = 0; then H1 is fed to RN
x,0,2 along with the

string 10m−1.

Let (N,A,C) be the forgery attempt by A ′′, where N ∈ {0, 1}ν is the nonce, A =
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Figure 3.4 – The OMD[R̃, τ ] scheme using a tweakable random function R̃ ←$

F̃unc(T , 2m+n, 2n) (i.e. R̃ : T × ({0, 1}n × {0, 1}m)→ {0, 1}n ).
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A1 · · ·Aa or A = A1 · · ·Aa−1A∗ is the associated data, C = C‖T is the ciphertext where

C = C1 · · ·C` (with |Ci| = m for 1 ≤ i ≤ `) or C = C1 · · ·C`−1C∗ (with |Ci| = m for

1 ≤ i ≤ `− 1 and |C∗| < m), and T = (Te⊕Ta)[n− 1 · · ·n− τ ] ∈ {0, 1}τ is the tag. Let

M = M1 · · ·M` or M = M1 · · ·M`−1M∗ denote the corresponding putative plaintext,

internally computed by the decryption algorithm.

In order to forge successfully, A ′′ must find the first τ bits of T = Te⊕Ta where

Te = R̃〈N,x,y〉(final input) and Ta = Hash
R̃

(A). By “final input” we mean H`‖M` or

H`‖M∗‖10m−|M∗|−1 when |C| 6= 0, in which case the final tweak used to generate Te will

be 〈N, `, 1〉 or 〈N, `, 2〉 respectively (depending on whether the final block is a full block

or not); otherwise (i.e. for empty message) the “final input” will be H1‖10m−1 and hence

the final tweak used to generate Te will be 〈N, 1, 2〉. In the following, we consider an

empty message to have an “incomplete final block”. We have the following disjoint cases:

Case 1: N /∈
{
N1, · · ·N qe

}
. The adversary has to find a correct T that is the first

τ bits of the value R̃〈N,x,y〉(final input)⊕Ta but has not seen any image under

R̃〈N,x,y〉(·), hence the probability that the A ′′ can succeed in doing this is 2−τ .

In all the following cases, we will have N = N i for some 1 ≤ i ≤ qe. We can ignore all

but the ith query, as the replies to those queries are computed with nonces N i′ 6= N ,

and thus they are independent of the alleged forgery N,A,C.

Case 2: N = N i, |C| 6= |Ci|, and one of |C| and |Ci| is a non-zero multiple of m but the

other is not. Even if A ′′ knows Ta, computing the correct T requires guessing τ bits

of an image under R̃〈N,x,y〉, which we show to not have been evaluated throughout

the game. Consider the case that |Ci| is non-zero a multiple of m but |C| is not;

then x = ` or x = 1 (if |C| = ` = 0) and y = 2, so A ′′ must guess the first τ bits

of the value R̃〈N,x,2〉(final input)⊕Ta but has seen no image under R̃〈N,x,2〉(·). In

the case when |C| is a non-zero multiple of m but |Ci| is not, x = ` and y = 1

so A ′′ must guess the first τ bits of the value R̃〈N,`,1〉(final input)⊕Ta, but it has

seen no image under R̃〈N,`,1〉(·). Therefore, the probability that the adversary can

succeed in guessing T is 2−τ .

Case 3: N = N i, |C| 6= |Ci|, and either both |C| and |Ci| are non-zero multiples of m or

none of them is. If both |C| and |Ci| are non-zero multiples of m then |C| 6= |Ci|
means that ` 6= `i, it can be easily seen that in this case even if the adversary

knows Ta it must still guess the first τ bits of the value R̃〈N,`,1〉(final input) (see

Figure 3.4) while it has seen no image of this function; the probability to succeed

in guessing T is clearly 2−τ .

Now, let’s consider the case that neither |C| nor |Ci| is a non-zero multiple of m;

then |C| 6= |Ci| means that we have three sub-cases: (3a) ` = 1 and `i = 0 or

vice-versa (3b) other cases when ` 6= `i and 0 < `, `i, (3c) ` = `i but |C∗| 6= |Ci∗|.
We address the case (3a) last.
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(3b) It can be seen the adversary must guess the first τ bits of the random function

R̃〈N,`,2〉 while has seen no image of this function; the chance to do so is clearly

2−τ .

(3c) The adversary must guess the first τ bits of R̃〈N,`,2〉(H∗‖(M∗‖10m−|M∗|−1))

while it has only seen (τ bits of) a single image of this function for one different

domain point, namely (H i
∗‖(M i

∗‖10m−|M
i
∗|−1)); the probability to succeed in

this case is again 2−τ . (Note that |M∗| = |C∗| and |M i
∗| = |Ci∗|. Using

10∗ padding for processing messages whose length is not a multiple of m is

essential for this part.)

(3a) This case is similar to the case (3c); Both Te and T ie are produced by R̃N,1,2

but necessarily by different inputs, due to the use of injective padding.

Case 4: N = N i, |C| = |Ci|, and A 6= Ai. We consider two subcases: (4a) where

|A| 6= 0 and (4b) where |A| = 0.

(4a) Let’s assume that we even provide A ′′ with the correct value of Te which will

only make it’s job easier. Then the adversary’s task will reduce to guessing

a correct value for the first τ bits of Ta. The only relevant information that

the adversary has is the first τ bits of T ia. We show that even if the whole T ia
is given to the adversary, the chance to correctly guess the first τ bits of Ta
is still 2−τ . This is done by a simple sub-case analysis:

1. if only one of |A| and |Ai| is a multiple of n + m then it is easy to see

(from Figure 3.4) that the probability to guess the first τ bits of Ta is

still 2−τ ;

2. if a 6= ai then again from Figure 3.4 we can see that the probability to

guess the first τ bits of Ta is 2−τ ;

3. otherwise, we have a = ai and either both |A| and |Ai| are multiple of

n + m or neither of them is a multiple of n + m. These two cases are

similar. Let’s consider the first one. As we have A 6= Ai then it must be

the case that for some j we have Aj 6= Aij . So, the jth value xored to

Ta , i.e. R̃〈j,0〉(Aj) is a fresh n-bit random value; hence the adversary’s

chance to guess the first τ bits of Ta is 2−τ .

(4b) in order for the forgery attempt (N, ε, C‖T ) to succeed, A ′′ must find the

value of T = Te[n − 1 · · ·n − τ ] produced as R̃N
i,`i,j . The only image under

this function that has been computed in the whole game is T ie . However, the

adversary has no information about T ie , as the distribution of T i = T ie ⊕T ia
is uniform and independent of T ie due to T ia that is unknown to A ′′. So, the

probability that the adversary can correctly guess the first τ bits of Te =

R̃〈N,`,j〉(final input) for j = {1, 2} is 2−τ . (Note that j = 1 when |C| is a

multiple of m and j = 2 when |C| is not a multiple of m).

Case 5: N = N i, A = Ai, and |C| = |Ci| = `m is a multiple of m. Let’s assume that

we provide A ′′ with the correct value Ta = T ia. We further assume that C 6= Ci
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as otherwise any T 6= T i will be incorrect and rejected. Therefore, we may assume

that Cj 6= Cij for some 1 ≤ j ≤ `. Now referring to (the top of) Figure 3.4 it is

easy to see that if C` 6= Ci` then the probability that the adversary can correctly

guess the value of T is 2−τ ; otherwise there are two cases: (1) if H` 6= H i
` the

chance that T is correct is 2−τ ; (2) if the event H` = H i
` happens then adversary

can simply use T = T i. However, for this to occur, there must be a 1 ≤ j ≤ `− 1

such that H i
j‖M i

j 6= Hj‖Mj but H i
j+1 = Hj+1. This happens with probability at

most `2−n by union bound, noting that |Hi| = n So, the total success probability

in this case is bounded by 1
2τ + `

2n .

Case 6: N = N i, A = Ai, and |C| = |Ci| is not a multiple of m. It is easy to see

from Figure 3.4 that the analysis of this case is the same as that of Case 5 and the

success probability of the adversary is bounded by 1
2τ + `

2n .

Finally, using the result of Bellare et al. [BGM04] that reduces an adversary with mul-

tiple forgery attempts to an adversary that has a single forgery attempt, we bound the

probability of forgery by adversaries that make qd decryption (verification) queries by
qd
2τ + qd`

2n .

Instantiating Tweakable RFs with PRFs. We replace the (tweakable) RF R̃ ∈
F̃unc(T , 2m+n, 2n) in OMD with a (tweakable) PRF F̃ : K × T × ({0, 1}n × {0, 1}m)→
{0, 1}n. We note that whether we interpret a part of the input to either R̃ or F̃ as

a tweak or not, the notion of PRF security applies to both situations. The following

lemma states the classical bound on the security loss induced by this replacement step.

Lemma 3.3. Let R̃ : T ×({0, 1}n×{0, 1}m)→ {0, 1}n be a RF and F̃ : K×T ×({0, 1}n×
{0, 1}m) → {0, 1}n be a keyed function. Let A be a CPA adversary that runs in time

t, makes qe encryption queries that induce no more than σe n calls to F in total, such

that no individual input (AD or message) is more than `max blocks long. Let further A ′

be a CCA adversary that runs in time t′, makes q′e encryption queries and q′d decryption

queries that induce no more than σ′ calls to F in total, such that no individual input is

more that `′max blocks long. Then

Advpriv

OMD[F̃ ,τ ]
(A ) ≤ Advpriv

OMD[R̃,τ ]
(B) + Advprf

F̃
(C )

Advauth
OMD[F̃ ,τ ]

(A ′) ≤ Advauth
OMD[R̃,τ ]

(B′) + Advprf

F̃
(C ′)

B and B′ are information theoretic adversaries that have the same resources (except for

time complexity) as A and A ′ respectively, and where C and C ′ make no more than σ

and σ′ queries respectively and run in time t + γ · n · σe and t′ + γ′ · n · σ′ respectively

with some constants γ, γ′.

Proof. We let Π stand for OMD. Starting from the definition of PRIV advantage, we
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have

Advpriv

Π[R̃,τ ]
(A ) = Pr

[
A priv-RΠ[R̃,τ] ⇒ 1

]
− Pr

[
A priv-IΠ[R̃,τ] ⇒ 1

]
= Pr

[
A priv-RΠ[F̃ ,τ] ⇒ 1

]
− Pr

[
A priv-RΠ[R̃,τ] ⇒ 1

]
+ Pr

[
A priv-RΠ[R̃,τ] ⇒ 1

]
− Pr

[
A priv-IΠ[F̃ ,τ] ⇒ 1

]
,

where we simply add 0 = Pr
[
A

priv-R
Π[R̃,τ ] ⇒ 1

]
− Pr

[
A

priv-R
Π[R̃,τ ] ⇒ 1

]
to the ad-

vantage. We have

Advprf

F̃
(C ) ≥ Pr

[
A priv-RΠ[F̃ ,τ] ⇒ 1

]
− Pr

[
A priv-RΠ[R̃,τ] ⇒ 1

]
as an adversary C can be constructed using A as a subroutine; C uses its own oracle

and follows the code of the algorithms E and D to perfectly simulate the Enc and Dec

oracles for A . Then C outputs whatever A outputs. If C ’s oracle implements F̃K , then

C perfectly simulates priv-R
Π[F̃ ,τ ]

for A , while if C ’s oracle implements a truly random

function R̃, then C perfectly simulates priv-R
Π[R̃,τ ]

.

We further have that

Advpriv

Π[R̃,τ ]
(B) ≥ Pr

[
A priv-RΠ[R̃,τ] ⇒ 1

]
− Pr

[
A priv-IΠ[F̃ ,τ] ⇒ 1

]
as an adversary B can use A by simply forwarding all A ’s queries and then output

whatever A outputs. Because the games priv-I
Π[F̃ ,τ ]

and priv-I
Π[R̃,τ ]

are identical,

the simulation of games for A will be perfect. The final bound is obtained by triangle

inequality.

A similar transition based on triangular inequality and almost identical reductions can

be applied to obtain the bound on AUTH advantage.

We next instantiate the (tweakable) PRF F̃ using a PRF F (with a smaller domain) by

means of masking a part of the input to F by an offset generated as a function of the

key and the tweak, as shown in Fig. 3.5. This method to tweak a PRF is essentially the

XE method [Rog04a], originally used to construct tweakable blockciphers. In OMD the

tweaks are of the form T = (α, i, j) where α ∈ N∪{ε}, 1 ≤ i ≤ 2n−4 and j ∈ {0, 1, 2}. We

note that not all combinations are used; for example, if α = ε (empty) which corresponds

to processing of the associated data in Figure 3.1, then j 6= 2.

Lemma 3.4. Let F : K × ({0, 1}n × {0, 1}m) → {0, 1}n be a keyed function with key

space K. Let F̃ : K × T × ({0, 1}n × {0, 1}m) → {0, 1}n be defined by F̃
〈T〉
K (X,Y ) =

FK((X ⊕∆K(T)), Y ) for every T ∈ T ,K ∈ K, X ∈ {0, 1}n , Y ∈ {0, 1}m, and let

∆K(T) be the masking function of OMD as defined in Section 3.4. Let further A be an

adversary that runs in time t and makes q queries. Then we have

Advprf

F̃
(A ) ≤ Advprf

F (B) +
3q2

2n

for some B that runs in time t+ γ · q for a constant γ and makes 2q queries.
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Figure 3.5 – Constructing a tweakable PRF F̃
〈T〉
K : {0, 1}n × {0, 1}m → {0, 1}n

using a PRF FK : {0, 1}n × {0, 1}m → {0, 1}n. There are several efficient ways to
define the masking function ∆K(T) [Rog04a, CS08, KR11]; we use the method used in
OCB3 [KR11].

Proof. The proof is a simple adaptation of a similar result on the security of the XE

construction (to tweak a blockcipher) [KR11]. We sketch the main steps of the proof

and refer the reader to the original proof [Rog04a, KR11] for details. The key property

required for the proof to apply is that the masking function ∆K(T) must be a 2−n-

uniform and 2−n-AXU hash. This is shown at the end of the proof.

As we use a PRF rather than PRP, our bound has two main terms. The first term is a

single birthday bound loss of 0.5q2

2n to take care of the case that a collision might happen

when computing the initial mask ∆N,0,0 = FK(N‖10n−1−ν , 0m) using a PRF (F ) rather

than a PRP (as in the original proof [KR11]). The analysis of the remaining term (i.e.
2.5q2

2n ) is essentially the same as the corresponding part in the original proof [KR11],

but we note that in the context of our construction as we are directly dealing with

PRFs (unlike the original analysis [KR11] in which PRPs are used), the bound obtained

here does not have any loss terms caused by the switching (RP-RF) lemma. Therefore,

instead of the original 6q2

2n bound [KR11] (from which 3.5q2

2n is due to using the switching

lemma) our bound has only 2.5q2

2n .

We now show that the masking function ∆K(T ) = ∆K(α, i, j) is a 2−n-almost universal

2−n-AXU hash; it outputs an n-bit mask such that the following two properties hold for

any fixed string H ∈ {0, 1}n:

1. Pr[∆K(α, i, j) = H] ≤ 2−n for any (α, i, j)

2. Pr[∆K(α, i, j)⊕∆K(α′, i′, j′) = H] ≤ 2−n for (α, i, j) 6= (α′, i′, j′)

where the probabilities are taken over random selection of the key.

The masking scheme of OMD is an adaptation of that used in OCB3 [KR11]. It is easy

to verify that it satisfies these two properties. Given a T = (α, i, j), the corresponding

mask is always computed as

∆K(T) = Nα⊕ 22 · γi · L∗⊕ jj,α · L∗ = Nα⊕(22 · γi⊕ jj,α) · L∗

where L∗ = FK(0n, 0m), γi is the ith codeword of the canonical Gray code, N = 0n if
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α = ε and Nα = FK(α‖10n−1−ν , 0m) otherwise, and

jj,α =


0 if j = 0

j + 1 if α 6= ε and j ∈ {1, 2}
1 if α = ε and j = 1.

The canonical Gray code is defined as γ0 = 0n and γi = γi−1⊕ 2ntz(i) for i ≥ 1.

The 2−n-almost universal property of the masking scheme follows from the fact that

each mask ∆K(α, i, j) contains a non-zero multiple of uniformly distributed L∗, and for

α 6= ε the variable Nα is computed by evaluating FK on a non-zero input.

To verify the 2−n-AXU property, we perform a short case analysis. If α 6= α′, then ne-

cessarily α‖10n−1−ν 6= α′‖10n−1−ν and the two variables Nα and Nα′ are both uniformly

distributed and independent.

If α = α′, then we must have (i, j) 6= (i′, j′). For the canonical Gray code, we have

that for any i 6= i′ we have γi 6= γi, and for any i 0 ≤ int(γi) ≤ 2i. If i ≤ 2n−4,

then γi will have degree smaller or equal to n − 3 (as a polynomial), so 22 · γi will

always have the two least significant bits set to 0 (as the corresponding multiplication in

GF(2128) will never require a reduction). It follows that if (i, j) 6= (i′, j′), then necessarily

(22 · γi⊕ jj,α) 6= (22 · γi′ ⊕ jj′,α) and thus the collision of masks is impossible in this

case.

3.7 Performance

In this section, we briefly describe the performance of OMD in software. As a mandatory

part of the CAESAR submission, both reference and optimized implementations of OMD

needed to be presented.

The reference implementation. The reference implementations of OMD-sha256

and OMD-sha512 in C language were co-developed by the author of this thesis and

Simon Cogliani. The main objective of the reference implementation was portability

and readability of the code, thus both implementations are using a vanilla implementa-

tion of their respective SHA2 compression functions from OpenSSL [Fou18]. While not

being designed for speed, the reference implementations were used for comparison in the

benchmarks of the optimized implementations on various platforms.

Optimized implementation for x86 64 architecture. Because the CPUs by Intel

and AMD are the most common CPUs on high-end computers, the x86 64 architecture

was a natural target for the first optimized implementations of OMD.

The optimized implementations for this platform were developed by Ralph Ankele

and Robin Ankele during a student project [AA14], the implementation part of which

was supervised by the author of this thesis. Two of the implementations rely on the

extended instruction sets SSE4 and AVX1 [Cor], which both provide SIMD instructions
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that can be applied to four, or eight 32-bit integers at the same time, respectively

(AVX1 is an improvement of SSE4). The third implementation uses the announced

SHA-Extension [GGY+13], which provides hardware acceleration for the compression

functions of SHA1 and SHA256. Originally announced to be released in 2015 [GGY+13],

the extension first appeared in the Goldmont architecture in 2016 [Par16, Cor18].

All three optimized implementations share the same high-level structure. We recall

that `max = maxX∈A∪M(|X|m) denotes the upper bound on the maximum number of

blocks in any input to the encryption algorithm.

Precomputation. The values L∗ and L[i] for i = 1, . . . , dlog2(`max)e are precomputed

only once using a dedicated API call, and stored to be used by every encryption (or

decryption) query. This allows to partially amortize the computational cost of the

masking at the expense of memory. The required memory will grow logarithmically

with `max.

We note that a more aggressive precomputation is also possible, one where we

compute ∆̄i,0 for each i ≤ `max. This will further decrease the computational com-

plexity of individual encryption (or decryption) queries, but the required memory

will grow linearly with `max. This option was used for the measurements.

Instruction extensions. As the computationally heaviest component of OMD, the

speedup of the compression function sha-256 (or sha-512) will have the biggest

impact. For this, Ankele and Ankele took advantage of assembler implementations

of sha-256 (or sha-512) compression function that uses the advanced instructions

of the SSE4/AVX1 [GYG12, GCG12]. They additionally implemented OMD using

the SHA instruction extension set, but this implementation was never tested.

Compiler optimizations. In order to discover the maximal potential speed of OMD,

all software was compiled with the Ofast optimization flag of gcc. (This is equival-

ent to the O3 flag with some additional aggressive optimizations for floating point

operations).

Implementation tricks. Further measures that improve the performance, albeit mar-

ginally, were applied, such as loop unrolling, use of C macros, avoiding type con-

versions etc.

Ankele and Ankele performed experiments to asses the speedup obtained by the SSE4

and AVX1-based implementations relative to the reference implementation. The SHA

extension was not released in time for the optimized implementation to be tested and

benchmarked before OMD finished in CAESAR.

The experiments were conducted on a 64-bit 2.4GHz dual-core Intel Core i5-2415M

processor running Ubuntu 12.10. All implementations (including the reference imple-

mentation) were compiled with the gcc-4.7.2 (Ubuntu/Linaro 4.7.2-2ubuntu1) compiler,

using the Ofast flag.
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Ankele and Ankele measured the performance of the implementations in computa-

tional cycles spent per one byte of input data (the lower the better), such that the

length of input data was computed as a sum of the lengths of message and AD in bytes.

The time stamp counter of the CPU was read with the RDTSC instruction to compute

the total numbers of spent cycles.

The performance of each implementation was measured for messages of length from

128 bits to 4096 bits (with a step of 128 bits), each combined with AD of length from

0 bits to 4096 bits (with a step of 128 bits). To reduce noise during measurements (e.g.

from process context switches) Ankele and Ankele used the same method as Krovetz

and Rogaway [KR11] in their benchmarking of OCB3: for each measurement, take the

median of 91 average numbers of cycles, each obtained using 200 timings.

The comparison of the three implementations with empty AD for both OMD-sha256

and OMD-sha512 can be seen in Figure 3.6. The complete sets of measurements are

visualized in Appendix A.1.

We see that both the optimized implementation based on SSE4 and the one based

on AVX1 are about twice as fast as the reference, with the one based on AVX1 being

slightly faster. The gradual acceleration of the encryption with the increasing message

length occurs because there is a single call to the compression function to process the

nonce at the beginning of each query; the longer the query the better is this amortized.

Overall, the performance of OMD is not bad, however with more than 20 cycles per

byte for a message of 4096 bits, it cannot compete with e.g. OCB that performs under

1 cycle/byte.

Optimized implementation for the ARM architecture. We chose ARM as the

next target for an optimized implementation, due to its popularity in low-end devices,

such as smartphones.

The optimized implementation for this platform was developed by Johan Droz during

a student project [Dro15] supervised by the author of this thesis.

The optimized implementation was targeted at 32-bit ARM processors, and was de-

veloped and tested on an ARMv7 CPU. We therefore only optimized OMD-sha256. The

main ideas of the optimization are similar as for the x86 64 architecture:

Precomputation. Compute the L-values once and store them for use in encryption

(and decryption) queries.

Compression function in assembly. Optimize the computationally heaviest part of

OMD–the compression function. Targeting older ARM versions with no SIMD

instruction extensions, Droz provided a dedicated implementation of sha-256 in

ARM assembly without using any special intrinsics.

Droz benchmarked the optimized implementation on a Sony X-Peria M using a similar

experimental method as for the x86 64 platform, except this time, for each measurement

the minimum of 91 average timings obtained from 200 timings each was taken instead of

the mean. The optimized implementation peaked at about 70 cycles/byte for a message
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Figure 3.6 – The comparison of the x86 64-performance of the reference, the SSE4-
based, and the AVX1-based implementations of OMD-sha256 (top) and OMD-sha512
(bottom) on an Intel Core i5-2415M processor. The performance of the implementations
is measured in computational cycles spent per one byte of input data. The AD is empty.
The graphs are taken from [AA14]
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of 4096 bits. The same implementation with the assembly-based sha-256 replaced by

OpenSSL-based version reached about 82 cycles/byte. A comparison is depicted in

Figure 3.7.

Figure 3.7 – The comparison of ARM-performance of the optimized implement-
ation of OMD-sha256 using the assembly implementation of sha-256 versus an imple-
mentation of sha-256 from OpenSSL on an ARMv7 processor. Performance is measured
in computational cycles spent per one byte of input data. The AD is 64 bytes long. The
graph is taken from [Dro15]

Optimized implementation for the MIPS architecture. An optimized imple-

mentation of OMD was also developed for the MIPS architecture, as another very com-

mon architecture used in embedded systems and networking devices.

The optimized implementation for this platform was developed by Martin Georgiev

during a student project [Geo15] supervised by the author of this thesis.

The optimized implementation was developed and tested on a Linksys WRT160NL

router equipped with a MIPS 24Kc V7.4 CPU with 32-bit registers. We therefore only

optimized OMD-sha256. The main elements of the optimization are the same as for the

previous architectures:

Precomputation. Compute the L-values once and store them for use in encryption

(and decryption) queries.

Compression function in assembly. Optimize the compression function. Georgiev

designed a dedicated implementation of sha-256 in MIPS assembly.

Georgiev benchmarked the optimized implementation using the same experimental

method as for the ARM architecture. Because there was no instruction that would allow
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to count clock cycles, the numbers of consumed cycles were estimated using the wall clock

and sufficiently many redundant measurements. The optimized implementation peaked

at about 270 cycles/byte for a message of 4096 bits. The same implementation with

the assembly-based sha-256 replaced by OpenSSL-based version peaked at about 580

cycles/byte. A comparison is depicted in Figure 3.8.

Figure 3.8 – The comparison of MIPS-performance of the optimized implement-
ation of OMD-sha256 using the assembly implementation of sha-256 versus an imple-
mentation of sha-256 from OpenSSL on a MIPS 24Kc V7.4 processor. The performance
of the implementations is measured in computational cycles spent per one byte of input
data. The AD is 20 bytes long. The graph is taken from [Geo15]

Comparison to other CAESAR candidates. The software performance of all first

and second round CAESAR candidates on several platforms (including x86 64) was

carried out by the SUPERCOP framework [lab08]. Only the optimized implementations

of OMD for x86 64 were submitted to the SUPERCOP benchmarking before OMD

finished in CAESAR. An independent software benchmarking of second round CAESAR

candidates on the same platform was done by Ankele and Ankele [AA16].

Based on the results from SUPERCOP [lab18], the optimized implementations of

OMD-sah512 peaked around 13 cycles/byte for queries with both message and AD of
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2000 bytes, and OMD-sha256 peaked around 17 cycles per byte in the same setting.

These results are slight improvements over the observations from the initial measure-

ments of Ankele and Ankele [AA14].

Compared to other candidates, the performance of OMD is not spectacular. The

fastest schemes in the competition achieve about 0.3 cycle/byte in ideal conditions.

When ordered by speed, OMD would be placed close to the middle of the list of all

first round CAESAR candidates. This is also confirmed by the results of Ankele and

Ankele [AA16].

The situation would be likely much improved if OMD implemented with the SHA

extension was included. Based on simulations performed by Ankele and Ankele [AA14],

we conjecture that its throughput would be twice higher than the throughput of the

currently fastest implementations of OMD-sha512.
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Chapter 4
Misuse-Resistant Variants of OMD

In this chapter, we introduce MR-OMD and PMR-OMD, two nonce-misuse resistant

variants of the AE scheme OMD which are, respectively, sequential and fully paralleliz-

able.

The results presented in this chapter come from a joint work with Reza Reyhanitabar

and Serge Vaudenay which was published in ProvSec 2014 [RVV14].

Organization of the Chapter. We give a brief overview of the related work in

Section 4.1 and a summary of the contribution in Section 4.2.

In Section 4.3, we introduce MR-OMD. We give a description of MR-OMD in Sec-

tion 4.4, security analysis in Section 4.5 and very briefly discuss a parallelizable variant

of MR-OMD in Section 4.6.

4.1 Related Work

The security notion targeted by MR-OMD is the MRAE security by Rogaway and

Shrimpton [RS06b] (see Section 2.4). The PRF-then-encrypt paradigm used in MR-

OMD is inspired by the SIV construction from the same publication. Unlike SIV,

MR-OMD uses a single secret key. Other single-key MRAE-secure schemes preceding

MR-OMD are HBS [IY09b] and BTM [IY09a]. Compared to HBS and BTM which use

polynomial-based hashing, and need general finite field multiplications in their IV gener-

ation part, MR-OMD uses compression function-based hashing and only needs doubling

(multiplication by 2) operation in GF(2n). HBS and BTM also use the PRF-then-

encrypt paradigm. This general structure is described as one of the generic composition

methods (called “Scheme A4”) by Namprempre et al. [NRS14]. There is also another

subtle difference between the design of MR-OMD with those of SIV, HBS and BTM;

namely, while the latter schemes incorporate the nonce (if used) and the associated data

as parts of a vector-based header, our scheme treats the nonce and associated data as

different elements. As stated by Rogaway and Shrimpton [RS06b] “the MRAE goal is

conceptually different from the DAE goal, the former employing an IV and gaining for
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this a stronger notion of security. The header and the IV are conceptually different,

the one being user-supplied data that the user wants authenticated, the other being a

mechanism-supplied value needed to obtain a strong notion of security.”

4.2 Contribution

We present MR-OMD, a nonce-misuse resistant variant of the CAESAR candidate OMD,

and to our best knowledge the first compression function-based AE scheme that is nonce-

misuse resistant.

As a component of MR-OMD, we propose a new dedicated, compression function-

based PRF that efficiently processes a nonce, AD and a message, and is almost-fully

parallelizable.

4.3 Misuse-Resistant OMD

OMD is a nonce-based, single-pass mode of operation for authenticated encryption with

associated data. To the best of our knowledge, it is the first AE scheme and the only

CAESAR candidate that uses a compression function as its lower-level primitive. As

such, OMD has some promising features. Among them are provable security in the

standard model (based on the well-known PRF assumption on the compression function),

high bit-security level (127 bits and 255 bits for OMD-sha256 and OMD-sha512, respect-

ively), the ability to process the inputs in a single pass, and the ability to take advantage

of the Intel SHA instructions on Goldmont processors and later. [GGY+13, Par16]

However, the security of OMD fully relies on the assumption that implementations

always ensure correct use of the nonce, namely that the nonce never gets repeated in

the encryption queries. If a repetition of the nonces occurs, security will fully collapse.

Aiming at making OMD robust towards nonce reuse while reusing its components as

much as possible, we introduce two variants of OMD, called misuse-resistant OMD (MR-

OMD) and parallelizable misuse-resistant OMD (PMR-OMD). We target the maximal

possible level of robustness against repeated nonces, the MRAE security, so similar to the

previously known schemes in this category (e.g., SIV, HBS and BTM) our constructions

are necessarily two-pass. The main goals that motivated the design of MR-OMD are

the struggle to have a construction that is very similar to OMD (so that common code

and hardware can be reused) and to have an efficient, provably secure MRAE scheme at

the same time. The design of PMR-OMD further deviates from OMD, providing a fully

parallelizable variant, in contrast with OMD and MR-OMD which both have a serial

encryption algorithm.

In MR-OMD and PMR-OMD, the two passes are combined in a way that minimizes

the incurred additional cost: using a keyed compression function with (n+m)-bit input

and n-bit output, for processing a message M with associated data A, MR-OMD and

PMR-OMD only need |M |/(n + m) more calls to the compression function compared

to OMD, where |M | is the bit length of M . Noticing that the encryption pass in OMD
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requires 1 + |M |/m compression function calls, and considering m = n (as suggested in

OMD), the overhead incurred by the second pass in our two-pass variants is about 50%

of the encryption time for OMD. We note that the overhead is independent of A as it is

processed in the same way in both algorithms.

4.4 Description

MR-OMD is a compression function mode of operation for nonce-based AE. It has two

parameters, a keyed compression function F : K × ({0, 1}n × {0, 1}m) → {0, 1}n with

the key space K = {0, 1}k and m ≤ n, and an IV length τ < n, which is the same as the

ciphertext expansion.

We let MR-OMD-F denote the MR-OMD mode of operation using a keyed compres-

sion function FK : {0, 1}n × {0, 1}m → {0, 1}n with m ≤ n and an unspecified tag

length. We let MR-OMD[F, τ ]denote the MR-OMD mode of operation using the keyed

compression function FK and the IV of length τ .

An overview. An instance MR-OMD[F, τ ] has a key space K = {0, 1}k, any AD

space A ⊆ {0, 1}≤(m+n)·2n−5
and any message space M⊆ {0, 1}≤m·2n−5

. We let `max =

maxX∈A∪M(|X|m) denote the upper bound on the maximum number of blocks in any

single message or AD. We require that the nonce space N = {0, 1}ν for an integer

1 ≤ ν < n.

The encryption algorithm of MR-OMD[F, τ ] takes four input arguments (a secret

key K, a nonce N , associated data A, a message M) and outputs a ciphertext C =

IV||C ∈ {0, 1}|M |+τ . The ciphertext consists of an initialization vector (IV) and a core

ciphertext. The decryption algorithm of MR-OMD[F, τ ] inputs four arguments (a secret

key K, a nonce N , associated data A, a ciphertext IV||C) and either outputs the whole

corresponding M at once or an error message ⊥ in case of an authentication failure.

The encryption algorithm consists of two main components. First, a dedicated PRF

computes the IV as an image of all four inputs (K,N ,A,M). Then an encryption-only

subroutine encrypts M using K, the IV and M . The PRF-component processes AD and

the message in blocks of m+n bits, similarly as OMD does with the AD. The encryption-

only component is either the message-processing part of OMD itself (in MR-OMD), or

counter mode (in PMR-OMD). All calls to the keyed compression function are masked

by whitening offsets as in OMD, although we now use a different set of tweaks.

A schematic representation of the encryption algorithm of MR-OMD[F, τ ] is shown

in Figure 4.1. The decryption algorithm is very similar to the encryption algorithm,

except that the ciphertext is first decrypted using IV from the input and then the IV

from input is compared to IV′ computed over the nonce, AD and the decrypted message.

Figure 4.2 shows the algorithmic description of the encryption and decryption algorithms

of MR-OMD[F, τ ].

In the rest of this chapter, we use the following notation. For two strings X,Y s.t.

|X| ≥ |Y | we let both X ⊕msb Y and Y ⊕msbX denote the xor of X and Y padded on
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the right with zeroes, i.e. X ⊕Y ‖0|X|−|Y |.

Computing the masking values. Before each call to the underlying keyed compres-

sion function, we xor a masking offset to the input of F . Compared to OMD, the number

of disjoint sets of masks used in MR-OMD is higher. We use the following seven sets of

masking values:

• masks ∆N,i,j for j ∈ {0, . . . , 5} are used in the IV generation process,

• masks ∆̄IV,i are used in the encryption (and the decryption) process.

In the following, all multiplications are in GF(2n).

Initialization. As in OMD, we compute L∗ and an array of L-values as a function of

the key. We define L∗ = FK(0n, 0m), L[0] = 23 ·L∗, and L[i] = 2 ·L[i− 1] for i ≥ i.
As before, the L-values can be computed as a part of a one-time initialization and

stored in a table.

Masking sequence for IV generation. The masks ∆N,i,j are computed for every en-

cryption (or decryption) query. We define the two initial N -dependent masks

∆N,0,0 = FK(N ||10n−1−|N |, 0m) and ∆N,0,1 = FK(N ||10n−1−|N |, 0m) ⊕ L∗. Then,

for i ≥ 1 and j, j′ ∈ {0, . . . , 5} we let

∆N,i,j = ∆N,i−1,j ⊕ L[ntz(i)], and

∆N,i,j = ∆N,i,j′ ⊕ (〈j〉n ⊕ 〈j′〉n) · L∗.

Masking sequence for encryption. We compute the masks ∆̄IV,i for every query.

We define ∆̄IV,0 = FK(IV||10n−1−τ , 0m)⊕ 6 · L∗, and for i ≥ 1 we let

∆̄IV,i = ∆̄IV,i−1 ⊕ L[ntz(i)].

4.5 Security Analysis

We analyse the security of MR-OMD in two cases: (1) as a MRAE, considering ad-

versaries that are nonce-reusing; (2) in the case that adversaries are nonce-respecting.

As MR-OMD is designed as a nonce-misuse resistant scheme, we first focus on analysing

the security bounds in the nonce-misuse scenario. The corresponding result is stated in

Theorem 4.1. Clearly, an upper-bound for the MRAE advantage also upper-bounds the

NAE advantage of adversaries with the same resources. Intuitively, the latter could be

lower than the former. This is confirmed by Theorem 4.7.

IV-Based Encryption Schemes. We need to introduce so-called IV-based encryp-

tion schemes for the analysis of MR-OMD. The formalism is taken from Rogaway and

Shrimpton [RS06b].

An IV-based encryption scheme is a privacy-only scheme. An example of such a

scheme can be the CBC mode. Formally, an IV-based encryption scheme is a triplet
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Figure 4.1 – The encryption algorithm of MR-OMD[F, τ ] and PMR-OMD[F, τ ]
using a keyed compression function FK : ({0, 1}n × {0, 1}m) → {0, 1}n with m ≤ n.
(Top) The process of generating the IV. (Bottom) The encryption process (upper part
for MR-OMD and lower for PMR-OMD). For operation ⊕msb see our convention in
Section 4.4.

61



1: algorithm Initialize(K)
2: L∗ ← FK(0n, 0m)

3: L
(2)
∗ ← 2 · L∗

4: L
(4)
∗ ← 2 · L(2)

∗
5: L

(6)
∗ ← L

(4)
∗ ⊕ L(2)

∗
6: L[0]← 2 · L(4)

∗
7: for i← 1, 2, · · · do
8: L[i] = 2 · L[i− 1]
9: end for

10: return
11: end algorithm

1: algorithm HASHK(N,A,M)
2: b← n+m

3: A1||A2 · · ·Aa−1||Aa
b← A

4: M1||M2 · · ·Mt−1||Mt
b←M

5: ΣA ← 0n; ΣM ← 0n

6: ∆M ← FK(N ||10n−1−|N|, 0m)
7: ∆A ← ∆M ⊕ L∗
8: for i← 1 to a− 1 do
9: ∆A ← ∆A ⊕ L[ntz(i)]

10: Left← Ai[b− 1 · · ·m]
11: Right← Ai[m− 1 · · · 0]
12: ΣA ← ΣA ⊕ FK(Left⊕∆A,Right)
13: end for
14: if |Aa| = b then

15: ∆A ← ∆A ⊕ L(2)
∗

16: Left← Aa[b− 1 · · ·m]
17: Right← Aa[m− 1 · · · 0]
18: ΣA ← ΣA ⊕ FK(Left⊕∆,Right)
19: else if |A| > 0 then

20: ∆A ← ∆A ⊕ L(4)
∗

21: A∗a ← Aa||10b−|Aa|−1

22: LeftA∗a[b− 1 · · ·m]
23: Right← A∗a[m− 1 · · · 0]
24: ΣA ← ΣA ⊕ FK(Left⊕∆A,Right)
25: end if
26: for i← 1 to t− 1 do
27: ∆M ← ∆M ⊕ L[ntz(i)]
28: Left←Mi[b− 1 · · ·m]
29: Right←Mi[m− 1 · · · 0]
30: ΣM ← ΣM ⊕ FK(Left⊕∆M ,Right)
31: end for
32: if |Mt| = b then

33: ∆M ← ∆M ⊕ L(2)
∗

34: Left←Mt[b− 1 · · ·m]⊕ ΣA
35: Right←Mt[m− 1 · · · 0]
36: IV← FK(Left⊕∆M ,Right)
37: else
38: ∆M ← ∆M ⊕ L(4)

∗

39: M∗t ←Mt||10b−|Mt|−1

40: Left←M∗t [b− 1 · · ·m]⊕ ΣA
41: Right←M∗t [m− 1 · · · 0]
42: IV← FK(Left⊕∆M ,Right)
43: end if
44: return IV[n− 1 · · ·n− τ ]
45: end algorithm

1: algorithm EK(N,A,M)
2: if |N | > n− 1 then
3: return ⊥
4: end if
5: M1||M2 · · ·M`−1||M`

m←M
6: IV← HASHK(N,A,M)
7: ∆← FK(IV ||10n−1−τ , 0m)

8: ∆← ∆⊕ L[0]⊕ L(6)
∗

9: H ← 0n

10: H ← FK(H ⊕∆, 〈τ〉m)
11: for i← 1 to `− 1 do
12: Ci ← H ⊕Mi

13: ∆← ∆⊕ L[ntz(i+ 1)]
14: H ← FK(H ⊕∆,Mi)
15: end for
16: C` ← H ⊕M`

17: C← IV||C1||C2|| · · · ||C`
18: return C
19: end algorithm

1: algorithm DK(N,A,C)
2: if |N | > n− 1 or |C| < τ then
3: return ⊥
4: end if
5: IV||C1||C2 · · ·C`−1||C`

m← C
6: H ← 0n

7: ∆← FK(IV ||10n−1−τ , 0m)

8: ∆← ∆⊕ L[0]⊕ L(6)
∗

9: H ← FK(H ⊕∆, 〈τ〉m)
10: for i← 1 to `− 1 do
11: Mi ← H ⊕ Ci
12: ∆← ∆⊕ L[ntz(i+ 1)]
13: H ← FK(H ⊕∆,Mi)
14: end for
15: M` ← H ⊕ C`
16: IV′ ← HASHK(N,A,M)
17: if IV′ = IV then
18: return M ←M1||M2|| · · · ||M`

19: else
20: return ⊥
21: end if
22: end algorithm

Figure 4.2 – Definition of MR-OMD[F, τ ] with a keyed compression function F :
K × ({0, 1}n × {0, 1}m)→ {0, 1}n s.t. m ≤ n and a fixed IV length τ .
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Π = (K, E ,D) that consists of a key space K and two “efficient” deterministic algorithms,

where the encryption algorithm E takes a tuple (K, IV,M) as input, such that K ∈ K,

IV ∈ {0, 1}τ for some fixed positive τ and M ∈ {0, 1}∗. We call IV the initialization

vector. The notations E(K, IV,M), EK(IV,M) and E IVK (M) are used interchangeably.

We also assume that if C = E IVK (M), then we have |C| = |M |+ τ and C = IV||C; i.e. the

ciphertext reveals IV.

We define the advantage of an adversary A in breaking the $-privacy of Π as

Advpriv$
Π (A ) = Pr

[
K ←$ K : A E

$
K(·) ⇒ 1

]
− Pr

[
A $(·) ⇒ 1

]
with $(·) being a random string oracle that on input M returns a random string of length

|M | + τ and E$
K returning E IVK with IV ←$ {0, 1}τ . It is assumed, that the adversary

never asks a query outside the proper message space of Π. Note that in the PRIV$

security game, the IV is chosen by the game.

Security in the case of nonce misuse. Theorem 4.1 states the MRAE security of

MR-OMD. The high-level structure of the proof is similar to the analyses of previous

MRAE schemes that follow the synthetic-IV (SIV) design paradigm [RS06b], such as

HBS [IY09b] and BTM [IY09a], but the details differ. We first prove the security in

the information-theoretic setting using (tweakable) random functions. To obtain the

information-theoretic security, we prove security of MR-OMD.HASH as a PRF and the

security of MR-OMD.E as a secure IV-based encryption scheme. Consequently, we prove

security of MR-OMD in the MRAE sense using the previous two results. A complexity-

theoretic security bound is then determined by instantiating the (tweakable) random

functions using the XE construction [Rog04a].

Theorem 4.1. Fix n ≥ 1 and τ ∈ {0, 1, · · · , n}. Let F : K×({0, 1}n×{0, 1}m)→ {0, 1}n

be a keyed function, where 1 ≤ m ≤ n. Let A be a CCA adversary that runs in time t,

and makes qe encryption queries and qd decryption queries that induce no more than σ

calls to F in total. Then

Advmrae
MR-OMD[F,τ ](A ) ≤ Advprf

F (B) +
3.5σ2

2n
+

0.5q2
e

2τ
+
qd
2τ

for some B that runs in time t+ γ · n · σ for some constant γ and makes 2 · σ queries.

Proof. The proof is obtained by combing Lemma 4.4, Lemma 4.2 and Lemma 4.3 with

Lemma 4.5 and Lemma 4.6.

Generalization of MR-OMD based on (tweakable) random functions. We

define the scheme MR-OMD[R̃, τ ], a generalization of MR-OMD[F, τ ] that uses a (tweak-

able) random function R̃ ←$ F̃unc(T , 2m+n, 2n) instead of the masked function F , as

depicted in figure 4.3. The tweak space T consists of seven mutually exclusive sets of

tweaks; namely, T = N × N× {0} ∪ N × N× {1} ∪ N × N× {2} ∪ N × N× {3} ∪
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R̃N,t−1,0

R̃N,1,1 R̃N,a−1,1 R̃N,a−1,jA

R̃IV,1 R̃IV,2 R̃IV,ℓ−1 R̃IV,ℓ

Cℓ

Mℓ

Figure 4.3 – The scheme MR-OMD[R̃, τ ] using a (tweakable) random function R̃←$

F̃unc(T , 2m+n, 2n). (Top) The process of generating the IV. (Bottom) The encryption
process. For the operation ⊕msb see our convention in Section 4.4.

N × N × {4} ∪ N × N × {5} ∪ IV × N, where N = {0, 1}ν is the nonce space and

IV = {0, 1}τ is the set of IV-s.

Lemma 4.2. Let MR-OMD [R̃, τ ] be the MR-OMD scheme that uses tweakable RF R̃.

Let A be an adversary that makes no more than q queries that induce no more than σ

calls to R̃ in total. Then

Advprf

MR-OMD[R̃,τ ].HASH
(A ) ≤ 0.5σ2

2n
.

Proof. We assume w.l.o.g. that the adversary does not repeat a query. Let q denote the

number of queries asked by the adversary, and let r denote the number of distinct nonces

among all the nonces in the q queries. We partition the queries into sets Q1, . . . ,Qr, so
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that for any two queries N,A,M ∈ Qi and N ′, A′,M ′ ∈ Qj we have N = N ′ if i = j and

N 6= N ′ otherwise. Let qi = |Qi| for i = 1, . . . , r, then we have q =
∑r

i=1 qi. For any 1 ≤
i ≤ r, we will denote the queries fromQi asQi = {(N i, Ai,1,M i,1), . . . , (N i, Ai,qi ,M i,qi)}.
We note that this means, that the adversary uses exactly r distinct nonces in all its

queries.

Let b = n+m. We will use notation Hτ
R̃

instead of MR-OMD[R̃, τ ].HASH throughout

the proof. First, we note that the HASH algorithm can be expressed as

Hτ
R̃

(N,A,M) = R̃Tfinal(h
R̃

(N,A,M))

with Tfinal ∈ T and where the function h
R̃
∈ Func(N ×A×M, n) is defined as

h
R̃

(N,A,M) 7→
(
R̃N,1,1(A1)⊕ . . .⊕ R̃N,a−1,1(Aa−1)⊕ R̃N,a−1,jA(A∗a)⊕

R̃N,1,0(M1)⊕ . . .⊕ R̃N,t−1,0(Mt−1)
)
⊕msbM∗t .

We claim that

Advprf
Hτ
R̃

(A ) ≤ max


r∑

h=1

∑
1≤i<j≤qh

Pr
[
coll

((
Nh, Ah,i,Mh,i

)
,
(
Nh, Ah,j ,Mh,j

))]
with the maximum taken over the choice of r, q1, q2, . . . , qr and the choice of the queries

(N1,1, A1,1,M1,1), . . . , (N r,qr , Ar,qr ,M r,qr) such that their total length in blocks is limited

by σ, i.e.
∑r

i=1

∑qi
j=1

(
|Ai,j |b + max

(
1, |M i,j |b

))
≤ σ. We let

coll
((
Nh, Ah,i,Mh,i

)
,
(
Nh, Ah,j ,Mh,j

))
denote the event that h

R̃

(
Nh, Ah,i,Mh,i

)
= h

R̃

(
Nh, Ah,j ,Mh,j

)
and |M | ≡ 0 (mod b)

iff |M ′| ≡ 0 (mod b).

In other words, we claim that the advantage Advprf
Hτ
R̃

(A ) is bounded by the probability

of collision on the input to the final (tweakable) RF between two queries with the same

nonce (we apply the union bound to obtain the inequality) such that their messages

both have a complete final block, or none of them has.

The final call to the (tweakable) RF R̃Tfinal is independent from h
R̃

, because its tweak

Tfinal is not used anywhere in h
R̃

. Moreover, the final tweaks Tfinal and T′final of two

queries (N,A,M), (N ′, A′,M ′) will be distinct if N 6= N ′ or if |M | ≡ 0 (mod b) <
|M ′| ≡ 0 (mod b). Therefore, unless there is a collision on the output of h

R̃
among

queries that share the same nonce and have |M | ≡ 0 (mod b)⇔ |M ′| ≡ 0 (mod b), the

construction R̃{Tfinal}(h
R̃

(N,A,M)) behaves as a truly RF and cannot be distinguished

from such. This completes the proof of the claim.

Now, we proceed to bound the collision probability Pr
[
h
R̃

(N,A,M) = h
R̃

(N,A′,M ′)
]

for two fixed but arbitrary queries (N,A,M) and (NA′,M ′) by a case analysis. We let

a = |A|b, t = max(1, |M |b), a′ = |A′|b, t′ = max(1, |M ′|b).
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Case 1: |M | and |M ′| are both multiples of b and (w.l.o.g) |A| is a multiple of b and

|A′| is not. The collision on h
R̃

occurs, if h
R̃

(N,A,M) = h
R̃

(N,A′,M ′). Let

S(1)(N,A,M) = h
R̃

(N,A,M) ⊕ R̃N,a−1,jA(Aa) be a partial result of evaluating

h
R̃

(N,A,M). Given any two queries (N,A,M), (N,A′,M ′), a collision on h
R̃

is

then equivalent to

S(1)(N,A,M)⊕ R̃N,a−1,3(Aa) =S(1)(N,A′,M ′)⊕ R̃N,a′−1,5(A′a′)

R̃N,a
′−1,5(A′a′)⊕ R̃N,a−1,3(Aa) =S(1)(N,A′,M ′)⊕ S(1)(N,A,M)

The two tweaks used to process the last blocks of A and A′ come from mutually

exclusive sets, so the images produced from these two blocks will always be uniform

and independent. The probability of collision is then 1/2n.

Case 2: |M |, |M ′| are both multiples of b and |A|, |A′| are either both multiples of b, or

they both are not. In case that both A and A′ have an incomplete final block, we

can assume, that A ← A||10b−1−|A| mod b and A′ ← A′||10b−1−|A′| mod b. This does

not affect the probability of collision because the padding is injective, and because

the set of tweaks used to process final blocks of AD with full-length final block

(jA = 3) is mutually exclusive with the set of tweaks used to process final block of

messages with incomplete final block (jA = 5). Thus in the following sub-cases we

can w.l.o.g. assume that |A|, |A′| are multiples of b.

Case 2a: a 6= a′. W.l.o.g assume that a > a′. Similarly as in Case 1, we define

a partial evaluation of h
R̃

(A,M) that stops after the first a′ blocks of A as

follows:

S(2a)(N,A,M) 7→
(
R̃N,1,1(A1)⊕ . . .⊕ R̃N,a′,1(Aa′)⊕

R̃N,1,0(M1)⊕ . . .⊕ R̃N,t−1,0(Mt−1)
)
⊕msbM∗t .

The collision occurs if R̃N,a
′+1,1(Aa′+1)⊕ . . .⊕R̃N,a−1,jA(Aa) = h

R̃
(N,A′,M ′)

⊕ S(2a)(N,A,M). Again, this happens if a xor of outputs of multiple inde-

pendent RFs equals to a distinct value. The probability of finding a tuple of

RFs’ inputs producing this equality is 1/2n.

Case 2b: a = a′ and A 6= A′. Because A 6= A′, there must be an i, s.t. 1 ≤
i ≤ a and Ai 6= A′i. Again, we define a partial evaluation S(2b)(N,A,M) =

h
R̃

(N,A,M)⊕ R̃N,i,ji(Ai). The collision occurs if R̃N,i,ji(Ai)⊕ R̃N,i,ji(A′i) =

S(2b)(N,A,M) ⊕ S(2b)(N,A′,M ′). In other words, we have a collision if the

result of R̃N,i,ji(Ai)⊕ R̃N,i,ji(A′i) equals to a distinct value. Because Ai 6= A′i,

the probability of this event is 1/2n.

Case 2c: A = A′ and t 6= t′. W.l.o.g. assume that t > t′. Similarly as in Case

2a, we let S(2c)(N,A,M) be the partial result of h
R̃

(N,A,M) that stops after
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the first t′ blocks of M :

S(2c)(N,A,M) 7→
(
R̃N,1,1(A1)⊕ . . .⊕ R̃N,a−1,jA(Aa)⊕

R̃N,1,0(M1)⊕ . . .⊕ R̃N,t′,0(Mt′)
)
⊕msbM∗t .

If the collision occurs, we have R̃N,t
′+1,0(Mt′+1) ⊕ . . . ⊕ R̃N,t−1,0(Mt−1) =

S(2c)(N,A,M)⊕ h
R̃

(N,A′,M ′). The probability of this event is 1/2n.

Case 2d: A = A′, t = t′ and M,M ′ differ in blocks with index i, i < t. We let

S(2d)(N,A,M) = h
R̃

(N,A,M) ⊕ R̃N,i,0(Mi). Whenever the collision occurs

we have R̃N,i,0(Mi) ⊕ R̃N,i,0(M ′i) = S(2b)(N,A,M) ⊕ S(2b)(N,A′,M ′). By a

similar argument as in Case 2b, the probability of this collision is 1/2n.

Case 2e: A = A′, t = t′ and M,M ′ differ only in the last block. Then we have

h
R̃

(N,A,M) 6= h
R̃

(N,A′,M ′), so the probability of collision is 0.

Case 3: |M | and |M ′| are not multiples of b and (w.l.o.g) |A| is a multiple of b and

|A′| is not. This case is analogous to Case 1, the only difference is that both Mt

and M ′t will be padded before processing (which is of no consequence). By similar

argument as in Case 1, we conclude that probability of collision is 1/2n.

Case 4: |M |, |M ′| are not multiples of b and |A|, |A′| are either both multiples of b, or

they both are not. In case that both A and A′ have an incomplete final block, we

can assume, that A ← A||10b−1−|A| mod b and A′ ← A′||10b−1−|A′| mod b. This does

not affect the probability of collision (by the same argument as in Case 2). Thus in

the following sub-cases, we can assume that |A|, |A′| are multiples of b. As in previ-

ous case, we can also let M ←M ||10b−1−|M | mod b and M ′ ←M ′||10b−1−|M ′| mod b.

This effectively transforms this case into Case 2. We therefore list all the sub-cases

only briefly.

Case 4a: a 6= a′. The probability of collision is 1/2n, similarly as in Case 2a .

Case 4b: a = a′ and A 6= A′. The probability of collision is 1/2n, similarly as in

Case 2b .

Case 4c: A = A′ and t 6= t′. The probability of collision is 1/2n, similarly as in

Case 2c .

Case 4d: A = A′, t = t′ and M,M ′ differ in blocks with index i, i < t. The

probability of collision is 1/2n, similarly as in Case 2d .

Case 4e: A = A′, t = t′ and M,M ′ differ only in last block. The probability of

collision is 0, similarly as in Case 2e.

We deduce that for any two queries (N,A,M) and (N,A′,M ′) we have that

Pr
[
coll

((
Nh, Ah,i,Mh,i

)
,
(
Nh, Ah,j ,Mh,j

))]
≤ 1

2n
.

67



Using this result, we can bound the advantage Advprf
Hτ
R̃

(A ):

Advprf
Hτ
R̃

(A ) ≤max


r∑

h=1

∑
1≤i<j≤qh

Pr
[
coll

((
Nh, Ah,i,Mh,i

)
,
(
Nh, Ah,j ,Mh,j

))]
≤max


r∑

h=1

∑
1≤i<j≤qh

1

2n

 ≤ max

{
r∑

h=1

q2
h

2
· 1

2n

}
≤ 0.5σ2

2n

with the maximum taken over the choice of r, q1, q2, . . . , qr and the choice of the queries

(N1,1, A1,1,M1,1), . . . , (N r,qr , Ar,qr ,M r,qr) such that their total length in blocks is limited

by σ, i.e.
∑r

i=1

∑qi
j=1

(
|Ai,j |b + max

(
1, |M i,j |b

))
≤ σ. This completes the proof.

Before we proceed, we have to introduce a new notation. The purpose of this notation is

to make the security analysis more comprehensible. Consider the encryption algorithm

MR-OMD[R̃, τ ].EK(N,A,M). The algorithm can be split into two parts. First, it com-

putes IV = MR-OMD[R̃, τ ].HASHK(N,A,M). The second part comprises all the steps

after computing the IV. We will denote the second step as MR-OMD[R̃, τ ].ĒK(IV,M),

so that, if we simplify the notation, we have

EK(N,A,M) = ĒK(HASHK(N,A,M),M).

We define MR-OMD[R̃, τ ].D̄K(IV,M) in a similar manner.

Lemma 4.3. Let MR-OMD[R̃, τ ] be the MR-OMD scheme that uses tweakable RF R̃.

Let A be a CPA adversary that makes qe encryption queries. Then

Advpriv$

MR-OMD[R̃,τ ].Ē
(A ) ≤ 0.5q2

e

2τ

Proof. For the sake of readability, we will use Π to refer to MR-OMD[R̃, τ ].Ē throughout

this proof. We observe the advantage of the adversary A in two mutually exclusive cases:

Advpriv$
Π (A ) = Adv

priv$|IVcoll
Π (A ) Pr [IVcoll] + Adv

priv$|¬IVcoll
Π (A ) Pr [¬IVcoll]

where IVcoll denotes the event, that there is a collision among IVs and:

Adv
priv$|IVcoll
Π (A ) = Pr

[
K ←$ K : A Π$

K(·) ⇒ 1
∣∣∣IVcoll

]
− Pr

[
A $(·) ⇒ 1

∣∣∣IVcoll
]

Adv
priv$|¬IVcoll
Π (A ) = Pr

[
K ←$ K : A Π$

K(·) ⇒ 1
∣∣∣¬IVcoll

]
− Pr

[
A $(·) ⇒ 1

∣∣∣¬IVcoll
]

First, consider the case that there is no collision on IVs. This implies, that all tweaks

(IVj , i) for 1 ≤ j ≤ qe used to encrypt the queried messages M1, . . . ,M qe are distinct and

thus all the images under the RFs R̃IVj ,i, used in the encryption queries, are uniform and

independent. Thus, all the ciphertexts C1, . . . ,Cqe the adversary A sees are independent

random strings. We deduce Adv
priv$|¬IVcoll
ΠK

(A ) = 0.
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We bound Adv
priv$|IVcoll
Π (A ) Pr [IVcoll] by the probability Pr [IVcoll]. We have

Pr [IVcoll] ≤
∑

1≤i<j≤qe

Pr[IVi = IVj] ≤
∑

1≤i<j≤qe

1

2τ
≤ 0.5q2

e

2τ

We deduce Adv
priv$|IVcoll
Π (A ) ≤ 0.5q2

e

2τ
. This concludes the proof.

Lemma 4.4. Let MR-OMD[R̃, τ ] be the MR-OMD scheme that uses (tweakable) RF

R̃←$ F̃unc(T , 2m+n, 2n). Let A be a CCA adversary attacking MR-OMD[R̃, τ ]. Let qe
be the number of encryption queries and qd the number of decryption queries made by

A and let σ be the total number of calls to the underlying tweakable RF R̃ in all A ’s

queries. Then there exist adversaries B and C , such that

Advprf

MR-OMD[R̃,τ ].HASH
(C ) + Advpriv$

MR-OMD[R̃,τ ].Ē
(B) ≥ Advmrae

MR-OMD[R̃,τ ]
(A )− qd

2τ

where B asks at most qe queries and C asks at most q = qe + qd queries in total. Both

B and C are limited to a total number σ of calls to underlying tweakable RF R̃ in all

their queries.

Proof. For the sake of readability, we shall refer to MR-OMD[R̃, τ ] by Π throughout this

proof. The proof proceeds in two steps, similarly as the security analysis of SIV [RS06a].

In the first step, we start with the scheme Π̄, which is the same as Π, except that we

replace the algorithm Π.HASH by a random function ρ←$ Func(N ×A×M, {0, 1}τ ).

