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Abstract: Microscopic simulation-based approaches are extensively used for determining good signal
timing plans on traffic intersections. Measures of Effectiveness (MOEs) such as wait time, throughput,
fuel consumption, emission, and delays can be derived for variable signal timing parameters, traffic
flow patterns, etc. However, these techniques are computationally intensive, especially when the
number of signal timing scenarios to be simulated are large. In this paper, we propose InterTwin,
a Deep Neural Network architecture based on Spatial Graph Convolution and Encoder-Decoder
Recurrent networks that can predict the MOEs efficiently and accurately for a wide variety of signal
timing and traffic patterns. Our methods can generate probability distributions of MOEs and are
not limited to mean and standard deviation. Additionally, GPU implementations using InterTwin
can derive MOEs, at least four to five orders of magnitude faster than microscopic simulations on a
conventional 32 core CPU machine.

Keywords: deep learning; deep simulators; traffic signal timing optimization; intelligent transportation
systems

1. Introduction

Urban traffic control [1] is one of the most important and challenging issues facing
cities and requires practically effective and efficient solutions. The increasing volume of
traffic in cities has a significant effect on road traffic congestion and consequently the travel
time of road users. Optimization methods have been successfully used to reduce travel time
by optimizing the signal timing parameters. These methods try to derive the signal timing
parameters such as green splits, cycle lengths offsets, etc. based on the traffic patterns for a
given duration for a given intersection. A number of scenarios—each corresponding to a
combination of different signal timing parameter values—is generated and simulation is
performed to generate Measures of Effectiveness (MOEs) such as throughput and delays.
MOEs are derived using macroscopic or microscopic simulation methods, the latter being
more computationally intensive but generally more accurate. When these MOEs have to
be computed for a large number of scenarios, the process can become computationally
intensive. This is further accentuated when optimizing for a corridor or a network as the
number of combinations increase exponentially. Methods such as ReTime address this by
parallelizing VISSIM [2] instances on multiple processors.

Our objective in this paper is to develop a deep neural network approach that can
compute MOE distributions that are generated by microscopic simulators. Microscopic
simulators generate trajectories of each vehicle (effectively location at every time step)
along with car-following and lane-changing models. This information can then be used
to compute MOEs, such as throughput, energy requirements, as well as emission and
delays based on different signal timing scenarios. Examples of simulators that can be
used for this purpose include VISSIM [2], SUMO [3], and AIMSUN [4]. Our approach
does not require generation of trajectories and can directly compute MOE distributions.
Once a distribution is available, statistics such as mean, variance, 90th percentile, etc. of
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an MOE can be easily calculated. We demonstrate the feasibility of achieving this for a
single intersection with high accuracy. The main advantage of our approach is that when
implemented on modern GPU-based processors, it is four to five orders of magnitude faster
than running the microscopic simulators on a typical 32-core CPU machine. Clearly, if the
actual vehicle trajectories are required on a given intersection, our method is not useful
or appropriate.

Our deep learning approach (called InterTwin as a short form for Intersection Twin)
uses a large amount of data from different intersection topologies and signal timing plans,
so as to capture the underlying traffic behavior at an intersection. While several real-world
datasets exist [5], they are limited to only currently-used signal timing plans. We use
microscopic simulators in conjunction with real world data to derive MOE distributions
for a variety of scenarios that encompass a broad range of signal timing plans. Using this
data, we built our models. The following are the key contributions of our work:

1. We develop a novel two-module deep learning approach that captures the intrinsic
properties of traffic behavior at an intersection. The first module corresponds to a
spatial graph convolution that is used to extract spatial features from the detector
waveforms leveraging the relationship between intersection lanes and signal timing
phases. This makes our modeling relatively independent of the intersection topology.
The second module is an encoder-decoder with temporal attention architecture, to
capture the temporal dynamic behavior of the traffic flow for each phase based on
the signal timing plan. These two modules are stacked together for obtaining the
final prediction.

