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Abstract: Recently, the application of the BIM technique to infrastructure lifecycle management has
increased rapidly to improve the efficiency of infrastructure management systems. Research on the
lifecycle management of infrastructure, from planning and design to construction and management,
has been carried out. Therefore, a systematic review of the literature on recent research is performed to
analyze the current state of the BIM technique. State-of-the-art techniques for infrastructure lifecycle
management, such as unmanned robots, sensors and processing techniques, artificial intelligence,
etc., are also reviewed. An infrastructure BIM platform framework composed of BIM and state-of-
the-art techniques is then proposed. The proposed platform is a web-based platform that contains
quantity, schedule (4D), and cost (5D) construction management, and the monitoring systems enable
collaboration with stakeholders in a Common Data Environment (CDE). The lifecycle management
methodology, after infrastructure construction, is then completed and is developed using state-of-
the-art techniques using unmanned robots, scan-to-BIM, and deep learning networks, etc. It is
confirmed that collaboration with stakeholders in the CDE in construction management is possible
using an infrastructure BIM platform. Moreover, lifecycle management of infrastructure is possible by
systematic management, such as time history analysis, damage growth prediction, decision of repair
and demolition, etc., using a regular inspection database based on an infrastructure BIM platform.

Keywords: Building Information Modeling (BIM); infrastructure life cycle management; Unmanned
Aerial Vehicle (UAV); scan-to-BIM; deep learning; Common Data Environmental (CDE)

1. Introduction

The safety and stability of infrastructure is an important factor in the economic and
social development of a country. Over the last few decades, the demand for improved
technologies for the efficient and cost-effective management of aging infrastructure has
increased due to the inefficiency and resource waste of traditional infrastructure manage-
ment systems [1]. Building Information Modeling (BIM) technology has been accepted
as one of the best tools for the enhancement of management systems in Architecture,
Engineering, Construction, Owner, and Operator (AECOO) industries [2]. Recently, re-
search for introducing BIM into the infrastructure industry, such as for roads, bridges,
tunnels, etc., as well as the building industry, has been carried out [1–3]. BIM has the
advantage of the lifecycle management of infrastructure, from planning and design to
construction and maintenance [4,5]. The introduction of BIM at the planning stage will
systematically enhance project management and collaboration between stakeholders [6].
BIM also helps, not only collaboration in the design stage, but also design quality enhanc-
ing and error reduction, etc. [7]. In the construction stage, BIM can increase productivity
and workflow by reducing the wastage of time and resources [8]. Moreover, stored BIM
data on infrastructure during the planning and design stage can be used afterwards for
maintenance. Effective maintenance of infrastructure is possible through the integration of
BIM with state-of-the-art technologies, such as unmanned robots and Unmanned Aerial
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Vehicle (UAV) systems with digital cameras or 3D Laser Scanning and Light Detection and
Ranging (LiDAR), 3D model construction algorithms, and artificial intelligence algorithms,
etc. [9–11].

Globally, the BIM market will expand to USD 15.06 billion by 2027. Many countries,
such as the USA, Canada, Germany, the UK, China, Japan, India, South Korea, and Sin-
gapore, have adopted and developed BIM [12]. In South Korea, the Ministry of Land,
Infrastructure, and Transport (MOLIT) announced in December 2020, the “introduction of
full-scale BIM in the construction industry” for the full-scale introduction of BIM into in-
frastructure projects [13]. The “Basic Guidelines for Construction Industry BIM” and “BIM
activation roadmap for 2030” were then prepared for the lifecycle management of infras-
tructure by sharing information from the planning, design, construction, and maintenance
stages of the construction industry with every stakeholder to maximize productivity [14].
In addition, in the “Basic Guidelines for Construction Industry BIM” (published in 2020),
the procedures for applying BIM to construction, major standards defined by BIM, and a
Common Data Environment (CDE) were established. Therefore, international standard
formats, such as Industry Foundation Classes (IFC) and Extensible Markup Language
(XML) are recommended to manage infrastructure in the CDE, because infrastructure
management projects involving various stakeholders using different software programs
such as Autodesk BIM 360, Trimble Connect, Bentley, etc. are usually difficult to consoli-
date [15–17].