We still use the (tweakable) RF R̃ for Π.Ē in Π̄, so the key space of Π̄ is

Func(N ×A×M, {0, 1}τ )× F̃unc(T , 2m+n, 2n)

and the key is formed by R̃, ρ. Let p̄ = Advmrae
Π̄ (A ) with unchanged limits on resources

qe, qd, σ. We have

p̄ = Pr
[
A mrae-RΠ̄ ⇒ 1

]
− Pr

[
A mrae-IΠ̄ ⇒ 1

]
=p̄1 + p̄2

with

p̄1 = Pr
[
A mrae-RΠ̄ ⇒ 1

]
− Pr

[
A mrae-HΠ̄ ⇒ 1

]
p̄2 = Pr

[
A mrae-HΠ̄ ⇒ 1

]
− Pr

[
A mrae-IΠ̄ ⇒ 1

]
where the game mrae-HΠ̄ is the same as mrae-RΠ̄, except the decryption oracle is

taken from mrae-IΠ̄, i.e. the decryption queries are always replied with ⊥.

We proceed by bounding the terms p̄1 and p̄2. To bound p̄2, we construct an adversary

B for attacking the priv$ security of Π̄.Ē from A . B is equipped with its own oracle

e(·), which implements either Π̄.Ē or the random bits oracle. We let B run A . On
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A ’s query (N,A,M) to the encryption oracle, B queries it’s own oracle e(·) with M

and returns the result to A . On any query from A to decryption oracle, B returns ⊥.

When A halts and outputs bit b, B stops and outputs b as well.

If e(·) = Π̄.Ē$
R̃

(·), then B simulates the game mrae-HΠ̄ correctly (the assumption,

that A does not repeat queries, is needed here). If e(·) = $(·), then B correctly simulates

the game mrae-IΠ̄. We deduce p̄2 ≤ Advpriv$
Π̄.Ē (B).

To give a bound on p̄1, we shall reveal the tweakable RF R̃ to A . Clearly, an upper

bound of the advantage in this case will also be valid if A does not have R̃, since having

R̃ only makes the attack easier:

p̄1 = Pr
[
A mrae-RΠ̄ ⇒ 1

]
− Pr

[
A mrae-HΠ̄ ⇒ 1

]
≤Pr

[
A (R̃)mrae-RΠ̄ ⇒ 1

]
− Pr

[
A (R̃)mrae-HΠ̄ ⇒ 1

]
In this setting, A can only tell the difference between the two games, if the decryption

query returns something other than ⊥ (then A stops and outputs 1). This happens, if A

builds a query (A,C) to Π̄−1

R̃,ρ
, that successfully verifies and decrypts, and that happens

if IV = ρ(N,A,M) and M = Π̄.D̄
R̃

(IV,C). Recall that the adversary is assumed not

to query its decryption oracle with (N,A,C) if it had previously obtained C from an

encryption query (N,A,M). Having R̃, A can compute M = Π̄.D̄
R̃

(IV,C) for any pair

IV,C, but it never knows a pair IV, (N,A,M), s.t. IV = ρ(N,A,M) and (N,A,M) has

not been queried to the encryption oracle before. A is thus left to guess the correct

IV and the probability of producing a decryption query, that does not result in ⊥ is at

most 1/2τ . If we consider all queries made by A , we have p̄1 ≤ qd/2
n. We then have

p̄ ≤ Advpriv$
Π̄.Ē (B) + qd/2

τ .

At the beginning of the second step of the proof, we point out that

Advmrae
Π (A ) = Pr

[
A mrae-RΠ ⇒ 1

]
− Pr

[
A mrae-RΠ̄ ⇒ 1

]
+ p̄

as the games mrae-IΠ and mrae-IΠ̄ are identical. We construct an adversary C that

attacks Π.HASH as a PRF (keyed by a (tweakable) RF R̃), such that it uses A as a

subroutine. C is equipped with its own oracle r(·, ·, ·), which implements either Π.HASH

or a corresponding RF ρ. The adversary C picks R̃ ←$ F̃unc(T , 2m+n, 2n) and runs

A . On A ’s encryption query (N,A,M), C sets IV ← r(N,A,M), computes C ←
Π.Ē

R̃
(IV,M) and returns IV||C to A . When A asks a decryption query (N,A, IV||C),

C first computes M ← Π.D̄
R̃

(IV, C), then it returns M to A only if IV = r(N,A,M),

otherwise it returns ⊥. When A stops and outputs bit b, let B stop and output b.

It is easy to see, that if r = ρ, then C correctly simulates mrae-RΠ̄. It remains

to show, that if r = Π.HASH
R̃′

is the construction Π.HASH keyed by an independent

R̃′ ∈ F̃unc(T , 2m+n, 2n), the adversary C simulates the oracles Π
R̃∗

(·, ·, ·),Π−1

R̃∗
(·, ·, ·) in

the game mrae-RΠ correctly for some R̃∗ ∈ FuncT (m+ n, n).

If we indeed have that r = Π.HASH
R̃′

, then the game for C has picked the RF
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R̃′ ←$ F̃unc(T , 2m+n, 2n), while C has picked the tweakable RF R̃←$ F̃unc(T , 2m+n, 2n)

independently. The construction of Π is such, that the set of tweaks Te = IV × N
used in Π.Ē is disjoint with the set of tweaks Th = T \Te used in Π.HASH. For every

R,R′ ∈ FuncT (m+ n, n) there is some R∗ ∈ FuncT (m+ n, n) such that

R∗Te(·) = RTe(·) for all Te ∈ Te, and R∗Th(·) = R′
Th(·)forallTh ∈ Th,

so the oracles simulated by C are equivalent with oracles Π
R̃∗(·, ·, ·),Π

−1

R̃∗
(·, ·, ·). We let

R,R′ ↔ R∗ denote that three (tweakable) functions R,R′, R∗ ∈ F̃unc(T , 2m+n, 2n) have

the property just described. It remains to show, that the distribution of R̃∗ is uniform

assuming that R̃, R̃′ are distributed uniformly and independently in F̃unc(T , 2m+n, 2n).

We have

Pr
[
R̃∗ = R∗

]
=

∑
R,R′: R,R′↔R∗

Pr
[
R̃ = R, R̃′ = R′

]
=

∑
R,R′: R,R′↔R∗

(
1

2n·|T |·2m+n

)2

=
∣∣{R,R′|R,R′ ↔ R∗

}∣∣ · ( 1

2n·|T |·2m+n

)2

=2n·|Th|·2
m+n · 2n·|Te|·2m+n ·

(
1

2n·|T |·2m+n

)2

=
1

2n·|T |·2m+n

so the distribution of R̃∗ is indeed uniform, and simulation of A ’s oracles is correct. We

deduce Advmrae
Π (A ) ≤ p̄+ Advprf

Π.HASH(C ). This concludes the proof.

Instantiating a (tweakable) RF with a PRF. The proof of Theorem 4.1 is com-

pleted in the same way as with OMD (Section 3.6). First, the (tweakable) RF R̃ is

replaced by a (tweakable) PRF F̃ : K × T × ({0, 1}n × {0, 1}m) → {0, 1}n, where

K = {0, 1}k. This will increase the security bound as shown in Lemma 4.5.

Lemma 4.5. Let R̃←$ F̃unc(T , 2m+n, 2n) be a (tweakable) RF and F̃ : K×T ×({0, 1}n×
{0, 1}m)→ {0, 1}n be a (tweakable) PRF. Let A be a CCA adversary that runs in time

t, makes qe encryption queries and qd decryption queries that induce no more than σ

calls to F̃ in total. Then

Advmrae
MR-OMD[F̃ ,τ ]

(A ) ≤ Advmrae
MR-OMD[R̃,τ ]

(B) + Advp̃rf

F̃
(C )

for some information theoretic B that makes qe encryption queries and qd decryption

queries that induce no more than σ calls to R̃ in total, and some C that makes no more

than σ queries and runs in time t+ γ · n · σ for some constant γ.
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Proof. The proof of this lemma is very similar to the proof of the PRIV bound in

Lemma 3.3, we omit the details.

We instantiate the (tweakable) PRF F̃ from a PRF F (with a smaller domain) by

the means of xoring a mask to a part of the input of F , exactly as with OMD. The

tweaks in MR-OMD are either of the form T = (α, i, j) where α ∈ N , 1 ≤ i ≤ 2n−5 and

j ∈ {0, . . . , 5} or of the form T′ = (IV, i) with α ∈ IV, 1 ≤ i ≤ 2n−5. We can have a

unified notation for all the tweaks as T = (α, i, j) where α ∈ N ∪ IV, 1 ≤ i ≤ 2n−5 and

j ∈ {0, . . . , 5} if α ∈ N and j = 6 if α ∈ IV.

The transition from tweakable PRFs to PRFs with xor-masks being exactly the same,

we heavily rely on the security analysis from Section 3.6.

Lemma 4.6. Let F̃ : K × ({0, 1}n × {0, 1}m) → {0, 1}n be a function family with key

space K. Let F̃ : K × T × ({0, 1}n × {0, 1}m) → {0, 1}n be defined by F̃T
K(X||Y ) =

FK((X ⊕∆(T))||Y ) for every T ∈ T ,K ∈ K, X ∈ {0, 1}n , Y ∈ {0, 1}m and let ∆K(T)

be the masking function of MR-OMD as defined in Section 4.4. Let A be an adversary

that runs in time t and makes q queries. Then

Advprf

F̃
(A ) ≤ Advprf

F (B) +
3q2

2n

for some B that runs in time t+ γ · n · q and makes 2 · q queries.

Proof. The proof of this lemma is almost identical to the proof of Lemma 3.4; we just

need to show that the masking function of MR-OMD ∆K(T) = ∆K(α, i, j) is also a

2−n-uniform 2−n-AXU hash.

It is easy to verify that it is the case. Compared to the masking function of OMD, the j-

component of the tweak input can now take values up to 6, and its binary representation

will thus have at most three non-zero least-significant bits. This is taken care of by the

fact that L[0] = 23 ·L∗ (instead of 22 ·L∗ as in OMD). Also, we impose i ≤ 2n−5 (instead

of i ≤ 2n−4 as in OMD), so for every unique (i, j), (23 · γi⊕〈j〉n) is a unique element of

GF(2n). Here γi is the ith codeword of the canonical Gray code defined in the proof of

Lemma 3.4.

With this property, the rest of the analysis of Lemma 3.4 carries over and yields the

desired result.

Security in the Nonce-Respecting Case. Intuitively, one would expect that the

security bound in the nonce-respecting setting should be somewhat better than the one

in the nonce-reuse case. Theorem 4.7 gives a bound on the AE security of MR-OMD in

the nonce-respecting scenario, confirming this intuition.

Theorem 4.7. Fix n ≥ 1 and τ ∈ {0, 1, · · · , n}. Let F : K×({0, 1}n×{0, 1}m)→ {0, 1}n

be a PRF, where 1 ≤ m ≤ n. Let A be a CCA adversary that runs in time t, and makes

qe encryption queries and qd decryption queries that induce no more than σ calls to F
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in total. Then

Advnae
MR-OMD[F,τ ](A ) ≤ Advprf

F (B) +
3σ2

2n
+

0.5q2
e

2τ
+
qd
2τ

for some B that makes no more than 2 · q queries and runs in time t+ γ ·n · σ for some

constant γ.

Proof. The steps to prove this theorem are almost the same as for Theorem 4.1. The

only difference is in the proof for the security of the HASH algorithm as a PRF. This

is easy to see, as HASH is the only component of MR-OMD where the nonce is used.

Lemma 4.8 gives the PRF security bound for HASH in the nonce-respecting setting.

The bound stated in Theorem 4.7 is obtained combining Lemma 4.8 with Lemma 4.4,

Lemma 4.3, Lemma 4.5 and Lemma 4.6.

Lemma 4.8. Let MR-OMD[R̃, τ ] be the MR-OMD scheme that uses (tweakable) RF R̃.

Let A be a nonce-respecting adversary that makes at most q queries that induce no more

than σ calls to R̃ in total. Then

Advprf

MR-OMD[R̃,τ ].HASH
(A ) = 0.

Proof. Recall the proof of Lemma 4.2: the MR-OMD[R̃, τ ].HASH behaves as a RF unless

there is a collision in the input to the final RF. This is because the final random function,

determined by the final tweak, may be the same for several messages.

Now, considering that adversaries are nonce-respecting, we have that for every query

(N i, Ai,M i), 1 ≤ i ≤ q made by the adversary the nonce is distinct, i.e. N i 6= N j if

i 6= j. Each query is processed using a subset of T , that is disjoint with tweak sets used

to process all the other queries. Therefore, when a query is processed, the final tweak is

always fresh (never used before) and the random function is independent from all others

so far. The distribution produced by MR-OMD[R̃, τ ].HASH is then identical with that

produced by a random function ρ←$ Func(N ×A×M, {0, 1}τ ).

4.6 Parallelizable MR-OMD

The MR-OMD scheme described in section 4.4 is designed to be substantially similar to

OMD, so that it is able to share a lot of common software/hardware with OMD, while

achieving stronger security goals than OMD itself. This similarity also implies that the

encryption (and decryption) in MR-OMD is kept serial as it is in OMD. However, we

notice that the two-pass construction (in contrast to OMD which is one-pass) also opens

up the possibility of having a parallelizable version of the encryption (and decryption)

algorithm.

The IV in MR-OMD is computed from both associated data and message using a

PRF. Thus, the encryption is always dependent on the whole query (via IV) and we no

longer need to apply the serial, chaining encryption of OMD. So, in specific applications
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where there are possibilities for parallel computation, we might want to modify MR-

OMD to exploit this fact. For this purpose, we propose PMR-OMD. PMR-OMD uses

the same algorithms Initialize and HASH as MR-OMD, but the encryption (and the

decryption) algorithm uses counter mode. Schematic visualisation can be found in Figure

4.1. This replacement will of course get us further from the original OMD, which may

be inconvenient in hardware implementations; however, in software implementations,

the parallel execution might be exactly what we want, especially for general purpose

CPUs with multiple cores. The PMR-OMD is almost fully parallelizable, with a single

bottleneck in the form of the call to the compression function when processing the final

message block in the HASH algorithm.

Security of PMR-OMD. The security bounds of PMR-OMD are exactly the same

as those of MR-OMD, both in the nonce-misusing and nonce-respecting settings. This is

because the proof of $-privacy of the counter mode is essentially the same as the one of

$-privacy of the original OMD encryption. The remaining components of MR-OMD (and

thus also the proofs) remain unchanged. We therefore omit the proofs of the following

theorems.

Theorem 4.9. Fix n ≥ 1 and τ ∈ {0, 1, · · · , n}. Let F : K×({0, 1}n×{0, 1}m)→ {0, 1}n

be a keyed function, where 1 ≤ m ≤ n. Let A be a CCA adversary that runs in time t,

makes qe encryption queries and qd decryption queries that induce no more than σ calls

to F in total. Then

Advmrae
PMR-OMD[F,τ ](A ) ≤ Advprf

F (B) +
3.5σ2

2n
+

0.5q2
e

2τ
+
qd
2τ

for some B that runs in time t+ γ · n · σ for some constant γ and makes 2 · σ queries.

Theorem 4.10. Fix n ≥ 1 and τ ∈ {0, 1, · · · , n}. Let F : K × ({0, 1}n × {0, 1}m) →
{0, 1}n be a PRF, where 1 ≤ m ≤ n. Let A be a CCA adversary that runs in time t,

makes qe encryption queries and qd decryption queries that induce no more than σ calls

to F in total. Then

Advnae
PMR-OMD[F,τ ](A ) ≤ Advprf

F (B) +
3σ2

2n
+

0.5q2
e

2τ
+
qd
2τ

for some B that makes no more than 2 · q queries and runs in time t+ γ ·n · σ for some

constant γ.
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Chapter 5
Boosting OMD for Almost Free

Authentication of Associated Data

This chapter is dedicated to pure OMD (p-OMD) which is a variant of OMD that has

improved performance.

The work presented in this chapter is a result of joint work with Reza Reyhanitabar

and Serge Vaudenay which was published in FSE 2015 [RVV15].

Organization of the Chapter. We briefly discuss the related work in Section 5.1

and give a summary of the contribution in Section 5.2.

We introduce pOMD in Section 5.3, give its description in Section 5.4, give its security

analysis in Section 5.5, and discuss its performance in Section 5.6.

5.1 Related Work

The security notion targeted by p-OMD is the same as for OMD, NAE security [Rog02].

The integration of AD-blocks into the message processing core of OMD is inspired by

the BNMAC by Yasuda [Yas07]. The first version of the publication that introduced p-

OMD claimed that p-OMD preserved authenticity under nonce misuse. This claim was

refuted by Ashur and Mennink who then proposed two simplified variants of p-OMD,

one of which did achieve the desired misuse resistant property [AM16].

5.2 Contribution

We design p-OMD, a variant of OMD that integrates the AD processing into the core

encryption algorithm of OMD. The algorithmic modifications that transforms OMD to

p-OMD make the AD processing almost free in terms of spent computational time, and

we prove that they have no adverse impact on security.
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We theoretically predict and then experimentally verify the speedup of p-OMD com-

pared to OMD.

5.3 Pure OMD

The original OMD scheme couples a single pass of the modified Merkle-Damg̊ard (MD)

iteration (in which the intermediate chaining values are xored with specially crafted

offsets) with the counter-based XOR MAC algorithm [BGR95] to process a message

and its associated data. In this chapter, we investigate the possibility of making al-

gorithmic improvements to the original OMD scheme, aiming at boosting its efficiency,

while preserving its security properties.

In particular, we provide a positive answer to the question “can we dispense with the

XOR MAC algorithm, and make the scheme based purely on Merkle-Damg̊ard?” We

show that there is a natural way (inspired by the work by Yasuda [Yas07]) to modify

OMD to make it more compact and efficient with respect to processing associated data.

Our new variant of OMD, called pure OMD (p-OMD), has the following features:

It inherits all desirable security features of OMD. We prove the security of

p-OMD under the same standard assumption (namely, pseudo-randomness of the com-

pression function) as used for OMD. Furthermore, the proven security bounds for p-OMD

are the same as those of OMD. This shows that the modifications we made to OMD, to

obtain the performance-boosted variant p-OMD, are without sacrificing any security.

It has a more compact structure and processing AD is almost free. The

p-OMD scheme dispenses with the XOR MAC algorithm and is solely based on the

(masked) MD iteration. This is achieved by absorbing the associated data blocks during

the core MD path rather than processing them separately by an additional algorithm.

To encrypt a message of ` blocks together with associated data of a blocks, OMD needs

`+a+2 calls to the compression function while p-OMD only requires max {`, a}+2 calls.

That is, for a typical case where ` ≥ a, p-OMD makes just `+ 2 calls independently of

the length of AD.

5.4 Description

The AE scheme p-OMD is a mode of operation that converts a keyed compression

function to an AEAD scheme. To instantiate p-OMD, one must first choose and fix

a keyed compression function F : K × ({0, 1}n × {0, 1}m) → {0, 1}n and a tag length

τ ≤ n, such that the key space K = {0, 1}k for an integer k and m ≤ n. Let p-OMD[F, τ ]

denote p-OMD instantiated by fixing F and τ .

An instance p-OMD[F, τ ] has a key spaceK = {0, 1}k, an AD spaceA ⊆ {0, 1}≤(n)·2n−6

and a message space M ⊆ {0, 1}≤m·2n−6
. We let `max = maxX∈A∪M(|X|m) denote the
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upper bound on the maximum number of blocks in any single message or AD. We require

that the nonce space N = {0, 1}ν for an integer 1 ≤ ν < n.

An overview. The main design rationale behind p-OMD is the integration of AD pro-

cessing into the same MD path that processes the message. While the overall structure

of such design is rather simple, the combined processing of the message and associated

data blocks in p-OMD creates a not-so-small number of cases that occur during the

encryption due to the possible lengths (and relative lengths) of messages and AD, and

need to be treated and analyzed carefully.

Figure 5.1 shows an illustration of the encryption algorithm of p-OMD[F, τ ]. The

decryption algorithm can be straightforwardly derived from the encryption algorithm

with the additional verification of the authentication tag at the end of the decryption

process. Figures 5.2 and 5.3 provide a complete algorithmic description ofthe encryption

algorithm of pOMD.

In the following, we briefly explain the main components of pOMD in more detail.

Computing ∆N,i,j. As shown in Figure 5.1, before each call to the underlying com-

pression function F , we xor a (key-dependent) masking value ∆N,i,j to a part fo the

input, where N is the nonce, the i component is incremented at each call to the com-

pression function and the j component is changed when needed (according to a pattern

that will be detailed shortly). In the following, all multiplications are in GF (2n).

Precomputation. Unlike in OMD, we precompute an array of L∗ values. We let

L∗[0] = 0n, define L∗[1] = FK(0n, 0m) and let L∗[i] = i · L∗[1] for 2 ≤ i ≤ 15.

We let L[0] = 24 ·L∗[1] and L[j] = 2 ·L[j−1] for j ≥ 1. For a fast implementation,

the values L∗[i] and L[j] can be precomputed and stored in a table for 1 ≤ i ≤ 15

and 0 ≤ j ≤ dlog2(`max)e. Alternatively, (if there is a memory restriction) they

can be computed on-the-fly.

Note that all L∗[i] are linear functions of L∗[1]. Thus L∗[int(〈j〉4⊕〈j′〉4)] =

L∗[j]⊕L∗[j′] for any j, j′ ∈ {0, 1, . . . , 15} (with a slight abuse of notation).

Computation of the masking sequence. The masking values ∆N,i,j are computed

sequentially as follows. We define ∆N,0,0 = FK(N‖10n−1−ν , 0m). To increment i,

we let

∆N,i,j = ∆N,i−1,j ⊕L[ntz(i)]

for i ≥ 1 and any j ∈ {0, 1, . . . , 15}. To switch j, we let

∆N,i,j = ∆N,i,j′ ⊕L∗[int(〈j〉4⊕〈j′〉4)]

for any j, j′ ∈ {0, 1, . . . , 15}. For details on how we get this compact relation based

on the Gray code sequence, we refer to Appendix A.2.

Encryption algorithm. To encrypt a message M ∈ M with associated data A ∈ A
using nonce N ∈ N and key K ∈ K, obtaining a ciphertext C = C‖T ∈ {0, 1}|M |+τ , we

carry out the following steps.
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Ā′
ℓ+1

C2 Ca′

∆N,1,0 ∆N,2,0 ∆N,a′,0 ∆N,ℓ+1,jf

M1 Ma′M2

Ca′+1

∆N,a′+1,1

Ma′+1

FK FK
b b b FK FK0

n

〈τ〉m M1 M̄ℓ

C1 C2

∆N,1,0 ∆N,2,0 ∆N,ℓ+1,0 ∆N,ℓ+a∗+1,jf

M1 M2

A′
2A′

1
A′

ℓ+1

FK

∆N,ℓ+2,2

A∗
1

n + m

n m

Ā∗
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Ā∗
a∗

n + m

n m

n bits

Tag′

A∗
1

n + m

n m

FK0
n

〈τ〉m

∆N,1,3

n bits

Tag′

Tag′

n bits

trunc

Case A:ℓ > 0 and |A|n = ℓ+ 1. Let M̄ℓ = Mℓ||10
m−|Mℓ |−1 if |Mℓ| < m and M̄ℓ = Mℓ otherwise.

Case B:ℓ > 0 and |A|n < ℓ+ 1. Let M̄ℓ = Mℓ||10
m−|Mℓ |−1 if |Mℓ| < m and M̄ℓ = Mℓ otherwise.

Let Ā′
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′

a′ = A
′

a′ otherwise.

Case C:ℓ > 0 and |A|n > ℓ+ 1. Let M̄ℓ = Mℓ||10
m−|Mℓ |−1 if |Mℓ| < m and M̄ℓ = Mℓ otherwise.

Let Ā∗
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′||10n−|A′

|−1

if |A′| < n and Ā′ = A
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Figure 5.1 – The encryption algorithm of p-OMD[F, τ ]. For the details on how
the parameters and masking offsets are computed consult the description in Section 5.4.
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1: algorithm Precompute(K)
2: L∗[0] = 0n

3: L∗[1]← FK(0n, 0m)
4: for i← 2 to 15 do
5: L∗[i] = i · L∗[1]
6: end for
7: L[0]← 24 · L∗[1]
8: for i← 1 to dlog2(`max)e do
9: L[i] = 2 · L[i− 1]

10: end for
11: return
12: end algorithm

1: algorithm EK(N,A,M)
2: if ν > n− 1 then
3: return ⊥
4: end if
5: PARTITION(A,M)
6: PAD(A′, A∗,M)
7: ∆← FK(N‖10n−1−ν , 0m)
8: ∆← ∆⊕L[0] . ∆N,1,0

9: H ← 0n; j ← 0
10: if a′ = 0 and ` = 0 then
11: SWITCH(∆, j, 3)
12: else if a′ = 0 then
13: SWITCH(∆, j, 1)
14: else
15: H ← H ⊕A′1
16: if a′ = 1 and a∗ > 0 then
17: SWITCH(∆, j, 2)
18: else if a′ = 1 and ` = 0 then
19: SWITCH(∆, j, 12 + jA + jM )
20: end if
21: end if

22: H ← FK(H ⊕∆, 〈τ〉m)
23: i← 2
24: if a′ > 1 then . stage 1
25: PROC1(M,A′, H,∆, i)
26: Ci−1 ← H ⊕Mi−1

27: H ← H ⊕A′i
28: ∆← ∆⊕L[ntz(i)]
29: if a∗ = 0 and i = `+ 1 then
30: SWITCH(∆, j, 4 + jA + jM )
31: H ← FK(H ⊕∆, M̄i−1)
32: else
33: H ← FK(H ⊕∆,Mi−1)
34: end if
35: i← a′ + 1
36: end if
37: if ` ≥ a′ then . stage 2
38: SWITCH(∆, j, 1)
39: PROC2(M,H,∆, i)
40: Ci−1 ← H ⊕Mi−1

41: ∆← ∆⊕L[ntz(i)]
42: SWITCH(∆, j, 8 + jA + jM )
43: H ← FK(H ⊕∆, M̄i−1)
44: else if a∗ > 0 then . stage 3
45: SWITCH(∆, j, 2)
46: PROC3(A∗, H,∆, i)
47: H ← H ⊕ leftn (A∗a∗)
48: ∆← ∆⊕L[ntz(i)]
49: SWITCH(∆, j, 12 + jA + jM )
50: H ← FK(H ⊕∆, rightm (A∗a∗))
51: end if
52: T ← H[n− 1 · · ·n− τ ]
53: C← C1‖C2‖ · · · ‖C`‖T
54: return C
55: end algorithm

Figure 5.2 – Description of the encryption algorithm of p-OMD[F, τ ]. stage
1 processes blocks of message and AD simultaneously (Cases A,B and C in Figure
5.1). stage 2 processes only message blocks (Case B in Figure 5.1 and the case when
we only have a message and no AD that is not illustrated). stage 3 processes only
double blocks of AD (Cases C and D in Figure 5.1). Note that the Cases E and F are
handled outside of the three stages. Subroutines PARTITION, PAD, SWITCH and
PROC1-3 are described in Figure 5.3. The subroutine PAD pads the final blocks of M
and A if necessary, and computes jM and jA which help determine the final value of j
for producing the tag.
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1: procedure PARTITION(A,M)
2: b← n+m
3: M1‖ . . . ‖M`

m←M . (` = |M |m)
4: A′ ← left(`+1)·n (A)
5: A∗ ← right|A|−(`+1)·n (A)

6: A′1‖ . . . ‖A′a′
n←− A′ . (a′ = |A′|n)

7: A∗1‖ . . . ‖A∗a∗
b←− A∗ . (a∗ = |A∗|n+m)

8: end procedure

1: procedure PAD(A′, A∗,M)
2: if |M | mod m 6= 0 then
3: M̄` ←M`‖10m−|M`|−1

4: jM ← 1
5: else
6: M̄` ←M`

7: jM ← 0
8: end if
9: if |A′| mod n 6= 0 then

10: A′a′ ← A′a′‖10n−|A
′
a′ |−1

11: jA ← 2
12: else if |A∗| mod n+m 6= 0 then
13: A∗a∗ ← A∗a∗‖10n+m−|A∗a∗ |−1

14: jA ← 2
15: else
16: jA ← 0
17: end if
18: end procedure

1: procedure SWITCH(∆, j, jnew)
2: ∆← ∆⊕L∗(int(〈j〉4⊕〈jnew〉4))
3: j ← jnew

4: end procedure

1: procedure PROC1(M,A′, H,∆, i)
2: for r ← i to a′ do
3: Cr−1 ← H ⊕Mr−1

4: H ← H ⊕A′r
5: ∆← ∆⊕L[ntz(r)]
6: H ← FK(H ⊕∆,Mr−1)
7: end for
8: i← a′

9: end procedure

1: procedure PROC2(M,H,∆, i)
2: for r ← i to ` do
3: Cr−1 ← H ⊕Mr−1

4: ∆← ∆⊕L[ntz(r)]
5: H ← FK(H ⊕∆,Mr−1)
6: end for
7: end procedure

1: procedure PROC3(A∗, H,∆, i)
2: for r ← 1 to a∗ − 1 do
3: H ← H ⊕ leftn (A∗r)
4: ∆← ∆⊕L[ntz(i+ r − 1)]
5: H ← FK(H ⊕∆, rightm (A∗r))
6: end for
7: end procedure

Figure 5.3 – The subroutines of the encryption algorithm of p-OMD[F, τ ] (see
Figure 5.2).

Enc.: Partitioning the message and associated data. The inputs are partitioned

by PARTITION subroutine described in Figure 5.3. Let M1‖M2 · · · ‖M`
m← M .

Let A′‖A∗ ← A where A′ ← left(`+1)·n (A) and A∗ ← right|A|−(`+1)·n (A).

Let A′1‖A′2 · · · ‖A′a′
n←− A′ and A∗1‖A∗2 · · · ‖A∗a∗

n+m←−−− A∗. The string A′ consists of

a′ ≤ `+ 1 n-bit blocks and these blocks will be simply absorbed into the chaining

variable during the message encryption. In a typical use case where the associated

data is shorter than the message, we will have A′ = A and A∗ = ε (Case A and

Case B in Figure 5.1). The string A∗ will be non-empty only if |A| > (` + 1)n,

in which case, while A∗ is being processed, there are no more message blocks to

encrypt. To maximize the efficiency, we partition the string A∗ into n + m-bit

blocks so that we can make use of the whole input to F (see Case C and Case

D in Figure 5.1).

Enc.: Processing the message and associated data. The message and associated

data blocks are processed by the modified Merkle-Damg̊ard iteration of F as shown
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in Figure 5.1. For every call to F , the n-bit input (chaining variable) is masked

by the value ∆N,i,j , where i starts with the value i = 1 at the first call to F

and is incremented for every call, and the j component is used to separate logical

parts in the encryption process, as well as different types of input arguments. An

appropriate use of the j component is essential for security.

Enc.: Selection of the j component in the index of ∆N,i,j. We use several val-

ues of j to separate the calls to the masked F in different contexts. We classify

the calls to the masked F to two types: (1) the final call to F which returns the

tag, and (2) the remaining internal calls. We note that in the special case that

M = ε and |A| ≤ n there will be only one call to F which returns the tag; hence,

it is considered as the final call.

Internal Calls. We use j ∈ {0, 1, 2} for the internal F -calls as follows.

For i = 1, i.e. the first call to F , the value of j is determined like this:

• if ` > 0 and a′ > 0 then let j = 0,

• if ` > 0 and a′ = 0 then let j = 1,

• if ` = 0 and a∗ > 0 then let j = 2.

For 1 < i < `+ 1 + a∗, depending on the presence of message blocks and AD

blocks to be processed at the ith call to the masked F , we have:

• if both an n-bit AD block and an m-bit message block are present then

j = 0,

• if only an m-bit message block is present (no AD block is processed) then

j = 1,

• if only an (n+m)-bit AD block is present (no message block is processed)

then j = 2.

Final Call. The final call to F , which produces the authentication, tag uses jf ∈
{3, 4, 5, . . . , 14, 15}. If the tag is produced by a call to F with i 6= 1, we have

three main cases depending on the inputs to the final masked F .

• If both an AD block and a message block are present in the final call (see

Case A in Figure 5.1) then jf ∈ {4, 5, 6, 7}; we let jf = 4 if |M`| = m

and |A′a′ | = n; let jf = 5 if |M`| < m and |A′a′ | = n; let jf = 6 if |M`| = m

and |A′a′ | < n, and otherwise (|M`| < m and |A′a′ | < n) let jf = 7.

• If only a message block is present but no AD block is processed in the

final call (see Case B in Figure 5.1) then jf ∈ {8, 9, 10, 11}; we let jf = 8

if |M`| = m and |A′a′ | = n; let jf = 9 if |M`| < m and |A′a′ | = n; let

jf = 10 if |M`| = m and |A′a′ | < n, and otherwise let jf = 11 if |M`| < m

and |A′a′ | < n. For the special case where there is no associate data at

all, i.e. A = ε, we let jf = 8 if |M`| = m and let jf = 9 if |M`| < m.

• If only an AD block is present but no message block is processed in the fi-

nal call (see Case C and Case D in Figure 5.1) then jf ∈ {12, 13, 14, 15};
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we let jf = 12 if |M`| = m and |A∗a∗ | = n + m; let jf = 13 if |M`| < m

and |A∗a∗ | = n + m; let jf = 14 if |M`| = m and |A∗a∗ | < n + m, and

otherwise let jf = 15 if |M`| < m and |A∗a∗ | < n+m. For the special case

where there is no message at all, i.e. M = ε, let jf = 12 if |A∗a∗ | = n+m

and let jf = 14 if |A∗a∗ | < n+m.

For i = 1 (meaning that the final call is the same as the first call, which

happens if M = ε AND |A| ≤ n) we need to apply a special treatment:

• if both M = A = ε then jf = 3 (Case F in Figure 5.1),

• if M = ε and 0 < |A| ≤ n then we let jf = 12 if |A| = n, otherwise, let

jf = 14 (Case E box in Figure 5.1).

Note that there is no variable jf in Figure 5.2 as jf corresponds to a special use

of variable j in the last call to F . Specifically, jf corresponds to the calls to the

SWITCH subroutine that use the value of new j of the form const + jA + jM or

the value 3.

Decryption algorithm. Considering that the encryption process of p-OMD is actu-

ally a self-synchronizing stream cipher with an integrated authentication mechanism,

the decryption process proceeds in a very similar way as the encryption process up until

the verification of the tag, which happens at the end of the decryption process where

the newly computed tag T ′ is compared with the provided tag T . If T ′ = T then output

M , otherwise output ⊥.

5.5 Security Analysis

The security analysis for p-OMD is modular and follows similar steps as the analysis of

OMD:

Step 1: We first analyse the security of a generalized variant of p-OMD[F, τ ] where

the masked F gets replaced by an ideal primitive; namely, a (tweakable) random

function R̃. This generalized scheme is called p-OMD[R̃, τ ] and is illustrated in

Figure 5.4. This is the major proof step which differs from and is more involved

than that of OMD.

Step 2: We instantiate the (tweakable) random function R̃ by a (tweakble) PRF F̃ .

This is a standard step and it is the same as for OMD.

Step 3: We instantiate a (tweakable) PRF using a PRF (with a smaller domain) using

the XE method [Rog04a] with the masking sequence based on the canonical Gray

code [RBBK01, KR11]. This step is similar to that of OMD, only the details of

the mask generation function differ.

82



Boosting OMD for Almost Free Authentication of Associated Data

The security bound for p-OMD is stated in Theorem 5.1. It is interesting to note that

the security bound is the same as that of OMD, showing that the modifications we made

to OMD to obtain p-OMD are without any loss of security.

Theorem 5.1. Fix n ≥ 1, 0 ≤ τ ≤ n. Let F : K × ({0, 1}n × {0, 1}m) → {0, 1}n

be a PRF with 1 ≤ m ≤ n. Let A be a CPA adversary that runs in time t, makes

qe encryption queries that induce no more than σe n calls to F in total, such that no

individual input (AD or message) is more that `max m-bit blocks long. Let further A ′

be a CCA adversary that runs in time t′, makes q′e encryption queries and q′d decryption

queries that induce no more than σ′ calls to F in total, such that no individual input is

more that `′max m-bit blocks long. We have

Advpriv
p−OMD[F,τ ](A ) ≤ Advprf

F (B) +
3σ2

e

2n

Advauth
p−OMD[F,τ ](A

′) ≤ Advprf
F (B′) +

3σ2

2n
+
qd`max

2n
+
qd
2τ

for some B that makes 2 · σe queries and runs in time t+ γ · n · σ for some constant γ,

and B’ that makes 2 · σ′ queries and runs in time t′ + γ′ · n · σ′ for some constant γ′.

Proof. The proof is obtained by combining Lemma 5.2 with Lemma 5.3 and Lemma 5.4.

Idealization of p-OMD. The scheme p-OMD[R̃, τ ] is a generalization of p-OMD[F, τ ]

that uses a (tweakable) random function R̃←$ F̃unc(T , 2m+n, 2n) instead of the masked

F . The p-OMD[R̃, τ ] is depicted in Figure 5.4. The tweak space T consists of sixteen

mutually exclusive sets of tweaks T =
⋃15
j=0N × N× {j}.

Lemma 5.2. Let p-OMD[R̃, τ ] be the scheme shown in Figure 5.4. Let A be an

information-theoretic CPA adversary that makes qe encryption queries that induce no

more than σe calls to R̃ in total, such that no individual input (AD or message) is more

that `max m-bit blocks long. Let further A ′ be an information theoretic CCA adversary

that makes q′e encryption queries and q′d decryption queries that induce no more than σ′

calls to R̃ in total, such that no individual input is more that `′max m-bit blocks long.

Then

Advpriv

p-OMD[R̃,τ ]
(A ) = 0

Advauth
p-OMD[R̃,τ ]

(A ′) ≤ qd`max
2n

+
qd
2τ

Proof. The proof of the PRIV bound is straightforward. Each of the encryption queries

(N1, A1,M1) · · · (N qe , Aqe ,M qe) asked by A has a distinct nonce. Referring to Fig-

ure 5.4, this means that every evaluation of R̃N
x,i,j(·) uses a distinct tweak, hence the

83



b b b0
n

〈τ〉m M1 Mℓ−2 M̄ℓ

C1 C2 Cℓ−1

R
N,1,0

R
N,2,0

R
N,ℓ−1,0

R
N,ℓ+1,jf

M1 Mℓ−1M2

τ bits

T

A′
2A′

1
A′

ℓ−1

Mℓ−1

Cℓ

R
N,ℓ,0

Mℓ

b b b0
n

〈τ〉m M1 Ma′−1 M̄ℓ

A′
2A′

1
Ā′
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Case A: ℓ > 0 and |A|n = ℓ+ 1. Let M̄ℓ = Mℓ||10
m−|Mℓ|−1 if |Mℓ| < m and M̄ℓ = Mℓ otherwise.
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′

a′ = A
′

a′ otherwise.
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Figure 5.4 – The p-OMD[R̃, τ ] scheme using a tweakable random function R̃ ←$

F̃unc(T , 2n+m, 2n).
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ciphertexts Cr for 1 ≤ r ≤ qe that the adversary sees are uniform and independent.

The proof of the authenticity bound requires a rather involved case analysis. A visu-

alisation of the hierarchy of the cases as a tree is presented in Figure 5.5 to improve

the clarity of the proof. We first analyse the case where the adversary makes a single

verification query and then we use the generic result of Bellare et al. [BGM04] to get a

bound against adversaries that make multiple verification queries.

Let A ′ be an adversary making qe encryption queries (N1, A1,M1) · · · (N qe , Aqe ,M qe)

and a single decryption query (N,A,C).

Let M i = M i
1 · · ·M i

`i
be the message and Ai = A′i1 · · ·A′

i
a′i
||A∗1i · · ·A∗a∗i

i be the asso-

ciated data in the ith encryption query. Let Ci = Ci||T i be the ciphertext received for

query (N i, Ai,M i). We let xi = 1+`i+a∗i denote the number of calls to the (tweakable)

random function R̃ made while processing the ith query. Note that xi is also the value

of the second tweak component used in the final call to the compression function which

produces T i. We further let jif denote the third component of the tweak used in the

final call to R̃ when processing the ith query.

Let A = A′1 · · ·A′a′ ||A∗1 · · ·A∗a∗ be the associated data, C = C||T the ciphertext where

C = C1 · · ·C` and T ∈ {0, 1}τ be the tag in the decryption query. Let M = M1 · · ·M`

denote the corresponding decrypted message. We let x = 1 + ` + a∗ be the number

of calls to R̃ made while processing the forgery attempt. This is also the value of the

second tweak component in the final call to the compression function that is supposed

to produce the T . We further let jf denote the third component of the tweak used in

the final call to R̃ when processing the alleged forgery.

In the proof we use the intermediate chaining variables that occur in the query pro-

cessing. We let H i
r denote the output of the rth call to the compression function in

the processing of the ith encryption query, so we have H i
1 = R̃N,1,0(A′i1, 〈τ〉m) and

T i = leftτ
(
H i
xi

)
. Similarly, we let Hr stand for rth intermediate chaining value in the

processing of the forgery attempt.

We have the following disjoint cases that can occur upon the decryption query of A ′.

The negation of an event E is denoted as Ē.

Case 1: N /∈
{
N1, · · ·N qe

}
. We let E1 denote the event N /∈

{
N1, · · ·N qe

}
in the

following. The adversary has to find a correct T that is the first τ bits produced

by a call to R̃N,x,jf (·). Because the nonce-component N of the tweak N, x, jf has

not been used in any encryption query, A ′ has not seen any image under R̃N,x,jf (·)
Thus the probability that the adversary can succeed in finding correct value of T

is 2−τ .

All the following cases are conditioned by Ē1, the negation of E1. That is, N = N i for a

single i ∈ {1, . . . , qe} (noticing that no nonce is reused during encryption queries). We

can ignore all other than the ith query since the corresponding ciphertexts are statistically

independent with the images of R̃ used to process the forgery attempt N,A,C with

N = N i.
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Case4.3
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Case3
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Ē1

E2

Ē2

E3

Ē3

N is fresh

jf 6= jif

x 6= xi

a′ = ℓ+ 1 = a′i = ℓi + 1; a∗ = a∗i = 0

a′ < ℓ+ 1 = ℓi + 1 > a′i; a
∗ = a∗i = 0

Remaining case

Figure 5.5 – The structure of the proof of p-OMD’s authenticity. A condition
on an edge applies to the whole subtree.

Case 2: Ē1 ∧E2, where E2 is the event that jf 6= jif . Recall that a successfully forged T

must be the first τ bits of a value produced by R̃N,x,jf (·). The inequality jf 6= jif
occurring in this case implies the adversary has not seen any image under R̃N,x,jf (·)
(no matter what are the values of x and xi) and the adversary has to guess the

correct T . The probability of a successful forgery is therefore 2−τ .

We introduce auxiliary notation for the analysis of the remaining cases. Consider the

ith encryption query. Depending on the length of the message |M i| and the length of

AD |Ai|, we can have three situations. In the first situation, we have |M i|m + 1 = |Ai|n
and |M i| > 0 (Case A in Figure 5.4). This means that the compression function call

used to produce T i has a block of message at its m-bit input and an AD block xored

to the chaining variable at its n-bit input. We denote this event as type-1i and we

note that jif ∈ {4, 5, 6, 7}. The second possible situation arises if |M i|m + 1 > |Ai|n with

|M i| > 0 (Case B in Figure 5.4). There is no block of the AD xored to the n-bit input

of the final compression function call. We denote this event as type-2i and we note

that jif ∈ {8, 9, 10, 11}. The last possible situation is when either |M i|m + 1 < |Ai|n and

|Ai| > n so there is a block of AD xored to the n-bit input as well as another block fed

directly to the m-bit input in the final call to the compression function (Cases C, D

in Figure 5.4) or 0 < |Ai| ≤ n and M i = ε (Case E in Figure 5.4). We denote this by

type-3i and we note that jif ∈ {12, 13, 14, 15}.
We define type-1, type-2 and type-3 for the forgery attempt in a similar way (note

that |C| = |M |).

In the following, we need to address the event Ē1 ∧ Ē2 i.e., N = N i, jf = jif . We remark

that the condition Ē2 is met for a valid forgery (i.e., (A,M) 6= (Ai,M i)) if and only if

both the ith encryption query and the alleged forgery are

• non-empty, i.e., (A,M) 6= (ε, ε) ∧ (Ai,M i) 6= (ε, ε),
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• padded in the same way, i.e.,

(|C| ≡ 0 (mod m)⇔ |Ci| ≡ 0 (mod m))

and (|A′| ≡ 0 (mod n)⇔ |A′i| ≡ 0 (mod m))

and (|A∗| ≡ 0 (mod m+ n)⇔ |A∗i| ≡ 0 (mod m+ n))

(in other words, we pad the last block of M iff we pad the last block of M i and

the same applies for associated data),

• of the same “type”, i.e.,(
type-1 ∧ type-1i

)
∨
(
type-2 ∧ type-2i

)
∨
(
type-3 ∧ type-3i

)
.

Case 3: Ē1 ∧ Ē2 ∧ E3 where E3 stands for the event that x 6= xi. Recall that T i is

produced as the τ most significant bits of an image under R̃N,xi,j
i
f (·) for some jif ,

and T is produced as the τ most significant bits of an image under R̃N,x,jf (·) for

some jf . We have two sub-cases.

Case 3a: If x > xi then A ′ has seen no image under R̃N,x,jf (·) regardless of the

value of jf and the probability of a successful forgery (equivalent to guessing

τ random bits) is 2−τ .

Case3b: If x < xi then a single image under R̃N,x,j
i
(·) was used in processing

of the ith encryption query. However T is produced by R̃N,x,jf (·), such that

ji 6= jf because the values of ji used for “internal” calls to R̃ are disjoint with

those that produce tags. The probability of a successful forgery (equivalent

to guessing τ random bits) is 2−τ .

Case 4: It remains to address the cases, where we have Ē1∧ Ē2∧ Ē3, i.e., the case, when

the ith encryption query and the alleged forgery (1) share the same nonce, (2) are

padded in the same way, are both non-empty, are of the same “type” so jf = jif
and (3) they are both processed with the same number of calls to the compression

function. We investigate each of the three possible “types” separately.

Case 4.1: Ē1 ∧ Ē2 ∧ Ē3 ∧
(
type-1 ∧ type-1i

)
. This means that a′ = ` + 1 = x = xi =

a′i = `i + 1, a∗ = 0 and a∗i = 0. Both T i and T are produced by the same RF

R̃N,x,4(·). W.l.o.g. assume that both |A′| and |A′i| are a multiple of n and both

|M | and |M i| are a multiple of m. We can make this assumption because Ē2 holds

and because in the other cases the incomplete blocks are injectively padded to full

length.

The adversary can succeed in producing a valid forgery in two ways. Either the

inputs into the last R̃-call in the processing of the ith encryption query and of

the forgery attempt are distinct, i.e., (H i
x−1 ⊕ A′

i
a′ ,M

i
`) 6= (Hx−1 ⊕ A′a′ ,M`), or

they are equal, i.e., (H i
x−1 ⊕ A′

i
a′ ,M

i
`) = (Hx−1 ⊕ A′a′ ,M`). In the former case,
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the adversary is left with the task of guessing the output value of a RF on an

input, that has not been evaluated before which is bounded with the probability

pfn = 2−τ .

In the latter case, the equality (H i
x−1⊕A′

i
a′ ,M

i
`) = (Hx−1⊕A′a′ ,M`) permits the

adversary to set T = T i. We must have (N,A,M) 6= (N i, Ai,M i), so there is a

position r in which the two queries differ, i.e., we must have an 1 ≤ r < x, such

that (A′r,Mr) 6= (A′ir,M
i
r) and after which the queries are identical. So A ′ has

surely not seen the image Hr = R̃N,r,jr(Hr−1 ⊕ A′r,Mr) but he must ensure that

Hr = H i
r. This happens with a probability of 2−n for a single r. We bound the

total probability of achieving the final collision by pfe = (x− 1)2−n obtained as a

union bound over r.

The bound of Case 4.1 is finally obtained as the sum

pfn + pfe = (x− 1)2−n + 2−τ ≤ `max · 2−n + 2−τ .

Case 4.2: Ē1 ∧ Ē2 ∧ Ē3 ∧
(
type-2 ∧ type-2i

)
. This implies `+ 1 > |A|n, `i + 1 > |Ai|n

and a∗ = a∗i = 0, so x = x′ = ` + 1 = `i + 1. W.l.o.g. assume that both |A′|
and |A′i| are a multiple of n and both |M | and |M i| are a multiple of m by similar

argument as in Case 4.1. We have two subcases:

Case 4.2a: |A|n = |Ai|n, i.e., a′ = a′i. Analysis of this case is very similar to

Case 4.1. Again we observe, that the adversary’s chance to produce a forgery

is bounded by 2−τ if the inputs to the final RF are distinct. The adversary

can reuse T i if he manages to force the collision on the inputs to the final

RF. The probability that A ′ can succeed in forcing this collision is bounded

in the same way as in Case 4.1 by summing 2−n for 1 ≤ r < x. For r > a′,

we have no more blocks of A′ to consider, which gives the adversary even less

power. We conclude that the probability of forgery in this case is bounded

by 2−τ + `max · 2−n.

Case 4.2b: |A|n 6= |Ai|n, i.e., a′ 6= a′i. The analysis of this case is very similar to

the previous one. We need to additionally consider that if a′ > a′i then there

is at least one r, such that 1 ≤ r < x and there is a block A′r but there is no

block A′ir (or the other way around if a′ < a′i). This implies that A ′ may be

able to force the same data inputs to be fed to the rth call to R̃. However,

these will processed with different tweaks R̃N,r,0(·) and R̃N,r,1(·), ensuring

that the collision on Hr happens with probability 2−n. Keeping this in mind,

the analysis of this case follows the same structure as the previous case and

we conclude that the probability of forgery is bounded by 2−τ + `max · 2−n

Case 4.3: Ē1 ∧ Ē2 ∧ Ē3 ∧
(
type-3 ∧ type-3i

)
so ` + 1 < |A|n and `i + 1 < |Ai|n, so

x = x′ = `+ 1 + a∗ = `i + 1 + a∗i. W.l.o.g. assume that both |A∗| and |A∗i| are a
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multiple of n+m and both |M | and |M i| are a multiple of m by similar argument

as in Case 4.1. We have three subcases.

Case 4.3a: 0 < |A| ≤ n, 0 < |Ai| ≤ n and M = M i = ε. W.l.o.g. assume

|A| = |Ai| = n (due to injective padding). Since the alleged forgery must be

different from all encryption queries, we have A 6= Ai and the adversary must

guess the output of a RF on a new input. The probability of forgery is thus

2−τ . In following two subcases we have |A| > n and |Ai| > n.

Case 4.3b: |M |m = |M i|m, i.e., ` = `i and a∗ = a∗i. The analysis is almost

identical as in case 4.2a, with the difference that for r > ` + 1 we have no

more blocks of M to consider but we have n+m blocks of AD instead. The

probability of inner collisions Hr = H i
r for r > `+ 1 is thus also 2−n and we

conclude that the probability of forgery is bounded by 2−τ + `max · 2−n.

Case 4.3c: |M |m 6= |M i|m, i.e., ` 6= `i and a∗ 6= a∗i. Similarly as in Case 4.2b

we need to take into account that the adversary can change the length of

message and AD, so that there must be r such that 1 ≤ r < x and such that

there is Mr but no M i
r (or the other way around). The domain separation by

the j-component of the tweaks again ensures that the probability of internal

collision Hr = H i
r is 2−n for such r. We conclude that the probability of

forgery is bounded by 2−τ + `max · 2−n.

Finally, using the results of Bellare et al. [BGM04] we get the bound against adversaries

that make qd decryption queries as qd
2τ + qd`max

2n .

Instantiation of Tweakable RFs with Tweakable PRFs. This is a classical step

in which the ideal primitive—tweakable random function R̃—is replaced with a standard

primitive—tweakable PRF F̃ . The security loss induced by this step is stated in the

following lemma.

Lemma 5.3. Let R̃ : T ×({0, 1}n×{0, 1}m)→ {0, 1}n be a RF and F̃ : K×T ×({0, 1}n×
{0, 1}m) → {0, 1}n be a keyed function. Let A be a CPA adversary that runs in time

t, makes qe encryption queries that induce no more than σe n calls to F in total, such

that no individual input (AD or message) is more that `max blocks long. Let further A ′

be a CCA adversary that runs in time t′, makes q′e encryption queries and q′d decryption

queries that induce no more than σ′ calls to F in total, such that no individual input is

more that `′max blocks long. Then

Advpriv

p-OMD[F̃ ,τ ]
(A ) ≤ Advpriv

p-OMD[R̃,τ ]
(B) + Advprf

F̃
(C )

Advauth
p-OMD[F̃ ,τ ]

(A ′) ≤ Advauth
p-OMD[R̃,τ ]

(B′) + Advprf

F̃
(C ′)

B and B′ are information theoretic adversaries that have the same resources (except for

time complexity) as A and A ′ respectively, and where C and C ′ make no more than σ

and σ′ queries respectively and run in time t + γ · n · σe and t′ + γ′ · n · σ′ respectively

with some constants γ, γ′.
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Proof. The proof of this lemma uses the same reductions as the proof of Lemma 3.3.

Instantiation of Tweakable PRFs with PRFs. The last step is to instantiate the

(tweakable) PRFs by means of a (keyed) compression function which is assumed to be

a secure PRF. We use a very similar technique to what is done in OMD and MR-OMD,

inspired by the XE construction [Rog04a].

The difference between the OMD and p-OMD is the way that the masking sequence

∆N,i,j is computed. This difference is introduced because we need more values of the

j-component compared to OMD. In p-OMD, the tweak space is of the form

T = N × {0, 1, . . . , 2n−6} × {0, 1, · · · , 15}.

Lemma 5.4. Let F : K × ({0, 1}n × {0, 1}m) → {0, 1}n be a keyed function key

space K. Let F̃ : K × T × ({0, 1}n × {0, 1}m) → {0, 1}n be defined by F̃
〈T〉
K (X,Y ) =

FK((X ⊕∆K(T)), Y ) for every T ∈ T ,K ∈ K, X ∈ {0, 1}n , Y ∈ {0, 1}m and let ∆K(T)

be the masking function of p-OMD as defined in Section 5.4. Let further A be an ad-

versary that runs in time t and makes q queries. Then we have

Advprf

F̃
(A ) ≤ Advprf

F (B) +
3q2

2n

for some B that runs in time t+ γ · q for a constant γ and makes 2q queries.

Proof. The proof of this lemma is an adaptation of the analysis made by Krovetz and

Rogaway [KR11], by similar arguments as in the proof of Lemma 3.4.

For the proof to apply, we need to prove that ∆K(T) is a 2−n-uniform 2−n-AXU hash.

As shown in Appendix A.2, this can be easily verified.

5.6 Performance

One of the goals we sought to achieve with the design of p-OMD was to (significantly)

improve over the performance of OMD. In this section, we investigate what is the exact

improvement.

Predicting the speed-up. The speed-up of p-OMD over the original OMD (see Sec-

tion 3.4) comes from the fact, that in most applications, we can dispense with all com-

pression function calls that needed to be made by OMD to process AD.

Of course, this has to be compensated by a more complicated masking scheme, and

(much) more complicated algorithm that makes sure correct masks are being computed.

However, the computational cost of the saved compression function calls largely out-

weighs the overhead induced by the complicated masking scheme.

We can derive a theoretical upper-bound on the speed-up achieved by p-OMD relative

to OMD. To simplify the analysis, we neglect the overhead induced by the masking, and
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assume the whole algorithm is executed sequentially (i.e. we do not consider parallelism),

and we assume all L∗ and L values are precomputed.

Given an encryption query (N,A,M), OMD needs to make a + ` + 2 calls to the

compression function, where a = |A|m+n, ` = |M |m and the two extra calls are needed

to compute the tag and the initial N -dependent value. For the same query, p-OMD needs

`+ a′ + a∗ + 2 calls to the compression function, where ` = |M |m, a′ = min(`+ 1, |A|n),

a∗ = |right|A|−a′·n (A) |m+n and the 2 extra calls are the same as for OMD.

In most situations AD will not be too long, and we will have a∗ = 0. Based on this

assumption, we can estimate the relative speed-up of p-OMD over OMD as

S =
2 + `+ a

2 + `
,

i.e. p-OMD will be about S times faster than OMD.

We further simplify the analysis by assuming n = m (as is the case for the compression

functions of SHA256 and SHA512). The speed-up will be maximal if a = b(` + 1)/2c.
In that case, we have

S =
2 + `+ a

2 + `
≈ 1.5

if ` is large enough. Thus, we expect that under ideal conditions, p-OMD can be up to

1.5 times faster than OMD.

Experiments. To verify the predicted speed-up of p-OMD over OMD, we implemen-

ted the two algorithms in software and made measurements to determine and compare

their performance.

The comparison is performed on the x86-64 architecture (Intel Core i7-3632QM, with

all measurements carried out on a single core). For OMD, we used the OMD-sha512

instantiation optimised for the AVX1 instruction extension, which achieves the best

performance for OMD (see Section 3.7). We made the necessary modifications (as in

description of p-OMD) to the same code to obtain an implementation of p-OMD. Both

OMD and p-OMD were instantiated with the same parameters: key length=512, nonce

length=256, tag length=256. Both implementations have been built using the gcc com-

piler and setting the -Ofast optimization flag.

We measure the time complexity of the encryption process for varying lengths of

message and associated data. For the rest of this section, let m denote the mes-

sage length and a the AD length in bytes. We measure the encryption time for m ∈
{64, 128, 192, . . . , 4096} and a ∈ {64, 128, . . .m} for every value of m. That is, we con-

sider the typical case when AD is at most as long as the message.

For both OMD and p-OMD and for every pair of values m, a, we measure the time

of one encryption using the rdtsc instruction 200 times to compute the mean time.

This is repeated 91 times and the value we take as the result is the median of these

91 mean encryption times. We additionally apply the same procedure to measure time
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Figure 5.6 – Performance comparisons between OMD and p-OMD. Top left:
encryption complexity with fixed message length. Top right: encryption complexity
with equal message length and AD length. Bottom right: comparison of OMD without
AD to OMD and p-OMD with AD. Bottom left: encryption complexity of p-OMD for
varying message and AD lengths.

complexity of the encryption of OMD with m ∈ {64, 128, . . . , 4096} and a = 0. The

results are shown in Figure 5.6.

The top left graph in Figure 5.6 shows that the relative complexity of encryption

of both OMD and p-OMD decreases as the length of AD increases; however, p-OMD

performs better than OMD. The top right graph demonstrates that if the length of AD

is close to the message length then p-OMD has a clear advantage over OMD, and for

longer messages we observe the speedup close to the predicted 150%. The bottom right

graph confirms that the p-OMD provides an almost free authentication of associated

data compared to OMD.

For both OMD and p-OMD, these measurements exclude the complexity of the pre-

computation step in computing ∆N,i,j (see Section 5.4) which is done only once during

the whole lifetime of a key. As an upper bound, we measure the complexity of the

precomputation step that is sufficient to encrypt messages with length up to 263 blocks.

For OMD the precomputation step takes 5818 cycles while in p-OMD it requires 6863

cycles on average.
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5.7 Follow-up Work

The main shortcoming of p-OMD is the complexity of the algorithm and the amount of

precomputation it requires for an implementation to be truly efficient. The two major

negative consequences of p-OMD’s complexity are the difficulty of verifying the security

proofs, and the difficulty of implementing the encryption and the decryption algorithms

correctly, as pointed out by Ashur and Mennink [AM16].

They proposed an alternative called Spoed, 1 which reduces the complexity of the

algorithms, but achieves slightly better quantitative security, and has the same compu-

tational complexity in most cases. Spoed uses an efficient padding function to injectively

transform a message-AD pair into a sequence of 2n-bit words, which then gets processed

in a similar way to p-OMD’s encryption algorithm. Because the padding scheme encodes

the lengths of the two inputs into the output sequence, the encryption algorithm does

not need to explicitly differentiate as many cases as p-OMD, and is simpler as a result.

