Hindawi

Computational Intelligence and Neuroscience
Volume 2021, Article ID 4997459, 17 pages
https://doi.org/10.1155/2021/4997459

Research Article

Hindawi

Software Defect Prediction Based on Hybrid Swarm Intelligence

and Deep Learning

Zhen Li®),"? Tong Li ,12 YuMei Wu®,>? Liu Yang , 12 Hong Miao 24

2,5

and DongSheng Wang

!School of Electronic and Information, Jiangsu University of Science and Technology, Zhenjiang 212100, China
2Reliability and Systems Engineering Open Group, Jiangsu University of Science and Technology, Zhenjiang 212100, China
*School of Reliability and Systems Engineering, Beihang University, BeiJing 100191, China

*School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212100, China

3School of Computer and Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Correspondence should be addressed to YuMei Wu; beihang wym@163.com

Received 15 July 2021; Revised 9 November 2021; Accepted 24 November 2021; Published 28 December 2021

Academic Editor: Radu-Emil Precup

Copyright © 2021 Zhen Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to improve software quality and testing efficiency, this paper implements the prediction of software defects based on deep
learning. According to the respective advantages and disadvantages of the particle swarm algorithm and the wolf swarm al-
gorithm, the two algorithms are mixed to realize the complementary advantages of the algorithms. At the same time, the hybrid
algorithm is used in the search of model hyperparameter optimization, the loss function of the model is used as the fitness
function, and the collaborative search ability of the swarm intelligence population is used to find the global optimal solution in
multiple local solution spaces. Through the analysis of the experimental results of six data sets, compared with the traditional
hyperparameter optimization method and a single swarm intelligence algorithm, the model using the hybrid algorithm has higher
and better indicators. And, under the processing of the autoencoder, the performance of the model has been further improved.

1. Introduction

Software defects are the potential causes of errors, failures,
and crashes of software systems [1]. In the industry with very
strict requirements on software quality and reliability, if the
potential defects in the software are not eliminated in time, it
may cause serious economic losses to enterprises, and even
threaten people’s life safety.

Software defect prediction technology gives the software
development team more than an opportunity to detect the
software defect module by spending more energy on the
modules of defective tendency and spending less energy on
the modules of no defective tendency [2]. The software will
be a better utilization of resources of the project and also can
greatly reduce the test work of manpower and material
resources consumption, saving the cost of test and im-
proving research and development efficiency.

In recent years, many researchers have carried out
various studies on software defect prediction technology and

proposed software defect prediction models based on ma-
chine learning and statistics, such as logistic regression,
classification tree, multilayer perceptron, radial basis func-
tion, and support vector machine [3]. In 2000, Denaro [4]
used logistic regression to estimate software defects on 37
indicators of antenna configuration software and found that
static software metrics and the number of software defects
had a certain correlation. The multilayer perceptron (MLP)
proposed by Pizzi et al. [5] in 2002 is an effective software
defect research technique. Mahaweerawa et al. [6] used fuzzy
clustering to predict software defects for the first time in
2002 and applied radial basis function (RBF) to predict
software defects. Menzies et al. [7] built a Bayesian network
defect prediction model on the Promise dataset in 2004 and
used PD and PF as performance indicators of evaluation
results. Jindal et al. [8] established a neural network pre-
diction model in 2014 to study software defects, and sub-
sequently, various optimization models for the neural
network were proposed, such as PSO-BP and SA-BP.

mailto:beihang_wym@163.com
https://orcid.org/0000-0002-6743-4829
https://orcid.org/0000-0001-8241-4343
https://orcid.org/0000-0002-3465-5131
https://orcid.org/0000-0002-2179-7026
https://orcid.org/0000-0003-2477-8696
https://orcid.org/0000-0001-7341-2776
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4997459

However, model optimization is one of the most difficult
challenges in the implementation of machine learning al-
gorithms, including hyperparameter optimization, data
preprocessing, and feature extraction. In terms of model
optimization, Soares et al. [8] developed and proposed
optimization based on Pyelogram Analysis and Composed
Exhaustive Search to find solutions for combinatorial op-
timization problems with different levels of difficulty. In the
optimization algorithm research in literature [9], two im-
provements were made to the Cuckoo search (CS) algorithm
to empower its capability in controlling the diversity of its
population and enhance the exploration of CS. Literature
[10] studied how to teach optimization technique (OT)
courses in systems engineering curricula at the under-
graduate level and proposed an approach based on exper-
iments. In literature [11], the convergence speed of the
algorithm was improved by combining strengths of self-
assembly and the particle swarm optimization. Literature
[12] proposed a new application of the metaheuristic Slime
Mould algorithm (SMA) in the optimization and adjustment
of interval type-2 fuzzy controller.

The aim of hyperparameter optimization is to find a set
of hyperparameters which can make machine learning al-
gorithm have the best performance in verifying the reali-
zation of data set. In order to realize efficient automatic
processing of model selection and hyperparameter opti-
mization and to establish a suitable nonlinear relationship
model between software static measurement and defect, a
swarm intelligence optimization algorithm is proposed for
dynamic optimization and hyperparameter optimization of
deep neural network models.

In order to further improve the accuracy and accuracy of
prediction model positioning, this paper uses functional
defect samples for training and continues to use autocoding
for feature extraction after data preprocessing to reduce the
dimension of data samples, remove redundant features, and
improve the efficiency of deep learning training.

2. Concept and Method

At present, based on the difference of research objects and
research results, software defect prediction technology is
mainly divided into static software defect prediction tech-
nology and dynamic software defect prediction technology.
This article studies static software defect prediction tech-
nology, which is to construct software defect prediction
through historical data and metrics. The model is used to
judge the defect tendency of the software module.

2.1. Static Software Defect Prediction Technology. The static
software defect prediction technology is to analyze the
software module code, design the corresponding measure-
ment element, and establish a suitable software defect
prediction model based on the measurement element
through the analysis of the software defect history data and
then use the established software defect. The prediction
model performs software defect prediction. The prediction
results usually include two types: defects (usually recorded as

Computational Intelligence and Neuroscience

1) and nondefects (usually recorded as 0), as shown in
Figure 1.

There is an obvious nonlinear relationship between
software static measurement data and software defects,
which does neither obey the known mathematical model nor
is it a simple combination of basic nonlinear relationship
functions. Therefore, the nonlinear model of software static
measurement and defect must have the self-learning ability
based on the existing static measurement and defect data set,
in order to adaptively obtain the nonlinear model and its
parameters that conform to the relationship between the
software static measurement and defect.

2.2. Data Set for Training. The software measurement and
defect data consist of two parts. One part is the static
measurement information of each function of the software,
and the other part is the defect label (0 or 1) of each function
of the software.

Considering the existing data set limited in amount of
metrics and records, this paper expanded the static metrics
based on common principle and TestBed and meanwhile
developed a web crawler tool to get software code to be
measured and fault information from open source software
website.

2.2.1. Static Metrics of Software. We concluded the static
metrics based on common principle and TestBed which is a
tool widely used for static analysis on software. The whole
metrics is listed in Table 1.

2.2.2. Cutting Software into Function. Process-oriented
languages have strict syntax and semantic specifications and
must meet formal programming and coding requirements
for function definitions and code writing. These grammatical
and semantic specifications provide slicing standards for
code function-level slicing and provide an effective way to
improve the accuracy of software defect prediction based on
code function-level slicing technology. This article is based
on the Clang analyzer to perform lexical and grammatical
analysis of the code and implement function-level slicing to
improve the accuracy of defect data location. The slicing
steps are as follows:

S1 (file filtering settings): CPP cutting includes the
extraction of various files, including .c files and .cpp
files

S2 (configure clang analyzer): use clang analyzer to
analyze CPP, compile C\C++ language into LLVM
intermediate expressions, so as to realize lexical and
grammatical analysis

S3 (main function analysis): use the get_and_write
function; there are two parameters, one is the source
code file name abs_file_name to be parsed and the
folder name abs_dir_name to be output.