2. We show that the InterTwin-trained models are able to accurately predict MOE
distributions generated by traffic simulators. After training, when these models
are used in inference mode, these models are four to five orders of magnitude faster
compared to microscopic simulations. Additionally, it can model multiple intersection
topologies without painstakingly redrawing a new base map for each intersection
(that is typically required by a microscopic simulator).

3. For training our models, we use data generated using a significant extension of
SUMO [3], an open source microscopic traffic simulator to make the data generation
more realistic. We use real-world recorded data from high resolution loop detectors
for input traffic patterns. Additionally, we have developed a new module that uses
ring and barrier implementation along with arrival and departure information at
the advanced and/or stop bar loop detectors along with signal timing information
using techniques described in [6] and use them in our simulation to generate high
fidelity MOEs that are reflective of data collected from real intersections. Additionally,
we suitably vary signal timing parameters for these patterns to generate potentially
viable counterfactuals. This results in our methods being able to generalize beyond
what is typically used in actual practice and ensures that the models trained can
predict robustly for a wide range of signal timing parameters. We also simulate a
variety of intersection basemaps and behaviors, and estimate different measures of
effectiveness, such as queue lengths, travel times, and wait times.

We present extensive experimental results to demonstrate the effectiveness of our
approach. This includes comparison with other traffic-related deep learning models (that
were not necessarily developed for predicting MOEs). We also show our model can
be effectively used finding trade-offs between multiple MOEs at an intersection while
evaluating different signal timing plans. Although the focus of this paper is on a single
intersection, we believe that the approach can be extended to corridors and networks and
will be part of our future work.

The rest of the paper is outlined as follows. Section 4 describes the proposed frame-
work and architecture of the deep learning model presented. The ring and barrier imple-
mentation and a parallel framework for Simulator of Urban Mobility (SUMO) is described
in Section 3. The data generation mechanism is also detailed in this section. Experimental
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results are provided in Section 5, and a case study that uses this framework on a real world
intersection is presented in Section 6, with conclusions presented in Section 7.

2. Related Work

The idea of using deep neural networks to emulate physics-based simulations is not
completely new. A deep learning framework with graph neural networks is proposed
in [7] to simulate complex physical systems involving fluids, rigid solids, and other de-
formabale objects. This idea of building neural network-based emulators for physics-based
simulations in different domains—high energy physics, climate science, astrophysics, and
seismology has been explored in [8]. The authors propose an algorithm based on neural
architecture search to approximate/emulate the simulations using deep neural networks
that are accurate and orders of magnitude faster (up to 2 billion times). The main advan-
tage of neural network emulators is that they are orders of magnitude faster and can be
useful for extensive parameter exploration and very large scale analysis. Based on our
detailed literature survey, we believe this is this is the first work proposing neural network
emulators for traffic microscopic simulations to compute measures of effectiveness.

Machine learning techniques, including deep neural networks have been successfully
applied to traffic state data in the past literature. Existing literature on predicting traffic
state include either predicting either volumes or performance measures (such as travel
times, wait times, queue length, etc.). The prediction horizon could be either at a sub-cycle
level or at aggregate intervals (5 min to 1 h). We outline this work below.

A hybrid method incorporating filtering-based empirical mode decomposition is pro-
posed in [9]. A deep learning-based method with non-parametric regression is proposed
in [10], a novel deep neural network architecture with multisegents (recurrent and convolu-
tional layers) is proposed in [11]. A deep generative model based on generative adversarial
networks is proposed in [12]. A hybrid method based on linear programming, fuzzy
logic, and multi layer perceptron is proposed in [13]. Some of the recent deep learning
architectures proposed for spatio-temporal forecasting of traffic state data include temporal
graph convolution network [14], spatio temporal residual graph attention network [15],
and spatio temporal residual graph attention network [15]. Some relevancy to our work
is proposed in [16,17], which uses real world data to drive the microscopic simulations to
compute performance indices such as travel time, emission performance, etc. that are used
for the network. The main difference of our work from the existing work is two fold:

• We propose deep neural networks for estimating the distribution of performance
measures instead of doing the microscopic simulations. Our methods are at least four
to five orders of magnitude faster;

• Our models can also predict the performance measures for counterfactual signal
timing plans, i.e., for a given input traffic and also for different cycle times and green
splits (signal timing parameters). This can be useful to study the impact of different
signal timing parameters.

