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With the continuous progress of modern industry, rotating machinery is gradually developing toward complexity and intel-
ligence.(e fault diagnosis technology of rotating machinery is one of the key means to ensure the normal operation of equipment
and safe production, which has very important significance. Deep learning is a useful tool for analyzing and processing big data,
which has been widely used in various fields. After a brief review of early fault diagnosis methods, this paper focuses on the method
models that are widely used in deep learning: deep belief networks (DBN), autoencoders (AE), convolutional neural networks
(CNN), recurrent neural networks (RNN), generative adversarial networks (GAN), and transfer learning methods are sum-
marized from the two aspects of principle and application in the field of fault diagnosis of rotating machinery. (en, the
commonly used evaluation indicators used to evaluate the performance of rotating machinery fault diagnosis methods are
summarized. Finally, according to the current research status in the field of rotating machinery fault diagnosis, the current
problems and possible future development and research trends are discussed.

1. Introduction

Complex electromechanical equipment is an important basis
for the development of modern industries such as coal,
transportation, aviation, and construction. With the con-
tinuous progress of modern industry, rotating machinery, as
an important part of complex electromechanical equipment,
is developing toward complexity, large scale, and intelligence
[1]. Rotating machinery usually works for long periods of
time under heavy loads and high speeds. Bearing, gearbox,
and other key components are likely to suffer from wear,
deformation, fracture, and other faults during the inherent
degradation process and under time-varying operating
conditions. (e failure of these components will affect the
normal operation and use of the equipment. Severe cases can
result in downtime or damage, and they even cause casu-
alties and huge economic losses. (erefore, research on
condition monitoring and fault diagnosis of rotating ma-
chinery is one of the key means to ensure the normal op-
eration of equipment, reduce unplannedmaintenance, avoid

catastrophic failure, and ensure the safety of industrial
production, which is of great significance [2, 3]. (e main
tasks of fault diagnosis research on rotating machinery
include determining the operating state, judging the fault
type, and predicting the fault trend [4, 5]. In recent years,
researchers have done a lot of research work in the field of
rotating machinery fault diagnosis, which has achieved
fruitful research results and has been applied in actual
working conditions, as shown in Figure 1.

With the rapid development of intelligent algorithms,
the current research on deep learning in the fault diagnosis
of rotating machinery is increasing year by year, and it has
also attracted the attention of more and more researchers.
In order to better promote the research progress in this
field, this article reviews the related research from the two
aspects of deep learning theory and its application in fault
diagnosis. (is research can provide convenience and in-
spiration for related researchers and provide reference for
understanding and promoting the development of fault
diagnosis research.
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(is paper first introduces several development stages of
the fault diagnosis method for rotating machinery and ex-
plains the diagnosis process, advantages, and disadvantages
of each stage method. (en, several mainstream deep
learning models and transfer learning methods in the field of
rotating machinery fault diagnosis are reviewed from both
theoretical and application aspects. Finally, the challenges
faced by deep learning in the field of rotatingmachinery fault
diagnosis and the possible research trends in the future are
discussed.

2. Development Process of Rotating Machinery
Fault Diagnosis

Rotating machinery will generate different physical signals
when it is running.(ese signals can be used as characteristic
signals to characterize its operating status during fault di-
agnosis research. According to different signal types and
acquisition methods, common analysis methods include the
following categories: vibration signal analysis [6], thermal
imaging analysis [7], acoustic signal analysis [8], tempera-
ture signal analysis, and electrical signal analysis. As shown
in Table 1, the abovemethods have their own advantages and
disadvantages due to factors such as operating environment
and sensor installation. Because vibration signal analysis can
quickly respond to changes in the state of rotating ma-
chinery, the relevant signal processing methods are diverse
and the diagnostic accuracy is relatively high, so vibration
signal analysis is the most widely used in these methods.

(e early traditional fault diagnosis of rotating machinery
was realized based on simple signal processing technology
[9, 10]. As shown in Figure 2, the traditional fault diagnosis
method first collects the vibration, temperature, voltage, and
current signals of the rotating machinery through sensors.
After processing, the characteristic parameters that characterize
the operating conditions of the equipment are obtained. (e
characteristic parameters of normal signals and fault signals are
compared and analyzed, and an appropriate threshold is se-
lected. When the characteristic parameters of the collected
signals exceed the set threshold, it is determined that the device
is faulty. However, in actual working conditions, rotating
machinery operates in a harsh environment, and its signals are
often characterized by nonstationarity and nonlinearity and
contain a large amount of noise [11].(erefore, the accuracy of
the traditional fault diagnosis method which only relies on the
characteristic parameters is low.

With the rise of artificial intelligence, machine learning
(ML) as its core has gained widespread attention. (e re-
searchers combined the machine learning method with the
feature extraction method based on signal processing to
perform fault diagnosis of rotating machinery. Feature ex-
traction methods based on signal processing are used for
feature extraction and selection of equipment monitoring
signals. Commonly used features include time domain
features, frequency domain features, and time-frequency
domain features [1, 12]. (e ML method obtains the di-
agnostic model with high generalization through the
training of input features and establishes the relationship

(a) (b)

(c) (d) (e)

Figure 1: Practical application of fault diagnosis research on mine vibrating screen: (a) mining vibrating screen; (b) signal collection and
transmission equipment; (c) vibration signal collection of the side plate of the vibrating screen; (d) vibration signal collection of the vibrating
screen exciter; (e) vibration signal collection of the vibrating screen spring and support device.
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between the selected features and the health state of rotating
mechanical equipment through the trained diagnostic model
[13]. (e commonly used ML methods include BP neural
network, RBF neural network, extreme learning machine,
and support vector machine (SVM) [2]. Although the fault
diagnosis method of rotating machinery based on signal
processing and machine learning has achieved some

achievements, it still has two major defects [14, 15]. First of
all, in the process of feature extraction, a large number of
signal processing technologies and rich engineering expe-
rience are required to extract and select appropriate fault
features. Secondly, the ML method used belongs to the
shallow model [16], and the model parameters will increase
with the increase of input data. It will lead to the decrease of

(a) (b) (c)

Figure 2: Equipment signal acquisition: (a) vibration sensor; (b) sensor installation location; (c)data acquisition device.

Table 1: Comparison of advantages and disadvantages of different analysis methods.

Analytical method Advantages Disadvantages

Vibration signal
analysis

(i) Ability to quickly respond to changes in
the state of rotating machinery

(i) It is difficult to locate equipment faults
(ii) Sensor installation location is not easy to choose
(iii) Noise signal interference is easy
(iv) (e propagation path of the vibration signal is complicated, and
the vibration signal at the source of the fault is not easy to collect

(ii) Being easy to measure and sensitive to
most mechanical failures
(iii) Fast speed, high precision, low cost
(iv) Various signal processing methods
(v) Ability to realize online monitoring, low
technical threshold
(vi) Being more suitable for industrial
production field equipment diagnosis

(ermal imaging
analysis

(i) Ability to detect electrical faults (i) (e scope of application is limited, only suitable for mechanical
equipment that will produce high temperature on the surface when a
failure occurs
(ii) (ermal image processing speed is slower, and software cost is
higher
(iii) It is not easy to choose the installation location and distance of the
collection equipment
(iv) It is vulnerable to the environment

(ii) Ability to achieve nondestructive testing
(iii) Strong recognition result against
interference
(iv) Lower hardware cost

(v) Clear and intuitive test results

Acoustic signal
analysis

(i) Ability to achieve nondestructive testing (i) (e quality of the acoustic signal is determined by the acquisition
equipment, which has higher requirements for the equipment
(ii) It is vulnerable to environmental conditions
(iii) (e installation distance of the collection equipment is not easy to
determine
(iv) It is susceptible to noise
(v) It is vulnerable to the parameters of recording software

(ii) Short analysis time and high recognition
efficiency
(iii) Low cost and fast speed

(iv) Higher sampling rate of signal
acquisition

Temperature signal
analysis

(i) Easiness of operation (i) It is difficult to detect early failures of equipment
(ii) It is vulnerable to the environment
(iii) Installation location of collection equipment is not easy to choose

(ii) Low cost
(iii) High detection accuracy

Electrical signal
analysis

(i) Low cost
(e scope of application is limited to electrical faults(ii) Easiness of operation

(iii) Intuitive test results
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the training efficiency and generalization performance of the
model, resulting in overfitting, and reduce the diagnostic
accuracy of the diagnosis model.

