
RESEARCH Open Access

Anchor voiceprint recognition in live
streaming via RawNet-SA and gated
recurrent unit
Jiacheng Yao1,2, Jing Zhang1,2*, Jiafeng Li1,2 and Li Zhuo1,2

Abstract

With the sharp booming of online live streaming platforms, some anchors seek profits and accumulate popularity
by mixing inappropriate content into live programs. After being blacklisted, these anchors even forged their
identities to change the platform to continue live, causing great harm to the network environment. Therefore, we
propose an anchor voiceprint recognition in live streaming via RawNet-SA and gated recurrent unit (GRU) for
anchor identification of live platform. First, the speech of the anchor is extracted from the live streaming by using
voice activation detection (VAD) and speech separation. Then, the feature sequence of anchor voiceprint is
generated from the speech waveform with the self-attention network RawNet-SA. Finally, the feature sequence of
anchor voiceprint is aggregated by GRU to transform into a deep voiceprint feature vector for anchor recognition.
Experiments are conducted on the VoxCeleb, CN-Celeb, and MUSAN dataset, and the competitive results
demonstrate that our method can effectively recognize the anchor voiceprint in video streaming.
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1 Introduction
With the substantial advances in computing technology,
live video streaming is becoming increasingly popular.
Due to the low employment threshold and acute compe-
tition of anchors, there are some issues in the online live
streaming industry, such as unreasonable content ecol-
ogy and uneven anchor quality. For seeking profits and
accumulating popularity, some anchors mix inappropri-
ate content into live programs. These offending anchors
are usually found and banned after a period of time.
However, they can still live by registering their sub-
accounts as other anchors or occupying the rooms of
other anchors after being blacklisted, which has caused
great harm to the network environment. Therefore, it is
indispensable to apply intelligent analysis techniques to
identify anchors according to the specific characteristics

of live streaming, so that regulators can prevent these
banned anchors from continuing to live in various ways.
The anchor is the host and guide of live streaming,

who performs the show to attract viewers. In general,
the anchor’s voice is often relatively stable and constant
because he/she needs to create a fixed impression in the
audience. If the anchor does not use a voice changer, the
voiceprint of the anchor can be used to recognize the
anchor identity, furthermore, to prevent the blocked an-
chor from entering the online live streaming platform
again. Figure 1 shows the architecture of a live streaming
system working with an anchor voiceprint recognition
system, including three parts of camera, server, and cli-
ent, of which the camera is used to capture live stream-
ing, the server is used to encode and push video, and the
client is used to decode and play video. The anchor
voiceprint recognition system obtains a certain length of
audio from the server through sampling, and stores it in
the buffer as the system input. The sampling rules are
determined by the live streaming platform, usually at the
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beginning or intervals of live streaming. The voiceprint
features of audio are extracted and the similarity be-
tween the voiceprint features of input audio and those of
blacklisted anchors is calculated and returned to the ser-
ver. If the similarity is too high, the live streaming will
be interrupted or manual review will be conducted.
Traditional speaker recognition methods usually use

handcrafted features to recognize the speaker. For ex-
ample, Reynolds et al. [1] proposed a speaker recognition
method based on the Gaussian mixture model and univer-
sal background model (GMM-UBM). Firstly, acoustic fea-
tures, such as Mel-scale frequency cepstral coefficients
(MFCC), are projected onto high-dimensional space to
generate high-dimensional mean hyper vector, and then
to train a UBM. After that, taking UBM as the initial
model, the target GMM of the speaker is constructed by
adaptive training based on the maximum posterior prob-
ability with the target speaker data. Finally, the speaker is
scored by calculating the likelihood value to make a recog-
nition judgment. Although this method can reduce the
speech demand for the target speaker as well as speed up
the GMM training process, it is greatly affected by the
channel type, training duration, male/female ratio, and
other factors. Dehak et al. [2] proposed I-Vector (identity-
vector) by using a specific space to replace the speaker
space defined by the eigentone space matrix and the chan-
nel space defined by the channel space matrix. The new
space can become a global difference space, including the
differences between speakers and channels, thus reducing
the impact of channel type and male/female ratio, but be-
ing sensitive to noise. Since live streaming is usually mixed
with background music, game sound, and other noise,
even though it is intractable to completely separate it by
speech separation. Obviously, the traditional methods are
not available to anchor voiceprint recognition.

Recently, deep learning has demonstrated powerful
representation ability and anti-noise ability in speech
processing. By training massive data, robust features can
be obtained by using deep neural network (DNN). Con-
sequently, a series of deep learning-based speaker recog-
nition methods have been explored. For instance,
Variani et al. [3] took the FBank features stacked into 1-
D vectors as the input of DNN and extracted voiceprint
features through continuous fully connected layers for
speaker recognition. Compared with the traditional
methods, voiceprint features extracted by DNN have
stronger anti-noise ability, but parameters of fully con-
nected layers are larger, hard to train, and easy to overfit.
Snyder et al. [4] extracted voiceprint features through a
time delay neural network (TDNN) like dilated convolu-
tion, to expand receptive field and share network param-
eters, effectively reducing the number of network
parameters and training difficulty, and achieving 4.16%
equal error rate (EER) on the SITW [5] dataset.
With the significant advantages of deep convolutional

neural network (CNN) in image processing, some re-
searchers refer to the idea of image processing, directly
regarding the acoustic features as two-dimensional im-
ages, and further apply CNN to obtain voiceprint fea-
tures. For example, Qian et al. [6] compared the effects
of three deep models in automatic speaker verification
(ASV) spoofing detection, including DNN, CNN, and bi-
directional long short-term memory recurrent neural
network (BLSTM-RNN), of which CNN performed best.
Besides, Lavrentyeva et al. [7] proposed a CNN + bidir-
ectional GRU (Bi-GRU) structure to extract voiceprint
deep features for ASV spoof detection. Gomez-Alanis
et al. [8] proposed a gated recurrent CNN (GRCNN) to
extract voiceprint deep features by combining the ability
of convolutional layer to extract discriminative feature

Fig. 1 The architecture of a live streaming system working with an anchor voiceprint recognition system
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sequences with the capacity of recurrent neural network
(RNN) for learning long-term dependencies.
Furthermore, they proposed a light convolutional gated
RNN (LC-GRNN) [9], which solves the high complexity
by using a GRU-based RNN learning long-term
dependency. Gomez-Alanis et al. [10] proposed an inte-
gration neural network, which is composed of LC-
GRNN [9, 11], TDNN, and well-designed loss function
to generate the deep features for ASV spoof detection,
reaching the state-of-the-art (SOTA). Nagrani et al. [12]
directly extracted the voiceprint features using CNN
after representing the acoustic features as two-
dimensional images, reaching an EER of 7.8% on the
VoxCeleb1 [12] dataset. Hajavi et al. [13] improved the
CNN structure to produce multi-scale voiceprint fea-
tures, and the EER of VoxCeleb1 dataset was reduced to
4.26%. Jiang et al. [14] increased the depth of CNN and
constrained the network through channel attention
mechanism to enhance its representation ability. As a re-
sult, the EER on the VoxCeleb1 dataset is reduced to
2.91%. Although the above methods can reduce the in-
put dimension of neural network, the hyperparameters
of acoustic feature extraction methods may affect
speaker recognition so that it is difficult to control their
positive or negative. Similar to the idea of paraconsistent
feature engineering [15], whether these handcrafted fea-
tures are suitable as inputs to neural network depends
not only on the features themselves but also on the net-
work adopted to process them. Therefore, the hyper-
parameters are set empirically without a theoretical
explanation.
Moreover, in the task of visual information processing,