The key observation is that neural network models can be used for computationally
efficient parameter exploration. One important application in case of traffic intersections is
that this approach can be used to find signal timing parameters for each of the intersection
in a city corridor/network that satisfies a particular objective.

3. Simulator for Dataset Generation

MOE prediction algorithms must be trained using a large amount of realistic datasets
for a wide variety of parameters for them to be predictive in realistic scenarios. These
parameters include intersection topology, signal timing parameters, and input traffic
distributions for all directions. The modern road network infrastructure (signal controllers
and detectors) continuously generates data that opens up a new space of possibilities for
using them for deriving realistic signal timing parameters, input traffic patterns, and a
combination thereof. In particular, high resolution signalized intersection controller logs
comprise of a listing of timestamped events at 10Hz using induction loop detectors [18]
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at stop-bar and in some cases at upstream (40 m–100 m) locations. The data collected
by such systems [19] at each intersection can be broadly divided into signal timing data
and loop detector data. The former consists of traffic movement timing for different
phases (including pedestrian calls), while the latter consists of arrival, departure, and
occupancy information of loop detectors. Table 1 shows a sample of high resolution raw
data collected by the loop detectors. It also comes with metadata that describe different
event codes and event parameters; for example, eventcode 81 indicates a vehicle departure,
and event code 2 indicates start of green phase. An event parameter identifies the particular
detector channel or phase in which the event was captured. This data can be used to drive
simulations and capture performance measures such as travel times, wait times, queue
lengths, etc. One of the novelty of our approach is that we use this real-world high-
resolution data to drive our simulations, the focus being to be able to run simulations for
different signal timing parameter combinations.

Table 1. Table showing raw event logs from signal controllers. Most modern controllers generate
these data at a frequency of 10 Hz.

Signal ID Times Tamp Event Code Event Param

1490 2018-08-01 00:00:00.000100 82 3
1490 2018-08-01 00:00:00.000300 82 8
1490 2018-08-01 00:00:00.000300 0 2
1490 2018-08-01 00:00:00.000300 0 6
1490 2018-08-01 00:00:00.000300 46 1
1490 2018-08-01 00:00:00.000300 46 2
1490 2018-08-01 00:00:00.000300 46 3

Vehicle actuations at these detectors can be considered as pulse waveform, can rep-
resent the arrival/departure pattern at a given detector. For a given traffic stream on an
approach (based on traffic from a neighboring interaction), the waveform at the advanced
and stop bar detector, in general, is dependent on the signal phase timing for that intersec-
tion. This makes it challenging to develop combinations where we would like to predict
MOEs for combinations that are not available in the datasets. To address this problem, we
leverage our earlier work [6] that uses neural network architectures for inflow waveform
reconstruction using stopbar, advance detector, and signal timing data. The inflow wave-
form can be thought of as the incoming waveform that has exited the upstream intersection
and is still sufficiently far away from the intersection of interest and thus is not yet affected
by the queues and signal timing plan of the intersection of interest. The simulations can be
run using this inflow waveform with different candidate signal timing plans.

We use Simulator of Urban Mobility (SUMO) [3], an open source microscopic traffic
simulator as our choice of physical simulator. The overall workflow for dataset generation
is as follows:

• Reconstruct the unperturbed inflow waveform using stop bar, advance detector
actuations, and signal timing information;

• Extract signal timing details from controller logs;
• Create the intersection base map in SUMO based on Google Maps satellite imagery

using SUMO NETEDIT;
• The signal timing plan is perturbed within feasible limits to generate viable counter-

factual simulations;
• Run multiple simulations in parallel for different signal timing plans;
• The vehicle traces along with detector output files are parsed to store route wise

distribution of travel times, wait times along with waveforms at stopbar, advance
detectors, and signal timing information.

