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Abstract
The paper aims to address the task of speaker verification with
single-channel, noisy and far-field speech by learning an em-
bedding or feature representation that is invariant to differ-
ent acoustic environments. We approach from two different
directions. First, we adopt a newly proposed discriminative
model that hybridizes Deep Neural Network (DNN) and To-
tal Variability Model (TVM) with the goal of integrating their
strengths. DNN helps learning a unique variable length repre-
sentation of the feature sequence while TVM accumulates them
into a fixed dimensional vector. Second, we propose a multi-
task training scheme with cross entropy and triplet losses in
order to obtain good classification performance as well as dis-
tinctive speaker embeddings. The multi-task training is applied
on both the DNN-TVM model and state-of-the-art x-vector sys-
tem. The results on the development and evaluation sets of the
VOiCES challenge reveal that the proposed multi-task training
helps improving models that are solely based on cross entropy,
and it works better with DNN-TVM architecture than x-vector
for the current task. Moreover, the multi-task models tend to
show complementary relationship with cross entropy models,
and thus improved performance is observed after fusion.
Index Terms: Speaker verification, deep neural networks, total
variability model, multi-task training

1. Introduction
The performance of a Speaker Verification (SV) system can

deteriorate due to mismatch between training, enrollment and
test environments [1, 2]. Data inconsistencies may arise due
to channel conditions, noise, background speakers, and micro-
phone placement (near- vs. far-field speech) and associated re-
verberation [1, 3]. One way to tackle the problem is to obtain
a speaker representation or embedding [4] that is robust and in-
variant to different channel and noise conditions. The present
work focuses on that approach.

“The VOiCES from a Distance Challenge 2019” [5] has
been organized to benchmark state-of-the-art technologies for
speaker verification from single channel far-field speech in
noisy conditions. The evaluation data has been curated from
the VOiCES corpus [6], which includes speech data recorded
under challenging acoustic environments. On the other hand the
training data for the fixed condition [5] consists of three “in the
wild” datasets, and is not guaranteed to be from similar acous-
tic conditions (more details in Section 3.1). This paves a way to
develop robust speaker embedding systems and evaluate them
on realistic far-field speech with natural reverberation [5].

Some of the earlier works [7, 8] for single channel far-
field speaker verification focused on designing robust features.
Avila et al. [9] analyzed performance degradation of classical
GMM-UBM [10] and i-vector [11] systems in far-field condi-

tion, and proposed multi-condition training with different re-
verberation levels to address the problem. Similarly, a multi-
condition approach was adopted in [12] for training a Gaus-
sian PLDA model in i-vector space. Snyder et al. [13] in-
troduced x-vectors which employed different types of artificial
augmentation to train a robust speaker embedding using a Time
Delay Neural Network- (TDNN) based speaker classification
model [14]. Nandwana et al. [2] analyzed the performance of
the x-vector and i-vector systems for far-field noisy SV task on
SRI distant speech collect [2] and VOiCES [6] datasets. X-
vectors were shown to have superior performance.

In the present work, we try to address the noisy and far-
field SV task from two different angles: potentially find a better
model to transform a variable length utterance into a fixed di-
mensional embedding, and employ a loss function that directly
works on the embedding space to reduce intra-speaker distance
and increase inter-speaker distance irrespective of channel con-
ditions. The main contributions of this work are the following:

1. We employ a newly proposed [15] hybrid discriminative
DNN-TVM system which leverages the strength of both
systems. Specifically, it exploits the strength of DNN to
project the input feature into a distinctive sequence of
vectors, and utilizes TVM to obtain a fixed dimensional
embedding.

2. We implement a multi-task training scheme with cross
entropy and triplet [16] losses to circumvent the defi-
ciencies of training with only cross entropy loss as ob-
served in computer vision domain [16]. To the best of
our knowledge, exploration of this multi-task training
has not been done in the past for speaker recognition.

2. Methodology
Total Variability Modeling (TVM) and i-vectors have been

the state-of-the-art in speaker recognition for a long time. They
were originally proposed as unsupervised generative latent vari-
able model [11]. But, when a large amount of labeled data
is available, generative models can have inferior performance
compared to discriminative models having very high degrees of
freedom. The recent success of x-vectors [13] is an example of
that. Moreover, the Gaussian Mixture Model (GMM) assump-
tion on the features might put more constraints on TVM than
the distribution-free nature of DNN models. The motivations in
developing a discriminative multi-task hybrid DNN-TVM are:

1. It removes the GMM assumption on feature vectors
as employed in conventional TVM, and provides a
distribution-free formulation [17].