the first several layers of CNN are used to extract the
local features at the low level, such as edge and texture
features. In the subsequent convolutional layer, higher-
level features are extracted layer by layer from these
local features until semantic features are obtained. In
speaker recognition tasks, we treat the input acoustic
feature as a two-dimensional image to extract their fea-
tures with CNN, similar to a local feature in physical
meaning. Therefore, Jung et al. [16] further proposed a
RawNet that can directly generate voiceprint features

from the waveform of audio with 1-D residual CNN and
GRU [17], achieving a 4.0% EER on the VoxCeleb1 data-
set. This method does not need to extract any acoustic
features, in which each 1-D convolutional layer can be
regarded as a series of filters. Therefore, the final deep
voiceprint feature can be extracted from a series of fil-
ters of the input audio. However, in view of the simple
structure of RawNet, the deep voiceprint features ex-
tracted by RawNet will produce the performance of
RawNet in speaker recognition inferior to that of
methods using acoustic features as input. To improve
the representation ability of the RawNet, Jung et al. [18]
proposed RawNet2 by adding channel attention mechan-
ism to the network to reduce EER to 2.48%, outperform-
ing the method of taking acoustic features as input while
eliminating the computational overhead of acoustic fea-
tures. As shown in Fig. 2, the feature sequence can be
segmented by channel dimension or frame/temporal di-
mension, yet the channel attention mechanism only
regards the importance of different channels as well as
ignores the relationship between frames. In fact, the rela-
tionship of frames is an important indication reflecting
voiceprint information, yet channel attention alone can-
not guide the network to pay attention to more import-
ant frames and ignore less important ones.
The transformer originally proposed by Vaswani et al.

[19] has been applied to speech recognition. It can guide
the network to learn the long-range dependence be-
tween feature sequence frames to enhance the represen-
tation ability of the model. Now, it has been extended to
CNN. For instance, India et al. [20] proposed a voice-
print feature extraction method, which utilizes the
multi-head self-attention module to replace the global
pooling layer, aggregates the voiceprint feature sequence
and transforms it into a deep voiceprint feature vector,
dropping the EER by 0.9%. Safari et al. [21] also im-
proved the performance of the speaker recognition
model by replacing the global pooling layer with the
self-attention pooling layer. This shows that proper use
of self-attention structure can effectively improve the
feature learning ability of neural network and contribute
to voiceprint recognition.

Fig. 2 Feature sequence segmented by channel dimension or frame dimension
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When using the raw waveform as the input, the output
of each layer of the model will retain the temporal con-
text information that plays an important role in speaker
recognition. Notably, the RNN can enhance the overall
performance of the model owing to temporal informa-
tion. As a representative one of RNN, GRU is a structure
replacing long short-term memory (LSTM) [22]
structure, which removes the forget gate and uses
compliment of update gate vector to discard the infor-
mation. Compared with LSTM, GRU can not only make
use of the temporal relationship of feature sequences but
also increase computational efficiency of long sequence
modeling, effectively improving the representation ability
of the model.
Through the analysis above, we choose the deep

learning method for anchor voiceprint recognition,
and take the waveform as the input of neural net-
work. The self-attention mechanism is applied to the
network to improve the feature learning ability of the
model. Thereby, we propose an anchor voiceprint rec-
ognition method in live video streaming using
RawNet-SA and GRU. The overall process of anchor
voiceprint recognition system is as follows. First, the
anchor’s speech is extracted from the live streaming
by using voice activation detection (VAD) and speech
separation. Then, the feature sequence of the anchor
voiceprint is generated from the waveform of the
speech with the self-attention network RawNet-SA.
RawNet-SA combines channel attention and self-
attention to obtain the relationship between channel
and frame in voiceprint feature sequence, to precisely
distinguish the identity of anchors. And the input of
RawNet-SA is waveform rather than acoustic features,

so that makes the extracted deep features are not af-
fected by the acoustic feature extraction process, and
the network has better interpretability. Finally, the
feature sequence of anchor voiceprint is aggregated
by GRU and transformed into deep voiceprint feature
vector for anchor recognition. The main contributions
of this paper can be summarized as follows:

1. An effective RawNet-SA is designed to generate the
feature sequence of anchor voiceprint from the
speech waveform by adding channel/self-attention
to obtain the relationship between channel and
frame in the voiceprint feature sequence to precisely
distinguish the identity of anchors.

2. The input of the proposed RawNet-SA is waveform
rather than acoustic features, so that the extracted
deep features are not affected by the acoustic fea-
ture extraction process, and the network has better
interpretability.

3. We propose to recognize the anchor from the live
streaming via the voiceprint deep features, which is
a situational application.

The rest of this paper is organized as follows. Section
2 introduces our method in detail. Experimental results
with ablation studies are presented and analyzed in Sec-
tion 3. Conclusions are drawn in Section 4.

2 Method
The overall structure of our anchor voiceprint recogni-
tion method is shown in Fig. 3. First, the speech of the
anchor is extracted from audio in live streaming by VAD
and speech separation. Then, the feature sequence of

Fig. 3 Framework of the proposed anchor voiceprint recognition method, in which GRU diagram is modified based on [23]
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anchor voiceprint is generated from the speech wave-
form by using the self-attention network RawNet-SA
constructed based on RawNet2. Finally, the feature se-
quence of anchor voiceprint is aggregated by GRU to
transform into a deep voiceprint feature vector for an-
chor recognition.

2.1 Voice activation detection and speech separation
Since the anchor in the live streaming will not be talking
all the time, and there will be music, sound effects, out-
door noise, and other information to interfere with
voiceprint recognition, it is necessary to remove the si-
lent voice segments of the anchor through VAD before
further processing, and then separate the speech. Trad-
itional VAD methods are usually based on energy [24],
pitch [25], zero crossing rate [26], and the combination
of various features, the key problem of which is to judge
whether there is speech in the audio segment.
Since the traditional methods cannot get expected re-

sults in complex environments, we adopt the lightweight
network VadNet (Fig. 4) proposed by Wagner et al. [27]
to realize VAD. Firstly, the feature sequence is generated
by a three-layer CNN with the waveform of audio as the
input. Then, the feature sequence is aggregated by a
two-layer GRU and transformed into feature vector. Fi-
nally, the fully connected layer as a classifier is utilized
to estimate whether the audio segment contains speech.
After removing the silent voice, we need to extract the

anchor speech separately from the remaining audio seg-
ments containing background sound. Spleeter [28] is an
open-source software developed by Deezer Research,
which can separate various sounds including vocals in
music, and is mainly applied to music information re-
trieval, music transcription, and singer identification, etc.
We take the characteristics of Spleeter to separate the
singer’s voice from music to pick up the anchor’s speech.
Figure 5 describes the structure of U-Net [29] in
Demucs (Fig. 5A) and the structure of encoder and de-
coder in U-Net (Fig. 5B). In Fig. 5A, based on Demucs
[30], the soft mask of each source is estimated by a 12-
layer U-Net, and separation is then done from the esti-
mated source spectrograms with soft masking or multi-
channel wiener filtering. The network is composed of 6
encoders and 6 decoders, in which the feature sequence
is modeled by two-layer Bi-LSTM between the encoder
and decoder. The specific structure of encoder and de-
coder is shown in Fig. 5B, in which each encoder con-
sists of two 1-D convolution layers, with ReLU and GLU
as activation functions respectively. The difference be-
tween decoder and encoder is that the convolution layer
activated by GLU comes before the convolution layer ac-
tivated by ReLU, and the convolution layer activated by
ReLU is no longer ordinary convolution, but transposal
convolution. Since it only needs to separate the speech

of the anchor, we use the 2-stem model provided by
Spleeter, which only separates the speech from other
sounds, rather than out producing four different types of
sounds like the original Demucs model, to increase the
separation speed.