Ashur and Mennink further propose Spoednic, which additionally multiples each half-

block (of the output of the padding scheme) that gets xored to a chaining variable by

a secret value. This additional masking lends Spoednic the ability to resist forgery

attempts even in the nonce-misuse scenario.

1Which expands to “Simplified p-OMD encryption and decryption.”
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Chapter 6
Full-State Absorption for Sponge-based

Constructions

In this chapter, we introduce two related modes of operation for a cryptographic per-

mutation called Full-state Keyed Sponge (FKS) and Full-state Keyed Duplex (FKD).

While these two are not constructions for authenticated encryption themselves, we show

that highly efficient AE constructions can be built on top of the FKD.

The work presented in this chapter is a result of joint work with Reza Reyhanitabar

and Bart Mennink which was published in ASIACRYPT 2015 [MRV15].

Organization of the Chapter. We first discuss related work in Section 6.1 and list

the contributions in Section 6.2.

We then briefly introduce the basics of the (original) Sponge and Duplex Construction

in Section 6.3 and introduce the new full-state version of the keyed Sponge and keyed

Duplex in Section 6.4.

In Section 6.5, we define the security model for the Full-state Keyed Sponge and

Duplex, and then analyse the security of FKS in Section 6.6 and the security of FKD in

Section 6.7.

Finally, we define the Full-state SpongeWrap (FSW) construction for AE and analyse

its security in Section 6.8.

6.1 Related Work

The Sponge construction for cryptographic hashing was first introduced by Bertoni,

Daemen, Peeters and Van Assche [BDPV07]. The Sponge-based hash function Kec-

cak [BDPV08] was standardised in the SHA3 hashing standard [oST15].

Various keyed constructions based on the Sponge were then proposed: reseedable

pseudorandom number generators [BDPA10], pseudorandom functions and message au-

thentication codes (PRFs/MACs) [BDPV11, BDPV12], Extendable-Output Functions
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(“XOFs”) [Per14] and authenticated encryption (AE) modes [BDPA11a, BDPV12].

The keyed Sponge construction also got adopted in Spritz, a new RC4-like stream

cipher [RS14], and also in 10 out of 57 submissions to the first round of the CAESAR com-

petition [Ber14a, AFL16]: Artemia [AAB14], Ascon [DEMS14], ICEPOLE [MGH+14],

Ketje [BDP+14a], Keyak [BDP+14b], NORX [AJN14], π-Cipher [GMS+14], PRIM-

ATEs [ABB+14a], Prøst [KLL+14] and STRIBOB [SB14]. An enhanced variant of

the Full-state Keyed Duplex construction described in this chapter was adopted by the

candidate Keyak [BDP+16b].

Bertoni et al. [BDPA08] proved that the keyless Sponge construction is a secure hash

function up to the O(2c/2) birthday-type bound in the indifferentiability framework of

Maurer, Renner and Holenstein [MRH04].

Message Authentication. Bertoni et al. [BDPV11] introduced the keyed Sponge as

a simple evaluation of the Sponge function on the concatenation of the key and the

message, and proved a security bound that quantitatively improved over the indifferen-

tiability result. Chang et al. [CDH+] considered a slight variant of the keyed Sponge

where the key is processed in the inner part of the Sponge, and observed that it can

be seen as the Sponge based on an Even-Mansour blockcipher [EM91, EM97]. At FSE

2015, Andreeva, Daemen, Mennink and Van Assche [ADMA15] considered a generic and

improved analysis of both the outer- and inner-keyed Sponge. We reuse a part of their

security analysis. So far, however, these constructions have only been considered with

the classical r-bit absorption.

The idea of using full-state message absorption for achieving higher efficiency was

first made explicit in the Donkey Sponge MAC construction [BDPV12],1 but without

any formal security proof. The recently introduced Donkey-inspired MAC function Chas-

key [MMH+14] did get a formal security analysis, but its proof is specific to Chaskey

and does not apply to the Donkey Sponge.

A thorough analysis of the full-state message absorption keyed Sponge was done by

Gaži, Pietrzak and Tessaro [GPT15], who prove nearly tight security up to O(`q(q +

N)/2b+ q(q+ `+N)/2c), where the adversary makes q queries of maximal length `, and

makes N primitive calls. However, their analysis only applies to the fixed-output-length

variant, and the proof does not directly extend to the original arbitrary-output-length

keyed Sponge. In this work, we provide a direct proof for this more general case.

Authenticated Encryption. Encryption via the Sponge is typically done with the

Duplex construction [BDPA11a]. Bertoni et al. showed that the Duplex allows for au-

thenticated encryption in the form of SpongeWrap [BDPA11a]. This mode is, de facto,

the basis of the majority of Sponge-based submissions to the CAESAR competition.

Jovanovic et al. [JLM14] re-investigated the security of the Sponge-based authenticated

encryption scheme NORX, and proved its beyond birthday-bound (in the capacity c)

1We note that apart from full-state absorption, the Donkey Sponge also uses less rounds in the
underlying iterated permutation during the absorbing phase.
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security. These results are, however, all for the usual r-bit absorption. Yasuda and

Sasaki [SY15] have considered several full-state and partially full-state Sponge-based

authenticated encryption schemes for efficient incorporation of associated data, directly

lifting Jovanovic et al.’s security proofs.2 A technique similar to full-state data ab-

sorption was also proposed by Reyhanitabar, Vaudenay and Vizár [RVV15] in their

compression function based AE mode p-OMD (see Section 5.3); both p-OMD and the

Full-state keyed sponge were derived from sequential algorithms that maintain secret

states with AXU-like properties, which allow data to be xored into the state without

harming the security.

Later, Daemen et al. [DMA17] improved the construction and security analysis of

Full-state Keyed Duplex presented in this chapter.

6.2 Contribution

We present the Full-state Keyed Sponge, and Full-state Keyed Duplex, two modes of

operation for a cryptographic permutation. Both of these extend the existing results on

sponge-based cryptography. We analyse the security of both FKS and FKD in the ideal

permutation model and show how to construct an efficient AE scheme using FKD.

FKS and FKD are the first sponge-modes that allow the most efficient kind of full-

state absorption, have an arbitrary-length output, and are provably secure at the same

time. Our security analysis is modular, easy to understand, and therefore easy to verify.

We demonstrate the application of FKD to AE through the Full-state SpongeWrap

construction. It uses full-state absorption to process the associated data as efficiently as

possible, in most cases almost for free compared to the original SpongeWrap. Moreover,

most of the existing sponge-based AE schemes can easily switch to full-state absorption

and benefit from our security analysis, thanks its modularity, which uses FKD as an

intermediate step.

6.3 The Sponge and Duplex Constructions

The classical Sponge construction [BDPV07] takes as parameter a cryptographic per-

mutation p : {0, 1}b → {0, 1}b, an integer 0 < r < b and an injective padding scheme

padr, which injectively maps any string M ∈ {0, 1}∗ to an M̄ = padr(M) such that

|M̄ | ≡ 0 (mod r) and such that the last r bits of M̄ are non-zero.3 The instance

Sponge[p, r,padr] : {0, 1}∗ × N+ → {0, 1}∗

2The concurrent absorption mode proposed by Yasuda and Sasaki (Fig. 3 in [SY15]) fails to utilize
the full-state absorption when the associated data becomes longer than the message, forcing the mode
switch from a full-state mode to the classical r-bit absorbing Sponge mode; hence, we refer to this as a
partially full-state AE mode.

3The final block of r bits being non-zero is a sufficient condition on the padding scheme, to ensure
the sponge indifferentiable from a random oracle. The precise condition is that for all M 6= M ′ we must
have padr(M) 6= padr(M

′)‖0nr for all n ≥ 0. If this condition was violated for some M,M ′ then for any
`, Sponge[p, r, pad](M, `) would be a suffix of Sponge[p, r, pad](M, `+ nr).

97



0
c

p p pp p

b b b

M1 M2 Mm

b

Z⌈z/r⌉−1

b

Z1

b

Z⌈z/r⌉

b b b

b b b

0
r

b b bpad
r leftz

b b b

M Z

r

c

r

c b b b

r

c

Figure 6.1 – The computation of Z = Sponge[p, r, padr](M,z).

then allows to map an arbitrary input string M ∈ {0, 1}∗ to a z-bit output string

Sponge[p, r,padr](M, z) for an arbitrary output length z.

An evaluation of the Sponge consists of a sequential application of the permutation p

on a state of b bits. This state is partitioned into an r-bit outer part and a c-bit inner

part, where b = r + c. We call r rate and c capacity of the instance. In the absorption

phase, message blocks of size r bits are absorbed by the outer part and the state is

transformed using p, while in the squeezing phase, digests are extracted from the outer

part, r bits at a time. This is illustrated in Figure 6.1.

The Duplex construction [BDPA11a] is a stateful variant of the Sponge that allows

to extract a limited number of output bits after the processing of each input block. It

also takes as parameter a cryptographic permutation p : {0, 1}b → {0, 1}b, an integer

0 < r < b and an injective padding scheme padr which injectively maps any string

M ∈ {0, 1}∗ to an M̄ = padr(M) such that |M̄ | ≡ 0 (mod r) and such that the last r

bits of M̄ are non-zero.

The instance Duplex[p, r,padr] has two interfaces. The first interface

Duplex[p, r,padr].initialize()

takes no input and sets up a state of b zero bits. The interface

Zi = Duplex[p, r,padr].duplexing(Mi, zi)

then takes an input string Mi ∈Mpadr and a non-negative integer 0 ≤ zi ≤ and outputs

a string Zi ∈ {0, 1}zi , where Mpadr = {M ∈ {0, 1}∗ | |padr(M)| = r} is a set of strings

M ∈ {0, 1}∗ for which we have |padr(M)| = r. A sequence of Duplex calls is illustrated

in Figure 6.2.

6.4 Full-State Keyed Sponge and Full-State Keyed Duplex

In this section, we define the Full-state Keyed Sponge and the Full-State Keyed Duplex.

Both constructions generalize over their original predecessors by allowing the blocks of
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the (padded) input to have the same length as the state. This modification obviously

improves the performance of both constructions, allowing more data to be processed per

call to the underlying permutation.

However, the same modification also necessitates the Sponge and the Duplex to be

keyed; without a key and with the control over the full state, these construction will

offer no security as (keyless) hash functions. To emphasise this, we include the word

keyed in the names of both full-state Sponge and Duplex.
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Figure 6.3 – The FKS[p, r, k] construction.

Full-State Keyed Sponge. We define the Full-state Keyed Sponge (FKS) construc-

tion, a mode of operation for a cryptographic permutation that is parameterized by a

public permutation p : {0, 1}b → {0, 1}b. It is further parameterized by r, k ∈ N+, which

are required to satisfy r < b and k ≤ b− r. We call k the key length, and r the rate of

the instance and, we define c = b− r and call it capacity. We denote by FKS[p, r, k] an

instance of FKS with parameters fixed to p, r and k, and we let FKSp denote an instance

of FKS using a permutation p; some or even all parameters are sometimes left implicit

if they are clear from the context.

An instance

FKS[p, r, k] : {0, 1}k × {0, 1}∗ × N+ → {0, 1}∗
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is a generalization of a keyed function that allows to choose the length of the output. It

takes a key K ∈ {0, 1}k, a message M ∈ {0, 1}∗, and a natural number z, and it outputs

a string Z ∈ {0, 1}z:

FKS[p, r, k](K,M, z) = FKSpK(M, z) = Z .

It operates on a state t ∈ {0, 1}b, which is initialized using the key K. The message

M is first padded to a length multiple of b bits, using a padding scheme padb defined

by padb(M) = M‖10b−1−|M | mod b. The padded input is then partitioned to m message

blocks M1‖...‖Mm of b bits each. We stress that we make use of the explicitly defined

padding scheme for FKS.4 These message blocks are processed one-by-one, interleaved

with evaluations of p. After the absorption of M , the outer r bits of the state are output

and the state is processed via p until a sufficient number of output bits are obtained.

FKS is depicted in Figure 6.3, and Figure 6.5 provides a formal specification of FKS.
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Figure 6.4 – The FKD[p, r, k] construction.

Full-State Keyed Duplex. We define the Full-state Keyed Duplex (FKD) con-

struction, a generalization of the Duplex of Bertoni et al. [BDPA11a, BDPA11b]. FKD

is a deterministic stateful variant of the FKS that allows to extract a limited number of

output bits after the processing of each input block.

It is parameterized by a public permutation p : {0, 1}b → {0, 1}b, the rate r ∈ N+

and the key length k ∈ N+, which are required to satisfy r < b and k ≤ b − r. We call

c = b− r the capacity. We let FKD[p, r, k] denote an instance of FKD with parameters

fixed to p, r, k, and we let FKDp denote an instance that uses a permutation p. Again,

the parametrization can be left implicit if clear from the context.

Let D denote FKD[p, r, k]. D has two interfaces: D.initialize and D.duplexing.

D.initialize is used to set up the state of D, it gets as input a key K ∈ {0, 1}k and

outputs nothing. D.duplexing is used to process one input block and compute output

bits, it gets as input a message block Mi ∈ {M ∈ {0, 1}∗ | |padb(M)| = b} and a natural

number 0 ≤ zi ≤ r, and it outputs a string Zi ∈ {0, 1}zi . Internally, FKD uses the same

4While we could use any padding scheme such that |padb(M)| ≡ 0 (mod b) with the last b bits of
padb(M) non-zero for all M ∈ {0, 1}∗, we fix padb(M) = M‖10b−1−|M| mod b for the sake of concreteness.
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padding scheme as FKS. FKD is illustrated in Figure 6.4, and the formal specification

is given in Figure 6.5.

1: algorithm FKS[p, r, k](K,M, z)
2: t← 0b−k‖K
3: M1‖ · · · ‖Mm

b←− padb(M)
4: for i← 1, . . . ,m do
5: s← t⊕Mi

6: t← p(s)
7: end for
8: Z ← leftr (t)
9: while |Z| < z do

10: t← p(t)
11: Z ← Z‖leftr (t)
12: end while
13: return leftz (Z)
14: end algorithm

1: algorithm FKD[p, r, k]
2: interface FKD.initialize(K)
3: t← 0b−k‖K
4: end interface

5: interface FKD.duplexing(M, z)
6: if z > r or |padb(M)| 6= b

then
7: return ⊥
8: end if
9: s← t⊕padb(M)

10: t← p(s)
11: return leftz (t)
12: end interface
13: end algorithm

Figure 6.5 – Definition of FKS[p, r, k] and FKD[p, r, k], both parameterized with
a cryptographic permutation p : {0, 1}b → {0, 1}b, a rate r and a keylength k.

Notation. We introduce additional notation for this chapter. Given implicit para-

meters p : {0, 1}b → {0, 1}b, r, k of FKS (or of FKD) and a string s ∈ {0, 1}b, we let

outer (s) = leftr (s) denote the “outer” part of the string (used to produce output bits in)

and inner (s) = rightc (s) denote the “inner” part of the string (which is never revealed).

Note that we have s = outer (s) ‖inner (s).

6.5 Security Model

Because the FKS is a generalization of a keyed function, we need to modify the security

model to reflect the changes in syntax and functionality. The same applies to FKD,

which deviates from a keyed function even further.

In addition, the underlying primitive, a cryptographic permutation, is keyless. This

makes a standard model-reduction to its security difficult, because there is no compact

standard-model security definition for keyless permutation.5

We therefore cast our security notions and analysis in the ideal permutation model,

where the underlying cryptographic permutation used by either FKS or FKD is modelled

as a public random permutation p←$ Perm(2b). That is, in addition to the usual oracles,

the adversary has direct oracle access to both p and its inverse p−1. The parameterized

5Some early results in this direction appeared after the present results were published [ST17].
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resources of the adversary are extended to include the total number of calls to either p

or p−1.

The ideal permutation model can be thought of as abstracting away any structural

properties that an actual cryptographic permutation may have. A proof in the model

can then be seen as a sanity check of the construction, which shows that the construction

in question resists to generic attacks. Loosely speaking, an actual instance should be

secure, as long as the used permutation does not have any “serious structural weakness”.

This statement is however very informal, and there is no rigorous link between the result

in the idealized model and the security of actual instances.

Note that because the underlying primitive is modelled as a random permutation, we

do not rely on computational security in any part of the analysis. We can therefore work

with information-theoretic adversaries throughout the whole analysis.

Multiplicity. Following Andreeva et al. [ADMA15], we add the so called multiplicity

to the parameterized resources of an adversary in the context of the ideal permutation

model.

With an implicit integer b, for a set S = {(xi, yi) ∈ ({0, 1}b)2}σi=1 of σ pairs (xi, yi),

and for a rate 0 < r < b, we define the total maximal multiplicity of S as a sum

µ = µfwd + µbwd of the forward multiplicity µfwd and the backward multiplicity µbwd,

where

µfwd = max
a
|{i ∈ {1, . . . , σ} : outer (xi) = a}| and

µbwd = max
a
|{i ∈ {1, . . . , σ} : outer (yi) = a}|

(see Section 6.4 for the definition of outer (·)). In our analysis, the set S will always be be

constructed as a collection of input-output pairs of a permutation p : {0, 1}b → {0, 1}b,
so the multiplicity is the maximal number of permutation inputs in the collection S who

share the same value in their leftmost r bits, plus the same for the permutation outputs

in S.

The multiplicity is a quantity that characterises the data that are available to the

adversary during an attack. We have 2 ≤ µ ≤ 2σ per definition (the maximum µ = 2σ

is reached e.g. when p is the identity permutation), however the upper bound 2σ is

never reached in practical applications of sponge-based constructions. We note that

we are always interested in the multiplicity of input-output pairs that were induced by

adversarial queries to a construction, not directly made by the adversary.

Being a sum of forward and backward multiplicities, the total multiplicity can be seen

as a measure of adversary’s ability to control the outer part of the permutation inputs

and outputs respectively. In case of sponge-based designs, the backward multiplicity can

be expected to be approximately σ2−r if σ blocks of data are processed with a single

key while the forward multiplicity varies with concrete applications [ADMA15].

102



Full-State Absorption for Sponge-based Constructions

6.5.1 Security Model for FKS

We first define keyed functions with extendible output, the kind of object that FKS

actually is. A keyed function with extendible output is an efficient algorithm F : K ×
D × N+ → {0, 1}∗ that maps a secret key K, an input M , and a desired output length

z to an output string F (K,M, z) ∈ {0, 1}z. We call K, a finite set, the key space of F .

We let FK(M, z) = F (K,M, z). If F is a mode of operation for a low-level primitive p,

we let F p denote an instance of F using p.

An instance F = FKS[p, r, k] with permutation p : {0, 1}b → {0, 1}b, rate r and

key length k is thus a keyed function with extendible output having K = {0, 1}k and

D = {0, 1}∗.
Upon inspection of Figure 6.5, we see that when fed with (K,M, z1) and (K,M, z2)

with arbitrary 1 ≤ z1 < z2, K ∈ {0, 1}k and M ∈ {0, 1}∗, the FKS will always produce

outputs Z1 and Z2 such that Z1 is a prefix of Z2. This is because the output is always

derived from the state right after the processing of the message, which does not depend

on zi.

The PRF security of a keyed function with extendible output is defined with help

of games prfx-R and prfx-I in Figure 6.6. We make sure that the idealized reference

object for the FKS in the game prfx-I in Figure 6.6 does have this inherent property

of the construction, but is random otherwise. For each input (M, z), we first check if

any output bits were generated, and whether their length is smaller than z. If any of

the two occurs, we generate the required number of uniform bits. This way, we always

satisfy the prefix property.

Definition 6.1 (PRF-x security). Given a keyed function with extendible output F

which is a mode of operation for a b-bit cryptographic permutation, and an information-

theoretic adversary A that has black-box access to F , we define the advantage of A in

breaking the security of F as

Advprfx
F (A ) = Pr

[
A prfx-RF ⇒ 1

]
− Pr

[
A prfx-IF ⇒ 1

]
.

If the advantage Advprfx
F (A ) ≤ ε for every adversary A that makes no more than N

queries to p and p−1 in total, that makes no more than q Eval queries that have the total

maximal multiplicity limited by µ such that each Eval query induces no more than ` calls

to the underlying permutation, we say that F is a (ε, q, `, µ,N)-secure pseudorandom

function with extendible output (PRF-x).

6.5.2 Security Model for FKD

We now define duplexing keyed functions, which are the kind of object that FKD is. A

duplexing keyed function with a key space K, rate r and input limit b is an efficient,

stateful algorithm F that exposes two interfaces. The interface F.initialize(K) initializes

F with a secret key K ∈ K and returns no output. The interface Z = F.duplexing(M, z)
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proc initialize prfx-RF

� π ←$ Perm(2b)
p←$ Perm(2b)
K ←$ K

proc p(x), p−1(y)

proc Eval(M, z)
� return F π(0k,M,Z)
return F p(K,M,Z)

proc initialize prfx-IF
p←$ Perm(2b)
X ←array({0, 1}∗)

proc p(x), p−1(y)

proc Eval(M, z)
if X [M ] = ⊥ then
X [M ]←$ {0, 1}z

elsif z > |X [M ]| then

Z ←$ {0, 1}z−|X [M ]|

X [M ]← X [M ]‖Z
return leftz (X [M ])

proc initialize prfd-RF

� π ←$ Perm(2b)
p←$ Perm(2b)
K ←$ K
init← false

proc p(x), p−1(y)

proc Initialize()
init← true
F p.initialize(K)
� F π.initialize(0k)
return ⊥

proc Duplexing(M, z)
if init = false or z > r or |padbM | 6= b then

return ⊥
� return F π.duplexing(M, z)
return F p.duplexing(M, z)

proc initialize prfd-IF
p←$ Perm(2b)
X ←array(({0, 1}∗)∗)
t← ⊥

proc p(x), p−1(y)

proc Initialize()
t← Λ
return ⊥

proc Duplexing(M, z)
if t = ⊥ or z > r or |padbM | 6= b then

return ⊥
t← t‖M
if X [t] = ⊥
X [t]←$ {0, 1}r

return leftz (X [t])

Figure 6.6 – Games for defining security of keyed functions with extendible
output length (PRF-x security) and security of duplexing keyed functions
(PRF-d). The games prfx-R and prfd-R do not include the lines marked with � (the
full codes, including the lines marked with � respectively define the games �prfx-R and
�prfd-R). Note that the permutation p is exposed to the adversary. Note that in the
prfd-IF game, the variable t is a list of strings (see Section 2.1 for definition of a list.)

104



Full-State Absorption for Sponge-based Constructions

takes an input string M ∈ {0, 1}<b and the desired output length z ≤ r, and returns the

output value Z ∈ {0, 1}z. If F is a mode of operation for a low-level primitive p, we let

F p denote an instance of F using p.

An instance F = FKD[p, r, k] with permutation p : {0, 1}b → {0, 1}b, rate r and

key length k is thus a duplexing keyed function that has a rate r, input limit b and

K = {0, 1}k.
It can be seen from Figure 6.5 that if we initialize the FKD twice with the same key

and then duplex the same sequence of input blocks M1, . . . ,M`, with two sequences of

output lengths z1
1 , . . . , z

1
` and z2

1 , . . . , z
2
` such that z1

i < z2
i for all 1 ≤ i ≤ `, then an

output block Z1
i will always be a prefix of the corresponding block Z2

i for all 1 ≤ i ≤ `.
Intuitively, we expect that if we then process M1

`+1 6= M2
`+1, the corresponding output

blocks Z1
`+1 and Z2

`+1 should be independent.

The PRF security of a duplexing keyed function is defined with help of games prfd-R

and prfd-I in Figure 6.6. The idealized reference object in the game prfd-I in Figure 6.6

formalizes the intuition we just described. The game keeps a list t of all input blocks

queried from the last Initialize query, and keeps an array X that stores r random bits

for every unique value of t that occurred in the game.

Definition 6.2 (PRF-d security). Given a duplexing keyed function F with key space

K, rate r and input limit b, which is a mode of operation for a b-bit cryptographic

permutation, and given an information-theoretic adversary A that has black-box access

to F , we define the advantage of A in breaking the security of F as

Advprfd
F (A ) = Pr

[
A prfd-RF ⇒ 1

]
− Pr

[
A prfd-IF ⇒ 1

]
.

If the advantage Advprfd
F (A ) ≤ ε for every adversary A that makes no more than N

queries to p and p−1 in total, that makes no more than q Initialize queries, such that

each such query is followed by no more than ` Duplexing queries with the total maximal

multiplicity limited by µ, we say that F is a (ε, q, `, µ,N)-secure duplexing pseudorandom

function (PRF-d).

6.5.3 Security Model for Even-Mansour

Our proof relies on a reduction to the security of a low-entropy, single-key Even-Mansour

construction [EM91, EM97] that turns a b-bit cryptographic permutation into a b-bit

blockcipher with a key of k < b bits. In more detail, let p : {0, 1}b → {0, 1}b be a

permutation, k < b be the key length and K ∈ {0, 1}k be a key. The Even-Mansour

blockcipher Ep : {0, 1}k × {0, 1}b → {0, 1}b is defined as

EpK(M) = p(M ⊕(0b−k‖K))⊕(0b−k‖K).

To analyse the generic PRP security of Ep, we need to re-cast the Definition 2.3 in

the ideal permutation model. In this chapter, we overload the definition of the PRP
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adversarial advantage to

Advprp
Ep

(A ) = Pr
[
K ←$ {0, 1}k, p←$ Perm(2b) : A EpK ,p,p

−1 ⇒ 1
]
−

Pr
[
π, p←$ Perm(2b) : A π,p,p−1 ⇒ 1

]
.

We remove time t, and add the number of p and p−1 queries and the total maximal

multiplicity µ of all construction queries to the parameterized adversarial resources.

6.6 Security of Full-State Keyed Sponge

We prove the following result for FKS:

Theorem 6.3. Let b, r, c, k > 0 be such that b = r+c and k ≤ c. Let FKS be the scheme

defined in Figure 6.5. Let A be an adversary that makes no more than N queries to p

and p−1 in total, that makes no more than q Eval queries that have the total maximal

multiplicity limited by µ such that each Eval query induces no more than ` calls to the

underlying permutation. Then,

Advprfx
FKS (A ) ≤ 2(q`)2

2b
+

2q2`

2c
+
µN

2k
.

The proof of Theorem 6.3 follows to a certain extent the modular approach of An-

dreeva et al. [ADMA15]. In particular we use the fact that the instance FKSpK can

alternatively be viewed as FKS
EpK
0 , where the underlying permutation is replaced by the

low-entropy Even-Mansour blockcipher that also absorbs the key (see Figure 6.7). This

clever observation was used before by Chang et al. [CDH+]. Note that this observation

only works for k ≤ c: it relies on xoring two dummy keys K ⊕K in-between every two

adjacent permutation calls, and if k > c, there would be k− c bits of the FKS-state that

the adversary would see unkeyed.

This trick allows to split the security analysis of FKSpK into two steps; we first do the

security analysis of the Even-Mansour blockcipher and then the security analysis of FKS

instantiated with a secret permutation. This is where we diverge from the approach of

Andreeva et al. [ADMA15], who simply applied the classical indifferentiability result of

[BDPA08] to deal with the security analysis of the Keyed Sponge instantiated with a

secret permutation. Because the indifferentiability bound cannot be used for FKS due

to its full-state absorption, we carry out a new analysis and derive an improved bound.

In addition, applying the indifferentiability result gives a rather loose bound which we

improve with our new analysis.

Throughout the analysis, we will assume, without loss of generality, that the adversary

A makes exactly q queries, such that each query induces exactly ` calls to the underlying

permutation. We further let ∆A (G1;G2) denote the expression

Pr
[
A G1 ⇒ 1

]
− Pr

[
A G2 ⇒ 1

]
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Figure 6.7 – The equivalence between FKSp
K and FKS

E
p
K

0 . Xoring the two dummy
keys to the state between each two p-calls (in red) does not change the value of Z. Two
keys around each p-call are then absorbed by a single EpK evaluation (blue boundary).
Note that since the inner c bits of the state are never revealed, the final copy of the key
that is “left” does not invalidate this claim.

for two games G1 and G2.

Proof of Theorem 6.3. We define the game �prfx-R by including the lines marked by �
in the game prfx-R in Figure 6.6. By doing so, we replace the public permutation p by

an independent secret permutation π in all the primitive calls made by the FKS. We

use this game as an intermediate step in the analysis, and define

Adv�prfx
FKS (A ) = Pr

[
A �prfx-RFKS ⇒ 1

]
− Pr

[
A prfx-IFKS ⇒ 1

]
for the sake of tidiness of the proof.

We have that FKSpK = FKS
EpK
0 (see Figure 6.7). Abusing the ∆-notation for the PRP

security games, it follows that

Advprfx
FKS (A ) = ∆A (prfx-RFKS; prfx-IFKS)

= ∆A (prfx-RFKS; �prfx-RFKS) + ∆A (�prfx-RFKS; prfx-IFKS)

≤ ∆B

(
p,EpK ; p, π

)
+ ∆C (�prfx-RFKS; prfx-IFKS)

≤ Advprp
Ep

(B) + Adv�prfx
FKS (C )

for some adversary B that makes q · ` construction queries that have total maximal

multiplicity µ and makes N queries to p and p−1, and some adversary C that makes q

queries such that each query induces at most ` calls to the underlying permutation.

This is because B uses its own construction oracle to simulate FKS for A , forwards
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A ’s p and p−1 queries to its own oracles, and in the end outputs whatever A outputs;

B then perfectly simulates either prfx-RFKS or �prfx-RFKS for A .

C only forwards A ’s queries to its own corresponding oracles and forwards A ’s final

output; the simulation for A is trivially perfect.

Note that C also has access to p and p−1, but queries to this oracle are useless as its

Eval oracle is independent of p in both games.

Andreeva et al. proved that Advprp
Ep

(B) ≤ µN
2k

for any B [ADMA15]. In Lemma 6.4,

we prove that Adv�prfx
FKS (C ) ≤ 2(q`)2

2b
+ 2q2`

2c for any adversary C .

Lemma 6.4. Let b, r, c > 0 be such that b = r + c. Let A be an adversary that makes

no more than q Eval queries such that each Eval query induces no more than ` calls to

the underlying permutation. Let FKS be the scheme of defined in Figure 6.5. Then,

Adv�prfx
FKS (A ) ≤ 2(q`)2

2b
+

2q2`

2c
.

Proof. We denote the queries made by A as (M1, ζ1), . . . , (M q, ζq) and the correspond-

ing outputs of the FKS as Z1, . . . , Zq (we switch to ζi because we will use zi to de-

note the number of blocks in Zi). We denote the blocks of the ith input message by

M i
1‖ . . . ‖M i

mi

b← M i with mi = |M i|b. We denote the blocks of the ith output value by

Zi1‖ . . . ‖Zizi
b← Zi with zi = |Zi|r.

Given that the 10∗ padding is applied to every query, publicly known and injective,

we can simplify the analysis and assume that all the queries are already padded. I.e. we

assume that for 1 ≤ i ≤ q, the query M i has length divisible by b and that M i
mi 6= 0b.

We further assume, that the adversary always asks for output of length divisible by

r, i.e. ζi ≡ 0 (mod r) for all 1 ≤ i ≤ q, and that every query induces exactly ` primitive

calls. This is without loss of generality: we can simply give “free bits” to the adversary

upon every query without decreasing its advantage.

We will denote the b-bit state of FKS just before the jth application of π is made when

processing the ith query as sij for 1 ≤ j ≤ `. Similarly, we will denote the b-bit state of

FKS just after the jth application of π in ith query as tij for 1 ≤ j ≤ `. We will call the

former in-states and the latter out-states. Note that every in-state sij is determined by

the out-state tij−1 and the message block M i
j as sij = tij−1⊕M i

j in the absorbing phase

or just by tij in the squeezing phase as depicted in Fig. 6.8.

To aid the simplicity of further analysis, we additionally define initial dummy out-states

ti0 = 0b and extended queries M̄ i = M i‖0(`−mi)b for 1 ≤ i ≤ q. Now we can express every

in-state, be it absorbing or squeezing, as sij = tij−1⊕ M̄ i
j . We will group the out-states

of ith query as T i = (ti0, t
i
1, . . . , t

i
`).

Because each query induces exactly ` calls to π, we know that a query M i will be

answered by a string Zi = Zi1‖ . . . ‖Zizi with zi = `−mi + 1 and |Zij | = r for 1 ≤ j ≤ zi.
In particular, we have that Zij = outer

(
timi+j−1

)
.
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Figure 6.8 – Internal states of the FKS. When processing a query M i (using a secret
permutation π), the internal state of the FKS takes all of the depicted values.

The RP-RF Switch We define the game �prfx-Rf by replacing the random per-
mutation π ←$ Perm(2b) by a random function f ←$ Func(2b) in the game �prfx-R.
We have

Adv�prfx-RFKS (A ) = ∆A

(
�prfx-RFKS; �prfx-Rf

FKS

)
+ ∆A

(
�prfx-Rf

FKS; prfx-IFKS

)
≤ (q`)2/2b + ∆A

(
�prfx-Rf

FKS; prfx-IFKS

)
.

The proof of this claim is a simple hybrid argument, where an RP-RF distinguisher

B simulates either �prfx-RFKS or �prfx-Rf
FKS for A using its own oracle instead of

the permutation π. The distinguishing advantage of B is limited by (q`)2/2b due to

Lemma 2.6.

Patarin’s Coefficient-H Technique We use the coefficient-H technique (see Sec-

tion 2.2) to show that ∆A

(
�prfx-Rf

FKS; prfx-IFKS

)
≤ (q`)2/2b + 2q2`/2c. The two

games the adversary is trying to distinguish are �prfx-Rf
FKS and prfx-IFKS. We will

refer to the former as interchangeably as the “real world” or simply as X, and to the

latter interchangeably as the “ideal world” or simply as Y . In either of the games, the

adversary makes q queries M1, . . . ,M q and learns the responses Z1, . . . , Zq. The trans-

ition from queries M i to M̄ i is injective, and additionally the length M i of M i is implicit

from M̄ i. Therefore, we can summarize the interaction of the adversary with its oracle

(X or Y ) with a transcript (M̄1, . . . , M̄ q, Z1, . . . , Zq).

To facilitate the analysis, we will disclose additional information T 1, . . . , T q to the

adversary at the end of the experiment. In the real world, these are the out-states

T i = (ti0, t
i
1, . . . , t

i
`) for 1 ≤ i ≤ q, as defined at the beginning of the proof.

In the ideal world, these are dummy variables that we generate at the end of the

experiment. For 1 ≤ i ≤ q and 0 ≤ j ≤ `, we set tij ←$ {0, 1}b independently, except for

these cases:

1. ti0 ← 0b for 1 ≤ i ≤ q,
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2. if llcpb

(
M̄ i, M̄ i′

)
= n for 1 ≤ i′ < i ≤ q then tij ← ti

′
j for 1 ≤ j ≤ n,

3. force outer
(
tij+mi−1

)
= Zij for 1 ≤ i ≤ q and 1 ≤ j ≤ zi.

Note that in both worlds, Z1, . . . , Zq are fully determined by T 1, . . . , T q, so we can drop

them from the transcript. Thus a transcript of adversary’s interaction with FKS will be

τ = (M̄1, . . . , M̄ q, T 1, . . . , T q).

Recall that to use the Coefficient-H Technique, we define the two distributions of

transcripts DA
X and DA

Y induced by A and the games X and Y . We further consider

the set of attainable transcripts T = {τ |Pr[DA
Y ] > 0}. Referring to Lemma 2.2, we will

show that there exists a set of bad transcripts Tbad ⊂ T , such that

Pr
[
DA
X = τ

]
/Pr

[
DA
Y = τ

]
= 1

for any τ ∈ Tgood = T \Tbad, and thus ∆A

(
�prfx-Rf

FKS; prfx-IFKS

)
≤ Pr

[
DA
Y ∈ Tbad

]
.

Definition of a Bad Transcript We label a transcript τ as bad if

∃(1, 1) ≤ (i′, j′) 6= (i, j) ≤ (q, `) such that:((
j 6= j′

)
∨
(

llcpb

(
M̄ i, M̄ i′

)
< j = j′ ≤ `

))
∧
(
tij−1⊕ M̄ i

j = ti
′
j′−1⊕ M̄ i′

j′

)
.

(6.1)

The set of bad transcript is then Tbad = {τ ∈ T |τ is bad}. This definition of a bad

transcript comes with an intuitive, informal interpretation; as long as all relevant inputs

sij = tij−1⊕ M̄ i
j to the random function f induced by the Sponge function are distinct

the output of the Sponge will be distributed uniformly. We do not require uniqueness of

all in-states because the adversary can trivially force their repetition by issuing queries

with common prefixes. However these collisions are not a problem, because uniqueness

of the queries implies that llcpb

(
M̄ i, M̄ i′

)
< max{mi,mi′} for any two queries M̄ i, M̄ i′ .

Even if the adversary truncates an old query and thus forces an old absorbing in-state

s to be squeezed for output, it is still not a problem because the adversary has not seen

the image f(s) before. We note that even though in-states do not exist in the ideal

world, they can be defined by the same relation as in the real world, i.e. sij = tij−1⊕ M̄ i
j .

Bounding the Ratio of Probabilities of Good Transcripts In the ideal world, the

out-states ti0 = 0b for 1 ≤ i ≤ q are always assigned their value trivially. We also trivially

assign a single uniform b-bit string to multiple state variables that are affected by the

common prefix of the related queries. The remaining out-states are sampled uniformly

at random. It follows that there are exactly η(τ) =
∑q

i=1 ` − llcpb
(
M i;M1, . . . ,M i−1

)
b-bit values in any transcript τ , that are sampled independently and uniformly. We thus

have Pr
[
DA
Y = τ

]
= 2−η(τ)b for any τ .

Let ΩX be the set of all possible coins of the real world (i.e. the game �prfx-Rf
FKS).

We have that |ΩX | = 2b2
b
, because the only source of randomness in the ideal world is
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the sampling of the function f . Let compX (τ) ⊆ ΩX be the set of all coins compatible

with the transcript τ , i.e. the set of the functions f ∈ Func(2b) that are capable of

producing τ in the experiment with A . We will compute the probability of seeing τ

in the real world as Pr
[
DA
X = τ

]
= |compX (τ) |/|ΩX |. Note that a real-world oracle is

completely determined by the underlying function f .

If τ ∈ Tgood, then every in-state sij = tij−1 ⊕ M̄ i
j that does not trivially collide with

some other in-state si
′
j′ due to common prefix of M̄ i

j and M̄ i′
j′ must be distinct. The

number of domain points of f that have an image determined by τ is easily seen to be

η(τ) =
∑q

i=1 `− llcpb
(
M i;M1, . . . ,M i−1

)
. A compatible function f can therefore have

arbitrary image values on the remaining 2b − η(τ) domain points. Thus we compute

|compX (τ) | = 2b(2b−η(τ)) and

Pr
[
DA
X = τ

]
=
|compX (τ) |
|ΩX |

=
2b(2b−η(τ))

2b2b
= 2−η(τ)b = Pr

[
DA
Y = τ

]
.

It follows that Pr
[
DA
X = τ

]
/Pr

[
DA
Y = τ

]
= 1 for every τ ∈ Tgood.

Bounding the Probability of a Bad Transcript in the Ideal World We can

bound the probability of τ being bad (cf. (6.1)) by first bounding the probability of

a non-trivial collision of an arbitrary but fixed pair of in-states sij , s
i′
j′ (i.e. the event

sij = si
′
j′ occurs) and then summing this probability for all possible values of (i, j), (i′, j′)

with (i′, j′) 6= (i, j). Because this probability varies significantly, we will split all in-states

into three classes, and bound probabilities of individual collisions between these classes.

We will associate to each in-state sij a label stampij . We set stampij = free if 1 <

j = llcpb
(
M̄ i; M̄1, . . . , M̄ i−1

)
+ 1 ≤ mi such that mi∗ < j for some i∗ < i. We will set

stamp1
i = initial for 1 ≤ i ≤ q and stampij = fixed in the remaining cases.

Informally, we have stampij = free whenever the adversary forces outer
(
tij−1

)
=

Zi
∗
j−mi∗−1 by reusing exactly first j − 1 blocks of a previous query M̄ i∗ in the query M̄ i

and sets M̄ i
j 6= M̄ i∗

j = 0b. By doing this, A freely but non-trivially chooses outer
(
sij

)
=

outer
(
si∗j ⊕ M̄ i∗

j ⊕ M̄ i
j

)
. Note that if the adversary puts M̄ i

j = M̄ i∗
j , this is not counted

as a free state (the states will in fact be the same). We have stampij = initial for the

initial in-state of every query.

As the condition (6.1) is symmetrical with respect to (i, j) and (i′, j′), and as it cannot

be satisfied if (i, j) = (i′, j′), it can be rephrased as

∃(1, 1) ≤ (i′, j′) < (i, j) ≤ (q, `) such that:

llcpb
(
M̄ i; M̄1, . . . , M̄ i−1

)
< j ≤ `, sij = si

′
j′ .

(6.2)

Doing so is without loss of generality, as each sij with j ≤ llcpb
(
M̄ i; M̄1, . . . , M̄ i−1

)
is

identical with some previous state that has already been checked for collisions with si
′
j′

for every possible (i′, j′). In the further analysis, we will be working with (6.2) rather
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than with (6.1).

We now bound the probability of collision of an arbitrary pair of in-states (sij , s
i′
j′) =

(tij−1⊕ M̄ i
j , t

i′
j′−1⊕ M̄ i′

j′) with stampij = fixed. We fix i to an arbitrary value and invest-

igate the following three cases for j. In each case, we treat every (i′, j′) < (i, j).

Case 1: llcpb
(
M̄ i; M̄1, . . . , M̄ i−1

)
+ 1 < j ≤ mi. Here, tij−1 is undetermined when

the adversary issues the query M̄ i. This implies that it will be independent from

all ti
′
j′−1 for any (i′, j′) < (i, j). The probability of the collision tij−1⊕ M̄ i

j =

ti
′
j′−1⊕ M̄ i′

j′ is easily seen to be 2−b.

Case 2: max
{
llcpb

(
M̄ i; M̄1, . . . , M̄ i−1

)
+ 1,mi

}
< j ≤ `. We have M̄ i

j = 0b and

tij−1 = Zi
j−M i‖inner

(
tij−1

)
. Although the adversary learns the value of Zi

j−M i

during the experiment, it is generated independently of all si
′
j′ with (i′, j′) < (i, j)

(because j + 1 > llcpb
(
M̄ i; M̄1, . . . , M̄ i−1

)
). Even if stampj

′

i′ ∈ {free, initial}
and outer

(
si
′
j′

)
= α for some value α chosen by the adversary, the collision between

sij = Zi
j−M i‖inner

(
tij−1

)
and si

′
j′ = α‖inner

(
si
′
j′

)
happens with probability 2−b.

Case 3: j = llcpb
(
M̄ i; M̄1, . . . , M̄ i−1

)
+ 1. If j = llcpb

(
M̄ i, M̄ i′

)
+ 1, the in-state

si
′
j′=j , call it a twin-state of sij , cannot collide with sij , as j − 1 = llcpb

(
M̄ i, M̄ i′

)
implies both that tij−1 = ti

′
j−1 and that M̄ i

j 6= M̄ i′
j .

We further claim that outer
(
tij−1

)
has not been set and revealed to the adversary

by any previous output value. If there was an i∗ < i with mi∗ ≤ llcpb
(
M̄ i, M̄ i∗

)
=

j−1 and j ≤ mi then we would have stampij = free. If we had the same situation

but with j > mi then M̄ i and M̄ i∗ would be identical. So outer
(
tij−1

)
has indeed

not been revealed to A , and for any non-twin in-state si
′
j′ , the probability of

collision is at most 2−b by a similar argument as in Case 1.

There are no more than q` choices for (i, j) and no more than q` possible (i′, j′) for every

(i, j) so the overall probability that the condition (6.2) will be evaluated due to a pair

of in-states with stampij = fixed is at most (q`)2/2b.

If stampij = free, then outer
(
sij

)
is under adversary’s control. However the value of

inner
(
tij−1

)
is always generated at the end of the experiment. By a case analysis similar

to the previous one we can verify that the probability of a collision due to a pair of

in-states with stampij = free is not bigger than 2−c. It is apparent from the definition

of a free in-state that there is at most one such in-state for each query. Having q`

in-states in total, there are at most q(q`) pairs with stampij = free and the probability

of τ ∈ Tbad due to such a pair is at most q2`/2c.

If stampij = initial then a non-triviall collision between sij and any other initial

in-state is impossible. A collision with a non-initial state si
′
j′ implies that ti

′
j′−1 =

M̄ i′
j′ ⊕ M̄ i

1. If j′ > mi′ or if there is some M i∗ with mi∗ < j′ <= llcpb

(
M i′ , M̄ i∗

)
+ 1,
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then outer
(
ti
′
j′−1

)
is known to the adversary. However inner

(
ti
′
j′−1

)
is always generated

at the end of the experiment. By a case analysis similar to the one we carried out earlier,

it can be verified that the collision si1 = si
′
j′ occurs with probability no bigger than 2−c.

There is exactly one initial in-state in each query, so similarly as with the free in-

states, the overall probability of a transcript being bad due to a pair with an initial

in-state is at most q2`/2c. By summing all the partial collision probabilities we obtain

that Pr
[
DA
Y ∈ Tbad

]
≤ (q`)2/2b + 2q2`/2c.

6.7 Security of Full-State Keyed Duplex

For FKD, we prove the following result:

Theorem 6.5. Let b, r, c, k > 0 be such that b = r + c and k ≤ c. Let A be an

information-theoretic adversary that makes no more than N queries to p and p−1 in

total, that makes no more than q Initialize queries, such that each such query is followed

by no more than ` Duplexing queries with the total maximal multiplicity limited by µ.

Let FKD be the scheme defined in Figure 6.5. Then,

Advprfd
FKD(A ) ≤ (q`)2

2b
+

(q`)2

2c
+
µN

2k
.

The proof of Theorem 6.5 uses Lemma 6.6 to transform an FKD adversary into an

FKS adversary, similarly as Bertoni et al. did in their analysis of the Duplex construc-

tion [BDPA11a, BDPA11b]. While this would be sufficient to prove the security of the

Duplex construction, the bound induced solely by Lemma 6.6 suffers from a quantitative

degradation: we would have that Advprfd
FKD(A ) ≤ Advprfx

FKS (B) for a B that makes q`

queries, resulting in a bound 2q2`4

2b
+ 2q2`3

2c + µN
2k

according to Theorem 6.3.

In reality, there will be a quantitative gap between the security of FKD construction

and that of FKS present, but it will be smaller. This is because an FKS adversary

constructed from an FKD adversary issues queries of a specific structure which is far

from general. In the following proof for FKD, we use this property; we define a class of

“constrained adversaries” and adjust the proof of Lemma 6.4 to these adversaries.

Proof of Theorem 6.5. We define the game �prfd-R by including the lines marked by �
in the game prfd-R in Figure 6.6. By doing so, we replace the public permutation p by

an independent secret permutation π in all the primitive calls made by the FKD. We

use this game as an intermediate step in the analysis, and define

Adv�prfd
FKD (A ) = Pr

[
A �prfd-RFKD ⇒ 1

]
− Pr

[
A prfx-IFKD ⇒ 1

]
for the sake of tidiness of the proof.

We have that FKSpK = FKS
EpK
0 (see Figure 6.7). Abusing the ∆-notation for the PRP
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security games, it follows that

Advprfd
FKD(A ) = ∆A (prfd-RFKD; prfd-IFKD)

= ∆A (prfd-RFKD; �prfd-RFKD) + ∆A (�prfd-RFKD; prfd-IFKD)

≤ ∆B

(
p,EpK ; p, π

)
+ ∆C (�prfd-RFKD; prfd-IFKD)

≤ Advprp
Ep

(B) + Adv�prfd
FKS (C )

for some adversary B that makes q · ` construction queries that have total maximal

multiplicity µ, and makes N queries to p and p−1, and for some adversary C that makes

q Initialize queries, such that each such query is followed by no more than ` Duplexing

queries. This claim is proved by the same argument as in the proof of Theorem 6.3.

Andreeva et al. proved that Advprp
Ep

(B) ≤ µN
2k

for any B [ADMA15]. In Corollary 6.7

we show that any FKD adversary C can be turned into a special “constrained” adversary

B′ against FKS that makes q` queries such that each query induces no more than ` calls

to the permutation, and such that we have

Advprfd
FKD(B) ≤ Advprfx

FKS (B′).

In Lemma 6.8, we prove that Advprfx
FKS (B′) ≤ (q`)2/2b + (q`)2/2c for any such B′.

We define the mapping QbFKS : ({0, 1}<b)+ → {0, 1}∗ that will be used for the remainder

of the proof. For any b > 0 and for all X1, . . . , Xn ∈ {0, 1}<b we let

QbFKS(X1, . . . , Xn) = padb(X1)‖ . . . ‖padb(Xn−1)‖Xn.

Lemma 6.6 (Duplexing lemma [BDPA11a]). Let b, r, c, k > 0 be such that b = r + c

and k ≤ c. Let p ∈ Perm(2b). Let D = FKDp as defined in Figure 6.5. Let i ∈ N+,

K ∈ {0, 1}k, M1, . . . ,M i ∈ {0, 1}<b and z1, . . . , zi ∈ {1, . . . , r}. Then after executing

D.initialize(K) followed by D.duplexing
(
M j , zj

)
for 1 ≤ j < i, for the ith duplexing

query (M i, zi) we always have

Zi = D.duplexing
(
M i, zi

)
= FKSp(K,QbFKS(M1, . . . ,M i), zi).

Moreover, the mapping QbFKS : ({0, 1}<b)+ → {0, 1}∗ is injective.

Proof. We will show the first claim by induction. For i = 1, the internal state of FKD is

updated to t1 = p
(
(0b−k‖K)⊕padb(M

1)
)
, which is exactly the same as the state of FKS

evaluated on M1 only. Then both FKD and FKS output the same value Z1 = leftz1 (t1).

For every i > 1, FKD updates its state to ti = p
(
ti−1⊕padb(M

i)
)
. By the induction

argument, ti−1 is also the state of FKS after processing the first i − 1 padded blocks.

Then the final state of FKS is easily seen to be ti as well. The equality of outputs follows

trivially.

To verify the injectivity of QbFKS, we will show how to invert it. For any image

X = QbFKS(X1, . . . , Xn), we can start recovering the input arguments from the left to
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right.

We have n = d|X|/be. While |X| > b, we keep removing the leftmost b bits of X and

applying the inverse of padb to them to recover the next component Xi. What remains

is the unpadded block Xn.

The result of Lemma 6.6 can be used to reduce any FKD adversary to a constrained FKS

adversary. Given an adversary A against FKD, we define the reduction A ′ = RFKS(A )

as follows. To answer the jth duplexing query (M i
j , z

i
j) made by A after the ith initialize

call, A ′ queries its own oracle with (QbFKS(M i
1, . . . ,M

i
j), z

i
j). A ′ simply forwards the

output of A at the end of the experiment.

Corollary 6.7. Let A be an adversary against FKD that makes q initialize calls and

duplexes ` blocks after each initialization and RFKS(A ) the constrained FKS adversary

as defined above. It follows from Lemma 6.6, that Adv�prfd
FKD (A ) ≤ Adv�prfx

FKS (RFKS(A )).

For the rest of the proof, we will consider FKD adversaries that make exactly q Ini-

tialize queries, such that each of them is followed by exactly ` Duplexing queries. This

is without loss of generality, as any adversary A that makes less queries can be used to

construct another adversary B that uses all the resources and has the same advantage

as A .6 We denote by A′q,` the set of constrained adversaries against FKS, that were

each induced by some FKD adversary that makes q initialize calls and duplexes ` blocks

after each initialization:

A′q,` = {RFKS(A ) : A an FKD adversary with resources exactly (q, `)}.

Lemma 6.8. Let b, r, c > 0 be such that b = r + c. Let FKS be the scheme defined in

Figure 6.5. Then,

Adv�prfd
FKS (A ′) ≤ (q`)2

2b
+

(q`)2

2c
,

for any constrained adversary A ′ ∈ A′q,`

Proof. We will to a large extent follow the notation and conventions from the proof of

Lemma 6.4. We assume that for 1 ≤ i ≤ q`, the query M i is already padded and ends

with a non-zero final b-bit block with mi = |M i|b being the number of b-bit blocks in

the query and M i
1, . . . ,M

i
mi

b← M i being the blocks. The structure of the queries and

the number of squeezed bits will however differ.

Any adversary A ′ ∈ A′q,` makes exactly q` FKS queries, but these queries comprise at

most q` unique b-bit blocks. Moreover, these queries follow a certain pattern. We have

that for every 1 ≤ i ≤ q:

M `(i−1)+1 = M
`(i−1)+1
1 and M `(i−1)+j = M `(i−1)+j−1‖M `(i−1)+j

j for 2 ≤ j ≤ `,

6B simply runs A , forwards all its queries and makes extra random Duplexing queries to waste
resources. At the end of experiment, B outputs whatever A outputs.
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where all M
`(i−1)+j
j ∈ {0, 1}b are non-zero (due to padding). Note that we have

m`(i−1)+j = j for 1 ≤ i ≤ q and 1 ≤ j ≤ `. For every query, A ′ asks for no more

than r output bits.

Because A ′ now only squeezes one block per query, the extended queries are now

identical with the original queries. I.e. we have for 1 ≤ i ≤ q and 1 ≤ j ≤ ` that

M̄ `(i−1)+j = M `(i−1)+j . The internal in-states sij and out-states tij are defined the same

way as in the proof of Lemma 6.4.

The RP-RF Switch Recall the game �prfd-Rf defined in the proof of Lemma 6.4.
We have

Adv�prfx-RFKS (A ′) = ∆A ′

(
�prfx-RFKS; �prfx-Rf

FKS

)
+ ∆A ′

(
�prfx-Rf

FKS; prfx-IFKS

)
≤ (q`)2/2b + ∆A ′

(
�prfx-Rf

FKS; prfx-IFKS

)
.

Although there are q
∑`

j=1 j = q`(` + 1)/2 calls to π during the �prfx-R game when

played by A ′, the structure of the queries implies, that there will be exactly q` calls

to π with unique input. We obtain the claimed inequality using Lemma 2.6 and a

similar reduction as in the proof of Lemma 6.4, except that now the RP-RF distinguisher

B records every (x, π(x)) that it learns from its oracle to avoid wasteful queries with

repeated input.

Patarin’s Coefficient-H Technique This part of the proof relies heavily on the

corresponding part of the proof of Lemma 6.4. We will show that

∆A ′

(
�prfx-Rf

FKS; prfx-IFKS

)
≤ (q`)2/2c.

The games a constrained adversary A ′ ∈ A′q,` is trying to distinguish are �prfx-Rf
FKS

and prfx-IFKS. A transcript τ = (M̄1, . . . , M̄ q`, T 1, . . . , T q`) is defined as in the proof

of Lemma 6.4, where T `(i−1)+j holds all the j+ 1 out-states appearing due to M̄ `(i−1)+j

(including the dummy state t0`(i−1)+j). We will also use the same definition of a bad state

(see the expression (6.1)). This immediately gives us Pr [DX = τ ] /Pr [DY = τ ] = 1 for

any τ ∈ Tgood by a similar argument as in the proof of Lemma 6.4. The probability

Pr
[
DY ∈ T bad

]
needs new investigation.

Bounding the Probability of a Bad Transcript in the Ideal World We define

the three possible labels of in-states, free, initial and fixed in the same way as

before and we will work with the re-expressed definition of a bad state (6.2). Since

the definitions of free, initial and fixed states are unchanged, the probabilities of

collision due to a pair of in-states sij , s
j′

i′ with stampij = free, stampij = initial and

stampij = fixed do not change. The only thing that really changes is the final counting.

For any 1 ≤ i ≤ q, the query M̄ `(i−1)+1 = M i
1 consists of a single block. Thus it only

induces a single in-state with stamp1
`(i−1)+1 = initial. Then for any 2 ≤ j ≤ `, we have
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llcpb
(
M̄ `(i−1)+j , M̄ `(i−1)+j−1

)
= j − 1, so there is at most one new in-state induced by

M̄ `(i−1)+j and unaffected by the common prefix with the previous queries. It is sj`(i−1)+j ,

and we always have stampj`(i−1)+j = free.

We see that, with respect to (6.2), there is exactly one state sj`(i−1)+j in the query

M `(i−1)+j that can cause a non-trivial collision, giving us a total amount of q` possible

tuples (i, j).

For every such state, we need to count all other states (visited by (i′, j′) in (6.2))

with which it can collide. For any i′ < i, it suffices to check equality of sj`(i−1)+j

with all ` in-states induced by M̄ `(i′−1)+`, as every other query M̄ `(i′−1)+j′ is its prefix.

For i′ = i, it suffices to look at in-states induced by M̄ `(i−1)+j−1. Thus for any state

sj`(i−1)+j , there are no more than q` unique states, with which it can collide. Using the

collision probabilities from the proof of Lemma 6.4, we conclude that Pr
[
DY ∈ T bad

]
≤

(q`)2/2c.

6.8 Full-State SpongeWrap and its Security

Our result from Sect. 6.7 can be used to prove security of modified, more efficient versions

of existing Sponge-based AE schemes. As an interesting instance, we introduce Full-state

SpongeWrap, a variant of the authenticated encryption mode SpongeWrap [BDPA11a,

BDPA11b], offering improved efficiency with respect to processing of associated data.

6.8.1 Authenticated Encryption for Sequences of Messages

In this Section, we focus on authenticated encryption schemes that act on sequences of

AD-message pairs, following the approach of Bertoni et al.7 [BDPA11a, BDPA11b].

A nonce-based scheme for authenticated encryption of AD-message sequences (NSAE)

is a pair Π = (K,W ) where the key space K is a finite set andW is a deterministic stateful

algorithm surfacing three interfaces:

• W.initialize : K×N → ∅. Calling this interface will initialize W with a secret key

K ∈ K and a nonce N from the nonce space N ⊆ {0, 1}∗.

• W.wrap : A ×M → C. This interface inputs an AD-message pair (A,M) from

the AD space A ⊂ {0, 1}∗ and the message space M ⊂ {0, 1}∗, and outputs a

ciphertext-tag pair (C, T ) ∈ {0, 1}∗ × {0, 1}τ , where |C| = |M | and T is a τ -bit

tag authenticating (A,M) and all the queries processed by W so far (since the last

initialization call). We call τ stretch, or ciphertext expansion of Π.

• W.unwrap : A × {0, 1}∗ × {0, 1}τ → M ∪ {⊥}. This interface accepts a triple

(A,C, T ) of AD, ciphertext and tag from their respective domains, and outputs

either a message M ∈M or an error symbol ⊥.

7Bertoni et al. do not consider an explicit nonce as we do; rather, they require the header of the first
wrapping call to be unique.
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We require that W is initialized before making the first wrapping or unwrapping call.

For a given key K, we will use WK to refer to the corresponding keyed instance, omitting

K from the list of inputs; that is, W.initialize(K,N) = WK .initialize(N).

For the correctness of an NSAE Π = (K,W ), we require that for every key K ∈ K,

N ∈ N , number of wrapping queries q ∈ N+, vectors of bits RL ∈ ({0, 1})q, vectors of

AD A ∈ Aq, and vectors of plaintexts M ∈ Mq, the variable OK remains set to true

throughout the execution of the following code:

1: OK← true

2: W0.initialize(K,N), W1.initialize(K,N) . Note there are two instances of W

3: for i← 1 to q do

4: C, T ←WRL[i].wrap(A[i],M [i]) . RL[i] chooses the “direction” of ith query

5: M ′ ←W(1−RL[i]).unwrap(A[i], C, T )

6: if M [i] 6= M ′ then OK← false

7: end for

In other words, a correct NSAE scheme allows two parties to exchange encrypted AD-

message pairs, such that each party needs only a single instance of W for both encryption

and decryption, and the pattern of (directions of the) communication can be arbitrary.