Therefore, in this article, a systematic analysis of the current state of BIM and state-
of-the-art techniques for infrastructure management is performed. A BIM platform-based
lifecycle management method is then proposed. The objectives and novelties of this study
are as follows: (1) A literature review of BIM and state-of-the-art techniques for the lifecycle
management of infrastructure is performed, (2) a lifecycle management method combining
state-of-the-art techniques is proposed, and (3) the proposed infrastructure BIM platform
is validated using a simple scenario. It is confirmed that collaboration with stakeholders
in the CDE in construction management is possible using an infrastructure BIM platform.
Moreover, lifecycle management of infrastructure is possible by systematic management,
such as time history analysis, damage growth prediction, decision of repair and demolition,
etc., using a regular inspection database based on an infrastructure BIM platform. This
article is organized as follows. The research methodology to clarify the target literature
is introduced in Section 2. Section 3 presents analysis of the literature and discusses
the research conducted by some researchers. Section 4 explains the development of an
infrastructure BIM platform. Finally, Section 5 concludes the article.

2. Research Methodology

For the systematic review, the following four steps were carried out: (1) categorizing
of keywords and topics; (2) collection of relevant articles from Web of Science; (3) applying
filters; and (4) full text analysis and detail categorization of articles based on main purpose.

2.1. Categorizing Keywords and Topics

Topics were divided into infrastructure, BIM, robots and sensors, and Artificial In-
telligence (AI) and Structural Health Monitoring (SHM). Keywords for each topic were
decided using a review of the literature [18–20]. Representative keywords for each topic
were: “building information modeling”, “bridge”, “road”, “robot”, “UAV”, “scan-to-BIM”,
“deep learning”, “damage detection”, etc. A detailed list of keywords is shown in Table 1.



Appl. Sci. 2021, 11, 10310 3 of 11

Table 1. Keywords for each topic.

Topic Keyword

Infrastructure Infrastructure; Bridge; Tunnel; Road; Railway

BIM Building Information Modelling (BIM); Bridge Information Modeling (BrIM); Civil Information
Modeling (CIM); Planning; Design; Construction; Management; Industry Foundation Classes (IFC)

Robot and sensor Vision camera; Digital camera; 3D LiDAR; Point cloud; Unmanned robot; Unmanned Aerial Vehicles
(UAV); Photogrammetry; Structure-from-Motion (SfM); Scan-to-BIM

AI and SHM Deep learning; Convolutional neural network (CNN); Structural Health Monitoring (SHM); Damage
detection; Anomaly detection; Damage evaluation; Crack; Efflorescence; Rust; Leakage; Spalling

2.2. Collection of Relevant Articles from Web of Science

Literature was collected using three categories, combining infrastructure and three
main topics: (1) infrastructure and BIM; (2) infrastructure and robot and sensor; and (3)
infrastructure and AI and SHM. The main topics were then renamed as “BIM for infras-
tructure lifecycle management”, “state-of-the-art techniques for infrastructure 3D model
construction”, and “deep learning for automated damage evaluation of infrastructure”.
The total number of articles found was 3432, as shown in Figure 1.
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Figure 1. Methodology flow diagram.

2.3. Filter Applying

The collected literature was firstly reduced by automatic filtering rules: (1) duplicated
articles were removed; (2) English journal articles during the past ten years (2011 to 2021)
remained. Non-related articles were then roughly and manually reduced by checking the
titles and abstracts. The total number of articles was reduced to 1000.

2.4. Full Text Analysis and Detail Categorization of Articles Based on Main Purpose

Next, a full text review was performed to remove similar works. Only 40 works in the
literature were selected. The BIM category was then subdivided into planning and design,
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construction, and management. The robot and sensor category was also subdivided into
unmanned robot, sensors, and algorithms.

3. Literature Reviews of Infrastructure Lifecycle Management
3.1. BIM for Infrastructure Lifecycle Management

Although infrastructure has many stages during its lifecycle, the gathered literature
was analyzed by dividing it into three categories: planning and design, construction, and
management.