The signal timing control type is either pre-timed or actuated in SUMO, but for
effective operation, ring and barrier control is often employed in practice (Figure 1). To
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address this, we have developed a dual-ring and barrier controller module for SUMO to
mimic real world intersection controller.

It is convenient to think of the time period of an intersection in terms of cycles. A
complete cycle consists of a predetermined sequence of traffic phases, where a traffic
phase consists of green time allocated to a set of lanes simultaneously for non-conflicting
movement of traffic through an intersection. The cycle length is the time interval of a
complete cycle and can vary from one cycle to the next. Within a cycle, a green split is the
time interval allocated for a particular traffic phase. A ring and barrier controller allows
us to separate the 8 lane-movements (i.e., phases 1–8) into two concurrency groups, with
one group with the major street movements and one for minor street movements (or more
generally, opposing direction flows).

Ring a�d �arrier 
5s 5s 

.1-4 

\, 
y 

MINOR MAX 
LEFT 

I 

BARRIER-1 TIME 

5 

l. 
5s l \. __ .....,Y ____ ;

MAJOR MAX 

LEFT 

Major Green Time 

CYCLE_TIME 

Further Constraints can be imposed on Max Left turns 
based on available buffer length

Figure 1. Ring and barrier controller allows us to separate the 8 lane-movements (i.e., phases 1–8)
into two concurrency groups, with one group with the major street movements and one for minor
street. Key signal timing parameters include cycle time, barrier time, max green splits, etc. For a
given input traffic flow, the signal timing parameters are varied to generate different scenarios.

This approach allows us to generate MOEs for a number of combination of traffic pat-
terns for each approach and signal timing parameters (CYCLE_TIME, Barrier-1 times, etc.,
Figure 1). For this work, we have used 1 million exemplars for training our neural network
model. The simulation environment makes use of multi-threading where up to several
instances of SUMO will be running in parallel, each simulating separate combinations of
input traffic patterns and signal timing plans.

4. Proposed Framework

Our focus is to train deep neural networks to be able to estimate performance measures
such as wait times, travel times, etc., for a given input traffic and also for different cycle
times and green splits (signal timing parameters). These trained models should be able to
approximate the dynamics of physical simulators, when used in inference mode has the
following advantages:

• The models are four to five orders of magnitude faster compared to simulations;
• The model can be used for multiple intersection topologies;
• These models can also be used to bootstrap the training of reinforcement learning-

based optimization algorithms.

Effectively, the model captures the interrelationships between the various traffic, signal
timing, and topology parameters and their impact on MOEs and allows for understanding
the impact of a variety of signal timing parameters on MOEs for a given set of input traffic
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patterns for a given intersection topology. Additionally, our model generates a distribution
rather than summary statistics. The overall workflow for training the neural network is
shown in Figure 2. The data corresponding to different counterfactual signal timing plans
is generated using microscopic simulators to train deep neural networks. For the rest of
this section, for ease of description, we use distribution of wait times as an example of our
performance measure. However, our framework is general enough to be used for other
measures (or multiple measures) as well. The deep learning model takes input traffic as
input and outputs distribution of wait times for different signal timing plans.

Figure 2. Overall workflow for training the neural network. The data corresponding to different
counterfactual signal timing plans is generated using microscopic simulators to train deep neural
networks. The trained neural networks can replace the simulators for predicting MOEs such as wait
times and are four to five orders of magnitude faster. MOEs: Measures of Effectiveness.

The input traffic waveforms are represented as 1-D vectors, each with T components.
Here T refers to the length of time a particular detector’s data (arrival volumes) is being
considered, with each component being aggregated at a 5-s level. In our work, T = 72,
i.e., each data vector corresponds to 360 s of data. The output is the distribution of wait
times for the 360-s window. The maximum wait time in our dataset is 2000 s, the wait times
are binned into bins of size 10 s. So, the output is represented as a vector of size 200. Our
proposed model, InterTwin, shown in Figure 3, has two main modules:

1. Spatial Graph Convolution (Spatial GC) is used to extract spatial features from the detec-
tor waveforms where the connectivity information of the intersection is incorporated;

2. The Encoder Decoder with Temporal Attention (EDTAM) module is used to capture
the temporal dynamic behavior of traffic flow. These two modules (GC and EDTAM)
are stacked together for obtaining the final prediction. The details of each module is
as follows.