2. TDNNs [18, 14, 13] are found to be good in exploiting
temporal context, and training them is generally faster
than training recurrent neural networks. We can utilize
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the strength of TDNN models and deploy them as a fea-
ture transformer.

3. The global statistics pooling of conventional x-vector
model can be replaced by a TVM model, and the hybrid
model can be trained end-to-end with any discriminative
objective function e.g., cross entropy loss.

4. Moreover, such systems can be trained on multiple dis-
criminative tasks instead of only speaker classification,
as long as the tasks are complementary to each other.

2.1. Total Variability Model (TVM)
Let us denote an utterance, X of length T as

X = {x0,x1, . . . ,xT−1} (1)

where, xt ∈ RD is a feature vector at time t. In TVM [11], X is
represented by a speaker- and channel-dependent GMM mean
supervector, M ∈ RCD . Here, C is the number of Gaussian
components in the GMM. M can be expressed as

M = m+Tw (2)

where, m is the speaker- and channel-independent GMM mean
supervector of the Universal Background Model (UBM), T ∈
RCD×K is a low rank rectangular total variability matrix, and
w ∈ RK is the i-vector for that utterance. w has standard
normal prior distribution:

w ∼ N (0, I) (3)

Conventionally, TVM is set up as a Maximum Likelihood Esti-
mation (MLE) problem and trained by Expectation Maximiza-
tion (EM) algorithm.

2.2. TDNN and x-vectors
The model for x-vectors [13] is comprised of TDNN at the

lower layers followed global statistics pooling. The TDNN lay-
ers transform the input utterance X into a sequence of vectors:

G = h(X) = {g0,g1, . . . ,gT ′−1} (4)

Then the pooling layer computes statistics (mean and standard
deviation) of G, and concatenates them to generate a fixed di-
mensional vector. It is then projected on an embedding layer:

wx-vector = A
[
ET (G) | ST (G)

]T
+ b = f(X) (5)

where E and S denote sample mean and standard deviation re-
spectively. f(.) is a trainable nonlinear function, and denotes
the part of the DNN model from input to the embedding layer.
The embedding, wx-vector is fed to a shallow classifier network
with softmax outputs. The full model is trained end-to-end with
cross entropy loss. At test time, wx-vector is used for scoring.

2.3. Discriminative DNN-TVM system
2.3.1. Distribution-free TVM formulation
Travadi et al. [17] showed that the GMM assumption on fea-
tures can be removed from the TVM formulation if Baum-
Welch statistics of the features are used as variables in the model
likelihood function instead of the features themselves. The ze-
roth and first order Baum-Welch statistics are given by:

Nc =

T−1∑
t=0

γtc and Fc =
1

Nc

T−1∑
t=0

γtcxt (6)

Here, γtc = p(c|xt) is the posterior probability of the tth fea-
ture vector to belong to the cth Gaussian component in the
GMM. It was shown in [17] that the statistics Fc asymptoti-
cally follow normal distribution irrespective of the feature dis-
tribution. More importantly, the posterior probability, γtc is not
limited to be from a GMM distribution, but can be any positive

function, γtc = Γc(xt) s.t. Γc : RD 7→ [0,∞).

2.3.2. Discriminative TVM training
The MLE of TVM assumes the data (features) were generated
from a GMM distribution and tries to find model parameters that
can best explain the data. The distribution-free TVM formula-
tion has no assumption on how the features were generated, and
thus best viewed as a trainable function from the features to the
i-vector. In this case, the TVM parameters can be trained using
cross entropy loss with the help of speaker labels. The discrimi-
native training of TVM was proposed in [19] where the authors
adopted numerical optimization algorithm to train the parame-
ters, and found superior performance than generative TVM.

2.3.3. Hybrid DNN-TVM model
The hybrid architecture comprises of the initial TDNN layers
as in x-vector system. After the frame-level processing is done
by the TDNN layers, a trainable mapping, Γ′

c(.) is applied on
the transformed sequence G (equation 4) to produce posterior
probability for every gt:

γtc = Γ′
c(gt) (7)

The overall transformation of a feature vector xt to the posterior
is given by (refer to Section 2.2 and 2.3.1):

γtc = Γc(xt) = Γ′
c(h(xt)) = Γ′

c(gt) (8)

Instead of computing the global statistics of G as done in x-
vector, we compute the Baum-Welch statistics of G using equa-
tion 6. Based on the foundation of Section 2.3.1, these statistics
can be used in a TVM formulation.