With the continuous development of computer tech-
nology, sensor technology, and communication technology
[17], the amount of monitoring data of key components of
rotating machinery such as bearings and gearboxes increases
day by day, pushing the field of fault diagnosis into the era of
“big data” [5]. In the field of ML, Hinton’s paper on data
dimension reduction of deep neural networks [18] marked
the beginning of deep learning research. Deep learning (DL)
methods automatically learn features from the original input
and process them by building an end-to-end diagnostic
mode [19], directly establishing a connection between the
growing monitoring data and the health status of the ma-
chine [1], and they solve the problem of heavy workload and
high cost when selecting features from a large amount of
monitoring data. (erefore, the application of deep learning
methods in the fault diagnosis of rotating machinery has
great significance. Figure 3 shows the implementation
process of the above three-stage diagnosis method.

Rotating machinery fault diagnosis methods based on
deep learning can often achieve good results in a laboratory
environment, because there are enough labeled data to train
the diagnosis model at this time, but this is not the case in
actual working conditions [20]. In actual working condi-
tions, rotating machinery usually undergoes a long degra-
dation process from a healthy state to failure; when a failure
occurs, it will be repaired in time, and it is time-consuming
and labor-intensive to obtain failure data [21]. As a result, in
the collected data, the amount of normal data is far more
than the fault data, and the large difference in the number of
sample types will cause serious data imbalance. Moreover, it
takes a huge cost to mark a large amount of monitoring data
for health categories. (erefore, most of the monitoring data
collected in actual working conditions are not marked. (e
above reasons lead to the unsatisfactory application effect of
the fault diagnosis method based on deep learning in actual
working conditions.

Transfer learning (TL) is a newmachine learningmethod
that is closely related to deep learning and can use existing
knowledge to solve problems in other different but related
fields [22]. (erefore, DL and TL can be used as a bridge to
use the rich data resources of the laboratory environment to
diagnose the fault of rotating machinery under actual
working conditions, and solve the problem that the diag-
nosis model has low accuracy in identifying the health status
of the equipment due to the scarcity of fault data in practical
applications.

Although the research methods used by researchers for
fault diagnosis of rotating machinery are different, most of the
methods follow the same process, as shown in Figure 4. In the
research process, first collect the signal from the target di-
agnostic equipment to obtain characteristic signals that can
characterize the operating status of the equipment. (en, use
different research methods to establish diagnostic models to
process and analyze the characteristic signals. Finally, diagnose
and make decisions on the health of the target device, so as to
ensure the normal operation of the target device.

3. Deep Learning-Based Fault Diagnosis
Method for Rotating Machinery and
Its Application

(emainstream deep learning models in the field of rotating
machinery fault diagnosis include deep belief networks
(DBN), autoencoders (AE) and their variants, convolutional
neural networks (CNN), recurrent neural networks (RNN),
and generative adversarial networks (GAN).

3.1. Deep Belief Networks and /eir Application

3.1.1. Basic /eory of DBN. (e deep belief network (DBN)
is composed of a stack of multiple restricted Boltzmann
machines (RBM) [23]. RBM is a probabilistic generative
model, and its structure is shown in Figure 5.

RBM consists of a visible layer v and a hidden layer h.
(e visible layer represents the input sample, and the hidden
layer is equivalent to the feature extractor. (e visible layer
and the hidden layer are connected by a weight matrix w,
and there is a connection between each neuron node in the
layer, but there is no connection in the layer. (e energy
function of RBM is as follows:

E(v, h) � − 􏽘
n

i�1
aivi − 􏽘

m

j�1
bjhj − 􏽘

n

i�1
􏽘

m

j�1
wijvihj. (1)

In the formula, n and m are the numbers of visible layer
and hidden layer units, respectively; aj and bj are the neuron
bias of the visible layer and the hidden layer, respectively. wij

is the connection weight between neurons. (e energy
function is used to define the joint probability distribution of
the nodes in the explicit layer and the nodes in the hidden
layer, which can be expressed as the following formula,
where Z(θ) is the normalization factor.

P(v | θ) �
1

Z(θ)
􏽘
h

exp[−E(v, h, θ)],

Z(θ) � 􏽘
v,h

exp[−E(v, h, θ)].

(2)

(e activation conditions of the visible unit and the
hidden unit are defined as follows:

P vi � 1 | h( 􏼁 � σs bi + 􏽘

m

j�1
ωi,j · hj

⎛⎝ ⎞⎠,

P hi � 1 | v( 􏼁 � σs ai + 􏽘
n

j�1
ωi,j · vj

⎛⎝ ⎞⎠,

(3)

where σs is the activation function and Sigmoid function is
usually used. (en, use the maximum likelihood estimation
method to get the parameters of RBM, expressed as

􏽢θ � argmax
θ

ln P θ | x1, x2, . . . , xk( 􏼁􏼂 􏼃 �
1
k

􏽘

k

i�1
ln P xi|θ( 􏼁􏼂 􏼃,

(4)
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where xi􏼈 􏼉
k
i�1 is the input data set with k samples.

In the DBN, each RBM is connected by weights, and
each layer of the RBM network is independent of the
others. Pretraining is performed through forward learning;
that is, the output of the previous layer of RBM is used as

the input of the next layer, and the features are mapped
and passed layer by layer. RBM of each layer makes the
weight of the layer reach the optimal mapping of the
feature vector of the layer, so that a more abstract and
more representational feature representation can be
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formed at the high level. Finally, the backpropagation
algorithm is used at the high level to propagate the error
from top to bottom to each RBM, so as to realize the
supervised fine-tuning of the entire DBN.

(e core idea of the DBN is to optimize the network
parameter values using a layer-by-layer greedy algorithm
and use two training methods, interlayer pretraining and
reverse fine-tuning, to extract the distributed features of the
input data. Pretraining adopts an unsupervised training
method, which uses a large number of unlabeled samples to
minimize the reconstruction error between layers, can map
data from input to output, and construct complex nonlinear
functions to characterize features. Reverse fine-tuning
makes full use of a small number of labeled samples su-
pervised to achieve accurate classification of DBN networks.

3.1.2. Application of DBN in Fault Diagnosis. Researchers
have carried out a lot of research on the application of DBN.
Jiang et al. [24] and Han et al. [25] constructed a DBN-based
diagnosticmodel by stackingmultiple RBM and achieved higher
diagnostic accuracy than traditional methods. In [26, 27], the
authors use the frequency domain data after fast Fourier
transform (FFT) as the input of the DBNmodel to diagnose the
induction motor fault. Tao et al. used the Teager Energy Op-
erator (TEO) to extract the instantaneous energy in the rolling
bearing vibration signal and construct the corresponding feature
vector, and then they combined the DBN to diagnose the rolling
bearing fault [28]. In [29], a novel intelligent ball screw deg-
radation recognition method based on deep belief networks
(DBN) and multisensor data fusion is proposed. First, the de-
rivedmethod calculates frequency spectrums of raw signals, and
the fused frequency spectrums are calculated by the multisensor
data fusion.(en, a deep learning-based recognition model that
can estimate the degradation condition of ball screw automat-
ically is established with the fused data set.(e flow chart of this
method is shown in Figure 6.

Zhang et al. proposed a semisupervised fault recognition
model based on Laplacian feature mapping (LE) and DBN to
identify the failure mode of mechanical equipment [30]. In

[31], DBN is used for automatic diagnosis of high-speed
train on-board equipment, and its diagnosis performance is
better than KNN and ANN. Chen et al. used the feature self-
extraction capability of DBN to extract the characteristics of
the vibration signal of the gear transmission system and then
perform fault identification [32]. Some researchers used
DBN to build diagnostic models to diagnose faults in hy-
draulic equipment [33], wind turbines [34], and compres-
sors [35] and achieved higher diagnostic accuracy than that
of traditional methods. Oh et al. preprocessed the vibration
signal to generate a 2D image, then applied the directional
gradient histogram as the input feature, and performed
feature extraction and fault classification through DBN [36].
Tao et al. proposed a DBN-based multisensor information
fusion bearing fault diagnosis model. (e input of the model
is 14 time domain statistical features of the vibration signals
collected by 3 sensors [37]. (e flow diagram of multisensor
information fusion is shown in Figure 7.