We now describe each of these modules in detail.

Figure 3. Architecture of the proposed InterTwin model. Spatial Graph Convolution (Spatial GC) is used to extract
spatial features from the detector waveforms where the connectivity information of the intersection is incorporated. The
encoder-decoder block is used to capture temporal dynamic behavior of the traffic flow.
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4.1. Spatial Graph Convolution

The traffic movement on an intersection can be naturally represented in a graph
structure, where each lane is represented as a node and an edge connects two nodes if one
lane is feeding into another. We represent each detector (stop bar or advance) as a node
and an edge exists between two nodes if there is a direct connection between them.

Graph convolutions provide a natural and meaningful way to extract features that can
be used by higher layers where connectivity/spatial information has to be incorporated.
Unlike standard Convolution Networks (CNNs) or Recurrent Networks (RNNs), graph
convolutions can operate on irregularly structured data and can easily exploit the spatial
structure of the intersection. Although CNNs are useful to generate adjacent spatial
features, they are limited to regular/fixed grids).

In addition to being capable of handling different intersection topologies using graphs,
representing an intersection as a graph structure can help the model learn from the spatial
structure of the intersection, thereby providing relational inductive bias to the model.
This also helps the model to generalize better for unseen intersections during the training
phase [20]. Spatio-temporal graph convolution networks have been successfully used for
city-scale traffic forecasting [21], where they show that their model outperforms other
state-of-the-baseline models on a real world traffic dataset. Our approach models traffic at
a much finer granularity as compare to the work in [21] (5 s versus 5 min).

Several methods have been proposed for generalizing convolutions on graphs [22],
and they can be broadly classified into spectral-based or spatial-based methods. The spec-
tral approach tend to capture the global structure of the graph more accurately than spatial
methods. Unfortunately, spectral convolution methods require the eigen-decomposition of
the graph laplacian, which is computationally expensive. There are several good approxi-
mation approaches available for spectral-based graph convolutions [23–25]. Considering
the large size of our dataset, we employ the approach proposed by [23] based on first order
approximation of localized spectral filters.

Consider an intersection is represented as graph G = {V, E, A}, consists of set of
detectors V and |V| = n, set of edges E, and adjacency matrix A. If there exists an edge
between node i, node j then A(i, j) = 1, 0 otherwise. Each node of the graph is represented
as a vector x ∈ Rt, this corresponds to arrival waveform with t timesteps. Let X ∈ Rn×t

be the node attribute matrix of the graph (n detectors, t timesteps). The notion of graph
convolution operator in spectral graph convolution for a signal X with kernel Θ can be
seen as:

Θ∗GX = Θ
(

UΛUT
)

X (1)

where U ∈ Rn×n is the matrix of Eigenvectors of the normalized graph laplacian; Λ ∈ Rn×n

is the diagonal matrix of eigenvalues. As discussed earlier, we use approximate methods
to compute Θ. The convolution layer can be formulated as:

Xp+1 = σ
(

D̃−
1
2 ÃD̃−

1
2 XpΘp

)
(2)

where, Ã = I + A is the adjacency matrix of graph G, D̃ = ∑n
j=1 Ãij is the diagonal degree

matrix of Ã, Θp is trainable weight matrix of layer p, and σ(.) is the activation function The
above equation represents the layer wise propagation rule that makes up a single layer of
the graph convolution. At a high level, this graph convolution operation aggregates the
neighboring node features at each layer.