In the planning stage, BIM aids in the effective and fast determination of the best
solution among a number of scenarios [8]. Application of BIM from the beginning of large-
scale projects makes communication simple while enhancing collaboration among different
stakeholders. BIM is also applicable to reduce design errors, enhance quality, check quality
and clash, etc., in the design stage. Haussler and Borrmann proposed fourteen kinds of
quality parameters to establish a standardized means of validating design quality [21]. Park
et al. proposed an extended IFC schema, which is still not able to be completed for steel box
bridges, and they developed an IFC-based steel bridge information model in the design
phase [22]. Borrmann et al. developed an IFC-based multi-scale BIM shield tunnel model
with a methodology of transformation using a multi-scale model in CityGML [23]. Nath
et al. proposed a BIM-based reinforced workflow of precast shop drawing generation [24].
Girardet and Boton developed a parametric file that designs and generates any type of
bridge to solve difficult applications of the BIM schema to bridges [25].

A well-developed BIM model in the planning and design stage is helpful, not only
for reducing construction errors, missing and clash, but also for enhancing construction
quality and processes in the construction stage. Shin et al. validated the advantages of
adapting BIM at a railway construction site using seven construction projects [26]. Lee
et al. developed a bridge BIM model to combine the design and construction processes
of a precast box-girder bridge [27]. Liu et al. developed 4D GeoBIM, which combined
BIM and geographical information systems (GIS) to ensure construction efficiency and
safety [28]. Koch et al. proposed a tunnel information modeling framework for safe
tunnel construction [29]. Time and cost resource management of the construction stage
is also important. Therefore, the schedule (4D) and cost (5D) BIM was proposed and
developed. Marzouk and Hisham’s BIM was based on a time and cost management
technique of bridges by integrating BIM with the earned value (EV) concept to determine
the status of a project at a specific reporting date [30]. Mawlana et al. proposed 4D BIM
to sequentially construct and reconstruct highways to prevent the probability of potential
stochastic spatiotemporal clashes [31]. Ding et al. developed a multidimensional (nD)
modeling technique, integrating a work breakdown structure (WBS) and other construction
code structures for rail transit construction [32].

After construction, infrastructure needs regular monitoring to remain functional and
safe. In the USA, the National Bridge Inspection Standards (BNIS) require inspection
at least once every 24 months for highway bridges. In South Korea, infrastructure has
been regularly managed by the Special Act on the Safety Control and Maintenance of
Establishments law since 1995. Structural Health Monitoring (SHM) of infrastructure is
the main concern for lifecycle management. Valdepenas et al. developed a BIM for port
maintenance [33]. Lee et al. developed a framework BIM-3D GIS system for effective
maintenance of utility tunnels [34]. Sharafat et al. developed a BIM-GIS framework for
underground utility management systems [35]. Boddupalli et al. proposed an SHM-BIM
digital platform for automated health monitoring of infrastructure [36]. Kaewunruen et al.
proposed 6D BIM for time schedule management, cost estimation, and carbon footprint
analysis across the lifecycle of bridges [37].

3.2. State-of-the-Art Techniques for 3D Model Construction of Infrastructure

Inspection of large infrastructure, including inaccessible areas, by experts is some-
times difficult and dangerous. Therefore, there are a number of trials in which to apply
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sensors, such as digital cameras, LiDAR, etc., using unmanned robots and UAVs. Kim et al.
developed a UAV system for health monitoring of concrete bridges [38]. Jiang and Zhang
developed a wall-climbing UAV to inspect surface cracks of a concrete bridge [39]. Ribeiro
et al. proposed an SHM for high-rise telecommunication towers using UAVs [40]. Jang
et al. developed a multiple-digital-cameras-mounted ring-type climbing robot system for
crack evaluation of a concrete bridge pier [9].

The gathered data from sensors embedded on unmanned robots are used to build 3D
models. LiDAR is widely used to establish an as-built infrastructure in the digital domain
as a 3D model. Digital images are also used to establish 3D models using a photogram-
metry algorithm [41,42]. Three-dimensional point cloud data are used to generate BIM
models [43,44].