Security of Authenticated Encryption We follow the approach of Bertoni et

al. [BDPA11a, BDPA11b] for defining the security of AE. We split the twofold secur-

ity goal of AE into two separate requirements, privacy and authenticity. The formal

definition of security of NSAE schemes is given in Definition 6.9.

Definition 6.9 (SPRIV and SAUTH AE security). Given an NSAE scheme Π = (K,W )

with a ciphertext expansion τ and an adversary A , we define the advantage of A in

breaking the confidentiality of Π in a chosen plaintext attack (with help of the games

spriv-R and spriv-I in Figure 6.9) as

Advspriv
Π (A ) = Pr[A spriv-RΠ ⇒ 1]− Pr[A spriv-IΠ ⇒ 1].

We define the advantage of an A in breaking the authenticity of Π in a chosen ciphertext

attack (wit help of the game sauth in Figure 6.9) as

Advsauth
Π (A ) = Pr[A sauthΠ forges]

where “A forges” denotes the event that any query to the Forge oracle returns a value

different from ⊥.

If Advspriv
Π (A ) ≤ ε for all adversaries A that make q Init queries, and after each

Init query do wrapping queries that induce at most ` permutation calls (including the

initialization) and with total maximal multiplicity µ, and that make N direct queries

to the public permutation then we way that Π is a (ε, q, `, µ,N)-SPRIV-secure NSAE

scheme.

If Advsauth
Π (A ) ≤ ε for all adversaries A that make q Init queries, and after each
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proc initialize spriv-RΠ

p←$ Perm(2b)
K ←$ K
X ← ∅
init← false

proc p(x), p−1(y)

proc Init(N)
if N ∈ X then

return false
init← true
X ← X ∪ {N}
W p.initialize(K,N)
return true

proc Wrap(A,M)
if init = false then

return ⊥
(C, T )←W p.wrap(A,M)
return (C, T )

proc initialize spriv-IΠ

p←$ Perm(2b)
X ← ∅
init← false

proc p(x), p−1(y)

proc Init(N)
if N ∈ X then

return false
init← true
X ← X ∪ {N}
return true

proc Wrap(A,M)
if init = false then

return ⊥
(C, T )←$ {0, 1}|M | × {0, 1}τ
return (C, T )

proc initialize sauthΠ

p←$ Perm(2b)
K ←$ K
X ← ∅, Y ← ∅
t← Λ

proc p(x), p−1(y)

proc Init(N)
if N ∈ X then

return false
X ← X ∪ {N}
t← Λ‖N
W p.initialize(K,N)
return true

proc Wrap(A,M)
if t = Λ then

return ⊥
(C, T )←W p.wrap(A,M)
t← t‖(A,C, T )
Y ← Y ∪ {t}
return (C, T )

proc Forge(N, (A1, C1, T1), . . . , (An, Cn, Tn))
if (N, (A1, C1, T1), . . . , (An, Cn, Tn)) ∈ Y then

return ⊥
W̄ p.initialize(K,N)
for i← 1 to n do

M ← W̄ p.unwrap(Ai, Ci, Ti)
return M

Figure 6.9 – Two-requirement definition of security for a nonce-based scheme
for authenticated encryption of AD-message sequences Π = (K,W ) with cipher-
text expansion τ . The variable t is a vector over the set {0, 1}∗ ∪ ({0, 1}∗)3.
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Init query do wrapping queries that induce at most ` permutation calls (including the

initialization), that make N direct queries to the public permutation, that make at most

qv Forge queries such that no Forge query induces more than ` permutation calls, and

that have the total maximal multiplicity µ (for all three types of construction queries),

then we say that Π is a (ε, q, `, µ,N, qv)-SAUTH-secure nonce-based AE scheme.

Remark 5. We can assume w.l.o.g. that every query to the Forge oracle is either

a fresh nonce followed by a single AD-ciphertext-tag triplet or a sequence of the form

(N, (A1, C1, T1), . . . , (An, Cn, Tn)) with (N, (A1, C1, T1), . . . , (An−1, Cn−1, Tn−1)) having

been learned by the adversary from a sequence of previous wrapping queries.

This is because a single AD-ciphertext-tag triplet (that is not trivially known to be

correct) at the end of the sequence is enough to make the forgery valid. At the same

time, correct unwrapping of the first non-trivial AD-ciphertext-tag triplet is a necessary

condition of the success of the whole query. An adversary A who issues Forge queries

with more than one non-trivial triplet can thus always be used to construct another

adversary B that adheres to the structure of the queries we have just described such that

AdvFSW
sauth(B) ≥ AdvFSW

sauth(A ).

6.8.2 Full-State SpongeWrap

The Full-State SpongeWrap (FSW) is a permutation mode for authenticated encryption

of AD-message sequences as described in Sect. 6.8.1. It is parametrized by a b-bit

permutation p, the maximal message block size r, the key size k, the nonce size n, and

the tag size τ > 0. We require that k ≤ b − r =: c and n < r. We denote an instance

with all parameters fixed by FSW[p, r, k, n, τ ].

The key space of FSW is K = {0, 1}k and the nonce space is N = {0, 1}n. The FSW

construction internally uses an instance of FKD to process the inputs block by block.

To ensure domain separation of different stages of processing a wrap-query, we use three

frame bits placed at the same position in each duplexing call to FKD as explained in

Table 6.1.

label value usage

FN 000 process nonce, derive initial mask of a query
FAM 001 block of A and M inside query
FM 010 block of M inside query
FA 011 block of A inside query
FAM| 100 last block of A and M inside query

F̄AM 101 last block of A and M , query ends, produces tag
F̄M 110 last block of M , query ends, produces tag
F̄A 111 last block of A, query ends, produces tag

Table 6.1 – Labelling and usage of the frame bits within FSW.
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1: algorithm wrap(A,M) (outline)
2: while there are both AD and message bits to process do
3: take ≤ r bit block of M and ≤ c− 5 bit block of A
4: wrap the message block
5: if both A and M end then
6: produce tag using frame bits F̄AM

7: else if only A ends or only M ends then
8: process the blocks using frame bits FAM|
9: else

10: process the blocks using frame bits FAM

11: end if
12: end while
13: while there are message bits to process do
14: take ≤ r bit block of M
15: wrap the message block
16: if M ends then
17: produce tag using frame bits F̄M

18: else
19: process the blocks using frame bits FM

20: end if
21: end while
22: while there are AD bits to process do
23: take ≤ r + c− 5 bit block of A, split it into r bit and c− 5 bit parts
24: if A ends then
25: produce tag using frame bits F̄A

26: else
27: process the parts using frame bits FA

28: end if
29: end while
30: prepare r random bits for next query using frame bits FN

31: end algorithm

Figure 6.10 – Outline of an FSW[p, r, k, n, τ ] wrap/unwrap(A,M) query

The main motivation of the FSW is concurrent absorption of message and AD to

achieve maximal efficiency through minimizing the number of permutation calls made

to process each wrap-query.

Since we can only process r bits of a message input at a time,8 we can use the remainder

of the state for the frame bits and a block of AD. This implies the lengths of message and

AD blocks processed with each permutation call; r+ 1 bits for padded message block, 3

frame bits and (having in mind that the input to FKD is always padded) this leaves us

at most (b− 1)− (r + 1)− 3 = c− 5 bits for a block of AD.

To minimize the number of permutation calls made in all possible situations, we

further specify special treatment for the wrap/unwrap queries with more AD blocks

8This is because the number of message bits that we can encrypt at a time is limited by the output
size of FKD.
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than message blocks. An informal outline of a wrap query is given in Algorithm 6.10.

This outline nicely illustrates how the frame bits are used for domain separation.

We next give a complete algorithmic description of the FSW. To keep it compact, we

introduce the following notation. For any L ∈ {0, 1}≤r, R ∈ {0, 1}≤c−5 and F ∈ {0, 1}3,

we let

Q(L,F,R) = padr+1(L)‖F‖R. (6.3)

Note that r + 4 ≤ |Q(L,F,R)| ≤ b − 1 for any L,F,R. We let (L,R) = lsplit(X,n)

denote splitting a string X ∈ {0, 1}∗ into two parts such that L = leftmin(|X|,n) (X) and

R = right|X|−|L| (X). In particular, for n ≥ |X| we have (X, ε) = lsplit(X,n). We will use

the abbreviation D.dpx(M, z) for the interface D.duplexing (M, z) of an FKD instance

D. The interfaces of FSW[p, r, k, n, τ ] are defined in Algorithm 6.11.

A schematic depiction of how the wrap interface processes various types of inputs is

given in Figures 6.12 and 6.13.

6.8.3 Security of FSW

The security of FSW is relatively easy to analyse, thanks to the result from Section 6.7.

The main steps of the analysis are to show that FSW injectively maps its wrapping

queries to a sequence of FKD queries, and then to reduce the security of FSW to the

security of FKD.

Theorem 6.10. Let b, r, c, k, n, τ > 0 be such that b = r + c, k ≤ c and n < r. Let

A be an adversary that makes q Init queries, and after each Init query does wrapping

queries that induce at most ` permutation calls (including the initialization) and with

total maximal multiplicity µ, and that makes N direct queries to the public permutation.

Let A ′ be an adversary that makes q Init queries, and after each Init query does wrapping

queries that induce at most ` permutation calls (including the initialization), that makes

at most qv Forge queries such that no Forge query induces more than ` permutation

calls, and that has the total maximal multiplicity µ (for all three types of construction

queries). Let FSW be the scheme defined in Figure 6.11. Then,

Advspriv
FSW (A ) ≤(q`)2

2b
+

(q`)2

2c
+
µN

2k
,

Advsauth
FSW (A ′) ≤((q + qv)`)

2

2b
+

((q + qv)`)
2

2c
+
µN

2k
+
qv
2τ
.

Proof. We start by defining the games �spriv-R and �sauth which are respectively

variants of the games spriv-R and sauth created by replacing the instance D of FKD

(internally used by FSW) by a stateful algorithm ROr
FKD, which does not use p at all.

The state of ROr
FKD consists of two variables, a list S over {0, 1}∗ and an array F .

ROr
FKD exposes the same interfaces as FKD: (1) ROr

FKD.initialize() that initializes the

list S, to the empty list Λ, and (2) ROr
FKD.duplexing(X, z) that, on input X ∈ {0, 1}<b
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Full-State Absorption for Sponge-based Constructions

1: interface W.initialize(K,N)
2: D.initialize(K)
3: S ← padr(N)‖0‖FN‖0c−5

4: Z ← D.dpx(S, r)
5: end interface

1: interface W.wrap(A,M)
2: M1‖ . . . ‖Mm

r←M
3: (A′, A∗)← lsplit(A,m(c− 5))

4: A′1‖ . . . ‖A′a′
c−5← A′

5: A∗1‖ . . . ‖A∗a∗
b−5← A∗

6: if m = a′ = a∗ = 0 then
7: T ← ε
8: F ← F̄A

9: end if

10: for i← 1 to a′ − 1 do
11: Ci ←Mi⊕Z
12: Z ← D.dpx(Q(Mi, FAM, A

′
i), r)

13: end for
14: if 0 < a′ < m or 0 < a′, a∗ then
15: Ca′ ←Ma′ ⊕ left|Ma′ | (Z)
16: Z ← D.dpx(Q(Ma′ , FAM|, A

′
a′), r)

17: else if 0 < m = a′ and a∗ = 0 then
18: Ca′ ←Ma′ ⊕ left|Ma′ | (Z)
19: T ← D.dpx(Q(Ma′ , F̄AM, A

′
a′), r)

20: F ← F̄AM

21: end if

22: for i← a′ + 1 to m− 1 do
23: Ci ←Mi⊕Z
24: Z ← D.dpx(Q(Mi, FM, ε), r)
25: end for
26: if a′ < m then
27: Cm ←Mm⊕ left|Mm| (Z)

28: T ← D.dpx(Q(Mm, F̄M, ε), r)
29: F ← F̄M

30: end if

31: for i← 1 to a∗ − 1 do
32: (L,R)← lsplit(A∗i , r)
33: D.dpx(Q(L,FA, R), 0)
34: end for
35: if a∗ > 0 then
36: (L,R)← lsplit(A∗a∗ , r)
37: T ← D.dpx(Q(L, F̄A, R), r)
38: F ← F̄A

39: end if

40: while |T | < τ do
41: T ← T‖D.dpx(Q(ε, F, ε), r)
42: end while
43: Z ← D.dpx(Q(ε, FN, ε), r)
44: C ← C1‖ . . . ‖Cm
45: return C, leftτ (T )
46: end interface

1: interface W.unwrap(A,C, T )
2: C1‖ . . . ‖Cm

r← C
3: (A′, A∗)← lsplit(A,m(c− 5))

4: A′1‖ . . . ‖A′a′
c−5← A′

5: A∗1‖ . . . ‖A∗a∗
b−5← A∗

6: if m = a′ = a∗ = 0 then
7: T ′ ← ε
8: F ← F̄A

9: end if

10: for i← 1 to a′ − 1 do
11: Mi ← Ci⊕Z
12: Z ← D.dpx(Q(Mi, FAM, A

′
i), r)

13: end for
14: if 0 < a′ < m or 0 < a′, a∗ then
15: Ma′ ← Ca′ ⊕ left|Ca′ | (Z)
16: Z ← D.dpx(Q(Ma′ , FAM|, A

′
a′), r)

17: else if 0 < m = a′ and a∗ = 0 then
18: Ma′ ← Ca′ ⊕ left|Ca′ | (Z)
19: T ′ ← D.dpx(Q(Ma′ , F̄AM, A

′
a′), r)

20: F ← F̄AM

21: end if

22: for i← a′ + 1 to m− 1 do
23: Mi ← Ci⊕Z
24: Z ← D.dpx(Q(Mi, FM, ε), r)
25: end for
26: if a′ < m then
27: Mm ← Cm⊕ left|Cm| (Z)
28: T ′ ← D.dpx(Q(Mm, F̄M, ε), r)
29: F ← F̄M

30: end if

31: for i← 1 to a∗ − 1 do
32: (L,R)← lsplit(A∗i , r)
33: D.dpx(Q(L,FA, R), 0)
34: end for
35: if a∗ > 0 then
36: (L,R)← lsplit(A∗a∗ , r)
37: T ′ ← D.dpx(Q(L, F̄A, R), r)
38: F ← F̄A

39: end if

40: while |T ′| < τ do
41: T ′ ← T ′‖D.dpx(Q(ε, F, ε), r)
42: end while
43: Z ← D.dpx(Q(ε, FN, ε), r)
44: M ←M1‖ . . . ‖Mm

45: if T = leftτ (T ′) then
46: return M
47: else
48: return ⊥
49: end if
50: end interface

Figure 6.11 – The NSAE scheme FSW[p, r, k, n, τ ]. The instance internally uses an
instance D of FKD[p, r, k]
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and a natural number z, first updates the list S← S‖X, then if F [S] = ⊥ sets F [S]←$

{0, 1}r, and outputs leftz (F [S]).
Note that the algorithm ROr

FKD is completely equivalent with the pair of oracles
Initialize and Duplexing in the game prfd-I. We use this to obtain the following in-
equalities:

Advspriv
FSW (A ) = ∆A (spriv-RFSW; �spriv-RFSW) + ∆A (�spriv-RFSW; spriv-IFSW)

≤ (q`)2

2b
+

(q`)2

2c
+
µN

2k
+ ∆A (�spriv-RFSW; spriv-IFSW) ,

and

Advsauth
FSW (A ′) = Pr

[
A ′

sauthFSW forges
]
− Pr

[
A ′
�sauthFSW forges

]
+ Pr

[
A ′
�sauthFSW forges

]
≤ ((q + qv)`)2

2b
+

((q + qv)`)2

2c
+
µN

2k
+
qv
2τ

+ Pr
[
A ′
�sauthFSW forges

]
.

Both inequalities are proved by a simple reduction. An FKD adversary B can be

constructed by using A (or A ′) as a subroutine. B simply simulates the spriv-R

game (or the sauth game) using its own Initialize and Duplexing oracles in the place of

D.initialize and D.duplexing calls. If B simulates the spriv-R game for A , it outputs

whatever A outputs. If B simulates the sauth game for A , it outputs 1 if and only if

A ′ forges.

If B is playing prfd-RFKD game, then it perfectly simulates spriv-RFSW for A and

otherwise it perfectly simulates �spriv-RFSW (or it perfectly simulates sauthFSW for

A ′ and otherwise it perfectly simulates �sauthFSW). If B uses A as a subroutine, it

will make q Initialize queries, while with A ′ it will make (q + qv) initialize queries. The

bounds then follow from Lemma 6.5.

We now bound ∆A (�spriv-RFSW; spriv-IFSW) and Pr
[
A ′�sauthFSW forges

]
. We know

that a unique sequence of a nonce and AD-message pairs yields unique sequence of

ROr
FKD queries thanks to Lemma 6.11.

We have that ∆A (�spriv-RFSW; spriv-IFSW) = 0. This is because the uniqueness

of the nonces used in the Init queries implies that every FSW.wrap(A,M) query is

processed using an ROr
FKD with a unique internal variable S. This implies that every

ciphertext block and every tag will be produced using independent uniform bits.

It remains to show that Pr
[
A ′�sauthFSW forges

]
≤ qv/2

τ . We first analyse the ad-

vantage of an adversary who only makes a single forgery attempt.

To forge, the adversary must produce a sequence (N, (A1, C1, T1), . . . , (An, Cn, Tn))

that passes the authentication check. Due to Remark 5, this can either be a fresh

nonce followed by only (A1, C1, T1) or N can be reused and ((C1, T1), . . . , (Cn−1, Tn−1))

were obtained from a sequence of wrapping queries (N, (A1,M1), . . . , (An−1,Mn−1)) but

(Cn, Tn) was not returned by any consequent wrapping query (An,Mn).

In the former case, with a fresh nonce, ROr
FKD has a fresh list S when (A1, C1, T1) is

unwrapped and T1 will be compared to τ random bits. The probability of a forgery is

2−τ in this case.

In the latter case, all the triplets ((A1, C1, T1), . . . , (An−1, Cn−1, Tn−1)) are trivially

successfully unwrapped. However freshness of (An, Cn, Tn) implies that either Cn 6= C ′n
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Figure 6.14 – [Framebit-sequences in a FSW query, and mapping to FKD quer-
ies. The tree of all possible frame bits sequences that can occur when processing a single
AD-message pair (top-left). The composition of an FKD query Qi (bottom-right).

or An 6= A n or Tn 6= T ′n for the corresponding (C ′n, T
′
n) = Wrap(A′n,M

′
n) query, if such

a wrapping query was made at all. If only Tn 6= T ′n, then Tn cannot be correct. In any

other case, the tag Tn is compared to outputs of ROr
FKD with either a fresh internal list

S or with S that already occurred in the experiment but with fresh inputs. Thus Tn will

be compared to τ uniform bits and the probability of a forgery is bounded by 2−τ .

To obtain a more general result for an adversary that makes up to qv verification

queries, we use a similar reduction as one used by Bellare et al. [BGM04] and get

Pr
[
A ′�sauthFSW forges

]
≤ qv/2τ .

Consider an instance (K,W ) = FSW[p, r, k, n, τ ] of FSW. We letQW denote the function

that maps a nonce and a sequence of AD-message pairs (N, (A1,M1), . . . , (An,Mn)) to

QW (N, (A1,M1), . . . , (An,Mn)) 7→ (Q1, . . . , Qd)

such that (Q1, . . . , Qd) ∈ {0, 1}<b is the ordered sequence of all inputs to the D.duplexing

calls made by the W.initialize and the subsequent queries to W.wrap during the pro-

cessing of (N, (A1,M1), . . . , (An,Mn)).

Lemma 6.11. Let (K,W ) = FSW[p, r, k, n, τ ] be an instance of FSW defined in Fig-

ure 6.11. Then the function QW is injective.

Proof. We prove the injectivity of the mapping QW by showing how it can be inverted.

We refer to the mapping Q defined in expression (6.3) to argue that every Qi can be

split into three strings Li, Fi, Ri with |Li| = r + 1, |Fi| = 3 and |Ri| ≤ c − 5 just as
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depicted on the bottom-right of Figure 6.14. The main trick is to use the frame bits

used in FSW to determine boundaries of wrapping queries and their logical parts. We

will refer to the FKD queries Q1, . . . , Qd as “frames”.

The nonce is contained in the very first frame with F1 = FN as L1 = padr(N)‖0. We

can extract it, and discard the frame.

We can then recover the AD-message pairs (in the following just “pairs”) from Q =

(Q1, . . . , Qd) in a left-to-right fashion. Any pair (A,M) is encoded in a subsequence of

Q that starts by a frame with frame bits FN and ends by a frame just before the next

frame with frame bits FN. Depending on the lengths of A and M , the pattern of frame

bits between these boundary frames can differ as depicted in Fig. 6.14.

If both A and M are non-empty, we follow the edge marked as A. If there is the same

number of r-bit blocks in M as there is of c− 5 bit blocks in A, then we follow the path

A.1. Otherwise we follow the path A.2 and then A.21 if there were fewer blocks in A

than in M and the path A.22 if there were in turn more blocks in A than in M .

If M 6= A = ε, then we follow the path B; if A 6= M = ε we follow the path C. In a

special case, where both A = M = ε, we follow path D. We can see, that every possible

case of relative = lengths of M and A in terms of blocks yields a distinct pattern of

frame bit sequences.

Having identified which path in Fig. 6.14 we are following, we can recover A and

M . Every frame Qi with Fi ∈ {FAM, FAM|} holds a padded block of M in Li and an

unpadded block of A in Ri. If Fi = FM, then there is a padded block of M in Li and

Ri = ε. If Fi = FA, then there is a padded block of A in Li and another unpadded block

of A in Ri. The frames with Fi ∈ {F̄AM, F̄M, F̄A} are used to produce the tag and are

thus treated specially. The first frame with F̄χ holds data blocks and the following ones

do not. If χ = AM, then there is a padded block of M in Li and an unpadded block of

A in Ri. If χ = M, then there is only a padded block of M in Li. If χ = A and we are

not on path D then there is a padded block of A in Li and a following unpadded block

of A in Ri. If we are on path D then none of the frames holds any data, since both A

and M are empty.

Once we extract all the blocks of A and M , we concatenate them all in the order in

which they were extracted to obtain A and M .
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Chapter 7
Security of Online Authenticated

Encryption

This chapter discusses the security of online authenticated encryption and its nonce-

misuse resistance.

The work presented in this chapter is a result of joint work with Viet Tung Hoang, Reza

Reyhanitabar and Phillip Rogaway that was published in CRYPTO 2015 [HRRV15].

Online encryption. This chapter is centred around online authenticated encryption.

Onlineness is a functional property of an AE scheme, but we will see that it also impacts

its security. When we speak of encryption being online we mean that it can be realized

with constant memory while making a single left-to-right pass over the plaintext, writing

out the ciphertext, also left-to-right, during that pass.

Investigating online encryption has a good reason: there are environments where it

is needed. The designer of an FPGA or ASIC encryption/decryption engine might be

unable to buffer more than a kilobyte of message. An application like SSH needs to

instantaneously send a message every time a character is typed at the keyboard to

emulate an interactive environment. Video-streaming services, such as Netflix need, to

stream a video [Mia14] that is “played” as it is received, never buffering an excessive

amount or incurring excessive delays. A software library might want to support an

incremental encryption and decryption API.

Most of the AE schemes that target the simple nonce-based AE security notion (see

Definition 2.7 or Definition 2.8) do have online encryption, e.g., 19 out of 20 the 2nd

round CAESAR candidates that targeted nonce-based AE security had online encryp-

tion [Viz16].

Nonce Misuse Resistance and Onlineness. As indicated by Rogaway and Shrimp-

ton [RS06b] and later reiterated by Fleischmann, Forler and Lucks, the security of nonce-

based AE schemes is rather fragile in that it is possible—and routine—that all security

131



will be forfeit once the nonces get repeated. The MRAE security notion (see Defini-

tion 2.10) was put forward by Rogaway and Shrimpton to limit the impact of nonce

repetition to the bare minimum: having no adverse impact on authenticity, and the

damage to privacy being limited to the detection of complete input-tuple repetitions.

While it is easy to construct MRAE schemes [RS06b] (see also Section 4.3), any such

scheme must share a particular inefficiency: its encryption can’t be online. The reason an

MRAE scheme can’t have online encryption is simple: the security definition demands

that every bit of ciphertext depends on every bit of the plaintext, so one can’t output

the first bit of a ciphertext before reading the last bit of plaintext. Coupled with the

constant-memory requirement, single-pass MRAE becomes impossible.

This limitation, the encryption of any MRAE-secure AE scheme being unavoidably

offline,1 led Fleischmann, Forler, and Lucks (FFL) to define a security notion [FFL12]

that slots between NAE and MRAE. We call it OAE1. FFL claim that their notion

captures the best-possible security for AE schemes with online encryption.

In this chapter, we investigate the security guarantees of OAE1. Based on our obser-

vations, we then formalize a security notion that we believe to come closer to the best

possible security for online AE, and we show how to achieve it.

Organization of the Chapter. We give an overview of related work in Section 7.1

and list the contributions of this chapter in Section 7.2.

We recall the security notion OAE1 in Section 7.3 and in Section 7.4 we present

definitional attacks and discuss shortcomings of the notion.

In Section 7.5, we then formalize our own take on the security of online AE, and in

Section 7.6 we show how to achieve it using existing tools.

7.1 Related Work

The first security notion for nonce-misuse resistant security of online AE proposed by

Fleischmann, Forler and Lucks (FFL) [FFL12] in 2012 induced most of this work. That

result was in turn inspired by the notion of Online Ciphers by Bellare, Boldyreva, Knud-

sen and Namprempre (BBKN) [BBKN01] and by the work on nonce-misuse resistant

AE by Rogaway and Shrimption [RS06b].

Fouque, Joux, Martinet, and Valette (FJMV) defined two notions for online AE, one

for privacy and another for authenticity, as early as in 2003 [FJMV03]. However their

aim was to formalize security against blockwise-adaptive attackers. In their setting,

message space is the set of finite sequences of fixed-size blocks, encryption is online

and probabilistic, but decryption is viewed as an atomic operation. In both notions,

the adversary can mount blockwise-adaptive queries on the encryption oracle. OAE1

resembles a recasting of FJMV’s notions with nonce-based AE syntax; this was later

established formally by Endignoux and Vizár [EV16].

1For the sake of conciseness, we let “offline” mean “not online” in the rest of the chapter.
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In 2004, Boldyreva and Taesombut (BT) [BT04] independently considered a similar

setting to that of FJMV, in which the adversary can mount blockwise-adaptive attacks

on schemes whose messages consist of fixed-size blocks. What differed from FJMV (and

what is similar to OAE2) is that the adversary could query both encryption and decryp-

tion oracles in a blockwise manner. Their focus is on probabilistic encryption schemes

under chosen-ciphertext-attack, but the full version of their paper [BT04, Section 6] also

speaks of AE.

Tsang, Solomakhin, and Smith (TSS) [TSS09] were the first to sever the association of

the blocksize of some underlying tool and the amount of data (i.e. bits) a user is ready

to operate on, which is one of the key conceptual shifts needed to move beyond BBKN’s

and FFL’s conceptions of online encryption. In their 2009 technical report TSS provided

a definition based on this idea, and they give examples [TSS09, Section 8] of practical

scenarios where the size of (segments of) plaintexts that need to be encrypted due to

latency requirements are well below the block size of any secure primitive. Unlike OAE2,

the security notion by TSS works with schemes in which there is ciphertext expansion

only at the beginning and end. They do not authenticate the segmented plaintext but

the string that is their concatenation. Our formalization of OAE2 also differs from the

notion by TSS in that it lets the adversary run multiple, concurrent sessions of online

encryption and decryption.

Bertoni, Daemen, Peeters, and Van Assche (BDPV) define an object very much like

what we are calling an OAE2 scheme [BDPA11a] (their syntax of an AE scheme that

acts on (ordered) sequences of AD-message pairs is the syntax of NSAE schemes defined

in Section 6.8.1 of this thesis). The security notions for privacy and authenticity put

forward by BDPV (similar to the SPRIV and SAUTH notions of Definition 6.9, except

that a weak form of nonce-repetition is tolerated to the adversary by BDPV) resemble

OAE2. In addition, the approach and correspondence with BDPV inspired our inclusion

of vector-valued AD.

Andreeva, Bogdanov, Luykx, Mennink, Mouha, and Yasuda (ABLMMY) [ABL+14a]

study OAE definitions and schemes that are meant to withstand the release of unverified

plaintext (RUP). Their motivations overlap with our own—a desire to support decrypt-

ing devices with insufficient memory to store the entire plaintext, or to allow prefixes

of the decrypted plaintext to be revealed as soon as required, according to application’s

real-time needs. The authors define a variety of new security notions that capture useles-

ness of the prematurely released unverified plaintext for attacks against confidentiality,

and those against authenticity of an AE scheme. Despite intersecting motivations, our

definitional approach and theirs diverge. Unlike ABLMMY, our own notion works with

user-segmented plaintext, avoids the use of knowledge extractors, and keeps the focus

on encryption and decryption being online. When OAE2 is used in its intended man-

ner, with reasonable segment-expansion τ , the notion is simultaneously stronger than

RUP notions in the sense of ensuring that all decrypted segments are authentic; weaker

than RUP notions in the sense that plaintext-extractors are in no way mandated; and

incomparable in the sense that the extensive syntactic mismatch makes any meaningful
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implications or separations infeasible.

Around the time of the beginning of CAESAR competition, numerous AE designs

appeared that targeted the OAE1-security, or weakened variants of it. In a relatively

short amount of time, we witnessed a divergence between the rhetoric used to make

security claims and the actual security guarantees provided by certain AE schemes, the

actual guarantees themselves being spread over a wide spectrum. We discuss this further

in Appendix B.1.

7.2 Contribution

We present two definitional attacks that help illustrate the actual (in)security captured

by the OAE1 security notion of FFL. We also discuss broader shortcomings of the form-

alism used by FFL related to their choice of syntax.

We define segmented AE schemes, whose syntax improves over that of FFL in all

points that we identified, and define the OAE2 security of such AE schemes. In our

opinion, the OAE2 notion better approximates the phrase “best possible security under

nonce-misuse” in the context of online schemes. At the same time, we are being clear

about the inherent limitations of any online AE scheme.

We demonstrate the feasibility of OAE2-security by designing the CHAIN construction

based on an existing tool, and proving that it is OAE2-secure. In addition, we map the

deterioration of the OAE1-like guarantees offered by AE schemes that appeared around

the start of the CAESAR competition.

7.3 Security Notion OAE1

While there are several variations of the online-AE security notion used throughout the

AE literature (see Appendix B.1), they all spring from FFL [FFL12], who modelled the

(supposedly) ideal online AE scheme by combining the definition of an online cipher from

Bellare, Boldyreva, Knudsen, and Namprempre [BBKN01] with the definition of authen-

ticity of ciphertexts (also called integrity of ciphertexts) [BR00, KY00, RBBK01]. In

this section we recall the FFL definition, staying true to the original exposition as much

possible, but necessarily deviating from it to correct an error. We call the (corrected)

definition OAE1.

Syntax. For any positive integer n let Bn = {0, 1}n denote the set of n-bit blocks,

let B+
n =

⋃∞
i=1{0, 1}i·n denote the set of all nonempty strings of n-bit blocks and let

B∗n = B+
n ∪ {ε}. A block-based AE scheme is a triple Π = (K, E ,D) where the key

space K is a nonempty set with an associated distribution and where the encryption

algorithm E and decryption algorithm D are deterministic algorithms with signatures

E : K ×H × B∗n → {0, 1}∗ and D : K ×H × {0, 1}∗ → B∗n ∪ {⊥}. The set H associated

to Π is the header space. FFL assume that it is H = B+
n = N × A with N = Bn and

A = B∗n the nonce space and AD space. The value n associated to Π is its blocksize.
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Note that the message space M of Π must be M = B∗n and the blocksize n will play a

central role in the security definition. We demand that D(K,N,A, E(K,N,A,M)) = M

for all K ∈ K, N ∈ N , A ∈ A, and M ∈ B∗n.

To keep things simple, we further assume that the ciphertext expansion |E(K,H,M)|−
|M | is a constant τ ≥ 0 rather than an arbitrary function of H and |M |. We let

EHK = EK(H,M) = E(K,H,M).

Security. Let OPerm[2n] be the set of all length-preserving permutations π on B∗n
where ith block of π(M) depends only on the first i-blocks of M ; more formally, a

length-preserving permutation π : B∗n → B∗n is in OPerm[2n] if for all X,Y, Y ′ ∈ B∗n we

have that

left|X| (π(X‖Y )) = left|X|
(
π(X‖Y ′)

)
,

i.e. the first |X| bits of π(XY ) and π(XY ′) coincide. Despite its being infinite, one can

endow OPerm[2n] with a “uniform” distribution in a natural way: sampling a random

π ←$ OPerm[2n] is equivalent to sampling πM ←$ Perm(2n) for all M ∈ B∗n and letting

π(M ′) = πε(M
′
1)‖πM ′1(M ′2)‖ . . . ‖πM ′1‖...‖M ′|M′|n−1

(M ′|M ′|n)

for every M ′ ∈ B+
n where M ′1‖ . . . ‖M ′|M ′|n

n← M ′, and letting π(ε) = ε. Note that for a

small number of queries, a random π ←$ OPerm[2n] can be implemented efficiently with

lazy sampling.2

Definition 7.1 (OAE1 security [FFL12]). Given a block-based AE scheme Π = (K, E ,D)

with blocksize n, header space H and a constant ciphertext expansion τ , and given an

adversary A , we define the advantage of A in breaking the OAE1 security of Π in a

chosen ciphertext attack (with help of the games oae1-R and oae1-I in Figure 7.1) as

Advoae1
Π (A ) = Pr[A oae1-RΠ ⇒ 1]− Pr[A oae1-IΠ ⇒ 1].

If Advoae1
Π (A ) ≤ ε for all adversaries A whose running time is limited by t, and whose

encryption and decryption query complexity is bounded by qe and qd respectively, and

whose data complexity (in bits) in all queries is limited by σ then we say that Π is a

(ε, t, qe, qd, σ)-secure OAE1 scheme.

As usual, the exact resource parameters of the adversary may be adjusted to suit the

analysis of a particular scheme. We can also speak of OAE1[n] security to emphasize

the central role in defining security of the scheme’s blocksize n.

2The implementation represents π as an initially empty 2n-ary tree, whose vertices correspond to
(partially defined) elements of Perm(2n) and whose edges are labelled with elements of Bn. To evaluate
a query π(M1‖ . . . ‖Mm), one applies the permutation at the root of the tree to M1 to get C1, then
follows the edge labelled with M1 and applies the corresponding permutation to M2 to get C2, follows
the edge labelled with M2 and so on, and returns C1‖ . . . ‖Cm. Whenever an edge does not exist, it is
created together with the corresponding vertex which is initialized to an undefined permutation, and
then lazily sampled according to the queries.
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proc initialize oae1-RΠ

K ←$ K
Y ← ∅

proc Enc(H,M)
C ← E(K,H,M)
Y ← Y ∪ {(H,C)}
return C

proc Dec(H,C)
if (H,C) ∈ Y then

return ⊥
return D(K,H,C)

proc initialize oae1-IΠ

for H ∈ H do πH ←$ OPerm[2n]
for (H,M) ∈ H × B∗n do RH,M ←$ {0, 1}τ

proc Enc(H,M)
return πH(M)‖RH,M

proc Dec(H,C)
return ⊥

Figure 7.1 – OAE1 security. Defining security for a block-based AE scheme Π =
(K, E ,D) with header space H, blocksize n, and ciphertext expansion τ .

Deviation from the original definition. Definition 7.1 effectively says that, with

respect to privacy, a ciphertext must resemble the image of a plaintext under a random

online permutation (tweaked by the nonce and AD) followed by a τ -bit random string

(the authentication tag). However, the original definition from FFL [FFL12, Definition

3] only modelled ciphertexts as images under a random online permutation, with no

tag following. Such a definition does not make sense, as E must be length-increasing

to provide authenticity. Necessarily, the scheme proposed by FFL (which did output a

tagged ciphertext) could not conform with their definition. Definition 7.1 is a result of

discussions between the author of this dissertation and the co-authors of the correspond-

ing publication [HRRV15], and of checking with one of the FFL authors [Luc14].

LCP leakage. We say that a block-based AE scheme Π = (K, E ,D) with blocksize n

is LCP[n] (for “longest common prefix”) if for all K ∈ K, H ∈ H and M,M ′ ∈ B∗n we

have

llcpn
(
M,M ′

)
= llcpn

(
EK(H,M), EK(H,M ′)

)
.

While all schemes we know claiming to be OAE1[n] are also LCP[n], an OAE1[n]-

secure scheme isn’t necessarily LCP[n]. This is because the requirement for OAE1[n]

security is to be computationally close to an object that is LCP[n], and something being

computationally close to an object with a property P doesn’t mean it has property P .

Indeed it is easy to construct an artificial counterexample; for example, we can start

with an OAE1[n]-secure scheme Π = (K, E ,D) that is LCP[n], and define Π̄ = (K ×
{0, 1}n, Ē , D̄) with

Ē((K,K ′), H,M) =

 E
(
K,H, leftn (M) ‖reverse(right|M |−n (M))

)
if leftn (M) = K ′

E
(
K,H,M

)
otherwise
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where the function reverse(X) takes a string X and returns its bits in reversed order.

OAE1 security of Π̄ is only slightly degraded; if the adversary guesses K ′, Ē will no

longer behave as an online permutation, but guessing K ′ is unlikely. The scheme Π̄ is no

longer LCP[n], because for each key, there exist messages on which the common prefix

is not preserved.

Despite such counterexamples, any OAE1[n]-secure scheme must be close to being

LCP[n], in the sense that it will preserve the LCP[n] property for an overwhelming

majority of the inputs. Fix a block-base AE scheme Π as defined above and consider an

adversary A that is given an oracle EK(·, ·) for K ←$ K. Consider A to be successful if

it outputs H ∈ H and X,Y, Y ′ ∈ B∗n such that

llcpn
(
EHK (XY ), EHK (XY ′)

)
< |X|n

(i.e., the adversary found non-LCP behavior).

Let Advlcp
Π (A ) be the probability that A is successful. Then it’s easy to transform A

into an equally efficient adversary B (in the sense that B will have the same data

and query complexity as A and will run in similar time) for which Advoae1
Π (B) =

Advlcp
Π (A ). Because of this, there is no real loss of generality, when discussing OAE1[n]

schemes, to assume them LCP[n]. In the next section we will do so.

7.4 Shortcomings of OAE1

In this section, we give our critique of the OAE1 notion. We first describe two definitional

attacks on OAE1. We call them the trivial attack and the CPSS attack. These attacks

are definitional in the sense that they cannot be used to invalidate OAE1-security of a

block-based AE scheme, but instead apply to every OAE1-secure scheme, and even to

the idealized reference object implemented by the game oae1-I.

We then further discuss certain characteristics of the OAE1 notion that we find ill-

conceived. These observations are then applied when we define our own notion in Sec-

tion 7.5.

7.4.1 Definitional Attacks

The trivial attack. We first observe that as the blocksize n decreases, OAE1 becomes

weaker: an adversary that has the ability to ask chosen-plaintext queries can decrypt

the ciphertext of an arbitrary m-block plaintext with (2n − 1)m encryption queries.

More precisely, we claim that an adversary that has access to a (properly keyed)

encryption oracle Enc and is given a ciphertext C = EHK (M) with M sampled from Bmn
with an arbitrary distribution can always recover M with (2n− 1)m encryption queries.

We now describe what we call the trivial attack. Fix a ciphertext C = C1 · · ·Cm T =

EK(H,M) with Ci ∈ Bn. Using just the encryption oracle Enc, we want to recover C’s

plaintext M = M1 · · ·Mm with Mi ∈ Bn. The attack proceeds as described in Figure 7.2.

Informally, it recovers the ith plaintext block, by iterating over the values Mi ∈ Bn and
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1: algorithm TrivialAttack(H,C‖T )
2: C1‖ . . . ‖Cm

n← C
3: M ← ε
4: for i← 1 to m do
5: for Mi ∈ Bn\{1n} do
6: query C ′ ← Enc(H,M)
7: if C ′ = C1‖ . . . ‖Ci then
8: M ←M‖Mi

9: break
10: end if
11: end for
12: if |M |n < i then
13: M ←M‖1n
14: end if
15: end for
16: return M
17: end algorithm

Figure 7.2 – The trivial attack against a block-based AE scheme Π = (K, E ,D) with
blocksize n.

encrypting M1 · · ·Mi−1 Mi until one reply matches C1 · · ·Ci or there’s only a single

value Mi remaining. It is easy to verify that the trivial attack works with the worst-case

complexity of (2n − 1)m encryption queries, even if the Enc oracle is implemented as

in the game oae1-I. This attack is therefore unavoidable whenever n is small and the

adversary can repeat the headers.

The CPSS attack. Even with the trivial attack taken into account, one might hope for

OAE1 security as long as the blocksize is fairly large, like n = 128. We dash this hope by

describing another header-repeating attack, one we call the chosen-prefix / secret-suffix

(CPSS) attack, which works for any blocksize. The attack is simple, yet devastating. It is

inspired by the well-known BEAST (Browser Exploit Against SSL/TLS) attack [DR11].

Let Π = (K, E ,D) be a block-based AE scheme with blocksize n satisfying LCP[n].

We consider a setting where messages M that get encrypted can be logically divided

into a prefix P that is controlled by an adversary, then a suffix S that is secret, fixed,

and not under the adversary’s control, i.e. where M = P‖S. The goal of the adversary

is to learn S.

More formally, the adversary gets access to a special oracle defined as Enc′(H,P ) =

EHK (P‖S) for any P , for a properly sampled secret key K and for an S sampled from

{0, 1}|S| according to some distribution. The corresponding game is sketched in Fig-

ure 7.3.

To be realistic, we insist that the length of P be a multiple of b bits for some small
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proc initialize
K ←$ K
S ←$ X ({0, 1}|S|)

proc Enc′(H,P )
return E(K,H,P‖S)

proc finalize
return S′ = S

S

PH

EK

P

C

Enc
′

Figure 7.3 – The setting of the CPSS attack. The security game is parameterized
by a block-based scheme Π with a block size n, a secret size |S| and a distribution
X ({0, 1}|S|). The goal of the adversary is to output S′ = S at the end of the game. The
game is outlined on the left, the special encryption oracle illustrated on the right.

positive integer b. This is assumed for S too. Typically P and S must be byte strings,

whence b = 8; for concreteness, let us assume this is the case. Also for concreteness,

assume a blocksize of n = 128 bits. Assume further that E can in fact operate on

arbitrary byte-length strings, but suffers LCP leakage on block-aligned prefixes (this is

what happens if one pads and then applies an OAE1-secure scheme). Finally, assume |S|
is a multiple of the blocksize. We claim that an adversary can recover the secret S with

|S|b · (2b) encryption queries, irrespective of the blocksize n and the distribution with

which S is sampled.

To recover S, the adversary proceeds as follows. First it selects an arbitrary string P 1

whose byte length is one byte shorter than p blocks, for an arbitrary p ≥ 1. (For

example, it would be fine to have P 1 = 0120.) The adversary queries C1 = Enc′(H,P 1) =

EHK (P 1‖S). This will be used to learn S1, the first byte of S. To do so, the adversary

queries C1,B = Enc′(H,P 1‖B) = EHK (P1‖B‖S) for all-but-last one-byte values B (i.e. 255

queries). Due to LCP leakage, there will be at most one value of B for which we will

have llcpn
(
C1, C1,B

)
= p: the one with B = S1. If there is none, S1 is equal to the only

unqueried value of B. At this point the adversary knows the first byte of S, and has

spent 256 queries to get it.

Now the adversary wants to learn S2, the second byte of S. It selects an arbitrary

string P 2 that is two bytes short of p blocks, for any p ≥ 1. The adversary makes the

query C2 = Enc(H,P 2) = EHK (P 2‖S); and it then queries C2,B = Enc′(P 2‖S1‖B) =

EHK (P 2‖S1‖B‖S) for all-but-last one-byte values B. Due to LCP leakage and the fact

that we have recovered the first byte S1 of S already, at most one of these 255 values

will give llcpn
(
C2, C2,B

)
= p, which will allow us to recover S2, as before with S1. At

this point the adversary knows S2, the second byte of S. It has used 256 more queries

to get this.

Continuing in this way, the adversary recovers all of S in 256 · |S|/8 queries. In

general, we need 2b · |S|b queries to recover S, as we claimed. The general CPSS attack
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1: algorithm CPSS(|S|)
2: p← d|S|/ne
3: Pick an H ∈ H
4: S′ ← ε
5: for i← 1 to |S|/b do
6: Pick a P i ∈ {0, 1}p·n−i·b
7: Ci ← Enc′(H,P i)
8: Si ← ⊥
9: for B ∈ {0, 1}b\{1b} do

10: Ci,B ← Enc′(H,P i‖B)
11: if llcpn

(
Ci,B, Ci

)
= p then Si ← B

12: end for
13: if Si = ⊥ then Si ← 1b

14: S′ ← S′‖Si
15: end for
16: return S′

17: end algorithm

Figure 7.4 – The CPSS attack against a block-based AE scheme Π = (K, E ,D) with
blocksize n, and data granularity of b bits.

is described in pseudocode in Figure 7.4.

Note that the CPSS attack also works if the values that prefix S are not completely

chosen by the adversary. It is enough that it be a known, fixed value, followed by the

byte string that the adversary can fiddle with. That is, the attack applies when the

adversary can manipulate a portion R of values L‖R‖S that get encrypted, where L is

known and S is not.3

How practical? It is not uncommon to have protocols where there is a predictable

portion L of a message, followed by an adversarially mutable portion R specifying details,

followed by further information S, some or all of which is sensitive. This happens in

HTTP, for example, where the first portion of a request specifies a method, such as

GET, the second specifies the requested resource, such as /img/scheme.gif/, and the

final portion encodes information such as the HTTP version number, an end-of-line

character, and a secret session cookie. If an LCP-leaking encryption scheme is used in

such a setting, one is asking for trouble: the session cookie may be recovered by an

adversary.

We do not suggest that LCP leakage will always lead to a real-world break. But if

giving adversaries the ability to manipulate the middle portion R of plaintexts L‖R‖S
is sufficient for the nonce misuse to result in a practical attack, one has strayed very far

3A variant of this attack works even if the encrypted messages are of the form L‖P‖R‖S, where the
adversary knows L,R and only controls P .
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indeed from genuine misuse-resistance.

MRAE and CPSS. In Appendix B.2 we show that any MRAE-secure AE scheme

resists the CPSS attack; establishing formally that there is a significant gap between

the nonce misuse resistance guaranteed by OAE1 and that guaranteed by MRAE.

7.4.2 Broader OAE1 Critique

The CPSS attack suggests that it is inaccurate to label OAE1-security as nonce-misuse

resistance, because OAE1-secure schemes deployed in common protocols are susceptible

to realistic nonce-reusing attacks. In this section we further examine OAE1 and identify

issues which we consider to be more fundamental. Because of these, the definition of

OAE1 does, in our opinion, fail to capture the intuition about what something called

“online-AE” ought to do.

The blocksize should not be a scheme-dependent constant. The motivation

for making an AE scheme online is that in certain applications, the implementation of

encryption can only buffer some limited number of bits of the plaintext at a time, be it

due to the constraints of the platform or latency requirements. This in turn implies that

the ciphertext must necessarily be composed of segments of some limited size, such that

ith ciphertext segment only depends on the first i corresponding plaintext segments.

OAE1[n] simply enforces “some” to be n, and demands that the ith block depends

only on the first i blocks of plaintext. Each of these blocks has a fixed blocksize, some

number n associated to the scheme and its security definition. This implies that we

always have to buffer exactly n bits to output the next segment of the ciphertext. It is

not clear if this fixed amount of buffering is done as a matter of efficiency, simplicity,

or security. In schemes targeting OAE1-security, the blocksize is usually small, like 128

bits, the value depending on the width of some underlying blockcipher or permutation

used in the scheme’s construction.

The conceptual problem with this design choice is, that the number of bits that are

reasonable to buffer is application-environment specific. One application might need to

limit the blocksize to 128 KB, so as to fit comfortably within the L2 cache of some CPU.

Another application might need to limit the blocksize to 1 KB, to fit compactly on some

ASIC or FPGA. Another application might need to limit the blocksize to a single byte,

to ensure bounded latency despite bytes of plaintext arriving at unpredictable times.

The problem is that the designer of a cryptographic scheme is in no position to know

the implementation-environment’s constraints that would motivate the selection of a

suitable blocksize. By choosing some fixed blocksize n, a scheme’s designer simultan-

eously hinders an implementation’s potential need to buffer less than n bits and an

implementation’s potential ability to buffer more than n bits of plaintext. Any choice of

a blocksize replaces a user’s environment-specific constraint by a hardwired choice from

a primitive’s designer.
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Remark 6 (Blocksize vs. memory constraints). Before moving on let us point out that,

if it is the amount of memory available to an implementation that is an issue, the right

constraint is not the blocksize n, where block Ci depends only on prior blocks, but the

requirement that an implementation be achievable in one pass and n bits of memory.

These are not the same thing [RZ11, p. 241]. And the former is a poor substitute for

the latter since context sizes vary substantially from scheme to scheme. While one could

build an OAE notion with the amount of memory as an explicit parameter, we find it

preferable to avoid such approach.

Security must be defined for all plaintexts. The original OAE1[n] notion only

defines security when messages are a multiple of n bits. Yet, such a message space is

far from practical in a vast majority of AE applications, which work with a smaller, or

simply different, data granularity than a typical value of n (e.g., n = 128, or perhaps

n = 64 in legacy applications). In general, we think that an online-AE definition is

not really meaningful (in practice) until one has specified what security means on the

message space M = {0, 1}∗.
We note that saying “we pad first, there is no need to deal with strings that aren’t

multiples of the blocksize” does not really solve the raised issue, as it still leaves unspe-

cified what is the goal one is aiming to achieve for the “incomplete” messages by applying

the padding.4

Decryption too must be online. If one is able to produce ciphertext blocks in an

online fashion one had better be able to decrypt them in the same fashion as they arrive.

Perhaps the message was too long to be stored on the encrypting device. Then the same

will likely hold on the decrypting device. Or perhaps there are timeliness constraints

due to which one needs to act on a message fragment now, before the remainder of it

arrives. For example, a video streaming service such as Netflix or YouTube needs to

accommodate for such a constraint; it would be pointless to encrypt a video in an online

fashion only to have to buffer the entire thing at the receiver’s side before it could play.

But online decryption is not required by OAE1 security, and it is routine that online

decryption of each provided block would be fatal. We conjecture that it is an unusual

scenario where it is only important for encryption be computable online.

The OAE1 reference object is not ideal. The reference object for OAE1[n] security

pre-supposes that encryption resembles an online-cipher followed by a random-looking

tag. But it is wrong to think of this as capturing ideal behavior.

First, it implicitly assumes that all authenticity is taken care of at the very end. But if

a plaintext is long and one is interested in encryption being online to ensure timeliness,

then waiting until the entire ciphertext arrives to check authenticity makes no sense.

4There are natural ways to try to extend OAE1[n] security to a larger message space; see, for example,
the approach used for online ciphers on {0, 1}≥n [RZ11]. This can be extended to OAE1. But it is not
the only approach, and there will still be issues for dealing with strings of fewer than n bits.
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Then, if one is going to act on a prefix of a plaintext as soon as it is recovered, it better

be authenticated.

Second, it is simply irrelevant, from a security point of view, if, prior to receipt of an

authentication tag, encryption amounts to length-preserving permutation. Doing this

may minimize ciphertext length, but that is an efficiency issue, not a basic goal. And

achieving this particular form of efficiency is at odds with possible authenticity aims.

7.5 Reformalizing Online AE

We remodel the online-AE and reformalize its security in a new notion. We will call it

OAE2. To accurately model the underlying goal, not only must the security definition

depart from (the games used in) NAE and MRAE, but so too must a scheme’s basic

syntax. In particular, we adopt an API-motivated view in which the segmentation of a

plaintext is determined by the caller.

After defining the syntax we offer three ways to quantify the advantage an adversary

gets in attacking an OAE2 scheme. We term these advantage measures OAE2a, OAE2b,

OAE2c. The notions are essentially equivalent. We provide quantitative results to make

this essentially precise.

We define the quantification of OAE2 security in three different advantage measures

mainly to clarify what OAE2 really is. The measures have different characteristics. The

first, OAE2a, is a vector-oriented formulation. It compares a scheme to a fairly easy-to-

understand reference object. The second advantage measure, OAE2b, is a string-oriented

formulation. It uses a tighter and more realistic accounting of the adversarial resources.

The third advantage measure, OAE2c, is also string-oriented and is more aspirational in

character. Yet it is the easiest notion to work with, at least for proving schemes OAE2-

secure. The OAE2c measure only makes sense, however, if the segment-expansion τ is

fairly large.

Segmented strings. In this chapter, we use the term segmented-strings to denote the

vectors (or lists) of strings. Thus we call {0, 1}∗∗ = ({0, 1}∗)∗ the set of segmented-

strings, a segmented string X ∈ {0, 1}∗∗ is a vector of strings, and the segmented-string

with zero components is the empty list Λ. Note that Λ is not the same as the empty string

ε. We call the strings that are components of a segmented string segments. We refer

the reader to the Section 2.1 for further notation used for vectors. We emphasize that

a segmented string is not a string (and that an empty string and an empty segmented

string are not the same thing, i.e. Λ 6= ε).

Online AE syntax. A segmented-AE scheme is a tuple Π = (K, E ,D) where the

key space K is a nonempty set with an associated distribution and both encryption

E = (E .init, E .next, E .last) and decryption D = (D.init,D.next,D.last) are specified by

triples of deterministic algorithms. Associated to Π are its nonce space N ⊆ {0, 1}∗

and its state space S. For simplicity, a scheme’s AD space A = {0, 1}∗, message space
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algorithm E(K,N,A,M)
m← |M |; if m = 0 or |A| 6= |M |
then return Λ
(A1, . . . , Am)← A
(M1, . . . ,Mm)←M
S0 ← E .init(K,N)
for i← 1 to m− 1 do

(Ci, Si)← E .next(Si−1, Ai,Mi)
Cm ← E .last(Sm−1, Am,Mm)
return (C1, . . . , Cm)

algorithm D(K,N,A,C)
m← |C|
if m = 0 or |A| 6= |C| then return Λ
(A1, . . . , Am)← A; (C1, . . . , Cm)← C
S0 ← D.init(K,N)
for i← 1 to m− 1 do

if D.next(Si−1, Ai, Ci) = ⊥ then
if m = 1 return Λ
else return (M1, . . . ,Mi−1)

else (Mi, Si)← D.next(Si−1, Ai, Ci)
Mm ← D.last(Sm−1, Am, Cm)
if Mm=⊥ then

return (M1, . . . ,Mm−1)
else return (M1, . . . ,Mm)

Figure 7.5 – Operating on segmented strings. The figure shows the algorithms E
and D that are induced by the segmented encryption scheme Π = (K, E ,D).

M = {0, 1}∗, and ciphertext space C = {0, 1}∗ are all strings. While an AD will be

provided with each plaintext segment, a single nonce is provided for the entire sequence

of segments. The signatures of the components of E and D are as follows:

E .init : K ×N → S D.init : K ×N → S
E .next : S ×A×M→ C × S D.next : S ×A× C → (M×S) ∪ {⊥}
E .last : S ×A×M→ C D.last : S ×A× C →M∪ {⊥}

When an algorithm takes or produces a point S ∈ S from its state space, it is understood

that a fixed encoding of S is employed.

Given a segmented-AE scheme Π = (K, E ,D) there are induced encryption and de-

cryption algorithms

E : K×N×{0, 1}∗∗×{0, 1}∗∗ → {0, 1}∗∗ and D : K×N×{0, 1}∗∗×{0, 1}∗∗ → {0, 1}∗∗

(note the change to bold font) that operate, all at once, on vectors of plaintext, cipher-

text, and AD. These algorithms are defined in Figure 7.5. Observe how Dec(K,N,A,C)

returns a longest M whose encryption (using K, N , and A) is a prefix of C; in essence,

we stop at the first decryption failure, so |C| = |M | if and only if C is entirely valid.

We require the following validity (or else correctness) condition for any segmented-

AE scheme Π = (K, E ,D) with induced (E ,D): if K ∈ K, N ∈ N , A ∈ {0, 1}∗∗,
M ∈ {0, 1}∗∗, and C = E(K,N,A,M), then M = D(K,N,A,C).

Ciphertext expansion. We focus on segmented-AE schemes with constant segment-

expansion, defined as follows: associated to Π is a number τ ≥ 0 such that if K ∈ K,

N ∈ N , A ∈ {0, 1}∗∗, M ∈ {0, 1}∗∗, m = |A| = |M |, and C = E(K,N,A,M), then

|C[i]| = |M [i]| + τ for all i ∈ [1..m]. Thus each segment grows by exactly τ bits, for
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some constant τ . We call τ the segment-expansion of Π.

We favor constant segment-expansion because we think that the same level of au-

thenticity ought to be guaranteed for the interior segments and for the final segment.

After all, much of the point of online-AE is to allow a decrypting party to safely act

on a ciphertext segment as soon as it is available. Still, there is an obvious price (in

terms of efficiency) to pay for expanding every segment. See the paragraph “Multival-

ued segment-expansion” for the case where the amount of segment-expansion is position

dependent.

Online computability. We say that a segmented-AE scheme Π = (K, E ,D) has

online-encryption if its state space S is finite and there is a constant w such that E .next

and E .last use at most w bits of working memory. The value w excludes memory used

for storing an algorithm’s inputs or output; we elaborate below.

Similarly, scheme Π has online-decryption if its state space S is finite and there’s a

constant w′ such that D.next and D.last use at most w′ bits of working memory. A

segmented-AE scheme is online if it has online-encryption and online-decryption.

In accounting for memory above, we assume a model of computation in which the

input values are provided on a read-only input tape; the input’s length is not a part

of the working memory accounted for by w. Similarly, algorithms produce outputs by

writing to a write-only output tape in a left-to-right fashion. The number of bits written

out has nothing to do with the working memory w.

Our security definitions do not care if a segmented-AE scheme is online: that is an

efficiency requirement, not a security requirement. Yet a good part of the purpose of

the segmented-AE syntax is to properly model schemes that aim to comply with such

efficiency constraints.

