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ABSTRACT This paper focuses on the asymptotic stability (AS) problem of the delay dynamical system
(DDS). An improved delay-product-type functional (DPTF) strategy is applied to construct a more general
Lyapunov-Krasovskii functional (LKF). This method introduces more relevant information and improves
the information capacity of LKF. In addition, the definition of the conditions V1(xt ) and V5(xt ) are further
relaxed, thereby developing new relaxed conditions. Then, based on the appropriate integral inequalities and
the reciprocally convex combination lemma (RCCL). Finally, the feasibility of the method in this paper is
verified based on two numerical examples.

INDEX TERMS Time-varying delay, delay-product-type functional method, relaxed condition, novel
Lyapunov-Krasovskii functional.

I. INTRODUCTION
A dynamic system refers to a system whose state changes
over time [1]–[3]. The state of system operation changes
with time. Therefore, the current moment of the state can
be described by the change of time. In the real world, any
system is in constant motion [4], [5]. Only when the state
of the system changes significantly over time in motion is a
dynamic system. Therefore, dynamic systems are inseparable
in our life and production [6]–[8].

However, TD has always existed in the real world.
TD appears in some engineering application systems such
as communication systems, T-S fuzzy control systems, neu-
ral network systems, and power grid systems [9]–[11]. The
appearance of TD in the system may cause system perfor-
mance degradation and affect the normal operation of the
system [12]–[14]. Therefore, how to solve this problem has
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become one of the critical issues that scholars have paid
attention to in recent years.

The proposal of the LKF method has a new direction for
dealing with the TD problem in the system. At present, many
scholars have conducted in-depth research on this method.
They built many different LKFs and provided a variety of
construction methods [15]–[19]. In [15], the author studies
the sliding mode control of the system based on the LKF
method. The authors focused on the problem of linear systems
with TVD in [16]. In [17], an improved delay-dependent
was proposed. In [18], the authors proposed that the integral
inequality of the quadratic function plays an important role in
the stability of the system. In [19], Based on the exponential
stability of the neural network, the author studied the TVD
state of the packet interval. In [28], the author focused on
the control problem of the chaotic Lur’e system with TD.
In [29]–[31], the author used the T-S fuzzy method to solve
some nonlinear problems of the DDSs.

So far, there are many different LKF construction meth-
ods. Suppose the cross-sectional area of LKF is increased.
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In that case, this method will not reduce the conservativeness
of the result much, and it will also increase the heavy cal-
culation of the computer. Then, how to get a suitable LKF
has become the key issue of this paper, which has stimulated
the interest of this paper. By comparing a variety of different
research methods, this paper proposes an improved DPTF
method, which can effectively reduce the constraints of the
criterion, thereby achieving a reduction in the conservative-
ness of the criterion.

On the basis of the above discussion, this paper considers
the AS of the DDS. Compared with the methods proposed by
existing scholars, the highlights of this article are as follows.

• First, the improved DPTF is applied to the research on
the structure of LKF.

• Secondly, new relaxed conditions are proposed, espe-
cially the constraints of V1(xt ) and V5(xt ) are further
relaxed, which promotes reduce the conservativeness of
the guidelines and improve the control performance of
the criteria.

• Finally, augmented RCCL inequalities and new bound-
ary techniques, a novel optimized criterion is developed.

Notation: In and 0m×n represent the n×n identity matrix and
m×n zero matrix respectively.Rn denotes the n-dimensional
Euclidean space. ‖ · ‖ is the Euclidean norm of a vec-
tor. P > 0 (≥ 0) represents that P is a positive definite
matrix. diag{D1,D2, . . . ,DN } denotes a block-diagonal (or
diagonal) matrix and the diagonal elements are Dk , k =
1, 2, . . . ,N . A−1 and AT are the inverse and transpose of
matrix A. The symbol ∗ represents symmetric terms in a
symmetric matrix (SM).

II. PRELIMINARIES
Consider the following DDS:{

ẋ(t) = Ax(t)+Adx(t − σ (t)),
x(t) = ψ(t),

(1)

where x(t) ∈ Rn indicates the state vector, ψ(t) means the
initial condition, A and Ad ∈ Rn×n are system matrices.
The σ (t) is a time-varying delay (TVD) differentiable func-

tion and it satisfies:

0 ≤ σ (t) ≤ σ, µ1 ≤ σ̇ (t) ≤ µ2, (2)

where σ and µ1, µ2 are given constants.