Intuitively, the posterior γtc denotes the probability of a fea-
ture vector, xt to belong to a certain region in the feature space,
and Fc denotes the local mean of the features in that region.
We concatenate multiple local means {Fc}Cc=1 to create a local
mean supervector. Global mean pooling (as done in x-vector)
can be regarded as a special case of this formulation, where
C = 1 and Γ′

c(.) = 1.
Finally, we project the local mean supervector to an embed-

ding layer, whybrid through an affine transform. Adopting same
convention as equation 5, we can have:

whybrid = A
[
FT

1 | FT
2 | . . . | FT

C

]T
+ b = f(X) (9)

Similar to x-vector, whybrid then goes to a shallow classifier net-
work. The whole network can be trained using cross entropy
loss as done in [15].

2.4. Triplet loss
Theoretically, any discriminative loss function can be used

to train the DNN-TVM model (and also for x-vector system
as will be used for comparison in Section 4.1). [15] employed
standard cross entropy loss, LCE which tries to increase the soft-
max posterior probabilities for all samples. The drawback of
cross entropy loss is that it does not explicitly focus on reduc-
ing intra-class variance. On the contrary, triplet loss [16] di-
rectly works on the embedding space and tries to bring samples
from same class closer than samples from two different classes.

Assume Xa
i and Xp

i are two utterances from the same
speaker, and are denoted as anchor and positive utterances re-
spectively. Xn

i is called a negative utterance, and it belongs
to a different speaker than anchor and positive. Then the tuple
(Xa

i ,X
p
i ,X

n
i ) ∈ T is denoted as a triplet, where T is the set of

all triplets. The DNN should ideally find a mapping f(.) such
that,

||f(Xa
i )− f(Xp

i )||
2
2 + α < ||f(Xa

i )− f(Xn
i )||22

∀(Xa
i ,X

p
i ,X

n
i ) ∈ T

(10)
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where, α is positive margin parameter. This is achieved by min-
imizing the triplet loss given by:

LTriplet =
1

|T |

|T |∑
i=1

max
(
||f(Xa

i )− f(Xp
i )||

2
2+

α− ||f(Xa
i )− f(Xn

i )||22, 0
) (11)

The mapping f(X) is generally the DNN that transforms X into
an embedding. For x-vector and hybrid systems, f(X) is basi-
cally wx-vector and whybrid respectively (equations 5 and 9).

2.5. Multi-task training
Triplet loss has been successfully applied for speaker ver-

ification in past works [20, 21]. Inspired from the success in
computer vision domain [22], we incorporate triplet loss along
with the cross entropy loss, and train the network in multi-task
setting. Note that the triplet loss is directly computed on the em-
bedding, while the cross entropy loss encounters a shallow clas-
sifier network after the embedding layer. Our hypothesis is that
the multi-task training would force the network to produce both
correct classification and distinctive embeddings, and these two
tasks would be complementary. More formally, the joint loss
function is given by:

L = λLCE + (1− λ)LTriplet (12)

where, 0 < λ < 1 helps weighing different losses.

3. Experimental Setting
3.1. Datasets and features

The training datasets for the “fixed condition” [5] in the
VOiCES challenge are Voxceleb 1 & 2 [23], and Speakers In
The Wild (SITW) [24]. Both the datasets have 16KHz single
channel audio. First, we remove 60 overlapped (between Vox-
celeb and SITW) speakers from the SITW dataset before train-
ing. Then we remove speakers that have less than 10 utterances.
This results in 7537 unique speakers and ∼ 1.3M utterances for
training 1.

The official VOiCES development set has around 16K ut-
terances of noisy and far-field speech from 196 speakers, and
∼ 4M trials for scoring. The evaluation set has around 11K
utterances and ∼ 3.6M trials from 100 speakers.

We extract 20 dimensional MFCC features with 25ms win-
dow and 10ms shift using Kaldi toolkit [25]. Energy based VAD
is applied. The features are mean normalized with a moving
window of maximum 3s length. Delta and delta-delta features
are concatenated with original MFCC to produce 60 dimen-
sional features for training.

3.2. Data Augmentation
First, every utterance in the training data is augmented with

three different types of noise:

• Television: To create a simulated environment similar
to background television sounds, we first extract the au-
dio from four publicly available video datasets: AVA-
ActiveSpeaker dataset [26], advertisement dataset [27],
and two compilation videos for TV shows “Friends” and
“How I met your mother” available in YouTube. For ev-
ery training utterance, a random segment from one of
these four datasets is picked and added with the original
signal with 13-20dB SNR.