2.2 Voiceprint deep feature sequence extraction with
RawNet-SA
During live streaming, there are normally tons of noise
presented, for example, background music or noise and
foreground non-human sound events. Even after pre-
processing, the input audio will inevitably be mixed with
some noise. More, the duration and speed of each
speech may vary depending on the content of live
streaming. However, the existing voiceprint feature ex-
traction networks usually adopt acoustic features as in-
put. The hyperparameters of the extracted acoustic
features will influence the representation ability of voice-
print features. Thus, it is difficult to find the appropriate
acoustic feature that can be adapted to the anchor voice

Fig. 4 The structure of VadNet
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in all cases. Besides that, acoustic feature extraction re-
quires additional computational overhead. By using
audio waveform as input, RawNet2 does not need to ex-
tract acoustic features, while retaining the temporal rela-
tionship of audio, and achieves good performance on
VoxCeleb dataset. We know that the self-attention
mechanism can effectively strengthen the feature learn-
ing ability of neural network by regarding the import-
ance of channels and frames of feature sequences. As a
result, to avoid using acoustic features and further en-
hance the feature extraction ability of the network, we
proposed a model combining RawNet2 with self-
attention module (RawNet-SA) to generate anchor
voiceprint features. The structure of RawNet-SA is
shown in Table 1, in which numbers in Conv and Sinc
indicate filter length, stride, and number of filters, and
the number in Maxpool indicates filter length.
Since the computing cost of the self-attention layer

will boost sharply with the increase of the dimension of
input feature sequence, and the dimension of feature se-
quence is relatively high in the front part of RawNet-SA,
the Sinc-conv layer and the first three Resblocks of
RawNet-SA follow the structure of RawNet2 to acceler-
ate the inference speed, while reducing the training diffi-
culty. In addition, the channel attention layers of the last
three Resblocks are replaced with self-attention layers to
promote the feature representation ability of the model.
To utilize the temporal information in the feature se-
quence, GRU is used to aggregate the feature sequence
and transform it into a fixed-length feature vector.
The Sinc is a convolution layer with interpretable con-

volutional filters proposed in [31]. Different from the
standard convolution layer, the kernel of Sinc is defined
as the form of filter-bank composed of rectangular

bandpass filters, and the learnable parameters only con-
tain low and high cutoff frequencies. The Sinc can be
computed with:

y n½ � ¼ x n½ �� g n; f 1; f 2½ � � w n½ �ð Þ ð1Þ

Fig. 5 The structure of U-Net in Demucs and the structure of Encoder and decoder in U-Net. A The structure of U-Net. B Detailed view of the
layers Encoderi (upper) and Decoderi (below)

Table 1 The structure of RawNet-SA

Layer Input:59049 Output

Sinc Sinc (251,1,128)
MaxPool (3)
BN
LeakyReLU

(19,683,128)

Resblock×3 BN (725,128)

LeakyReLU

Conv (3,1,128)

BN

LeakyReLU

Conv (3,1,128)

MaxPool (3)

FMS

Resblock × 3 BN (26,256)

LeakyReLU

Conv (3,1,256)

BN

LeakyReLU

Conv (3,1,256)

MaxPool (3)

SA

Aggregation GRU (1024) (1024)

Embedding FC (1024) (1024)

Yao et al. EURASIP Journal on Audio, Speech, and Music Processing         (2021) 2021:45 Page 6 of 18



g n; f 1; f 2½ � ¼ 2 f 2
sin 2π f 2nð Þ
2π f 2n

−2 f 1
sin 2π f 1nð Þ
2π f 1n

ð2Þ

w n½ � ¼ 0:54−0:46 � cos
2πn
L

� �
ð3Þ

where x[n] is a chunk of the speech signal, g[n, f1, f2] is
the filter of length L, y[n] is the filtered output, f1 and f2
represent low and high cutoff frequencies respectively,
and w[n] is Hamming window function.
The feature map scaled (FMS) layers in RawNet-SA

follows the structure of the channel attention module in
RawNet2. Different from the channel attention module
commonly used in image processing, the vector gener-
ated by FMS is used as the weight and bias of the chan-
nels to improve the effect of attention constraint. Let C
= [c1, c2, …, cF] be the output feature sequence of Res-
block, f be the number of channels in the feature se-
quence, and cf∈ℝ

T (T is the length of feature sequence),
then C∈ℝT×F. FMS can be computed with:

s f ¼ sigmoid c f � w
� � ð4Þ

c
0
f ¼ c f � s f þ s f ð5Þ

Because FMS only considers the relationship between
channels and ignores the relationship between feature
sequence frames, self-attention layer is utilized to en-
hance the representation ability of the model. In
addition, since the computational complexity of self-
attention layer increases sharply with the augment of the
size of its input feature sequence, we only use/add self-
attention layers in the last three Resblocks. The self-
attention (SA) in Table 1 above represents the self-
attention layer.
The structure of the original self-attention layer [19]

for speech recognition is shown in Fig. 6A, where FC-
KEY, FC-QUERY, and FC-VALUE represent fully con-
nected layers respectively. The feature sequence is input
to FC-KEY and FC-QUERY, and the outputs of FC-KEY
and FC-QUERY are multiplied, and then normalized to
obtain the weight matrix. The residual of the new fea-
ture sequence A is finally obtained by multiplying the
weight matrix by the output of FC-VALUE as follows:

A ¼
softmax WqX WkXð ÞT

� �
ffiffiffiffiffi
dk

p þWvX ð6Þ

where X∈ℝS×d is the matrix obtained by input word
vectors concatenate; S denotes the number of word vec-
tors; Wq, Wk, and Wv∈ℝ

d×d denote the parameter matri-
ces of FC-QUERY, FC-KEY, and FC-VALUE in Fig. 6A
respectively; and dk represents the dimension of word
vectors. To apply the self-attention layer to RawNet-SA,

we let the time dimension T of voiceprint feature se-
quence as the sequence dimension S in word vector
matrix as shown in Fig. 6B.
To accelerate the training speed, inspired by non-local

neural network [32], the dimension of the feature se-
quence is compressed by FC-QUERY and FC-KEY, then
restored by the fully connected layer FC-Extract before
merging the residuals, and the batch normalize (BN)
layer is applied to accelerate the training speed of the
model. The residual C′ is formally obtained as follows:

C
0 ¼ WE softmax WqC WkCð ÞT

� �� �
þWvC ð7Þ

where WE∈ℝ
c×c denotes the parameter matrices of FC-

Extract and the BN calculation is omitted.
In a nutshell, the feature sequence V∈ℝT×c is obtained

by 3 Resblocks with channel attention layers and 3 Res-
blocks with self-attention layers with the waveform of
speech as input, at which time T = 26 and c = 256.

