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In this paper, a stochastic model predictive control (MPC) is proposed for the wheeled
mobile robot to track a reference trajectory within a finite task horizon. The wheeled mobile
robot is supposed to subject to additive stochastic disturbance with known probability
distribution. It is also supposed that the mobile robot is subject to soft probability
constraints on states and control inputs. The nonlinear mobile robot model is linearized
and discretized into a discrete linear time-varying model, such that the linear time-varying
MPC can be applied to forecast and control its future behavior. In the proposed stochastic
MPC, the cost function is designed to penalize its tracking error and energy consumption.
Based on quantile techniques, a learning-based approach is applied to transform the
probability constraints to deterministic constraints, and to calculate the terminal constraint
to guarantee recursive feasibility. It is proved that, with the proposed stochastic MPC, the
tracking error of the closed-loop system is asymptotically average bounded. A simulation
example is provided to support the theoretical result.
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1 INTRODUCTION

Model predictive control (MPC) is a useful tool when dealing with stabilization or tracking problem
with constraints. It solves a finite horizon optimal control problem in a receding horizon manner
while only implementing one-step-ahead predictive control at next time step. please see the survey
paper Mayne et al. (2000) for more detailed directions of MPC. Some recent results on MPC include
(but do not limited to) adaptive MPC (Zhu et al., 2020), distributed MPC (Zhu et al., 2018; Wang
et al., 2020), robust MPC (Yang et al., 2021), and stochastic MPC (Hewing and Zeilinger, 2018). Due
to its advantages on improving system performance and handling constraints, MPC can be applied to
motion control (Alcalá et al., 2020), process control (Wu et al., 2020), energy systems (Stadler et al.,
2018; Rodas et al., 2021), etc. Several approaches of Robust MPC for wheeled mobile robots have
been studied in Gonzalez et al. (2011) and Sun et al. (2018). However, conservative results will be
obtained owing to disturbances (Mayne, 2016).

Stochastic MPC resolves the contradiction of safety and economy by taking advantage of
uncertainties with known distributions. In addition, violations of constraints are permitted in a
predetermined level and thus the soft constraints can balance system performance and limits on
states in the meantime. Such characteristic renders stochastic MPC a promising method in a wide
range of applications in energy or under actuated systems (Farina et al., 2016), such as energy
scheduling (Rahmani-andebili and Shen, 2017), (Scarabaggio et al., 2021), (Jørgensen et al., 2016),
energymanagement for vehicles (Cairano et al., 2014), temperature control in buildings (Hewing and
Zeilinger, 2018), racing car Carrau et al. (2016), quadrotors (Yang et al., 2017), overhead cranes
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(Wu et al., 2015), automated driving vehicles (Suh et al., 2018) and
mobile robots (Goncalves et al., 2018). The majority of approaches
in Stochastic MPC community are developed for LTI systems
(Mesbah, 2016). Several attempts in motion control have been
made for LTV or nonlinear systems with ignoring requirement of
recursive feasibility (Yang et al., 2017; Goncalves et al., 2018).

This paper presents a stochastic MPC method for wheeled
mobile robots based on framework of Hewing et al. (2020). The
proposed method remains valid for other LTV systems or nonlinear
systems after linearization. The main contribution is to develop a
stochastic MPC method to forecast and control the wheeled mobile
robot to track its reference trajectory against constraints and additive
random disturbance with known distributions. In the proposed
stochastic MPC, the cost function is designed to penalize both
the tracking error and the energy consumption. The learning-based
technique and probabilistic reachable set are applied, such that
probability constraints can be transformed to deterministic
constraints, and the terminal constraint can be calculated to
ensure the recursive feasibility and asymptotic average
boundedness. A simulation example with its simulated statistical
data is provided to validate the proposed theoretical results.

The rest of the paper is arranged as follows. In Section 2, the
LTV kinematic model for the mobile robot is introduced, and the
control problem is formulated. In Section 3, the proposed
stochastic MPC is designed in detail. In Section 4, recursive
feasibility of optimization and asymptotic average boundedness
are analysed in detail. In Section 5, the simulation result is
provided to show the efficacy of the method.