7.5.1 First OAE2 Definition: OAE2a

We begin by defining the ideal behavior for an OAE2 scheme. For any τ ∈ N, we endow

the set of τ -expanding injections Inj(τ) with a“uniform”distribution: sampling a random

τ -expanding injection f ←$ Inj(τ) is equivalent with sampling fm ←$ Inj(2m, 2m+τ ) for

every m ∈ N and letting f(M) = f|M |(M) for all M ∈ {0, 1}∗. We define a distribution

on functions F ←$ IdealOAE(τ) as follows:

for m ∈ N, N ∈ {0, 1}∗, A ∈ ({0, 1}∗)m, M ∈ ({0, 1}∗)m−1 do

fN,A,M ,0 ←$ Inj(τ); fN,A,M ,1 ←$ Inj(τ)

for m ∈ N, A ∈ ({0, 1}∗)m, X ∈ ({0, 1}∗)m, δ ∈ {0, 1} do

F (N,A,X, δ)← (fN,A[1..1],Λ,0(X[1]), fN,A[1..2],X[1..1],0(X[2]),

fN,A[1..3],X[1..2],0(X[3]), . . . , fN,A[1..m−1],X[1..m−2],0(X[m− 1]),

fN,A[1..m],X[1..m−1],δ(X[m]))

return F

Thus F ←$ IdealOAE(τ) grows by accretion, the ith component of F (N,A,X, 0) de-
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proc initialize oae2a-RΠ

K ←$ K

oracle Enc(N,A,M)
if N 6∈N or |A| 6= |M | then

return ⊥
return E(K,N,A,M)

oracle Dec(N,A,C)
if N 6∈N or |A| 6= |M | then

return ⊥
return D(K,N,A,C)

proc initialize oae2a-IΠ

F ←$ IdealOAE(τ)

oracle Enc(N,A,M)
if N 6∈ N or |A| 6= |M | then

return ⊥
return F (N,A,M , 1)

oracle Dec(N,A,C)
if N 6∈ N or |A| 6= |C| then

return ⊥
if ∃M s.t. F (N,A,M , 1) = C then

return M
M ← LongestValidSubvector(F,N,A,C)
return M

Figure 7.6 – OAE2a security. The segmented-AE scheme Π = (K, E ,D) has nonce
space N and segment-expansion τ . It induces algorithms E,D as per Figure 7.5.
The notation LongestValidSubvector(F,N,A,C) stands for the longest vector in {M :
F (N,A,M , 0)[i] = C[i] for i ∈ [1..|M |−1]}. The distribution IdealOAE(τ) is described
in Section 7.5.1.

pending on N , A[1..i], and X[1..i]. It must be decryptable (hence the injectivity) and

have the mandated length. The final input to F , the flag δ, indicates if the argument X

is complete: a 1 means it is, a 0 means it’s not. Figure 7.6 defines games oae2a-RΠ and

oae2a-IΠ for a τ -expanding segmented-AE scheme Π. We note that a sampled function

F ←$ IdealOAE(τ) can be efficiently implemented by lazy sampling.5

Definition 7.2 (OAE2a security). Given a segmented-AE scheme Π = (K, E ,D) with

ciphertext expansion τ ∈ N, and given an adversary A , we define the advantage of A

in breaking the OAE2a AE security of Π in a chosen ciphertext attack (with help of the

games oae2a-R and oae2a-I in Figure 7.6) as

Advoae2a
Π (A ) = Pr[A oae2a-RΠ ⇒ 1]− Pr[A oae2a-IΠ ⇒ 1].

If Advoae2a
Π (A ) ≤ ε for all adversaries A whose running time is limited by t, whose

queries contain no more than q segments in total, and whose data complexity (in bits)

in all queries is limited by σ then we say that Π is a (ε, t, q, σ)-secure OAE2a scheme.

Discussion. We now explain the intuition behind the notion OAE2a. A user of online

AE wants to encrypt a segmented message M = (M1, . . . ,Mm) into a ciphertext C =

(C1, . . . , Cm) using K,N,A. He/she wants to do this as well as possible subject to

5A random τ -expanding injection can be implemented similarly as a random online permutation. A
function F ←$ IdealOAE(τ) can then be implemented as a dynamically extendible collection of random
injections.
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the constraint that segments grow by exactly τ bits and M1 · · ·Mi are recoverable from

K,N, (A1, . . . , Ai), (C1, . . . , Ci) (to allow online decryption).

Similarly as the security notion of robust-AE [HKR15], we target an achievable (in-

stead of aspirational) goal, which is signalled by the phrase “as well as possible” . Spe-

cifically, our goal is formalized by comparing a real scheme to a random element from

IdealOAE(τ) and its inverse, the latter understood to invert as many components as

possible, stopping at the first point one can’t proceed.

The definition of IdealOAE(τ) is complex enough that an example may help. Consider

encrypting a segmented plaintext M = (A,B,C,D) with a fixed key, nonce, and AD.

Let (U, V,X, Y ) be the result. Now encrypt M ′ = (A,B,C). We want the encryption

algorithm to return (U, V, Z), not (U, V,X), as the final segment is special: processed

by E .last instead of E .next, it is as though M = (A,B,C,D) means (A,B,C,D$), while

M = (A,B,C) means (A,B,C$), where the $-symbol is an end-of-message sentinel.

Written like this, it is clear that the two segmented ciphertexts should agree on the first

two components but not the third. Correspondingly, possession of (U, V,X, Y ) ought

not enable a forgery of (U, V,X). All of this understanding gets quietly embedded into

the definition of IdealOAE(τ), whose member functions get a final argument δ with

semantics indicating if the message is complete. Thus F (N,A, (A,B,C), 0) is what

M = (A,B,C) should map to if more segments are to come, while F (N,A, (A,B,C), 1)

is what it should map to if C is the final segment of M .

7.5.2 Second OAE2 Definition: OAE2b

The games in Figure 7.7 provide a more fine-grained and string-oriented measure for

OAE2 security. The adversary, instead of querying N,A,M and getting a vector C =

Enc(N,A,M), can adaptively grow A and M one component at a time. Similarly,

instead of providing a segmented ciphertext N,A,C and getting M = Dec(N,A,C), it

can adaptively grow A,C.

Definition 7.3 (OAE2b security). Given a segmented-AE scheme Π = (K, E ,D) with

ciphertext expansion τ ∈ N, and given an adversary A , we define the advantage of A

in breaking the OAE2b AE security of Π in a chosen ciphertext attack (with help of the

games oae2b-R and oae2b-I in Figure 7.7) as

Advoae2b
Π (A ) = Pr[A oae2b-RΠ ⇒ 1]− Pr[A oae2b-IΠ ⇒ 1].

If Advoae2b
Π (A ) ≤ ε for all adversaries A whose running time is limited by t, who

make no more than q calls to any of the interfaces of both encryption and decryption,

and whose data complexity (in bits) in all queries is limited by σ then we say that Π is

a (ε, t, q, σ)-secure OAE2b scheme.

The OAE2a and OAE2b measures are essentially equivalent. The meaning of “essen-

tially” is made precise by a simple result explaining how to convert an adversary for one

definition into an adversary for the other. This is stated formally in Proposition 7.4.
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proc initialize oae2b-RΠ

I, J ← 0; K ←$ K

oracle Enc.init(N)
if N 6∈ N then

return ⊥
I ← I + 1; SI ← E .init(K,N)
return I

oracle Enc.next(i, A,M)
if i 6∈ [1..I] or Si = ⊥ then

return ⊥
(C, Si)← E .next(Si, A,M)
return C

oracle Enc.last(i, A,M)
if i 6∈ [1..I] or Si = ⊥ then

return ⊥
C ← E .last(Si, A,M)
Si ← ⊥
return C

oracle Dec.init(N)
if N 6∈ N then

return ⊥
J ← J + 1; S′J ← D.init(K,N)
return J

oracle Dec.next(j, A,C)
if j 6∈ [1..J ] or S′j = ⊥ then

return ⊥
(M,S′j)← D.next(S′j , A,C)

return M

oracle Dec.last(j, A,C)
if j 6∈ [1..J ] or S′j = ⊥ then

return ⊥
M ← D.last(S′j , A,C)

S′j ← ⊥
return M

proc initialize oae2b-IΠ

I, J ← 0; F ←$ IdealOAE(τ)

oracle Enc.init(N)
if N 6∈ N then return ⊥
I ← I + 1; NI ← N
AI ← Λ; MI ← Λ
return I

oracle Enc.next(i, A,M)
if i 6∈ [1..I] or Mi = ⊥ then return ⊥
Ai ← Ai‖A; Mi ←Mi‖M
m← |Mi|; C ← F (Ni,Ai,Mi, 0)
return C[m]

oracle Enc.last(i, A,M)
if i 6∈ [1..I] or Mi = ⊥ then return ⊥
Ai ← Ai‖A; Mi ←Mi‖M
m← |Mi|; C ← F (Ni,Ai,Mi, 1)
Mi ← ⊥
return C[m]

oracle Dec.init(N)
if N 6∈ N then return ⊥
J ← J + 1; N ′J ← N
A′j ←$ Λ; CJ ← Λ

return J

oracle Dec.next(j, A,C)
if j 6∈ [1..J ] or Cj = ⊥ then return ⊥
A′j ← Aj‖A; Cj ← Cj‖C; m← |Cj |
if ∃M s.t. F (N ′j ,A

′
j ,M , 0) = Cj then

return M [m]
else

Cj ← ⊥; return ⊥

oracle Dec.last(j, A,C)
if j 6∈ [1..J ] or Cj = ⊥ then return ⊥
A′j ← A‖A; Cj ← Cj‖C; m← |Cj |
if ∃M s.t. F (N ′j ,A

′
j ,Mj , 1) = Cj then

Cj ← ⊥; return M [m]
else

Cj ← ⊥; return ⊥

Figure 7.7 – OAE2b security. The segmented-AE scheme Π = (K, E ,D) has nonce
space N and segment-expansion τ . The distribution IdealOAE(τ) is defined in Sec-
tion 7.5.1.
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Proposition 7.4 (OAE2a ≈ OAE2b). Let Π be a segmented-AE scheme with ciphertext

expansion τ . For any OAE2a adversary A1 hat runs in time t1 and queries σ1 segments

in total, there is an adversary B1 that has

Advoae2a
Π (A1) ≤ Advoae2b

Π (B1)

such that B1 runs in time t1 +γ1 ·σ1 for some constant γ1, and queries the same number

of segments in total as does A1.

For any OAE2b adversary B2 that runs in time t2 and queries up to σ2 segments in

total, there is an adversary A2 that has

Advoae2b
Π (B2) ≤ Advoae2a

Π (A2)

such that A2 runs in time t2 +γ2 ·σ2
2 for some constant γ2, and queries up to σ2

2 segments

in total.

Proof. First, given an OAE2a adversary A1 we construct an equally effective OAE2b

adversary B1: it translates each query Enc(N, (A1, . . . , Am), (M1, . . . ,Mm)) asked by

adversary A1 into an Enc.init, thenm−1 Enc.next calls, then an Enc.last call, assembling

the answers into a segmented ciphertext (C1, . . . , Cm). Similarly, it translates any query

Dec(N, (A1, . . . , Am), (C1, . . . , Cm)) into a sequence of Dec.init, Dec.next, Dec.last calls.

Adversary B1 gets exactly the OAE2b-advantage that A1 had as OAE2a-advantage. It

runs in almost the exact same time.

Simulation in the other direction is less efficient. Given an adversary B2 attacking the

OAE2b-security of a Π, we construct an adversary A2 for attacking the OAE2a-security

of the same scheme. Adversary A2 maintains lists Ni,Ai,Mi that are initialized in the

natural way with each Enc.init call (incrementing i, initially zero, with each Enc.init).

Calls of the form Enc.next(i, A,M), when valid, result in appending A to Ai and M to

Mi, making an Enc(Ni,Ai‖ε,Mi‖ε) call, and returning its |Mi|-th component. Calls of

the form Enc.last(i, A,M) result in making an Enc(Ni,Ai‖A,Mi‖M) call, returning its

last component, resetting Mi to ⊥ before doing so. Calls of the form Dec.init, Dec.next,

and Dec.last are treated analogously, maintaining N ′i , A
′
i,Ci values. Once again the

simulation is perfect, so Advoae2a
Π (A2) = Advoae2b

Π (B2). But now there is a quadratic

slowdown in running time: the argument lists can grow long, as can return values, only

one component of which is used with each call.

While the OAE2a definition is more compact, the adversary’s ability to ask segmentwise

adaptive queries in the OAE2b definition ultimately makes it preferable, particularly as

this better models the real-world semantics; an adversary might be able to incrementally

grow a plaintext or ciphertext with the unwitting cooperation of some encrypting or

decrypting party. 6

6We note that we could grant the adversary with even greater ability to adapt its queries that would
allow it to grow a tree, and not just a chain of segments. But this would not seem to model anything
meaningful in the real-world.
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There are a couple of further reasons to favor OAE2b. One is that it more directly

captures the possibility of “infinite” (non-terminating) plaintexts (an infinite “stream”

of messages). This is simply the setting where Enc.last and Dec.last are never called.

Second, the OAE2b definition makes it easier to define nonce-respecting adversaries for

the OAE setting. Such adversaries may adaptively grow a plaintext based on a single

nonce, but it may grow only one plaintext for any given nonce. Building on the OAE2a

formulation this is awkward to say, but building on the OAE2b formulation, it is natural.

7.5.3 Third OAE2 Definition: OAE2c

Let Π be a segmented-AE scheme with segment-expansion τ and nonce-space N . Our

final formulation of OAE2 security uses a two-part definition, separately defining privacy

and authenticity requirements with help of the games defined in Figure 7.8.

Definition 7.5 (OAE2c security). Given a segmented-AE scheme Π = (K, E ,D) with

ciphertext expansion τ ∈ N, and given an adversary A , we define the advantage of A

in breaking the confidentiality of Π in a chosen plaintext attack (with help of the games

oae2c-R and oae2c-I in Figure 7.8) as

Advoae2-priv
Π (A ) = Pr[A oae2c-RΠ ⇒ 1]− Pr[A oae2c-IΠ ⇒ 1].

Given an adversary A ′, we define the advantage of A ′ in breaking the authenticity of Π

in a chosen ciphertext attack (with help of the game oae2c-F in Figure 7.8) as

Advoae2-auth
Π (A ′) = Pr[A oae2c-FΠ ⇒ true]

where A oae2c-FΠ ⇒ true denotes the event that A ′ returns a value that, when provided

as input to the procedure finalize, evaluates to true.

If Advoae2-priv
Π (A ) ≤ ε for all adversaries A whose running time is limited by t, who

make no more than q calls to any of the interfaces of both encryption and decryption,

and whose data complexity (in bits) in all queries is limited by σ then we say that Π is

a (ε, t, q, σ)-privacy-secure OAE2c scheme.

If Advoae2-auth
Π (A ′) ≤ ε′ for all adversaries A ′ whose running time is limited by t′,

who make no more than q′ calls to any of the interfaces of both encryption and decryption,

and whose data complexity (in bits) in all queries is limited by σ′ then we say that Π is

a (ε′, t′, q′, σ′)-authenticity-secure OAE2c scheme.

Definition OAE2c is simpler than the prior two in the sense that, for privacy, no decryp-

tion oracles are provided and the reference experiment simply returns the right number

of uniformly random bits. For the authenticity portion of the definition, forgeries are

defined to allow any (N,A,C) that the adversary does not trivially know to be valid,

the adversary marking if C has terminated (b = 1) or not (b = 0). The set Y records

the tuples that the adversary knows to be trivially correct from its encryption queries.
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proc initialize oae2c-RΠ oae2c-FΠ

I ← 0; K ←$ K
Y ← ∅

oracle Enc.init(N)
if N 6∈ N then

return ⊥
I ← I + 1; SI ← E .init(K,N)
NI ← N ; AI ←MI ← CI ← Λ
return I

oracle Enc.next(i, A,M)
if i 6∈ [1..I] or Si = ⊥ then

return ⊥
(C, Si)← E .next(Si, A,M)
Ai ← Ai‖A; Mi ←Mi‖M
Ci ← Ci‖C; Y ← Y ∪ {(Ni,Ai,Ci, 0)}
return C

oracle Enc.last(i, A,M)
if i 6∈ [1..I] or Si = ⊥ then

return ⊥
C ← E .last(Si, A,M); Si ← ⊥
Ai ← Ai‖A; Mi ←Mi‖M
Ci ← Ci‖C; Y ← Y ∪ {(Ni,Ai,Ci, 1)}
return C

�proc finalize (N,A,C, b)
�if N /∈ N or (N,A,C, b)∈Y then
� return false
�if |A| 6= |C| or |A|=0 then
� return false
�S ← D.init(K,N); m← |C|
�for i← 1 to m− b do
� (M,S)← D.next(S,A[i],C[i])
� if M = ⊥ then return false
�if b = 1 and D.last(S,A[m],C[m]) = ⊥
� then return false
�return true

proc initialize oae2c-IΠ

I ← 0
E(x)← ⊥ for all x

oracle Enc.init(N)
if N 6∈ N then

return ⊥
I ← I + 1
NI ← N ; Ai ←Mi ← Λ
return I

oracle Enc.next(i, A,M)
if i 6∈ [1..I] or Ni = ⊥ then

return ⊥
Ai ← Ai‖A; Mi ←Mi‖M
if E(Ni,Ai,Mi, 0) = ⊥ then

E(Ni,Ai,Mi, 0)←$ {0, 1}|M |+τ
C ← E(Ni,Ai,Mi, 0)
return C

oracle Enc.last(i, A,M)
if i 6∈ [1..I] or Ni = ⊥ then

return ⊥
Ai ← Ai‖A; Mi ←Mi‖M
if E(Ni,Ai,Mi, 1) = ⊥ then

E(Ni,Ai,Mi, 1)←$ {0, 1}|M |+τ
C ← E(Ni,Ai,Mi, 1); Ni ← ⊥
return C

Figure 7.8 – OAE2c security. Privacy and authenticity are separately defined, the
first by comparing games oae2c-R and oae2c-I, and the second using game oae2c-F,
which includes the additional lines indicated by �.
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The following propositions show that OAE2b and OAE2c are close, assuming that the

segment-expansion τ is fairly large.

Proposition 7.6 (OAE2c⇒ OAE2b). Let Π be a segmented-AE scheme with ciphertext

expansion τ . For any adversary A that runs in time t, makes no more than q individual

queries and starts no more than p decryption chains, such that it queries no more than

σ bits of data in total, there are adversaries B1 and B2 for which

Advoae2b
Π (A ) ≤ Advoae2-priv

Π (B1) + p ·Advoae2-auth
Π (B2) + q2/2τ .

For each i ∈ {1, 2}, adversary Bi runs in time t+γi ·σ for some constant γi, and queries

at most σ bits in total.

proc Enc.init(N)
I ← I + 1; NI ← N ; SI ← ε
MI ,AI ,CI ← Λ
return Enc.init(N)

proc Enc.next(i, A,M)
if i > I or Si = ⊥ then return ⊥
C ← Enc.next(i, A,M)
Mi ←Mi‖M ; Ai ← Ai‖A
Ci ← Ci‖C; H[Ni,Ai,Ci, 0]←Mi

return C

proc Enc.last(i, A,M)
if i > I or Si = ⊥ then return ⊥
C ← Enc.last(i, A,M); Si ← ⊥
Mi ←Mi‖M ; Ai ← Ai‖A
Ci ← Ci‖C; H[Ni,Ai,Ci, 1]←Mi;
return C

proc Dec.init(N)
J ← J + 1; N ′J ← N ; S′J ← ε
A′J ,C

′
J ← Λ

return J

proc Dec.next(j, A,C)
if j > J or S′j = ⊥ then return ⊥
A′j ← A′j‖A; C ′j ← C
if H[N ′j ,A

′
j ,C

′
j , 0] 6= ⊥ then

M ← H[N ′j ,A
′
j ,C

′
j , 0]

return M [|M |]
Y ← Y ∪ {(N ′j ,A′j ,C ′j , 0)}; S′j ← ⊥;
return ⊥
proc Dec.last(j, A,C)
if j > J or S′j = ⊥ then return ⊥
A′j ← A′j‖A; C ′j ← C; S′j ← ⊥
if H[N ′j ,A

′
j ,C

′
j , 0] 6= ⊥ then

M ← H[N ′j ,A
′
j ,C

′
j , 1]

return M [|M |]
Y ← Y ∪ {(N ′j ,A′j ,C ′j , 1)}
return ⊥

Figure 7.9 – The procedures that Bi (with i ∈ {1, 2}) runs in the proof of Pro-
position 7.6 to simulate A ’s oracles. The procedures Enc.init,Enc.next,Enc.last are
the encryption oracles of Bi. There is an implicit procedure initialize() that initializes
I, J ← 0, Y ← ∅ and H to an empty array.

Proof. We construct the adversary B1 from A as follows. The former runs the latter,

implementing A ’s oracles as indicated in Figure 7.9, and outputs the same guess as A .

Next, we create adversary B2 from A as follows. The former runs the latter, imple-

menting A ’s oracles as indicated in Figure 7.9. When A terminates, B2 will process the

resulting set Y. For (N,A,C, 0) and (N,A′,C ′, δ) in Y, we’ll delete the former vector if

m = |A| < |A′|, and A[i] = A′[i] and C[i] = C ′[i] for every i ≤ m. Now the set Y will
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proc Enc.init(N)
I ← I + 1; NI ← N
SI ← E .init(K,N); MI ,AI ,CI ← Λ
return I

proc Enc.next(i, A,M)
if i > I or Si = ⊥ then return ⊥
C ← E .next(Si, A,M)
Mi ←Mi‖M ; Ai ← Ai‖A
Ci ← Ci‖C; H[Ni,Ai,Ci, 0]←Mi;
return C

proc Enc.last(i, A,M)
if i > I or Si = ⊥ then return ⊥
C ← E .last(Si, A,M); Si ← ⊥
Mi ←Mi‖M ; Ai ← Ai‖A
Ci ← Ci‖C; H[Ni,Ai,Ci, 1]←Mi;
return C

proc Dec.init(N) Games G1, G2

J ← J + 1; N ′J ← N
S′J ← D.init(K,N); M ′

J ,A
′
J ,C

′
J ← Λ

return J

proc Dec.next(j, A,C)
if j > J or S′j = ⊥ then return ⊥
A′j ← A′j‖A; C ′j ← C ′j‖C
if H[N ′j ,A

′
j ,C

′
j , 0] 6= ⊥ then

M ← H[N ′j ,A
′
j ,C

′
j , 0]

return M [|M |]
(M,S′j)← D.next(S′j , A,C)

if M 6= ⊥ then bad← true; S′j ,M ← ⊥
return M

proc Dec.last(j, A,C)
if j > J or S′j = ⊥ then return ⊥
A′j ← A′j‖A; C ′j ← C ′j‖C
if H[N ′j ,A

′
j ,C

′
j , 0] 6= ⊥ then

M ← H[N ′j ,A
′
j ,C

′
j , 1]; S′j ← ⊥

return M [|M |]
if M 6= ⊥ then bad← true; M ← ⊥
S′j ← ⊥;
return M

proc Enc.init(N)
I ← I + 1; NI ← N
SI ← ε; MI ,AI ,CI ← Λ
return I

proc Enc.next(i, A,M)
if i > I or Si = ⊥ then return ⊥
Ai ← Ai‖A; C ← ρNi,Ai,Mi,0(M)
Mi ←Mi‖M ; Ci ← Ci‖C
H[Ni,Ai,Ci, 0]←Mi

return C

proc Enc.last(i, A,M)
if i > I or Si = ⊥ then return ⊥
Ai ← Ai‖A; C ← ρNi,Ai,Mi,1(M)
Si ← ⊥; Mi ←Mi‖M
Ci ← Ci‖C; H[Ni,Ai,Ci, 1]←Mi

return C

proc Dec.init(N) Game G3

J ← J + 1; N ′J ← N
S′J ← ε; M ′

J ,A
′
J ,C

′
J ← Λ

return J

proc Dec.next(j, A,C)
if j > J or S′j = ⊥ then return ⊥
A′j ← A′j‖A; C ′j ← C ′j‖C
if H[N ′j ,A

′
j ,C

′
j , 0] 6= ⊥ then

M ′
j ←M ← H[N ′j ,A

′
j ,C

′
j , 0]

return M [|M |]
M ← ρ−1

N ′j ,A
′
j ,M

′
j ,0

(C)

if M = ⊥ then S′j ← ⊥
else M ′

j ←M ′
j‖M fi

return M

proc Dec.last(j, A,C)
if j > J or S′j = ⊥ then return ⊥
A′j ← A′j‖A; C ′j ← C; S′j ← ⊥
if H[N ′j ,A

′
j ,C

′
j , 0] 6= ⊥ then

M ← H[N ′j ,A
′
j ,C

′
j , 1]

return M [|M |]
M ← ρ−1

N ′j ,A
′
j ,M

′
j ,1

(C)

return M

Figure 7.10 – Games G1–G3 in the proof of Proposition 7.6. Game G2 contains
the boxed statements, but game G1 doesn’t. There is an implicit procedure initialize()
that initializes I, J ← 0 and Z ← ∅, and samples ρN,A,M ,δ ←$ Inj(τ) for every N ∈
N , δ ∈ {0, 1}, and A,M ∈ {0, 1}∗∗ such that |A| = |M |+ 1.
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have only p elements that correspond to the p decryption chains. Adversary B2 then

outputs a random element of Y as its forgery attempt.

Consider games G1–G3 in Figure 7.10. Game G1 corresponds to game oae2b-RΠ.

Game G2 is identical to game G1, except that Dec.next and Dec.last always return ⊥.

The two games are identical-until-bad, and thus by Lemma 2.1

Pr[A G1 ⇒ 1]− Pr[AG2 ⇒ 1] ≤ Pr[A G2 sets bad]

≤ p · Pr[Boae2c-FΠ
2 ]

≤ p ·Advoae2-auth
Π (B2) .

Game G3 is identical to game G2, except that instead of calling Enc.next(i, A, ·) and

Enc.last(i, A, ·), we use ρNi,Ai,Mi,0 ←$ Inj(τ) and ρNi,Ai,Mi,1 ←$ Inj(τ) respectively.

Moreover, Dec.next(i, A, ·) and Dec.last(i, A, ·) are also replaced by ρ−1
Ni,Ai,Mi,0

and

ρ−1
Ni,Ai,Mi,1

respectively.

We have Pr[A G2 ⇒ 1] = Pr[Boae2c-R
1 ⇒ 1]. In addition, Pr[Boae2c-I

1 ⇒ 1] −
Pr[A G3 ⇒ 1] is exactly the gap between PRI and MRAE, which is upper-bounded

by q2/2τ+1 + 4q/2τ ≤ q2/2τ [RS06b, Theorem 7]. Finally, game G3 coincides with game

oae2b-IΠ. Summing up,

Advoae2b
Π (A ) = Pr[AG1 ⇒ 1]− Pr[AG3 ⇒ 1]

≤ Advoae2-priv
Π (B1) + p ·Advoae2-auth

Π (B2) + q2/2τ .

Proposition 7.7 (OAE2b⇒ OAE2c). Let Π be a segmented-AE scheme with ciphertext

expansion τ . For any adversaries A1 that runs in time t+ 1 and makes no more than q

individual queries with σ1 bits of data in total, and A2 that runs in time t2, queries at

most σ2 bits of data in total and outputs ` segments in its forgery attempt, there exist

adversaries B1 and B2 for which

Advoae2-priv
Π (A1) ≤ Advoae2b

Π (B1) + q2/2τ and

Advoae2-auth
Π (A2) ≤ Advoae2b

Π (B2) + `/2τ .

For each i ∈ {1, 2}, adversary Bi runs in time ti + γi · σi for some constant γi, and the

total length of its queries is at most σi.

Proof. Constructing B1 is trivial: it ignores its decryption oracles and runs A1 on its

encryption oracles. Then Pr[Boae2b-RΠ
1 ⇒ 1] = Pr[A oae2c-RΠ

1 ⇒ 1], and Pr[Boae2b-I
1 ⇒

1]− Pr[A oae2c-I
1 ⇒ 1] is the gap between PRI and MRAE, which is upper-bounded by

q2/2τ+1 + 4q/2τ ≤ q2/2τ [RS06b, Theorem 7]. Hence

Advoae2b
Π (B1) = Advoae2-priv

Π (A1) + q2/2τ .

We create the adversary B2 from A2 as follows. The former runs the latter on its en-
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cryption oracles and maintains the set Y of the partial decryption chains (Ni,Ai,Ci, δi)

as in game oae2c-FΠ. When A2 outputs (N,A,C, b), adversary B2 runs the following

code:

if |A| 6= |C| or (N,A,C, b) ∈ Y or |C| = 0 then return 0

Dec.init(N); m← |C|
for i← 1 to m− b do

(M,S)← Dec.next(1,A[i],C[i])

if M = ⊥ then return 0

if b = 1 and Dec.last(1,A[m],C[m]) = ⊥ then return 0

return 1

Then Pr[Boae2b-IΠ
2 ⇒ 1] ≤ `/2τ and Advoae2-auth

Π (A2) = Pr[Boae2b-RΠ
2 ⇒ 1]. Hence

Advoae2-auth
Π (A2) ≤ Advoae2b

Π (B2) + `/2τ .

7.5.4 Discussion

Multivalued segment-expansion. It is easy to extend the definitions of this section

to schemes for which the segment-expansion varies according to segment position. In

particular, one could use one expansion value, σ, for plaintext components other than

the last, and a different expansion value, τ , at the end. For such a (σ, τ)-expanding

scheme, distribution IdealOAE(τ) would be adjusted to IdealOAE(σ, τ) in the natural

way.

The main reason for considering multivalued segment-expansion is to clarify how

OAE2 security relates to prior notions in the literature. In particular, OAE2 resembles

OAE1 where the segment-expansion is (0, τ) and where all segments are required to

have some fixed length n. Yet even then the definitions would be very different: the

OAE2 version would be stronger, since an online decryption capability is not allowed to

compromise OAE2 security, whereas the capability may compromise OAE1 security. It

is easy to give a separating example; see Appendix B.3.

Another potential reason to consider multivalued segment-expansion is as a way to

save on bits; obviously one will use fewer total bits, over a sequence of two or more

segments, if only the last is expanded. But we suspect that this benefit is rarely worth

its cost. If segments are 1 KByte (which is fairly short) and tags are 128 bits (which

is fairly long), the difference (in total number of needed bits) between authenticating

every segment and authenticating only the last one will always be less than 2%. In most

application, this seems a small price to pay to have each and every segment properly

authenticated.7

Why vector-valued AD. When modelling OAE, we were unsure if one ought to

think of the AD as a fixed string that is known before the plaintext begins to arrive, or

if, instead, one should think of the AD as vector-valued, its ith segment available when

the ith segment of plaintext is. We adopted the second view (switching from the first at

7At the same time, we recognize that in some very constrained applications, e.g. battery-powered
sensors, saving 2% on communication complexity may lead to a non-negligible increase of battery life.
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the urging of the Keyak team) for closer concordance with prior work [BDPA11a] and

for greater generality: a string-valued AD of A can be regarded as a vector-valued AD

of A = (A, ε, ε, . . .). More philosophically, the two conceptions correspond to whether

one thinks of breaking up a fixed plaintext M into a sequence of segments Mi or one

regards the Mi values as more autonomous, each encrypted when available, each with its

own associated context. With plaintexts and AD both vector-valued, one conceptually

extends across time a channel that securely transmit pairs of strings, one component with

privacy and both with authenticity. All that said, the actual utility of the vector-valued

choice over string-valued AD is uncertain.

The impact of nonce reuse. One of our main objections against FFL’s notion of

OAE1 was that it was advertised as capturing nonce-misuse resistance, while the nonce-

reusing CPSS attack suggests that this label is not that accurate. But the CPSS attack,

once accordingly adjusted, also applies to any OAE2-secure scheme. It applies even if

the attacker does not control the segmentation, it is enough that a plaintext always gets

segmented with the same pattern, starting from the left.

In fact, if the encryption is online, and if the setting is such that a secret value is

prepended with a prefix that is under adversarial control, and if nonce-reuse can occur,

a variant of the CPSS attack will apply. It easy to see why; using the controlled prefix,

the adversary can always shift the secret around the boundaries of ciphertext-segments

to apply a divide-and-conquer brute force strategy, as long as the segmentation pattern

is sufficiently predictable and repetitive.

This is why we refrain from referring to OAE2 as a notion for nonce-misuse resistance:

because no AE scheme with online encryption can deliver on the intuition of resisting

the nonce reuse. We prefer the term “best-possible security.”

7.6 Achieving OAE2

In the special case that each segmented-string has only one component, OAE2 (spe-

cifically OAE2a and OAE2b) degenerates to the notion of a τ -expanding pseudorandom

injection (Definition 2.11). The notion is close to MRAE (Definition 2.10), with a gap

q2/2s+τ +q/2τ where q is the number of queries and s is the length of the shortest plain-

text queried. We construct an OAE2-secure scheme from a PRI-secure scheme. The

scheme could be SIV [RS06b] if τ is large, say τ = 128, or AEZ scheme [HKR15], for

arbitrary τ .

The construction. Fix integers n ≥ τ ≥ 0. Let 〈·〉 denote an efficient injective

encoding that maps a pair (A, d) ∈ {0, 1}∗ × {0, 1, 2, 3, 4} to a string 〈A, d〉 ∈ {0, 1}∗.
For example, one can represent d by a three-bit string, and append this to A. Let Π =

(K,E,D) be a nonce-based AE scheme of ciphertext-expansion τ , nonce space {0, 1}n,

and AD space {0, 1}∗. Figure 7.11 defines a segmented-AE scheme CHAIN[Π, 〈·〉, n] =
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(K, E ,D) with segment expansion τ , nonce space {0, 1}n, AD space {0, 1}∗, and state

space K× {0, 1}n.

The intuition behind the construction is best characterized by its name. A sequence

of E .next calls terminated by an E .last call is implemented as a sequence of evaluations

of the nonce-based AE-encryption E, chained by a value derived from each plaintext

and ciphertext segment that is fed to the nonce input. We use the AD-input of E to

ensure proper domain separation between the E .next and E .last calls. We give a formal

statement about the OAE2 security of CHAIN in Theorem 7.8.

Remark 7 (A flaw in CHAIN.). During the writing of this dissertation, a flaw in the

CHAIN construction (call the flawed version CHAIN′) was discovered by its authors.

More precisely, the domain separation constants “d” that get encoded into the AD input

of the underlying PRI did not differentiate the processing of the first segment in a chain

from the processing of all the other “interior” segments. This gave rise to an attack that

easily distinguishes CHAIN′ from the idealized reference objects with two queries.

The key property used in the attack is that whenever the segmented plaintext M =

(0n, 0n, 0n) got encrypted to C = (C[1],C[2],C[3]) (with some nonce and empty AD

segments) by CHAIN′, then the segmented plaintext M = (0n, 0n) encrypted with the

nonce C[1] (and empty AD segments) necessarily got encrypted to C = (C[2],C[3]).

In this chapter, we present the corrected construction.

Discussion. In E .next and D.next, the state is computed via leftn (M)⊕ leftn (C).

One might instead xor the n-bit suffix of M and C; this makes no difference. On the

other hand, suppose one uses just leftn (C), eliminating the xor with leftn (M). Call

this variant CHAIN1[Π, 〈·, 〉, n]. The method is insecure for small τ . Here is an attack

for the case τ = 0. The adversary makes a single query (N,A,C) to the decryption

oracle, where N is arbitrary, A = (ε, ε, ε) and C = (0n, 0n, 0n, 0n). Let the answer

be M = (M1,M2,M3,M4). The adversary will output 1 only if M2 = M3. In the

oae2b-I game the strings M2 and M3 are independent random strings. However, in

game oae2b-R we always have M2 = M3 = DK(0n, 〈ε, 0〉, 0n). Hence the adversary

can win with advantage 1− 2−n. In contrast, for large τ , scheme CHAIN1[Π, 〈·, 〉, n] is

OAE2 secure.

To achieve OAE2 with multivalued segment-expansion, use an RAE-secure under-

lying scheme [HKR15], a generalization of PRI that allows one to select an arbitrary

ciphertext-expansion for each query. The construction is modified in the natural way.

Theorem 7.8. Let Π be a nonce-based AE scheme with stretch τ . Let further 〈·〉 :

{0, 1}∗ × {0, 1, 2, 3, 4} → {0, 1}∗ be an efficient injective encoding, let n ≥ τ , and let

CHAIN[Π, 〈·〉, n] be as defined in Figure 7.11. Let A be an adversary that runs in

time t, makes no more than q ≤ 2n−1 queries in total, such that their data complexity is

limited by σ bits. Then

Advoae2b
CHAIN[Π,〈·〉,n](A ) ≤ Advpri

Π (B) + 2q2/2n
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1: algorithm E .init(K,N)
2: return (K,N, 0)
3: end algorithm

1: algorithm E .next(S,A,M)
2: (K,V, d)← S
3: C ← EK(V, 〈A, d〉,M)
4: if |M | ≥ n then
5: V ← (leftn (C)⊕ leftn (M))
6: else
7: V ← leftn (EK(V, 〈A, 3〉,M‖0n))
8: end if
9: return (C, (K,V, 1))

10: end algorithm

1: algorithm E .last(S,A,M)
2: (K,V, d)← S
3: if d = 0 then
4: d← 4
5: else
6: d← 2
7: end if
8: return EK(V, 〈A, d〉,M)
9: end algorithm

1: algorithm D.init(K,N)
2: return (K,N, 0)
3: end algorithm

1: algorithm D.next(S,A,C)
2: (K,V, d)← S
3: M ← DK(V, 〈A, d〉, C)
4: if M = ⊥ then
5: return (⊥,⊥)
6: end if
7: if |M | ≥ n then
8: V ← leftn (C)⊕ leftn (M)
9: else

10: V ← leftn (EK(V, 〈A, 3〉,M‖0n))
11: end if
12: return (M, (K,V, 1))
13: end algorithm

1: algorithm D.last(S,A,C)
2: (K,V, d)← S
3: if d = 0 then
4: d← 4
5: else
6: d← 2
7: end if
8: return DK(V, 〈A, d〉, C)
9: end algorithm

N

M1

EK

C1

τ

M2

EK

C2

M3

EK

C3

0

τ τ

A1 A2 A31 2

Figure 7.11 – The CHAIN construction for OAE2. Top: Encryption scheme
Π = (K,E,D), secure as a PRI with expansion τ , is turned into a segmented-AE scheme
CHAIN[Π, 〈·〉, n] = (K, E ,D) with K = K. Bottom: Illustration of the scheme. Each
segment of (M1,M2,M3) has at least n bits. Trapezoids represent truncation to n bits.
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for some B that runs in time t + γ · qn for some constant γ, and makes no more than

2q queries that have a total data complexity limited by 5qn bits.

Proof. We construct the adversary B from A as follows. The former runs the latter

and simulates game oae2b-RCHAIN[Π,〈·〉,n], but each call to EK(·) or DK(·) is replaced

by the corresponding query to the Enc or Dec oracle of B, respectively. Adversary B

then outputs the same guess as A .

Consider the games G1–G3 in Figure 7.12. Game G1 is identical with the game

oae2b-RCHAIN[Π,〈·〉,n]. We now analyse the transitions between the games. In all three

games, we sample πV,〈A′,3〉 ←$ Inj(τ) for every V ∈ {0, 1}n and every A′ ∈ {0, 1}∗, and

ρN,A,M ,δ ←$ Inj(τ) for every N ∈ {0, 1}n, δ ∈ {0, 1}, and A,M ∈ {0, 1}∗∗ such that

|A| = |M |+ 1 in the procedure initialize.

Game G2 is identical to game G1, except that instead of using EV,A
K and DV,A

K , we’ll

use an injective function πV,A and its inverse π−1
V,A respectively. We ensure that πV,A ←$

Inj(τ): If πV,A is not defined, we’ll implement it via ρN,A,M ,δ, where (N,A,M , δ) is

created right before we call Map(V,A,M) or MapInv(V,A,C). Note that πV,A will be

independent for each (V,A), because different pairs (V,A), because (V,A) is computed

as a function of (N,A,M , δ) in G2, so (V,A) 6= (V ′, A′) will necessarily have two distinct

preimages (N,A,M , δ) 6= (N ′,A′,M ′, δ′). Then if B plays pri-I it perfectly simulates

G2 for A and we have

Pr[A G1 ⇒ 1]− Pr[A G2 ⇒ 1] = Advpri
Π (B) .

Game G3 is identical to game G2 except that, we make sure that the state V ′ never

repeats, while maintaining the following consistency: (i) calling Map with the same

(V,A,M) always results in the same (C, V ′), (ii) calling MapInv with the same (V,A,C)

always result in the same (M,V ′), and (iii) if (C, V ′)← Map(V,A,M) then necessarily

MapInv(V,A,C) returns (M,V ′), and (iv) if (M,V ′) ← MapInv(V,A,C) and M 6= ⊥
then Map(V,A,M) returns (C, V ′). The two games are identical-until-bad, and thus (by

Lemma 2.1)

Pr[A G2 ⇒ 1]− Pr[A G3 ⇒ 1] ≤ Pr[G2 sets bad] .

We now bound the chance that game G2 sets bad. Terminate the game immediately

when bad gets set; it doesn’t change the probability that G2 sets bad. Observe that

(1) In Map(V,A,M) and MapInv(V,A,C), we’ll have A of the form 〈A′, d〉, with d ∈
{0, 1, 2, 4}.

(2) In Map(V,A,M), we compute C ← πV,A(M) and invoke Ev to compute L ←
πV,〈A′,3〉(M‖0n). The second call is made only if |M | < n, d ∈ {0, 1, 2, 4}, and

there is no prior call Map(V,A,M) or MapInv(V,A,C).

(3) In MapInv(V,A,C), we compute M ← π−1
V,A(C) and invoke Ev to compute L ←

πV,〈A′,3〉(M‖0n). The second call is made only if |M | < n, d ∈ {0, 1, 2, 4}, and

159



proc Enc.init(N)
I ← I + 1; MI ← Λ; AI ← Λ
SI ← (K,N, 0); Ni ← N
return I

proc Enc.next(i, A,M)
if i > I or Si = ⊥ then return ⊥
(K,V, d)← Si; Ai ← Ai‖A
(N,A,M , δ)← (Ni,Ai,Mi, 0)
(C, V )← Map(V, 〈A, d〉,M)
Si ← (K,V, 1); Mi ←Mi‖M
return C

proc Enc.last(i, A,M)
if i > I or Si = ⊥ then return ⊥
(K,V, d)← Si; Ai ← Ai‖A
if d = 0 then d← 4 else d← 2
(N,A,M , δ)← (Ni,Ai,Mi, 1)
(C, V )← Map(V, 〈A, d〉,M); Si ← ⊥
return C

proc Dec.init(N)
J ← J + 1; M ′

J ← Λ; A′J ← Λ
S′J ← (K,N, 0); N ′j ← N
return J

proc Dec.next(j, A,C)
if j > J or S′j = ⊥ then return ⊥
(K,V, d)← S′j ; A

′
j ← A′j‖A

(N,A,M , δ)← (N ′j ,A
′
j ,M

′
j , 0)

(M,V )← MapInv(V, 〈A, d〉, C)
if V 6= ⊥ then
S′j ← (K,V, 1)

else
S′j ← ⊥

M ′
j ←M ′

j‖M
return M

proc Dec.last(j, A,C)
if j > J or Sj = ⊥ then return ⊥
(K,V, d)← S′j ; Aj ← Aj‖A
(N,A,M , δ)← (N ′j ,A

′
j ,M

′
j , 1)

if d = 0 then d← 4 else d← 2
(M,V )← MapInv(V, 〈A, d〉, C)
S′j ← ⊥
return M

proc Map(V,A,M) Game G1

C ← EV,AK (M)
if H[V,A,M ] 6= ⊥ then V ′ ← H[V,A,M ]
else V ′ ← Ev(V,A,M,C); H[V,A,M ]← V ′

return (C, V ′)

proc MapInv(V,A,C)

M ← DV,A
K (C)

if M = ⊥ then return (⊥,⊥)
if H[V,A,M ] 6= ⊥ then V ′ ← H[V,A,M ]
else V ′ ← Ev(V,A,M,C); H[V,A,M ]← V ′

return (M,V ′)

proc Ev(V,A,M,C)
if |M | ≥ n then V ′ ← leftn (C)⊕ leftn (M)
elsif A = 〈A′, d〉 then
L← EK(V, 〈A′, 3〉,M‖0n); V ′ ← leftn (L)

Dom← Dom ∪ {V ′}
return V ′

proc Map(V,A,M) Games G2, G3

if πV,A = ⊥ then πV,A ← ρN,A,M,δ

C ← πV,A(M)
if H[V,A,M ] 6= ⊥ then V ′ ← H[V,A,M ]
else V ′ ← Ev(V,A,M,C); H[V,A,M ]← V ′

return (C, V ′)

proc MapInv(V,A,C)
if πV,A = ⊥ then πV,A ← ρN,A,M,δ

M ← π−1
V,A(C)

if M = ⊥ then return (⊥,⊥)
if H[V,A,M ] 6= ⊥ then V ′ ← H[V,A,M ]
else V ′ ← Ev(V,A,M,C); H[V,A,M ]← V ′

return (M,V ′)

proc Ev(V,A,M,C)
if |M | ≥ n then V ′ ← leftn (C)⊕ leftn (M)
elsif A = 〈A′, d〉 then
L← πV,〈A′,3〉(M‖0n); V ′ ← leftn (L)

if (V ′ ∈ Dom) then

bad← true; V ′ ←$ {0, 1}n\Dom

Dom← Dom ∪ {V ′}
return V ′

Figure 7.12 – Games G1–G3 used in the proof of Theorem 7.8. Game G3 contains the
corresponding boxed statements but game G2 doesn’t. The games share the common procedures
Enc.init,Enc.next,Enc.last,Dec.init,Dec.next, and Dec.last, and each game uses private proced-
ures Map, MapInv, and Ev that are inaccessible to the adversary. In each game, there is an
implicit procedure initialize() that initializes Dom ← ∅ and I, J ← 0, and samples K ←$ K,
πV,〈A′,3〉 ←$ Inj(τ) for every V ∈ {0, 1}n and every A′ ∈ {0, 1}∗, and ρN,A,M ,δ ←$ Inj(τ) for
every N ∈ {0, 1}n, δ ∈ {0, 1}, and A,M ∈ {0, 1}∗∗ such that |A| = |M |+ 1.
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there is no prior call Map(V,A,M) or MapInv(V,A,C).

Recall that 1 < q ≤ 2n−1. otherwise the bound is trivial. The flag bad is triggered only

if the state V ′ repeats one of its prior values in the Ev procedure In the following case

analysis we bound the probability that the ith value V ′ computed in G2 triggers bad, i.e.

that the value V ′ sampled in ith query falls into Dom.

Case 1: V ′ ← leftn (L), where L ← πV,〈A′,3〉(M‖0n). From (1), (2), and (3), since

there is a one-to-one correspondence between M and M‖0n, there is no prior call to

πV,〈A′,3〉(M‖0n) or π−1
V,〈A′,3〉(L). Then L is chosen uniformly random from a subset of

{0, 1}n+τ that has at least 2n+τ − q elements and |Dom| ≤ (i− 1). The collision of the

ith V ′ in this case occurs with probability bounded by (i− 1)/(2n − q).

Case 2: V ′ ← leftn (C)⊕ leftn (M). There must be no prior Map call of the same

(V,A,M) or MapInv call of the same (V,A,C), otherwise we’ll return the consistent

state, and bad won’t be triggered. First suppose that V ′ collides during the execution

of Map. Let s = |C|. From (1), (2), and (3), there is no prior call to πV,A(M) or

π−1
V,A(C). We have |Dom| ≤ (i − 1). Since we sample C uniformly from a subset of

{0, 1}s that has at least 2s − q elements, the collision of ith V ′ occurs with probability

at most (i− 1)2s−n/(2s− q) ≤ 2(i− 1)/(2n− q). Next, consider the case that V ′ collides

during the execution of MapInv. Again, we have |Dom| ≤ (i−1). Let s = |M |. By using

the same analysis as above, the probability of V ′ ∈ Dom is bounded by (i− 1)/(2n− q).

Because there will be no more than q values V ′ sampled during the game, by union

bound the probability that bad is triggered is bounded by

q∑
i=1

2(i− 1)

2n − q
≤ q2

2n − q
≤ 2q2

2n
;

the last inequality is due to the assumption that q ≤ 2n−1.

In game G3, distinct tuples (N,A,M , δ) will correspond to different pairs (V,A); we

will justify the claim later. Hence πV,A in Map/MapInv coincides with ρN,A,M ,δ. Then

game G3 is equivalent to game oae2b-ICHAIN[Π,〈·〉,n], and thus

Advoae2b
CHAIN[Π,〈·〉,n](A ) = Pr[A G1 ⇒ 1]− Pr[A G3 ⇒ 1] ≤ Advpri

Π (B) +
2q2

2n
.

What remains is to justify the claim above. Suppose that there exists at least one pair of

distinct tuples (N1,A1,M1, δ1) and (N2,A2,M2, δ2) that correspond to the same pair

(V,A). Among such pairs of tuples, consider the one that minimizes |M1|. Consider the

following cases.

Case 1: |M1|, |M2| > 0. Let M∗
1 be the prefix of M∗ that consists of |M1| − 1

components. Define M∗
2 for M2, A∗1 for A1, and A∗2 for A∗2 analogously. Then it means
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that (N1,A
∗
1,M

∗
1 , 0) and (N2,A

∗
2,M

∗
1 , 0) correspond to the same pair (V ∗, A∗) as well,

but that contradicts the minimum of |M1|.

Case 2: |M1| = 0 and |M2| > 0. But then this is a contradiction: (1) since

(N1,A1,M1, δ1) corresponds to (V,A), it means that A is of the form 〈A′, 0〉 or 〈A′, 4〉,
but (2) since (N2,A2,M2, δ2) corresponds to (V,A), it means that A is of the form

〈A′′, 1〉 or 〈A′′, 2〉.

Case 3: |M1| > 0 and |M2| = 0. This is similar to Case 2.

Case 4: |M1| = |M2| = 0, meaning that M1 = M2 = Λ. Note that in this case, since

(N1,A1,M1, δ1) corresponds to (V,A) and |M1| = 0, we must have V = N1. Likewise,

since (N2,A2,M2, δ2) corresponds to (V,A) and |M2| = 0, we must have V = N2. In

other words, N1 = N2. Let d1 = 0 if δ1 = 0, and d1 = 4 otherwise. Define d2 for

δ2 analogously. Since (N1,A1,M1, δ1) corresponds to (V,A) and |M1| = 0, we have

A = 〈A1[1], d1〉. Likewise, since (N2,A2,M2, δ2) corresponds to (V,A) and |M2| = 0,

we have A = 〈A2[1], d2〉. In other words, A1 = A2, and δ1 = δ2. Hence the two tuples

(N1,A1,M1, δ1) and (N2,A2,M2, δ2) are the same, which is a contradiction.

7.6.1 Weakened OAE2

In the original publication, we also proposed two variants of the OAE2 notion that are

weaker with respect to nonce-reuse. The first, called nOAE, is essentially a purely nonce-

based version of OAE2. The second, called dOAE, is halfway between nOAE and OAE2,

in that it allows an adversary to repeat the nonce in order to extend an encryption chain

that has already been finalized; this notion resembles the the security definition used by

Bertoni et al. [BDPA11a, BDPV12], and we included it as a nod to the Keccak team,

acknowledging that they set off in the right direction. Finally, we also provided a very

natural nOAE-secure construction called STREAM.
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Chapter 8
Authenticated Encryption with Variable

Stretch

In this chapter, we address the problem of securely using nonce-based AE schemes with

variable-length tags (variable stretch) under the same key.

The work presented in this chapter is a result of joint work with Reza Reyhanitabar

and Serge Vaudenay which was published in ASIACRYPT 2016 [RVV16].

Organization of the Chapter. We first discuss related work in Section 8.1 and list

the contributions in Section 8.2.

We then discuss the problem we study in more detail in Section 8.3 and we describe

attacks that illustrate the dangers of stretch misuse in Section 8.4.

In Section 8.5, we proceed to formalizing the security of nonce-based AE schemes

when used with variable stretch. We also establish relations with existing notions, and

explain how to interpret the security bounds in our model.

Finally, we demonstrate how to construct efficient AE schemes that are secure in the

sense of our new notion in Section 8.6.

8.1 Related Work

The use of a nonce-based AE scheme with varying amount of stretch per key can be seen

as a misuse of the scheme, and thus our security notions can be interpreted as capturing

resistance to this particular type of misuse. Other existing notions treat resistance of

AE against misuse: MRAE by Rogaway and Shrimpton [RS06b], online nonce-misuse

resistant AE by Fleischmann et al. [FFL12], AE under the release of unverified plaintext

(AE-RUP) by Andreeva et al. [ABL+14a], robust AE (RAE) by Hoang et al. [HKR15],

online AE (OAE2) by Hoang et al. [HRRV15], and the notions that consider leakage by

misuse of AE in protocols by Barwell et al. [BMOS17, BPS15]. None of these notions

captures what should be the security of AE when one varies the stretch with the same
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key, except for RAE.

RAE aims to capture the “best-possible” AE security [HKR15]. Similar to the MRAE

and Pseudorandom Injection (PRI) notions [RS06b], it targets robustness to nonce-

misuse, but also robustness to decryption misuse and the security with variable stretch.

However, the cost to pay for achieving such a strong goal is that any RAE scheme incurs

a particular inefficiency: neither encryption nor decryption can be online. Our goal is

different; rather than aiming at the best-possible security, we provide an enhancement

to the popular NAE model that only adds robustness to tag-length variation under the

same key, without sacrificing desirable features, such as onlineness of encryption.

The possibility of AE schemes’ misbehaviour due to the use of variable-length tags

has been discussed before. A thread in the CFRG forum discusses this for OCB [Man],

and another discussion thread exists in the CAESAR competition mailing list [Iwa15].

Several schemes received ad-hoc measures that attempt to make their ciphertexts

tag-dependent [KR14, Iwa15, Min15, Rey].

The attack presented in Section 8.4.2 is a generalization of the tag-length misusing

attack on OMD (see Section 3.3) by the Ascon team [DEMS].

8.2 Contribution

We discuss the trivial security issues that arise from varying the stretch with nonce-based

AE schemes and describe a stretch-misusing forgery attack that applies to a large class

of nonce-based AE schemes, even with certain ad-hoc measures in place.

We define the security of nonce-based AE schemes with variable stretch through the

notion NVAE. We establish the relations between NVAE, other notions defined in this

chapter and previously existing notions. We show that, surprisingly, when variable tags

are allowed, the all-in-one and the two-requirement security definitions are no longer

equivalent. We additionally define the KESS notion as a useful, albeit strong, property

that facilitates modular security proofs of NVAE security for AE schemes whose NAE

security has already been established.

We demonstrate the feasibility of NVAE-security by designing OCBv, a variant of

the well-known AE scheme OCB [RBBK01, Rog04a, KR11]. The modifications that

transform OCB into OCBv and the security analysis are generic enough to be applied

to other schemes based on tweakable blockciphers, or other tweakable primitives (e.g.

compression functions), which represents a large subset of current nAE schemes.

8.3 Why Consider AE with Variable Stretch

Providing authenticity requires any AE scheme to grow the ciphertexts by a non-zero

amount of stretch (see Section 2.4 for definition of stretch). All the known security

notions for AE schemes [Rog02, Rog04b, RS06b, FFL12, ABL+14a, HRRV15] and con-

structions thereof, with the exception of RAE [HKR15], assume that the stretch τ is

a constant, or a parameter of the scheme which must be fixed per key, and security is
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proved under this assumption. A correct usage of such a scheme shall ensure that two

instances of the same scheme with different stretches τ1 and τ2 always use two independ-

ently chosen keys K1 and K2. However, this rigid correct-use mandate may be violated

in practice for various reasons.

Misuse. AE schemes may be used with variable-length tags per key due to misuse

and poorly engineered security systems. With the increasing scale of deployment of

cryptography, various types of misuse of cryptographic tools (i.e. their improper use

that leads to compromised security) occur routinely in practice [LZLG14, EBFK13,

Hot10, Wu05, BGW01, Lan14]. Identifying potential ways of misuse and mitigating

their impact by sound design is therefore of great importance, while waving such a

potential misuse off, because there have been no cases of occurrence yet, is a dangerous

practice. Prior “Disasters” [Ber14b] have shown that it’s a question of when, not if, a

misuse will eventually happen in applications of (symmetric-key) cryptographic schemes.

The ongoing CAESAR competition [Ber14a] has explicitly listed a set of conventional

confidentiality and integrity goals for AE, but has left “any additional security goals

and robustness goals that the submitters wish to point out” as an option. Among the

potential additional goals, robustness features (and in particular, different flavours of

misuse-resistance to nonce reuse [RS06b, FFL12]) have attracted a lot of attention.

While the recent focus has been mainly on nonce misuse, proper characterization and

formalization of other potential misuse dimensions seems yet a challenge to be further

investigated. The current literature lacks a systematic approach to formalizing an ap-

propriate notion of AE with misuse-resistance to tag-length variation under the same

key, without sacrificing interesting functional and efficiency features, such as onlineness

of encryption.

Efficiency Constraints. Second, there are use cases, such as resource-constrained

communication devices, where the support for variable-length tags is desired, but chan-

ging the key per tag length and renegotiating the system parameters is a costly process

due to bandwidth and energy constraints. In those cases, supporting variable stretch per

key while still being able to provide a “sliding scale” authenticity is deemed to be a useful

feature, as pointed out by Struik [Str]. For instance, de Meulenaer et al. demonstrate

that in the case of wireless sensor networks, communication-related energy consumption

is substantially higher than the consumption caused by computation [dMGSP08]. Slid-

ing scale authenticity could significantly extend the lifetime of such sensors, especially

if processed plaintexts are very short, while only a handful of them requires a very high

level of authenticity.

Discussions and measures. The problem has appeared to be highly interesting from

both theoretical and practical perspectives as evidenced by the relatively long CFRG

forum thread on issues arising from variable-length tags in OCB [Man], followed by

ongoing discussions in the CAESAR competition mailing list [Iwa15], which in turn has
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motivated several second-round CAESAR candidates to be tweaked [Iwa15, Min15, Rey]

with the aim of providing some heuristic measures for addressing the problem.

Terminology. Most standard AE schemes adopt a syntax in which the ciphertex is

explicitly partitioned as C = Ccore||Tag with Ccore as the ciphertext core (decryptable to

a putative plaintext) and Tag as the authentication tag (used for verifying the decrypted

message). In this chapter, we will use the terms ciphertext expansion, stretch and tag

length interchangeably unless the syntax of an AE scheme (e.g. an RAE scheme) does

not allow partitioning of the ciphertext to a core part and a tag part, in which case we

use the general term stretch.

8.4 The Dangers of Stretch Misuse

Lack of support for variable-length tags per key in conventional AE security mod-

els, in particular in the popular NAE security model, is not just a theoretical and

definitional complaint. All known standard AE schemes such as the widely-deployed

CCM [Dwo04, WHF03a], GCM [MV04, Dwo07], and OCB do misbehave in one way

or another if misused in this way [RW03, Man, Rog13]. Depending on the application

scenario, the consequences of such a misbehavior may range from a degraded security

level to a complete collapse.

8.4.1 Trivial Issues and Heuristic Fixes

A CFRG forum discussion thread initiated by Manger [Man] has raised concerns with an

“Attacker changing tag length in OCB”. While the discussion deals with issues identified

for OCB, they apply to all nonce-based AE schemes Π = (K, E ,D) whose encryption

algorithm outputs a core ciphertext and an authentication tag E(K,N,A,M) = C‖T
such that C = f1(K,N,A,M) and T = leftτ (f2(K,N,A,M)) for some functions f1 and

f2, and a parameter τ ∈ N (note that the output of f2 is truncated to τ bits). The

discussion can be summarized as follows:

• Assume that different instances of Π with several different tag lengths are defined

and used. Under the same key, shorter tags are simply a truncation of longer tags.

The tag length is clearly not mixed into the ciphertext. Consequently, given a

valid output C‖T = E(K,N,A,M) with e.g. 128-bit tag, it is trivial to produce

a valid output C‖left64 (T ) for an instance of Π with 64-bit tags under the same

key, by just dropping the last 8 bytes.

• An attacker wanting to change the associated data A to A′ (e.g. from saying “TOP

SECRET” to “PUBLIC”) while keeping the same plaintext M as encrypted by the

originator for a ciphertext C‖T = E(K,N,A,M) (with |T | being e.g. 128 bits)

only has to defeat the shortest accepted tag length (e.g. 64 bits) by trying to forge

with N,A,C‖T ′ with every possible T ′ (of 64 bits). This only applies if AD is not
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used when computing core ciphertext, i.e. if f1(K,N,A,M) = f ′(K,N,M) for

some function f ′. It is the case in OCB, GCM, or OMD.

• Would it be better if the instances of the same algorithm with different tag lengths

could not affect each other?