S4 (extract function analysis): First create a parser, read
in the file, get, and analyze the cursor node unit in the
syntax parse tree, use kind (the kind element represents

Computational Intelligence and Neuroscience

Start

Software
module

Sample

Extract the metric and
defect information of
the module

Training Application

Predict the defect
information of
the new module

Software defect | P
prediction model

FIGURE 1: Basic rocket ship design. The rocket ship is propelled with three thrusters and features a single viewing window. The nose cone is

detachable upon impact.

TasLE 1: Commonly used software metrics for process-oriented software.

Category

Metrics

McCabe metrics

Halstead metrics

LOC metrics

Reformatted code information for file

Procedure information

Comments associated with procedures

Ratio of comments to executable lines

Complexity metrics

Loop/interval analysis

LCSA]J and unreachability

Dataflow information

Cyclomatic complexity (v(g))
Essential complexity (ev(g))
Module design complexity (iv(g))
Unique operators (#,)
Unique operands (1,)
Total operators (N,)

Total operands (N,)
Vocabulary (n)

Length (N)

Program volume (V)
Program difficulty (D)
Program level (Lv)
Intelligence (1)
Programming effort (E)
Programming time (7T)
LOCphy
LOComment
LOBIlank
LOCComment
Total source lines
Expansion factor
Average length of basic blocks
Procedure entry points
Procedure exit points
Total comments
Comments in headers
Comments in declarations
Executable reformatted lines
Total comments/Executable lines
Header comments/executable lines
Declaration comments/executable lines
Code comments/executable lines
Knots
Number of loops
Depth of loop nesting
Number of order 1 intervals
Maximum interval nesting
Reducible intervals
Total LCSAJs
Reachable LCSAJs
Unreachable LCSA]Js
Maximum LCSAJ density
Unreachable lines
Unreachable branches
Globals in procedure
File fan in
Fan out

the components of a node, for example, is this a class, a
function, or a variable name, etc.), spelling (the name of
the extracted function body, it can also be a class body,

etc.), location (the file start line and file end line of the
function body), get_children (get all the nodes in the
cursor).

S5 (determine whether it is the required function body
or class body): after the judgment is completed, call
write_fun to write to the file.

S6 (exception handling): unable to name the over-
loaded function—use special characters and English
meaning to reset the function name to replace it.

2.2.3. Measurement and Merge into Data for Training.
The following takes the process-oriented C language soft-
ware as an example to illustrate the process of data acqui-
sition based on web crawlers, as shown in Figure 2.

The process shown in Figure 2 mainly includes three
aspects. The first is to use code slicing technology for C
language to establish function-level software measure-
ment results. The second is to use web crawler technology
to automatically capture and identify the code and defect
data of open source software websites. The third is to
generate C language software metrics and defect data
through data matching of function names. Self-developed
software tools are used in the data generation process,
which have the characteristics of fast speed, correct
matching, high data quality and function-level data
granularity, which can provide high-quality and efficient
software metrics and defect data for software defect
prediction models.

2.3. Deep Learning. Deep learning is a learning method that
uses data to train and learn the deep neural network to
extract the characteristics of a nonlinear model by con-
structing a neural network of multiple levels. After obtaining
the data set composed of the metric element and defect
information, the data set must be processed, analysed, and
learned. The learning potential of the deep neural network
on the data characteristics can dig out the nonlinear rela-
tionship between the data and obtain the metric element and
the defect. The mapping logic of software, thereby establishes
a nonlinear model of software static measurement metadata
and defect prediction data.

2.3.1. Deep Neural Network. A deep neural network (DNN)
is a feed-forward artificial neural network [13], also known
as a multilayer perceptron. According to the position of the
node in the network, it can be divided into input layer,
hidden layer, and output layer. Compared with the shallow
network, DNN has multiple hidden layers, and each layer
can also have a larger number of neural units. The output of
the current hidden layer will be used as the input of the
previous hidden layer or output layer. Figure 3 is a schematic
diagram of the structure of a fully connected deep neural
network.

Correspondence exists between all variables in DNN.
Suppose there is a DNN with N+ 1th layers, where the
input layer is the Oth layer, the hidden layers are the 1st to
N - 1th layers, and the output layer is the Nth layer. Exist
ne (0,N], for any nth layer, there is the following
correspondence:

Computational Intelligence and Neuroscience

anl

net} = Z w;;(-zzfl+bl, (1)
in1

zy = fi(nety), (2)

where net], is the input value of the kth node in the nth layer,
N" is the number of nodes in the nth layer, w/, is the weight
between the ith node in the nth layer and the kth node in the
nth layer, 2% is the nth output value of the kth node in the
layer, and b, is the bias of the kth node in the nth layer, and
f1(+) is the activation function of the nth layer. For the
activation function f;(-), different forms can be selected in
different algorithms. Common activation functions include
sigmoid function, softplus function, and rectified linear unit
(ReLU) function.

Loss function, also known as objective function or error
function, is mainly used to measure the error between the
actual output of the network and the expected output, so as
to guide the learning of network parameters. For regression
problems, functions such as square loss are generally used;
for classification problems, functions such as logarithmic
loss and cross entropy are generally used. Different loss
functions will affect the training speed and generalization
ability of the network. In a binary classification problem like
this paper, cross entropy is generally used as the loss
function, and softmax is used as the activation function in
the output layer of the model. Cross entropy is a very im-
portant concept in information theory, mainly used to
measure the difference between two probability distribu-
tions. For the sample (x, y), x is the sample and y is the
corresponding label, assuming that the set of values is {0, 1}.
When the true label of a sample is y, and the probability of
the sample label y=1 is p, then the cross-entropy loss
function of the sample is

loss = —(y log(p) + (1 - y)log(p)). (3)

In order to minimize the error value of the loss
function, backpropagation technology is used in the net-
work to trace back from the output layer to the input layer
and update the weights and biases according to the in-
fluence of different parameters. The commonly used
method is the gradient descent algorithm, but there will be
problems such as slow convergence, large fluctuations in
the decline process of the loss function value, and falling
into a local minimum.

This paper used the gradient descent optimization al-
gorithm Adam, which is a method to calculate the adaptive
learning rate for each parameter. It not only stores the
exponential decay mean value of the past gradient square,
that is v, but also stores the exponential decay mean value of
the past gradient, that is, m,. In this way, the sliding average
of the gradient and the square of the gradient can make each
update related to the historical value. The formula is as
follows:

my = Bym,_y +(1-B,)gs (4)
v =Byve + (1 _/32)93’ (5)

Computational Intelligence and Neuroscience

Get the URL of the initial open
source software webpage

v

Data capture based on web

crawler

y
Get C language source
code data package

h 4
Extract all .c and .cpp source
program files

h 4
Use the cutting program for
function cutting

A 4

Use TestBed to scan function-level
files and generate test reports

h 4
Crawling the defect information
of the project source code

h 4
Generate defect data report

Report meets requirements

Extract report information and calculate the
value of the metric element to generate a
metric metadata report

y

Associate metrics with defect reports,
and generate final software reports

End

F1cure 2: C language software measurement and defect data generation process.