2.3 Voiceprint deep feature aggregation by GRU
Most voiceprint feature extraction networks tend to
apply the pooling-like methods or learnable dictionary
encoding methods, such as global average pooling, global
maximum pooling, NetVLAD [33], and GhostVLAD
[34], to aggregate voiceprint feature sequences to trans-
form them into deep voiceprint feature vectors. How-
ever, these methods do not consider the temporal
relationship of feature sequences and lose a lot of infor-
mation. Therefore, to effectively utilize the temporal re-
lationship of feature sequences, GRU is applied to
aggregate feature sequences in RawNet-SA. First, the re-
set gate vector rt is generated to store the relevant infor-
mation from the past time step in the new memory
content. The Hadamard product of rt and the previously
hidden state ht-1 is then added to the input vector to de-
termine what information is collected from the current
memory content. After summing up, the non-linear acti-

vation function (tanh) is applied to obtain the ~ht . Sec-
ondly, the update gate will save the information of the
current unit and pass it to the network. The update gate
vector zt will determine what information is collected
from the current memory content and previous time-
steps. Finally, the hidden state of the current unit is ob-
tained by applying Hadamard product to zt and ht-1, and
summing it with the Hadamard product operation be-

tween (1- zt) and ~ht .
Let feature sequence V = [v1, v2,…,vT], vt∈ℝ

c and c is
the number of channels, then the aggregation of feature
sequence is carried out according to the follows:

zt ¼ δ Wxzvt þWhzht−1 þ bzð Þ ð8Þ
rt ¼ δ Wxrvt þWhrht−1 þ brð Þ ð9Þ

Yao et al. EURASIP Journal on Audio, Speech, and Music Processing         (2021) 2021:45 Page 7 of 18



~ht ¼ tanh Wxhvt þWhh rt•ht−1ð Þ þ bhð Þ ð10Þ

ht ¼ zt•~ht þ 1−ztð Þ•ht−1 ð11Þ

where vt is the input, zt is the update gate vectors, rt is
the reset gate vectors, ht is the hidden states at time t,
W represents the parameter matrices, b is the bias vec-
tor, and • denotes the element-wise product (Hadamard
product). At last, to remove feature redundancy and

accelerate the speed of anchor voiceprint recognition,
the dimension of feature vector is controlled by the fully
connected layer at the end of RawNet-SA.

2.4 Anchor voiceprint recognition with deep features
In this section, RawNet-SA is trained by the softmax loss
function on the close dataset, and then the trained
RawNet-SA generates the deep voiceprint feature of the
anchor. As a result, the identity of the anchor depends

Fig. 6 The structure of self-attention module. A Original self-attention module [19]. B Advanced self-attention module
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on the similarity of the anchor voiceprint features. The
softmax loss function is calculated as:

L ¼ −
Xm
i¼1

log
exp WT

yi
xi þ byi

� �
Pn

j¼1 exp WT
y j
xi þ by j

� � ð12Þ

where m represents the size of Mini-Batch, n is the
number of speakers in the dataset, xi is the ith voiceprint
feature vector in Mini-Batch, yi is the true category of
the ith feature vector in Mini-Batch, Wyi is the yith col-
umn of the parameter matrix of the full connection layer
used for classification, and bj is the jth row of the bias
vector of the full connection layer. By converting Wyi

T

xi and Wyi
T xj using the cosine function, we obtain:

L ¼ −
Xm
i¼1

log
exp WT

yi

			 			 xik k cos θi;i
� �þ byi

� �
Pn

j¼1 exp WT
y j

			 			 xik k cos θi; j
� �þ byi

� �

ð13Þ
where θi,j is the included angle between the ith feature

vector in the mini-batch and the jth column of the par-
ameter matrix W. Each column of the parameter matrix
W can be regarded as the central vector of its corre-
sponding category. Therefore, the process of using soft-
max loss function to train the network can be viewed as
guiding the network to find the feature space, which
makes the cosine similarity between the feature vector x
and the vector of the corresponding column vector of
the parameter matrix as high as possible. Meanwhile, the
cosine similarity between the feature vector x and the
vectors of other columns is low enough. Accordingly, in
our application, cosine similarity is used as the similarity
of voiceprint feature vector:

similarity ¼ xT1 x2
x1 x2kkkk ð14Þ

where x1 and x2 respectively represent the voiceprint
feature vectors from different speech signals.

3 Experiments and discussion
In this section, we evaluate the performance of the pro-
posed anchor voiceprint recognition in live streaming
method by comparing with other SOTA speaker recog-
nition methods.
We conduct a total of seven experiments as follows:

1. Experiment I: the overall performance comparison
with SOTA methods.

2. Experiment II: the role of self-attention mechanism
by ablation study.

3. Experiment III: the influence of self-attention mod-
ule on inference speed.

4. Experiment IV: the effect of different channel
squeeze ratios on voiceprint recognition in self-
attention layer.

5. Experiment V: the influence of different feature
aggregation methods on voiceprint recognition.

6. Experiment VI: the effect of VAD and speech
separation on voiceprint recognition.

7. Experiment VII: the influence of different similarity
measurement methods on voiceprint recognition.

3.1 Experiment setup
3.1.1 Dataset
We choose VoxCeleb2 [35] dataset, VoxCeleb1 dataset,
CN-Celeb [36] dataset, and MUSAN [37] dataset to con-
duct the experiments. VoxCeleb1 and VoxCeleb2 data-
sets contain 1251 and 6112 speakers, respectively,
without duplication. The speakers cover different ages,
genders, and accents. Audio scenes include red carpet
catwalks, outdoor venues, indoor video studios, etc.
Sound acquisition equipment adopts professional and
handheld terminals, and the background noise includes
conversation, laughter, and different scenes. Using Vox-
Celeb2 dataset for training and VoxCeleb1 dataset for
testing is a standard procedure for many speaker recog-
nition methods. CN-Celeb dataset is an unconstrained
large-scale Chinese speaker recognition dataset. The
dataset contains 1000 speakers, each speaker contains at
least five different scene recordings, with a total of about
130,000 sentences and a total duration of 274 h. It is col-
lected from entertainment TV shows, singing, vlog, etc.
It is very similar to the live streaming environment and
contains all kinds of noise, such as background music,
audience applauded, etc. MUSAN dataset consists of
music from several genres, speech from twelve lan-
guages, and a wide assortment of technical and non-
technical noises. It is often used to generate the cor-
rupted version of other noiseless datasets. The general
statistics of VoxCeleb1, VoxCeleb2, and CN-Celeb are
given in Table 2.
All models in experiments were trained by VoxCeleb2

dataset. In experiment I-II, IV-V, and VII, we evaluate
the methods on VoxCeleb-E and VoxCeleb-H [35] (two
different test protocols of VoxCeleb1). We also use CN-
Celeb dataset for test in experiment I-II, IV-V, and VII
to see the effectiveness of the proposed method in
scenes similar to the live streaming environment.