3.3. Deep Learning for Automated Damage Evaluation of Infrastructure

To detect damage to infrastructure early, the technique of expert-dependent visual
inspection has been widely accepted over the last few decades. However, visual inspection
by experts is unsafe, time-consuming, and unreliable. To overcome these problems, image
processing methods have been proposed as an alternative to visual inspection, but the harsh
environment of infrastructure disrupts the application of image processing modules [9].

More recently, deep learning-based damage evaluation techniques have been proposed
to automate making decisions with reliable damage evaluation results. Convolutional
Neural Network (CNN)-based damage classification techniques have been proposed. Cha
et al. proposed CNN for crack detection with a sliding window techniques [45]. Kim and
Cho developed a crack detection network via transfer learning of AlexNet [46]. Jang et al.
proposed a concrete crack detection network using a hybrid image scanning system [47].
Dorafshan et al. validated the better performance of deep learning-based concrete crack
detection compared to image processing methods [48]. Hoang et al. also confirmed that
deep learning-based pavement crack detection performs better than image processing
methods [49]. In addition, Region-CNNs (R-CNNs) have been adapted to automatically
localize damage [50–52]. Cha et al. developed a faster R-CNN to classify and localize
multi-damage, such as crack, corrosion, and the delamination of bridges and buildings [53].
Zhang et al. developed a YoLo-based single-stage R-CNN to classify and localize the
multi-damage of bridges in real-time [54].

Semantic segmentation networks have been widely used to classify damaged regions
at the pixel level [55,56]. Feng et al. developed a semantic segmentation network-based
CDDS network for segment cracks in dam structures [57]. Li et al. proposed a multi-
damage segmentation network by combining a naïve Bayes data fusion method with
FCN [58]. Choi and Cha proposed SDDnet for real-time crack detection [59].

Deep learning techniques are usually used as an automated damage detection software
for unmanned robot systems. Kang and Cha developed a CNN for crack detection for
UAV systems [60]. Kim et al. developed crack localization of bridges using RCNN for UAV
systems [38]. Jiang and Zhang developed a segmentation network for real-time segments
of cracks for a wall-climbing UAV [39]. Jang et al. developed a crack segmentation network
for climbing robots [9].

4. Infrastructure BIM Platform

In this section, the infrastructure of the BIM platform framework, combining BIM
and state-of-the-art techniques, is proposed based on a literature review. The Integrated
Definition for Function Modeling (IDEF0) [61], which is a methodology that provides
complex ideas via easy concepts through simple boxes and arrows, was developed to
clearly define the activities of the infrastructure BIM platform. Simple examples of five
main activities of the infrastructure BIM platform are then sequentially described.

The infrastructure BIM platform was composed of five main activities: planning
and BIM model design (A01); 4D/5D BIM-based construction management and moni-
toring (A02); scan-to-BIM using data gathered from as-built infrastructure by unmanned
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robots (A03); deep learning-based automated damage evaluation and mapping (A04); and
annual grading of infrastructure for lifecycle management (A05), as shown in Figure 2.
The infrastructure BIM platform is a web-based lifecycle management platform for the
implementation of CDE. The framework includes the lifecycle management of infrastruc-
ture, from planning to demolition. First of all, a 4D/5D BIM model is designed using
the 2D design model, pre-construction schedule, and a WBS/Organization Breakdown
Structure (OBS)/Cost Breakdown Structure (CBS) by stakeholders (A01). Construction
is then systematically performed using the 4D/5D BIM model (A02). The 4D/5D BIM
model is shared with stakeholders as an international standard format (IFC and XML). At
the completion stage, texture mapped BIM models are established using scanning data
that were gathered by a sensor embedded in an unmanned robot (A03). Damage in the
gathered data is automatically detected using a damage-trained deep learning network
(A04). A damage mapped BIM model is then established by mapping detected damage
to the BIM model. Infrastructure is graded regularly and managed by the law of each
country. Therefore, the BIM model is updated regularly via repeated model updates, and
the outdated BIM model becomes the reference model (A05). Details of the featured parts
of the infrastructure BIM platform are sequentially explained.
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4.1. Web-Based Infrastructure BIM Platform

An infrastructure BIM platform should be developed as a web-based platform for
compatibility between a number of different stakeholders, such as clients, BIM managers,
construction managers, and safety manager, etc. Moreover, a web-based platform that does
not need other software can be accessed anytime and anywhere. Information and cost
losses and errors during communication are significantly reduced using the web platform
in the CDE.