Lemma 1 [25]: There is a matrix R > 0 such that all ς (s)
in [c, d] −→ Rn satisfy the following inequality:

∫ d

c
ςT (s)Rς (s)ds ≥

1
d − c

(∫ d

c
ς (s)ds

)T
R

×

(∫ d

c
ς (s)ds

)
+

3
d − c

�TR�,

where � =
∫ d
c ω(s)ds−

2
d−c

∫ d
c

∫ d
θ
ω(s)dsdθ .

Lemma 2 [25]: For a real scalar β ∈ (0, 1), SMs χ1 >
0, χ2 > 0, any matrices ς1, ς2, we get the following result:[

1
β
χ1 0
0 1

1−βχ2

]
≥

[
χ1 + (1− β)k1 (1− β)ς1 + βς2

∗ χ2 + αk2

]
,

where k1 = χ1 − ς2χ
−1
2 ςT2 , k2 = χ2 − ς

T
1 χ
−1
1 ς1.

III. MAIN RESULTS
Theorem 1: For given scalars µ1, µ2 and σ . System (1) is AS
with any TVD σ (t) satisfying (2), if there have matricesR >

0 ∈ R2n×2n and T > 0 ∈ R2n×2n. SMs P ∈ R5n×5n, Q1a ∈

R2n×2n, Q2a ∈ R2n×2n, Q1b ∈ R2n×2n, Q2b ∈ R2n×2n, U1 ∈

R2n×2n, U2 ∈ R2n×2n, M1 ∈ Rn×n and M2 ∈ Rn×n, any
matrices S1 ∈ R4n×4n, S2 ∈ R4n×4n, S3 ∈ R2n×2n, S4 ∈

R2n×2n, W1 ∈ Rn×n and W2 ∈ Rn×n so as to the following
inequalities hold for

Q1,σ (t) ≥ 0, Q2,σ (t) ≥ 0, �1(σ (t), σ̇ (t)) > 0, (3)

9σ (t) > 0, �2(σ̇ (t)) > 0, (0⊥)T6σ (t)|σ̇ (t)(0⊥) < 0,

(4)

where other equations are defined in APPENDIX B.
Proof: This paper choose the following LKF for system:

V (xt ) =
5∑
i=1

Vi(xt ), (5)

where

V1(xt ) = αT (t)Pα(t),

V2(xt ) =
∫ t

t−σ (t)
ηT (s)Q1,σ (t)η(s)ds

+

∫ t−σ (t)

t−σ
ηT (s)Q2,σ (t)η(s)ds,

V3(xt ) = σ
∫ 0

−σ

∫ t

t+u
ηT (s)Rη(s)duds,

V4(xt ) =
∫ t

t−σ

∫ t

θ

∫ t

u
ηT (s)T η(s)dsdudθ,

V5(xt ) = σ (t)βT (t)U1β(t)+ (σ − σ (t))εT (t)U2ε(t).

First of all, relaxed the positive definite condition of
V (x(t)), the V1(xt ) + V5(xt ) can be considered together and
written as

V1(xt )+ V5(xt )

= αT (t)

(
P + σ (t)

[
e1
e2
σ (t)

]T
U1

[
e1
e2
σ (t)

]

+ (σ − σ (t))
[

e1
e3

σ−σ (t)

]T
U2

[
e1
e3

σ−σ (t)

])
α(t)

= α(t)
(
P + FT

1 (σ (t)U1 + (σ − σ (t))U2)F1

+Sym{FT
1 U1F2 + FT

1 U2F3} +
FT
2 U1F2

σ (t)
+
FT
3 U2F3

σ − σ (t)

)
×α(t). (6)

VOLUME 9, 2021 141537



X. Cai et al.: New Stability Results of Delay Dynamical System via Novel Relaxed Condition

If 9σ (k) > 0 holds, conditions U1 > 0, U2 > 0 and P +
UF −

σ (t)
σ 2

FT
3 S

T
3 U
−1
1 S3F3−

σ−σ (t)
σ

FT
2 S4U−12 ST4 F2 > 0 can

be got. Thus, using Lemma 2, for any matrices S3 and S4,
FT

2 U1F2
σ (t) +

FT
3 U2F3
σ−σ (t) can be estimated as

FT
2 U1F2

σ (t)
+

FT
3 U2F3

σ − σ (t)