Adam’s update rules are as follows:

no .
Op1 = 0; = W’”r (6)
In formulas (4)~(6), #=0.001, 3, =0.9, 3, =0.999, and
€ = le— 8 is to prevent the divisor from being 0, g, represents
the gradient, and the formulas of /7, and ¥, are as follows:

. m

= —,)
1- 1

— Vy

Vv, = .

SRRy ®

2.3.2. Self-Encoding Network. Autoencoder (AE) is an un-
supervised learning algorithm. The label is directly replaced
by the input. Its learning method is shown in Figure 4.

The autoencoder can be considered as a neural network
with only one hidden layer, which realizes the reconstruction
of features through compression and restoration. The input
data is a feature, the input layer to the hidden layer is an
encoder, which can compress the input into a latent space
representation; the hidden layer to the output layer is a
decoder, which reconstructs the input from the latent space
representation. The number of input and output neurons of
the autoencoder is equal to the feature dimension. Train this
autoencoder to make the output features and input features
as consistent as possible. The autoencoder tries to reproduce
its original input. Therefore, during training, the output in
the network should be the same as the input, that is, y=x.
Therefore, the input and output of an autoencoder should
have the same structure. We use the training data to train
this network. After the training is over, the network has
learned the ability of x — h — x. For us, h at this time is
very important because it is another expression of the

Input Layer 1

Computational Intelligence and Neuroscience

neuron

LaYerZ/V Layer L Output
Xy o — "

*2 —> 7"
N E— Y
Input — N _/ Output
Layer Layer
Hidden Layers
FiGURE 3: Deep neural network structure.
Predictive
Input ——p Module P value
Loss
Expected
N —
value

FIGURE 4: Deep neural network structure.

original data without losing the amount of information as
much as possible. Its structure is shown in Figure 5.

By training the autoencoder whose output value is equal
to the input value, the potential representation h will have
value attributes. One way to obtain useful features from a
self-encoder is to limit the dimension of / to be smaller than
the input x. In this case, it is called a loss self-encoder. By
training the loss representation, the autoencoder can learn
the most important features in the data.

2.4. Model Evaluation Indicators. In the research of typical
defect prediction technology [14], the evaluation perfor-
mance related to confusion matrix is usually used to evaluate
the prediction results, such as accuracy, precision, recall, and
F-measure (F-measure). The confusion matrix includes two
columns, as shown in Table 2.

TP is the number of modules that are predicted to
contain defects and are actually defective, FP is the number
of modules that are predicted to contain defects and are
actually free of defects, FN is the number of modules that are
predicted to contain no defects and are actually defective,
and TN is the number of modules that are predicted to
contain no defects and are actually the number of modules
without defects. Based on these four categories, the following
concepts are introduced to evaluate the performance of the
classifier.

Layer L,

Ficure 5: Example of an autoencoder.

(1) Accuracy: calculate the ratio of all correctly classified
test cases (TP + TN) to the total number of test cases,
namely,

TP + TN

= . 9
Y = TP Y PP+ N+ TN ®)

Accuracy gives the overall effect of prediction and is
one of the most commonly used indicators when
evaluating classifier models. However, in the defect
prediction, due to the serious class imbalance

Computational Intelligence and Neuroscience

TaBLE 2: Temperature and wildlife count in the three areas covered by the study.

Predictive value

Defective module
No defective modules

Correct positive example (TP)
False negative (FN)

False positive (FP)
Correct negative example (TN)

problem in the defect data, in fact, it is meaningless
to use the accuracy as the evaluation index of the
prediction model. Suppose there are 100 modules in
a software project, of which 1 is a defective module
and the remaining 99 are nondefective modules; at
this time, if all software modules are predicted as
nondefective modules, the accuracy of the prediction
model will be as high as 99%, but in fact, the pre-
dictive model did not find the defective module.
Therefore, in the current defect prediction, accuracy
is no longer used as the evaluation index of the
prediction model [15].

(2) Precision: calculate the ratio of the number of test
cases (TP) correctly classified as positive to the
number of all test cases classified as positive, namely,

TP

e — 10
TP + FP (10)

precision =

(3) Recall rate: calculate the ratio of the number of test
cases (TP) correctly classified as positive to the actual
number of positive test cases, namely,

TP

= 11
e T TP EN (D)

(4) F-measure: it can be seen from the definition that a
pair of opposite evaluation indexes of recall rate and
precision rate. But a good software defect prediction
model should have a high recall rate and precision
rate at the same time. Therefore, when evaluating the
effect of the software defect prediction model, it is
necessary to combine the recall rate with the pre-
cision rate. This is the F-measure evaluation index,
and the calculation formula is

((1 + /52) # recall * precision)

F — measure = (12)

>

2 -
B~ # recall # precision

wheref3 represents the importance of recall and
precision, usually take 1, which means that the two
are equally important, denoted as FI.

(5) AUC (area under the ROC curve): in the two-class
model, the AUC indicator is often used as the most
important evaluation indicator to measure the ac-
curacy of the model in the model evaluation stage.
AUC considers the ranking quality of model pre-
dictions, reflecting the ratio of positive examples
ahead of negative examples by the model.

3. Hyperparameter Optimization Based on
Hybrid Wolf Pack Algorithm

In the deep learning model, the most important thing is
“parameter tuning.” Some parameters, such as weights and
biases, will be optimized as the model is trained, and some
parameters cannot be optimized during model training.
These are hyperparameters. They often determine the
framework and settings of the model, so optimization should
be started before the model is trained. The choice of
hyperparameters can directly affect the performance of the
algorithm model, but the hyperparameter optimization
process often depends on the accumulation of professional
knowledge and long-term experience. Therefore, research to
find suitable hyperparameter optimization methods is an
important factor that affects the effect and efficiency of deep
learning algorithms [16].

At present, hyperparameter optimization methods are
mainly divided into grid search, random search, and other
directional searches. Grid search is to adjust the parameters
according to the step length within the specified parameter
range and train the learner based on the adjusted parameter
set, so as to find the parameter set that can maximize the
model accuracy among all the parameters. Random search is
not trying all possible combinations, but random combi-
nations. This method is similar in nature to grid search,
except that the change in the gap between parameters is
random and not necessarily equal. It is a random selection of
values for each hyperparameter. In all candidate parameter
sets, through loop traversal, try every possibility, and the best
performing parameter set is the final result.

Grid search requires traversal of all possible parameter
combinations within the parameter range, which is also its
disadvantage. When there are more data sets and multi-
parameters, this approach will cause the number of calcu-
lations to increase exponentially, which will consume a lot of
time, and ultimately there is no guarantee that perfect
hyperparameter values can be found. Although random
search has a relatively higher chance of finding the optimal
parameters than grid search, when the parameter dimension
becomes larger, it is the same as the grid search, and the
amount of calculation that surges is also time-consuming. In
short, these two search methods are only permutation and
combination of parameters, which belong to violent ex-
haustive search methods, so they will inevitably sacrifice a lot
of time and computing power, and they cannot point out the
optimization direction for subsequent better parameter
searches.