2 PROBLEM STATEMENT

The wheeled mobile robot consists of two differential driving
wheels and a guide wheel, as illustrated by Figure 1. Translational

velocity and angular velocity of the robot can be expressed
by rotation rates of driving wheels as v � r(ωright+ωleft)

2 and
ω � r(ωright−ωleft)

l , where r and l denote the radius and the
distance of/between driving wheels, respectively; ωleft and ωright

are the rotational rates of the left and right wheels, respectively.
Choosing generalized coordinate as state, velocity as control and
taking additive disturbance into consideration, the kinematic
model is described by

_q �
_x
_y
_θ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � cos θ 0
sin θ 0
0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ v
ω

[ ] +
w1

w2

w3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � f(q, u) + w (1)

where q � [x,y,θ]T denotes the position and orientation of the
mobile robot; u � [v,ω]T denotes the translational velocity and
angular velocity, which are considered as the inputs of the system;
w � [w1, w2, w3)]T is the disturbance with bounded or
unbounded support and is subject to a known probability
distribution under zero-mean assumption (Guassian
distribution, e.g.).

The reference model to be tracked is given by

_qr �
_xr

_yr
_θr

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ � cos θr 0
sin θr 0
0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ vr
ωr

[ ] � f qr, ur( ), (2)

where xr, yr, θr are the reference position and orientation,
respectively.

Define the tracking error by ~q � q − qr. The dynamics of the
tracking error can be linearized by

_~q � Ac(t)~q + Bc(t)~u + w, (3)

where ~u � u − ur; Ac(t) and Bc(t) are time-varying matrices
calculated by

Ac(t) � zf

zq

∣∣∣∣∣∣∣∣q�qr, Bc(t) � zf

zu

∣∣∣∣∣∣∣u�ur. (4)

If the sampling interval T is chosen small enough, it is
appropriate to apply Euler discretization to obtain the time-
varying linear discrete-time model:

~q(k + 1) � A(k)~q(k) + B(k)~u(k) + Tw(k) (5)

where T is the sampling period; k is the sampling time; and

A(k) �
1 0 −vr(k) sin θr(k)T
0 1 vr(k) cos θr(k)T
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
B(k) �

cos θr(k)T 0
sin θr(k)T 0

0 T

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
It is supposed that themobile robot is subject to the probability

constraints:

P{Vq~q(k)≤ 1}≥ px, (6)

P{Vu~u(k)≤ 1}≥ pu, (7)

where Vq and Vu are constant matrices with proper dimensions;
px and pu are constant vectors with proper dimensions. It can be

FIGURE 1 | Fundamental structure of the wheeled mobile robot.
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seen from (6) and 7 that, if px � 1 or pu � 1, then the constraints
appear to be deterministic.

The objective of this paper is that, design a model predictive
controller, such that the mobile robot (subject to stochastic
disturbance) is capable of tracking its reference trajectory
within a finite task horizon �N> 0, or equivalently, its tracking
error ~q is subject to zero mean and bounded covariance within a
finite task horizon.

3 STOCHASTIC LINEAR
TIME-VARYING MPC

In this section, the robust dual-mode MPC is applied as the
fundamental structure. At time k, the predictive control are set by.

~u(i|k) � K(k + i)e(i|k) + v(i|k), i � 0, . . . , N − 1, (8)

~u(i|k) � K(k + i)e(i|k) + K(k + i)s(i|k), i≥N, (9)

where the notation (·) (i|k) denotes the ith step prediction at time
k; N is the predictive horizon. In this paper, the control horizon is
set equal to the predictive horizon. The tracking error ~q is
decomposed into the nominal state s and the error e, namely.

~q(i|k) � s(i|k) + e(i|k), (10)

s(i + 1|k) � A(k + i)s(i|k) + B(k + i)v(i|k), (11)

e(i + 1|k) � Φ(k + i)e(i|k) + Tw(i|k), (12)

Φ � A + BK. (13)

where v is the nominal MPC for the nominal state s; K is obtained
from solving the following Riccati equation at every time instant:

S � ATSA + Q − ATSB(BTSB + R)−1BTSA, (14)

K � −(BTSB + R)−1BTSA. (15)

where Q and R are the positive-definite weighting matrices in
MPC design; S is to be solved based on the given Q and R. In (14)
and 15, we have dropped k for brevity.