=

[
F2
F3

]T [ 1
σ (t)U1 0
0 1

σ−σ (t)U2

][
F2
F3

]
≥

2σ − σ (t)
σ 2 FT

2 U1F2 +
σ + σ (t)
σ 2 FT

3 U2F3

+Sym
{
σ − σ (t)
σ 2 FT

2 S3F3 +
σ (t)
σ 2 FT

2 S4F3

}
−
σ (t)
σ 2 FT

3 S
T
3 U
−1
1 S1F3 −

σ − σ (t)
σ 2 FT

2 S4U−12 ST2 F2.

(7)

Thus, V1(xt )+ V5(xt ) can be further estimated as

V1(xt )+ V5(xt )

≥ αT (t)(P + FT
1 (σ (t)U1 + (σ − σ (t))U2)F1

+Sym{FT
1 U1F2 + FT

1 U2FT
3 }

2σ − σ (t)
σ 2 FT

2 U1F2

+
σ + σ (t)
σ 2 FT

3 U2F3 + Sym
{
σ − σ (t)
σ 2 FT

2 S3F3

+
σ (t)
σ 2 FT

2 S4F3

}
−
σ (t)
σ 2 FT

3 S
T
3 U
−1
1 S3F3

−
σ − σ (t)
σ 2 FT

2 S4U−12 ST4 F2

)
α(t)

= αT (t)
(
P + UF −

σ (t)
σ 2 FT

3 S
T
3 U
−1
1 S3F3

−
σ − σ (t)
σ 2 FT

2 S4U−12 ST4 F2

)
α(t). (8)

According to the above analysis, using RCCL, V1(xt ) +
V5(xt ) > ε ‖ x(t) ‖2 can guarantee a small enough one ε > 0,
if 9σ > 0 and 90 > 0 hold.
The V̇i(xt ) as shown below

V̇ (xt ) =
5∑
i=1

V̇i(xt ).

V̇1(xt ) = 2αT (t)P

×

 ẋ(t)
x(t)−(1−σ̇ (t))x(t−σ (t))

(1−σ̇ (t))x(t−σ (t))−x(t−σ )
σ (t)x(t)−(1−σ̇ (t))σ (t)21(t)

(1−σ̇ (t))(σ−σ (t))x(t−σ (t))−(σ−σ (t))22(t)


= ξT (t)41ξ (t). (9)

V̇2(xt ) = ξT (t)42ξ (t)

− σ̇ (t)
∫ t

t−σ (t)
ηT (s)Q1bη(s)ds

− σ̇ (t)
∫ t−σ (t)

t−σ
ηT (s)Q2bη(s)ds. (10)

V̇3(xt ) = σ 2ηT (t)Rη(t)− σ
∫ t

t−σ
ηT (s)Rη(s)ds. (11)

V̇4(xt ) =
σ 2

2
ηT (t)T η(t)

−

∫ t

t−σ (t)

∫ t

θ

ηT (s)T η(s)dsdθ

−

∫ t−σ (t)

t−σ

∫ t−σ (t)

θ

ηT (s)T η(s)dsdθ

− (σ − σ (t))
∫ t

t−σ (t)
ηT (s)T η(s)ds. (12)

V̇5(xt ) = σ̇ (t)βT (t)U1β(t)+ 2σ (t)βT (t)U1β̇(t)

− σ̇ (t)εT (t)U2ε(t)+ 2(σ − σ (t))εT (t)U2ε̇(t)

= σ̇ (t)βT (t)U1β(t)− σ̇ (t)εT (t)U2ε(t)

+ 2σ (t)βT (t)U1

×

[
ẋ(t)

x(t)−(1−σ̇ (t))x(t−σ (t))−σ̇ (t)21(t)
σ (t)

]
+ 2(σ − σ (t))εT (t)U2

×

[
ẋ(t)

(1−σ̇ (t))x(t−σ (t))−x(t−σ )+σ̇ (t)22(t)
σ−σ (t)

]
= ξT (t)44ξ (t). (13)

The following zero equation applies to SMsM1 andM2,
we have

0 = σ
[
xT (t)M1x(t)− xT (t − σ (t))M1x(t − σ (t))

− 2
∫ t

t−σ (t)
xT (s)M1ẋ(s)ds

]
, (14)