Hyperparameter optimization is a dynamic process, but
grid and random search can only combine different pa-
rameters and cannot dynamically select and adjust pa-
rameters according to the training state of the model and
allow the parameters to actively approach the optimal value.
Therefore, some researchers have proposed the use of swarm
intelligence algorithms for hyperparameter optimization.
Zhang optimized the hyperparameters based on the group
directional optimization method of improved particle
swarm algorithm. It is mainly through the mutual coop-
eration and information sharing of particle swarms to de-
termine the update of hyperparameters. Therefore, this
search method based on swarm intelligence algorithm can
avoid grid and random blindness problems and can ensure
that the parameters are gradually optimized as the algorithm
runs [17]. Similarly, the use of improved particle swarm
algorithm for hyperparameter optimization is also studied in
[18]. The improvement idea is to adjust the algorithm in time
when it is found that the algorithm may be in a stagnant
state, thereby speeding up the algorithm’s convergence
speed. At the same time, because the hyperparameter op-
timization problem is a nonlinear problem, there will be
many local optimal solutions. Li avoids the algorithm from
falling into the local optimal solution by adding disturbance
to the global optimal. However, this improvement does not
greatly increase the accuracy of the algorithm because the
update strategy of the particle swarm algorithm is too
simple, and it is difficult to ensure the optimization ability of
the particles using only this update method. Therefore, when
the algorithm is improved, it can be integrated into the
search methods of other suitable agents. The search category
of agents is increased through algorithm mixing, and dif-
ferent local solution spaces are searched based on multiple
agents, so as to solve the problem that hyperparameter
optimization is easy to fall into local optimal solutions.

In order to achieve fast and accurate hyperparameter
optimization, this paper studies the optimization of the
hyperparameters of the deep neural network model based on
the hybrid swarm intelligence algorithm. First, according to
the characteristics of the particle swarm algorithm and the
Wolf Pack algorithm, the two are mixed to obtain an im-
proved hybrid Wolf Pack algorithm. Then when using the
swarm intelligence algorithm to optimize the hyper-
parameters, the loss function of the model is used as the
standard for supervising the state of the model, and the value
of the loss function is taken as the value of the fitness
function in the swarm intelligence algorithm. Through the
iterative search of the agent, an optimal set of hyper-
parameters is found, thereby improving the software defect
prediction performance of the deep neural network model.

3.1. Swarm Intelligence Algorithm

3.1.1. Particle Swarm Algorithm. Particle swarm optimiza-
tion (PSO) realizes the search for the optimal solution based
on the mutual cooperation and information sharing among
particles in the swarm. First, the initial population is ran-
domly generated, and the fitness value of each particle is

Computational Intelligence and Neuroscience

determined by the objective function. The fitness value
represents the quality of the particle position. In each it-
eration of the search for the optimal solution, each particle
will adjust its position following two extreme values. One is
the optimal fitness value found so far by the particle itself,
which is called the individual extreme value. The other is the
optimal fitness value found so far by all other particles in the
population, which is called the global extremum.

The mathematical expression of the particle swarm
optimization algorithm is as follows: in a dimensional search
space, there is a population of m particles, that is, X={X1,
.. X_i, ..., X_mj}, the position of the ith particle is
expressed as X_i={X_il, X_i2, ..., X_id}" and its speed is
expressed as V_i={V_il, V_i2, ..., V_id}T. The individual
extremum of the ith particle is expressed as P_bi={P_bil,
P_bi2, ...P_bid}", and the global extremum of the pop-
ulation is expressed as g_b={g_bl, g_b2, .., g_bd}T. The
particles update their velocity and position according to
formulas (13) and (14):

1
vi(;r) = wv, + ¢yrand, ()(Piid - xfd) (13)
+ cyrand, ()(gf,d - xfd),
xig = xig vl (14)

In the formula, w is the inertia weight, which is a
nonnegative number in [0, 1], which represents the ability of
the particle to inherit the current speed; the learning factor
c_l and c_2, generally, represents the ability of the particle to
learn; rand_1 ()and rand_2 () are random numbers be-
longing to (0,1). The update speed of the particle is com-
posed of three parts. The first part is the previous speed of the
particle, which represents that the current state of the
particle is inertially moved by its own speed, which balances
global exploration and local development capabilities; the
second part is the “cognition” part, which represents the
optimal position that the particle has experienced so far, and
the difference between it and the current position of the
particle represents the influence value of the particle’s own
experience on its next behavior; the third part is the “social”
part, g_bd is the optimal position all particles so far found;
the mutual cooperation and information sharing between
the particles make the particles search in a better direction.

3.1.2. Wolf Pack Algorithm. The Wolf Pack Algorithm
(WPA) is intended to simulate the wolves” hunting behavior
processing function optimization problem and divide the
wolves into three categories: head wolves, detective wolves,
and fierce wolves. The entire hunting activity of the Wolf
Pack is abstracted into three intelligent behaviors (walking
behavior, summoning behavior, and siege behavior), as well
as the “victor is king” wolf generation rules and the “strong
survival” Wolf Pack update mechanism.

(1) Criteria for the generation of wolves: start from a
certain initial prey group in the space to be opti-
mized, and the wolf with the best fitness value is used
as the wolves.

Computational Intelligence and Neuroscience

(2) Wandering behavior: select the best S_num artificial

wolves except the head wolves as the wolf detection
to perform the wandering behavior. S_num is an
integer selected randomly in [n(a + 1), n/a], n is the
total number of artificial wolves in the Wolf Pack,
and « is the wolf detection scale factor. First calculate
the prey scent concentration at the current position
of the detective wolf i. if Y;< Yieuq, then Yieq=7Y;.
Detect Wolf replaces the position of the head wolf
and initiate a summoning behavior; if Y;> Yie,q,
detective wolf moves forward in h directions re-
spectively (the step length at this time is called stepa).
The position of the wolf 7 in the d-dimensional space
after advancing along the p-th direction p=1, 2, 3,
... h)is

27 X
XD = xy+ sin< . p> X step‘;. (15)

The detective wolf i keeps walking until the odor

concentration perceived by a certain wolf Y; < Yie,q4,
or the number of walking T reaches the maximum

Tmax'

Among them, there are differences in the prey search
method for each wolf detection, that is, the value of is
different, and it is the random integer taken in in
[Amins Pmax] in the actual situation.

(3) Summoning behavior: the head wolf initiates a

howling to perform the summoning behavior, and
informs the surrounding fierce wolves to approach
the head wolf quickly, where M _num=n-S_
num — 1; when the fierce wolves hear howling, they
all run quickly with a relatively long stride length.
The ground is approaching the position of the head
wolf (the step length at this time is called the raiding
step length stepy,). Then, when the wolf j goes
through the k+ 1th iteration, the position in the
d-dimensional space is

k_ k
k1 _ k d 94~ Xja
Xig = Xjg+step, - ——— (16)
|9d —x,-d‘

where gf is the position of the wolf of the k-th
generation group in the d-dimensional space.

In the process of running, if the scent concentration
Y; < Yieaq perceived by the wolf j, then Y= Yj,q and
the wolf j transforms into a head wolf and initiates a
summoning behavior; if Y;> Yj.,q4, then the wolf j
continues to carry out the raiding behavior, and
when the distance between the wolf j and the head
wolf's. di is less than the judging distance d,,e,,, it will
be turned into a siege behavior. The judgment dis-
tance dy,, is obtained by estimation:
1 D

dpear = Do Z |maxd - mind|. (17)
d=1

Among them, D is the dimension of the variable
space to be optimized; max; and min, are the
maximum and minimum values of the d-th di-
mension space to be optimized. w is the distance
determination factor, and its different values will
affect the convergence speed of the algorithm. When
increases, it will accelerate the convergence of the
algorithm, but if it is too large, it will make it difficult
for artificial wolves to enter the siege behavior and
lack the precision of prey search for.

(4) Siege behavior: the wolves conduct siege behavior
according to formula (18). For the k-th generation of
Wolf Pack, suppose the position of the prey in the i-
th dimension space is G¥, and the following formula
can be used to express the siege behavior of the Wolf
Pack:

xﬁjl +A- stepf . |G§ - xfd|, (18)

A is the random number distributed in [-1, 1]; stepf
is the attack step length of artificial wolf i when it
takes a siege behavior in the d-dimensional space.