In order to speed up the DBN model training speed and
improve its generalization ability, operating efficiency, and
recognition accuracy, the researchers further studied the
optimization algorithm based on the DBN model, as shown
in Table 2. Li et al. proposed a deep belief network (DBN)
algorithm and bearing fault diagnosis model based on
particle swarm optimization (PSO) [38]. In [39–41], the
researchers used Nesterov momentum to adaptively opti-
mize the training of the diagnosis model based on DBN, and
the diagnosis accuracy rate was higher than that of the
standard DBN. He et al. used genetic algorithm to optimize
the structure of the DBN and diagnose the fault of the gear
transmission chain [42]. Tao et al. proposed a rolling bearing
fault diagnosis method based on bacterial foraging decision
and deep confidence network, which improved the accuracy
of rolling bearing fault diagnosis [43]. Shao et al. constructed
an adaptive DBN, used adaptive learning rate and mo-
mentum algorithm to train the DBNmodel [44], and further
proposed a convolutional DBN algorithm for bearing fault
diagnosis, which used exponential moving average tech-
nology to improve the performance of the diagnostic model
[45, 46].
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3.2. Autoencoder and Its Application

3.2.1. Basic /eory of AE and Its Variants

(1) Autoencoder (AE). Autoencoder (AE) is a feedforward
neural network with input layer, hidden layer, and
output layer. (e input layer and the hidden layer form a
coding network, and the hidden layer and the output
layer form a decoding network. (e structure is shown in
Figure 8.

(e basic idea of AE is to transform the input high-
dimensional data into a low-dimensional encode vector
through nonlinear mapping through the coding network,
then reconstruct the code vector through the decoding
network, and then learn new data representation [47].

Given a data set xm{ }M
m�1, the encoding network uses the

encoding function fθ to transform the training sample xm

into a low-dimensional coding vector hm.

h
m

� fθ x
m

( 􏼁 � sf Wx
m

+ b( 􏼁, (5)

where sf is the activation function of the coding network; θ
is the parameter set of the coding network, θ � W, b{ }; W is
the weight matrix from the input layer to the hidden layer;
and b is the bias term coefficient. (en, the encoding vector
hm is reconstructed by the decoding function gθ′

in the
decoding network to obtain the reconstructed representa-
tion 􏽢xm of the sample xm.

􏽢x
m

� gθ′ h
m

( 􏼁 � sg W′hm
+ d( 􏼁, (6)

where sg is the activation function of the decoding network;
θ′ is the parameter set of the decoding network, θ′ � W′, d􏼈 􏼉;
W′ is the weight matrix from the hidden layer to the output
layer; and d is the bias term coefficient. (e autoencoder
minimizes the reconstruction error between xm and 􏽢xm by
optimizing the parameter set θ, θ′􏼈 􏼉.

JAE θ, θ′( 􏼁 �
1

M
􏽘

M

m�1
L x

m
, 􏽢x

m
( 􏼁. (7)

As shown in Figure 9, after stacking multiple layers of
AE, a deep network structure can be formed: stacked
autoencoder (SAE). (is structure uses the hidden layer
output of the previous layer of AE as the input layer of the
next AE. (e training of the model includes two stages:
pretraining and fine-tuning. (e unsupervised layer-by-
layer pretraining stage is used to extract fault features in the
signal, and the supervised global fine-tuning stage is used to
optimize the model’s expression of fault features and make it
have diagnostic capabilities.

(2) Denoising Autoencoder (DAE). Aiming at solving the
problem that the original signal of rotating machinery
contains a lot of noise and nonlinear components,
Vincent et al. [48] proposed adding noise with certain
statistical characteristics to the sample data to train the
autoencoder, so as to obtain more robust features to
initialize the deep network structure, which is denoising
encoder (DAE).
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Figure 6: (e flow chart of the diagnostic method for ball screw proposed in [29].
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During training, first add random noise to the sample
xm according to the qD distribution to obtain the noisy
sample 􏽥xm:

􏽥x
m ∼ qD 􏽥x

m
| x

m
( 􏼁,

argmin
θ,θ′

L x
m

, gθ′ fθ 􏽥x
m

( 􏼁( 􏼁( 􏼁. (8)

(en, train the DAE by optimizing the objective function
such as (8).

(3) Sparse Autoencoder (SAE). A sparse penalty term is
added to the loss function of the autoencoder to constrain it
to reduce the probability that the autoencoder network
would completely copy the input information to the hidden
layer during the training process. (e sparse data features
learned by this method can better express the input data, and
better hidden layer features can be obtained when the
number of model neurons is large. Usually, choose Kull-
back–Leibler (KL) divergence to determine the penalty term,
and the penalty term PN can be expressed as follows:

PN � 􏽘
S

j�1
KL ρ ρj

�����􏼒 􏼓. (9)

In the formula, S is the number of neurons in the hidden
layer and KL(ρ ‖ ρj) is KL divergence. (e general cost
function of neural network is expressed as

J(W, b) �
1
n

􏽘

n

i�1

1
2

hW,b(x(i)) − y(i)
����

����
2

􏼒 􏼓⎡⎣ ⎤⎦

+
c

2
􏽘

ml−1

l�1
􏽘

SI

i�1
􏽘

Sj+1

j�1
Wij(l)􏼐 􏼑.

(10)

After adding the sparse penalty item, it can be expressed as

Jsparse(W, b) � J(W, b) + β􏽘
S

j�1
KL ρ ρj

�����􏼒 􏼓. (11)

In the formula, β is the weight of the sparse penalty term.
(e optimized parameters W and b, which are also

parameters in the sparse cost function Jsparse, are finally
obtained in the encoding process. (erefore, the optimal
parameters W and b can be obtained by minimizing the
sparse cost function, and this process can be achieved by the
backpropagation algorithm.

(4) Convolutional Autoencoder (CAE). Masci et al. [49]
proposed to use the unsupervised learning method of the
traditional autoencoder to combine the convolution and
pooling operations of the convolutional neural network to
achieve feature extraction, and apply the deconvolution
operation to decode the features, which is convolutional
autoencoder (CAE).

First, suppose there are k convolution kernels, and each
convolution kernel is composed of parameters wk and bk;
then, the encoding vector hk can be expressed as

h
k

� f x∗w
k

+ b
k

􏼐 􏼑. (12)

By performing feature reconstruction on the obtained
hk, the following formula can be obtained:

y � g h
k ∗ 􏽢w

k
+ d􏼐 􏼑,

E �
1
2n

􏽘 xi − yi( 􏼁
2
.

(13)

Considering (13), compare the input sample and the
reconstructed result with Euclidean distance, and obtain a
complete convolutional autoencoder through the optimi-
zation of backpropagation algorithm.

3.2.2. Application of Autoencoder and Its Variants in Fault
Diagnosis. AE models can learn representations from ma-
chinery data in an automatic way. Jia et al. constructed a
diagnostic model based on stacked autoencoders (SAE),
which automatically learned fault features from frequency
domain data to diagnose rolling bearings and planetary
gearboxes [15]. Liu et al. used AE to construct a recurrent
neural network for motor bearing fault diagnosis [50]. Sun

Vibrating sensor 1

Vibrating sensor 2

Vibrating sensor n

Signal acquisition Feature extraction Information fusion

Deep belief
network

Test

Training

Diagnosis results

Fault recognition

Classifier

Primitive character n

Primitive character 2

Primitive character 1

... ...

Figure 7: (e flow diagram of multisensor information fusion proposed in [37].

Table 2: Summary of fault diagnosis based on optimization al-
gorithm and DBN model.