0 = σ
[
xT (t − σ (t))M2x(t − σ (t))− xT (t − σ )M2

× x(t − σ )− 2
∫ t−σ (t)

t−σ
xT (s)M2ẋ(s)ds

]
. (15)

Based on (14) and (15), we have

ϒ1 = −σ

∫ t

t−σ (t)
ηT (s)

(
R+

σ̇ (t)
σ

Q1b

+
σ − σ (t)

σ
T +

[
0 M1

M1 0

])
η(s)ds,

ϒ2 = −σ

∫ t−σ (t)

t−σ
ηT (s) (R

+
σ̇ (t)
σ

Q2b +

[
0 M2
M2 0

])
η(s)ds.

Next utilizing Lemma 1,ϒ1 andϒ2, can obtain the follow-
ing inequality.

ϒ1 ≤ −
σ

σ (t)

[ ∫ t
t−σ (t) η(s)ds∫ t

t−σ (t) η(s)ds−
2
σ (t)

∫ t
t−σ (t)

∫ t
θ η(s)dsdθ

]T
×�1(σ (t), σ̇ (t))

[ ∫ t
t−σ (t) η(s)ds∫ t

t−σ (t) η(s)ds−
2
σ (t)

∫ t
t−σ (t)

∫ t
θ η(s)dsdθ

]
= −

σ

σ (t)
ξT (t)(N1 + σ (t)N2)T�1(σ (t), σ̇ (t))

× (N1 + σ (t)N2)ξ (t)

= −ξT (t)(
σ

σ (t)
N T

1 �1(σ (t), σ̇ (t))N1

+Sym{σN T
1 �1(σ (t), σ̇ (t))N2}

+ σ · σ (t)N T
2 �1(σ (t), σ̇ (t))N2)ξ (t), (16)
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ϒ2 ≤ −
σ

σ − σ (t)

[ ∫ t−σ (t)
t−σ η(s)ds∫ t−σ (t)

t−σ η(s)ds− 2
σ−σ (t)

∫ t−σ (t)
t−σ

∫ t−σ (t)
θ η(s)dsdθ

]T
×�2(σ̇ (t))

×

[ ∫ t−σ (t)
t−σ η(s)ds∫ t−σ (t)

t−σ η(s)ds− 2
σ−σ (t)

∫ t−σ (t)
t−σ

∫ t−σ (t)
θ η(s)dsdθ

]
= −

σ

σ − σ (t)
ξT (t)(N3 + (σ − σ (t))N4)T�2(σ̇ (t))

× (N3 + (σ − σ (t))N4)ξ (t)

= −ξT (t)(
σ

σ − σ (t)
N T

3 �2(σ̇ (t))N3

+Sym{σN T
3 �2(σ̇ (t))N4}

+ σ (σ − σ (t))N T
4 �2(σ̇ (t))N4)ξ (t). (17)

By using Lemma 2 to conduct − σ
σ (t)N

T
1 �1(σ (t), σ̇ (t))N1

and − σ
σ−σ (t)N

T
3 �2(σ̇ (t))N3 in (13) and (14) together, can

get the following inequality.

ξT (t)(−
σ

σ (t)
N T

1 �1(σ (t), σ̇ (t))N1

−
σ

σ − σ (t)
N T

3 �2(σ̇ (t))N3)ξ (t)

= −ξT (t)
[
N1
N3

]T [ σ
σ (t)�1(σ (t),σ̇ (t)) 0

0 σ
σ−σ (t)�2(σ̇ (t))

] [
N1
N3

]
ξ (t)

≤ ξT (t)(47 +5)ξ (t), (18)

where

5 =
σ − σ (t)

σ
N T

1 S2�
−1
2 (σ̇ (t))ST2 N1

+
σ (t)
σ

N T
3 ST1 �

−1
1 (σ (t), σ̇ (t))S1N3.