The three types of intelligent behaviors include
walking step length step?, running step length step{,
attack step length step”, and step length in the d-
dimensional space involves the following relation:

stepd

max,; — main,
step’j == b-2. stepd = —| d d|.

c

(19)

In the formula, § is the step length factor.

(5) The Wolf Pack update mechanism of “survival of the
strong.” Eliminate the R artificial wolves with the
worst objective function value, and generate R new
artificial wolves randomly at the same time. The
value of R is a random integer between
[n/(2 x B),n/B] and 8 is the population update scale
factor.

3.2. Hyperparameter Optimization Based on Hybrid Wolf Pack

3.2.1. Hyperparameter. Hyperparameter optimization is
also called hyperparameter adjustment. The deep learning
algorithm contains thousands of parameters. Some of these
parameters can be optimized by training, such as the weight
in the neural network, which we call parameters. There are
also some parameters that cannot be trained. To optimize,
such as learning rate, we call it a hyperparameter
(hyperparameter).

When training a neural network, it is essential to adjust
the hyperparameters. This process can train a more efficient
machine learning model more scientifically. The main op-
timized hyperparameters in this paper are the number of
layers of the network, the number of neurons in each layer,
and the learning rate.

10

(i) Number of network layers: in deep neural networks,
in addition to the input layer and output layer, the
number of hidden layers can be increased or de-
creased according to the learning situation. Adding
a hidden layer can reduce network errors and im-
prove accuracy, but it also complicates the network,
thereby increasing the training time of the network
and the tendency of “overfitting.”

(ii) Number of neurons: after the training set is de-
termined, the number of nodes in the input layer
and the number of nodes in the output layer are
determined accordingly. However, how to optimize
the number of nodes in the hidden layer is a more
difficult problem. Experiments show that if the
number of hidden layer nodes is too small, the
network will not have the necessary learning ca-
pabilities and information processing capabilities.
On the contrary, if it is too much, it will not only
greatly increase the complexity of the network
structure and slow down the learning speed of the
network but also the network is more likely to fall
into a local minimum during the learning process.

(iii) Learning rate refers to the magnitude of the update
of the network weight in the optimization algo-
rithm. The learning rate can be constant, gradually
decreasing, momentum-based or adaptive. Differ-
ent optimization algorithms determine different
learning rates. When the learning rate is too large,
the model may not converge, and the loss will
continue to oscillate up and down; when the
learning rate is too small, the model will converge
slowly, and it will take longer to train.

3.2.2. Hybrid Wolf Pack Algorithm. The PSO algorithm has a
simple structure and few parameters and is easy to imple-
ment. Although the convergence speed is very fast at the
initial stage of the iteration, it is easy to fall into the local
optimization at the later stage of the iteration, leading to
premature convergence. WPA has strong global exploration
capabilities, especially in the later iterations, and will not fall
into local optimum. Compared with PSO, WPA has lower
randomness in the algorithm operation process, and the
solution after running multiple times can be closer to the
actual value and will not cause the solution value to deviate
from the actual value in a large area. Based on the advantages
and disadvantages of WPA and PSO algorithms, combining
the two algorithms can achieve a good complementary effect
[19]. The approach taken in the solution space is as follows:
after the PSO algorithm particle search for particles, then use
the wolf in the Wolf Pack algorithm. The search process of the
group is refined again to determine the final new position.

The detailed process steps of the learning algorithm are
as follows:

S1: first initialize the parameters of the Wolf Pack
algorithm and the particle swarm algorithm, cal-
culate the fitness function, and update the indi-
vidual extremum and the population extremum.

Computational Intelligence and Neuroscience

S2: judge whether the current number of iterations
meets the requirements, and if the number of iter-
ations is not less than the minimum value, run down.

S3: for each particle in the population, update the
population according to the update formula of the
particle swarm for their speed and position.

S4: the wolf hunter wanders in directions, updates
the position according to the wandering formula,
and obtains the fitness value at the updated
position.

S5: find the updated optimal fitness value and
optimal position of the head wolf.

S6: the wolf initiates a summoning behavior, and
the wolf runs towards the wolf according to the
running formula.

(vii) S7: calculates the fitness value of the updated wolf,
and updates the fitness value and position of the
wolf at the current position.

S8: given the number of raids, when the maximum
number of raids is reached, the wolf becomes the
head wolf, or d;; <d,,,,. One of the three conditions
is met, step 9 is executed, otherwise, step 6 is
executed.

S9: calculate and update the position of the siege
wolf according to the formula, calculate the fitness
value, and update the value of the current position.

$10: according to the update mechanism of the
Wolf Pack, execute the survival of the strong and
discard the worst R wolf.

S11: generate randomly wolves, and calculate the
fitness value of wolves.

S12: if the number of iterations does not reach the
maximum requirement, turn to S2 to continue.

The maximum number of raids is set in S6 because when
the positions of the wolf and the head wolf are difficult to
meet di; <d,,,,» the running time of the algorithm becomes
longer, and in severe cases, it may even fall into an infinite
loop. Therefore, in order to shorten the running time of the
algorithm, this paper determines the number of runs as 5
according to the value of the hyperparameter, the distance
determination factor and the run step length, which can not
only ensure that the wolf reaches the parameter search near
the head wolf but also control the running time of the
algorithm.

3.2.3. Hybrid Wolf Pack Algorithm to Optimize
Hyperparameters. In the hyperparameter optimization
method, the manual tuning method requires a lot of ex-
perience and is relatively time-consuming; one disadvantage
of grid optimization is that when multiple hyperparameters
are involved, the number of calculations increases expo-
nentially, and this method does not guarantee that the search
will find the perfect hyperparameter value; the random
optimization method has a relatively higher chance of
finding the optimal parameter, but this method is suitable

Computational Intelligence and Neuroscience

for low-dimensional data. In view of this situation, this
article will use the hybrid Wolf Pack algorithm to optimize
the hyperparameters. The flowchart is shown in Figure 6:

When the swarm intelligence algorithm is initialized, the
dimensionality of the population in the hybrid algorithm is
determined mainly by the number of hyperparameters that
need to be optimized, and then the particle length is de-
termined by the value range of each parameter. This paper
takes the loss function of the deep neural network as the
fitness function of the hybrid algorithm. Adjust and opti-
mize the position of the particle, that is, the value of the
hyperparameter, through the optimization of the fitness
value. The purpose of this design is mainly to give full play to
the powerful global optimization ability of the hybrid al-
gorithm, so as to minimize the value of the loss function
output by the deep neural network.

In the deep neural network in this article, we judge the
current training state of the model by observing the mon-
itoring indicators such as the value of the loss function
during the training process and use the hybrid swarm in-
telligence algorithm to adjust the hyperparameters, so that
the model can be used in a more scientific way. Effectively
learn and train to improve the accuracy of model prediction.

4. Experimental Results and Comparison

In the current research, the establishment of a predictive
model is mainly based on the measurement metadata with
identified defect information, but in the actual process, the
identified software measurement metadata is very poor [20].
At the same time, most of the current work results use public
data sets, such as NASA’s data sets. However, the limitation
of the data sample size will have the problems of limited
measurement elements, limited data amount, and relatively
fixed sample set and training set, which makes the training
effect poor. And, due to the simplification of the data set, the
correctness, validity, and versatility of its defect prediction
and location results cannot be guaranteed. Not only this, the
quality and reliability of NASA’s data sets have also been
questioned by researchers. It is worth mentioning that the
software warehouse on the Internet stores a large amount of
software development and evolution data. In addition to
source code and change logs, there are defect reports, etc.,
which can provide a large amount of sample data for
software engineering prediction problems.