Heuristic Measures. The CFRG discussions concluded when the designers of OCB

adopted the heuristic measure proposed by Manger: “just drop the tag length into the

nonce” [Rog13]. For example, if the original nonce space N = {0, 1}ν , one may use an

effective nonce N ′ of ν − t bits and encode τ in t bits, so that the encryption has the

structure E(K,N ′‖〈τ〉t, A,M). One may call this method nonce stealing for tag length

akin to nonce stealing for associated data (AD), proposed by Rogaway [Rog02] to convert

a message-only AE scheme to an AE scheme with AD.

In a recent CAESAR competition discussion, Nandi [Nan] has raised the question

whether including the tag length in the associated data can resolve the problem. For

example, we may simply encode τ in t bits and prepend it to the AD, so that we encrypt

as in E(K,N, 〈τ〉t‖A,M).

A natural extension would then be to combine both the measures, i.e., including the

tag length as part of both the nonce and the associated data. But in the absence of a

definitional and provable-security treatment, the proposed heuristic measures and claims

for added security in the tweaked schemes are informal, and only limited to preventing

some specific type of misbehavior by the schemes.

8.4.2 Failure of Inserting Stretch into Nonce and/or AD

Intuitively, one might hope that an AE scheme will guarantee τc-bit authenticity to the

recipient whenever a received ciphertext with a τc-bit tag is decrypted, irrespective of

the parallel existence other instances of the same algorithm, using the same key but

different (shorter or longer) τ -bit tags. With the two heuristic measures described in

Section 8.4.1 in place, one might even expect this intuition to be true.

Using a generic forgery attack, we show that the said heuristic measures fail to deliver

on this expectation when applied to a large class of NAE schemes, including e.g. GCM

and OCB. The class of schemes in question consists of all AE schemes that follow the

“ciphertext translation” design paradigm of Rogaway [Rog02].

Ciphertext translation method transforms a message-only nonce-based AE scheme

Π̄ = (K̄, Ē , D̄) with stretch τ and a keyed function H : K′×{0, 1}∗ → {0, 1}n with n ≥ τ
into a general nonce-based AE scheme Π = (K̄ × K′, E ,D). A message-only AE scheme

is one that does not accept any AD input, i.e. it has Ā = ∅. The ciphertext translation

is defined in Figure 8.1.

The attack. We present a stretch-misusing forgery attack. We call it VTag-Forgery.

It is a generalization of the tag-length misusing attack on OMD version 1 proposed by

the Ascon team [DEMS]. OMD also follows the ciphertext translation method.
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algo EK̄,K′(N,A,M) :

CM ← ĒK̄(N,M)
TA ← leftτ (HK′(A))

C ← CM ⊕ 0|M |‖TA
return C

algo DK̄,K′(N,A,C) :

TA ← leftτ (HK′(A))

CM ← C ⊕ 0|M |‖TA
M ← D̄K̄(N,CM )
return M

ĒK̄

N

M

A HK′

CM

0
|M|

C
τ

|M| + τ

Figure 8.1 – Ciphertext translation. We construct a general nonce-based AE scheme
Π = (K̄ × K′, E ,D) with stretch τ from a message-only nonce-based AE scheme Π̄ =
(K̄, Ē , D̄) also with stretch τ and a keyed function H : K′ × {0, 1}∗ → {0, 1}n with
n ≥ τ . The encryption and decryption algorithms E and D are defined on the top, the
encryption illustrated on the bottom.

We target any nonce-based AE scheme Π constructed with ciphertext translation and

parameterized by stretch τ . We assume that there are instances of Π defined with each

amount of stretch from a set IT = {τ1, . . . , τr} with τ1 < τ2 < . . . < τr.

We assume the adversary has oracle access to encryption and decryption algorithms,

such that the amount of stretch can be chosen for every query independently. Note

that this is equivalent to r co-existing instances of Π sharing the same key. The goal of

the adversary is to forge a ciphertext for a given AD-message pair (A,M) expanded by

τg ∈ IT bits, with g > 1.

To find the forgery, the adversary first makes an encryption query with M , arbitrary

nonce N1 and some arbitrary A∗ 6= A to the instance with the shortest stretch τ1, and

consequently finds a forgery for N1, A and M with 2τ1 decryption queries. Because of

the ciphertext translation structure, all of the ciphertext, except the last τ − 1 bits, will

be the same. From the forgery and the encryption query, the adversary will be able to

learn the first τ1 bits of the xor-difference of HK(A) and HK(A∗).

Then, the adversary proceeds in a similar way with the second-shortest stretch τ2,

except when making the forgery for N2, A, and M , it already knows the first τ1 bits of

HK(A)⊕HK(A∗), and only needs to guess the remaining τ2 − τ1, which means at most

2τ2−τ1 decryption queries. The attacker then continues in a similar manner, making

2τi−τi−1 decryption queries with τi bits of stretch for i = 1, . . . , τg. An algorithmic

description of the attack is given in Figure 8.2.

Applicability. With no measures for mixing the stretch in the encryption in place,

the attack always succeeds. The keyed function HK(·) must fulfil some mild conditions

for the attack to work against the described heuristic countermeasures [Rog13, Nan],

namely:
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1: algorithm VTag-Forgery(τg, A,M)
2: ∆A ← ε; A∗ ←$ A\{A}
3: for i← 1 to g do
4: pick fresh nonce Ni

5: C∗i ← Enc(Ni, A
∗, τi,M)

6: do
7: pick fresh δ ∈ {0, 1}τi−τi−1

8: Ci ← C∗i ⊕ 0|Ci|−τi‖∆A‖δ
9: Mi ← Dec(Ni, A, τi, Ci)

10: while Mi = ⊥
11: ∆A ← rightτi (Ci⊕C∗i )
12: end for
13: return Ng, A,Cg
14: end algorithm

Figure 8.2 – Ciphertext forgery for a nonce-based AE scheme constructed with cipher-
text translation with associated data A and message M in presence of variable stretch.
Here τ0 = 0.

• If the stretch is only encoded in the nonce, the attack works with arbitrary HK(·).

• For inclusion of the tag length in the AD or a combination of this method and nonce

stealing, the attack works if two conditions are met. First, if the keyed function H

can be described as HK(A) = H1K (A1)⊕H2K (A2)⊕· · ·⊕HmK (Am), for arbitrary

functions HiK : {0, 1}µ → {0, 1}n, 1 ≤ i ≤ m, where A = A1||A2|| · · · ||Am for

Aj ∈ {0, 1}µ for some positive integer µ. We note that this is the case for both

GCM1 and OCB. Second, the value of stretch τ must only influence one µ-bit block

of A (or a limited number thereof). This is the case if, for example, we prepend

the AD with an encoding of τ as in E(K,N, 〈τ〉t‖A,M), and if at the same time

t ≤ µ.

Then the attack works, but we always pick A∗, so that the block(s) of AD that are

actually affected by τ are the same in the queries on lines 5 and 9 in Figure 8.2.

In either of the two cases the attack will succeed: whenever we encrypt a message M with

two different associated data A,A∗, first with τi and then with τj > τi bits of stretch,

then Ci⊕C∗i will be a prefix of Cj ⊕C∗j , as the xor cancels out the core ciphertext, and

if the hash H is implemented as an xor-sum of sub-functions Hi then the block(s) of AD

that are impacted by τ will cancel out as well.

Complexity. The complexity of the attack in terms of decryption queries will be

2τ1 +
∑g

i=2 2τi−τi−1 , which is dominated by 2α with α = max{τ1, τ2 − τ1, . . . , τg − τg−1}.
For example, an adversary having access to four instances of an AE encryption algorithm

with 32-bit, 64-bit, 96-bit and 128-bit tags under the same key will only need a total

decryption query complexity 4·232 to forge a message with a 128-bit tag, which is in stark

contrast with the 2128 decryption queries expected to be necessary to forge a ciphertext

with 128 bits of stretch.

1Although the authentication tag is computed directly using AD and the ciphertext, each monomial
evaluated in the polynomial hash used in GCM can be seen as HiK
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8.5 Formalizing Nonce-based AE with Variable Stretch

Our goal in this section is to formalize the security of nonce-based AE schemes with

variable stretch, or else their security in presence of stretch misuse. This turns out to be

a non-trivial task, as evidenced by the previously mentioned discussions [Man, Rog13,

RW03].

Allowing the adversary to choose the amount of stretch freely from a set IT =

{τmin, . . . , τmax} will inevitably enable it to produce forgeries with a high probability

2−τmin , by targeting the shortest allowed stretch; a forgery is sure to be found with at

most 2τmin verification queries. This is inherent to any AE scheme.

Despite this limit to its global security guarantees, there is a meaningful security

property which can be expected from an variable-stretch AE scheme by a user: the

scheme must guarantee τ bits of security for ciphertexts with τ bits of stretch, regardless

of adversarial access to other instances with the same key but other (shorter and/or

longer) amount of stretch than τ . For example, forging a ciphertext with τ -bit stretch

should require ≈ 2τ verification queries with τ -bit stretch, regardless of the number of

queries made with different amounts of stretch.

This non-interference between different instances that use the same key but different

stretch (tag length) is the intuition that we capture in our security notion for nonce-

based, variable-stretch AE schemes.

Syntax. We augment the syntax of nonce-based AE schemes to include an input that

allows to control the amount of stretch applied upon every encryption individually. We

will call such augmented AE schemes variable-stretch AE schemes.

A variable-stretch AE scheme is a triplet Π = (K, E ,D) where the key space K is

a set endowed with a probabilistic distribution, and E : K × N × A × IT ×M → C
and D : K ×N ×A× N × C → M∪ {⊥} are the encryption and decryption algorithm

respectively, both deterministic and stateless. The nonce spaceN , AD spaceA, plaintext

space M, and ciphertext space C are all subsets of {0, 1}∗. We call the finite set IT
stretch space of Π (i.e. the set of ciphertext expansion values that can be applied upon

encryption), and we require that IT ⊆ N.

We require for every M ∈ {0, 1}∗ that if M ∈M then M ′ ∈M for all M ′ ∈ {0, 1}|M |.
We further require that any variable-stretch scheme is correct ; for every (K,N,A, τ,M) ∈
K×N ×A×IT ×M, we require that if E(K,N,A, τ,M) = C then D(K,N,A, τ, C) =

M . Finally, we require that the scheme applies the requried stretch, i.e. for every

(K,N,A, τ,M) ∈ K × N × A × IT ×M, we require that for E(K,N,A, τ,M) = C we

have |C| = |M |+ τ .

The variable-stretch AE syntax is easily seen to be an extension of the nonce-based AE

syntax: an instance of the conventional nonce-based AE scheme Π with the ciphertext

expansion fixed to some constant value τ is equivalent to modelling Π as a variable-

stretch AE scheme and setting IT = {τ}. We sometimes create an ordinary nonce-based

AE scheme Π′ from a nonce-based AE scheme with variable stretch Π by fixing the
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expansion value for all queries to some value τ ∈ IT . We will denote this as Π′ = Π[τ ].

8.5.1 NVAE Security

We define a new security notion called NVAE as an extension to the all-in-one definition

of NAE security. In contrast to NAE, the new security games and the advantage function

of NVAE are parameterized by the challenge stretch value τc ∈ IT , which models the

intentions of the adversary to target the ciphertexts treated with precisely τc bits of

stretch. We first describe the security model informally, before proceeding to the formal

definition.

Let Π = (K, E ,D) be a variable-stretch AE scheme. An NVAE adversary A gets to

interact with games nvae-R(τc)Π (left) and nvae-I(τc)Π (right) in Figure 8.3, defining

respectively the real and ideal behaviour of such a scheme. The adversary has access to

two oracles Enc and Dec determined by these games and its goal is to distinguish the

two games. We stress that these oracles now allow to choose the stretch.

The adversary must respect a relaxed nonce-requirement ; it must use a unique pair of

nonce and stretch for each encryption query. Compared to the standard nonce-respecting

requirement in NAE schemes, here a nonce may be reused, provided that the stretch

does not repeat simultaneously.

In the ideal game nvae-I(τc)Π, only the encryption and decryption queries with τc-bit

stretch are answered in the same idealized way as in the “ideal” game of NAE notion

(Figure 2.2). The queries with stretch other than τc are treated with the real encryp-

tion (or decryption) algorithm. This lets the adversary to issue arbitrary queries (e.g.

repeated forgeries) for any stretch τ 6= τc and leverage the information thus gathered to

attack the challenge expansion. At the same time, only queries with τc bits of stretch

can help the adversary to actually distinguish the two games, capturing the exact level

of security for ciphertexts treated with τc bits of stretch, in presence of variable stretch.

The NVAE security is formally stated in Definition 8.1.

Adversarial resources. The adversarial resources of interest for the nvae notion are

(t,qe,qd,σ), where t denotes the running time of the adversary, qe = (qe[τ ]|τ ∈ IT )

denotes an array indexed by stretch that holds the number of encryption queries qe[τ ]

made with stretch τ for every stretch τ ∈ IT ,‘ qd = (qd[τ ]|τ ∈ IT ) denotes the same

for the decryption queries, and σ = (σ[τ ]|τ ∈ IT ) denotes the array that holds the total

amount of data σ[τ ] processed in all queries with stretch τ for every τ ∈ IT .

Despite being focused on queries stretched by τc bits, we watch adversarial resources

for every stretch τ ∈ IT in a detailed, vector-based fashion. This approach appears to be

most versatile with respect to the security analysis. However, in a typical case, we will be

interested in the resources related to τc (i.e. qe[τc],qd[τc],σ[τc]) and cumulative resources

of the adversary qe, qd, σ with qe =
∑

τ∈IT qe[τ ], qd =
∑

τ∈IT qd[τ ] and σ =
∑

τ∈IT σ[τ ].

Definition 8.1 (NVAE(τc) security). Given a variable stretch AE scheme Π = (K, E ,D)

with a stretch space IT , a challenge amount of stretch τc ∈ IT and an adversary A , we
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define the advantage of A in breaking the NVAE(τc) security of Π in a chosen ciphertext

attack (with help of the games nvae-R(τc) and nvae-I(τc) in Figure 8.3) as

Adv
nvae(τc)
Π (A ) = Pr[A nvae-R(τc)Π ⇒ 1]− Pr[A nvae-I(τc)Π ⇒ 1].

If Adv
nvae(τc)
Π (A ) ≤ ε for all adversaries A whose resources are limited by (t, qe,qd,σ),

then we say that Π is a (ε, τc, t, qe,qd,σ)-secure variable-stretch AE scheme.

General NVAE security. By parameterizing the definition of NVAE security by τc,

we have only postponed the difficult question: how do we evaluate the overall security

of a variable-stretch scheme? This is where we make use of the parametrization of the

notion. We will use it to state a comprehensible, albeit informal definition of general

NVAE security.

We note that a similar informal definition can be made for all further security notions

parameterized by stretch that we introduce in this chapter.

Definition 8.2 (NVAE-security (informal)). We say that a variable-stretch scheme Π is

NVAE-secure if for every τc ∈ IT , and for all adversaries A with “reasonable” resources

(t, qe,qd,σ), the advantage Adv
nvae(τc)
Π (A ) is reasonably “small” with respect to τc.

The key phrase in this informal definition is “with respect to τc”: the Adv
nvae(τc)
Π (A )

adversarial advantage will inevitably be lower-bounded by qd[τc]/2
τc , which will be big

if τc is small. However, this is expected. What we want is that the τc-specific advant-

age never departs too far from this unavoidable lower bound. We further discuss the

interpretation of the nvae bounds in Section 8.5.5.

Remark 8 (Relation to NAE). The notion of nvae is indeed an extension of the clas-

sical all-in-one security notion for nonce-based AE schemes. If for a variable-stretch

AE scheme Π with a stretch-space IT the advantage Adv
nvae(τc)
Π (A ) is small for every

reasonable A and for every τc ∈ IT , then it will be small for any τc in a smal-

ler stretch-space I ′T ⊆ IT , including I ′T = {τc}. If a scheme has a trivial stretch-

space IT = {τc}, then NVAE becomes the classical NAE notion. It easily follows,

that NVAE(τc) security of a scheme Π tightly implies security of Π[τc]. In particular,

Advnae
Π (t, qe[τc],qd[τc],σ[τc]) ≤ Adv

nvae(τc)
Π[τc]

(t′,qe,qd,σ).

Parameterized CCA security. An NAE-secure AE scheme is also IND-CCA-secure.

This follows from the equivalence of the all-in-one and dual AE notions (Lemma 2.9)

and a well-known implication PRIV ∧ AUTH ⇒ IND-CCA established by Bellare and

Namprempre [BN00] (see the definition of IND-CCA security in Appendix B.4).2 It

is natural to ask: Does the NVAE(τc)-security also provide a privacy guarantee against

2Even though the result of Bellare and Namprempre applies to randomized schemes, simply citing
it in the context of deterministic nonce-based schemes has become folklore. We commit the same act
of negligence here, but we note that a very similar analysis to that of Bellare’s and Namprempre’s
performed with the corresponding notions for nonce-based AE schemes would yield a very similar result.
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proc initialize nvae-R(τc)Π

K ←$ K
X ← ∅, Y ← ∅

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then

return ⊥
X ← X ∪ {(N, τ)}
C ← E(K,N,A, τ,M)
if τ = τc then
Y ← Y ∪ {(N,A,C)}

return C

oracle Dec(N,A, τ, C)
if τ = τc and (N,A,C) ∈ Y then

return ⊥
return D(K,N,A, τ, C)

proc initialize nvae-I(τc)Π

K ←$ K
X ← ∅

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then

return ⊥
X ← X ∪ {(N, τ)}
if τ = τc then

C ←$ {0, 1}|M |+τc
return C

return E(K,N,A, τ,M)

oracle Dec(N,A, τ, C)
if τ = τc then

return ⊥
return D(K,N,A, τ, C)

Figure 8.3 – AE security with variable stretch. Security games for defining AE
security of a variable-stretch AE scheme Π = (K, E ,D).

chosen ciphertext attacks? We define IND-VCCA, an extension of the IND-CCA security

notion for variable stretch AE schemes with τc-parameterized security games and answer

this question positively.

The parameterized games of IND-VCCA notion capture the exact privacy level guar-

anteed by an variable-stretch AE scheme for encryption queries stretched by τc bits, in

presence of arbitrary queries with expansions τ 6= τc and non-trivial decryption queries

stretched by τc bits. The notion builds on the intuition that privacy level of τc-expanded

queries should not be affected by any adversarial queries made with other amounts of

stretch.

Let Π = (K, E ,D) be a variable-stretch AE scheme. We let an adversary A interact

with the games ind-vcca-R(τc)Π and ind-vcca-I(τc)Π defined in Figure 8.4 and its goal

is to distinguish them. In the “ideal” game ind-vcca-I(τc)Π, the τc-stretched encryption

queries are answered with random strings while the decryption queries are processed

with the real decryption algorithm. A must respect the relaxed nonce-requirement and

is prevented to win the game trivially (i.e. by re-encrypting output of decryption query

with τc bits of stretch and vice-versa).

The adversarial resources of interest for the IND-VCCA notion are the same as for

the NVAE notion, i.e. (t,qe,qd,σ).

Definition 8.3 (IND-VCCA(τc) security). Given a variable stretch AE scheme Π =

(K, E ,D) with a stretch space IT , a challenge amount of stretch τc ∈ IT and an adversary

A , we define the advantage of A in breaking the IND-VCCA(τc) security of Π in a
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chosen ciphertext attack (with help of the games ind-vcca-R(τc) and ind-vcca-I(τc) in

Figure 8.4) as

Adv
ind-vcca(τc)
Π (A ) = Pr

[
A ind-vcca-R(τc)Π ⇒ 1

]
− Pr

[
A ind-vcca-I(τc)Π ⇒ 1

]
.

If Adv
ind-vcca(τc)
Π (A ) ≤ ε for every adversary A with resources limited by (t, qe,qd,σ),

then we say that Π is (ε, τc, t, qe,qd,σ)-IND-VCCA secure.

Remark 9 (Relations to IND-CCA and NVAE(τc)). Similarly as in the case of NVAE

and NAE, IND-VCCA security with some stretch space IT implies IND-CCA security

with any stretch space I ′T ⊆ IT , among others IT = {τc}. It follows that IND-VCCA(τc)

security of a scheme Π implies the classical IND-CCA security of Π[τc].

The notions IND-VCCA and NVAE differ in the way the “ideal” games treat the

decryption queries expanded by τc bits; the IND-VCCA notion does not capture integrity

of ciphertexts. E.g. a scheme that concatenates output of a length-preserving, nonce-

based, ind-cca-secure encryption scheme (using encoding of the nonce and stretch as a

“nonce”) and an image of the nonce and stretch under a PRF would be secure in the sense

of IND-VCCA, but insecure in the sense of NVAE. Thus IND-VCCA(τc) ; NVAE(τc).

We formally treat the relation between the two notions in the opposite direction in

Theorem 8.4. We would like to stress that the result in Theorem 8.4 holds for any

variable-stretch AE scheme, and in particular for any stretch space IT .

Theorem 8.4 (NVAE(τc) ⇒ IND-VCCA(τc)). Let Π = (K, E ,D) be an arbitrary

variable-stretch AE scheme, and A be an adversary with resources (t,qe,qd,σ). We

have that

Adv
ind-vcca(τc)
Π (A ) ≤ 2 ·Adv

nvae(τc)
Π (B),

for some B with resources (t′,qe,qd,σ) where t′ = t + γ ·
(∑

τ∈IT σ[τ ]
)

and γ is a

constant.

Proof. Let A be an IND-VCCA adversary with indicated resources. We define the

game ind-vcca-I(τc)
⊥
Π as an intermediate step in the proof; it is exactly the same as

ind-vcca-I(τc)Π, except that the decryption queries with τc bits of stretch are always

answered with ⊥. We have that

Adv
ind-vcca(τc)
Π (A ) = Pr[A ind-vcca-R(τc)Π ⇒ 1]− Pr[A ind-vcca-I(τc)⊥Π ⇒ 1]

+Pr[A ind-vcca-I(τc)⊥Π ⇒ 1]− Pr[A ind-vcca-I(τc)Π ⇒ 1].

We start by showing that

Pr[A ind-vcca-R(τc)Π ⇒ 1]− Pr[A ind-vcca-I(τc)⊥Π ⇒ 1] ≤ Adv
nvae(τc)
Π (B)

for an NVAE adversary B with the resources (t′,qe,qd,σ). The reduction of A to B is

straightforward: B simply answers A ’s queries with its own oracles, making sure that
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proc initialize ind-vcca-R(τc)Π

K ←$ K
V ← ∅, X ← ∅, Y ← ∅

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then return ⊥
if τ = τc and (N,A,M) ∈ V then

return ⊥
X ← X ∪ {(N, τ)}
C ← E(K,N,A, τ,M)
if τ = τc then
Y ← Y ∪ {(N,A,C)}

return C

oracle Dec(N,A, τ, C)
if τ = τc and (N,A,C) ∈ Y then

return ⊥
M ← D(K,N,A, τ, C)
if τ = τc and M 6= ⊥
V ← V ∪ {(N,A,M)}

return M

proc initialize ind-vcca-I(τc)Π

K ←$ K
V ← ∅, X ← ∅, Y ← ∅

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then return ⊥
if τ = τc and (N,A,M) ∈ V then

return ⊥
X ← X ∪ {(N, τ)}
if τ = τc then

C ←$ {0, 1}|M |+τc
Y ← Y ∪ {(N,A,C)}
return C

return E(K,N,A, τ,M)

oracle Dec(N,A, τ, C)
if τ = τc and (N,A,C) ∈ Y then

return ⊥
M ← D(K,N,A, τ, C)
if τ = τc and M 6= ⊥

V ← V ∪ {(N,A,M)}
return M

Figure 8.4 – Games for defining IND-VCCA security of a variable-stretch AE
scheme Π = (K, E ,D).

the trivial-win preventing restrictions of ind-vcca games are met. At the end of the

experiment, B outputs whatever A outputs. This ensures perfect simulation of both

games for A .

It remains to show that

Pr[A ind-vcca-I(τc)⊥Π ⇒ 1]− Pr[A ind-vcca-I(τc)Π ⇒ 1] ≤ Adv
nvae(τc)
Π (C )

for an NVAE adversary C with resources (t′,qe,qd,σ). We reduce A to C as follows.

C answers all A ’s queries directly with its own oracles (again making sure to enforce all

the restrictions of ind-vcca games), except for encryption queries expanded by τc bits.

For those, C ignores its encryption oracle and answers with |M |+ τc random bits if A ’s

query has a fresh nonce-stretch pair and is not a re-encryption of the output of a previous

decryption query. At the end of experiment, C outputs the inverse of A ’s output. If C

interacts with nvae-R(τc)Π, then it perfectly simulates ind-vcca-I(τc)Π for A while if

C interacts with nvae-I(τc)Π, then it perfectly simulates ind-vcca-I(τc)
⊥
Π.
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proc initialize vpriv-R(τc)Π

K ←$ K
X ← ∅

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then

return ⊥
X ← X ∪ {(N, τ)}
return E(K,N,A, τ,M)

proc initialize vpriv-I(τc)Π

K ←$ K
X ← ∅

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then

return ⊥
X ← X ∪ {(N, τ)}
if τ = τc then

C ←$ {0, 1}|M |+τc
return C

return E(K,N,A, τ,M)

proc initialize vauth(τc)Π

K ←$ K
X ← ∅, Y ← ∅

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then

return ⊥
X ← X ∪ {(N, τ)}
C ← E(K,N,A, τ,M)
if τ = τc then

Y ← Y ∪ {(N,A,C)}
return C

oracle Dec(N,A, τ, C)
if τ = τc and (N,A,C) ∈ Y then

return ⊥
return D(K,N,A, τ, C)

Figure 8.5 – Security games for defining VPRIV and VAUTH security of a
variable-stretch AE scheme Π = (K, E,D).

8.5.2 No Two-Requirement Notion

The equivalence of the two-requirement security definition and the all-in-one security

definition for AE security is among the best known results in the field [RS06b] (see

Lemma 2.9). One may wonder whether such an equivalence also holds in the setting

of variable-stretch AE schemes, for the natural τc-parameterized extensions of these

notions. Surprisingly, we answer this question negatively. We consider the conventional

confidentiality and authenticity notions for AE schemes [BN00, Rog02] and define their

extensions with variable stretch, the notions VPRIV and VAUTH, as natural extensions

of their conventional counterparts.

Let Π = (K, E ,D) be a variable-stretch AE scheme. An adversary A against confid-

entiality of Π interacts with games vpriv-R(τc)Π (real scheme) and vpriv-I(τc)Π (ideal

behaviour) defined in Figure 8.5, both parameterized by the challenge stretch τc, and

tries to distinguish them. An adversary A that attacks authenticity of Π with target

stretch τc is left to interact with the game vauth(τc)Π defined in Figure 8.5 and its goal

is to find a valid forgery (i.e. produce a decryption query returning M 6= ⊥) with the

target stretch of τc bits.
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Definition 8.5 (VPRIV(τc) and VAUTH(τc) security). Given a variable stretch AE

scheme Π = (K, E ,D) with a stretch space IT , a challenge amount of stretch τc ∈ IT
and an adversary A , we define the advantage of A in breaking the VPRIV(τc) security

of Π in a chosen plaintext attack (with help of the games vpriv-R(τc) and vpriv-I(τc)

in Figure 8.5) as

Adv
vpriv(τc)
Π (A ) = Pr[A vpriv-R(τc)Π ⇒ 1]− Pr[A vpriv-I(τc)Π ⇒ 1].

Given an adversary A ′, we define the advantage of A in breaking the VAUTH(τc) se-

curity of Π in a chosen ciphertext attack (with help of the game vauth(τc) in Figure 8.5)

as

Adv
vauth(τc)
Π (A ′) = Pr

[
A ′

vauth(τc)Π forges with τc

]
.

where A forges denotes the event that the Dec oracle returns a value different from ⊥.

If Adv
vpriv(τc)
Π (A ) ≤ ε for all adversaries A whose resources are limited by (t, qe,σ),

then we say that Π is (ε, τc, t, qe,σ)-VPRIV secure. If Adv
vauth(τc)
Π (A ′) ≤ ε′ for all

adversaries A ′ whose resources are limited by (t′, q′e, q
′
d,σ

′), then we say that Π is

(ε′, τc, t
′, q′e, q

′
d,σ

′)-VAUTH secure.

Remark 10 (Relations with NVAE, PRIV and AUTH notions). As before, if a scheme

Π is VPRIV(τc) (respectively VAUTH(τc)) secure with stretch-space IT , then it will be

secure for any stretch-space I ′T ⊆ IT including I ′T = {τc}, implying the PRIV (respect-

ively AUTH) security of the scheme Π[τc].

We can easily verify that the NVAE(τc) security of a scheme Π implies both the

VPRIV(τc) security and the VAUTH(τc) of Π, by adapting the reductions for corres-

ponding conventional notions [RS06b] slightly. In Proposition 8.6, we show that the

converse of this implication does not hold.

B̃K1

N

FK2

n
M

τ

F ′
K3

A

〈·〉

〈·〉

Z

Tleft(·)

Figure 8.6 – The encryption algorithm of the scheme Π¬cca. Here 〈·〉 is an
efficiently computable, injective encoding scheme.

Proposition 8.6. Assuming the existence of secure tweakable blockciphers and PRFs,

there exists a variable-stretch AE scheme, that is secure in the sense of the VPRIV(τc)

notion and the VAUTH(τc) notion but insecure in the sense of IND-VCCA(τc) notion,
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i.e.

VPRIV(τc) ∧VAUTH(τc) ;IND-VCCA(τc).

Corollary 8.7. There exists a variable-stretch AE scheme, that is secure in the sense

of both the VPRIV(τc) notion and the VAUTH(τc) notion but insecure in the sense of

NVAE(τc) notion, i.e.

VPRIV(τc) ∧VAUTH(τc) ;NVAE(τc).

Proof. To support the claim in Proposition 8.6, we define the variable-stretch AE scheme

Π¬cca = (K¬cca, E¬cca,D¬cca) constructed from a TPRP-secure tweakable blockcipher

Ẽ : K1×N ×{0, 1}n → {0, 1}n and two PRF-secure keyed functions F : K2×{0, 1}∗ →
{0, 1}n and F ′ : K3 × {0, 1}∗ → {0, 1}m. We define K¬cca = K1 × K2 × K3, M¬cca =

{0, 1}n, A¬cca = {0, 1}∗, N¬cca = N and the encryption and decryption algorithms as

in Figure 8.7. We require that |IT ¬cca| ≥ 2 and that m ≥ max(IT ¬cca). The encryption

algorithm E¬cca is illustrated in Figure 8.6.

algo E¬cca(K,N,A, τ,M)
Parse K as K1,K2,K3

W ←M ⊕F (K2, 〈τ〉)
Z ← Ẽ(K1, N,W )
T ← leftτ (F ′(K3, 〈N,A, τ, Z〉))
return Z‖T

algo D¬cca(K,N,A, τ, C)
Parse K as K1,K2,K3

Parse C as Z‖T with |T | = τ
if leftτ (F ′(K3, 〈N,A, τ, Z〉)) 6= T then

return ⊥
W ← Ẽ−1(K1, N, Z)
return W ⊕F (K2, 〈τ〉)

Figure 8.7 – Encryption and decryption algorithms of the variable-stretch AE
scheme Π¬cca = (K¬cca, E¬cca, E¬cca). Here 〈·〉 is an efficiently computable, injective
encoding scheme.

The scheme Π¬cca is by far no real-life AE construction (mainly due to its limited

message space), its purpose is merely to act as a counter example. It can be verified,

that for any adversary A with resources (t,qe,qd,σ)

Adv
vauth(τc)
Π¬cca

(A ) ≤ Advprf
F ′ (t, qe + qd, σ) + qd[τc]/2

τc

for some B that runs in time t+ γ · σ for some constant γ, makes no more than qe + qd
queries such that their data complexity is limited by σ. Here qe =

∑
τ∈IT qe[τ ], qd =∑

τ∈IT qd[τ ] and σ =
∑

τ∈IT σ[τ ]. This is because every forgery attempt equals to

guessing τc bits of an output of F ′, evaluated on a fresh input.

For confidentiality, we have that for any adversary A with resources (t,qe,σ)

Adv
vpriv(τc)
Π¬cca

(t,qe,qd,σ) ≤ Advprf
F (B) + Advprf

F ′ (B′) + Advp̃rp

Ẽ
(C ) + 2q2

e/2
n
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for some B and B′ that both run in time t + γ · σ for some constant γ, make no more

than qe queries such that their data complexity is limited by σ, and for some C that

runs in time t+ δ · σ for some constant δ and makes no more than qe queries, with the

same qe, qd and σ as before.

The term 2q2
e/2

n is composed of q2
e/2

n that comes from the RP-RF switch for the

tweakable blockcipher and another q2
e/2

n that comes from extending the tweakspace to

include stretch, using F (similar to Rogaway’s XE construction [Rog04a]).
However, we can construct an adversary A¬cca, that achieves IND-VCCA(τc) advant-

age close to 1. The strategy of A¬cca is as follows:

1. query Z1‖T1 ← Enc(N1, A1, τc,M1) with arbitrary N1, A1,M1,

2. iterate through T ∗1 ∈ {0, 1}τmin until M∗1 ← Dec(N1, A1, τmin, Z1‖T ∗1 ) returns M∗1 6= ⊥,

3. query Z2‖T2 ← Enc(N2, A2, τc,M2) with arbitrary N2, A2,M2,

4. iterate through T ∗2 ∈ {0, 1}τmin until M∗2 ← Dec(N2, A2, τmin, Z2‖T ∗2 ) returns M∗2 6= ⊥,

5. return 1 iff M1⊕M∗1 = M2⊕M∗2 (otherwise return 0),

where τmin = min(IT \{τc}). A¬cca achieves Adv
ind-vcca(τc)
Π¬cca

(A¬cca) = 1−2−n and makes

2 · 2τmin decryption and 2 encryption queries, all of fixed length.

As the amount of stretch τ has no effect on the encryption by Ẽ, we can verify that

M1⊕F (K2, 〈τc〉) =M∗1 ⊕F (K2, 〈τmin〉)
M2⊕F (K2, 〈τc〉) =M∗2 ⊕F (K2, 〈τmin〉)

The final condition in the if -statement verified by the adversary is always true for the real

scheme. The probability of the same event in the “ideal” game is 2−n. As a consequence

of Theorem 8.4 and Proposition 8.6, we can state Corollary 8.7.3

8.5.3 Key-Equivalent Separation by Stretch

The notion of NVAE captures the immediate intuition about the security goal one ex-

pects to achieve using a nonce-based AE scheme with variable stretch. We now introduce

a modular approach to achieving the notion.

Assume that an AE scheme is already known to be secure in the sense of the NAE

model. What additional security property should such a scheme possess on top of NAE-

security, so that it can achieve the full aim of being a NVAE-secure scheme? We formalize

such a desirable property, naming it key-equivalent separation by stretch (KESS), which

captures the intuition that for each value of stretch the scheme should behave as if keyed

with a fresh secret key. The adversary must respect the relaxed nonce-requirement. The

resources of interest for the KESS notion are (t,qe,qd,σ), as defined for the NVAE(τc)

notion in Section 8.5.1.

Definition 8.8 (KESS property). Given a variable stretch AE scheme Π = (K, E ,D)

with a stretch space IT and an adversary A , we define the advantage of A in breaking

3The same attack strategy yields also Adv
nvae(τc)
Π¬cca

(A¬cca) = 1− 2−n.
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proc initialize kess-RΠ

K ←$ K
X ← ∅

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then

return ⊥
X ← X ∪ {(N, τ)}
return E(K,N,A, τ,M)

oracle Dec(N,A, τ, C)
return D(K,N,A, τ, C)

proc initialize kess-IΠ

for τ ∈ IT do
Kτ ←$ K

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then

return ⊥
X ← X ∪ {(N, τ)}
return E(Kτ , N,A, τ,M)

oracle Dec(N,A, τ, C)
return D(Kτ , N,A, τ, C)

Figure 8.8 – Games defining KESS property of a variable-stretch AE scheme
Π = (K, E,D). Note that the independent keying for each τ ∈ IT in game kess-IΠ

can be done by lazy sampling if needed.

the KESS property of Π in a chosen ciphertext attack (with help of the games kess-R

and kess-I in Figure 8.8) as

Advkess
Π (A ) = Pr

[
A kess-RΠ ⇒ 1

]
− Pr

[
A kess-IΠ ⇒ 1

]
.

If Advkess
Π (A ) ≤ ε for all adversaries A whose resources are limited by (t, qe,qd,σ),

then we say that Π has the (ε, t, qe,qd,σ)-KESS property.

We note that KESS property on its own says nothing about AE security of a scheme.

Indeed, a scheme whose encryption algorithm would simply output the message M

followed by τ zeroes upon input (K,N,A, τ,M) would have perfect KESS property,

but would be anything but AE secure in any sense. However, we show in Theorem 8.9

that when coupled with NAE security, KESS implies NVAE security. Informally, the

kess notion takes care of interactions between queries with different values of stretch.

Once this is done, we are free to argue that the queries with τc bits of stretch are

“independent” of those with other values of stretch and will “inherit” the security level

of Π[τc].

Theorem 8.9 (KESS ∧ NAE ⇒ NVAE). Let Π = (K, E ,D) be a variable-stretch AE

scheme and A and adversary with resources (t,qe,qd,σ). We have that

Adv
nvae(τc)
Π (A ) ≤ Advkess

Π (B) + Advnae
Π[τc]

(C ),

for some B with resources (t′,qe,qd,σ) and some C that runs in time t′′, makes qe[τc]

and qd[τc] encryption and decryption queries respectively with a total data complexity

bounded by σ[τc], such that t′ = t+ β · q and t′′ = t+ γ · σ for some constants β and γ,

q =
∑

τ∈IT (qe[τ ] + qd[τ ]) and σ =
∑

τ∈IT σ[τ ].
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proc initialize G
for τ ∈ IT do
Kτ ←$ K
X ← ∅, Y ← ∅

oracle Dec(N,A, τ, C)
if τ = τc and (N,A,C) ∈ Y then

return ⊥
return D(Kτ , N,A, τ, C)

oracle Enc(N,A, τ,M)
if (N, τ) ∈ X then

return ⊥
X ← X ∪ {(N, τ)}
C ← E(Kτ , N,A, τ,M)
if τ = τc then

Y ← Y ∪ {(N,A,C)}
return C

Figure 8.9 – Security game nvae(τc)-GΠ.

Proof. Consider the security game nvae(τc)-G defined in Figure 8.9. We have that

Adv
nvae(τc)
Π (A ) = Pr[A nvae-R(τc)Π ⇒ 1]− Pr[A nvae(τc)-GΠ ⇒ 1]

+ Pr[A nvae(τc)-GΠ ⇒ 1]− Pr[A nvae-IΠ(τc) ⇒ 1].

We first show that Pr[A nvae-R(τc)Π ⇒ 1] − Pr[A nvae(τc)-GΠ ⇒ 1] ≤ Advkess
Π (B). The

NVAE adversary A can be straightforwardly reduced to B. Any query of A is directly

answered with B’s own oracles, except for decryption queries with expansion of τc bits,

whose output is trivially known from previous encryption queries; here B returns ⊥ to

A . At the end, B outputs whatever A outputs. If B interacts with kess-RΠ then it

perfectly simulates nvae-R(τc)Π for A . If B interacts with kess-IΠ then it perfectly

simulates nvae(τc)-GΠ.

We next show that Pr[A nvae(τc)-GΠ ⇒ 1]−Pr[A nvae-IΠ(τc) ⇒ 1] ≤ Advnae
Π[τc]

(C ). The

adversary A can be reduced to C in the following way. When A issues a query with

expansion τc, C answers it with its own oracles. For other amounts of stretch τ 6= τc, C

first checks if there were previous queries with τ bits of stretch. If not, it samples a fresh

key Kτ . C then processes the query with the real (encryption or decryption) algorithm

of Π and the key Kτ , making sure that encryption queries comply with the relaxed nonce

requirement. If C interacts with nae-RΠ[τc] then it perfectly simulates nvae(τc)-GΠ for

A . If C interacts with nae-IΠ[τc] then it perfectly simulates nvae-I(τc)Π. This yields

the desired result.

Remark 11. An RAE secure scheme Π will always have the kess property (see Ap-

pendix B.4 for definition of RAE security). To see why, note that replacing Π by a

collection of random injections in both the kess-RΠ and kess-IΠ games will not in-

crease the advantage significantly, as that would contradict Π’s RAE security. After the

replacement, the two games will be indistinguishable. On the other hand, kess property

does not guarantee RAE security; the scheme OCBv described in Section 8.6 can serve

as a counter-example, because it does not tolerate nonce reuse.
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8.5.4 Relations among Notions

We address the relations between the notions that are newly defined in Chapter 8 and

the previously existing notions throughout the Section 8.5. The summary of established

relations can be found in Figure 8.10.

naepriv ∧ auth

ind− cca

nvae vpriv ∧ vauth

ind− vcca

kess∧nae

Variable-stretch AE notions Conventional AE notions

rae

a

b

cd

e f

g
h i

Figure 8.10 – Relations among notions for nonce-based AE with and without variable
stretch. Previous works: a[RS06b], b[BN00]. This paper: c (Remark 10, attacks in Sec-
tion 8.4), d (Remark 10, Corollary 8.7), e (Theorem 8.4, Remark 9), f (Proposition 8.6),
g (Theorem 8.9), h, i (Remark 11 together with[HKR15]).

8.5.5 A Short Guide to NVAE

Interpretation of the NVAE(τc) security advantage. The games defining the

notion of NVAE are parameterized by a constant, but arbitrary amount of stretch τc
from the stretch space IT of the AE scheme Π in question. In the nvae(τc)-IΠ security

game, only queries expanded by τc bits will be subjected to “idealization”. For all

other expansions, we give the adversary complete freedom to ask any queries it wants

(except for those breaking the nonce-requirement), but their behaviour is the same in

both security games. An NVAE security bound that is expressed as a function of τc
and assumes no particular value or constraint for τc will therefore tell us, what security

guarantees can we expect from queries stretched by τc bits specifically, for any τc ∈ IT .

Looking at the security bound itself, we are able to tell if there are any undesirable

interactions between queries with different amounts of stretch. This is best illustrated

by revisiting the problems and forgery attack from Section 8.4 in the NVAE security

model.

Attacks in NAE model. With the formal framework defined, we revisit the attacks

from Section 8.4 and analyse the advantage they achieve, as well as the resources they

require. Consider the original, unmodified scheme OCB [KR11], that produces the tag by

truncating an n-bit (with n > τ) to τ bits. In case of simultaneous use of two (or more)

amounts of stretch τ1 < τ2 with the same key, we can forge a ciphertext stretched by τ1

bits by truncating an existing ciphertext stretched by τ2 bits. This would correspond to

an attack with an nvae(τ1) advantage of 1 and constant resources.

If the same scheme is treated with the heuristic measures, e.g., nonce-stealing or

encoding τ in AD, from Section 8.4.1 (let’s call it hOCB), we consider the forgery attack

from Section 8.4.2. Assume that there are four instances of hOCB, with 32, 64, 96 and
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128 bit tags. To make a forgery with 128-bit tag, we have to forge a ciphertext with 32

bits of expansion and then exhaustively search for three 32-bit extensions of this forgery.

This gives us an nvae(128) advantage equal to 1, requiring 4 encryption queries, 3 · 232

verification queries with stretch other than 128 bits and 232 decryption queries stretched

by 128 bits. The effort necessary for such a forgery is clearly smaller than we could hope

for, especially in the amount of verification queries stretched by the challenge amount

of bits (i.e. 128).

“Good” bounds. After seeing examples of attacks, one may wonder: what kind of

NVAE security bound should we expect from a secure variable-stretch scheme? For

every scheme, it must be always possible to guess a ciphertext with probability 2−τc .

Thus the bound must always contain a term of the form c ·(qd[τc])α/2τc for some positive

constants c and α, or some more complicated function of this.

Even though the security level for τc-stretched queries should be independent of any

other queries, it is usually unavoidable to have a gradual increase of advantage with

every query made by the adversary. This increase can generally depend on all of the

adversarial resources, but should not depend on τc itself.

An example of a secure scheme’s NVAE(τc) bound can be found in Theorem 8.15. It

consist of the fraction (qd[τc] · 2n−τc)/(2n − 1) ≈ qd[τc]/2τc , advantage bounds for the

used blockcipher and a birthday-type term that grows with the total amount of data

processed. We see, that queries stretched by τ 6= τc bits will not unexpectedly increase

adversary’s chances to break OCBv, and that the best attack strategy to forge with τc
bits of stretch is simple tag-guessing.

8.6 Achieving AE with Variable Stretch

We demonstrate that the security of AE schemes in the sense of the NVAE notion is

easily achievable by introducing a practical and secure scheme. Rather than constructing

a scheme from the scratch, we modify an existing, well-established scheme and follow a

modular approach to analyse its security in presence of variable stretch. The modification

we propose is general enough to be applicable to most of the AE schemes based on a

tweakable primitive (e.g. a tweakable blockcipher).

OCB mode for tweakable blockcipher The Offset Codebook mode of operation for

a tweakable blockcipher (ΘCB) is a nonce-based AE scheme proposed by Krovetz and

Rogaway [KR11] (there are subtle differences from the prior versions of OCB [RBBK01,

Rog04a]). It is parameterized by a tweakable blockcipher Ẽ : K×T × {0, 1}n → {0, 1}n

(we will denote the inverse of Ẽ as Ẽ−1 = D̃) and a tag length 0 ≤ τ ≤ n. The tweak

space of Ẽ is of the form T = N × N0 × {0, 1, 2, 3} ∪ N0 × {0, 1, 2, 3} for a finite set

N . The encryption and the decryption algorithms of ΘCB[Ẽ, τ ] are described in Figure

8.11. The AE security of ΘCB is formally stated in Lemma 8.10.
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101: procedure EK(N,A,M)
102: if N /∈ N then
103: return ⊥
104: end if
105: M1‖M2 · · ·Mm‖M∗

n←M
106: Sum← 0n, C∗ ← ε
107: for i← 1 to m do
108: Ci ← ẼN,i,0K (Mi)
109: Sum← Sum⊕Mi

110: end for
111: if M∗ = ε then
112: Final← ẼN,m,2K (Sum)
113: else
114: Pad← ẼN,m,1K (0n)
115: C∗ ←M∗⊕ left|M∗| (Pad)
116: Sum← Sum⊕M∗‖10∗

117: Final← ẼN,m,3
K (Sum)

118: end if
119: Auth← HASHK(A)
120: T ← leftτ (Final⊕Auth)
121: return C1‖C2‖ · · · ‖Cm‖C∗‖T
122: end procedure

301: procedure HASHK(A)
302: Sum← 0n

303: A1‖A2 · · ·Am‖A∗
n←A

304: for i← 1 to m do
305: Sum← Sum⊕ Ẽi,0K (Ai)
306: end for
307: if A∗ 6= ε then
308: Sum← Sum⊕ Ẽm,1K (A∗‖10∗)

309: end if
310: return Sum
311: end procedure

201: procedure DK(N,A,C)
202: if N /∈ N or |C| < τ then
203: return ⊥
204: end if
205: C ← left|C|−τ (C) ; T ← leftτ (C)

206: C1‖C2 · · ·Cm‖C∗
n← C

207: Sum← 0n, M∗ ← ε
208: for i← 1 to m do
209: Mi ← D̃N,τ,i,0

K (Ci)
210: Sum← Sum⊕Mi

211: end for
212: if C∗ = ε then
213: Final← ẼN,m,2K (Sum)
214: else
215: Pad← ẼN,m,1K (0n)
216: M∗ ← C∗⊕ left|C∗| (Pad)
217: Sum← Sum⊕M∗‖10∗

218: Final← ẼN,m,3
K (Sum)

219: end if
220: Auth← HASHK(A)
221: T ′ ← leftτ (Final⊕Auth)
222: if T = T ′ then
223: return C1‖ · · · ‖Cm‖C∗‖T
224: else
225: return ⊥
226: end if
227: end procedure

Figure 8.11 – Definition of ΘCB[Ẽ, τ ].

Lemma 8.10 (Lemma 2, [KR11]). Let Ẽ : K × T × {0, 1}n → {0, 1}n be a tweakable

blockcipher with T = N ×N0 × {0, 1, 2, 3} ∪N0 × {0, 1, 2, 3}. Let τ ∈ {0, . . . , n}. Let A

be an adversary that runs in time t and makes qe encryption queries of no more than σ

bits. Let further A ′ be an adversary that runs in time t, makes qe encryption queries

and qd decryption queries of no more than σ bits in total. Then we have that

Advpriv

ΘCB[Ẽ,τ ]
(A ) ≤Advs̃prp

Ẽ
(B),

Advauth
ΘCB[Ẽ,τ ]

(A ′) ≤Advs̃prp

Ẽ
(B′) + qd ·

2n−τ

2n − 1
,

for some A that runs in time t + γ · σ for a constant γ and makes at most qp queries,

and some A ′ that runs in time t+ γ′ · σ for a constant γ′ and makes at most qa queries

where qp ≤ dσ/ne+ 2 · qe, and qa ≤ dσ/ne+ 2 · (qe + qd).
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Thanks to Lemma 2.9, we state as a corollary of Lemma 8.10 that Advnae
ΘCB[Ẽ,τ ]

(A ) ≤

Advs̃prp

Ẽ
(B) + qd

2n−τ

2n−1 for an A with resources as in Lemma 8.10, and a B that runs in

time t+ γ · σ for a constant γ and makes at most dσ/ne+ 2 · (qe + qd) queries.

OCB mode with variable-stretch security We introduce ΘCBv (variable-stretch-

ΘCB), a variable-stretch AE scheme obtained by slightly modifying ΘCB.

The tweakable blockcipher mode of operation ΘCBv is parameterized by a tweakable

blockcipher Ẽ : K × T × {0, 1}n → {0, 1}n and a stretch-space IT ⊆ {0, 1, . . . , n}. The

current tweak space T is different than the one for ΘCB; it is of the form T = N ×IT ×
N0×{0, 1, 2, 3}∪IT×N0×{0, 1, 2, 3}. The encryption and decryption algorithms of ΘCBv

are exactly the same as those of ΘCB, except that they now allow selectable stretch and

that every call to Ẽ is now tweaked by τ , in addition to the other tweak components.

Both algorithms are described in Figure 8.12. An illustration of the encryption algorithm

is depicted in Figure 8.13.

Thanks to Theorem 8.9, establishing the NVAE security of ΘCBv requires little effort.

The corresponding result is stated in Theorem 8.11.

Theorem 8.11. Let Ẽ : K × T × {0, 1}n → {0, 1}n be a tweakable blockcipher with

T = N × IT × N0 × {0, 1, 2, 3} ∪ IT × N0 × {0, 1, 2, 3}. Let A be an NVAE-adversary

with resources bounded by (t,qe,qd,σ). Then we have that

Adv
nvae(τc)

ΘCBv[Ẽ]
(A ) ≤Advs̃prp

Ẽ
(B) +

∑
τ∈IT

Advs̃prp

Ẽ
(Cτ ) + Advs̃prp

Ẽ
(Cτc) + qd[τc] ·

2n−τc

2n − 1
.

for some B that runs in time t+β ·q and makes q queries, and some Cτ that runs in time

t+γτ ·q[τ ] and makes q[τ ] queries for τ ∈ IT , where q[τ ] = dσ[τ ]/ne+ 2 · (qe[τ ] +qd[τ ])

for τ ∈ IT , and q =
∑

τ∈IT q[τ ], and β and γτ for τ ∈ IT are constants.

Proof. We observe that if we fix the expansion value to τc in all queries, the nonce-based

AE scheme (ΘCBv[Ẽ])[τc] that we get will be identical with the scheme ΘCB[Ẽ, τc].

The result follows from this observation and the results of Lemmas 8.10 and 8.12, and

Theorem 8.9.

Lemma 8.12. Let Ẽ : K × T × {0, 1}n → {0, 1}n be a tweakable blockcipher with

T = N ×IT ×N0×{0, 1, 2, 3}∪ IT ×N0×{0, 1, 2, 3}. Let A be a KESS-adversary with

resources bounded by (t,qe,qd,σ). Then we have that

Adv
nvae(τc)

ΘCBv[Ẽ]
(A ) ≤Advs̃prp

Ẽ
(B) +

∑
τ∈IT

Advs̃prp

Ẽ
(Cτ )

for some B that runs in time t+β ·q and makes q queries, and some Cτ that runs in time

t+γτ ·q[τ ] and makes q[τ ] queries for τ ∈ IT , where q[τ ] = dσ[τ ]/ne+ 2 · (qe[τ ] +qd[τ ])

for τ ∈ IT , and q =
∑

τ∈IT q[τ ], and β and γτ for τ ∈ IT are constants.
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101: procedure EK(N,A, τ ,M)
102: if N /∈ N then
103: return ⊥
104: end if
105: M1‖M2 · · ·Mm‖M∗

n←M
106: Sum← 0n, C∗ ← ε
107: for i← 1 to m do
108: Ci ← ẼN,τ,i,0K (Mi)
109: Sum← Sum⊕Mi

110: end for
111: if M∗ = ε then
112: Final← ẼN,τ,m,2K (Sum)
113: else
114: Pad← ẼN,τ,m,1K (0n)
115: C∗ ←M∗⊕ left|M∗| (Pad)
116: Sum← Sum⊕M∗‖10∗

117: Final← ẼN,τ,m,3
K (Sum)

118: end if
119: Auth← HASHK(A)
120: T ← leftτ (Final⊕Auth)
121: return C1‖C2‖ · · · ‖Cm‖C∗‖T
122: end procedure

301: procedure HASHK(A, τ)
302: Sum← 0n

303: A1‖A2 · · ·Am‖A∗
n←A

304: for i← 1 to m do
305: Sum← Sum⊕ Ẽτ,i,0K (Ai)
306: end for
307: if A∗ 6= ε then
308: Sum← Sum⊕ Ẽτ,m,1K (A∗‖10∗)

309: end if
310: return Sum
311: end procedure

201: procedure DK(N,A, τ ,C)
202: if N /∈ N or |C| < τ then
203: return ⊥
204: end if
205: C ← left|C|−τ (C) ; T ← leftτ (C)

206: C1‖C2 · · ·Cm‖C∗
n← C

207: Sum← 0n, M∗ ← ε
208: for i← 1 to m do
209: Mi ← D̃N,τ,i,0

K (Ci)
210: Sum← Sum⊕Mi

211: end for
212: if C∗ = ε then
213: Final← ẼN,τ,m,2K (Sum)
214: else
215: Pad← ẼN,τ,m,1K (0n)
216: M∗ ← C∗⊕ left|C∗| (Pad)
217: Sum← Sum⊕M∗‖10∗

218: Final← ẼN,τ,m,3
K (Sum)

219: end if
220: Auth← HASHK(A)
221: T ′ ← leftτ (Final⊕Auth)
222: if T = T ′ then
223: return C1‖ · · · ‖Cm‖C∗‖T
224: else
225: return ⊥
226: end if
227: end procedure

Figure 8.12 – Definition of ΘCBv[Ẽ]. Changes from ΘCB highlighted in red.

Proof. Let A be a KESS adversary with indicated resources. We define the games

k̃ess-R and k̃ess-I by replacing the tweakable blockcipher Ẽ by an ideal primitive in

kess-R and the kess-I respectively; i.e. we sample an independent random tweakable

permutation π̃K ←$ P̃erm(T , 2n) for every K ∈ K and use π̃K instead of ẼK for each

K.

We have that

Adv
nvae(τc)

ΘCBv[Ẽ]
(A ) = Pr

[
A kess-R ⇒ 1

]
− Pr

[
A

˜kess-R ⇒ 1
]

+ Pr
[
A

˜kess-R ⇒ 1
]
− Pr

[
A k̃ess-I ⇒ 1

]
+ Pr

[
A k̃ess-I ⇒ 1

]
− Pr

[
A kess-I ⇒ 1

]
.
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The gap Pr
[
A kess-R ⇒ 1

]
−Pr

[
A

˜kess-R ⇒ 1
]

is bounded by Advs̃prp

Ẽ
(B) by a standard

reduction.

To bound the gap Pr
[
A k̃ess-I ⇒ 1

]
− Pr

[
A kess-I ⇒ 1

]
, we observe that the replace-

ment can be done gradually, for one value of stretch at a time. We define games kess-Ii
for i = 0, . . . , |IT |. In the game kess-Ii, we replace the calls to ẼKτj by calls to

π̃Kτj for j = 1, . . . , i (using some fixed ordering of elements of IT ). Thus kess-I0 =

kess-I and kess-I|IT | = k̃ess-I. For each i = 1, . . . , |IT |, the gap Pr
[
A kess-Ii ⇒ 1

]
−

Pr
[
A kess-Ii ⇒ 1

]
is bounded by Advs̃prp

Ẽ
(Cτi). Thus, by a standard hybrid argument,

the cumulative gap will be bounded by
∑

τ∈IT Advs̃prp

Ẽ
(Cτ ).

Once Ẽ is replaced by a collection of random tweakable permutations in both games,

we observe that both k̃ess-R and k̃ess-I produce identical distributions. This is because

both in k̃ess-R and in k̃ess-I, any two queries with any two unequal amounts of stretch

τ1 and τ2 will be processed by two independent collections of random permutations

(thanks to the separation of queries with different amounts of stretch by tweaks).

Instantiating Ẽ. In order to obtain a real-world scheme, we need to instantiate the

tweakable blockcipher Ẽ. The scheme OCB uses the XEX construction [Rog04a] that

turns an ordinary blockcipher E : K × {0, 1}n → {0, 1}n into a tweakable blockcipher

Ẽ = XEX[E] with Ẽ : K×T ×{0, 1}n → {0, 1}n. A call to Ẽ = XEX[E] is evaluated in

two ways, depending on the tweak:

ẼN,i,jK (X) = EK(X ⊕∆N,i,j)⊕∆N,i,j , or Ẽi,jK (X) = EK(X ⊕∆i,j).

In each call, the input (and in some cases also the output) of the blockcipher E is

masked with special ∆-values, derived from the tweak and the secret key. A function

H : K×{0, 1}<n → {0, 1}n defined as H(K,N) = EK(N‖10∗) is used in the computation

of the masking values.4 In the following, all multiplications are done in GF(2n) with some

fixed representation. The masking ∆-values of the original OCB are computed as follows:

∆N,0,0 = H(K,N),

∆N,i+1,0 = ∆N,i,0⊕L[ntz(i+ 1)] for i ≥ 0,

∆N,i,j = ∆N,i,0⊕ j · L∗ for j ∈ {0, 1, 2, 3},

∆0,0 = 0n,

∆i+1,0 = ∆i,0⊕L[ntz(i+ 1)] for i ≥ 0,

∆i,j = ∆i,0⊕ j · L∗ for j ∈ {0, 1, 2, 3},

where L∗ = EK(0n), L[0] = 22 · L∗, L[`] = 2 · L[` − 1] for ` > 0 and ntz(i) denotes

the number of trailing zeros function (see Section 2.1 for definition). The security of the

XEX construction is stated in Lemma 8.13.

4A function is used in the latest version of OCB [KR11], we opted for EK(·) for the sake of simplicity.
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Lemma 8.13 (Lemma 3, [KR11]). Let E : K × {0, 1}n → {0, 1}n be a blockcipher and

T = N ×N0×{0, 1, 2, 3} ∪N0×{0, 1, 2, 3}. Let A be an adversary that runs in time at

most t, asks at most q queries, never asks queries with i-component exceeding 2n−5 and

never asks decryption queries with tweaks from N0 × {0, 1, 2, 3}. Then

Advs̃prp
XEX[E](A ) ≤ Adv±prp

E (B) +
6q2

2n

for an adversary B that makes at most 2q queries and runs in time bounded by t+ γ · q
with some constant γ.

Extending the tweaks with τ . In order to instantiate ΘCBv, we need to extend

the tweaks of Ẽ with a fourth component: τ . To this end, we propose XEX′, which is

obtained by a slight modification of the XEX construction. Informally, we expand the

domain of the “j-part” of tweaks and represent it as IT × {0, 1, 2, 3}, compensating for

this by decreasing the maximal value of i.