When the infrastructure project begins, stakeholders and projects are registered on
the web-based infrastructure BIM platform. Every step of the projects and the information
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are then updated and shared with everyone. The IFC and XML files are uploaded after
planning, and the designs are checked automatically for schema completeness by the IFC
checker and viewer. If the uploaded file is accepted, summaries of the construction progress,
location, schedule, cost, etc., are displayed on the dashboard, as shown in Figure 3a. The
schedule (4D) and cost (5D) of infrastructure construction are managed based on WBS
and CBS, which are already embedded in the calculation module of the infrastructure BIM
platform. Therefore, when the IFC and XML files are uploaded, the quantity, schedule, and
cost are automatically calculated by the calculation module.
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4.2. Management of Infrastructure Using State-of-the-Art Techniques

After infrastructure construction is completed, damage is already present or begins to
occur immediately. Therefore, an inspection of the infrastructure is performed, referring to
the as-built BIM model shortly thereafter.

For the management of very large infrastructure, digital-camera-embedded robots
are widely adopted, as shown in Figure 4. The BIM model is updated by data gathered by
multi-digital cameras embedded in climbing robots, which scan the surface of bridge piers
in the vertical direction, as shown in Figure 4a. Likewise, UAVs effectively scan the surface
of bridges using only one digital camera to gather data. The gathered data are then used to
build a 3D model using the photogrammetry algorithm.

Simultaneously, as shown in Figure 5a, damage is detected in the gathered data
through a deep learning network, which is trained to detect multiple types of damage, such
as cracking, spalling, rust, rebar exposure, etc. Figure 5b shows representative inference
results of the deep learning network. The length and width of the damage is then calculated
using image processing algorithms, using the segmented area (red zone) in the output
image of Figure 5b [9]. Quantitative analysis results are saved for mapping onto the BIM
model.

Figure 6a shows a representative point cloud model of a bridge pier generated by the
photogrammetry algorithm. Figure 6b shows a texture- and damage-mapped BIM model.
The damage information in Figure 6b is saved with the BIM model as a reference model for
regular updates. In the future, the grade of the infrastructure is lowered due to the damage
experiencing further growth, which will be used in the decision to repair or for demolition.
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4.3. Future Work for Digital Twin

The establishment of a digital twin model is the goal of infrastructure lifecycle manage-
ment; however, the digital twin model still only applies data sharing and visualization [62].
An artificial intelligence-based damage growth prediction algorithm is established using
the stored time history data of the infrastructure BIM platform, as shown in Figure 2. The
lifecycle management of the infrastructure can then be achieved in the digital domain by
combining state-of-the-art techniques.

5. Discussion and Conclusions

This study presented an infrastructure Building Information Modeling (BIM) plat-
form for lifecycle management. The web-based infrastructure BIM platform composed
of planning and design, construction, and management methods was developed. It is
a necessary development of BIM platform-based collaboration with stakeholders in the
common data environment to efficiently lifecycle the management of infrastructure. Stake-
holders can access and exchange essential information using the web-based BIM platform
in real-time, making it possible to improve the efficiency of infrastructure lifecycle man-
agement. Recently, state-of-the-arts automation techniques have been widely adapted in
the infrastructure management field. In particular, data acquisition has been automated by
adopting various unmanned robots such as unmanned aerial vehicle (UAV) and climbing
robot. Moreover, machine learning or deep learning networks make it possible to fully auto-
mate the corresponding data processing. However, systematic lifecycle management is still
difficult using the proposed web-based BIM platform. Although there are tremendous trials
on the initial stage of data management of infrastructures’ modeling, real-time or periodic
data updating are still both technically challenging. To achieve the technical requirements,
state-updated data acquisition as well as time-series data processing mythologies need
to be developed. As a promising follow-up study, the authors of this paper are currently
developing digital infrastructure twin modeling and updating technologies, which will be
integrated with the proposed web-based BIM platform.
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