Different from the previous research using public data
sets such as NASA, the data set used in this article is
extracted through automated tools, crawling software defect
information from open source websites and collating with
the metric metainformation of the corresponding function.
The experimental data sets in this article are all from C
language software projects, in which the number of metric
elements, that is, the number of features is 47, and the defect
distribution is shown in Table 3.

4.1. Software Defect Prediction Model Based on Deep Neural
Network. The premise of using a deep neural network to
build a deep learning model is to determine the network

11

settings such as the number of layers, the number of nodes,
and the activation function of the network. In order to
establish a software defect prediction model based on the
deep neural network, this article will build the model and
learn and train based on the Tensorflow framework. The flow
chart is shown in Figure 7:

4.2. Feature Extraction Based on Autoencoder. The autoen-
coder learns the internal features of the data set by super-
vising itself, extracts useful feature information, and achieves
the purpose of dimensionality reduction. This article will
feed the data to the autoencoder before the deep neural
network training. After the autoencoder training is over, the
autoencoder obtains an effective data representation. At this
time, the decoder is removed, and only the encoder is
retained. Then, the output of the encoder will be directly
used as the input of the subsequent software defect pre-
diction model to complete the data dimensionality reduc-
tion, and the purpose of improving the training effect is
achieved through this operation. The flow chart is shown in
Figure 8:

4.3. Comparison of Different Hyperparameter Optimization
Methods. The article realizes five optimization methods of
hyperparameters—grid, random, particle swarm algorithm,
Wolf Pack algorithm, and mixed Wolf Pack algorithm—and
compares the 4 indicators of the model. The limits of the
three hyperparameters solved in the experiment are as
follows: the range of the number of hidden layers [2, 6], the
range of the number of nodes of the hidden layer [20, 60],
and the range of learning rate [le — 4, le — 2]; the rest pa-
rameter settings are as follows:

(1) Grid optimization: set 45 parameter combinations
within the range of hyperparameters. For example,
the number of hidden layers is [2, 3,4, 5, 6] and the
number of nodes in the hidden layer is [25, 40, 55],
the learn rate is [le — 4, le — 3, 1e — 2].

(2) Random optimization: the number of given pa-
rameter combinations in the hyperparameter range
is 45.

(3) Particle swarm optimization: the number of particles
is 15, the maximum number of iterations is 3,
learning factor ¢, =¢,; = 0.5, and inertia weight
w = 0.9.

(4) Optimization of Wolf Pack algorithm: the number of
wolves is 15, the maximum number of iterations is 3,
the distance determination factor is 8, the maximum
number of travel restrictions is 3, the wolf detection
scale factor a = 3, the Wolf Pack update scale factor
B =5, step factor S = 20.

(5) Hybrid Wolf Pack algorithm optimization: the pa-
rameters are the same as the particle swarm and Wolf
Pack algorithms.

In the parameter setting of the above algorithm, the
range of the three hyperparameters can be selected by the
user. Each parameter setting of the grid optimization can be

12 Computational Intelligence and Neuroscience
Data preprocessing, feature extraction
from the encoder
Initialization of the parameters of
the hybrid wolf pack algorithm
Determine the network topology and
other hyperparameters
Deep neural network training obtains the value of the
loss function as the fitness value
Individual extremum and
group extremum update
Y N
Meet termination conditions
A Update the speed and position of each
Defect prediction, particle according to the update ' '
get experimental formula of the particle swarm iter =iter + 1
results algorithm's speed and position T
4 After the wolf has walked in h Randomly generate R
o wolves and calculate
End directions,calculate the fitness value and
the fitness value of R
update the wolf wolves
Hearing the wolf’s call to action, the wolf Abandon the worst
immediately rushed towards the wolf, and I R wolf
g updated the position of the wolf according to Yy
the formula.
v Enter the siege
Calculate the updated fitness value of the wolf, behavior
and update the fitness value and position of the calculate fitness
wolf at the current position y
FIGURE 6: The flow chart of optimizing hyperparameters by hybrid Wolf Pack algorithm.
TaBLE 3: C project data set.
Data set Number of samples Number of defects Defect rate (%)
CwW4 1343 249 18.54
LR1 1078 133 12.34
PC5 423 39 9.22
PCé6 846 63 7.45
PU1 1700 111 6.5
SF1 2731 353 12.93

set randomly, but it is necessary to ensure that the final
combination number is consistent with the random opti-
mization and is equal to the product of the number of
particles and the number of iterations of the particle swarm
algorithm and the wolf swarm algorithm. For example, there
are 45 (5 3 % 3) combinations in the above grid optimi-
zation, the number of parameter combinations for random
optimization is set to 45, the number of particles in the

particle swarm and wolf swarm algorithm is 15, and the
number of iterations is 3. This is to ensure that the calcu-
lation amount of different algorithms is consistent, so as to
ensure the credibility of the algorithm comparison results.

First, the data set is preprocessed, and the data is stan-
dardized and scaled. Next, each data set is divided into three
parts, as the test set, training set and verification set, and then
the software defect prediction model is trained using the

Computational Intelligence and Neuroscience

Read data

v

Divide the data set into training, validation and test sets

v

Data processing: data standardization and data scaling

v

Build the input layer of the model: set the
activation function to relu, and the number
of nodes as the dimension of the input data

v

Build the hidden layer of the model: set the activation
function to relu, the number of layers and the number
of nodes are the algorithm optimization results

Build the output layer of the model: set the activation
function to sigmoid and the number of nodes to 1

v

Set the optimizer and learning rate of the model

v

Compilation model: the loss function is binary_crossentropy

Training model: Specify the number of model training,
training set and validation set, etc.

v

Model prediction: Calculate the evaluation index based on the
prediction result of the model on the test set

End

F1GURe 7: Flow chart of building software defect prediction model.

training set and the verification set, and finally, the defect
prediction is performed on the test set based on the trained
model. Each group of experiments is trained 20 times, and the
results are the average of 10 experiments. The experimental
results are shown in Tables 4-9 and Figures 9-14.

The precision rate reflects the model’s ability to distin-
guish negative samples, the recall rate reflects the model’s
ability to recognize positive samples, and the F-measure is a
combination of the two. The larger the F-measure value, the
more robust the classification model. AUC is the area under
the ROC curve. The larger the value, the better the model.

Observing Tables 4-9 and Figures 9-14, it is found that
compared with other methods, the optimization method of
the hybrid algorithm (WPA-PSO) can not only ensure a
higher precision rate but also improve the recall rate. As the
overall evaluation index of the model, F-measure and AUC
are also increasing with the improvement of optimization
methods. In general, the superiority and inferiority ranking
of hyperparameter optimization = methods is
WPA - PSO > WPA > PSO > random > grid.

13

Read data

¢

Divide the data set into training, validation and test sets

¢

Data processing: data standardization and data scaling

Build the input layer of the model: the number of
nodes is the dimension of the input data

\ 4
Build the hidden layer of the model: set the
activation function to relu, and the number of nodes
to 2/3 of the input data dimension

h 4
Build the output layer of the model: set the
activation function to tanh, and the number of
nodes as the dimension of the input data

v

Set the encoder and decoder of the model

Set the model's optimizer Adam and
loss function mse

Training model: Specify the number of model training,
training set and validation set, etc.

v

Use encoder to encode all data for
deep neural network learning

End

FiGure 8: Flow chart of feature extraction based on AE.