3.1 Cost Function
The cost function in MPC is designed by

J(k) � E ∑N−1

j�0
‖~q(j|k)‖2Q + ‖~u(j|k)‖2R( ) + ‖~q(N|k)‖2P(k)⎡⎢⎢⎣ ⎤⎥⎥⎦, (16)

where Q and R are the positive-definite weighting matrices, and
p(k) is solved from the following Lyapunov equation at every time
step k − 1:

P(k + 1) � Q +KT(k +N)RK(k +N)
+ΦT(k +N)P(k + 1)Φ(k +N). (17)

In (16), the first term is to penalize the tracking error; the
second term is to penalize the control power (which reflects the
energy efficiency); and the third term is the terminal cost to
ensure the overall feasibility and average performance.

The forecasting equation of the nominal part of the system
dynamics can be rewritten in the compact form:

�s(k + 1) � �A(k)s(0|k) + �B(k)�v(k), (18)

where.

�s(k + 1) � [s(1|k), . . . , s(N|k)]T, (19)

�v(k) � [v(0|k), . . . , v(N − 1|k)]T, (20)

�A(k) �
A(0|k)

A(1|k)A(0|k)
«∏N−1

i�1 A(i|k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

�B(k) �
B(0|k) 0 / 0

A(1|k)B(0|k) B(1|k) 1 «
« « 1 0∏N−1

i�1 A(i|k)B(0|k)∏N−1
i�2 A(i|k)B(1|k)/B(N−1|k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(21)

Then the cost function can be written by

J(k) � ‖�s(k + 1)‖2�Q + ‖�v(k)‖2�R + ‖s(0|k)‖2Q
+ E ∑N−1

j�0
‖e(j|k)‖2Q+KT(k)RK(k)( ) + ‖e(N|k)‖2P(k)⎡⎢⎢⎣ ⎤⎥⎥⎦ (22)

where

�Q � diag[Q,Q, . . . , Q, P(k)], (23)
�R � diag[R, R, . . . , R]. (24)

The cost function can be further rewritten by

J(k) � 1
2
‖�v(k)‖2H + fT(k)�v(k) + d(k) (25)

where

H � 2 �B
T(k) �Q�B(k) + �R( ), (26)

f � 2�BT(k) �QT �A(k)s(0|k), (27)

and

d(k) � ‖s(0|k)‖2
Q+ �AT(k) �QT �A(k)

+ E ∑N−1

j�0
‖e(j|k)‖2Q+KT(k)RK(k)( ) + ‖e(N|k)‖P(k)2⎡⎢⎢⎣ ⎤⎥⎥⎦. (28)

It can be seen that d(k) is independent of v(k).

3.2 Constraints
In MPC design, the constraints (6) and (7) have to be handled.

Let

X � ~q|Vq~q(k)≤ 1{ }, (29)

U � ~u|Vu~u(k)≤ 1{ }. (30)

Here, we apply the technique of probabilitic reacheable set
(Hewing and Zeilinger, 2018). The k-step probabilistic reachable
sets can be calculated by.

Rk,x � e|Vqe(k)≤ cx(k){ }, (31)

Rk,u � e|Vue(k)≤ cu(k){ }. (32)
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where

P{Vqe(k)≤ cx(k)}≥ px, (33)

P{VuK(k)e(k)≤ cu(k)}≥ pu, (34)

for i � 1, 2, . . . , �N, and �N≫N. Several methods for
computing the quantiles cx(k) and cu(k) are summarized
in Farina et al. (2016). One numerical approximation is to
discretize the distributions of w, e.g. Kouvaritakis et al.
(2010), while another adopts the framework of
scenario MPC.