References Optimizing method
[38] Particle swarm optimization (PSO)

[39–41] Adaptive learning rate combined with Nesterov
momentum

[42] Genetic algorithm(GA)
[43] Bacterial foraging decision
[44] Algorithm of adaptive learning rate and momentum
[45] (e exponential moving average technique
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et al. extracted low-dimensional features from the original
time domain signal by compressive sensing and used them as
the input features of the SAE diagnostic model [51]. Ref-
erence [52] used nonlinear soft threshold method and digital
wavelet framework to preprocess the vibration signal, and
then input the frequency coefficient into the SAE model to
diagnose the bearing fault. Some researchers also input
multidomain statistical features such as time domain fea-
tures, frequency domain features, and time-frequency do-
main features into the SAEmodel for fault diagnosis [53, 54].
Shao et al. compared the diagnostic performance of the SAE-
based diagnostic model when using different activation
functions [55] and used Gaussian wavelet function as the
activation function to propose a depth tracking wavelet
adaptive encoder (TDWAE) to diagnose the bearing of
electric locomotive [56]. (e structure of the wavelet
autoencoder used in the article is shown in Figure 10. Liu
et al. used STFT to process the acoustic signal into a nor-
malized spectrum and input it into a two-layer deep neural

network based on SAE for rolling bearing fault diagnosis
[57]. Cheng et al. [58] used SAE to extract features in the
time domain, frequency domain, and time-frequency
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domain. SVM is used for fault classification at the end of the
network. Zhou et al. cascaded three SAE modules and used
them to classify fault mode, fault type, and fault severity [59].

(e original signal of rotating machinery contains a lot
of noise and nonlinear components [60], AE may learn
similar features during feature extraction, and the learned
features have shifting mutation characteristics, which will
lead to misclassification of machinery health status.
(erefore, the researchers applied the AE variant structure
to the fault diagnosis of rotating machinery.

Lei et al. used frequency domain signals as input and
stacked multiple denoising autoencoders (DAE) to form a
DNN for fault diagnosis [61]. Wang et al. [62] proposed a
rolling bearing fault diagnosis method based on EMD and
sparse stacked autoencoder (SSAE), as shown in Figure 11.
(is method uses the EMD method to obtain the IMF
component of the bearing vibration signal and constructs
the Hankel matrix to obtain the singular values as the input
samples of SSAE.

Lu et al. used stacked denoising AE for bearing fault
diagnosis, and the results showed that the diagnosis per-
formance of the proposed method is better than traditional
SVM, ANN, and other methods [63]. Sun et al. proposed to
integrate denoising coding on the basis of sparse encoder to
improve the robustness of feature expression [64]. Wang
et al. proposed a continuous sparse autoencoder (CSAE) to
identify transformer faults [65]. Shen et al. [66] and Liu et al.
[67] constructed the fault diagnosis model of rotating ma-
chinery by using contraction AE and convolution AE, re-
spectively. Zhang et al. used convolutional autoencoders
(CAE) to diagnose rolling bearing faults [68]. (e results
showed that the method has the ability to eliminate noise,
strengthen fault characteristic signals, and attenuate non-
characteristic impact signals. In [69], Chen et al. proposed an
improved ensemble deep autoencoder (IEDAE). Firstly, the
loss function of the autoencoder is improved, and three
kinds of wavelet convolution autoencoders are designed.
(en, five kinds of autoencoders, such as discriminative
autoencoder and wavelet convolution autoencoder, are
employed to construct the corresponding deep autoen-
coders, and a “cross-layer” connection is designed to alle-
viate the gradient disappearance of the deep network.
Finally, the recognition result is given using the weighted
averaging method to ensure accurate and stable diagnosis
result. Wu et al. modified the mean square error (MSE)
commonly used in unsupervised autoencoders and pro-
posed a semisupervised fault diagnosis method called hybrid
classification autoencoder [70]. (is method can use both
labeled and unlabeled data to train the model. (e archi-
tecture of the proposed method is shown in Figure 12.

In order to improve the performance of the fault di-
agnosis model, researchers have successively optimized the
AE-based diagnosis model using different optimization al-
gorithms, as shown in Table 3. In [71, 72], a batch nor-
malization layer was added to SAE to solve the problem of
internal covariate shift in multilayer network training and
speed up the convergence speed. (e results show that this
method can achieve higher accuracy than the original SAE
method. In [73], Saufi et al. proposed a method that

combines differential evolution, and a resilient back-
propagation approach is proposed to improve the perfor-
mance of SSAE networks in bearing fault classification. Hou
et al. proposed a rolling bearing fault identification model
based on particle swarm optimization of stacked noise re-
duction autoencoder (PSO-SDAE). (e model can obtain a
robust and deep-level representation of the bearing fault
state characteristics [74]. Chen et al. used SAE to diagnose
diesel engine faults [75].(e authors use the harmony search
(HS) algorithm to optimize hyperparameters, adaptively
adjust the network structure of SAE, and improve the feature
extraction ability of the network. In [76], Wang et al.
proposed a deep neural network based on kernel function
and denoising autoencoder (DAE). (en, the chaotic firefly
algorithm is used to optimize the kernel parameters and the
undetermined parameters in the deep network. Based on the
AE networks, [77, 78] have proposed hybrid diagnostic
models for motor bearings and wind turbines, respectively.
(e results show that the proposed model has better gen-
eralization and convergence speed than the original AE
network.

3.3. Convolutional Neural Network (CNN)

3.3.1. Basic /eory of CNN. Convolutional Neural Network
(CNN) is a feedforward neural network proposed by LeCun
[79], which has been widely used in computer vision [80, 81],
speech recognition [82], and other fields [83]. (e typical
structure of CNN is shown in Figure 13. (e convolutional
layer, pooling layer, and fully connected layer are all hidden
layers of the convolutional neural network, and the input
layer and output layer are the visible layers of the con-
volutional neural network.

CNN learns abstract features by alternately super-
imposing convolutional layers and pooling layers. (e
convolutional layer convolves multiple local filters with the
original input data to generate translation-invariant local
features. Each filter uses the same kernel to extract the local
features of the input local area. (e form of the convolu-
tional layer is as follows:

xl
j � f 􏽘

i∈Mj

x
l−1
i ∗ k

l
ij + bj

⎛⎜⎝ ⎞⎟⎠, (14)

where l is the current number of layers, f(·) is the activation
function, kij is the weight matrix of the convolution kernel,
Mj represents the set of selected input features, and bj is a
bias item corresponding to each feature in the convolutional
layer.

Pooling is a downsampling operation that can reduce the
spatial size of features, the length of feature maps, and the
number of model parameters. (e pooling layer extracts
fixed-length features on the sliding window according to the
rules. Commonly used pooling operations include maxi-
mum pooling and average pooling [84]. (e fully connected
layer refers to sequentially expanding all the finally obtained
feature maps to form a feature vector, and the feature vector
is fully connected with the output layer. (e full connection
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�e Hankel matrix is constructed for the former M-order
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Figure 11: Illustrations of SSAE for rolling bearings fault diagnosis in [62].
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Figure 12: (e architecture of the proposed hybrid classification autoencoder in [70].

Table 3: Summary of fault diagnosis based on optimization algorithm and AE model.

References Optimizing method
[71, 72] Batch normalization (BN)
[73] Differential evolution/resilient backpropagation approach
[74] Particle swarm optimization (PSO)
[75] Harmony search (HS)
[76] Chaotic firefly algorithm (CFA)
[76, 77] Hybrid diagnostic model
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layer is located at the end of the CNN and is used to calculate
the output of the whole network.

CNN is a feature learning method with multilayer
processing units, which can convert the data of the input
layer into more easily recognizable features layer by layer.
CNN uses local connections and weight sharing to reduce
the complexity and computational complexity of the net-
work. (e local connection method effectively reduces the
number of weight parameters. Weight sharing means that
the weights connected by the same convolution kernel are
the same, which reduces the number of training parameters,
improves the convergence rate, and can effectively suppress
overfitting. (e training process of convolutional neural
network includes two stages: forward propagation and
backpropagation. Forward propagation is to input samples
into the network, initialize the network parameters, and
finally get the output. Backpropagation adjusts network
parameters by minimizing the error cost function until the
network converges or the specified iteration termination
condition is reached.

3.3.2. Application of CNN in Fault Diagnosis. CNN can
efficiently extract the feature information contained in
massive data, which is very suitable for processing large
quantities of data. Since the vibration signal is a 1D signal,
researchers often use 1D CNN to extract features from vi-
bration signals, and they conducted health detection and
fault diagnosis classification for a variety of equipment, such
as rolling bearings [85], motors [86], planetary gearboxes
[87], and fixed gearboxes [88]. Among the above references,
it is worth noting that Han et al. proposed an enhanced
convolutional neural network (ECNN) that expands the
receptive field [87]. (is method uses a 1D convolutional
layer to initially amplify the receiving field and capture the
fault information in the adjacent point group in the vi-
bration signal, then build multiple fusion expanded con-
volutional layers to further expand the receiving field, fully
capture the long-distance dependence of the original signal,
and directly input the original vibration signal into the
developed fault neural network for training. (e structural
framework of the method is shown in Figure 14.