4.4. Comparison of before and after Feature Extraction.
The number of features of the dataset used in Section 4.1 is
47. These high-dimensional data will increase the complexity
and reduce the accuracy of the model during data processing
and construction of the training model. The article uses a
self-encoding network with only one hidden layer and sets
the number of nodes in the hidden layer to 32. The self-
encoding network is trained through the training set, and
finally the data set is re-encoded based on the trained self-
encoding network. The encoded data set will continue to use
five hyperparameter optimization methods to train the
model. Each group of experiments is trained 20 times, and
the results are the average of 10 experiments. The experi-
mental results are shown in Tables 10-15.

14 Computational Intelligence and Neuroscience

TaBLE 4: CW4 experimental results. CW4 experiment results

0.8
Precision Recall rate F-measure AUC
Grid 0.44 0.17 0.23 0.58 06
Random 0.54 0.21 0.29 0.60 0.4
PSO 0.61 0.27 0.37 0.62
WPA 0.65 0.33 0.43 0.64 0.2
WPA_PSO 0.73 0.36 0.48 0.67
Precision Recall rate F1 AUC
TaBLE 5: LR1 experimental results. ® Grid = WPA
Precision Recall rate F-measure =~ AUC " E;gdom = WPA-PSO
Grid 0.51 0.32 0.36 0.64
Random 0.50 0.30 0.31 0.63 FIGURE 9: CW4 experimental results histogram.
PSO 0.57 0.46 0.50 0.71
WPA 0.61 0.53 0.56 0.74 . 1 I
WPA-PSO 0.62 0.58 0.59 0.77 . LRI experimental results
0.8
TABLE 6: PC5 experimental results. 0.6
Precision Recall rate F-measure AUC 0.4
Grid 0.21 0.06 0.09 0.53 02
Random 018 0.08 0.10 0.53 ‘ ‘
PSO 0.37 0.31 0.33 0.63 .
WPA 0.45 0.43 0.43 0.69 Precision Recall rate F1 AUC
WPA-PSO 0.52 0.49 0.48 0.72 m Grid m WPA
® Random m WPA-PSO
PSO

T. 7: PC6 i tal Its.
APLE €6 experimental results F1Gure 10: LR1 experimental results histogram.

Precision Recall rate F-measure AUC
Grid 0.13 0.09 0.11 0.54
PC5 i 1 I
Random 0.51 0.38 0.42 0.68 experimenta’ resuts
PSO 0.71 0.49 0.57 0.73
WPA 0.72 0.53 0.61 0.75
WPA-PSO 0.73 0.55 0.62 0.76

TaBLE 8: PU1 experimental results.

Precision Recall rate F-measure AUC Precision Recall rate F AUC
Grid 0.56 0.15 0.21 0.57 m Grid m WPA
Random 0.75 0.24 0.34 0.62 ® Random ® WPA-PSO
PSO 0.81 0.44 0.56 0.71 PSO
xg 11: - 0.85 0.50 0.62 0.75 FIGURE 11: PC5 experimental results histogram.
. 0.86 0.55 0.67 0.77

PC6 experiment results

TaBLE 9: SF1 experimental results.

Precision Recall rate F-measure AUC
Grid 0.69 0.26 0.38 0.62
Random 0.71 0.28 0.40 0.63
PSO 0.67 0.36 0.45 0.66 Precision Recall rate F1 AUC
WPA 0.72 0.42 0.52 0.69 m Grid = WPA
WPA-PSO 0.73 0.49 0.59 0.73 = Random ® WPA-PSO

PSO

In order to compare the effect of using self-encoding FIGURE 12: PC6 experimental results histogram.

more intuitively, the following will average the results on

different data sets, as shown in Figures 15-19. network to process data can improve the accuracy of the
Observing Tables 10-15, we can find that, in the five =~ model, which reflects the superiority of data dimensionality

hyperparameter optimization methods, using self-encoding reduction. Moreover, when comparing the hyperparameter

Computational Intelligence and Neuroscience 15
PU1 experimental results TasLE 12: PC5 experimental results.
Precision Recall - AUC
rate measure
Grid 0.21 0.06 0.09 0.53
Grid + self-encoding 0.53 0.18 0.25 0.58
Random 0.18 0.08 0.10 0.53
Precision Recall rate F1 AUC Random + self-encoding 0.54 0.20 0.28 0.59
) PSO 0.37 0.31 0.33 0.63
m Grid m WPA PSO + self-encoding 0.54 0.40 044 0.8
= Random = WPA-PSO WPA 0.45 0.43 043 0.69
PSO WPA + self-encoding 0.58 0.48 051 0.72
FIGURE 13: PUI experimental results histogram. WPA_PSO 0.52 0.49 0.48 0.72
Zflf (ﬁl—iizo +eelf 0.57 0.54 0.54 075
SF1 experimental results
TaBLE 13: PC6 experimental results.
Precision Recall k- AUC
rate measure
Grid 0.13 0.09 0.11 0.54
Grid + self-encoding 0.42 0.27 0.33 0.63
Random 0.51 0.38 0.42 0.68
Precision Recall rate F1 AUC Random + self-encoding 0.70 0.45 0.53 0.71
) PSO 0.71 0.49 0.57 0.73
m Grid m WPA PSO + self-encoding 0.72 0.53 061 075
= Random = WPA-PSO WPA 0.72 0.53 061 075
PSO WPA + self-encoding 0.73 0.56 063 077
FIGURE 14: SF1 experimental results histogram. WPA_PSO 0.73 0.55 062 076
WPA_PSO + self- 0.74 0.56 0.64 077
encoding
TaBLE 10: CW4 experimental results. .
TaBLE 14: PU1 experimental results.
Recall F-
Precision AUC -
rate measure Precision R;C;H me:sure AUC
Grid 0.44 0.17 0.23 0.58 d
Grid + self-encoding 0.62 0.23 033 0.60 Gri , 0.56 0.15 021 057
Random 0.54 021 0.29 0.60 Grid + self-encoding 0.83 0.24 0.34 0.62
Random + self-encoding 0.64 0.27 0.35 0.62 Random . 0.75 0.24 0.34 0.62
PSO 0.61 027 037 0.62 Random + self-encoding 0.87 0.43 0.56 0.71
PSO + self-encoding 0.67 0.33 044 065 PSO , 0.81 0.44 056 071
WPA 0.65 033 043 0.64 PSO + self-encoding 0.86 0.49 0.61 0.74
WPA + self-encoding 0.67 0.34 044 065 WPA , 0.85 0.50 062 075
WPA PSO 0.73 0.36 0.48 0.67 WPA + self-encoding 0.91 0.53 0.67 0.76
- WPA_PSO 0.86 0.55 0.67 0.77
WPA_PSO + self- -
T 0.73 0.38 0.50 0.68 a
encoding WPA_PSO + self 0.87 0.58 069 079
encoding
TaLe 11: LR1 experimental results. TaBLE 15: SF1 experimental results.
Recall F-
isi . Recall F-
Precision rate measure AUC Precision o eneure AUC
Grid 0.51 0.32 0.36 0.64 Grid 0.69 0.26 0.38 0.62
g”dd+ self-encoding 8'2(1) 8'3(9) g'g 8'22 Grid + self-encoding 0.71 0.29 040 064
andom
. Random 0.71 0.28 0.40 0.63
Eésigdom + self-encoding 816;2 822 8;13) ggf Random + self-encoding ~ 0.71 0.34 0.46 0.66
. : ’ : : PSO 0.67 0.36 0.45 0.66
531? N self-encoding 8'2‘11 g'gg g'gz g'gi PSO + self-encoding 0.70 0.41 051 0.69
WPA I di 0.64 0'57 0-60 0.76 WPA 0.72 0.42 0.52 0.69
WPA +Psseo‘e“°° ng 0 oo 050 00 WPA + self-encoding 0.75 0.48 058 073
WPA_PSO +self ’ ’ ’ ’ WPA_PSO 0.73 0.49 0.59 0.73
_ self- 3
encoding 0.62 0.64 0.62 0.79 WPA_PSO + self: 0.76 0.52 0.62 0.75

encoding

16
Average of grid search
0.8
0.62
0.6
0.42
0.4 - - -
: 0.27
0.2 .. .0.18 I
0
Precision Recall rate F1 AUC
m Grid

m Grid + self-encoding

FIGURE 15: Self-coding optimization comparison of grid searches.