Table 2 Statistics of different datasets

Dataset VoxCeleb1 VoxCeleb2 CN-Celeb

# of POIs 1251 6112 1000

# of utterances 153,516 1,128,246 130,000

# of hours 352 2442 274

POI person of interest

Yao et al. EURASIP Journal on Audio, Speech, and Music Processing         (2021) 2021:45 Page 9 of 18



Specially, we illustrate the effectiveness of VAD and
speech separation on CN-Celeb test set (CN-Celeb-T),
VoxCeleb1 test set (Vox1T-O), and corrupted versions
of Vox1T-O (Vox1T-N and Vox1T-M) generated using
MUSAN.

3.1.2 Implementation details
Our experiment platform is a PC with 16 GB RAM, 2.40
GHz CPU, NVIDIA 2080Ti GPU, and Ubuntu 20.04
LTS operating system. Our framework is implemented
by Pytorch, accelerated by CUDA10.1, and cuDNN7.6.
RawNet-SA was trained on the VoxCeleb2 dataset. We
modify the duration of the input waveforms to 59,049
samples (≈ 3.69 s) in training stage to facilitate mini-
batch construction (If the length of the voice is less than
3.69 s, it can be copied to 3.69 s). In testing stage, we
apply test time augmentation (TTA) [35] with a 20%
overlap. Different parts of speech are intercepted to ob-
tain multiple voiceprint feature vectors, and the average
value is taken as the final voiceprint feature vector. Dur-
ing training stage, an Adagrad optimizer is used, and its
learning rate starts from 0.01 and decays according to
the following:

lrt ¼ lrt−1
1þ d � tð Þ ð15Þ

where lrt is the learning rate at the tth iteration, t is
the number of iteration steps, and d is the decay rate of
the learning rate, which is set as 0.0001. And the batch
size of network training is set as 50 and the total number
of epochs is 35.

3.1.3 Evaluation indicators
We use the following evaluation indicators to verify the
performance:
EER: a method widely used to measure the perform-

ance of voiceprint recognition. When the EER is lower,
the overall recognition performance is better. Let the
threshold value to judge whether the speaker is the same
person be t, and the similarity of the two voiceprint fea-
ture vectors be s, when s>t, it is considered that the two
feature vectors come from the speech of the same
speaker; otherwise, they come from the speech of differ-
ent speakers. After traversing the test set, different false
rejection rates (FRR) and false acceptance rates (FAR)
can be calculated for different thresholds:

FAR ¼ FP
TP þ FP

ð16Þ

FRR ¼ FN
FN þ PN

ð17Þ

where TP is the true positives, TN is the true nega-
tives, FP denotes the false positives, and FN stands for

the false negatives. When the threshold is adjusted to
FAR=FRR, ERR=FAR=FRR.
Minimum detection cost function (minDCF): a

method widely used to measure the performance of
voiceprint recognition. The lower the minDCF, the bet-
ter the overall recognition performance. DCF is calcu-
lated as follows:

DCF ¼ CFR�FRR�Ptarget

þ CFA�FAR� 1−Ptarget
� � ð18Þ

where CFR and CFA represent the penalty cost of FRR
and FAR respectively, and Ptarget is a prior probability,
which can be set according to different application envi-
ronments. To improve the intuitive meaning of DCF, it
is normalized by dividing it by the best cost that can be
obtained without processing the input data:

DCFnorm ¼ DCF
min½C FR�Ptarget; C FA�ð1−PtargetÞ�

ð19Þ
When CFR, CFA, and Ptarget are set, a set of values of

FRR and FAR minimize DCF. Currently, DCFnorm is
minDCF. Here, we use two different sets of parameters
to calculate minDCF:

1) DCF08: CFR = 10, CFA = 1, and Ptarget = 0.01 are set
according to the setting of NIST SRE 2008.

2) DCF10: CFR = 1, CFA = 1, and Ptarget = 0.001 are set
according to the setting of NIST SRE 2010.

3.2 Experiment I: comparison with state-of-the-art
methods
In this experiment, we present the visualization results
of the proposed method and SOTA methods on VoxCe-
leb1 and CN-Celeb dataset. The method proposed by
Chung et al. [35] extracts the deep voiceprint feature se-
quence through ResNet50 and aggregates the feature se-
quence using time average pooling (TAP). ResNet50
initializes the network weight by using softmax pre-
training and then compares the loss training with the
offline hard negative mining strategy. The method pro-
posed by Xie et al. [38] extracts the deep voiceprint fea-
ture sequence through Thin ResNet35 and uses
GhostVLAD to aggregate the feature sequence. The net-
work is trained by cross-entropy loss, and its perform-
ance outperforms the method in [35]. The method
proposed by Nagrani et al. [39] uses the same network
as the method in [38], but the network is pre-trained by
cross-entropy loss, and then trained by relation loss.
SpeakerNet [40] was proposed by Nvidia that uses statis-
tics pooling (SP) to aggregate the feature sequence and
is trained by AAM-Softmax loss [41]. DANet [42] gener-
ates the deep voiceprint feature sequence through the
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VGG-like model described in [20] and introduces double
multi-head attention to aggregate the feature sequence,
in which the network is trained using cross-entropy loss.
As mentioned in Section 2.2, the self-attention module

in Fig. 6A is an original version designed for speech rec-
ognition, which has more parameters and is difficult to
train, while the self-attention module in Fig. 6B is an im-
proved version that can enable the fast convergence of
the network, and the number of parameters is adjust-
able. In this experiment, we tested both the original ver-
sion RawNet-origin-SA* (a model using the original self-
attention module of Fig. 6A) and the improved version
RawNet-SA (a model using the self-attention module of
Fig. 6B). Table 3 presents that our RawNet-origin-SA*
reaches the lowest EER compared to the method using
acoustic feature as network input and the baseline
method RawNet2. RawNet-origin-SA* got 2.37% EER in
VoxCeleb-E, a decrease of 0.32% compared with Speak-
erNet and 0.20% compared with RawNet2. In VoxCeleb-
H, EER of 4.54% can be obtained, which is decreased by
0.07% and 0.35% for DANet and RawNet2, respectively.
This is because the self-attention module can make the
network focus on the relationship between feature
frames, while RawNet2 only uses channel attention to
pay attention to the channel dimension of the feature
map. RawNet-SA attained 4.52% EER on VoxCeleb-H,
0.37% less than RawNet2, and 2.54% EER on VoxCeleb-
E, 0.03% less than RawNet2. RawNet-SA is not as effect-
ive as RawNet-origin-SA* because the network is not ini-
tialized with the parameters of trained RawNet2, so the
actual training iterations of RawNet-SA are less than
RawNet-origin-SA*. Although Thin ResNet34 [38] and
SpeakerNet perform better than RawNet-SA in CN-
Celeb dataset, considering the performance of all data-
sets, the overall performance of RawNet-SA and
RawNet-origin-SA is optimal. It should be noted that
the number of training iterations of SpeakerNet is about
six times that of RawNet-SA, and AAM-Softmax loss is
used in training.
To evaluate and compare their performance at all op-