Then

−

∫ t

t−σ (t)

∫ t

θ

ηT (s)T η(s)dsdθ

−

∫ t−σ (t)

t−σ

∫ t−σ (t)

θ

ηT (s)T η(s)dsdθ

≤ −
2

σ 2(t)

(∫ t

t−σ (t)

∫ t

θ

η(s)dsdθ
)T

T

×

(∫ t

t−σ (t)

∫ t

θ

η(s)dsdθ
)
−

2
(σ − σ (t))2

×

(∫ t−σ (t)

t−σ

∫ t−σ (t)

θ

ηT (s)dsdθ
)T

T

×

(∫ t−σ (t)

t−σ

∫ t−σ (t)

θ

ηT (s)dsdθ
)

= ξT (t)48ξ (t). (19)

Finally, merging (9) to (19), we get

V̇ (xt ) ≤ ξT (t)4ξ (t). (20)

Based on the system (1), below zero equation is applicable
to any matrix with the proper dimensionW1 andW2.

0 = 2[xT (t)W1 + ẋ(t)W2][AT x(t)

+AT
d x(t − σ (t))− ẋ(t)]

= ξT (t)Sym{L0}ξ (t), (21)

From inequalities (5)-(21), we can obtain

V̇ (xt ) ≤ ξT (t)6σ (t)|σ̇ (t)ξ (t). (22)

Note that0ξ (t) = 0, according to [24] (0⊥)T6σ (t)|σ̇ (t)(0⊥)
is equivalent to ξT (t)6σ (t)|σ̇ (t)ξ (t) ≤ 0. Thus, DDS (1)
is AS.�
Remark 1: Based on [25], for a delayed dynamical system,

the general approach to the DPTF method is to introduce
additional non-integral terms as shown in

(σ (t)− σ )1T
1 (t)ϕ111(t)+ (σ − σ (t))1T

1 (t)ϕ211(t),

where ϕ1 and ϕ2 being SMs, σ (t) represents TVD, σ and σ
being the bound of σ (t). When σ (t) = σ , we have (σ (t) −
σ )1T

1 (t)ϕ111(t) = 0. Similarly, when σ (t) = σ , we have
(σ−σ (t))1T

1 (t)ϕ211(t) = 0. However, in actual engineering
σ ∈ [σ , σ ], which takes into account the characteristics of
DPTF. This method introduces more information, such as TD
information and TD derivative information, into LKF. It can
better increases the information contained in LKF and helps
improve the effectiveness of the criteria. In addition, DPTF
relaxes the constraints of the conditions. Before establishing
the criteria, we only need weaker constraints, which reduces
the conservativeness of the criteria.
Remark 2: Unlike the existing research method [24]–[26],

this paper considers the relaxed conditions with DPTF strat-
egy. Therefore, the positive definiteness of V1(xt ) and V5(xt )
can be given together. V1(xt )+ V5(xt ):

V1(xt )+ V5(xt ) ≥ αT (t)9σ (t)α(t).

Based on the results in (19), P > 0 and Ui > 0 can
be represented by 9σ (t) > 0. This relaxation method has
been studied and used by many scholars. It can reduce the
constraints of the free matrix.
Remark 3: Different from existing methods [22], the con-

struction of the integral term∫ t

t−σ
1T

2Q1,σ (t)12ds+
∫ t−σ (t)

t−σ
1T

2Q2,σ (t)12ds,

Q1,σ (t) = Q1a − σ (t)Q1b,

Q2,σ (t) = Q2a + (σ − σ (t))Q2b.

when σ − σ (t) = 0, Q2,σ (t) will degenerate to the constant
matrixQ2 in this paper. This construction method can reduce
the free matrix’s constraints and make the free matrix contain
TD information. When the computer performs large-scale
calculations, this method can effectively reduce the memory
footprint of the calculation.

IV. NUMERICAL ILLUSTRATIONS
In this section, the proposed method is verified based on two
numerical experiments.
Example 1: Research DDS(1), based on the parameters

in [11], [12], [14], [20]–[23], [27]

A =
[
−2 0
0 −0.9

]
, Ad =

[
−1 0
−1 −1

]
.
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TABLE 1. The achieved MAUBs for different value µ for Example 1.

For various µ with µ = µ2 = −µ2, the Maxi-
mum allowable upper bounds (MAUBs) are calculated by
Theorem 1, which lists in Table 1. According to the data,
the criterion designed in this paper has a lower conserva-
tive bound than other documents. A conservative extended
convexity matrix inequality is used to replace the general
RCCL to deal with the delay-related terms. This paper
uses the new boundary technology and the improved DPTF
method to obtain larger MAUBs compared to the results
in [11], [12], [14], [20]–[23], [27].

