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ABSTRACT Understanding the changes in choroidal thickness and vasculature is important to monitor the
development and progression of various ophthalmic diseases. Accurate segmentation of the choroid layer
and choroidal vessels is critical to better analyze and understand the choroidal changes. In this study, we
develop a dense dilated U-Net model (ChoroidNET) for segmenting the choroid layer and choroidal vessels
in optical coherence tomography (OCT) images. The performance of ChoroidNET is evaluated using an
OCT dataset that contains images with various retinal pathologies. Overall Dice coefficient of 95.1 + 0.4
and 82.4 + 2.4 were obtained for choroid layer and vessel segmentation, respectively. Comparisons show
that among state-of-the-art models, ChoroidNET, which produces results that are consistent with ground

truths, is the most robust segmentation framework.

INDEX TERMS Choroid Layer, Choroidal Vessels, ChoroidNET, Dense Dilated U-Net, Optical

Coherence Tomography (OCT).

. INTRODUCTION

In optical coherence tomography (OCT) images, the choroid
is a dense vascular layer between the retina and the sclera. It
comprises choroidal vessels (luminal area) embedded in
elastic connective tissues (stromal area). Its main function is
to supply oxygen and nourishment to the outer retina. The
thickness and vascularity index of the choroid are choroidal
biomarkers [1] that facilitate the diagnosis, prognosis, and
treatment of various ophthalmic diseases or their pathological
conditions such as age-related macular degeneration (AMD)
[2], choroid neovascularization (CNV) which is a pathology
that occurs in wet AMD [3], diabetic macular edema (DME)
[4], and retinitis pigmentosa (RP) [5][6].

OCT is a non-invasive imaging technique that captures a
cross-sectional view of the retina, including the choroid.
With rapid development in optical imaging technology,
enhanced depth imaging OCT (EDI-OCT) and swept-source

OCT (SS-OCT) enable better visualization of the choroid
than the conventional spectral-domain OCT (SD-OCT) [7][8].
Figure 1 shows an OCT image of the components in the
choroid layer, i.e., the upper boundary of the choroid (blue
dashed line), the lower boundary of the choroid (green
dashed line), the choroidal vessels, and the stromal area.

The choroid has an inhomogeneous texture because it
contains vessels. The contrast between the choroid and the
sclera is usually low in an OCT image, and thus the lower
boundary of the choroid, called the choroid-sclera interface
(CSI), is fuzzy and difficult to distinguish from the choroid.
The choroid layer and choroidal vessels in OCT images must
thus be manually annotated, which is time-consuming, error-
prone (due to indistinct vascular structures), and subject to
interobserver  variability.  Although some automated
segmentation  approaches are available, individual
applications are required for segmenting the choroid layer
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and choroidal vessels. To the best of our knowledge, this
study is the first to combine the segmentation of the choroid
layer and vessels, which is clinically important. This is done
using a deep learning model trained on eyes with various
pathologies.

Stromal Area

Choroidal Vessel

FIGURE 1. Choroid region in an OCT image (ILM - internal limiting
membrane, RPE - retinal pigment epithelium, BM — Bruch’s membrane,
and CSI - choroid-sclera interface).

In this work, we propose a dense dilated U-Net model
called ChoroidNET for segmenting the choroid layer and
choroidal vessels in OCT images. The automatic extraction
of these regions would greatly assist ophthalmologists in
diagnosis and treatment monitoring. ChoroidNET uses the
U-Net [9] as its backbone architecture and integrates dilated

convolutions with different dilation factors at the bottleneck.

The dense connection of dilated convolutions exploits
image contexts at multiple scales and improves
segmentation performance. The experimental results
demonstrate that ChoroidNET significantly outperforms
existing state-of-the-art methods. We perform ablation
studies to confirm the performance of ChoroidNET. Our
ultimate goal is to automatically quantify clinical
parameters that can be derived from the choroid, such as the
luminal-to-stromal ratio and choroidal thickness.
The main contributions of this work are:
1) development of ChoroidNET for segmenting the
choroid layer and choroidal vessels;
2) highlighting of the use of dilated convolutions in both
layer and vessel segmentation;
3) robust segmentation of OCT images of eyes with
various retinal pathologies;
4) qualitative and quantitative evaluation using
manually annotated ground truths to determine the
reproducibility of ChoroidNET.

Il. LITERATURES

Many traditional image processing methods have been
proposed for segmenting the choroid layer fully or semi-
automatically for various retinal diseases. Graph search
algorithm [10], graph cuts and dynamic programming [11,
12], min-cut max-flow graph theory [13], the Dijkstra
shortest path algorithm [14-16], active contour [17], and the
level set method [18] have been applied to detect the choroid
boundaries in OCT images. Poor robustness is the main
drawback of choroid segmentation techniques based on
traditional image processing since they are highly sensitive to
severe pathological images.