erating points, we provide the detection error tradeoff

(DET) curves (Fig. 7) of the baseline method RawNet2
and the proposed RawNet-origin-SA*, RawNet-SA, as
shown in Fig. 7A, B, and C respectively. It can be seen
that RawNet-origin-SA* performs best on all operating
points of the simple test set VoxCeleb-E. In the complex
test set VoxCeleb-H, RawNet-SA approximates RawNet-
origin-SA* and exceeds RawNet-origin-SA* in CN-Celeb
dataset.
We also include Fig. 8 to exhibit what speech will be

considered as the voice of the same person and what
speech will be considered as the voice of different people
by the RawNet-SA. We randomly selected 4 pairs of
speech audios, which were true-positive (TP) pair, true-
negative (TN) pair, false-positive (FP) pair, and false-
negative (FP) pair respectively. Speech audios in true
positive pair come from the same speaker and the simi-
larity between these deep voiceprint features of audios is
high enough. The spectrograms in the TP part of Fig. 8
are very similar. Speech audios in true negative pair
come from different speakers so that the similarity be-
tween these deep voiceprint features of audios is low
enough. It can be seen that there are significant differ-
ences in the spectrograms in the TN part of Fig. 8. How-
ever, the spectrograms in the FP part and FN part are
similar so it is hard to judge if they are from the same
speaker by the deep voiceprint feature extracted with
RawNet-SA.

3.3 Experiment II: ablation study of self-attention
mechanism
To demonstrate the role of self-attention mechanism, we
conducted ablation study on VoxCeleb1 dataset and
CN-Celeb dataset using EER and minDCF, as shown in
Table 4, in which RawNet2 was used as the baseline
model to study the method. We can see that our
RawNet-origin-SA* and RawNet-SA exceed the baseline
method. More details of the experiment are described
below.
RawNet w/out SA* is based on RawNet2 that removes

the channel attention layer of the last 3 Resblocks, which
achieve 2.44% EER in VoxCeleb-E, 0.07% higher than

Table 3 Results of comparison to state-of-the-art method on VoxCeleb-E and VoxCeleb-H evaluation protocols

Method Input Backbone Loss CN-Celeb VoxCeleb-E VoxCeleb-H

Chung et al. [35] S ResNet50 TAP / 4.42% 7.33%

Thin ResNet3 4[38] S Thin ResNet34 GhostVLAD 20.04% 3.13% 5.06%

Nagrani et al. [39] S Thin ResNet34 GhostVLAD / 2.95% 4.93%

SpeakerNet [40] S SpeakerNet-M SP 19.33% 2.69% 4.80%

DANet [42] S DANet Double SA 24.11% 3.18% 4.61%

RawNet2 Raw RawNet2 GRU 24.27% 2.57% 4.89%

RawNet-origin-SA* Raw RawNet-origin-SA GRU 23.49% 2.37% 4.54%

RawNet -SA Raw RawNet-SA GRU 22.24% 2.54% 4.52%

“*” denotes that the network is initialized with the trained RawNet2 parameters. Original-SA denotes the self-attention layer in Fig. 6A
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RawNet-origin-SA*, and 4.69% EER in VoxCeleb-H,
0.15% higher than RawNet-origin-SA*. The training of
RawNet w/out SA* follows the same protocol as
RawNet-origin-SA*, but its performance is still inferior
to RawNet-origin-SA*, which demonstrates that the
model performance is not promoted by the redundancy
of channel attention layer in RawNet2, but the addition
of self-attention layers effectively enhances the represen-
tation ability of the model.
RawNet-MHSA is a model that replaces the self-

attention module in RawNet-SA with a multi-head ver-
sion, and the number of SA heads is set to 4. This means
the input feature sequence will be split into 4 chunks in
the channel dimension, and then processed separately by
the self-attention module, and finally concatenated to
the output of the multi-head self-attention module.
RawNet-MHSA achieves 2.75% EER in VoxCeleb-E,
0.18% higher than that of RawNet2, and 4.91% EER in
VoxCeleb-H, 0.02% higher than that of RawNet2. In

CN-Celeb, 22.16% of EER is obtained, 0.08% lower than
that of RawNet-SA. Although RawNet-MHSA per-
formed well in the CN-Celeb dataset, its performance on
other datasets was even worse than the baseline method.
RawNet-all-SA is based on RawNet2 that all six FMSs

are replaced with self-attention modules, which can
achieve 3.69% EER in VoxCeleb-E, 1.15% higher than
that of RawNet-SA, and 6.61% EER in VoxCeleb-H,
2.09% higher than that of RawNet-SA. As mentioned in
Section 2.2, the computing cost and parameter size of
RawNet-all-SA are much larger than RawNet-SA, the
training time of RawNet-all-SA will take about twice as
that of RawNet-SA, and it will not converge like
RawNet-SA.
RawNet-origin-SA* is a model using the self-attention

module described in Fig. 6A instead of the self-attention
module in Fig. 6B. Due to the difficulty in training the
original self-attention module, the network is initialized
with the trained RawNet2 network parameters, and the

Fig. 7 DET curves of models on different datasets. A VoxCeleb-E. B VoxCeleb-H. C CN-Celeb

Fig. 8 The visualization results of anchor voiceprint recognition
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VoxCeleb2 dataset is used to further fine-tune the net-
work. From Table 4, RawNet-origin-SA* achieves 2.37%
EER in the VoxCeleb-E, 0.20% lower than RawNet2. In
VoxCeleb-H, 4.54% of EER is obtained, 0.35% lower than
RawNet2. To ensure the fairness of the comparison, we
also trained the original RawNet2 in the same way. The
experimental results named RawNet2* achieves 2.43%
EER in VoxCeleb-E, 0.06% higher than RawNet-origin-
SA*, and 4.60% EER in VoxCeleb-H, 0.06% higher than
RawNet-origin-SA*. This indicates that the improvement
of RawNet-origin-SA* is not caused by more training
iterations.
RawNet-SA improves the structure of self-attention

layers so that the network can quickly converge without
using the parameters of trained RawNet2 for
initialization. Finally, RawNet-SA achieved an EER of
2.54% in VoxCeleb-E, 0.03% lower than RawNet2, and
4.52% in VoxCeleb-H, 0.37% lower than RawNet2.
RawNet-SA also achieved 22.24% EER in CN-Celeb
dataset, even lower than other networks initialized by
parameters such as the trained RawNet2* or RawNet-
origin-SA*. This shows that the improved self-attention
layer can further lift the robustness of voiceprint features

and make the network suitable for different data
distributions.