The tweakable blockcipher Ẽ′ = XEX′[E] is defined as follows. We again use the

function H(K,N). We uniquely label each element of IT by an integer with a bijection

λ : IT → {0, 1, . . . , |IT |−1}. We define m = dlog2 |IT |e, L∗ = EK(0n), Lτ = λ(τ) ·22 ·L∗
for τ ∈ IT , L[0] = 22+m ·L∗, and L[`] = 2 ·L[`− 1] for ` > 0. The masking ∆-values are

computed as follows:

∆N,0,0,0 = H(K,N),

∆N,τ,0,0 = ∆N,0,0,0⊕Lτ ,

∆N,τ,i+1,0 = ∆N,τ,i,0⊕L[ntz(i+ 1)] for i ≥ 0,

∆N,τ,i,j = ∆N,τ,i,0⊕ j · L∗ for j ∈ {0, 1, 2, 3},
∆τ,0,0 = Lτ ,

∆τ,i+1,0 = ∆τ,i,0⊕L[ntz(i+ 1)] for i ≥ 0,

∆τ,i,j = ∆τ,i,0⊕ j · L∗ for j ∈ {0, 1, 2, 3}.

A call to Ẽ′ is evaluated as follows:

Ẽ′N,τ,i,jK (X) =EK(X ⊕∆N,τ,i,j)⊕∆N,τ,i,j , or Ẽ′τ,i,jK (X) = EK(X ⊕∆τ,i,j).

The security result for XEX′ construction is stated in Lemma 8.14.

Lemma 8.14. Let E : K × {0, 1}n → {0, 1}n be a blockcipher and T = N × IT × N0 ×
{0, 1, 2, 3} ∪ IT × N0 × {0, 1, 2, 3} for some finite, non-empty IT ⊆ N0. Let A be an

adversary that runs in time at most t, asks at most q queries, never asks queries with

i-component exceeding 2n−(5+dlog2 |IT |e) and never asks decryption queries with tweaks

from IT ×N0 × {0, 1, 2, 3}. Then

Advs̃prp
XEX′[E]

(A ) ≤ Adv±prp
E (B) +

6q2

2n
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for an adversary B that makes at most 2q queries and runs in time bounded by t+ γ · q
for some constant γ.

The treatment of the τ -tweak component in XEX′ construction is equivalent to a one

where we would injectively encode τ, j into a single integer j′ = 22τ + j < 22+m. This is

the same approach that was used to extend the tweak space of XE construction for MR-

OMD and p-OMD in Sections 4.5 ans 5.5, where it is shown that the essential properties

of the masking values necessary for the security proof of [KR11] are preserved. The same

arguments apply here, so we omit the proof of Lemma 8.14.

OCBv: practical AE with variable stretch. We define the blockcipher mode of

operation OCBv, a variable-stretch AE scheme. OCBv is parameterized by a blockcipher

E and a stretch space IT . It is obtained by instantiating the tweakable blockcipher in

ΘCBv by the XEX′ construction, i.e. OCBv[E] = ΘCBv[XEX′[E]] and the claim on its

security is stated in Theorem 8.15.

Theorem 8.15. Let Ẽ : K × {0, 1}n → {0, 1}n be a blockcipher. Let A be an NVAE

adversary with resources bounded by (t,qe,qd,σ). We have that

Adv
nvae(τc)
OCBv[E](A ) ≤Advs̃prp

E (B) +
∑
τ∈IT

Advs̃prp
E (Cτ )

+ Advs̃prp
E (Cτc) +

28.5q2

2n
+ qd[τc]

2n−τc

2n − 1
.

for some B that runs in time t+β·q and makes 2q queries, and some Cτ that runs in time

t+γτ ·q[τ ] and makes 2q[τ ] queries for τ ∈ IT , where q[τ ] = dσ[τ ]/ne+2 ·(qe[τ ]+qd[τ ])

for τ ∈ IT , and q =
∑

τ∈IT q[τ ], and β and γτ for τ ∈ IT are constants.

Proof. The result in Theorem 8.15 follows from Theorem 8.11 and Lemma 8.14. The

fraction (28.5q2)/(2n) upper bounds the sum of all the terms that arise from all applic-

ations of Lemma 8.14.

If we further make the reasonable assumption that all the adversaries are “optimal”,

i.e. the advantage Advs̃prp
E (Cτ ) does not decrease when we increase q[τ ], then we can

further simplify the bound to the form

Adv
nvae(τc)
OCBv[E](A ) ≤ (|IT |+ 2) ·Advs̃prp

E (B) +
28.5q2

2n
+ qd[τc]·

2n−τc

2n − 1
.

Performance of OCBv The performance of OCBv can be expected to be very sim-

ilar to that of OCB, as the two schemes only differ in the way the masking ∆-values

are computed. In addition to the operations necessary to compute ∆-offsets in OCB,

the computation of the Lτ -values has to be done for OCBv. However, these can be

precomputed at the initialization phase and stored, so the cost of their computation will

be amortized over all queries. The only additional processing that remains after dealing
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with Lτ -s is a single xor of a precomputed Lτ to a ∆-value, necessary in every query.

This is unlikely to impact the performance significantly.
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Authenticated Encryption with Variable Stretch
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Ẽ

τ,2,0

K

A1 A2

Ẽ
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Figure 8.13 – Illustration of the encryption algorithm of ΘCBv (inspired by
the original illustration for OCB3 [KR11]) instantiated with a tweakable blokcipher
Ẽ : K × T × {0, 1}n → {0, 1}n. The top part depicts the encryption of a message with
four complete blocks (top) with Sum=

⊕4
i=1Mi and the encryption of a message with

three complete blocks and an incomplete block (bottom) with Sum=
⊕3

i=1⊕M∗‖10∗.
The bottom part of the picture shows processing of associated data of three complete
blocks (left) or two complete blocks and an incomplete block (right).
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Cryptanalysis





Chapter 9
Robustness of 3rd Round CAESAR

Candidates to Nonce Reuse and Key

Overuse

In this chapter, we switch from definitional work and design to cryptanalysis. We target

the 3rd round CAESAR candidates, and the AE schemes CCM and GCM. For each of

these, we attempt to find the most efficient nonce-reusing and/or high data-complexity

decryption and/or forgery attack to determine to what degree they actually resist to

attackers.

The work presented in this chapter is a result of joint work with Serge Vaudenay. It

is available in IACR ePrint archive [VV17].

Organization of the Chapter. We briefly address related work in Section 9.1 and

discuss the contributions in Section 9.2.

We give a motivation for finding attacks on all candidates in Section 9.3 and describe

our attack model in Section 9.4. We summarize the results in Section 9.5.

In Section 9.6, we describe attacks that each apply to several AE schemes that share

some common design element. We then give dedicated attacks on GCM and some of the

3rd round CAESAR candidates in Sections 9.7 to 9.19.

In Appendix C, we give a brief description of each scheme analysed in this chapter.

9.1 Related Work

The (in)security of GCM mode was investigated in a number of works [IOM12, Saa12,

HP08, PC15], in particular Joux authored the“forbidden”nonce misusing attack [Jou06].

Collision attacks similar to ours, or inspiring ours, were described for previous versions

of AEZ by Fuhr et al. [FLS15], and Chaigneau and Gilbert [CG16]. Collision attacks

on OCB were given by Ferguson [Fer02] and Sun et al. [SWZ13]. Reusable forgery
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attacks on OCB, OTR and COLM were described by Forler et al. [FLLW17]. Collision-

based attacks on COPA and ELmD (the predecessors of COPA) were described by

Bay et al. [BEK16] and Lu [Lu17]. Bost and Sanders found a flaw in the masking

scheme of an earlier version of OTR [BS16], Huang and Wu described a collision-based

forgery attack on the same scheme [HW14]. Mileva et al. describe a nonce misusing

distinguisher attack for MORUS [MDV16]. The collision-based forgeries on NORX,

Ascon and Keyak described in this chapter are matching Lemma 2 of the work on

provable generic security of full-state keyed duplex by Daemen et al. [DMV17]. The

possibility of a low-complexity nonce reusing attack is mentioned in the AEGIS v1.1

specifications [WP16]. The designers of Ketje point at the possibility of nonce-reusing

key recovery [BDP+16a]. Kales, Eichlseder and Mendel independently mounted state-

or-key recovery attacks on Tiaoxin, AEGIS and MORUS with similar complexities our

attacks [KEM17].

9.2 Contribution

The work presented in this chapter may be seen as a hybrid of a survey and cryptanalysis:

our goal is to assemble an overview of attacks on all 3rd round CAESAR candidates, but

we describe many of those attacks ourselves, whenever there were no attacks existing

previously.

A collection of concrete attacks gives a tangible assessment of the actual impact of

nonce-reuse/high-data-complexity attacks on the individual candidates, and provides

extra information on top of the guarantees provided by the schemes’ designers.

We show that the resilience of schemes with similar security claims can vary greatly.

This can be useful to break ties at the end of the 3rd round of CAESAR competition.

Some of these attacks, especially the low-complexity nonce-misuse attacks, can be viewed

as disturbingly powerful. Consequently, some of the candidates may be revealed to be

too brittle for general-purpose use.

The collection of generic attacks in Section 9.6 also helps to identify common security

phenomena related to similar construction principles shared by certain candidates.

A remark on the selection of CAESAR finalists. During the 2nd round, the

CAESAR committee has introduced the use cases [Ber16]. These were supposed to rep-

resent the main types of application of AE schemes, each of them loosely describing a

set of design goals. Each candidate was then supposed to specify which use case(s) does

it target. The proposed use cases were (1) “Lightweight applications” for resource con-

strained environments, (2) “High-performance applications” for high-performance soft-

ware implementation on general-purpose CPUs, and (3)“Defense in depth”for AE robust

to various kinds of misuse. In particular, “robustness” was only explicitly required in use

case (3).

In March 2018, the 3rd round of CAESAR finished, and 7 finalists were announced.1

1We note that the final portfolio was yet to be announced at the time of writing of this dissertation,

196



Robustness of 3rd Round CAESAR Candidates to Nonce Reuse and Key Overuse

Three of the finalists, namely ACORN, AEGIS and MORUS, succumb to low-complexity

key-or-state recovery attacks that fit well within the scope of accidental nonce reuse, as

shown in this chapter and independently by Kales, Eichlseder and Mendel [KEM17].

Although none of these three candidates targeted use case (3), the author of this

dissertation is not certain whether they should have been included among the finalists.

While it is understood that the use cases make it clear that only the schemes targeting

the case (3) can be expected to possess any kind of robustness, promoting schemes that

possess absolutely no robustness against nonce reuse may be dangerous. Not just because

of users who may use one of the three brittle candidates incorrectly, but also because the

schemes in the final portfolio will become a reference for future designs. And ACORN,

AEGIS and MORUS will be setting the bar very low with respect to resistance to key

recovery attacks.

9.3 Motivation

Complementing provable security. The results presented in the previous chapters

were done in the spirit of provable security. We either worked towards achieving some

formal definitions of AE security when designing AE schemes, or we sought to capture

some novel security properties in new definitions. Targeting a properly defined security

notion when designing an AE scheme has many benefits. It reassures both the designer

and the user that the scheme in question will (very likely) deliver on some meaningful,

and typically pretty strong set of security properties. It is also made quite clear when

do these guarantees apply, and when do they become void.

Take a nonce-based AE scheme that comes with a proven NAE security bound (see

Definition 2.8) as an example. The user knows that if the scheme is used correctly,

the produced ciphertexts will look close to uniform strings to third parties, and that

it is very unlikely that an adversary will be able to forge any ciphertext. What “use

correctly” means here is “do not repeat nonces, and do not process too much data,” the

amount being implied by the security bound.2 As soon as any of these usage conditions

is violated, the user should assume that all the security is forfeit. This is the conservative

practice that any user should adopt.

Yet, the security claims related to some well-established notion give no indication

about what happens after the guarantees are void. This is information that may not be

useful for all the users of AE, but it may be of value to experienced security engineers or

members of standardisation (or competition) committees. For example, when choosing

between two nonce-based AE schemes Π1 and Π2 with similar performance on the target

platform, similar memory footprint and similar NAE security bounds, the knowledge that

Π2 succumbs to a key recovery when nonces repeat, while for Π1 only existential forgery

and may not contain all the 7 finalists.
2We note that the meaning of the phrase “use correctly” is in reality much more complicated, and

possibly not yet completely understood. Nevertheless, we simplify its meaning to keep the discussion
focused.
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attacks are known under the same setting, will make the choice rather easy.

In this chapter, we aim at providing fine-grained information beyond what is implied

by the security claims made by the 3rd round CAESAR candidates. Our method is to

analyse each candidate, CCM and GCM, and report the best attacks we can find. The

type of attack, its complexity and adversarial powers necessary to break each candidate

will then shed more light on its actual resilience.

64-bit bound and nonce-misuse. The main goal of the CAESAR competition was

set to “identify a portfolio of authenticated ciphers that offer advantages over AES-

GCM and are suitable for widespread adoption” [Ber14a]; GCM instantiated with the

AES blockcipher was taken to be a reference that ought to be surpassed by the CAESAR

candidates, while the name of the competition spells out the properties the candidates

are expected to guarantee: security, applicability and robustness.

For this chapter, we take the liberty to interpret robustness of AE schemes as the abil-

ity to resist powerful attacks, possibly beyond the limitations imposed by their designers.

We focus on nonce reuse and high data complexity, simply because every candidate must

make a claim about security with respect to these specific usage conditions.

Only three candidates guarantee security beyond nonce reuse. AEZ and Deoxys II

guarantee no degradation of authenticity, and the minimal (and unavoidable [RS06b]) de-

gradation of confidentiality even if the nonces are repeated. COLM guarantees a weaker

version of confidentiality protection in the presence of nonce misuse, OAE1 [FFL12]

security.

Concerning the data that can be processed with a single key, most CAESAR candid-

ates guarantee security up to the so called birthday-bound; for AES-based AE schemes,

this means processing no more than about 264 blocks of data per key and making no more

than 264 encryption queries. In this chapter, we use the 64-bit data/query complexity

as a reference threshold for comparison of candidates, denoted by 64-bit-bound.

In Table 9.1, we categorize the 3rd round candidates, as well as CCM and GCM, based

on their security claims with respect to the nonce misuse and quantitative security. We

consider a scheme to claim security against nonce reuse if it claims security in the sense

of MRAE [RS06b], OAE1 [FFL12] or RAE [HKR15]. For each candidate, we consider

an instance with a 128-bit secret key.

9.4 Notation and Security Model

When presenting the CAESAR candidates, we try to respect the original notations but

deviate a bit to unify the notation of the common input/output values. Hence, the secret

key is denoted by K, the nonce (or IV) is denoted by N , the associated data (AD) is

denoted by A, the plaintext is denoted by M , the ciphertext is denoted by C, and the tag

(if any) is denoted by T . We further use τ to denote the ciphertext expansion/stretch,

which is in most cases the same as the tag length.
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Robustness of 3rd Round CAESAR Candidates to Nonce Reuse and Key Overuse

up to 64-bit-bound beyond 64-bit-bound

unique nonces OCB, NORX, Jambu,
CLOC&SILC

Tiaoxin, Morus, Keyak, Ketje,
Deoxys I&II, Ascon, AEGIS,

ACORN

nonce misuse Deoxys II, COLM, AEZ -

Table 9.1 – An overview of 3rd round CAESAR candidates based on their
claimed security guarantees w.r.t the nonce misuse and quantitative security; 64-
bit-bound refers to about 264 processed bits. For security in presence of nonce misuse,
we consider MRAE [RS06b], OAE [FFL12] or RAE [HKR15]. For each candidate, we
consider an instance with 128-bit secret key.

Each of the candidates internally partitions the inputs into blocks of constant size.

We use several symbols to denote the length of the blocks, e.g. n, r or ν, in order to

respect the notation of each candidate as much as possible. We use subscript to index

blocks in a query and superscript to index queries, e.g. M j
i is the ith message block in

jth query.

With a slight abuse of notation, we let X0∗1 denote extending a string X with the

smallest number of zero bits followed by a “1” that will yield a string whose length is a

multiple of the block size, when a block size is implicit from the context. For blockcipher-

based schemes, we let E denote the underlying blockcipher. We let
∥∥j
i=1
Mi denote the

concatenation M1‖ . . . ‖Mj for any M1, . . . ,Mj ∈ {0, 1}∗.

Syntax. In this chapter, each CAESAR candidate is viewed as nonce-based AE scheme

(see Section 2.4). We note that most of the candidates internally compute an encryption

of the message C and an authentication tag T , and output C‖T as the final ciphertext.

We refer to C as the core ciphertext and call T authentication tag, or simply tag.

Attack model. We focus on three types of attacks: decryption attacks, (semi) uni-

versal forgeries and key recovery attacks. To make the results comparable, for each

candidate we attack an instance that uses 128-bit keys (i.e. K = {0, 1}128), and we

define our attack models to correspond to the 128-bit security level.

In each attack on a scheme Π, an attacker A has blackbox oracle access to an instance

of the encryption and the decryption algorithms EK ,DK of Π that use a secret key K

unknown to A . We call A nonce respecting if each encryption query it makes uses a

distinct nonce. We say that A mounts a chosen plaintext attack (CPA) if it never makes

a decryption query, otherwise we say A mounts a chosen ciphertext attack (CCA).3

For each attack, we keep track of the data complexity (in blocks of some constant

size) and/or the query complexity, and of the maximal number of encryption queries

that reuse the same (but arbitrary) nonce.

3Note that this distinction does not make sense for forgeries.
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(Semi)-universal forgery. A EK ,DK (N,A,M) receives a nonce, AD and a message

and tries to produce a decryption query (N,A,C) that will correctly decrypt to M ,

such that C was not an output of a previous encryption query made with N,A. We

call the forgery semi-universal if the adversary only gets target AD and message (i.e.

A EK ,DK (A,M)) or only a target message (i.e. A EK ,DK (M)) and is allowed to use arbit-

rary values for the remaining inputs.

Decryption attack. A EK ,DK (N,A,C) receives a nonce, AD and ciphertext-tuple that

is an encryption of a secret random message M of fixed length µ ≥ 128, and tries to

produce M .

Key recovery. A EK ,DK () tries to compute K.

Reusable attacks We call a forgery (resp. decryption) attack reusable if, after having

forged (resp. decrypted) for the first time, the query and computational complexity of

the consequent forgeries (resp. decryptions) are“significantly lower” than the complexity

of the initial forgery (resp. decryption).

9.5 Results

We sort the CAESAR candidates into six categories based on the adversarial powers

necessary to break them: (A) Those for which we have a nonce-respecting universal for-

gery and a decryption attack at the 64-bit-bound. (B) Those others for which we have a

nonce-respecting universal forgery and a decryption attack beyond the 64-bit-bound, but

below exhaustive search. (C) Those for which we have a reusable forgery and a reusable

decryption attack with small complexity, possibly with nonce-misuse. (D) Those others

for which we have a forgery or a decryption attack with small complexity, possibly with

nonce-misuse. (E) Those others for which we have a forgery or a decryption attack at

the 64-bit-bound, possibly with nonce-misuse. (F) Remaining ones.

Our results are summarized in Table 9.2, where the categories (A), (B), (C), (D), (E)

and (F) are listed in this order. For each candidate, we indicate the type of attack, the

query complexity4, whether the attack needs nonce misuse, and whether it is reusable.

The comments “(N,A)”, “(N)” and “(A)” mean that the reusability is limited to a fixed

pair of nonce and AD, a fixed nonce or a fixed AD, respectively. All attacks presented

in Table 9.2 succeed with high probability.

The categories can be ordered by a decreasing level of resilience: (F)≥(E)≥(D)≥(C)

and (F)≥(E)≥(B)≥(A). The categories (A) and (C) are incomparable (same for (B)

and (D)), as the impacted schemes succumb to different kinds of misuse. However, the

attacks in category (C) may be seen as a more serious threat than those in category (A),

as they are much more likely to occur in practice.

4The time and memory complexities of the attacks mentioned in the Table 9.2 are small multiples/s-
mall powers of the query complexity.
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algorithm source(s) type of attack nonce-reuse # queries reusable

A

AES-GCM# [MV04] 9.7 univ. forgery 1 3 · 264 yes

AEZ [HKR17] 9.8, [CG16] key recovery 1 3 · 264

OCB [KR16] 9.9, [Fer02] univ. forgery & CCA decryp. 1 2 (one w/ 264 blocks) yes

AES-OTR [Min16] 9.6, 9.10 univ. forgery & CPA decryp. 1 2 (one w/ 264 blocks) yes

B CLOC [IMG+16] 9.11 univ. forgery & CPA decryp. 1 280 yes

C

AES-GCM [MV04] 9.6, 9.7, [Jou06] univ. forgery & CPA decryp. 2 2 yes

DEOXYS-I [JNP16] 9.6 univ. forgery & CCA decryp. 3 3 yes (A)

OCB [KR16] 9.6 univ. forgery & CCA decryp. 2 2 yes (A)

Tiaoxin [Nik16] 9.13 key recovery 30 30

AEGIS-128 [WP16] 9.14 univ. forgery & CPA decryp. 15 15 yes (N,A)

ACORN-128 [Wu16] 9.15 univ. forgery & CPA decryp. 586 586 yes (N,A)

Ketje Sr [BDP+16a] 9.16 key recovery 50 50

MORUS 640 [WH16a] 9.17 univ. forgery & CPA decryp. 8 8 yes (N)

D

AES-CCM [WHF03b] 9.6 CPA decryp. 2 1

CLOC & SILC [IMG+16] 9.6 CPA decryp. 2 1 no

JAMBU [WH16b] 9.6 CPA decryp. 1 + |C|/64 |C|/64 no

NORX32-4-1 [AJN16] 9.6 CPA decryp. 1 + |C|/384 |C|/384 no

Ascon-128 [DEMS16] 9.6 CPA decryp. 1 + |C|/64 |C|/64 no

Lake Keyak [BDP+16b] 9.6 CPA decryp. 1 + |C|/1344 |C|/1344 no

E COLM [ABD+16] 9.6 semi-univ. forgery 1 + q 264 yes (N,A)

F Deoxys-II [JNP16] 9.19 semi-univ. forgery & CCA decryp. 2m 2128−m yes (A)

Table 9.2 – A summary of attacks on 3rd round CAESAR candidates and their clustering based on
the type of attack. The categories (A), (B), (C), (D), (E) and (F) are listed from top to bottom.
The column “source” lists the sections and/or bibliography references that describe the relevant attacks.
The comments “(N,A)”, “(N)” and “(A)” in the reusability column (see Section 9.4) mean that the
reusability is limited to fixed values of the listed parameters. The values in the column “nonce-reuse”
indicate maximal number of times any nonce is used (so 1 means nonce respecting), q denotes the number
of independent forgeries made in a single attack, and m is used as a parameter.
#The attack applies only if |N | > 128.

Disclaimer. We understand that none of the attacks we present violates the security

claims of any of the CAESAR candidates. That is not the goal of our work. Our goal is

to determine to what degree will the security of respective candidates deteriorate after

the guarantees become void. Each of the attacks we present breaks the usage conditions

imposed by the authors of the corresponding candidate, either by reusing the nonces, or

by processing too much data.

9.6 Generic Attacks

In this section, we list attacks that trivially apply to certain construction principles,

rather than being construction-specific.

CPA decryption: streamciphers (nonce reuse, constant complexity) candid-

ates that produce a core ciphertext C and a tag T such that C = M ⊕ f(K,N, |M |)
(or C = M ⊕ f(K,N,A, |M |)), i.e. the message is xored with a sequence of masking

bits derived as a function of the nonce and the secret key (or the nonce, secret key and

AD) will necessarily succumb to this attack. To decrypt (N,A,C‖T ), we make a single
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encryption query f(K,N,A, |M |)‖T ′ = EK(N,A, 0|C|) that reveals the key stream and

compute M = C ⊕ f(K,N,A, |M |). This attack applies to CCM, GCM.

CPA decryption: self-synchronizing streamciphers (nonce reuse, tiny com-

plexity) The previous attack can be adapted to AE schemes that produce the core

ciphertext C block by block, by xoring the current message block with masking bits

dependent on the key, the nonce, AD and the previous message blocks. I.e. given

a partitioned message M1, . . . ,M`
n← M they compute the ith block of ciphertext as

Ci = Mi⊕ f(K,N,A,M1‖ . . .Mi−1, |Mi|) (where the value of n depends on the scheme).

To mount a decryption attack with an input tuple (N,A,C‖T ), we make |C|n encryp-

tion queries as follows:

1: Compute C1, . . . , C`
n← C.

2: for i← 1 to ` do

3: Query C ′‖T ′ ← EK(N,A,M1‖ . . . ‖Mi−1‖0|Ci|).
4: Compute C ′1, . . . , C

′
i
n← C ′ and then Mi ← C ′i⊕Ci.

5: end for

6: return M1‖ . . . ‖M`

This attack applies to CLOC, SILC, AEGIS, ACORN, MORUS, Ketje, NORX,

Ascon, Keyak and JAMBU.

Semi-universal forgery: AD preprocessing (nonce reuse, varying complex-

ity). Several candidates internally process an encryption query E(K,N,A,M) by first

computing a value V = f(K,N,A) dependent on the key, nonce and the AD, and then

compute the (tagged) ciphertext as a function of the secret key, the message and the

value V as C = g(K,V,M), such that |V | = v for constant v. If |N | ≥ 2v/2, then it

is possible to find a pair (N1, A1), (N2, A2) such that f(K,N1, A1) = f(K,N2, A2) in a

nonce-respecting birthday attack, and then use it to forge a ciphertext for a challenge

message M (hence this yields a semi-universal forgery):

1: Initialize empty table T, pick arbitrary M̂ ∈ {0, 1}2v.
2: for i← 1 to 2v/2 do

3: Pick (N ′, A′) with a fresh N ′ randomly.

4: Query C ′ ← EK(N ′, A′, M̂), then insert (C ′, (N ′, A′)) to T.

5: end for

6: Find entries (C ′, (N1, A1)), (C ′, (N2, A2)) (with collision on C ′) in T.

7: Query C ← EK(N1, A1,M) and forge with (N2, A2, C).

The attack succeeds with a probability close to 1/2, in particular choosing M̂ ∈ {0, 1}2v

ensures that a C ′ collision implies a V collision with overwhelming probability. It is

reusable with the same (N1, A1), (N2, A2), and uses every nonce no more than 1 + q

times, with q the number of desired forgeries.
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The attack applies with 64-bit-bound complexity (as v = 128) to, AEZ, CLOC,

SILC, COLM and with some care to CCM.5

Semi-universal forgery: sponges (nonce reuse, varying complexity). In all

sponge-based modes, the processing can again be expressed with two functions f and

g in a similar way as in the previous attack on AD preprocessing. However, nonce

reuse allows the attacker to force an arbitrary value to r bits of the sponge state

after the processing the first message block. The processing of an encryption query

E(K,N,A,M) by a sponge-based scheme can be modelled as follows: first partition the

message M1, . . . ,M`
r← M , then compute V = f(K,N,A) with |V | = b, then compute

the first cipertext block as C1 = leftr (V )⊕M1, and compute the rest of the tagged

ciphertext as C2‖ . . . ‖C`‖T = g(K,V ⊕(M1‖0c),M2‖ . . . ‖M`), where c = b− r.
Using this, the previous attack can be adapted to work with query complexity 2c/2

(where c is the capacity of the given sponge-based scheme) to forge a ciphertext for

arbitrary (A,M):

1: Initialize empty table T, pick arbitrary M̂ ∈ {0, 1}c.
2: for i← 1 to 2c/2 do

3: Pick a fresh N ′ randomly.

4: Query C ′‖T ′ ← EK(N ′, A, 0r), then query C ′′‖T ′′ ← E(N
′, A,C ′‖M̂).

5: Compute C ′′1 , . . . , C
′′
`

r← C ′′, then insert (C ′′2 ‖ . . . ‖C ′′` ‖T ′′, (N ′, C ′)) to T.

6: end for

7: Find entries (C ′′‖T ′′, (N1, C1)), (C ′′‖T ′′, (N2, C2)) (with collision on C ′′‖T ′′) in T.

8: Query C‖T ← EK
(
N1, A,M ⊕((C1⊕C2)‖0|M |−r)

)
and forge with (N2, A,C‖T ).

The success probability is close to 1/2. The second query in the attack forces the internal

state of the sponge to become 0r‖S for some S ∈ {0, 1}c, hence the birthday complexity

in c. We xor the difference of C1 and C2 to the first block of M to force the repetition

of the r outer bits of the state during forgery.

The attack is reusable with the same (N1, A), (N2, A),6 and uses every nonce no more

than 2 + q times, with q the number of desired forgeries.

The attack applies with 64-bit-bound complexity (as c = 128) to NORX and with

beyond 64-bit-bound complexity (as c = 256) to Keyak and Ascon. We note that for

Keyak and Ascon, the exhaustive key search has the same time complexity as this attack,

but needs only a single query.

Universal forgery and CCA decryption: ciphertext translation (nonce mis-

use, tiny complexity). Some candidates use so called ciphertext translation [Rog02]

to incorporate the authentication of AD with a message-only encryption core Ē . The

method is described in Figure 8.1. It can be briefly described as follows. Schemes based

5For CCM with τ = 128, we must use A′ of 240 bits to make sure that the encoding of the nonce and
AD for the CBC MAC is block-aligned.

6For Keyak, the attack can be reused with arbitrary AD, because it processes AD and message
simultaneously.
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on ciphertext translation compute the tagged ciphertext as

EK(N,A,M) = ĒK(N,M)⊕ 0|M |‖HK(A)

where ĒK(N,M) returns a core-ciphertext and a τ -bit tag and H is a keyed function

with τ -bit output. To forge for (N,A,M), we pick arbitrary N̂ 6= N , M̂ 6= M and

A′ 6= A and we do:

1: Query C1‖T 1 ← EK(N̂ , A, M̂) and C2‖T 2 ← EK(N̂ , A′, M̂).

2: Compute ∆← T 1⊕T 2.

3: Query C ′‖T ′ ← EK(N,A′,M) and forge with (N,A,C ′‖(T ′⊕∆)).

It is easily verified that the forgery is correct. This attack can be modified to decrypt

a ciphertext N,A,C‖T ; knowing ∆, we query N,A′, C‖(T ⊕∆) and learn the message

M . This attack applies to OCB, AES-OTR and Deoxys-I.

9.7 AES-GCM

A brief description of GCM can be found in Appendix C.2.

Universal forgery (nonce misuse, tiny complexity). This attack was first de-

scribed by Joux as the “forbidden attack” [Jou06]. The main idea is that recovering the

authentication key L makes forging very easy. We assume that τ = 128. To forge for

N,A,M , we pick random N̄ and M1 6= M2 ∈ {0, 1}128 and do:

1: Query C1‖T 1 ← EK(N, ε,M1) and C2‖T 2 ← EK(N, ε,M2).

2: Compute L as root of P (Λ) = (C1
1 ⊕ C2

1 ) · Λ2⊕(T 1⊕T 2) over GF(2128).

3: Query C ′‖T ′ ← EK(N,A′,M ′) with arbitrary A′ and M ′ s.t. |M ′| = |M |.
4: Forge with (N,A, (C ′⊕M ′⊕M)‖(T ′⊕GHASHL(A′, C ′)⊕GHASHL(A,C))).

We note that L will be the only root of P (Λ) as squaring yields a bijection over GF(2128).

Once L is computed, forgeries become easy.

Universal forgery (nonce respecting, 64-bit-bound, |N | > 128). If nonces longer

than 128 bits are allowed, it is possible to recover the authentication key L in a nonce-

respecting birthday attack. We note, however, that the use of nonce length other than

96 bits is uncommon and discouraged [IOM12]. Assuming that τ = 128, for each i

we use distinct N i of 256 bits and M i = B‖M i
2 for a fixed B ∈ {0, 1}128 and distinct

M i
2 ∈ {0, 1}128, and do:

1: for i← 1 to 264 do query Ci‖T i ← EK(N i, ε,M i).

2: For i 6= j s.t. Ci1 = Cj1 find L as root of P (Λ) = (Ci2 ⊕ C
j
2) · Λ2⊕(T 1⊕T 2).

3: Forge using L.

Note that the collision in line 2 must imply GHASHL(ε,N i) = GHASHL(ε,N i′), so if

it occurs, the attack succeeds. We note that a forgery allows to mount a similar CCA

decryption attack as for the ciphertext translation-based AE schemes (by changing AD
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and the tag accordingly).

9.8 AEZ v5

We present three nonce-respecting attacks that respectively recover the subkeys I, J

and L, each at the 64-bit-bound complexity. A brief description of AEZ is given in

Appendix C.3. The same appendix explains the notations E and AES4.

J-recovery attack. The Chaigneau-Gilbert attack [CG16] on AEZ v4.1 can be ap-

plied to AEZ v5 to extract J by a nonce-respecting chosen message attack at the birth-

day bound. When N and A are single blocks, then based on the AEZ v5 specifica-

tion [HKR17] the function H becomes

hk(τ,N,A) = E3,1
K (τ)⊕E4,1

K (N)⊕E5,1
K (A)

= E3,1
K (τ)⊕AES4k(N ⊕ 4J ⊕ 2I ⊕L)⊕AES4k(A⊕ 5J ⊕ 2I ⊕L).

If we limit ourselves to queries with A = N ⊕ c for a fixed block c and variable nonces,

a ciphertext collision with the pair (N,N ′) will mean that N ′ = N ⊕ c⊕ J . The attack

runs as follows:

1: Initialize an empty table T.

2: Pick an arbitrary block c ∈ {0, 1}128 and message M ∈ {0, 1}2·128.

3: for i← 1 to 264 do

4: Pick a fresh N randomly, set A← N ⊕ c.
5: Query C ← EK(N,A, τ,M), store (C,N) in T.

6: end for

7: Find (C,N), (C ′, N ′) in T with C = C ′, compute J = N ⊕N ′⊕ c.
The Chaigneau-Gilbert attack requires a little effort to be adapted to AEZ v5 but it can

recover I and L with nonce-misuse. A nonce respecting recovery of I and L is possible

if we can use nonces of several blocks (a feature of AEZ [HKR17]), to have a similar

attack as the one above.

L-recovery attack. If |N |128 = 2 and A = ε, then following the AEZ v5 specifications

the function H becomes

hk(τ, (N1, N2)) = E3,1
K (τ)⊕E4,1

K (N1)⊕E4,2
K (N2)

= E3,1
K (τ)⊕AES4k(N1⊕ 4J ⊕ 2I ⊕L)⊕AES4k(N2⊕ 4J ⊕ 2I ⊕ 2L).

We modify the J-recovery attack to use 2-block nonces with N2 = N1⊕ c for a fixed

block c. A ciphertext collision with N and N ′ will then yield L = N1⊕N ′1⊕ c:
1: Initialize an empty table T.

2: Pick arbitrary block c ∈ {0, 1}128 and message M ∈ {0, 1}2·128.

3: for i← 1 to 264 do
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4: Pick a fresh N1 randomly, set N2 ← N1⊕ c.
5: Query C ← EK(N, ε, τ,M), store (C,N1) in T.

6: end for

7: Find (C,N1), (C ′, N ′1) in T with C = C ′, compute L = N1⊕N ′1⊕ c.
Thus we recover L in a similar attack as before.

I-recovery attack. Next, we see that when |N |128 = 9, the hash function H becomes

hk(τ, (N1, . . . , N9)) = E3,1
K (τ)⊕E4,1

K (N1)⊕ · · ·⊕E4,9
K (N9)

= E3,1
K (τ)⊕AES4k(N1⊕ 4J ⊕ 2I ⊕L)⊕ · · ·⊕

AES4k(N7⊕ 4J ⊕ 2I ⊕ 7L)⊕AES4k(N8⊕ 4J ⊕ 2I)⊕
AES4k(N9⊕ 4J ⊕ 4I ⊕L).

We again modify the J-recovery attack to use 9-block nonces with N2, . . . , N8 constant

and N9 = N1⊕ c for a fixed block c. A ciphertext collision with N and N ′ yields

6I = N1⊕N ′1⊕ c:
1: Initialize an empty table T.

2: Pick arbitrary c ∈ {0, 1}128, N2‖ . . . ‖N8 ∈ {0, 1}7·128 and message M ∈ {0, 1}2·128.

3: for i← 1 to 264 do

4: Pick a fresh N1 randomly, set N9 ← N1⊕ c.
5: Query C ← EK(N, ε, τ,M), store (C,N1) in T.

6: end for

7: Find (C,N1), (C ′, N ′1) in T with C = C ′, compute I = (N1⊕N ′1⊕ c) · 6−1.

So, we recover I, J, L with a nonce-respecting chosen message attack at the 64-bit-bound.

For AEZ, this is equivalent to recovering the secret key.

9.9 OCB3 (OCB v1.1)

We give a brief description of OCB in Appendix C.4.

L-recovery attack. An attack by Ferguson [Fer02] allows to recover the derived key

L. Essentially, it encrypts a very long random message and looks for collisions of the

values Mi ⊕Ci. If such a collision occurs for i 6= j, we deduce Mi ⊕ γi ·L = Mj ⊕ γj ·L.

Indeed, if Mi⊕ γi ·L = Mj ⊕ γj ·L, we have Mi⊕∆i = Mj ⊕∆j so Mi⊕Ci = Mj ⊕Cj .
With this equation, we deduce L. This attack is nonce-respecting and works at the

birthday bound.

Querying a huge message can be avoided in the nonce-misuse setting: make many

queries (N,Ai,M) with M = ε empty and Ai = Ai1‖Ai1 of two equal blocks. Then, if

Ai1 = Aj1 ⊕ (γ1 ⊕ γ2) · L for some i 6= j, we observe a collision T ′ = T . This allows us to

recover L.
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Universal forgery (tiny complexity, using L). Using L, we can make a universal

forgery for (N,A,M ′). If |M ′|128 = ` > 1, we do:

1: Define a permutation π : {1, . . . , `} → {1, . . . , `} as π(i) = (i+ 1 mod `) + 1.

2: for i← 1 to ` do Mi ←M ′π(i)⊕ γi · L⊕ γπ(i) · L.

3: Query C‖T ← EK(N,A,M).

4: for i← 1 to ` do C ′i = Cπ−1(i) ⊕ γi · L⊕ γπ−1(i) · L.

5: Forge with (N,A,C ′‖T ).

This attack is nonce-respecting and using a single encryption query, but needs L.

If |M ′|128 = 1, we construct M = M ′‖(γ1⊕ γ2) · L, make a query with (N,A,M) to

get C‖T , and take C ′ = C1, which again gives a valid encryption C ′‖T of (N,A,M ′).

EK oracle (tiny complexity, using L). We can also implement an EK oracle,

i.e. evaluate the underlying blockcipher on any plaintext. This can be used to e.g.

mount universal forgeries or bootstrap the CCA decryption presented in this section.

To compute yi = EK(xi) for arbitrary x1, . . . , xs ∈ {0, 1}128 set ` = 214, and do:

1: Pick M ∈ {0, 1}`·128 with
⊕

i>1Mi = (2−1 ⊕ γ1 ⊕ γ`) · L randomly.

2: Query C‖T ← EK(N, ε,M), compute R← C1⊕T ⊕ γ1 · L.

3: Find i s.t. Mi⊕R⊕ γi · L = 07‖1‖N ′′‖06 for N ′ ∈ {0, 1}114.

4: Set N ′ ← N ′′‖06, compute R′ = Ci⊕R⊕ γi · L.

5: for i← 1 to s do set M ′i ← xi⊕R′⊕ γi · L.

6: Query C ′‖T ′ ← EK(N ′, ε,M ′).

7: for i← 1 to s do compute yi ← C ′i⊕R′⊕ γi · L.

The R computed on line 2 is correct as T = EK(M1⊕R⊕ γ1 ·L) = C1⊕R⊕ γ1 ·L. We

can also add an unused nonce to the list of xi-s to avoid making the 214 ·128bit= 256KB

query more than once. Then the attack uses a single encryption query per list of blocks

x1, . . . , xs, of size s+ 1 blocks.

CCA decryption attack (odd number of blocks, tiny complexity, using L).

Assume that we want to decrypt (N,A,C, T ) (let M be its decryption). We can first

compute R associated with N with the above EK oracle, as well as some fresh N ′ and its

associated R′ with tiny complexity. The tuple (N ′, A,M ′), with the message M ′ defined

by M ′i = Mi ⊕ R ⊕ R′, encrypts into (C ′, T ′) such that C ′i = Ci ⊕ R ⊕ R′ and T ′ = T

when ` is odd and the length of M is a multiple of the blocksize. So, a CCA decryption

query with (N ′, A,C ′, T ) gives M ′ from which we deduce M = M ′⊕R‖ . . . ‖R.

9.10 AES-OTR v3.1

The described attacks apply to OTR with parallel processing of AD. A brief description

of OTR can be found in Appendix C.5.

L-recovery attack. If we use the same nonce N 264 times, we can recover L:
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1: for i← 1 to 264 do query C‖T ← EK(N, ε,M i) with fresh M i ∈ {0, 1}4·128.

2: Find i 6= j s.t. Ci1⊕M i
2 = Cj3 ⊕M

j
4 , compute L = (M i

1⊕M
j
3 ) · (1⊕ 2)−1.

To avoid nonce reuse, we can encrypt a huge random message (with |M |128 ≈ 264) with

a nonce N and look for an internal collision with i 6= j:

C2i⊕M2i−1 = C2j ⊕M2j−1 implying C2i−1⊕ 2i−1 · 2 · L = C2j−1⊕ 2j−1 · 2 · L,

revealing L for this N . We further expect to find many values of 1 ≤ i ≤ |M |128/2 for

which 2i−1 · L⊕M2i−1 (or 2i−1 · 3 · L⊕C2i−1) will be a string of the form ε(τ)‖1‖N ′.
For any such N ′ we can use L′ = C2i−1 (or L′ = C2i) to bootstrap the following attack.

EK oracle (using (N,L) pair). Assuming that we know an (N,L) pair (either from

the L-recovery attack or from a previous execution of the present EK oracle), by a single

encryption query with nonce N we can obtain EK(x1), . . . , EK(xr) for a list x1, . . . , xr
as follows:

1: for i← 1 to r do set M2i−1 ← xi⊕ 22i−1 · L and pick M2i arbitrarily.

2: Query C‖T ← EK(N, ε,M).

3: for i← 1 to r do compute EK(xi) = M2i⊕C2i−1.

In each execution of this attack, we can add one block to the list of xi-s to prepare a

fresh pair N ′, L′ for the next execution of the attack, allowing for its nonce respecting

repetition. The oracle EK can be used to mount universal forgeries and CPA decryption

attacks with tiny complexity (but needs L).

9.11 CLOC

A description of CLOC can be found in Appendix C.6.

EK oracle in CLOC (nonce-respecting, beyond birthday bound). In CLOC,

the processing of AD and nonce has the form V = f1(f2(K,A)⊕ ozp(param‖N)) where

the function f1 is easy to invert. To compute EK(x) for an x ∈ {0, 1}128, we pick fixed

AD A and do:

1: for i← 1 to 264 do query Ci‖T i ← EK(N i, A,M i) with random M i ∈ {0, 1}2·128.

2: Find i 6= j s.t. M i
1⊕Ci1 = M j

2 ⊕C
j
2 , compute W ← f−1

1 (fix1(Cj1))⊕ ozp(param‖N i).

3: if f−1
1 (x)⊕W of the form ozp(param‖N̄) query EK(x)‖T ← EK(N̄ , A, 0128).

4: else abort.

The attack works because the collision on line 2 implies that V i = fix1(Cj1) so we deduce

the V i value for a random nonce N i with A. This allows us to recover W = f2(K,A).

If x is not of the correct form, it is bad luck. When using nonces of 112 bits, which

is the maximum, the probability to have the correct form is 2−16. But we can run this

attack 216 times to get many W i = f2(K,Ai) with complexity 280. Then at least one

W i will be such that f−1
1 (x)⊕Wi is of the correct format for any x.

This attack does not work on SILC, in which W depends on both N and A.
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Universal forgery and CPA decryption attack in CLOC (nonce-respecting,

beyond birthday bound). With the previous EK oracle, we can simulate the encryp-

tion or the decryption process and thus mount universal forgeries and CPA decryption.

9.12 Jambu

A brief description of Jambu is given in Appendix C.17.

Universal forgery (number of decryption queries at 64-bit-bound). Because

the tags of Jambu are only 64-bit long, the trivial tag guessing attack only requires

264 decryption queries. We can make a forgery for any target triplet (N,A,M) (with

|M |64 = m) with a single encryption query, but requiring many decryption queries:

1: Pick M ′m ∈ {0, 1}|Mm| s.t. Mm 6= M ′m, set M ′ ←M1‖ . . . ‖Mm−1‖M ′m
2: Query C ′‖T ′ ← EK(N,A,M ′), set Cm ← C ′m⊕Mm⊕M ′m
3: for T ∈ {0, 1}64 do try forging with (N,A,C ′1‖ . . . ‖C ′m−1‖Cm‖T )

Semi-universal forgery (beyond 64-bit-bound, nonce-misusing). As Jambu uses

a state of 192 bits, collision-based attacks always require a data complexity of about 296

queries. We can therefore forge a ciphertext for N,M with about 296 encryption queries,

but we cannot choose the AD and the attack is nonce-misusing. We pick M ′ ∈ {0, 1}128

and do:

1: for i← 1 to 296 do query Ci‖T i ← EK(N,Ai,M ′) with distinct Ai ∈ {0, 1}127

2: Find i 6= j s.t. Ci, T i = Cj , T j

3: Query C‖T ← EK(N,Ai,M), forge with (N,Aj , C‖T )

In the two queries with colliding ciphertexts the internal states just after the AD pro-

cessing must collide, allowing the forgery. A natural question that arises is whether such

attack cannot be done in a nonce respecting way, using single-block ADs. The answer is

no, because we need about 296 queries to find the internal collision with good probability,

but there are only 264 values of the nonce in Jambu, so this approach is impossible.

Existential forgery (beyond 64-bit-bound, nonce-respecting). The problem of

having too few nonces in the previous attack can be circumvented if we fold many

subqueries into every encryption query. We pick a 64-bit constant string P . We then

do:

1: for i← 1 to 248 do query Ci‖T i ← EK(N i, Ai,M i) with M i =
∥∥248

j=1
Qij‖P‖P

2: Find (i, j) 6= (i′, j′) such that j ≡ j′ ≡ 2 (mod 3) and Cij‖Cij+1 = Ci
′
j′‖Ci

′
j′

3: Forge with (N i, Ai, Ci1‖ . . . ‖Cij−1‖Ci
′
j′‖ . . . ‖Ci

′

248‖T i
′
)

The collision on line 2 implies that the ith and i′th queries had an internal state-collision

Rij‖U ij‖V i
j = Ri

′
j′‖U i

′
j′‖V i′

j′ on the jth and j′th state respectively with overwhelming prob-

ability. Because of this, the forgery succeeds. We managed to forge with only 248
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encryption queries, but we still have to process about 296 blocks of data in those queries.

A big drawback if this strategy is that it cannot be used for a universal forgery.

9.13 Tiaoxin-346

We give a brief description of Tiaoxin in Appendix C.8. Note that we change the meaning

of subscript and square brackets compared to the original Tiaoxin description [Nik16],

i.e. T [j] denotes a vector of j 128-bit strings and T [j]i with i ≤ j denotes ith block of

the vector T [j].

Nonce-misuse key recovery. We pick M,M̄, M̃ ∈ {0, 1}4·128 such that Mi⊕ M̄i = ∆

and Mi⊕ M̃i = ∆̃ for i = 0, 1, 2, 3 with ∆ 6= ∆̃. We pick arbitrary N and A and recover

two 128 bit words T ′[4]0 and T ′[3]0 of the internal state right after processing of N , A

and the first two blocks of M by:

1: Query C‖T ← EK(N,A,M), C̄‖T̄ ← EK(N,A, M̄) and C̃‖T̃ ← EK(N,A, M̃).

2: for i← 2, 3 do set γi ← ShiftRows−1(MixColumns−1(C̄i⊕Ci)).
3: for i← 2, 3 do set γ̃i ← ShiftRows−1(MixColumns−1(C̃i⊕Ci)).
4: for byte index j ← 0 to 15 do

5: for i← 2, 3 do Find set of solutionsXi,j of γi,j = SubBytes(x)⊕SubBytes(x⊕∆).

6: for i← 2, 3 do Find set of solutions X̃i,j of γ̃i,j = SubBytes(x)⊕SubBytes(x⊕ ∆̃).

7: Set T ′[4]0,j ← X2,j ∩ X̃2,j and T ′[3]0,j ← X3,j ∩ X̃3,j .

8: end for

The above works, as we can verify that in the encryption of M we have

1. T ′[3] = R(T [3],M0),

2. T ′[4] = R(T [4],M1),

3. T ′[6] = R(T [6],M0⊕M1),

4. C0 = T ′[3]0⊕T ′[3]2⊕T ′[4]1
⊕(T ′[6]3&T ′[4]3),

5. C1 = T ′[6]0⊕T ′[4]2⊕T ′[3]1
⊕(T ′[6]5&T ′[3]2),

6. T ′′[3] = R(T ′[3],M2),

7. T ′′[4] = R(T ′[4],M3),

8. T ′′[6] = R(T ′[6],M2⊕M3),

9. C2 = T ′′[3]0⊕T ′′[3]2⊕T ′′[4]1
⊕(T ′′[6]3&T ′′[4]3),

10. C3 = T ′′[6]0⊕T ′′[4]2⊕T ′′[3]1
⊕(T ′′[6]5&T ′′[3]2).

In the encryption of M̄ we have the following (and similar for M̃ and ∆̃)

1. T̄ ′[3] = R(T [3],M0⊕∆),

2. T̄ ′[4] = R(T [4],M1⊕∆),

3. T ′[6] = R(T [6],M0⊕M1),

4. C̄0 = T̄ ′[3]0⊕ T̄ ′[3]2⊕ T̄ ′[4]1
⊕(T ′[6]3&T̄ ′[4]3),

5. C̄1 = T ′[6]0⊕ T̄ ′[4]2⊕ T̄ ′[3]10

⊕(T ′[6]5&T̄ ′[3]2),

6. T̄ ′′[3] = R(T̄ ′[3],M2⊕∆),

7. T̄ ′′[4] = R(T̄ ′[4],M3⊕∆),

8. T ′′[6] = R(T ′[6],M2⊕M3),

9. C̄2 = T̄ ′′[3]0⊕ T̄ ′′[3]2⊕ T̄ ′′[4]1
⊕(T ′′[6]3&T̄ ′′[4]3),

10. C̄3 = T ′′[6]0⊕ T̄ ′′[4]2⊕ T̄ ′′[3]1
⊕(T ′′[6]5&T̄ ′′[3]2).

We can easily see that

T̄ ′[3]⊕T ′[3] = (∆, 0, 0) and T̄ ′′[3]⊕T ′′[3] = (0, A(T ′[3]0)⊕A(T ′[3]0⊕∆), 0),

210



Robustness of 3rd Round CAESAR Candidates to Nonce Reuse and Key Overuse

and that

T̄ ′[4]⊕T ′[4] = (∆, 0, 0, 0) and T̄ ′′[4]⊕T ′′[4] = (0, A(T ′[4]0)⊕A(T ′[4]0⊕∆), 0, 0).

It follows that the differences of ciphertext blocks used in the lines 5 and 6 are a result

of a differential equation for a single round of AES. This can be reduced to a collection of

16 differential equations for AES Sbox, allowing to recover the parts of the secret state

as intersections of solutions found in the said lines (we can check that we always have

|Si,j ∩ S̃i,j | = 1).

We can then repeat this process with longer messages to obtain T [3] and T [4] and we

recover T ′[4] and T ′[3] with 12 queries (3 queries per 128-bit word of T [4]). The state

T [6] follows in a similar method using 18 queries. Once the state (T [3], T [4], T [6]) is

recovered, we invert the initialization and obtain K.

9.14 AEGIS v1.1

A brief description of AEGIS is given in Appendix C.9.

Universal forgery and decryption attack (tiny complexity, nonce-misuse).

To forge for (N,A,M) or to decrypt (N,A,C, T ), we only need to recover the secret

state S after processing A with nonce N , the rest of encryption/decryption can then be

reconstructed.

We pick three messages M ′, M̄ , M̃ ∈ {0, 1}3·128 with the same criteria as for Tiaoxin

(with ∆ 6= ∆̃). To recover S′0, a part of the state S′ right after processing M ′1 with N

and A, we:

1: Query C ′‖T ′ ← EK(N,A,M ′), C̄‖T̄ ← EK(N,A, M̄) and C̃‖T̃ ← EK(N,A, M̃).

2: Set γ ← ShiftRows−1(MixColumns−1(C̄3⊕ M̄3⊕C ′3⊕M ′3)).

3: Set γ̃ ← ShiftRows−1(MixColumns−1(C̃3⊕ M̃3⊕C ′3⊕M ′3)).

4: Recover bytes of S′0 using γ, γ̃,∆, ∆̃ in differential equations as with Tiaoxin.

The attack works because the difference (C ′3⊕M ′3)⊕(C̄3⊕ M̄3) (associated to M ′1 6= M̄1)

is equal to the difference R(R(S4)⊕S0⊕M ′1)⊕R(R(S4)⊕S0⊕M̄1) (where R(S4)⊕S0 =

S′0), withR just a single AES round. We can repeat this strategy to recover the remaining

four 128-bit words of S′1, . . . , S
′
4 with 3 queries each. Then we can recover S, having done

15 nonce reusing queries. The possibility of a low-complexity nonce reusing attack is

mentioned in the AEGIS v1.1 specifications [WP16].

9.15 ACORN v3

A brief description of ACORN is given in Appendix C.10.

Universal forgery and decryption attack (tiny complexity, nonce-misuse). To

forge the encryption of (N,A,M) or to decrypt (N,A,C, T ), we only need to recover the
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internal state So after processing N,A, which allows to finish the rest of encryption/de-

cryption. We sketch the main idea of the attack.

We make two encryption queries C1‖T 1 ← EK(N,A, 0‖B) and C2‖T 2 ← EK(N,A, 1‖B)

for any B ∈ {0, 1}58. We can see that ksji+o is constant for j = 1, 2 and i = 0, . . . , 57

and that ks1
58+o⊕ ks2

58+o = S58+o,61 ⊕ S58+o,193, which is a linear equation in the bits of

So. We recover 292 more equations by making 292 pairs of (longer) queries that differ

only in a single bit, and solve the system for So. The knowledge of So allows arbitrary

forgeries and decryptions with N,A.

9.16 Ketje

Key recovery (tiny complexity, nonce-misusing). The authors of Ketje them-

selves point at the possibility of this attack. Because Ketje uses only a single round of

the Keccak−f function [BDP+16a], the diffusion between two consecutive sponge states

is low. In addition, the algebraic degree of a single round of Keccak−f is only 2. We

use this to recover the internal state S after processing of N and A, and then the secret

key K by inverting the processing of N,A. We sketch the main idea of the attack.

We make queries Ci‖T i ← EK(N,A,M i) with some fixed (N,A) andM i ∈ {0, 1}2·(r−4)

s.t. M i
2 = 0r for i = 1, . . . , θ. For each i we can use M i

1 and Ci2 to derive degree-2

polynomial equations with the bits in the inner (capacity) part of S (marked red in

Figure C.1) as unknowns. Each bit in Ci2 depends on 31 bits of the previous state on

average [BDPVA09], so we expect an overwhelming majority of the bits of the attacked

state to be covered by the derived equations. We need the number of nonce misusing

queries θ to be a small multiple of b−r+4
r−4 = 11, 5 in order to fully determine the system.

Moreover, no more than a single unique monomial of degree 2 per every bit of the state

appears in the system, so with θ = 60, we should be able to linearize and solve the

system for S.

9.17 Morus

We give a brief description of Morus 640 in Appendix C.12.

Nonce-misuse universal forgery and CPA decryption. If we recover the state S

right after the initialization with N , we can forge ciphertexts with this N and decrypt

any ciphertext using this N . We sketch the S recovery attack.

We first recover S2 and S3 by querying Ci‖T i ← EK(N, ε,M i) with M i ∈ {0, 1}256

for i = 1, . . . , 4. Letting δi = M1
0 ⊕M i

0 with i 6= 1, we have that

(C1⊕M1)⊕(Ci⊕M i) =(Rotl(δi, b1)<<<(w3 + 96))⊕S2&Rotl(δi⊕Rotl(δi, b1), b3)

⊕S3&(Rotl(δi, b2)<<<w4)

⊕(Rotl(δi, b2)<<<w4)&Rotl(δi⊕Rotl(δi, b1), b3),
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where Rotl is a linear function, <<< denotes a circular rotation, and all br-s and wt-s

are constants. Each δi provides 128 linear equations in 256 binary unknowns, so with

δ1, δ2, δ3, we are able to recover the values of S2 and S3 with high probability. Once S2

and S3 are known, C1
1 ⊕M1

1 can be expressed as a linear function of S0 and S1 and we

learn their xor-difference.

We still need to recover S0, S1, S4, i.e. 384 bits, and have 128 linear equations (so 256

unknown bits). We query C̄j‖T̄ j ← EK(N, ε, M̄ j) with M̄ j = M1
0 ‖M̄

j
1‖0128 and M̄ j

1 ∈
{0, 1}128 for j = 1, . . . , θ. Each C̄j2 will supply 128 polynomial equations in S0, S1, S4 of

degree at most 3. By examining the StateUpdate and the keystream generation functions

of Morus, we verify that there will be no more than 19 · 128 unique monomials of degree

higher than 1 present in all equations in the worst case and only 9.25 · 128 on average.

Thus by taking θ = 16, we should be able to linearise the system and recover S0, S1 and

S4 with high probability, using 20 queries for the entire attack.

9.18 COLM

We briefly describe COLM in Appendix C.16.

Below, we first observe that an L-recovery attack would allow to easily make universal

forgeries and CCA decryption attacks. Next, we will see two methods to extract L. One

is nonce-respecting with complexity beyond the birthday bound. The other has nonce-

misuse, at the 64-bit-bound complexity. We conclude with an easy nonce-respecting

existential forgery attack as the birthday bound complexity.

CCA decryption attack (tiny complexity, using L). To decrypt (N,A,C) where

|A|128 ≥ 2 we do:

1: Set A′1 = A2 + 3 · 6 · L and A′2 = A1 + 3 · 6 · L and A′i = Ai for i = 3, . . . , |A|128

2: Query M ← DK(N,A′, C)

3: return M

The attack works with a single decryption query because AA′1 = A′1 + 3 · 2 ·L = A2 + 3 ·
4 ·L = AA2 and AA′2 = A′2 + 3 · 4 ·L = A1 + 3 · 2 ·L = AA1, so A′ produces the same IV

as A.

Universal forgery (tiny complexity, using L). To make a forgery, we construct

an EK oracle in a CPA attack (using the knowledge of L). This allows us to simulate the

encryption process and create a valid ciphertext for arbitrary (N,A,M). To compute

EK(x), we start with arbitrary N̄ 6= N and do:

1: Set Ā = N̄‖param⊕ 32 · L.

2: for i← 1 to 135 do set M̄i ← 2i · L and Ȳi ← 2i−1 · L.

3: Query C̄ ← EK(N̄ , Ā, M̄).

4: for i← 1 to 135 do set C̄Ci ← C̄i⊕ 2i · L.

5: Find {(xi, yi)}128
i=1 ⊂ {(Ȳj , C̄Cj)}135

j=1 with yi-s linearly independent.
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6: Find S = {s1, . . . , s|S|} ⊆ {1, . . . , 128} s.t. x = 3 ·
⊕

i∈S yi⊕L.

7: Pick an N , set A1 ← N‖param⊕ 32 · L and M ← 2 · L.