The distribution of e(k) can be computed with distributions of
w(k) by the predictive error dynamics

e(1)
e(2)
«

e( �N)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � T

I 0 / 0
Φ(1) I 1 «
« « 1 0

∏�N−1

i�1
Φ(i) ∏�N−1

i�2
Φ(i) / I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w(0)
w(1)
«

w( �N − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (35)

Constraints for nominal states s(k) can be calculated by

Sk � X.Rk,x, (36)

or specifically

(Sk)j � s|(Vq)js≤ 1 −max
e∈Rk,x

(Vq)je{ } (37)

where j � 1, . . . , nV denotes the jth row of the matrix. The
constraint (37) can be rewritten in compact form by

Sk � s|Vqs≤ sk{ }. (38)

The constraints for nominal inputs v(k) can be calculated in
the similar process, namely,

Vk � U.KRk,u, (39)

where

KRk,u � K(k)e|e ∈ Rk,u{ }, Vk � v|Vuv ≤ vk{ }, (40)

or specifically

(Vk)j � v|(Vu)jv ≤ 1 −max
e∈Rk,u

(Vu)jK(k)e{ }. (41)

For the recursive feasibility of optimization inMPC algorithm,
terminal state constraints are imposed on the nominal states:

s(N|k) ∈ ST (42)

where ST is a positive invariant set for the nominal system.
The terminal state set ST can be defined based on the terminal

control set:

VT4Vinf � ∩
k�1
�N
Vk � v|Vuv ≤ vinf{ }, (43)

ST � s|v � K(k)s ∈ Vinf, A(k)s + B(k)v ∈ ST, k � 1, 2, . . . , �N{ }.
(44)

where vinf is the smallest vk in (40).

An iterative learning-based procedure (Gonzalez et al., 2011)
can be applied to calculate the terminal constraint:

Z(i + 1) � s|K(k)s ∈ Vinf, Φ(k)s ∈ Z(i), k � 1,2, . . . , �N{ },
(45)

where the sets are nested, i.e. Z(i)4 Z (i − 1)4/4 Z (0), and

Z(0) � s|s ∈ Sinf, K(k)s ∈ Vinf{ }, (46)

whereSinf � ∩
k�1
�N
Sk � s|Vqs≤ sinf{ } , and sinf is the smallest sk

in (38).
The calculation of Z(1) continues with Z (i + 1) � Z(1) ∩ Q(i),

where

Q(i) � ∩
k�1
�N
Qk(Z(i)), Qk(Z(i)) � s|Φ(k)s ∈ Z(i){ }. (47)

Then the terminal set can be approximated by ST � Z(1) when
Z (i + 1) � Z(i).

3.3 Optimization and Implementation
Based on the above cost function and constraints, the
optimization in each time instant of MPC can be
constructed by

�vp � argmin
�v

J(k), (48)

subject to.

s(i|k) ∈ Sk+i, i � 1, 2, . . . , N − 1, (49)

v(i|k) ∈ Vk+i, i � 0, 1, . . . , N − 1, (50)

s(N|k) ∈ ST. (51)

The nominal MPC can be implemented by receding horizon
scheme:

v(k) � [I2×2, 0, . . . , 0]�vp(k), (52)

and the stochastic MPC for the mobile robot can be
implemented by

u(k) � v(k) +K(k)e(k). (53)

4 ANALYSIS ON THE CLOSED-LOOP
SYSTEM

4.1 Feasibility of the Optimization
In this paper, the recursive feasibility is slightly different from the
conventional feasibility of MPC. The aim is to prove that the
optimization 48) is recursively feasible throughout the task
horizon �N. Specifically, it is to prove that, if the optimization
48) is feasible at k � 0, then it is feasible at k � 1, 2, . . . , �N −N,
where �N≫N.

To prove the recursive feasibility within the task horizon, the
“tail” method can be applied here. Suppose that the optimization
is feasible at time k. At time k + 1, a feasible solution can be
constructed by using the “tail” of the optimal solution at time k,
namely,
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~v(k+1) � [vT(1|k),vT(2|k), . . . ,vT(N−1|k),(K(k+N)s(N|k))T]T,
(54)

which satisfies the input constraint (50). Moreover, in (54), K (k +
N)s (N|k) ∈ Vinf 4 Vk+N, indicating that the terminal constraint
(51) is satisfied. Satisfaction of state constraint (49) can also be
checked in a similar way.