• Babble: Similar to [13], three to seven speakers are ran-
domly chosen from the above four datasets, summed and

1We held out the test part of Voxceleb 1 as an internal clean valida-
tion set to monitor possible degradation of model on clean speech.

added to the original speech at 13-20dB SNR.

• Music: A single music file is randomly sampled from the
MUSAN music dataset [28] and added to each utterance
as described in [13].

Then we reverberate the clean and above three copies with a
Room Impulse Response (RIR) randomly sampled from a pool
of 60K RIRs [29]. The final training data also keeps the original
clean utterance. Due to the large size of the augmented dataset
(5 times the original, so ∼ 6.5M utterances), and lack of time
and resources, we could only train on a subset of the data.
The subset is created by sampling a maximum of 300 utterances
(after augmentation, so a maximum of 60 clean utterances) from
each speaker, thus limiting to ∼ 2.1M utterances.

3.3. System parameters
3.3.1. i-vector and x-vector baselines
A GMM with 2048 components and full covariance matrix is
trained for the UBM. 400 dimensional i-vector extraction sys-
tem is built on the longest 100K utterances following Kaldi’s
Voxceleb v1 recipe 2.

The x-vector model is as described in [13], but we utilize
our augmented data (Section 3.2) instead of the default aug-
mentation recipe described in [13].

3.3.2. Hybrid DNN-TVM
The hybrid DNN-TVM model is composed of: TDNN →
Dense → Dense → Dense → Softmax → TVM Layer →
Classifier. The TDNN is part of the x-vector model up to
‘frame5’ [13]. The dense layers have 1024 hidden units. The
softmax layer has 1000 units (analogous to a GMM with 1000
Gaussian components). Three dense layers and the subsequent
softmax layer together implement Γ′

c(.) as described in Sec-
tion 2.3.3. The TVM layer computes the Baum-Welch statistics
and the local mean supervector. The classifier network is same
as [13]. It consists of two 512 dimensional dense layers, and
the final softmax layer for classification.

3.3.3. Triplet and multi-task
Mining good triplets is very crucial in triplet learning. Easy
triplets might stagnate the training, while very hard triplets
might make the training unstable and result in collapsed
model [16]. Moreover, the total number of all triplets grows
exponentially with the number of samples. We adopt online (in-
batch) semi-hard triplet mining [16] because it provides much
faster training than offline mining, and is found to address the
training issues mentioned above.

For the multi-task loss, we choose λ = 0.8 in equation 12.
As explained in [22], giving more weight to cross entropy loss
is slightly beneficial. For our experiment, we observed it facili-
tated faster convergence at the beginning of the training.

3.4. LDA and PLDA scoring
For all systems (listed in Section 4.1), LDA has been ap-

plied to reduce the embedding dimension. The LDA dimen-
sion is tuned on the VOiCES development set. For i-vector and
multi-task models, 200 dimensional LDA was found to be op-
timal, while for x-vector 150 dimensional LDA gave the best
performance (similar to [13]). After LDA, the embeddings are
length normalized. Finally, PLDA training and scoring are per-
formed following the conventions in [13].

2The submitted i-vector system is trained on clean data. Training on
the augmented data was not finished before system submission deadline.
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Table 1: Performance of different systems on VOiCES development and evaluation sets. The check marks (X) indicate the systems that
were submitted for official evaluation. The last two rows indicate systems after score fusion.

VOiCES development set VOiCES evaluation set
System minDCF actDCF EER (%) CLLR minDCF actDCF EER (%) CLLR
1. i-vector clean 0.64 8.94 7.02 0.79 0.99 29.58 31.89 3.51
2. x-vector kaldi (X) 0.39 4.85 3.42 0.43 0.62 4.35 7.54 0.58
3. x-vector native 0.59 7.08 5.23 0.62 0.86 6.54 11.74 0.76
4. DNN-TVM 0.62 10.58 5.95 0.87 0.89 9.45 12.09 0.93
5. x-vector multi-task 0.41 5.54 3.53 0.49 0.68 5.41 8.05 0.65
6. DNN-TVM multi-task 0.40 6.77 3.83 0.59 0.64 5.37 8.05 0.64
(2+5+6) (X) 0.36 0.36 3.18 0.13 0.60 0.62 7.29 0.45
(1+2+6) (X) 0.35 0.35 3.29 0.13 0.67 0.67 8.78 0.53