Letting x(0) = [−0.8, 0.8]T , σ (t) = 0.2sint + 4.273,
x(0) = [−0.8,−0.7]T , σ (t) = 0.5sint + 2.996 and x(0) =
[0.9, 0.5]T , σ (t) = 0.8sint + 2.176, the state of the system
(1) are shown in the left and right of Figure. 1-3. Through the
Figure. 1-3 can be seen that the delayed dynamical system of
the zero solution is asymptotically stable. Then it showed that
the criterion is feasible and effective.
Example 2: Research DDS(1), based on the parameters in

[12], [13], [20], [22], [23], [27]

A =
[

0 1
−1 −2

]
, Ad =

[
0 0
−1 1

]
.

FIGURE 1. State trajectories for µ = 0.2.

FIGURE 2. State trajectories for µ = 0.5.

FIGURE 3. State trajectories for µ = 0.8.

FIGURE 4. State trajectories for µ = 0.2.

TABLE 2. The achieved MAUBs for different value µ for Example 2.

FIGURE 5. State trajectories for µ = 0.5.

This example is described by the system (1). For different
µ with µ = µ2 = −µ2, the comparison among the MAUBs
obtained by Theorem 1with other methods in [12], [13], [20],
[22], [23], [27] are summarized in Table 2. Comparing the
results in Table 2, we know that the criterion designed in this
paper can solve larger MAUBs. Obviously, Theorem 1 gives
the greater the permissible maximum new integral inequality.
Then by employing the DPTF strategy and Wirtinger-Based
on integral inequality, the performance is enhanced better.
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FIGURE 6. State trajectories for µ = 0.8.

The results of this article are better, mainly because of the
use of delayed partition technology.

Setting x(0) = [−0.8, 0.8]T , σ (t) = 0.2sint + 4.581,
x(0) = [−0.9,−0.5]T , σ (t) = 0.5sint + 2.293 and x(0) =
[0.7, 0.3]T , σ (t) = 0.8sint + 1.407, the state trajectories of
system (1) are shown in the left and right of Figures. 4-6. The
Figures. 4-6 show that the trajectory of the zero solution of the
delayed dynamical system is AS, which further highlights the
feasibility of the criterion.

V. CONCLUSION
In this article, we solved the AS problem of DDS.
An improved DPTF strategy is applied to construct a more
effective LKF, which contains more information and reduces
the constraints of the free matrix. In addition, the definition
of the conditions V1(xt ) and V5(xt ) have been further relaxed,
thereby developing new relaxed conditions. Then, by using
valid integral inequalities, the novel optimized criterion has
been developed based on functional analysis theory. Finally,
the feasibility of the method in this paper has been verified
based on two numerical examples. Future work will improve
this new type of LKF and applied to other DDSs. In the
future, we will work to extend our method to more practical
engineering applications.

APPENDIX A

21(t) =
∫ t

t−σ (t)

x(s)
σ (t)

ds,

22(t) =
∫ t−σ (t)

t−σ

x(s)
σ − σ (t)

ds,

23(t) =
∫ t

t−σ (t)

∫ t

θ

x(s)
σ (t)

dsdθ,

24(t) =
∫ t−σ (t)

t−σ

∫ t−σ (t)

θ

x(s)
σ − σ (t)

dsdθ,

α(t) = [xT (t), σ (t)2T
1 (t), (σ − σ (t))2

T
2 (t),

σ (t)2T
3 (t), (σ − σ (t))2

T
4 (t)]

T ,

η(t) = [xT (t), ẋT (t)]T , β(t) = [xT (t),2T
1 (t)]

T

ε(t) = [xT (t),2T
2 (t)]

T , ξ (t) = [xT (t), x(t − σ (t)),

x(t − σ ), ẋT (t), ẋT (t − σ (t)), ẋT (t − σ ),

2T
1 (t),2

T
2 (t),2

T
3 (t),2

T
4 (t)]

T .