Satisfaction of constraints (49)–(51) indicates that the
original stochastic constraints (6) and (7) are satisfied.
Consequently, at least one feasible solution exists at time
k + 1, if the optimization is feasible at time k. The
optimization in (48) is recursively feasible.

4.2 Average Asymptotic Boundedness of
the Closed-Loop System
In this section, the conventional concept of asymptotic stability is
inapplicable, since only performances within the task horizon are
concerned. We are aiming to prove that the states and inputs
satisfy all constraints, while the states are average asymptotically
bounded.

Let J*(k) denote the optimal cost at time step k. Let J−(k)
denote the feasible cost at time step k by using the “tail”
information at time k − 1. Specifically,

Jp(k) � E ∑N−1

j�0
‖~qp(j|k)‖2Q + ‖~up(j|k)‖2R( ) + ‖~qp(N|k)‖2P(k)⎡⎢⎢⎣ ⎤⎥⎥⎦,

(55)

where p denotes the optimal control or state sequence. And

J−(k + 1) � E⎡⎢⎢⎣ ∑N−1

j�1
‖~q*(j|k)‖2Q + ‖~up(j|k)‖2R( ) + ‖~qp(N|k)‖2Q

+‖K(k +N)~qp(N|k)‖2R⎤⎥⎥⎦
+E ‖Φ(k +N)~qp(N|k) + Tw(N|k)‖2P(k+1)[ ]

It follows that

Jp(k + 1) − Jp(k)≤ J−(k + 1) − Jp(k)
� E ‖~qp(N|k)‖2Q − ‖~qp(0|k)‖2Q + ‖K(k +N)~qp(N|k)‖2R − ‖~up(0|k)‖2R[ ]
+E ‖Φ(k +N)~qp(N|k) + Tw(N|k)‖2P(k+1) − ‖~qp(N|k)‖2P(k)[ ]
� E ‖~qp(N|k)‖2Q+KT(k+N)RK(k+N)+ΦT(k+N)P(k+1)Φ(k+N)−P(k)[ ]
+E ‖Tw(N|k)‖2P(k+1) − ‖~qp(0|k)‖2Q − ‖~up(0|k)‖2R[ ].
It then follows from (17) that

Jp(k + 1) − Jp(k)≤ − ‖~qp(k)‖2Q − ‖~up(k)‖2R
+ E ‖~qp(N|k)‖2P(k+1)−P(k) + ‖Tw(N|k)‖2P(k+1)[ ].

Summing both sides of the above inequality for
k � 0, 1, 2 . . . �N −N − 1, and dividing the result by �N −N
yields that

1
�N −N

Jp( �N −N) − Jp(0)( ) + 1
�N −N

∑�N−N

k�0
‖~qp(k)‖2Q + ‖~up(k)‖2R( )

≤
1

�N −N
∑�N−N

k�0
E ‖~qp(N|k)‖2P(k+1)−P(k) + ‖Tw(N|k)‖2P(k+1)[ ],

where Jp(0) is finite, and Jp( �N −N) is finite based on recursive
feasibility. It then follows that

lim
�N→+∞

1
�N −N

∑�N−N

k�0
‖~qp(k)‖2Q + ‖~up(k)‖2R( )⎛⎝ ⎞⎠≤C + E ‖Tw‖2P2

[ ],
(56)

where

P2 � diag max
k

(P11(k+1)),max
k

(P22(k+1)),max
k

(P33(k+1))( ),
C�max

k
E ‖~qp(N|k)‖2P(k+1)−P(k)[ ]( ).

The limitation 56) indicates that the tracking error of the
closed-loop system is asymptotic average bounded.