3.4 Experiment III: influence of self-attention module on
inference speed
To prove that the inference speed of our proposed net-
work structure is not significantly below that of the Raw-
Net2, we test the time cost of different network
structures as shown in Fig. 9.
Since the specific content of the input data does

not affect the inference time of the model, we use the
randomly generated sequence instead of the real-
world audio as the network input and set the length
of sequences to 3.69 s to control the length of the in-
put. In the experiment, we randomly generated 1000
speech samples, each 100 into a group, for 10 con-
secutive tests, and finally taking the shortest time as
the result. Figure 9 shows that RawNet-SA only con-
sumes about 15.60 ms, 0.43 ms more than the ori-
ginal RawNet2 for each speech sample, and costs 1.02
ms less than RawNet-origin-SA* for each speech sam-
ple, which indicates that the addition of self-attention
layers has little influence on the inference speed of

Table 4 The role of self-attention mechanisms on the recognition performance

Models VoxCeleb-E VoxCeleb-H CN-Celeb

EER DCF08 DCF10 EER DCF08 DCF10 EER DCF08 DCF10

RawNet2 2.57% 0.14 0.52 4.89% 0.24 0.64 24.27% 0.78 0.97

RawNet2* 2.43% 0.13 0.50 4.60% 0.23 0.64 24.23% 0.78 0.96

RawNet2 w/out SA* 2.44% 0.14 0.48 4.69% 0.23 0.64 23.55% 0.77 0.94

RawNet-MHSA 2.75% 0.15 0.53 4.91% 0.24 0.65 22.16% 0.75 0.93

RawNet-all-SA 3.69% 0.20 0.61 6.61% 0.32 0.73 22.51% 0.77 0.96

RawNet-origin-SA* 2.37% 0.13 0.50 4.54% 0.22 0.63 23.49% 0.78 0.94

RawNet-SA 2.54% 0.14 0.47 4.52% 0.22 0.65 22.24% 0.76 0.94

“*” denotes that the network is initialized with the trained RawNet2 parameters

Fig. 9 Inference speed of different structures
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the network, and the time consumption can be fur-
ther crop by improved self-attention layers.

3.5 Experiment IV: effect of different channel squeeze
ratios on self-attention layer
To investigate the effect of different channel squeeze ra-
tios on self-attention layer, we compare the performance
of RawNet-SA under different channel squeeze ratios as
illustrated in Table 5. Let channel squeeze ratios r=d÷c;
here, c is the input channel of self-attention layers and d
is the number of output channels of FC-KEY, FC-
VALUE, and FC-QUERY. The result shows that r = 0.25
produces the lowest EER in VoxCeleb-E and VoxCeleb-
H. The EER in the VoxCeleb-E when r = 0.25 is 2.54%,
0.16% lower than r = 0.75. In the VoxCeleb-H, EER is
4.52%, 0.36% lower than that of r = 0.75. In the CN-
Celeb dataset, r = 0.25 is 22.24% EER, only 0.29% higher
than r = 0.75 and 0.10% higher than r = 0.5. This is be-
cause compressing the number of channels appropriately
can remove the redundancy of the model to a certain

extent, make the features more robust and the network
easier to adapt. In general, the higher the channel
squeeze ratio, the better the overall effect of the model,
which produce the more the number of model parame-
ters. Unfortunately, because we limit the total number of
iterations during network training, the performance of
RawNet-SA with a high channel squeeze ratio is worse
than that of RawNet-SA with low channel squeeze ratio
due to under-fitting. Figure 10 draws the EER changes of
RawNet-SA with different channel squeeze ratios during
network training. RawNet-SA with lower channel
squeeze ratio has faster convergence speed and lower
EER. When the channel squeeze ratio is 1, the network
is significantly under-fitting.

3.6 Experiment V: influence of different feature
aggregation methods
To illustrate the influence of different feature aggre-
gation methods, we compared the performance of
RawNet-SA with average pooling, max pooling, self-

Table 5 The effect of different channel squeeze ratios on recognition performance

Squeeze
Ratio

VoxCeleb-E VoxCeleb-H CN-Celeb

EER DCF08 DCF10 EER DCF08 DCF10 EER DCF08 DCF10

1 4.52% 0.24 0.68 7.89% 0.38 0.80 23.12% 0.79 0.97

0.75 2.70% 0.15 0.55 4.88% 0.24 0.65 21.95% 0.76 0.93

0.5 2.72% 0.15 0.52 4.93% 0.24 0.63 22.14% 0.76 0.93

0.25 2.54% 0.14 0.47 4.52% 0.22 0.65 22.24% 0.76 0.94

Fig. 10 EER curves during network training
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attentive pooling (SAP) [43], attentive statistical pool-
ing (ASP) [44], GRU, and Bi-GRU. Table 6 exhibits
that GRU has the lowest EER in VoxCeleb-E and
VoxCeleb-H. In detail, the EER of GRU in VoxCeleb-
E is 2.54% EER, 0.26% lower than that of Bi-GRU. In
VoxCeleb-H, EER is 4.52%, which is 0.52% lower than
Bi-GRU, indicating that Bi-GRU cannot improve the
performance of RawNet-SA, making network conver-
gence more difficult. RawNet-SA GhostVLAD
achieves 21.32% EER in CN-Celeb dataset, 0.92%
lower than GRU. However, in VoxCeleb-E, EER is
3.01%, 0.47% higher than GRU. In VoxCeleb-H, 5.01%
EER is obtained, 0.49% higher than GRU, which indi-
cates that GhostVLAD cannot adapt the network to
different data distribution, although GhostVLAD
reaches the lowest EER in CN-Celeb dataset. In this
experiment, the performance of SAP and ASP is even
worse than AP, which means that SAP and ASP are
not suitable for the proposed model.

3.7 Experiment VI: effect of VAD and speech separation
on voiceprint recognition
To illustrate the effectiveness of VAD and speech
separation, we compared the performance of models
on CN-Celeb-T. In this experiment, we regard the
CN-Celeb-T as a noisy dataset because it inherently
contains a lot of noise, such as background music,
audience applauded, etc. And CN-Celeb-T-VAD is the
dataset processed by VAD and speech separation.
Table 7 shows that RawNet-origin-SA* has 16.14%
EER in CN-Celeb-T, 0.25% higher than that in CN-
Celeb-T-VAD. And RawNet-SA is 15.04% EER in
CN-Celeb-T, 0.23% higher than that in CN-Celeb-T-
VAD. These results indicate that the effect of network
on CN-Celeb-T-VAD generally outperforms that CN-
Celeb-T, proving that VAD and speech separation are
effective.
We also compared with a speech enhancement +

speaker recognition method VoiceID [45] on VoxCe-
leb1 test set (Vox1T-O) shown in Table 8. In this

experiment, like VoiceID, we use the noise and music
recordings of MUSAN to generate Vox1T-N and
Vox1T-M where Vox1T-N is mixed with noise and
Vox1T-M is mixed with music. We also applied the
speech separation method on Vox1T-M dataset
(Vox1T-M-S) to explore the effectiveness of Spleeter.
Experimental results show that the EER of the
RawNet-origin-SA* is 8.35% in Vox1T-N, 1.51% less
than VoiceID, 5.75% in Vox1-M and 3.38% less than
VoiceID. The EER of Vox1T-M-S is 5.52%, which is
0.23% lower than Vox1T-M. While the EER of
RawNet-SA in Vox1T-N is 8.90%, 0.96% less than
VoiceID, and the EER in Vox1-M is 6.15%, 2.98% less
than VoiceID. In Vox1T-M-S, 6.11% of EER is ob-
tained, 0.04% lower than that in Vox1T-M. These re-
sults prove that RawNet-origin-SA* and RawNet-SA
perform better than VoiceID on corrupted datasets
and speech separation is helpful for voiceprint recog-
nition. It can also be seen that compared with Voi-
ceID, RawNet-SA and RawNet-origin-SA* are more
sensitive to noise. This is because VoiceID uses data
mixed with noise during training, while we do not
use any data enhancement trick.