3.5. Fusion of multiple systems
Given the wide diversity between train and test scenarios, it

is often not possible to come up with a single good system for
speaker verification. Therefore, to maximize benefit from the
complementary merits of different SV systems, we employ a
weighted-sum log-likelihood score-fusion strategy. System fu-
sion works well if the fused subsystems are similar in nature,
however not identical, and also have complementary charac-
teristics [30]. In this work, we have fused four SV systems:
i-vector, x-vector, and the multi-task version of x-vector and
DNN-TVM models. Fusion weights and a bias term to perform
linear score-fusion are determined with BOSARIS3 toolkit on
development data. The toolkit uses a fast unconstrained con-
vex optimization algorithm based on a quasi-Newton method to
train the logistic regression fusion [31].

4. Results and Discussions
4.1. Performance of individual systems

Four metrics are reported here as shown in Table 1. The
primary and secondary metrics are minDCF and CLLR respec-
tively, as defined in [5].

The first six rows of Table 1 show the performances of the
six individual systems on VOiCES development and evaluation
sets. The i-vector system trained on the clean dataset is outper-
formed by all DNN-based systems. Moreover, the performance
of i-vectors degrade severely when we move from development
to evaluation set.

Two x-vector systems are developed as shown in rows 2
and 3 of Table 1. The “x-vector kaldi” is developed using
kaldi’s [25] x-vector training recipe, while “x-vector native” is
our own implementation of x-vector architecture in Keras [32].
The initiative to re-implement the x-vector system arises from
the requirements of easy extension and modification of the
model using widely used deep learning tools like Keras, and a
fair comparison with DNN-TVM model which is implemented
using the same tool4.

Row 4 shows the performance of the hybrid DNN-TVM
model. For this application, both implementations of x-vector
perform better than the hybrid model in development as well as
evaluation datasets.

Rows 5 and 6 show performances of the multi-task mod-
els (implemented in Keras). In the evaluation set, the x-
vector multi-task training gets a relative improvement of 21% in
minDCF from its cross entropy counterpart (“x-vector native”).
Similarly, in the evaluation set, the DNN-TVM multi-task is
ahead of cross entropy based DNN-TVM by 28% in terms of

3https://sites.google.com/site/bosaristoolkit/
4We noticed a gap in performance between two x-vector implemen-

tations possibly because of various custom optimizations done in Kaldi.

minDCF. Interestingly, multi-task training of DNN-TVM model
works better than the multi-task version of x-vector model. In
the evaluation set, DNN-TVM multi-task has a relative advan-
tage of 6% than x-vector multi-task in terms of minDCF.

4.2. Performance of fused systems
The last two rows of Table 1 report the two best performing

fused systems. We can see that both the fused systems achieve
improvements over the individual systems in the development
set, but only system (2+5+6) does so for the evaluation set.

Inclusion of the clean i-vector model in system (1+2+6) de-
teriorates the performance in evaluation set although promising
performance was observed in the development set. We believe
this comes from poor generalization of the clean i-vector system
as discussed in Section 4.1.

In terms of minDCF, the best fused system, (2+5+6) is
about 8% and 3% better than “x-vector kaldi” in development
and evaluation sets respectively.

5. Conclusion and Future Directions
The paper focused on speaker verification with noisy and

far-field speech. We tried to address the problem by employ-
ing a recently proposed hybrid DNN-TVM model. Moreover,
a multi-task training scheme was proposed for both state-of-
the-art x-vector system and the hybrid model. The multi-task
approach jointly optimized cross entropy loss and triplet based
similarity loss to achieve both good categorization and distinc-
tive embeddings.

The results on VOiCES development and evaluation sets
showed that the multi-task models (both x-vector and DNN-
TVM) are better than our native implementations of cross en-
tropy based x-vector and DNN-TVM models. Moreover, they
provided complimentary information when combined together
with the x-vector system, and thus obtained improved perfor-
mance compared to individual systems. The multi-task training
was found to work better on the DNN-TVM model than the x-
vector model for this far-field SV task.

In the future, we plan to do an intensive analysis of the per-
formance gap between ours and kaldi’s x-vector implementa-
tions, because the gap might also create potential degradation
in our DNN-TVM system and its multi-task version. We also
plan to train the systems on the full 6.5M augmented utterances,
which we could not do due to lack of resource and time. This
might fulfill the data hungry needs of DNN and potentially im-
prove the performance.
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