Average of random search

0.8 0.68
06| 053 :
0.4 S 034
025 . 031
0 : :
Precision Recall rate F1 AUC
®m Random

m Random + self-encoding

FiGure 16: Self-coding optimization comparison of random
searches.

Average of particle swam algorithm
0.8

069 ‘
0.62
0.6 - - 0 4’5 N 0 46 0.53
0.4 S93 : .
02 : -
o ‘ ‘

Precision Recall rate F1 AUC

0.680.71

m PSO
m PSO+self-encoding

FIGURE 17: Self-coding optimization comparison of PSO.

Average of wolf pack algorithm

0.8

. . . 0.73
0.67 0.71 0.71
0.6 .
0.46 0.49

0.4
0.2

0

Precision Recall rate F1 AUC
H WPA

m WPA+self-encoding

FIGURE 18: Self-coding optimization comparison of WPA.

optimization methods using self-encoding, the various in-
dicators of the model under the WPA-PSO method are still
the best, indicating that the hybrid algorithm has more
powerful search and optimization capabilities than a single
algorithm.

Computational Intelligence and Neuroscience

Average of the hybrid wolf pack algorithm

0.7 0.72
0.5 :
0 ‘

Precision

0.57 0.6

-~ 0.740.76
F1 AUC

FIGURE 19: Self-coding optimization comparison of WPA-PSO.

0.5 0.54

Recall rate

m WPA-PSO
m WPA-PSO+self-encoding

5. Conclusions

Based on the deep neural network for defect prediction, the
article proposes a hybrid Wolf Pack algorithm to optimize
the hyperparameters of the model, which enhances the
model’s global optimization and software defect prediction
capabilities and performs data dimensionality reduction
based on autoencoding to improve training and defect
prediction effect. In order to prevent overfitting, this paper
uses the early stopping method to stop the model when the
training results are stagnant, such as when the continuous
training brings little improvement or the continuous rounds
of training do not bring any improvement. This can avoid
only improving the index of the training set but lowering the
index of the test set.

In future research, we can consider using other learning
algorithms in deep learning to extract features and build
software defect prediction models and compare the effec-
tiveness of different learning algorithms.

Data Availability

The data used to support the findings of this study are
available at https://github.com/justlz/hybird-PSO-WPA/
branches.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grant nos. 61702234
and 51977101.

References

[1] Z. He and X. Fan, “Research on software defect prediction
technology,” China New Telecommunications, vol. 17, no. 7,
p.- 127, 2015.

[2] Q. Wang, S. He, and M. Li, “Software defect prediction
technology,” Journal of Software, vol. 19, no. 7, pp. 1565-1580,
2008.

[3] Y. Ma, Research on Software Defect Prediction Technology
Based on Machine Learning, University of Electronic Science
and Technology, Chengdu, China, 2012.

https://github.com/justlz/hybird-PSO-WPA/branches
https://github.com/justlz/hybird-PSO-WPA/branches

Computational Intelligence and Neuroscience

(4]

[5

(10]

(11

(12]

[13

(14]

(15]

(16]

(17]

(18]

(19]

G. Denaro, “Estimating software fault-proneness for tuning
testing activities,” in Proceedings of the 22nd International
Conference on Software Engineering, pp. 704-706, ACM,
Limerick, Ireland, June 2000.

N. J. Pizzi, R. Summers, and W. Pedrycz, “Software quality
prediction using median-adjusted class labels,” Proceedings:
International Joint Conference on Neural Networks, vol. 3,
pp. 2405-2409, 2002.

A. Mahaweerawat, P. Sophasathit, and C. Lursinsap, “Soft-
ware fault prediction using fuzzy clustering and radial basis
function network,” in Proceedings of the International Con-
ference on Intelligent Technologies, pp. 304-313, Vietnam, June
2002.

T. Menzies, J. DiStefano, A. Orrego, and M. Chapman,
“Assessing predictors of software defects,” in Proceedings of
the Workshop Predictive Software Models, pp. 1-4, Chicago,
1L, USA, 2004.

R.Jindal, R. Malhotra, and A. Jain, “Software defect prediction
using neural networks,” in Proceedings of the 2014 3rd In-
ternational Conference on Reliability, Infocom Technologies
and Optimization (ICRITO) (Trends and Future Directions),
pp- 1-6, IEEE, Noida, India, October 2014.

B. H. Abed-alguni, “Island-based Cuckoo search with highly
disruptive polynomial mutation,” International Journal of
Artificial Intelligence, vol. 17, no. 1, pp. 57-82, 2019.

R.-E. Precup, E.-L. Hedrea, R.-C. Roman, E. M. Petriu,
A.-I. Szedlak-Stinean, and C.-A. Bojan-Dragos, “Experiment-
based approach to teach optimization techniques,” IEEE
Transactions on Education, vol. 64, no. 2, pp. 88-94, 2021.
H. Zapata, N. Perozo, W. Angulo, and J. Contreras, “A hybrid
swarm algorithm for collective construction of 3D structures,”
International Journal of Artificial Intelligence, vol. 18, no. 1,
pp. 1-18, 2020.

R.-E. Precup, R.-C. David, R.-C. Roman, A.-I. Szedlak-Sti-
nean, and E. M. Petriu, “Optimal tuning of interval type-2
fuzzy controllers for nonlinear servo systems using slime
mould algorithm,” International Journal of Systems Science,
vol. 52, pp. 1-16, 2021.

Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey of
accelerator architectures for deep neural networks,” Engi-
neering, vol. 6, no. 3, pp. 264-274, 2020.

Y. Lu, Research on Predicting Abnormal Behaviors of Infor-
mation System Users Based on Deep Neural Network, Jiangsu
University of Science and Technology, Zhenjiang, China,
2019.

C. Xue, Research and Application of Software Defect Prediction
Method Based on Deep Learning, Nanjing University of
Aeronautics and Astronautics, Nanjing, China, 2018.

D. Gong, Research on Hyperparameter Evolution and Tuning
of Deep Neural Network Model and Its Application, Nanning
Normal University, Nanning, China, 2020.

H. Zhang, Research and Application of a Hyperparameter
Optimization Method for Convolutional Neural Networks
Based on Improved Particle Swarm Optimization, Beijing
University of Posts and Telecommunications, Beijing, China,
2020.

Y. Li, “Deep learning hyperparameter optimization method
based on improved particle swarm algorithm,” Information
and Communication, vol. 205, no. 1, pp. 52-55, 2020.

Z. Li, Y. Liu, D. S. Wang, and W. Zheng, “Parameter esti-
mation of software reliability model and prediction based on
hybrid wolf pack algorithm and particle swarm optimization,”
IEEE Access, vol. 8, pp. 29354-29369, 2020.

17

[20] T. Wang, Research on Software Defect Prediction Based on
Measurement, Wuhan University, Wuhan, China, 2018.