Deep learning has gained increasing interest in medical
image processing research. Several deep learning models
were recently applied to choroid segmentation to improve
performance. To detect the choroid boundaries, Sui et al. [19]
presented a multi-scale convolutional neural network (CNN)
to learn the edge weights in a graph searching approach.
Masood et al. [20] performed automatic choroid
segmentation using a patch-based CNN and morphological
operations. A variety of deep learning models such as CNN,
residual network, recurrent neural network, and squeeze and
excitation network were explored in the choroid
segmentation works of Kugelman et al. [21] and Alonso-
Caneiro et al. [22]. They investigated the effects of patch size
and the network architectures, and image pre-processing
techniques on their patch-based and semantic segmentation
networks. Chen et al. [23] used two SegNet models [24] to
generate edge probability maps for BM and the CSI. Then,
seam carving was applied to obtain a full choroid layer by
finding a path of connected pixels between BM and the CSI.
Devalla et al. [25] presented the dilated-residual U-Net
model (DRUNET) for segmenting optic nerve head tissues,
which contain the choroid, in OCT images of glaucomatous
and healthy eyes. Zhang et al. [26] infused a biomarker prior
into a global-to-local network (BIONET) for choroid
segmentation. BIONET is composed of 1) a biomarker
infused prediction network that learns the biomarker features,
2) a global multi-layered segmentation module that initially
segments all layers (retinal layers and the choroid layer) in
OCT images, and 3) a local choroid segmentation module
that segments the choroid using the result from the global
module and the learned biomarker features. Hsia et al. [27]
segmented the choroid layer using a mask region-based CNN
model, composed of deep residual network and feature
pyramid networks. The choroid segmentation performance of
deep learning models is very competitive and generally better
than those of traditional image processing techniques.

Algorithms based on traditional image processing
techniques have been developed for choroidal vessel
segmentation. Srinath et al. [28] initially defined the RPE by
finding the brightest region and the CSI by calculating the
structural similarity index between the choroid and the sclera.
Then, choroidal vessels were segmented in the region
between the RPE and the CSI using the level set method.

Recently, Liu et al. [29] presented a deep-learning-based
choroidal vessel segmentation model adapted from
RefineNet [30]. There have been attempts to obtain the
choroidal thickness and vasculature from SS-OCT images.
Zheng et al. [31] detected the choroid’s upper and lower
boundaries in OCT images using the Residual U-Net model
[32] and then performed binarization to detect the choroidal
vessels using Niblack’s algorithm. Zhou et al. [33] applied an
attenuation correction approach to compensate for the
attenuated light in SS-OCT images as a pre-processing step
in choroid segmentation. Then, choroidal vessel maps, which
enable the choroidal vasculature to be visualized without
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OCT angiography, were generated using a projection of OCT
structural information.

A summary of performances, datasets, advantages, and
drawbacks/limitations of some existing choroid layer and
vessel segmentation methods, are discussed in Table 1.

. METHODS

This section describes the network architecture and
components of ChoroidNET. ChoroidNET is a patch-based
model that adopts the structure of U-Net [9]. To denoise and
enhance the contrast of OCT images, we preprocess each
extracted patch using normalized gamma-corrected contrast-
limited adaptive histogram equalization [34]. Training is then
performed using the preprocessed patches. During training,
we also perform data augmentation, which includes affine
transformation, horizontal flipping, random distortion, and
zooming,.

A. NETWORK ARCHITECTURE

Figure 2 shows the network architecture of ChoroidNET.
The model comprises a layer segmentation module (LSM)
and a vessel segmentation module (VSM). Each module
consists of an encoder path, a decoder path, and a dilation
block, which uses dense dilated convolutions, instead of
standard convolutions. The blocks used in the network are
defined as follows. A standard (purple) block corresponds to
the resulting activation map from two consecutive 3x3
standard convolutions. All layers in a standard block are
regularized by DropBlock (DB) [35], batch-normalized (BN)
[36], and activated by a rectified linear unit (ReLU) [37]. A
gray block represents the activation map forwarded from the
encoder path that is concatenated with the corresponding up-
sampled map in the decoder path. The red and yellow blocks,
at the bottleneck of LSM and VSM, respectively, are dilation
blocks that comprise six dilated convolutions with different
dilation factors. These dilation blocks help ChoroidNET to
overcome the loss of detailed spatial information and
difficulty in extracting contextual semantic features.
ChoroidNET thus has a good segmentation accuracy,
resulting in smooth boundaries of the choroid layer. The
intersection area of the input patch and the choroid layer
prediction from LSM is fed into VSM to obtain a more
consistent segmentation of choroidal vessels.

Encoder Path. At each level of the encoder path, the
number of feature vectors is doubled. Thus, the bottommost
level of the encoder path generates high-level semantic
features. The purpose of the encoder path is to capture the
contextual information of the input patches. This
information is then fed to the decoder path through skip
connections [38].