5 SIMULATION

A simulation example is presented to validate the performance of the
proposed method. In simulation, the sampling interval is T � 0.1s;
and the task horizon is given by 13s. Initial conditions of the mobile
robot and the reference model are supposed to be q(0) �
[0.05,−0.02, 0.05)]T and qr (0) � [0,0,0]T, respectively. It is
suppose that there exists additive disturbances subject to a normal
distribution: w ∼ N (0,Σ), where Σ � diag (0.42, 0.32, 0.12). The
reference trajectory for the mobile robot to track is a circular:

xr(k) � 12
π
sin

π

6
k( ), yr(k) � 12

π
cos

π

6
k − π( ) + 12

π
. (57)

The control inputs are subject to the following constraints:

−1m/s≤ ~v≤ 1m/s, −π
2
rad/s≤ ~ω≤

π

2
rad/s, (58)

where ~vbv − vr and ~ωbω − ωr, and vr and ωr can be calculated
from (57) and 2. Here, we allow constraints (58) be violated with
very small probability, i.e., they are subject to probability
constraints given by (7), where

Vu �

1 0

0
2
π

−1 0

0 −2
π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, pu �

0.99
0.99
0.99
0.99

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (59)

The probability constraints on states are supposed to be given
by (6), where
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Vq �

15 0 0
0 22 0
0 0 15

−15 0 0
0 −22 0
0 0 −15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, px �

0.8
0.75
0.7
0.8
0.75
0.7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (60)

In the stochastic MPC, the predictive horizon is chosen to be
N � 10; weighting matrices are selected by

Q �
30 0 0
0 30 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, R � 0.1 0
0 0.1

[ ]. (61)

The terminal constraint can be calculated by the learning-
based algorithm (42)–(47), and can be illustrated by Figure 2.

Simulation results are displayed in Figures 3–5. In Figure 3, it
can be seen that, with the proposed stochastic MPC, the wheeled
mobile robot is capable of tracking its reference trajectory within
the task horizon. Only limited tracking errors are witnessed in
Figure 4. This simulation example has been run for 500 times with
stochastic w, where px in (33) can be calculated approximately by

[0.8026, 0.7527, 0.7047, 0.8006, 0.7491, 0.7008]T, (62)

and px in (6) can be calculated approximately by

[0.8943, 0.8539, 0.8064, 0.8935, 0.8512, 0.8030]T, (63)

which is in well accordance with the value given in (60). It can be
seen from Figure 5 that the control inputs almost always satisfy

FIGURE 2 | The terminal set in the proposed stochastic MPC.

FIGURE 3 | Trajectory of the closed-loop system with the proposed
stochastic MPC.

FIGURE 4 | Tracking errors of the closed-loop systemwith the proposed
stochastic MPC.

FIGURE 5 | Control inputs of the closed-loop system with the proposed
stochastic MPC.
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their constraints, where the constraint on ~uv has been violated
only once, indicating that the probability constraints given in (59)
are satisfied. Variation of the running stage cost can be displayed
to evaluate the energy efficiency of the closed-loop system. The
running state cost is defined by

Jstage(k) � ‖~q(k)‖2Q + ‖~u(k)‖2R, (64)

where the first term implies the accuracy of tracking, and the
second term indicates the energy consumption (or the
consumed control power to eliminate the tracking error). It
can be seen from Figure 6 that, in case of stochastic
disturbances, the running stage cost can be maintained
small. It implies that, the tracking error remains
asymptotically average bounded, whereas the energy
consumption is small.

6 CONCLUSION

A stochastic MPC is proposed for the wheeled mobile robot
subject to probability constraints and stochastic disturbance
to track its reference trajectory within the task horizon. The
motion of the mobile robot is forecast and optimized by using its
linearized discretized model. The cost function in the proposed
MPC is designed to penalize its tracking error and energy
consumption. By using the tightening probability reachable
set technique, the probability constraints can be transformed
into deterministic constraints, facilitating the MPC design. The
terminal constraint is calculated with a learning-based
algorithm. It is proved theoretically that, the optimization is
recursively feasible, and the tracking error of the closed-loop
system with the proposed stochastic MPC is asymptotically
average bounded within the task horizon. The tracking error
and statistical data in simulation imply that the performance of
the proposed stochastic MPC is satisfactory.
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