APPENDIX B

6σ (t)|σ̇ (t)

=

8∑
i=1

4i + Sym{L0},

41 = Sym{8T
1 (σ (t))P82(σ (t), σ̇ (t))},

42 = 8
T
3Q1a83 − (1− σ̇ (t))8T

4Q1a84

− σ (t)(8T
3Q1b83 − (1− σ̇ (t))8T

4Q1b84)

+ (1− σ̇ (t))8T
4Q2a84 −8

T
5Q2a85

+ (σ − σ (t))((1− σ̇ (t))8T
4Q2b84 −8

T
5Q2b85),

43 = σ
28T

3 (R+
1
2
T )83,

44 = σ̇ (t)8T
6 U186 − σ̇ (t)8T

7 + Sym{8T
6 U1

×88(σ (t), σ̇ (t))+8T
7 U289(σ (t), σ̇ (t))},

45 = σ (eT1M1e1 − eT2M2e2 + eT2M2e2 − eT3M2e3),

46 = −Sym{σN T
1 �1(σ (t), σ̇ (t))N2} − σ · σ (t)N T

2

×�1(σ (t), σ̇ (t))N2 − Sym{σN T
3 �2(σ̇ (t))N4}

− σ (σ − σ (t))N T
4 �2(σ̇ (t))N4,

47 = −
2σ − σ (t)

σ
N T

1 �1(σ (t), σ̇ (t))N1
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σ + σ (t)

σ
N T

3 �2(σ̇ (t))N3 −
σ − σ (t)

σ

×Sym{N T
1 S1N3} −

σ (t)
σ

Sym{N T
1 S2N3},

48 = −28T
10T 810 − 28T

11T 811,

ei = [0n×(i−1)n In×n 0n×(10−i)], i = 1, 2, · · · , 10,

ei = [0n×(i−1)n In×n 0n×(5−i)], i = 1, 2, · · · , 5,

81(σ (t))

= [eT1 , σ (t)e
T
7 , (σ − σ (t))e

T
8 ,

σ (t)eT9 , (σ − σ (t))e
T
10]

T ,

82(σ (t), σ̇ (t))
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T
1 − (1− σ̇ (t))eT2 ,
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T ,

83 = [eT1 , e
T
4 ]
T , 84 = [eT2 , e

T
5 ]
T , 85 = [eT3 , e

T
6 ]
T ,

86 = [eT1 , e
T
7 ]
T , 87 = [eT1 , e

T
8 ]
T ,

88(σ (t), σ̇ (t))

= [σ (t)eT4 , e
T
1 − (1− σ̇ (t))eT2 − σ̇ (t)e

T
7 ]
T ,

89(σ (t), σ̇ (t))

= [(σ − σ (t))eT4 , (1− σ̇ (t))e
T
2 − e

T
3 + σ̇ (t)e

T
8 ]
T ,

810 = [eT9 , e
T
1 − e

T
7 ]
T , 811 = [eT10, e

T
2 − e

T
8 ]
T ,

N1 = [0T , eT1 − e
T
2 ,−2e

T
9 ,−e

T
1 − e

T
2 + 2eT7 ]

T ,

N2 = [eT7 , 0
T , eT7 , 0

T ]T ,

N3 = [0T , eT2 − e
T
3 ,−2e

T
10,−e

T
2 − e

T
3 + 2eT8 ]

T ,

N4 = [eT8 , 0
T , eT8 , 0

T ]T ,

�1(σ (t), σ̇ (t)) = diag{31,σ (t), 331,σ (t)},

�2(σ̇ (t)) = diag{32,σ (t), 332,σ (t)},
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L = [eT1W1 + e4W2],

0 = [AT e1 +AT
d e2 − e4],

31,σ (t) = R+
σ̇ (t)
σ

Q1b +
σ − σ (t)

σ
T +

[
0 M1
M1 0

]
,

32,σ (t) = R+
σ̇ (t)
σ

Q2b +

[
0 M2
M2 0

]
,

9σ (t) =

P + UF
√
σ (t)
σ

FT
3 S

T
3

√
σ−σ (t)
σ

FT
2 S

T
4

∗ U1 0
∗ 0 U2

 ,
UF = FT

1 (σ (t)U1 + (σ − σ (t))U2)F1 + Sym{FT
1 U1F2

+FT
1 U2F3} +

2σ − σ (t)
σ 2 FT

2 U1FT
2

+
σ + σ (t)
σ 2 FT

3 U2F3

+Sym{
σ − σ (t)
σ 2 FT

2 S3F3 +
σ (t)
σ 2 FT
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F1 = [eT1 , 0]
T , F2 = [0, eT2 ]

T , F3 = [0, eT3 ]
T ,

Q1,σ (t) = Q1a − σ (t)Q1b, Q2,σ (t) = Q2a + (σ − σ (t))Q2b.
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