3.8 Experiment VII: the influence of different similarity
measurement methods on voiceprint recognition
To illustrate the influence of different similarity meas-
urement methods, we compared the performance of
RawNet2, RawNet-origin-SA*, and RawNet-SA using
different similarity measurement methods (such as co-
sine, probabilistic linear discriminant analysis (PLDA)
[46], and b-vector [47]). The experiment results are
shown in Table 9. We use the PLDA Toolkit1, which
follows the PLDA steps in [46] for our PLDA. Firstly,
according to the suggestion of [46], we apply princi-
pal component analysis (PCA) to the extracted feature
embeddings before PLDA. We use the 128 top princi-
pal components of deep voiceprint features to train

Table 6 The effect of different feature aggregation methods on recognition performance

Aggregation
Method

VoxCeleb-E VoxCeleb-H CN-Celeb

EER DCF08 DCF10 EER DCF08 DCF10 EER DCF08 DCF10

Average Pooling 3.20% 0.16 0.52 5.35% 0.25 0.65 21.85% 0.73 0.93

Max Pooling 6.66% 0.34 0.80 10.56% 0.47 0.86 23.66% 0.80 0.96

ASP 5.85% 0.31 0.77 9.41% 0.44 0.85 23.50% 0.79 0.96

SAP 4.24% 0.22 0.63 6.97% 0.33 0.78 22.40% 0.76 0.94

Ghost VLAD 3.01% 0.16 0.52 5.01% 0.24 0.63 21.32% 0.73 0.93

Bi-GRU 2.80% 0.15 0.52 5.04% 0.25 0.67 22.31% 0.77 0.95

GRU 2.54% 0.14 0.47 4.52% 0.22 0.65 22.24% 0.76 0.94

1https://github.com/RaviSoji/plda
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the PLDA model. These features are generated from
the training set (VoxCeleb2) of the model without
normalization or whitening. Then, in the inference
stage, the features generated by the test set (VoxCe-
leb1 and CN-Celeb) are transformed into a latent
space, which keeps the same dimensions as the fea-
tures after PCA. Finally, we calculate the log-
likelihood ratio between the two features in latent
space as their similarity.
B-vector system regards speaker verification as a

binary classification problem, and takes the combin-
ation of element-wise addition, subtraction, multipli-
cation, and division of two deep features as the input
of binary classification network. Since more combina-
tions will expand the input size of the classifier in the
b-vector system and increase the computation over-
head, as described in [47], we only use the concaten-
ation of element-wise addition and multiplication in
the b-vector system. The input of our b-vector system
I is set as follow:

I ¼ ½ðwquery⊕wtargetÞ; ðwquery � wtargetÞ� ð20Þ

where wquery and wtarget denote the deep voiceprint
features from the banned anchors and the current an-
chor respectively, and the symbol [·,·] represents the con-
catenation of the two vectors. The network of b-vector
system is formed by two fully connected layers of a size
of [1024, 512] with leaky rectified linear unit (ReLU) ac-
tivations and dropout of 50%. The similarity of the two
voiceprint features is obtained by the output linear layer

composed of one neuron. From Table 9, for RawNet2,
the cosine similarity in VoxCeleb-E reaches 2.57% EER,
1.21% lower than PLDA and 0.82% lower than b-vector.
The cosine similarity of RawNet-origin-SA* in
VoxCeleb-H is 4.54% EER, 1.50% lower than PLDA and
1.06% lower than b-vector. As for RawNet-SA, the co-
sine similarity achieves 22.24% EER in CN-Celeb, 2.43%
lower than PLDA and 0.60% lower than b-vector. These
results show that the cosine similarity is superior to
PLDA and b-vector under all conditions of this experi-
ment. This may be because the models of PLDA and b-
vector are trained through the deep voiceprint features
extracted from the VoxCeleb2 dataset, and the distribu-
tion difference between the training dataset and the test
dataset makes the performance of PLDA and b-vector
worse than expected.

4 Conclusion
With the rapid development of online live streaming
industry, we urgently need an intelligent method to
identify anchors. Considering that the voiceprint in-
formation as one of the important information can
represent the identity of the anchor, we propose an
anchor voiceprint recognition method in live video
streaming using RawNet-SA and GRU. Firstly, the
speech of the anchor is extracted from the live
streaming by using VAD and speech separation. Then,
the feature sequence of anchor voiceprint is generated
from the speech waveform with the self-attention net-
work RawNet-SA. Finally, the feature sequence of an-
chor voiceprint is aggregated by GRU and
transformed into deep voiceprint feature vector for
anchor recognition. EER is used as the evaluation in-
dicator for the effectiveness of anchor voiceprint rec-
ognition. We conducted seven experiments on public
datasets. Overall, we verified the effectiveness of self-
attention mechanism and GRU, and obtained 22.24%
EER on CN-Celeb dataset. Experimental results show
that our method obtains good voiceprint recognition
performance without abundantly increasing time
consumption.

Table 7 The effect of VAD and speech separation

Models CN-Celeb-T CN-Celeb-T-VAD

EER DCF08 DCF10 EER DCF08 DCF10

RawNet2 17.25% 0.58 0.89 16.28% 0.60 0.86

RawNet2* 17.30% 0.60 0.90 16.51% 0.61 0.87

RawNet-MHSA 15.34% 0.56 0.86 15.16% 0.57 0.85

RawNet-all-SA 15.51% 0.57 0.91 15.18% 0.59 0.87

RawNet-origin-SA* 16.14% 0.58 0.87 15.89% 0.60 0.87

RawNet-SA 15.04% 0.56 0.87 14.81% 0.58 0.86

“*” denotes that the network is initialized with the trained RawNet2 parameters

Table 8 Anti-noise test of different models

Models Vox1T-O Vox1T-N Vox1T-M Vox1T-M-S

VoiceID [45] 6.79% 9.86% 9.13% /

RawNet2 2.49% 9.03% 6.18% 6.01%

RawNet2* 2.25% 8.48% 5.80% 5.55%

RawNet-origin-SA* 2.31% 8.35% 5.75% 5.52%

RawNet-SA 2.73% 8.90% 6.15% 6.11%

“*” denotes that the network is initialized with the trained
RawNet2 parameters
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In the future, we plan to further optimize our
model and loss function to improve the representa-
tion ability of the model. In recent years, various
cross-domain methods based on generative adversarial
networks (GAN) have made great progress. In the fol-
lowing work, we will combine GAN to improve the
effectiveness of the network for unknown distributed
data and make it conveniently applied to practical ap-
plications. To meet real-time recognition, the speed
promotion will be another important direction of our
research. Finally, to better verify the effect of deep
features, we will introduce paraconsistent feature en-
gineering to quantify the representation ability of
deep features in future work.
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