To summarize, we use this graph convolution layer to extract spatial features from
the detector arrival waveforms. The proposed Spatial GC module consists of 3 stacked
graph convolution plus Global Additive Pooling (GAP) layers. The feature map after
each GAP layer is aggregated to obtain the final output of Spatial GC block (as shown in
Figure 3). The weights of Spatial GC block are shared across all the timesteps, the output
for each time step is concatenated across temporal dimension which in turn is fed into the
EDTAM module.
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4.2. Encoder Decoder with Temporal Attention

The encoder decoder model is a variant of Recurrent Neural Network (RNN) that
has well suited modeling temporal sequences. These networks process input sequences
within the context of their internal hidden state (“memory”) in order to arrive at the output,
the internal hidden state is an abstract representation of previously seen inputs. Thus,
they are capable of modeling dynamic contextual behavior. We use Gated Recurrent Units
(GRU) [26] as our choice of RNN in our implementation. The proposed EDTAM model
consists of three building blocks—encoder, decoder, and temporal attention module. These
are described below.

The encoder is an RNN that reads each timestep of the detector arrival waveform
sequentially and updates its hidden state conditioned on the current input and its previous
hidden state, Equation (3).

he〈t〉 = f
(

he〈t−1〉, yt

)
(3)

where he〈t〉, yt are hidden state, input to the encoder at time step t respectively. The hidden
state of the encoder is stored after each time step, and the final output of the encoder is
He〈T〉 =

(
he〈1〉, he〈2〉 . . . , he〈t〉

)
.

The decoder is also an RNN that is trained to generate the output sequentially based
on its input and hidden state. At each time step, the input to the decoder is conditioned on
the decoder’s output at the previous timestep, encoder’s output, and current hidden state
of the decoder. The Temporal Attention Module (TAM) acts as an interface between the
encoder’s outputs and the input of the decoder.

The Temporal Attention Module (TAM) is a fully-connected network with the inputs
being the decoder’s output at a previous time step and its hidden state. The output of TAM
is a vector, attention scores, which is used to compute the weighted sum of the encoder’s
hidden states. This weighted sum is fed as input to the decoder, the attention helps the
model to focus on specific parts of the encoder’s outputs for prediction at each step.

The final hidden state of the encoder is used to initialize the hidden state of the decoder.
The attention scores for predicting at timestep, t are calculated as follows. Let hd〈t〉, zt
represent the decoder’s hidden state, output respectively for time step t

AT =
exp

(
wj[hd〈t〉 ++ zt−1]

)
∑K

j′=1 exp
(

wj′ [hd〈t〉 ++ zt−1]
) (4)

where wj are the rows of learnable weight matrix W, and AT represents the computed
attention scores. The input to the decoder is the dot product of these attention scores with
the hidden states of the encoder, AT .He〈T〉.

4.3. Overall Network

The Spatial GC block and encoder decoder module are stacked together and trained
end to end with a chosen loss metric, Adam optimizer. Implementation, training, and
evaluation of the model was done using the PyTorch [27] library.

5. Experimental Results

We now present the experimental results of our approach and compare the perfor-
mance of the proposed architecture with some of the recent deep learning architectures
proposed for spatio-temporal forecasting. In particular, we compare the performance of
our model against the following architectures.

• FCN: Fully Connected Network;
• RNN-FCN: Recurrent Neural Network followed by a fully connected layer;
• T-GCN: Temporal graph convolution network for traffic prediction as proposed in [14];
• STGCN: Spatio Temporal Graph Convolution Network for traffic prediction, as pro-

posed in [21];
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• ST-RGAN: Spatio Temporal Residual Graph Attention Network as proposed in [15].

As mentioned earlier, the output of our model is the distribution of wait times,
fWT(wt), for a given input traffic pattern, signal timing parameters. Since we are try-
ing to predict the distributions, a softmax operation is applied to the model output to
convert it into a probability distribution. All the models are trained with the Adam op-
timizer and Mean Square Error (MSE) as the loss function. The different terms used to
describe input, output variables is shown in Figure 4. Each of the waveforms aggregate
counts for five-second intervals (the level of aggregation was chosen so that the number of
vehicles in each interval is very small—generally less than three, but also large enough to
keep the size of the network to be small).