8: for i← 1 to |S| do Ai+1 ← xsi ⊕ 3 · 2i+1 · L.

9: Query C ← EK(N,A,M), compute EK(x)← C1⊕ 2 · L.

In the query made in line 3, Ā is constructed to make sure that ¯AA1 = ĀA0, forcing

ĪV = 0, and M makes sure that MM consists of 135 = 128+log2(128) zero blocks. Hence

X̄i = L and Ȳi = L + 3 · (2i−1 − 1) · L = 2i−1 · L for i = 1, . . . , 135. Each Ȳi will be

distinct (because 2 is a primitive root of GF(2128) in COLM) and C̄Ci = EK(Ȳi). We

find 128 linearly independent values y1, . . . , y128 among C̄C1, . . . , C̄C135 with probability

close to 1.

With the obtained list, we can find the set S (in line 6) for an arbitrary x. In the query

made in line 9, we force IV =
∑

i∈S yi. and MM1 = 0, and Y1 = X1 + 3 · IV = x. The

total query complexity is small: there is one encryption query for precomputation, and

then, to forge an encryption, we need one query per EK evaluation, so 1 + a+ 2(`+ 1)

encryption queries. This is negligible compared to the complexity of getting L.

L-recovery attack (low success probability). This attack must guess the last 64

bits of 32 · L because param is a constant for a fixed instance of COLM. We pick a

constant message M ∈ {0, 1}128 and a random block B{0, 1}128 (the last 64 bits of B

are our guess). With distinct N1, . . . , N232
we do:

1: for i← 1 to 232 do query Ci ← EK(N i, Ai,M) with Ai = (N i‖param)⊕B.

2: Find i 6= j s.t. Ci = Cj , compute L = ((N i‖param)⊕(N j , param)⊕B) · (32)−1.

Clearly, AA0 +AA1 = B+32 ·L. If the guess B is correct, AA0, AA1, and 3 ·L always end

with the same 64 bits. Due to the birthday attack (on the remaining bits), we must have

i 6= j s.t. AAi0 = AAj1, so (N i, param) + 3 · L = AAi0 = AAj1 = (N j‖param) +B + 3 · 2 · L
and thus AAj0 = (N j‖param) + 3 · L = (N i, param) + B + 3 · 2 · L = AAi1. This means

that N i, Ai and N j , Aj produce the same IV, and this collision on IV induces a collision

on C. The total complexity is 232 encryptions (with messages of one block and A of 1

block).

We note that the attack is nonce-respecting, although the probability of success is

only 2−64. This can be improved if we assume parameter misuse, i.e. existence of

several instances using the same key with different parameters.

L-recovery attack (nonce-misuse, beyond birthday bound). We mount a sim-

ilar attack, assuming that every nonce can be repeated 2m times. We use 2128−2m distinct

nonce N1, . . . , N2128−2m
, AD of two blocks and a random block B ∈ {0, 1}128 to do:

1: for i← 1 to 2128−2m do

2: for j ← 1 to 2m do query Ci,j ← EK(N i, Ai,j ,M) s.t. Ai,j2 = Ai,j1 ⊕B.

3: end for

4: Find i, j 6= j′ s.t. Ci,j = Ci,j
′
, compute L← (Ai,j1 ⊕A

i,j′

1 ⊕B) · (3 · 6)−1.

We note that when m = 64, this attack has birthday complexity.
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9.19 Deoxys v1.41

A brief description of Deoxys-II is given in Appendix C.7.

Semi-universal forgery and CCA decryption attack on Deoxys-II (reusable,

nonce-misuse). The encryption algorithm of Deoxys-II has the form EK(N,A,M) =

Ē(K,N, f2(f1(K,A),M),M) where Ē produces a (stretched) ciphertext and f1 and f2

are keyed functions with constant-size output. The attack is based on finding a collision

on f1. Assuming each nonce can be used up to 2m times, to forge for (N,M) we use

N1, . . . , N2128−2m 6= N all distinct and M ′ 6= M of 2 blocks, and do:

1: for i← 1 to 2128−2m do

2: for j ← 1 to 2m do query Ci,j‖T i,j ← EK(N i, Ai,j ,M ′) with random Ai,j .

3: end for

4: Find i, j 6= j′ s.t. Ai,j 6= Ai,j
′

and T i,j = T i,j
′
.

5: Query C‖T ← EK(N,Ai,j ,M) and forge with (N,Ai,j
′
, C‖T ).

We can modify this attack to decrypt (N,Ai,j , C‖T ) by making a CCA decryption query

on (N,Ai,j
′
, C, T ). This can only decrypt messages using Ai,j as associated data. The

total complexity of the attack is 2128−m queries. Note that if m = 64, the complexity

becomes birthday bounded.
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Chapter 10
Conclusion and Future Work

In this thesis, we present a rather diverse collection of results from the field of AE.

Although these results are mostly unrelated to one another, they all spring from the same

motivation: to push the state of the art towards efficient, provably secure authenticated

encryption that is relevant for practical applications.

This is a not-so-concrete aspirational goal, and there are many milestones along the

way to achieving it.1 We contribute our bit to several paths that lead to our goal.

Design of AE schemes. The most obvious way of converging to our goal is the

design of efficient, provably secure schemes. While the design of such schemes appears

in every chapter (except Chapter 9), Chapters 3 to 6 are specifically dedicated to design

of provably secure AE schemes.

We present OMD, a “basic” nonce-based AE scheme, in Chapter 3. The main pros

of (the instances of) OMD, as the author sees them, are its contribution to crypto-

graphic diversity, its low overhead beyond the compression function calls, and the high

quantitative security level combined with decent performance.

The misuse-resistant variants of OMD inherit most of the enumerated properties, and

add nonce-reuse resistance. The most interesting component of MR-OMD (and PMR-

OMD) is perhaps the highly efficient, parallelizable PRF dedicated to the domain of a

nonce-based AE scheme.

The work on p-OMD was inspired by the question whether it is possible to construct a

secure nonce-based AE scheme purely based on the masked Merkle-Damg̊ard iteration,

but more efficiently than by the obvious sequential “first-AD-then-message” approach.

We proved that the AE processing can be dealt with by “absorbing” the blocks of AD

into the intermediate chaining values of the Merkle-Damg̊ard iteration. This simple

algorithmic modification brought a substantial boost in performance: in a typical situ-

ation, the cost of processing AD became almost free of charge.

1It would be more precise to say “converging to it” instead of “achieving it.” The author believes that
a necessary condition for advancing towards this ambitious goal is accepting that a perfect solution may
not exist.
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We quickly realized, that such a modification can also be applied to sponge-based AE

schemes. Unlike others who investigated full-state absorption, we proved the security

of the general variable output-length FKS and the FKD constructions, and showed how

AE schemes can benefit from this by a modular security analysis. We also put a lot of

effort in making the proof as concise and easily verifiable as possible, because this aspect

of provable security is as important as the correctness of the proof itself.

Design of new notions. Another crucial component, some may even say the most

important component,2 of achieving the goal of secure and useful AE is the design and

critical evaluation of security notions.

Our work on the nonce-misuse resistance of online authenticated encryption was in-

duced by a sudden surge of popularity of the OAE1 notion around the start of CAESAR

competition. Our concerns were about not-yet understood properties captured by OAE1,

coupled with strong verbal claims of security that accompanied it. We attempted to dis-

sect the tangle of claims that advertised the security and usefulness of OAE1 schemes

from the actual constraints implied by an “online” setting. We presented two attacks

that shed light on the information leakage of OAE1, and proposed a definition that bet-

ter captures the intuition of best possible security in the online setting. It is noteworthy

that the new notion of OAE2 is not some strengthened generalization of OAE1; it has

a completely different syntax and philosophy, both of them attempting to capture what

is really relevant in a setting, when onlineness of encryption would be needed.

The security notions we propose for variable stretch AE are also based on the struggle

to capture what is relevant for practice. We argue that an extension of basic NAE

security that tolerates variation of ciphertext expansion is of practical interest. We define

a suite of notions, but most of them only serve the purpose of establishing relations, and

as verification that we are on a right track. Only two notions are assumed to be“exposed”

to a designer: NVAE and KESS, the latter being a tool for easier tweaking of existing

schemes. The NVAE notion itself is unusual in that it is parameterized. Although a

bound is always a function of some fixed stretch τc, there is an informal, but natural

definition of general NVAE security.

Cryptanalysis. While the author considers the provable security approach indispens-

able, it should always be taken with a grain of salt. For instance, it is debatable whether

a nonce-based AE scheme that is perfectly secure with non-repeating nonces, but suc-

cumbs to a low-complexity key recovery attack if nonces accidentally repeat, is fit for

widespread adoption. The problem is that this information is invisible if one only looks

at the security claims with respect to the NAE notion.

Given a relatively large number of schemes that make very similar security claims,

this kind of information can be very useful if one needs to, say, pick only a few to form

2See a short commentary on the importance of provable security in paragraph “Controversy surround-
ing provable security.”
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a portfolio.3 Thus motivated, we compile Table 9.2 that provides just such information.

Controversy surrounding provable security. The provable security treatment has

both its supporters and critics. The critics, e.g. Koblitz and Menezes [KM04, KM06,

KM11], claim that the provable security analysis is of limited, or even no use to the real

world applications of cryptography. The criticism has been succinctly summarised by

Damg̊ard [Dam07]:

• “A proof of security never proves security in an absolute sense, it relates security

to an unproven assumption that some computational problem is hard.” [Dam07,

p. 4]

• “The quality of a security reduction should not be ignored – it matters how tight

it is, and how strong the underlying assumption is.” [Dam07, p. 4]

• “A security reduction only proves something in a particular model specifying what

the adversary has access to and can do.” [Dam07, p. 4]

The author of this thesis agrees with Damg̊ard, in that the security reductions are a

useful tool as long as their interpretation is done carefully, and that precise formal

definitions of security should always be a design goal of any cryptographic primitive.

After all, how is one supposed to find a good solution to a problem if one does not know

what problem is he/she exactly solving?

Future work. One of the reasons that made OMD finish in the 2nd round of CAESAR

was probably its rather average performance. Yet, the measurements that were produced

by the end of the 2nd round did not reflect OMD’s full potential, as there was no hardware

available to run OMD implemented with the Intel SHA Extensions. Nowadays, this

instruction extension set is already deployed, and it would be interesting to see the

exact improvement of OMD’s performance. The same applies to p-OMD, which could

become a very attractive AE scheme one implemented with Intel SHA Extension.

Anther improvement that could be done to p-OMD would be its simplification. We

note that results already exist in this direction, as such a simplification has already been

proposed by Ashur and Mennink [AM16].

There is another possible research avenue suggested to the author by Peter Gaži,

namely to check whether the security bounds of OMD are tight, and possibly perform a

dedicated non-modular analysis to improve the bounds.

As mentioned in Chapter 6, our results for FKS are done in the ideal-permutation

model. Revisiting the analysis of FKS and FKD in the standard model, e.g. using the

framework of Soni and Tessaro [ST17], would be of interest.

3A small caveat occurs if all candidates that are very fast also succumb to nonce-misusing key
recoveries.
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The OAE2-secure construction CHAIN is based on a modular design, that uses a

nonce-based AE scheme as a blackbox subroutine. It may be interesting to design a

dedicated construction, based on e.g. tweakable blockciphers.

Finally, it would also be interesting to extend the security notions for variable-stretch

AE to additionally capture security against re-forgeries for the target stretch τc.
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the indifferentiability of the sponge construction. In Nigel P. Smart, editor,

Advances in Cryptology - EUROCRYPT 2008, 27th Annual International

Conference on the Theory and Applications of Cryptographic Techniques,

Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture

Notes in Computer Science, pages 181–197. Springer, 2008. Cited on pages:

96 and 106.

[BDPA10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
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recovery attacks on elmd authenticated encryption algorithm. In Advances

in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the

Theory and Application of Cryptology and Information Security, Hanoi,

Vietnam, December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture

Notes in Computer Science, pages 354–368, 2016. Cited on page: 196.

[Bel06a] Mihir Bellare. New proofs for NMAC and HMAC: security without collision-

resistance. In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO

2006, 26th Annual International Cryptology Conference, Santa Barbara,

California, USA, August 20-24, 2006, Proceedings, volume 4117 of Lecture

Notes in Computer Science, pages 602–619. Springer, 2006. Cited on page:

34.

[Bel06b] Mihir Bellare. New proofs for NMAC and HMAC: security without collision-

resistance. IACR Cryptology ePrint Archive, 2006:43, 2006. Cited on page:

35.

231

http://csrc.nist.gov/groups/ST/hash/documents/JoanDaemen.pdf
http://csrc.nist.gov/groups/ST/hash/documents/JoanDaemen.pdf
http://keccak.noekeon.org/
http://keccak.noekeon.org/


[Ber08] Daniel J Bernstein. Chacha, a variant of salsa20. In Workshop Record of

SASC, volume 8, pages 3–5, 2008. Cited on page: 2.

[Ber14a] D. J. Bernstein. Cryptographic competitions: CAESAR. ”https://

competitions.cr.yp.to/caesar-call.html”, 2014. Cited on pages: 4,

96, 165, and 198.

[Ber14b] D. J. Bernstein. Cryptographic competitions: Disasters. https://

competitions.cr.yp.to/disasters.html, 2014. Cited on pages: 4

and 165.

[Ber16] Daniel J Bernstein. CAESAR use cases. crypto-competitions mailing

list. July 16, 2016., 2016. Cited on page: 196.

[BGM04] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The power of verifica-

tion queries in message authentication and authenticated encryption. IACR

Cryptology ePrint Archive, 2004:309, 2004. Cited on pages: 43, 47, 85, 89,

and 127.
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[FLS15] Thomas Fuhr, Gaëtan Leurent, and Valentin Suder. Collision attacks

against CAESAR candidates - forgery and key-recovery against AEZ and

marble. In Advances in Cryptology - ASIACRYPT 2015 - 21st International

Conference on the Theory and Application of Cryptology and Information

Security, Auckland, New Zealand, November 29 - December 3, 2015, Pro-

ceedings, Part II, volume 9453 of Lecture Notes in Computer Science, pages

510–532. Springer, 2015. Cited on page: 195.

[Fou18] OpenSSL Software Foundation. Openssl cryptography and ssl/tls toolkit.

https://www.openssl.org/source/, 2018. Cited on page: 50.

[GCG12] Jim Guilford, David Cote, and Vinodh Gopal. Fast SHA512 Implement-

ations on Intelr Architecture Processors, nov 2012. Cited on pages: 34

and 51.

[Geo15] Martin Georgiev. Implementation of OMD mode on MIPS architecture.

Student project at Ecole Polytechnique Fédéral Lausanne, 2015. Cited on
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Appendix A
Performance and Security of Compression

Function-based AE

A.1 Performance of OMD in Software

We provide a visualization of the complete sets of performance measurements for the ref-

erence implementation (Figures A.1 and A.4), SSE4-based implementation (Figures A.2

and A.5) and AVX1-based implementation (Figures A.3 and A.6) of OMD-sha256 and

OMD-sha512 carried out on a 64-bit 2.4GHz dual-core Intel Core i5-2415M processor

running Ubuntu 12.10.
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implementation with increasing message and AD length. Graph from Ankele and
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Figure A.2 – 3D surface plot of the performance of the OMD-sha256 SSE4
implementation with increasing message and AD length. Graph from Ankele and
Ankele [AA14].

A.2 The Rational behind the Masking Sequence ∆N,i,j

In this section, we explain the design of the masking function ∆K(N, i, j) in p-OMD and

show that it fulfils the required security properties.

p-OMD uses the XE construction [Rog04a] to instantiate a (tweakable) PRF F̃ :

K×T × ({0, 1}n×{0, 1}m)→ {0, 1}n using a regular PRF F : K× ({0, 1}n×{0, 1}m)→
{0, 1}n by defining F̃T

K(X,Y ) = FK((X ⊕ ∆K(T)), Y ) for every T ∈ T ,K ∈ K, X ∈
{0, 1}n , Y ∈ {0, 1}m where T = {0, 1}ν × N+ × N+ and ∆K(T) is the masking function

of p-OMD.

The purpose of the masking function is to compute masking offsets ∆N,i,j that are

tweak-dependent and key-dependent in such a way that

1. ∆K(·) is a 2−n-uniform 2−n-AXU hash,

2. the masking offsets should be computable efficiently in the order they appear in

the scheme.

We need to efficiently compute ∆N,i+1,j if we have previously computed ∆N,i,j for 0 ≤ i
(i.e. “increment” the i component), and also we need to efficiently compute ∆N,i,j′

if we have previously computed ∆N,i,j for any j, j′ ∈ {0, . . . , 15} (i.e. “switch” the j

component). To achieve this, we adapt the approach based on standard Gray Code

sequence from [KR11], described in the proof of Lemma 3.4. We repeat the definition

for the convenience of the reader.

Gray Code sequence. For a fixed positive r > 0 the Gray Code sequence is a special

ordering a : {0, 1, · · · , 2r − 1} → {0, 1}r of the set or r bit strings. It can be defined

recursively as γ0 = 0r and γi = γi−1 ⊕ 2ntz(i) if i ≥ 1, where ntz(i) denotes the number
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Figure A.3 – 3D surface plot of the performance of the OMD-sha256 AVX1
implementation with increasing message and AD length. Graph from Ankele and
Ankele [AA14].

of trailing zeros in the binary representation of i. The basic facts are that a is a bijection

and 0 ≤ γi ≤ 2i (if represented as integer) for all i. We stress that we therefore have

that (1) γi ≤ 2r+1 for all i, and (2) γi 6= γj for all i 6= j.

Construction of the masking function and security properties. First recall

that we only need to use 16 different values of the j component in p-OMD, i.e., all of its

values are representable with 4 bits. Keeping this in mind, we first define the sequence

of Galois field elements Γ(i, j) ∈ GF (2n) as Γ(i, j) = 24 · γi ⊕ j for 0 ≤ j ≤ 15 (we

represent j by as an n bit string) and 0 ≤ i < 2n−6 where γi is the ith word of the

canonical Gray code and the multiplications are in the Galois field. Referring to the

properties of the Gray Code sequence, we can verify that for all i, we have left5 (γi) = 05

and right4

(
24 · γi

)
= 04. This implies that for every allowed pair i, j the value Γ(i, j)

will be a unique element of GF (2n).

Finally, we define the masking function as

∆K(N, i, j) = FK (N ||10n − |N | − 1, 0m)⊕ Γ(i, j) · FK (0n, 0m)

where F is the PRF used in p-OMD.

We can now easily verify that the required security properties are met under the

assumption that F is a good PRF. ∆K(N, i, j) being a bitwise xor of two independent

random n bit strings, we trivially have Pr[∆K(N, i, j) = H] ≤ 2−n for any (N, i, j).

To see if Pr[∆K(N, i, j) ⊕ ∆K(N ′, i′, j′) = H] ≤ 2−n for (N, i, j) 6= (N ′, i′, j′), we

consider two cases, either N = N ′ or not. In the latter case, N 6= N ′ implies that

∆K(N, i, j) ⊕ ∆K(N ′, i′, j′) = H is equivalent to the event that a bitwise xor of two

independent random n-bit strings is equal to some specific value and we conclude that the

required property is verified in this case. In the former case, FK(N ||10n−|N |−1, 0m) =
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Figure A.4 – 3D surface plot of the performance of the OMD-sha512 reference
implementation with increasing message and AD length. Graph from Ankele and
Ankele [AA14].

FK(N ′||10n−|N ′|−1, 0m) so ∆K(N, i, j)⊕∆K(N ′, i′, j′) = H occurs iff (Γ(i, j)⊕Γ(i′, j′))·
FK(0n, 0m) = H. Note that we must have (i, j) 6= (i′, j′) which together with properties

listed above imply that the multiplier (Γ(i, j)⊕Γ(i′, j′)) is non-zero. Thus, we conclude

that the second condition is met in this case as well.

Compact representation. Let L∗ = FK(0n, 0m). Then we have

∆K(N, i, j) = FK (N ||10n − |N | − 1, 0m)⊕ Γ(i, j) · L∗
= FK (N ||10n − |N | − 1, 0m)⊕ γi · 24 · L∗ ⊕ j · L∗.

We further define L∗[j] = j · L∗ for 0 ≤ j ≤ 15 and L[`] = 24+` · L∗ for 0 ≤ ` < n − 6.
Note that L∗[1] = L∗, L∗[0] = 0n and L[0] = 24 · L∗. Thus we can write ∆K(N, i, j) =
FK(N ||10n − |N | − 1, 0m)⊕ γi · L[0]⊕ L∗[j]. We can derive two rules. First, keeping in
mind the way we have defined the Gray Code sequence we can see that

∆K(N, i, j) = FK (N ||10n − |N | − 1, 0m)⊕ γi · L[0]⊕ L∗[j]

= FK (N ||10n − |N | − 1, 0m)⊕
(
γi−1 ⊕ 2ntz(i)

)
· L[0]⊕ L∗[j]

= FK (N ||10n − |N | − 1, 0m)⊕ γi−1 · L[0]⊕ 2ntz(i) · L[0]⊕ L∗[j]

= ∆K(N, i− 1, j)⊕ 2ntz(i) · L[0]

= ∆K(N, i− 1, j)⊕ L[ntz(i)].
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Figure A.5 – 3D surface plot of the performance of the OMD-sha512 SSE4
implementation with increasing message and AD length. Graph from Ankele and
Ankele [AA14].

Secondly, for any j, j′ from the acceptable range we have

∆K(N, i, j′) = FK (N ||10n − |N | − 1, 0m)⊕ γi · L[0]⊕ L∗[j′]
= FK (N ||10n − |N | − 1, 0m)⊕ γi · L[0]⊕ L∗[j]⊕ L∗[j]⊕ L∗[j′]
= ∆K(N, i, j)⊕ j · L∗ ⊕ j′ · L∗
= ∆K(N, i, j)⊕ (〈j〉n ⊕ 〈j′〉n) · L∗
= ∆K(N, i, j)⊕ L∗[str2num (〈j〉n ⊕ 〈j′〉n)].

These are the two rules we use in the specification of p-OMD in Section 5.4.

257



128
384

640
896

1152
1408

1664
1920

2048

128

384

640

896

1152

1408

1664

1920
2048

15

20

25

cpb: 12

 

cpb: 12
cpb: 13

Message (bytes)

cpb: 13

cpb: 14

cpb: 14

cpb: 16

cpb: 17

cpb: 20

cpb: 15

cpb: 26

cpb: 20

cpb: 18

cpb: 23

cpb: 17

AVX1

cpb: 20

cpb: 16

cpb: 19

cpb: 22

cpb: 20

cpb: 21

Additional Data (bytes)

cpb: 18

cpb: 19

cpb: 20

cpb: 21

 

P
e
rf

o
rm

a
n
c
e
 (

c
y
c
le

s
/b

y
te

)

15

20

25

Figure A.6 – 3D surface plot of the performance of the OMD-sha512 AVX1
implementation with increasing message and AD length. Graph from Ankele and
Ankele [AA14].

258



Appendix B
Additional Notions, Separations and a

Survey of OAE-like claims

B.1 Divergence of OAE1-like Claims

All that is reported in this section is based on what was published by early 2015.

A survey of the literature (published by 2015) shows increasingly strong rhetoric sur-

rounding nonce-reuse security of online schemes. We document this trend. In doing

so we identify some of the notions (all quite weak, in our view) that have come to be

regarded as nonce-reuse misuse-resistant.

Shifting language The paper defining MRAE [RS06b] never suggested that nonce-

reuse was OK; it said that an MRAE scheme must do “as well as possible with whatever

IV is provided” [RS06b, p. 1]. Elaborating, the authors “aim for an AE scheme in which

if the IV is a nonce then one achieves the usual notion for nonce-based AE; and if the

IV does get repeated then authenticity remains and privacy is compromised only to the

extent that [one reveals] if this plaintext is equal to a prior one, and even that . . . only

if both the message and its header have been used with this particular IV” [RS06b,

p. 12–13].

The FFL paper indicates that the authors wish “to achieve both simultaneously: se-

curity against nonce-reusing adversaries . . . and support for on-line-encryption” [FFL12,

p. 197]. While the authors understood that they were weakening MRAE, they saw the

weakening as relatively inconsequential: they say that their scheme, McOE, “because

of being on-line, satisfies a slightly weaker security definition against nonce-reusing ad-

versaries” [FFL12, p. 198] (emphasis ours). The paper did not investigate the definitional

consequences of this weakening.

An early follow-on to FFL, the COPA paper, asserts that OAE1 schemes are distin-

guished by “not relying on the non-reuse of a nonce” [ABL+13, p. 438]. Andreeva et al.

classify AE schemes according to the type of initialization vector (IV) one needs: either
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OAE1 Leaks equality of block-aligned prefixes, formalized by comparing EK with: a
random n-bit-blocksize online permutation tweaked by the nonce, AD and plaintext;
followed by a random τ -bit function of the nonce, AD, and plaintext. Schemes1:
COPA [ABL+14c], Deoxys [JNPS14a], Joltik [JNPS14b], KIASU [JNPS14c], Marble[Guo14b],
McOE [FFL12], SHELL [Wan14], POET [AFF+14a, AFF+14b], Prøst-COPA [KLL+14]
Schemes2: ++AE [Rec14]

OAE1a Leaks equality of block-aligned prefixes, formalized by comparing EK with: a
random n-bit-blocksize online function tweaked by the nonce, AD and plaintext; followed
by a random τ -bit function of the nonce, AD, and plaintext. Schemes1: APE[ABB+14c],
ELmD[DN14a], ELmE[DN14b], Prøst-APE[KLL+14]

OAE1b Leaks equality of block-aligned prefixes, formalized by comparing EK with: a ran-
dom n-bit-blocksize online function tweaked by the nonce and plaintext (but not the AD);
followed by a random τ -bit function of the nonce, AD, and plaintext. The relaxation enables a
compliant scheme to process the plaintext before the AD is presented. However it also renders
a compliant scheme vulnerable to CCA, CPSS, and NM attacks even if AD values are unique.
Schemes1: COBRA[ALMY14, ABL+14b]

OAE1c Leaks equality of any blocks at the same position. E.g., if ciphertexts C and C ′

arise from 4-block plaintexts P = A‖B‖C‖D and P ′ = E‖B‖F‖D then C2 = C ′2 and C4 = C ′4.
Security is formalized by comparing EK with: a function from n bits to n bits tweaked by the
nonce and an integer, the position; followed by a random tag. Schemes1: Minalpher [STA+14]

OAE1d Leaks equality of block-aligned prefixes and the XOR of the block directly following
this prefix. E.g., if C,C ′ arise from 4-block plaintexts P = A‖B‖C‖D and P ′ = A‖B‖E‖F
we always have C1 = C ′1, C2 = C ′2, and C3 ⊕ C ′3 = C ⊕ E. Ciphertexts C,C ′ arising from
4-block plaintexts P = A‖B‖C‖D and P ′ = E‖F‖G‖H will have C1⊕C ′1 = A⊕E. Schemes2:
Artemia [AAB14] CBEAM [Saa14], ICEPOLE [MGH+14], iFeed [ZWHS14], Jambu [WH14b],
Keyak [BDP+14b], MORUS [WH14a], NORX [AJN14], STRIBOB [SB14]

NAE1 Retains full security as long as all (N,A) pairs are unique among the encryption
queries. If a pair repeats, all privacy is lost, but authenticity remains unchanged. Schemes1:
CLOC [IMG+14a], SILC [IMG+14b]

NAE0 Retains full security as long as all (N,A) pairs are unique among the encryption
queries. If a pair repeats, all security is forfeit. Schemes1: NORX [AJN14], Trivia-ck [AC14]
Schemes2: OTR [Min14b, Min14a]

Figure B.1 – A menagerie of OAE notions and schemes. All of the schemes are
CAESAR submissions except ElmE and McOE. Schemes1 lists proposals that claim
some flavor of nonce-reuse misuse resistance. Schemes2 lists proposals that didn’t, yet
are or were marked as such in the AE Zoo [AKL+14] or AFL survey [AFL16].

random, nonce, or arbitrary. A scheme satisfying OAE1 is understood to be an arbitrary-

IV scheme, where “no restrictions on the IV are imposed, thus an adversary may choose

any IV for encryption” [ABL+14a, p. 9]. The authors add that “Often a deterministic

AE scheme does not even have an IV input” [ABL+14a, p. 9]. The linguistic progression

reaches its logical conclusion in the rebranding of OAE1-secure schemes as nonce-free,

as seen, for example, in talks of Guo [Guo14a, slide 2] and Lauridsen [BLT14, Slides 4,

6].

We have thus seen a transformation in language, played out over eight years, taking

us from a strong definition (MRAE) pitched as trying to capture the best one can do
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when a nonce gets reused to a comparatively weak definition (OAE1) nowadays pitched

as being so strong so as to render nonces superfluous. Meanwhile, the best-one-can-do

positioning of MRAE was mirrored in the online setting. The COPA authors indicate

that their mode achieves “the maximum attainable for single pass schemes” [ABL+14c,

p. 7]. Identical language is found in the COBRA submission [ABL+14b, p. 7]. In our

view, such claims are wrong; there would seem to be a gap between OAE1 and OAE2

security, what we illustrate in Appendix B.3.

Weaker notions Concurrent with the rhetoric for what OAE1 delivers being ratcheted

up, weakened variants of OAE1 have proliferated. We document this trend in Figure B.1,

which introduces a variety of OAE notions. They are all weaker than OAE1 except

for OAE1a; by standard arguments, OAE1 and OAE1a are quantitatively close if the

blocksize is reasonably large. In this race to the bottom, it may seem as though the

scheme comes first and whatever properties it provides is branded as some form misuse

resistance.

The number of different OAE definitions, and their meanings, has never been clear.

The evolution of what has been indicated in the Nonce-MR column in the AE Zoo

website [AKL+14] illustrates the struggle of researchers trying to accurately summarize

the extent of nonce-reuse misuse-resistance for tens of AE schemes.1 Our own attempt

at sorting this out, Figure B.1, is not definitive. We do not formalize the notions in this

table except for OAE1. (Some of the definitions are obvious, some are not.) The table

is based on both author assertions (Schemes1) and assertions of others (Schemes2). The

OAE1x notions only consider security for messages that are blocksize multiples.

B.2 MRAE Resists CPSS

We evidence that MRAE-secure schemes, unlike OAE1-secure schemes, resist CPSS

attack. The MRAE notion is much stronger still, but a result like what we give is a

starting point.

Suppose that the secret suffix S is generated by an efficient sampler S. Let Advguess
S

denote the min-entropy of the distribution generated by S. Let A be a CPSS adversary

attacking an AE scheme Π. Consider the following MRAE adversary B attacking Π.

It generates the suffix S ←$ S and runs A . For each prefix P that A produces, if A

repeats a prior prefix then B gives the consistent answer. Otherwise, it queries P‖S
to its encryption oracle, and returns the answer to A . If A can reproduce S then B

outputs 1; otherwise it outputs 0. If B’s oracle returns random strings (B is playing

the game mrae-IΠ) then A can guess S with probability at most Advguess
S , since it

only receives random answers independent of S. Hence the chance that A can guess S

in the CPSS attack against Π is at most Advmrae
Π (B) + Advguess

S .

1We note that after the publication of the paper corresponding to this chapter, AE Zoo significantly
updated their Nonce-MR column.

261



B.3 Separating OAE1[n] and OAE2[0, n]

OAE1 is weaker than OAE2 in the sense that the former does not support arbitrary

segmentation or demand security over arbitrary strings. This brief section argues a

more specific claim: that OAE1 with blocksize and tagsize n remains weaker than OAE2

with a (0, n)-expanding scheme and all segments required to have exactly n bits. (To

address the syntactic mismatch, we’ll assume that every A satisfies A[i] = ε for every

1 < i ≤ |A|, so that OAE2 can be viewed as operating on a single AD string, instead of

an AD vector.) This is true even if we fix a reasonably large value of n, say n = 128.

We ignore mundane matters of mismatched syntax that would have to be dealt with in

a more formal treatment (i.e., that OAE1 and OAE2 schemes are very different kinds of

objects).

So consider an OAE1-secure scheme Π = (K,E,D) of blocksize n. Assume that all

keys output by K also have n bits, which is the most common case for n = 128. Suppose

that for scheme Π one can recover the m-th block of the (putative) plaintext from

K,N,A, and the first m blocks of ciphertext, which again holds for typical schemes,

like COPA [ALMY14] and McOE [FFL12]. Now consider the following scheme Π̃ =

(K, Ẽ, D̃). For any X ∈ ({0, 1}∗)n, let ẼN,A
K (K‖X) = EN,A

K (M0‖X), where M0 is the

first block of the putative plaintext obtained from decrypting 02n under key K with

nonce N and AD A; and let ẼN,A
K (M0‖X) = EN,A

K (K‖X). Let ẼN,A
K coincide with

EN,A
K on all other points. Then the scheme Π̃ ought still to be OAE1-secure. For given

an adversary A attacking Π̃, one can transform it to an equally efficient adversary B

attacking Π that outputs 1 if the first block of some ciphertext is 0n, and the probability

that A can query some M0‖X to the encryption oracle is at most Advoae1
Π (B). But Π̃

is not OAE2-secure, as an adversary can query 02n to the decryption oracle to learn K.

In brief, we can adjust an OAE1-secure scheme to fail miserably in the presence of a

decryption capability, the adjustment irrelevant for OAE1 security.

We emphasize that the above counterexample does not imply that common OAE1-

secure schemes with expansion τ fail to be OAE2-secure with expansion (0, τ) once

reconceptualized and restricted. Such a determination would have to be made on a

case-by-case basis, asking if supplementing the adversary’s capabilities with an online

decryption oracle would violate indistinguishability. We haven’t carried out such in-

vestigations because even when an OAE1 scheme is OAE2-secure once restricted and

reconceptualized, we are not suggesting this would make it a desirable way to address

online-AE: in particular, expansion parameters of (0, τ) are likely to be a poor choice

in most settings, since they provide no authenticity assurance until a ciphertext’s end.

This is why our focus has been on τ -expanding schemes, where all segments are afforded

the same authenticity guarantees. It also seems undesirable to insist on segmenting mes-

sages along n-bit boundaries for some small, fixed n, and to fail to define security for

messages that are not blocksize multiples.

262



B.4 IND-CCA and RAE Security of AE Schemes

proc initialize ind-cca-RΠ

K ←$ K
V ← ∅, X ← ∅, Y ← ∅

oracle Enc(N,A,M)
if N ∈ X then return ⊥
if (N,A,M) ∈ V then return ⊥
X ← X ∪ {N}
C ← E(K,N,A,M)
Y ← Y ∪ {(N,A,C)}
return C

oracle Dec(N,A,C)
if (N,A,C) ∈ Y then return ⊥
M ← D(K,N,A, τ, C)
if M 6= ⊥
V ← V ∪ {(N,A,M)}

return M

proc initialize ind-cca-IΠ

K ←$ K
V ← ∅, X ← ∅, Y ← ∅

oracle Enc(N,A,M)
if N ∈ X then return ⊥
if (N,A,M) ∈ V then return ⊥
X ← X ∪ {N}
C ←$ {0, 1}|M |+τ
Y ← Y ∪ {(N,A,C)}
return C

oracle Dec(N,A,C)
if (N,A,C) ∈ Y then return ⊥
M ← D(K,N,A, τ, C)
if M 6= ⊥

V ← V ∪ {(N,A,M)}
return M

Figure B.2 – IND-CCA security. Games for defining IND-CCA security of a nonce-
based AE scheme Π = (K, E ,D) with stretch τ .

Here we define the IND-CCA security of the nonce-based AE schemes (defined in Sec-

tion 2.4) and RAE [HKR15] security of variable-stretch schemes (defined in Section 8.5).

Definition B.1 (IND-CCA security). Given a nonce-based AE scheme Π = (K, E ,D)

with ciphertext expansion τ and an adversary A , we define the advantage of A in

breaking the IND-CCA security of Π in a chosen ciphertext attack (with help of the

games ind-cca-R and ind-cca-I in Figure B.2) as

Advind-cca
Π (A ) = Pr

[
A ind-cca-RΠ ⇒ 1

]
− Pr

[
A ind-cca-IΠ ⇒ 1

]
.

If Advind-cca
Π (A ) ≤ ε for all adversaries A run in time t, and make no more than qe

encryption queries and no more than qd decryption queries such that their total data

complexity is no more than σ bits, then we say that Π is (ε, t, qe, qd, σ)-IND-CCA secure.

Definition B.2 (RAE security). Given a variable-stretch AE scheme Π = (K, E ,D) and

an adversary A , we define the advantage of A in breaking the robust-AE security of Π

in a chosen ciphertext attack (with help of the games rae-R and rae-I in Figure B.2)

as

Advrae
Π (A ) = Pr[A rae-RΠ ⇒ 1]− Pr[A rae-IΠ ⇒ 1].
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If Advrae
Π (A ) ≤ ε for all adversaries A run in time t, and make no more than qe

encryption queries and no more than qd decryption queries such that their total data

complexity is no more than σ bits, then we say that Π is a (ε, t, qe, qd, σ)-secure robust

AE scheme.

proc initialize rae-RΠ

K ←$ K

proc Enc(N,A, τ,M)
return E(K,N,A, τ,M)

proc Dec(N,A, τ, C)
return D(K,N,A, τ, C)

proc initialize rae-IΠ

for N,A, τ ∈ N × {0, 1}∗ × N do
πN,A,τ ←$ Inj(τ)

proc Enc(N,A, τ,M)
return πN,A,τ (M)

proc Dec(N,A, τ, C)
if ∃M ∈ {0, 1}∗ s.t. πN,A,τ (M) = C then

return M
return ⊥

Figure B.3 – RAE security. Defining security for a robust AE scheme Π = (K, E ,D)
with nonce space N . Inj(()τ) denotes the set of all injective, τ -expanding functions from
{0, 1}∗ to {0, 1}≥τ .
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Appendix C
Descriptions of 3rd Round CAESAR

Candidates

In this appendix, we briefly outline CCM, GCM and the 3rd round CAESAR candidates.

C.1 AES-CCM

CCM [WHF03b] combines encrypted CBC MAC for authentication with CTR mode

for message encryption. We assume the blockcipher E is AES. To encrypt a query

(N,A,M), CCM first computes the value U = CBCMACK(B) where the string B is an

injective, prefix-free encoding of N,A,M, τ and other parameters, s.t. 128 divides |B|.
In particular, N and |M | is encoded in B0 and |A| is encoded in B1. The ciphertext

is computed as Ci = Mi⊕EK(I(N, i)) for i = 1, . . . , |M |128 where I(N, i) is a 128-bit

injective encoding of N and i, such that I(N, i) 6= B0 for i ≥ 0. The tag is computed as

T = leftτ (U ⊕EK(I(N, 0))).

C.2 AES-GCM

AES-GCM [MV04] combines counter mode for message encryption with a Wegman-
Carter MAC (based on a polynomial AXU hash called GHASH) for authentication. It
uses AES as the blockcipher E, and derives a key for GHASH as L = EK(0). GHASH
takes two strings as input and computes

GHASHL(A,C) =
⊕̀
i=1

L`−i+1 ·Xi, with X = A‖0∗‖C‖0∗‖〈|A|〉64‖〈|C|〉64,

where ` = |A|128 + |C|128 + 1 and the multiplications are done in GF(2128). To encrypt

a query (N,A,M), we first set I ← N‖0311 if |N | = 96 and to I ← GHASHL(ε,N) if

|N | 6= 96. Then we compute the ciphertext C as counter mode encryption of M , using1

1We abuse the notation slightly; the incrementation is done with integer representation of right32 (Y ).
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inc(Y ) 7→ left96 (Y ) ‖(right32 (Y ) + 1) as the incrementation function and inc(I) as the

initial counter value. Then we compute the tag as T = leftτ (GHASHL(A,C)⊕EK(I)).

C.3 AEZ v5

AEZ encryption [HKR17] (in the AEZ-core case, i.e. the general one for |M | ≥ 256) has
the following structure

Encrypt(K,N,A, τ,M) = f(I, J, L,∆,M),

where (I, J, L) = KDF(K) and the value ∆ = H(I, J, L, τ,N,A) is computed using a

dedicated hash function H. So, getting (I, J, L) is equivalent to getting K in terms of

key recovery attacks. All binary inputs can have an arbitrary length and are internally

processed in blocks of 128 bits.

We note that, whenever we encrypt the same message M with the same key K, any

collision on the hash function necessarily results in a collision on the ciphertext. So, it

is easy to detect collisions on the hidden variable ∆ in a chosen message attack.
In the context of AEZ, we denote by k = (0, J, I, L, 0) a sequence of 5 blocks which

are used as round keys in AES4, a subroutine of H based on AES [DR02] reduced to
4 rounds. We further denote H(I, J, L, τ,N,A) = hk(τ,N,A). We will use another

subroutine Ej,iK defined by

Ej,iK (X) = AES4k(X ⊕ jJ ⊕ 2di/8eI ⊕ (i mod 8)L)

for j ≥ 0 and where integer-block multiplication denotes the classical GF(2128) multi-

plication.

C.4 OCB (OCB v1.1)

OCB [KR16] (a.k.a. OCB3) uses AES as the blockcipher E and derives two secret offset
values: L from the secret key K only, and R from K, the nonce N (a string of no more
than 120 bits), and the stretch τ . Each plaintext block Mi is encrypted into Ci by

Ci = EK(Mi ⊕∆i)⊕∆i with ∆i = R⊕ γi · L,

where · denotes the multiplication in GF(2128) and γi is a 128-bit block that takes a

unique value for every 1 ≤ i ≤ 2120. The nonce N has up to 120 bits. We have that

L = 4·EK(0). The way to compute R is a bit complicated but there is a simple particular

case: when the 6 least significant bits of N are all zero, then R = EK(0∗1‖N).
When the last blocks M` of M and Aa of A (with m = |M |128 and a = |A|128) are

complete and τ = 128, the tag is computed as

T = EK

(
2−1 · L⊕∆` ⊕

⊕̀
i=1

Mi

)
⊕HK(A) where HK(A) =

⊕
i

EK(Ai ⊕ γi · L)

and · denotes the multiplication in GF(2128). The attacks we describe in Section 9.9 can

be easily generalized to the case when the last block of M and the last block of A are

not 128 bits long.
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C.5 AES-OTR v3.1

AES-OTR v3.1 with parallel AD processing [Min16] produces a tag T = leftτ (TA⊕ TE)
where TA and TE are partial tags for A and the pair (N,M), respectively. We assume
that |N | = 120. Note that TA does not depend on the nonce N . When |A| is a multiple
of 128, it is computed as

TA = EK

((
a−1⊕
i=1

EK(Ai ⊕ 2i ·Q)

)
⊕Aa ⊕ 2a−1 · 33 ·Q

)
where a = |A|128, EK is AES with key K, Q = EK(0) and · denotes the multiplication in
GF(2128). When |M |128 = 2` and |M2`| = 128, blocks are encrypted in pairs (M2i−1,M2i)
into (C2i−1, C2i) by a two-round Feistel scheme

C2i−1 = EK(2i−1 · L⊕M2i−1)⊕M2i C2i = EK(2i−1 · 3 · L⊕ C2i−1)⊕M2i−1

where L = EK(ε(τ)‖0∗1‖N) and ε(τ) is a 7-bit encoding of τ . The tag TE is obtained
by

TE = EK

(
7 · 2`−1 · 3 · L⊕

⊕̀
i=1

M2i

)
.

C.6 CLOC and SILC

CLOC and SILC v3 [IMG+16] use nonces of 96 bits with AES as the blockcipher E. They
compute V = HASHK(N,A), then C = ENCK(V,M), and finally T = PRFK(V,C). In
ENC, we compute C1 = M1 ⊕ EK(V ). Then, C2, . . . , Cm is a function of K, C1, and
M2, . . . ,Mm only (where m = |M |128). More precisely, we have

Ci = Mi ⊕ EK(fix1(Ci−1))

for i > 0, where fix1 just forces the most significant bit to 1.

C.7 Deoxys v1.41

Deoxys v1.41 [JNP16] has two instantiations: Deoxys-I, which claims no nonce-misuse
security, and Deoxys-II, which claims to resist nonce misuse attacks. The internal design
of Deoxys-I is very similar to OCB, except that it relies on an ad-hoc tweakable encryp-
tion ETK instead of AES with the input and output masks ∆. The block size of E is 128
bits. In both instances we have

HK(A) =
⊕
i

E
2‖(i−1)
K (Ai)

(when the last block of A is complete) which is nonce-independent. In Deoxys-I, we have

T = E
1‖N‖`
K

(⊕̀
i=1

Mi

)
⊕HK(A) and Ci = E

0‖N‖(i−1)
K

(when the last block M` of M is complete). In Deoxys-II, we have (when the last block
M` of M is complete)

T = E
1‖04‖N
K

(
HK(A)⊕

⊕̀
i=1

E
0‖(i−1)
K (Mi)

)
andCi = Mi ⊕ E1‖(T⊕(i−1))

K (08‖N).
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C.8 Tiaoxin-346

Tiaoxin-346v2.1 [Nik16] loads the key K and the nonce N in a state, then applies
a reversible transformation. The state consists of three arrays T [3], T [4], and T [6], of
respectively 3, 4, and 6 blocks. Each block is represented by a 4×4 matrix of bytes. Given
a (K,N -initialized) state (T [3], T [4], T [6]), we load the plaintext by pairs (M2i,M2i+1) of
blocks and output two blocks (C2i, C2i+1) for i = 0, . . . , |M |2·128. This operation works
in five steps:

1. T [3]← R(T [3],M2i),

2. T [4]← R(T [4],M2i+1),

3. T [6]← R(T [6],M2i ⊕M2i+1),

4. C0 ← T [3]0 ⊕ T [3]2 ⊕ T [4]1 ⊕ (T [6]3&T [4]3),

5. C1 ← T [6]0 ⊕ T [4]2 ⊕ T [3]1 ⊕ (T [6]5&T [3]2).

The R(T [s],M) operation consists of

R(T [s],M) = (A(T [s]s−1)⊕ T [s]0 ⊕M,A(T [s]0)⊕ Z0, T [s]1, . . . , T [s]s−2)

where Z0 is a constant and A is one AES round without round key:

A(x) = MixColumns(ShiftRows(SubBytes(x))).

C.9 AEGIS v1.1

AEGIS v1.1 [WP16] uses the notion of state. In the AEGIS-128 version (the lightest of
the three proposed ones), one state consists of five AES states, i.e. five 4× 4 matrices of
bytes. AEGIS first computes an initial state which depends on the key K and the nonce
N . Then, neither K nor N is used any more. It processes A and M as a sequence of
4× 4 matrices of bytes. Each matrix X is processed to update the state S0, . . . , S4 into

S0

S1

S2

S3

S4

 =


R(S4)⊕X ⊕ S0

R(S0)⊕ S1

R(S1)⊕ S2

R(S2)⊕ S3

R(S3)⊕ S4


where R is a single AES round function without the addition of a round key. Before

this transformation, X ⊕S1⊕(S2&S3)⊕S4 is revealed for encryption, if X is a message

block. After all blocks are processed, a function transforms the state using the length of

A and M , and a tag is extracted from the result.

C.10 ACORN v3

ACORN v3 [Wu16] uses the notion of state and processes the bits of A and M iteratively,

i.e. the “block” size is 1 bit. ACORN-128 has a state S of 293 bits. First, ACORN

initializes a state depending on the key K and the nonce N . Then, it processes each bit

of A iteratively by

Si+1 = StateUpdate128(Si,mi, cai, cbi)
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where mi is a new bit of A, cai is a control bit set to 1, and cbi is a control bit set to
1. After processing A, the process continues for 128 more iterations with mi set to 1
in the first iteration and to 0 in the remaining 127 iterations. It continues again with
mi = 0 and cai = 0 for 128 more iterations. Encryption can then start with the same
iterative process, where mi is a new bit of M , then set to 1 once, then set to 0 255 times.
One difference is that cbi is set to 0. The other difference is that there is one output
bit produced for encryption per state update when bits of the message are processed.
Namely, we have

o = |A|+ 256

Si+1+o = StateUpdate128(Si+o,Mi, 1, 0)

Ci = Mi ⊕ ksi+o

ksi+o = Si+o,12 ⊕ Si+o,154 ⊕maj(Si+o,235, Si+o,61, Si+o,193)

⊕ch(Si+o,230, Si+o,111, Si+o,66)

where o is an offset, and maj and ch are two boolean functions of algebraic degree

two. After processing the message bits, there are two sets of 128 iterations like for

processing A. Then, there are 768 more iterations with various control bits and mi = 0

before a tag is computed from the state. Another observation from the specifications

shows that Si+1,[0···j] is a linear function of Si,[0···j+1] for j < 292 and that the last bit

Si+1,292⊕mi⊕maj(Si+o,244, Si+o,23, Si+o,160) is also linear in Si. So, Si+j,[0···k] is a linear

function of Si,[0···k+j] for k + j ≤ 292.

C.11 Ketje

Ketje v2 [BDP+16a] is a sponge-based mode for an iterated cryptographic permutation

f : {0, 1}b → {0, 1}b with a tunable number of rounds, aggressively optimized for low

computational cost. We focus on the main recommendation Ketje Sr (further simply

Ketje) with 400-bit permutation, but the observations are easily generalised to the three

remaining named instances.

Ketje operates over byte strings, and works with a rate r = 36 bits, capacity c = 364

bits, and tags of 64 bits. We assume the use of secret key and nonces of 128 bits.In

an encryption query (K,N,A,M), Ketje first sets the state to the value Init(K,N) =

〈32〉8‖K‖10119‖N‖10∗1 and applies nstart = 12 rounds of the permutation f . Both the

message M and AD A are partitioned into blocks of r − 4 bits, the last block of each

possibly being shorter. The blocks are then processed using nstep = 1-round calls to

f , as illustrated in Figure C.1, treated with two-bit domain separation flags and 10∗1

padding. The tag is derived using two calls to f , first of which uses nstride = 6 rounds.

C.12 Morus

Morus 640 v2 [WH16a] loads the key K and the nonce IV in a state and does a non-

invertible initialization. The state consists of five 128-bit blocks S0, . . . , S4 (for Morus,

we start indexing blocks at 0). Then, the plaintext blocks Mi are processed iteratively
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fInit(K,N) f f

A1‖0‖11

tr[r − 4]

C1

M1‖11‖11

f

M2‖10‖10
∗

1

C2

f

T1 T2

nstart nstep nstep nstepnstride

tr[|M2|]

0‖10∗1

tr[r − 4] tr[r − 4]

f

A2‖01‖10
∗

1

nstep

r

c

recover

Figure C.1 – The encryption algorithm of Ketje [BDP+16a] with two-block A and two-
block M as input. We let tr[x] denote truncation to x leftmost bits.

in two steps:

1. Ci = Mi⊕S0⊕(S1<<< 96)⊕(S2&S3),

2. (S0, . . . , S4)← StateUpdate(S0, . . . , S4,Mi).

The StateUpdate function is illustrated in Figure C.2.

C.13 NORX v3.0

NORX [AJN16] is a sponge-based mode which computes a “state” (R,S) from the secret

key, the nonce N , and the parameters, then follows the sponge structure to absorb the

associated data A, the message (at the same time it produces the ciphertext), the trailer

data, then finally uses the key again to produce the tag. When processing one block of

message Mi, NORX replaces (R,S) by a new state (C, S) with C = Mi ⊕ R. We focus

on an instance of NORX with a state size of 512 bits, with |R| = 384 and |S| = 128.

The encryption algorithm of NORX is illustrated in Figure C.3.

C.14 Ascon

Ascon-128 v1.2 [DEMS16] is a sponge-based mode for an iterated cryptographic per-

mutation p : {0, 1}320 → {0, 1}320 with tunable number of rounds (denoted as pa for

initialization and tag generation and pb for the rest of the processing). Ascon works over

a state S of 320 bits. We denote the outer (or the rate) part of the state Sr and the inner

(or the capacity part) as Sc with |Sr| = r, |Sc| = c and S = Sr‖Sc (so r+ c = 320). The

keys, tags and nonces of Ascon are 128 bits long. We focus on Ascon128, with r = 64,

c = 256, a = 12 and b = 6

When processing an encryption query (K,N,A,M), the associated data and message

are both padded with 10∗ padding so that |M‖10∗| and |A‖10∗| are both a multiple of

r. The encryption algorithm is illustrated in Figure C.4.
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Figure C.2 – The StateUpdate function of Morus [WH16a].

C.15 Keyak

Keyak v2.2 [BDP+16b] is a sponge-based mode for an iterated cryptographic permuta-

tion f : {0, 1}b → {0, 1}b. Keyak allows to tune many parameterssuch as degree of

parallelism, a result of which the general description of Keyak is rather complicated and

layered. We therefore focus on the main recommendation Lake Keyak with 1600-bit

permutation and no parallelism (further simply Keyak).

Keyak operates over byte strings. It works with a state of b = 1600 bits, with capacity

c = 256 bits, and tags of 128 bits. Keyak uses the whole state (including the inner

part) to absorb data, working with absorption rate Ra = 1536 bits and squeezing rate

Figure C.3 – The encryption algorithm of NORX [AJN16].
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Figure C.4 – The encryption algorithm of Ascon [DEMS16]. Here P is the plaintext.

fInit(K,N) f f

M1‖A1‖0
∗‖F1

tr[Rs]

C1

Ma‖Aa‖0
∗‖Fa

Ca

b b b f

Ma+1‖0
∗‖Fa+1

Ca+1

tr[Rs] tr[Rs]

b b b f

Mm‖0∗‖Fm

Cm

tr[|Mm|]

T

tr[|T |]

Figure C.5 – The encryption algorithm of Keyak [BDP+16b] when A is processed before
M is. We let tr[x] denote truncation to x leftmost (outer) bits.

Rs = 1344 bits, which say how many bits can be absorbed and used (for encryption or

tag) per call to f , respectively. We assume the use of nonces of 1200 bits and a secret

key of 128 bits.

In an encryption query (K,N,A,M), Keyak first initializes the state to the value

Init(K,N) = 〈40〉8‖K‖10183‖N‖〈1〉8‖〈0〉8‖F0 and applies the permutation f , where F0

is a 32-bit flag for domain separation. The message M is partitioned into blocks M =

M1‖ . . . ‖Mm of Rs bits (the last block possibly being shorter) and the AD is partitioned

into blocks A = A1‖ . . . ‖Aa‖Â1‖ . . . ‖Ââ such that |Ai| = (Ra −Rs) for i = 0, . . . , a− 1,

|Aa| ≤ (Rs−Ra), and the Â part can only be non-empty if a = m and |Aa| = (Ra−Rs).
Depending of the length of M and A, three cases can occur; we illustrate the case when

all bits of A are processed before the entire M is processed in Figure C.5. The flags

Fi are 32 bit strings that encode (a) if the next evaluation of f produces a tag and the

length of the tag, (b) the offset at which plaintext bytes end, (c) the offset at which AD

bytes start and (d) the offset at which the AD bytes end. These flags ensure proper

domain separation for all possible inputs.

C.16 COLM v1

COLM [ABD+16] first derives a secret L from the secret key L by L = EK(0), where

E is AES [DR02]. Again, we use the notation in which the integer-by-block product

is the GF(2128) multiplication. The COLM encryption takes a 64-bit nonce N , encodes

some parameters param into 64 bits (these include the tag length), some associated data

A and a plaintext M to produce a ciphertext C. Here, we restrict to A’s and M ’s

being sequences of full-length blocks, although COLM allows more flexibility in lengths.

There is normally a padding scheme to transform a message M1, . . . ,M`−1,M
∗
` into the

sequence M1, . . . ,M`+1, but it will play no role in the attack. We only have to keep in
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mind that it appends an additional block M`+1 which is equal to the last one M`. We

let a = |A|128 and ` = |M |128 (the redundant block M`+1 is appended by the encryption

algorithm).
First, COLM computes sequences AA and MM as

AA0=(N‖param)⊕ 3 · L, MMi=Mi ⊕ 2i · L (i = 1, . . . , `− 1),

AAi=Ai ⊕ 3 · 2i · L (i = 1, . . . , a), MM`=M` ⊕ 7 · 2`−1 · L,
MM`+1=M`+1 ⊕ 7 · 2` · L.

Then we compute Zi = EK(AAi) for i = 0, . . . , a and Xi = EK(MMi) for i = 1, . . . , `+1.
Then, IV = Z0⊕· · ·⊕Za. There is a function ρ mapping a chaining value st and an input
x to a chaining value st′ and an output y defined by st′ = x ⊕ 2 · st and y = x ⊕ 3 · st.
We use IV as an initial chaining value and transform the sequence X iteratively with ρ
to produce the sequence Y . Then, CCi = EK(Yi) for i = 1, . . . , `+ 1, and finally,

Ci=CCi ⊕ 32 · 2i · L (i = 1, . . . , `− 1), C`=CC` ⊕ 32 · 7 · 2`−1 · L,
C`+1=CC`+1 ⊕ 32 · 7 · 2` · L.

C.17 Jambu

Jambu v2.1 [WH16b] instantiated with the blockcipher AES works over ν = 64-bit

blocks. It works with a state of 3ν bits, that is iteratively updated with a function

F : {0, 1}k × ({0, 1}ν)5 → ({0, 1}ν)3 which maps a secret key K, a state R‖U‖V , a

domain separation constant γ and a message block M to an updated state R′‖U ′‖V ′ =
FK(R‖U‖V, γ,M), and which internally uses AES. The nonces in Jambu are 64 bits

long.

Jambu first uses the nonce to initialize the state R0‖U0‖V0 ← FK(0ν‖0ν‖N, 5, 0ν).

Then the always padded (with 10∗ padding) AD is processed in ν-bit blocks, computing

Ri‖Ui‖Vi ← FK(Ri−1‖Ui−1‖Vi−1, 1, Ai) for i = 1, . . . , a with |A‖10∗| = aν.

The plaintext is partitioned in ν-bit blocks and encrypted by letting Ra+i‖Ua+i‖Va+i ←
FK(Ra+i−1‖Ua+i−1‖Va+i−1, 0,Mi) and Ci ← (Mi⊕Va+i) for i = 1, . . . ,m− 1 with m =

b|M |/νc + 1. Then the final block of plaintext Mm is processed (if |M | mod ν = 0, we

set Mm = ε) by Ra+m‖Ua+m‖Va+m ← FK(Ra+m−1‖Ua+m−1‖Va+m−1, 0,Mm‖10∗) and

Cm ← trunc|Mm|(Mm‖10∗⊕Va+m).

Finally we compute Ra+m+1‖Ua+m+1‖Va+m+1 ← FK(Ra+m‖Ua+m‖Va+m, 3, 0
ν), and

the tag as T ← Ra+m+1⊕T1⊕T2 with T1‖T2 ← EK(Ua+m+1‖Va+m+1).
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awarded with Bachelor Degree for excellent results

Slovak University of Technology, Slovakia

2010 Best student of 2010

awarded at Faculty of Electrical Engineering and Information

Technology

Slovak University of Technology, Slovakia

Languages

• Slovak (mother tongue)

• English (fluent)

• German (good)

• French (basic)
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Skills and Knowledge

• Extensive knowledge of modern cryptography and security gained through

undergraduate and graduate studies with the major in cryptography and security,

the study exchange at the Ruhr Universität Bochum (focused on cryptography and

security) and currently the study in the Security and Cryptography Laboratory at

the Ecole Polytechnique Fédérale de Lausanne.

• Experience with programming in C and C++ obtained mainly through

various projects in bachelor and master studies. Co-author of the reference and

optimized implementations of the CAESAR candidate OMD.

• Practical Experience with administration of operating systems and IT

security obtained through practical sessions during master studies and practical

experience form the ING Insurance Company.

• Extensive knowledge of authenticated encryption and provable security

which is the main research topic of the author.

• Experience with NFC programming on Android and Linux. Obtained

through the preparation of a working demo of relay attacks on NFC-credit card

payments for the open house of School of computer and communication science

2014 at Ecole Polytechnique Fédérale de Lausanne.
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