Reference [89] uses the motor current signal as input
combined with an improved one-dimensional convolutional

neural network to achieve real-time monitoring of motor
faults. Janssens et al. use the original frequency domain data
as the input of the 2D-CNN model. (e model consists of a
single-layer convolutional layer combined with a fully
connected layer to complete the fault diagnosis of bearings
under four types of rotating machinery conditions [90]. She
et al. [91] input the multichannel signal into the multi-
channel 1D CNN for fault diagnosis of rolling bearing. (e
network structure is shown in Figure 15. Reference [92] uses
Ensemble Empirical Mode Decomposition (EEMD) to de-
compose the original signal into intrinsic mode functions
(IMF) selected based on the combined model functions
(CMF) algorithm and used as the input of CNN.

(e input data of CNN is usually 2D data. (erefore,
some scholars use other methods to decompose or recon-
struct the input vibration signal to make it suitable for the
diagnosis model based on CNN to complete the intelligent
fault diagnosis of the equipment [93–96]. As shown in
Figure 16, some researchers use the short-time Fourier
transform (STFT), the Hilbert–Huang transform (HHT)
[97], the continuous wavelet transform (CWT) [98], the
synchrosqueezing transform (SST) [99], and other methods
to convert 1D vibration signals into 2D time-frequency
images as the input of CNN. Some other researchers used
gray image [100], wavelet packet energy diagram [101],
infrared thermal image [102–104], root mean square dia-
gram [105], feature statistics diagram [106], and other im-
ages as the input of CNN for fault diagnosis of rotating
machinery. Wang et al. used the short-time Fourier trans-
form (STFT) to obtain the time-frequency map of the vi-
bration signal and then adaptively extracted the time-
frequency map features through CNN [107]. (e effects of
preprocessing methods and hyperparameters on the accu-
racy of network diagnosis are also studied. (e results show
that batch size is the main factor affecting training accuracy
and efficiency. Xiao et al. converted the vibration signal into
a 2D gray image to extract image features. (en, the feed-
forward denoising convolutional neural network is used for
noise reduction, and the CNN gradient descent algorithm is
optimized for parameter adaptive learning rate [108]. Zhu
et al. used CNN to perform adaptive feature extraction on
the symmetrical point map converted from the vibration
signal [109]. Wen et al. proposed a method to convert time
domain signals into 2D images, combined with improved
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Figure 13: CNN structure diagram.
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LeNet5 model to achieve fault diagnosis of bearings and
centrifugal pumps [100]. Ren et al. extracted the main
spectrum energy of the vibration signal, combined it into a
feature map as the input of CNN, and predicted the
remaining life of the bearing [110].

As shown in Table 4, some researchers have optimized
and improved the diagnosis model based on CNN. Cao
et al. proposed an adaptive deep convolutional neural
network. (e network uses particle swarm optimization
(PSO) to determine the structure and parameters of the
CNN model and uses principal component analysis (PCA)
to visualize the diagnosis process [111]. Zhang et al. pro-
posed a WDCNN model for bearing fault diagnosis [112].
(e model has a wide first-layer kernel and a small con-
volution kernel. (e results show that the proposed model
also has high diagnostic accuracy in noisy environments.
Reference [113] proposes an end-to-end convolutional
neural network method. (is method takes the original
time signal as input and does not require any denoising or
batch normalization preprocessing. It has high diagnostic
accuracy under noisy environments or when the workload
changes. (e model structure is shown in Figure 17. Pan
et al. proposed a fault classification model based on CNN
and second-generation wavelet transform (SGWT): Lif-
tingNet. (ey used a large-size kernel function and a
nonlinear function to filter out noise [114]. Dong et al.
proposed a bearing fault diagnosis method based on
multilayer noise reduction technology and improved

convolutional neural network (ICNN) [115]. (is method
introduces an attention mechanism in the feature extrac-
tion layer of CNN, which improves the ability to extract
nonsensitive features. Ye et al. proposed a multichannel
weighted convolutional neural network (MCW-CNN) for
feature learning and fault diagnosis of gearbox vibration
signals [116]. Guo et al. used a hierarchical deep con-
volutional neural network to extract fault features and
perform fault diagnosis on rolling bearings. (e network
contains two CNN modules to identify faults and deter-
mine the severity of faults [117]. Gong et al. [118] proposed
an improved CNN-SVM method for motor bearing fault
diagnosis. (is method uses 1∗1 transitional convolutional
layer and global mean pooling layer to replace the fully
connected layer structure of traditional CNN to reduce
training parameters. As in [119], SVM is used instead of
Softmax classifier to classify fault features to further im-
prove the accuracy of diagnosis. In order to prevent part of
the effective information from being filtered out by the
pooling operation, Li et al. proposed a deep CNN that
ignores the pooling layer to predict the remaining life of
multivariable equipment [120].

As the number of CNN layers increases, it will cause
gradients to disappear or explode during training.(erefore,
the researchers added a residual unit on the basis of the CNN
architecture and proposed the ResNet structure to solve the
problem that parameters such as weights and deviations in
the deep-level CNN architecture are usually not easy to

In
pu

t s
ig

na
l

Reshape
One-dimension

convolutional layer
Fused dilated

convolutional layer
Fused dilated

convolutional layer
Full connection

layer

Output layer

Pooling
layer

Pooling
layer

... ... ... ...

Figure 14: (e structural framework of the ECNN method proposed in [87].

DAQ

Multi-channel raw
vibration signal

Convolution Pooling Flatten

Wear Indicator

MDCNN DNN

Figure 15: (e multichannel 1D CNN structure proposed in [91].

Shock and Vibration 13



optimize [121, 122]. Under complex conditions such as
variable speed conditions or variable load conditions, the
fault diagnosis model of rotating machinery based on the
ResNet structure can achieve higher diagnostic accuracy and
generalization performance [123–126]. Reference [125]

proposed a method based on time-frequency analysis and
deep residual network to diagnose planetary gearbox faults.
Zhao et al. used a dynamic weighted wavelet coefficient and
multiwavelet coefficient fusion method to improve the
performance of a ResNet-based diagnostic model. (en, the
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fault diagnosis of planetary gearbox under severe noise
environment is carried out [127, 128].

3.4. Recurrent Neural Networks (RNN)

3.4.1. Basic /eory of RNN. Recurrent neural network
(RNN) is a neural network that includes feedforward con-
nections and internal feedback connections. RNN is often
used to deal with sequence problems. RNN adds self-con-
nected neurons in the hidden layer to form internal memory
and uses backpropagation to realize thememory of historical
information and network state feedback. (e special net-
work structure of RNN can retain the state information of
the hidden layer at a moment, and it has a powerful ad-
vantage in the field of complex dynamic system modeling.
(e model structure is shown in Figure 18.

In the figure, xt is the input unit at time t, ht is the
hidden state at time t, and ot is the output of the network at
time t. U, V, W represent the connection weight between
layers. After the repetitive structure in the network is ex-
panded, network parameters such as the weight matrix and
bias items can be shared. (e calculation formula at time t is
as follows:

ht � f Wht−1 + Uxt + bh( 􏼁. (15)

In the formula, bh is the bias vector at time t and f(·) is
the activation function. (e value of each hidden layer of the
RNN is determined by the input at the current moment and
the value of the hidden layer at the previous moment. RNN
can be divided into two different networks of Jordan type
and Elman type according to different feedback paths.

(e traditional RNN is equivalent to a multilayer
feedforward neural network. As the length of the time series
increases, the number of network layers will increase and the
amount of calculation will increase significantly. When

Table 4: Summary of fault diagnosis based on optimization algorithm and CNN mode.

References Optimization and improvement
[111] Particle swarm optimization (PSO)/principal component analysis (PCA)
[112] Wide first-layer kernel/small convolutional kernels/AdaBN algorithm
[113] Training intervention/end-to-end CNN
[114] Large-size kernel function and nonlinear function to filter noise
[115] Multilayer noise reduction/attention mechanism
[116] Multichannel weighted convolutional neural networks
[117] Layered deep convolutional neural networks
[118] 1∗1 transitional convolution layer/global mean pooling layer
[118, 119] Using SVM instead of Softmax classifier
[120] Depth CNN of the pool layer is ignored
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dealing with long-term monitoring sequences, large pre-
diction deviations will occur, and gradients may disappear or
explode [129]. Researchers have developed improvedmodels
such as long short-term memory models (LSTM) and gated
recurrent units (GRU) based on standard RNN to solve the
shortcomings of RNN.