Figure 4. A typical intersection with 8 different directions of vehicular movement (phases 1 to 8).
Vehicle waveforms are observed at Stop bar and Advance detectors (STP, ADV). STP, ADV, and INF
corresponds to the traffic waveform at stopbar detector, advanced and inflow (500 m away from the
intersection) aggregated at a 5-s interval. SIG corresponds to signal timing at a 5-s interval. STP, ADV,
and SIG are typically available in ATSPM data for every intersection.

Table 2 shows that our methods are better for all the error measures: Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and Mean Square Error (MSE). These
results show that InterTwin is significantly better than FCN, STGCN, and T-GCN in terms
of mean square error for MOE prediction. The key advantage of predicting distributions
is that different summary statistics such as mean, median, and percentile values can be
derived. Figure 5 shows actual vs. predicted scatter plot of the 50th, 70th percentile of wait
time computed from the distribution. Figure 6 shows actual versus predicted distribution
of wait time for a given inflow waveform, for different green time splits. These plots
show that the models are able to capture the interrelationship between input traffic and
signal timing parameters. We trained separate models each requiring different input traffic
patterns for different Signal Timing waveform (SIG) using:

1. Only Inflow Traffic Waveforms (INF);
2. Only Advanced and Stopbar Waveforms (ADV and STP).

Table 3 shows the training and test errors for models with different input combinations.
The accuracy is high when stopbar, advance waveforms are used as input compared to
using only an inflow waveform. An important practical advantage of the model with only
stopbar and advance waveforms as input is that both of these waveform are easily available
in recorded controller logs at each intersection that support ATSPM. Thus, this model can
be very effectively used to infer wait time distributions from recorded controller log data
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in real world. Unfortunately, this model cannot be used directly for computing MOEs for
different signal timing plans. The latter is generally required for optimization purposes.

For optimization, it is more practical to use the INF waveform and SIG waveforms
as input as this model allows for varying signal timing plans. As discussed earlier, INF
waveforms for each approach can be computed using neural networks that use ADV and
STP waveforms along with SIG waveforms. For a given inflow, we can generate multiple
candidate signal timing plans, use the trained model in inference mode to evaluate each
timing plan based on the distribution of wait times. Using these trained models for MOEs
estimation is highly scalable compared to simulation-based approaches.

Figure 5. Summary statistics such as 50th/70th percentile etc. can be computed from the predicted
distribution. Actual vs. predicted scatter plot of 50th, 70th percentile of wait time computed from the
distribution. The key advantage is that predicting distribution enables us to compute any statistic
of interest.

Figure 6. Actual vs. predicted distribution of wait time for different green time splits for a given
input traffic. These plots show that the model is able to capture the interrelationship between input
traffic and signal timing parameters.
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Table 2. Table comparing performance of different models. The input to the models are ADV, STP,
and SIG. This suggests that our InterTwin model has better accuracy compared to other model archi-
tectures. MSE: Mean Square Error, RMSE: Root Mean Square Error, and MAE: Mean Absolute Error.

Model MSE RMSE MAE

FCN 1.5× 10−4 0.0084 0.003
RNN-FCN 2.2× 10−4 0.0091 0.0032
T-GCN [14] 1.2× 10−4 0.008 0.0026
STGCN [21] 1.5× 10−4 0.0085 0.0031
ST-RGAN [15] 5.4× 10−3 0.0165 0.0095
InterTwin (ours) 0.9× 10−4 0.0076 0.0023

Table 3. Comparison of model performance for different input parameters. This suggests that using
STP, ADV has better accuracy compared to using INF waveform. The InterTwin model also has better
accuracy. It is more practical to use INF along with SIG as INF waveforms are not affected by SIG
and multiple signal timing parameters can be evaluated in parallel. Whereas, the other model (STP
ADV SIG) can be useful to understand performance measures on recorded historical data.