Long short-term memory (LSTM) is the most repre-
sentative variant of RNN. LSTM uses a memory unit con-
taining a gate structure to replace neurons in the hidden
layer, which can add information to or forget the cell state
and allowing information to pass through selectively.

As shown in Figure 19, the LSTM memory cell structure
includes input gates, forget gates, output gates, and input
modulation gates. (e input gate, forget gate, and output
gate use the Sigmoid function to control the switching state
of the gate, and the input modulation gate uses the Tanh
function to control the switching state of the gate [130]. (e
output of the forget gate is the product of the input in-
formation and the cell state at the last moment. (e forget
gate controls the forgetting of information.(e output of the
input gate is the product of the input information and the
output of the modulation gate.(e function of the input gate
is to control the input of information. (e sum of the above
two is used as the cell state of the LSTM memory unit at the
current moment, and the product of the output gate and the
cell state processed by the Tanh layer is used as the input
information of the next unit.

3.4.2. Application of RNN in Fault Diagnosis. RNN can
retain the state information of the hidden layer at a moment,
which overcomes the limitations of simple neural networks.
It is mainly used to process sequential data or degraded data.
Jiang et al. proposed an adaptive RNN for intelligent fault
diagnosis of bearings and used an adaptive learning algo-
rithm to further improve the performance of the diagnostic
model [131]. Reference [132] uses RNN to model the op-
erating behavior of wind power generation systems. (e
fault identification is achieved by comparing the residuals
between the real system output and the model output.
Reference [133] uses RNN to solve the robustness problem of
actuator fault diagnosis in dynamic nonlinear systems.
Helmes trains the RNN-based model through the BPTT
algorithm and the extended Kalman filter method to achieve
the prediction of the remaining life [134]. Lin et al. used the
recursive fuzzy neural network model to perform fault-
tolerant control of the permanent magnet synchronous
motor position servo drive [135].

It is difficult for traditional RNN methods to analyze and
process multidimensional data, and there are large prediction
errors when processing long-term sequences. (erefore, re-
searchers have improved the RNN method. Wu et al. used
LSTM to predict the remaining life of engineering equipment
and used dropout technology to improve the generalization
ability of LSTM [136]. (e results showed that the prediction
effect of the proposed method is better than that of the
traditional RNNmodel. Reference [137] uses the three models
of traditional RNN, LSTM, and GRU to diagnose and predict
aircraft engine faults. (e results show that the performance

of LSTM andGRU is better than traditional RNN. Zhang et al.
proposed a residual life prediction method based on bidi-
rectional LSTM, an architecture that is specialized in dis-
covering the underlying patterns embedded in time series, to
track the system degradation and consequently to predict the
RUL [138]. (e model structure is shown in Figure 20.

Zhao et al. proposed a convolutional bidirectional long
short-termmemory network (CBLSTM) to predict tool wear
failure [139]. (is method uses CNN to extract local features
and uses bidirectional LSTM to encode the time information
output by CNN. Finally, the fully connected layer and the
linear regression layer are superimposed to predict the target
value. Liu et al. established an intelligent prediction model
for rolling mill flutter energy value based on long short-term
memory (LSTM) cyclic neural network and analyzed the
influence of different time steps on the prediction effect to
obtain the optimal prediction step [140]. Reference [141]
uses the weighted feature averaging method and bidirec-
tional GRU to build an enhanced two-way GRU network for
machine health monitoring.

3.5. Generative Adversarial Networks (GAN)

3.5.1. Basic /eory of GAN. (emonitoring data of rotating
machinery under actual working conditions has the problem
of data imbalance; that is, the amount of normal data is far
more than the fault data, and the number of different types of
fault data is not balanced. When using imbalanced data for
fault diagnosis, the classification boundary of the classifier
will be biased towardmost classes. As a result, it is difficult to
identify minority samples, and the performance of the
classifier will be seriously affected.

Generative adversarial network (GAN) [142] is a feature
learning algorithm based on game scenarios. Feature
learning is performed through adversarial learning, which
can be used to solve the above-mentioned data imbalance
problem. (e structure of GAN is shown in Figure 21. (e
generative confrontation network consists of two parts:
generator and discriminator. (e input of the generator is
random noise z obeying a certain distribution, the output is
a generated sample G(z) similar to the real sample x. (e
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input of the discriminator is the real sample and the gen-
erated sample. (e function of the discriminator is to dis-
tinguish the source of the input sample, that is, the
probability thatG(z) comes from x. When the discriminator
inputs x, D(x) is close to 1; when G(z) is input, D(G(z)) is
close to 0.

In the training process, the generator optimizes the
discriminant results of the discriminator to improve the
generation ability, making G(z) as similar as possible to the
real sample x, so that the discriminator cannot distinguish
the source of samples. (e discriminator optimizes itself
through the probability of misjudgment so as to improve the
discriminant ability of generated samples. (e whole net-
work is optimized through mutual antagonism; that is, the
final output of the generator is close to the generated samples
of the real sample distribution, and the discriminator cannot
distinguish the generated samples. (e objective function of
GAN training can be expressed as follows:

min
G

max
D

V(D, G) � Ex∼pda ta(x)[log D(x)]

+ Ez∼pz(z)[log(1 − D(G(z)))].
(16)

(e discriminator in GAN can be regarded as a kind of
classifier to distinguish the authenticity of samples, and cross
entropy is often used to distinguish the similarity of sample
distribution. (e formula is as follows:

H(p, q) � − 􏽘
i

pilog qi. (17)

3.5.2. Application of GAN in Fault Diagnosis. Based on
GAN, data similar to minority samples can be generated to
solve the problem of data imbalance. Wang et al. used GAN
to generate new samples with similar distributions to the
original samples to expand the failure sample set, combined
with the stacked noise reduction autoencoder for the fault

Sample source
(True/False

label) 

Random
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Figure 21: (e structure of GAN.
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diagnosis of the planetary gearbox [143]. Liu et al. [144] and
Mao et al. [145] used GAN and stacked denoising
autoencoder to solve the problem of data imbalance in
bearing fault diagnosis. (e results show that the fault
samples generated by GAN can improve the fault diagnosis
accuracy in the case of data imbalance. Sun et al. proposed an
adversarial generative oversampling model based on a
generative adversarial network (GAN) to produce valuable
artificial samples for minority class to balance the data
distribution and used it for tool breakage detection [146].
Different from the previous research using GAN, it uses the
discriminator to filter the samples generated by the gener-
ator to achieve effective oversampling. (e framework
structure and network model structure of the proposed
method are shown in Figures 22 and 23.

Xie et al. proposed using periodic consistency GAN to
generate false samples for auxiliary diagnosis to diagnose
bearing faults under different operating conditions [147]. Li
et al. used a GAN-based generative model to generate false
fault samples for fault diagnosis of bearings under different
operating conditions [148]. Reference [149] proposed a
method based on deep convolutional generative adversarial
networks (DCGAN) to accurately detect rolling bearing
faults under data imbalance and complex dynamic condi-
tions. Dai et al. combined generative adversarial networks
and autoencoders to construct an encoding-decoding-
recoding network model to detect anomalies in mechanical
systems [150].

4. Transfer Learning (TL)

4.1. Basic /eory of TL. (e current machine learning
methods used for fault diagnosis of rotating machinery are
mostly based on the assumption that training data and test
data are in the same feature space and have the same dis-
tribution. However, there is a data imbalance between the
health data and fault data of rotating machinery in actual
working conditions, and the cost of labeling large-scale data
is extremely high or even impossible. (erefore, it is difficult
to construct a large-scale and well-labeled data set. At the
same time, the above assumptions are often not true in actual
working conditions. (e diagnostic model trained with the
training set will have poor performance on the test set.

Transfer learning (TL) relaxes the assumption that
training data and test data must be independent and
identically distributed. TL can apply knowledge or patterns
learned in a certain field or task to different but related fields
and has been widely used in many fields [151, 152].

Assume that the sample space of a machine learning task
T is X × Y, where X is the input space, Y is the output space,
and its probability density function is p(x, y). Suppose X is a
subset of the d-dimensional real number space and Y is a
discrete set. A sample space and its distribution can be called
a domain: D � (X, Y, p(x, y)). Given two domains, they are
considered different if at least one of their input spaces,
output spaces, or probability distributions is different, then
the two domains are considered to be different. Transfer
learning refers to the process of knowledge transfer between
two different domains. Features or knowledge structures are

transfered from the source domain to help with learning
tasks in the target domain to complete or improve learning
in the target domain, where labeled data in the target domain
are missing or not available. (e number of training samples
in the source domain is generally much larger than that in
the target domain. Different from traditional machine
learning methods, as shown in Figure 24, transfer learning
frameworks focus on using transferable characteristics or
knowledge of the source domain to improve model per-
formance, which can reduce the number of samples required
in the target domain.

Deep learning methods can learn the deep representa-
tion of data and provide cross-domain invariant features for
transfer learning. Transfer learning based on cross-domain
invariant features can effectively reduce the difference be-
tween source domain and target domain, so transfer learning
and deep learning methods are usually closely combined.
Transfer learning is generally divided into instance-based
transfer learning, feature-representation transfer learning,
parameter transfer learning, and relational knowledge
transfer learning [153].

4.2. Application of TL in Fault Diagnosis of Rotating
Machinery. Using the transfer learning method to carry out
fault diagnosis research on rotating machinery can solve the
problem of low accuracy of the diagnostic model caused by
insufficient labeling data under actual working conditions
through sufficient labeling data in the laboratory environ-
ment. Zheng et al. proposed a bearing fault diagnosis model to
fuse the diagnosis knowledge of multiple working conditions
and complete the diagnosis tasks under other working
conditions [154]. Tong et al. carried out fault diagnosis re-
search on motor bearing [155] and conveyor roller bearing
[156] based on the transfer learning method. Chen et al.
proposed an improved LSSVM transfer learning method
based on auxiliary data to solve the problem of insufficient
bearing data available under different working conditions
[157]. Lei et al. proposed a deep transfer diagnosis method for
the transfer diagnosis between laboratory bearings and
electric locomotive bearings [22]. (is method extracts
transfer fault characteristics from the monitoring data of
different devices by constructing a domain-sharing deep
residual network and then imposes domain adaptation reg-
ular term constraints during the training process to form a
deep transfer diagnosis model. Lu et al. used stacked
autoencoders (SAE) to extract fault features with similar
distributions to perform transfer learning fault diagnosis on
motor bearings and gears [158]. For motor bearings under
different operating conditions, Zhang et al. [159] and Hasan
et al. [160] used target operating conditions samples to fine-
tune the pretrained diagnostic model. Compared with the
diagnostic model that only trains a small number of target
domain samples, the fine-tuned diagnostic model has faster
convergence speed and higher diagnostic accuracy. (e
schematic diagram of the method is shown in Figure 25. Shao
et al. proposed a method based on the enhanced depth
transfer autoencoder for the diagnosis of bearing fault transfer
between different mechanical equipment [161]. (is method
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first obtains the initialization parameters of the target model
by pretraining with sufficient source domain data and then
uses a sample of the target domain to fine-tune the target
model to adapt to the remaining samples. Cao et al. [162] and
Shao et al. [163] converted vibration data into 2D time-fre-
quency images and then performed parameter transfer on the
pretrained image recognition model to obtain the pretrained
network. Finally, the fine-tuned network is used for feature
extraction and fault classification of time-frequency images.
Reference [164] used the deep network model trained in the
source domain to complete information transfer in the target
domain by fine-tuning parameters, and it constructed a RUL
prediction model with good feature representation.

Another method based on transfer learning is to realize
fault diagnosis by reducing the difference in the distribution of
sample characteristics between the source domain and the
target domain.Wen et al. [165] proposed a SAE-based domain
adaptive method to diagnose bearings under different working
conditions and used the maximum mean difference (MMD)
term tomeasure the difference between domains. Li et al. [166]
and Zhang et al. [167] usedMMDas a loss function tomeasure
the difference in the distribution of data in the two domains
and constructed a CNN-based transfer diagnosis model. As
shown in Figure 26, Yang et al. [20] used a CNN-based transfer
diagnosis model to transfer the diagnosis knowledge of lab-
oratory motor bearings to the diagnosis of locomotive bear-
ings. MultilayerMMD and its improvement method [168,169]
were added to the diagnosis model to improve the trans-
mission performance and robustness of the diagnosis model.

Qian et al. [170] and Zhang et al. [112] used adaptive
batch normalization (AdaBN) operation in the CNN-based
bearing transfer diagnosis model to improve the model
diagnosis performance under different working conditions.
Chen et al. used TCA to reduce the distribution difference of
rolling bearing monitoring data under different operating

conditions and extract transfer characteristics [171]. Han
et al. [172] proposed a deep transfer intelligent fault diag-
nosis framework that extends marginal distributed adap-
tation (MDA) to joint distributed adaptation (JDA). As
shown in Figure 27, the framework uses a discriminant
structure related to the source domain labeled data to adapt
to the conditional distribution of unlabeled target data,
thereby ensuring more accurate distribution matching. Mao
et al. [173] used TCA and SVM classifiers to study gearbox
transfer fault diagnosis methods and RUL predictions.

5. Performance Evaluation Index of Rotating
Machinery Fault Diagnosis Method Based on
Deep Learning

After a researcher proposes a specific research method, it is
usually necessary to conduct a rigorous evaluation, that is, to
evaluate the performance of the method through a suitable
evaluation standard, judging the validity and practicability
of the method model. However, in the evaluation process,
factors such as the selection of evaluation indicators, data
types, and model application scenarios will affect the per-
formance of the method model. (erefore, the selection
criteria of evaluation indicators are different in different
application fields. Some scholars analyzed various perfor-
mance indicators and classification methods. Some com-
monly used performance indicators and error measures are
systematically organized, and their basic principles, appli-
cation suggestions, and limitations are summarized
[174,175]. (is section provides an overview of the per-
formance evaluation indicators that are widely used in the
field of rotating machinery fault diagnosis. However, in
specific research, researchers still need to make targeted
selection of the evaluation indicators used according to the
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actual situation in order to correctly evaluate the perfor-
mance of the method.

5.1. Classification Task Performance Evaluation Index.
Related research in the field of fault diagnosis of rotating
machinerymainly focuses on themotors, bearings, gearboxes,
and other components in mechanical equipment. Most of
these studies are classified tasks. Take the fault diagnosis
research of rolling bearing as an example; the diagnosis target
is the fault type of the bearing (normal bearing, bearing inner
ring fault, bearing outer ring fault, bearing rolling element
fault). Performance evaluation indicators widely used in these
classification tasks include the following:

(1) Accuracy (ACC)

ACC is defined as evaluating the ratio of the number
of correct predictions to the total number of samples.
Its expression is

ACC �
TP + TN

P + N
�

TP + TN

TP + TN + FP + FN
, (18)

where P denotes the number of real positives, N
denotes the number of real negatives, TP denotes
true positives, TN denotes true negatives, FP de-
notes false positives, and FN denotes false
negatives.