Model Inputs Train Error (MSE) Test Error (MSE)

InterTwin STP ADV SIG 0.9× 10−4 0.9× 10−4

InterTwin INF SIG 2.0× 10−4 2.1× 10−4

FCN STP ADV SIG 1.3× 10−4 1.5× 10−4

FCN INF SIG 3.0× 10−4 3× 10−4

For a given input traffic flow, to simulate 3200 different signal timing parameter
combinations took more than 13,400 s on a 32 core machine. While the trained neural
network model when used in inference mode generates output in 0.08 s for the same
number of combinations (batch size 3200). This suggests that neural network models are at
least four to five orders of magnitude faster.

6. Case Study

The trained models (that use INF and SIG waveforms) can be used to evaluate the
efficacy of different signal timing plans for an intersection. This can then provide trade-offs
for choosing a variety of signal timing parameters, including different green phase splits.

The 75th percentile of wait times as MOE is used for the rest of this discussion. In
general, adding more time to the major street results in increased wait time on the minor
street. The tradeoff can be clearly seen in Figure 7. It shows a scatter plot of 75th percentile
of wait times for major vs. minor movements for different barrier-1 times (Figure 1). Based
on this plot, a value of 60–70 s of green time may be appropriate as it minimizes the wait
time on major street while not significantly impacting the wait time on the minor street. Of
course a traffic engineer can look at these plots and other constraints to derive the optimal
values. Given that our approach is computationally very inexpensive, optimal values can
be derived separately for various hours of the day and day of the week combinations.

Table 4 shows a case study on a real intersection in Seminole County, Florida. We
varied the barrier-1 time (keeping the cycle length fixed) to understand its impact on the
wait time for traffic on major streets (NBT and SBT). These results show that changing the
barrier time from 80 s to 60 s can lead to a 25% improvement in wait time for the major
direction without significantly affecting the wait times on the minor street.

Rather than to provide one optimal signal timing plan, this framework can be ex-
tremely useful to practitioners to set green time splits for an intersection by understanding
the trade offs for different hours of the day and days of the week.
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Figure 7. Scatter plot of 75th percentile of wait times for major vs. minor movements for different
barrier-1 times. This can be useful to understand trade-offs in wait time for selecting different
barrier-1 times for major vs. minor streets.

Table 4. Analysis on Intersection-1205 on 4 February 2019. Changing barrier-1 time from existing
value 80 s to 60 s at 8:00 a.m. would improve the wait time on major direction by around 27%. NBT:
North Bound Through, SBT: South Bound Through.

Time Barrier Time
—New

Barrier Time
—Old

% Improvement
of Wait Time

on NBT

% Improvement
of Wait Time

on SBT

8:00 a.m. 60 80 26 29
9:00 a.m. 70 80 15 12

10:00 a.m. 70 80 12 10
11:00 a.m. 50 80 34 30
12:00 p.m. 60 80 21 21
01:00 p.m. 60 80 22 23
02:00 p.m. 60 80 22 24
03:00 p.m. 50 80 37 34
04:00 p.m. 60 80 25 33
05:00 p.m. 50 80 34 35

7. Conclusions

In this paper, we proposed InterTwin, a deep neural network architecture based on spa-
tial graph convolution and encoder decoder recurrent networks that can predict the MOEs
quickly and precisely. Rather than just predicting one or two statistics for a MOE (e.g., mean
and standard deviation), our network can compute the entire distribution. Additionally,
our models are four orders of magnitude faster than conducting detailed simulations.

Broadly, we presented two models based on the input waveforms that are used along
with signal timing. The first one uses stopbar and advance waveforms. An important
practical advantage of the model is that both of these waveforms are easily available in
recorded controller logs at each intersection that support an ATSPM-based system. Thus,
this model can be very effectively used to infer wait time distributions from recorded
real-world controller log data. This model, however, cannot be used directly for computing
MOEs for different signal timing plans.

The second model uses only inflow waveforms as input as this model allows for
varying signal timing plans. For a given inflow waveform, we can generate multiple
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candidate signal timing plans, use the trained model in inference mode to evaluate each
timing plan based on the distribution of wait times.

We believe that this computationally-efficient approach can be extended to corridor
optimization where the number of parameters is proportional to the product of parameters
for each intersection on the corridor. We are currently developing such methods.
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