(2) True Positive Rate (TPR)/Recall
TPR is defined as measuring the proportion of
actual positives that are correctly identified as
positives. It can be used to describe the proportion
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of actual positives correctly identified. Its ex-
pression is

TPR �
TP

P
�

TP

TP + FN
. (19)

(3) Positive Predictive Value (PPV)/Precision
PPV is defined as the proportions of positive ob-
servations that are true positives. Its expression is

PPV �
TP

TP + FP
. (20)

(4) False Positive Rate (FPR)
FPR is defined as measuring the proportion of
positive cases that are correctly identified as posi-
tives. It can be described proportion of negative cases
incorrectly identified as positive cases. Its expression
is

FPR �
FP

N
�

FP

FP + TN
. (21)

(5) False Discovery Rate (FDR)
FDR is defined as expected proportion of false ob-
servations. It can be described as the proportion of
the individuals with a positive test result for which
the true condition is negative. Its expression is

FDR �
FP

FP + TP
. (22)

(6) F1-Score
F1-score is defined as harmonic mean of the pre-
cision and recall. Its expression is

F1 �
2TP

2TP + FP + FN
. (23)

5.2. Predictive Task Performance Evaluation Index. In ad-
dition to the classification of fault types, the research field of
fault diagnosis of rotating machinery also includes another
important research direction, that is, the prediction of the
remaining life of the equipment. (e remaining life pre-
diction research of rotatingmachinery is a kind of prediction
task. Given sample set D � (x1, y1), (x2, y2), . . . , (xn, yn)􏼈 􏼉,
where yi is the true label of sample xi, to evaluate the
performance of method model f, it is necessary to compare
the model prediction result f(x) with the real label y. (e
most commonly used performance evaluation indicators for
this type of task include the following:

(1) Error (E)
E is defined as the amount by which an observation
differs from its actual value. Its expression is

E � A − P, (24)

where A is actual measurements and P is predictions.
(2) Mean Error (ME)

ME is defined as the average of all errors in a set. Its
expression is

ME �
1
n

􏽘

n

i�1
Ei. (25)

(3) Mean Absolute Error (MAE)
MAE is defined as measuring the difference between
two continuous variables. Its expression is

MAE �
1
n

􏽘

n

i�1
Ei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (26)

(4) Mean Squared Error (MSE)
MSE is defined as measuring the average of the
squares of the errors. Its expression is

MSE �
1
n

􏽘

n

i�1
Ei( 􏼁

2
. (27)

(5) Root Mean Squared Error (RMSE)
RMSE is defined as root square of average squared
error. Its expression is

RMSE �

���������

1
n

􏽘

n

i�1
Ei( 􏼁

2

􏽶
􏽴

. (28)

(6) Mean Absolute Percentage Error (MAPE)
MAPE is defined as measuring the extent of error in
percentage terms. Its expression is

MAPE �
􏽐

n
i�1 Ei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌/ Ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

n/100
. (29)

(7) Correlation Coefficient (R)
R is defined as measuring the strength of association
between variables. Its expression is

R �
􏽐

n
i�1 Ai − Ai( 􏼁 Pi − pi( 􏼁

􏽐
n
i�1 Ai − Ai( 􏼁

2
􏽐

n
i�1 Pi − pi( 􏼁

. (30)

5.3. Other Performance Evaluation Methods. In addition to
the above-mentioned performance evaluation indicators,
there are also some methods that can intuitively evaluate the
performance of the method model and are widely used.
(ese methods include the following.

5.3.1. Confusion Matrix. (e content of the confusion
matrix is the statistical data of actual classification and
predicted classification. Each column in the matrix repre-
sents a predicted instance, and each row represents an actual
instance. Confusion matrix is of great significance for un-
derstanding the accuracy measurement of model classifi-
cation effect [174]. As shown in Figure 28, the actual
classification results and misjudgments of each type of
sample can be found through the confusion matrix [176].
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5.3.2. t-SNE Visualization. t-SNE is a nonlinear dimen-
sionality reduction algorithm. When researching the clas-
sification of high-dimensional data, t-SNE can project the
data into a 2D or 3D space for observation and judge the
separability of the data (small intervals between similar types
and large intervals between heterogeneous types). It is also
possible to visually analyze the features extracted from each
layer of the deep learningmodel through t-SNE. As shown in
Figure 29, the classification performance of the model can be
effectively evaluated through the observed feature distri-
bution and the degree of clustering.

In addition to the above methods, the performance of the
method model can be also evaluated to a certain extent
through methods such as the training/validation accuracy
curve of the method model, the training/validation loss
curve, and the algorithm running time. However, the
hardware equipment and operating environment used by
different research methods are different, so these methods
have limitations. Depending on the application field of the
researchmethod and the type of data, the selection criteria of
the evaluation indicators will also change. When selecting
performance indicators, it is necessary to select multiple
indicators or a combination of multiple indicators according
to different research methods to properly evaluate the
performance of the method.

6. Existing Problems and Future
Development Trends

Rotating machinery fault diagnosis method based on deep
learning can not only quickly and effectively extract char-
acteristic signals reflecting equipment operating conditions,
but also establish a nonlinear relationship between equip-
ment operating monitoring data and equipment operating
conditions and then accurately identify the type of equip-
ment failure and the degree of the failure. However, there are
still certain problems and challenges that need to be further
studied.

Regarding research on fault diagnosis when multiple
fault forms exist on the same component at the same time,
existing studies have mostly neglected the simultaneous
occurrence of multiple failure modes in engineering ap-
plications. For example, bearing failure may be caused by
various failure forms such as corrosion of the inner ring and
cracks on the surface of the outer ring. (erefore, the re-
search on the fault diagnosis method when there are mul-
tiple fault forms of the same component at the same time is
worthy of further study.

In respect of research on fault diagnosis when multiple
component faults are coupled with each other, rotating
machinery in engineering applications runs for a long time
and under heavy load, and its multiple components often
have different failures at the same time. (ese components
usually affect each other and jointly determine the operating
conditions of the equipment. Most of the existing research
focuses on a certain part of the equipment, such as a bearing
or gearbox and conducts its fault diagnosis research sepa-
rately. (erefore, the method of equipment fault diagnosis
after multiple components have failed and are coupled to
each other needs to be studied in depth.

Concerning research on methods to improve the quality
of operating data for rotatingmachinery, rotatingmachinery
data in engineering applications has the characteristics of
large data volume, multiple signal sources, different sam-
pling forms, and easiness of interference by random factors.
It is difficult to establish appropriate evaluation criteria to
quantitatively explain the completeness, accuracy, and
timeliness of the data. (erefore, it is necessary to study
intelligent data cleaning algorithms or other methods to
improve data quality and increase data availability.

With regard to research on the extended application field of
fault diagnosis based on deep learning, current fault diagnosis
mostly focuses on key components such as bearings or gear-
boxes of rotatingmachinery. However, there are a large number
of other types of mechanical equipment in engineering appli-
cations, such as vibrating machinery or unfixed machinery.(e
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characteristic signals of this type of mechanical equipment are
different from those of rotating machinery. (erefore, it is
necessary to study the application of deep learning-based fault
diagnosismethods to other types ofmechanical equipment such
as vibrating machinery and unfixed machinery.

As for research on robustness and real-time performance
of fault diagnosis methods based on deep learning, the actual
working conditions of the diagnosis model are not neces-
sarily the same. For example, a model that performs well in
the diagnosis of fan bearings is not suitable for the diagnosis
of coal mine belt conveyors. (erefore, it is necessary to
study a more robust diagnosis method. At the same time, the
diagnosis model and related algorithms need to be updated
according to in-service performance to deal with new
situations.

7. Conclusion

(e fault diagnosis research of rotating machinery is a key
link to ensure the normal operation of rotating machinery
and equipment, reduce unplanned maintenance, and ensure
the safety of industrial production, which is of great sig-
nificance. With the rapid development of intelligent algo-
rithms and hardware equipment, the research on fault
diagnosis of rotating machinery based on deep learning has
received attention. (is article reviews the research on fault
diagnosis of rotating machinery based on deep learning, and
the conclusions and contributions obtained are as follows:

(1) (e development process of fault diagnosis research
in the field of rotating machinery is summarized, the
advantages and disadvantages of the methods at each
stage are explained, and the fault diagnosis research
based on deep learningmethods is pointed out as one
of the future research trends.

(2) (is article discusses deep belief network (DBN),
autoencoder (AE) and its variants, convolutional
neural network (CNN), recurrent neural network

(RNN), generative adversarial network (GAN), and
transfer learning (TL) from both aspects of basic
theory and specific applications. It provides a certain
reference and convenience for researchers in this
field to carry out follow-up research work.

(3) (is article provides an overview of some commonly
used evaluation indicators used to evaluate the
performance of diagnostic methods. From the per-
spective of engineering application, the problems
existing in the study of fault diagnosis of mechanical
equipment with deep learning methods are analyzed,
and the future research and development trends are
prospected. (is work provides some inspiration for
researchers in this field and helps to promote the
development of this field.

In future work, researchers should combine theory and
practice to increase the size of the available data set as the
data basis for future research, improve the accuracy and
speed of the diagnosis algorithm as much as possible, and
combine this with the equipment in actual working con-
ditions to improve the diagnosis and the usability of the
algorithm in the industrial field [177].
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