Decoder Path. After each level of the decoder path, a 2x2
up-sampling operation is applied to restore the image to its
original size. The purpose of the decoder path is to perform

semantic segmentation by concatenating up-sampled
outputs and the contextual information transferred from the
encoder path via skip connections. The features generated
by the dilation block are added to achieve multi-scale
context aggregation. Finally, a 1x1 convolution and a
sigmoid activation are applied to obtain the pixel-wise
binary segmentation for each pixel.

Dilated Convolutions. A dilated convolution refers to a
convolution conducted with a dilated filter. Yu et al. [39]
and Chen et al. [40] reported that dilated convolutions can
be used instead of down-sampling operations to expand the
receptive field without degrading the resolution of
intermediate feature maps by inserting zeros between the

pixels of the kernel. Consider convolutional kernel K, with
a kernel size of k x k in dilated layer /. The receptive field
Fy ofkernel K, can be calculated as:

Fo, =k+(k=Dx(Dy ~1) M
where D, denotes the dilation rate of kernel K. Figure 3

shows how the dilated convolutions adaptively enlarge the
field of views by increasing the dilation rates.

For the dilation block of LSM, we increase the dilation
factors in increments of 2. We experimentally found that this
increasing order of dilation factors yields better performance
in the choroid layer segmentation. However, aggressively
increasing dilation factors is less effective for small objects
such as choroidal vessels. Dilated convolutions with
increasing dilation factors lead to weak spatial inconsistency
between neighboring pixels; thus, it fails to aggregate local
features. To address this, Hamaguchi et al. [41] used a local
feature extractor after large contexts are aggregated by
increasing the dilation factors. The local feature extractor
helps to extract local features by decreasing the dilation
factors. Inspired by this concept, for the dilation block of
VSM, we first increase the dilation factors gradually and then
decrease them to recover consistency between neighboring
pixels.

DropBlock. Dropout [42] is a widely used regularization
technique for fully connected networks. It prevents the
overfitting caused by coadaptation on the training dataset
by reducing the complexity of the network architecture and
randomly dropping out independent features. However, this
technique is less effective for convolutional networks where
the features are spatially correlated because semantic
information can still leak through in the networks. Thus,
Ghiasi et al. [43] proposed DropBlock [35], which is a form
of structured dropout, for effectively regularizing
convolutional networks. We apply DropBlock to prevent
our network from overfitting and to effectively remove
semantic information. Figure 4 shows how DropBlock
discards some contiguous regions that contain certain
semantic information from a feature map of the choroid
layer.
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FIGURE 2. Network architecture of ChoroidNET.
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FIGURE 3. Representation of increasingly dilated convolutions with 3x3
kernel and their receptive fields for (a) rate = 1 (equivalent to standard
convolution), (b) rate = 3, and (c) rate = 5.

IV. EXPERIMENTS

This section describes the datasets used in the experiment,
existing state-of-the-art models used for comparison, and the
experiment and its implementation details.

A. DATASETS
Kermany et al. [44] published a large OCT dataset that
contains approximately 80,000 images. These images were

at

1
T T
T 1T

(b) (c) (d)
lllustration of how DropBlock drops features. (a) Input
patch, (b) activation units (green area) of semantic information in (a) for
the choroid layer, (c) DropBlock mask (yellow area) and sampled zero
entries (red x’s), and (d) zero entries on mask expanded to zero blocks
(black x’s around red x’s).

FIGURE 4.

acquired via spectral-domain OCT (SD-OCT; Spectralis,
Heidelberg Engineering) and collected from the Shiley Eye
Institute of the University of California San Diego, the
California Retinal Research Foundation, Medical Center
Ophthalmology Associates, Shanghai First People’s
Hospital, and the Beijing Tongren Eye Center. This dataset
was constructed to evaluate methods for classifying OCT
images into four categories, namely CNV, DME, Drusen,
and Normal. Abnormalities, such as the neovascular
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membrane and associated subretinal fluid in CNV images,
retinal-thickening-associated intraretinal fluid in DME
images, and multiple drusen, are present in their dataset.
CNV and the appearance of drusen indicate clinical signs of
AMD.

In the experiment, we evaluated the performance of
ChoroidNET using 80 OCT images (20 images from each

category) randomly selected from this OCT dataset. Figure 5
shows examples of OCT images used in our experiment. The
ground truths of the choroid layer and choroidal vessels were
annotated by an expert observer using the ibisPaint
application [45].

FIGURE 5. Examples of OCT images used in our experiment.

B. EXPERIMENT AND IMPLEMENTATION DETAILS

Ten images from each category were used to create a training
set and the remaining images were used to create a test set.
We enlarged the training set by using patches cropped from
the original images (minimum dimensions: 230x495).
Previous studies have shown that increasing the size of an
image patch in a deep learning network provides a more
precise segmentation performance since the network can
capture more contextual information to make the prediction
[46]. However, using a larger image patch requires larger
memory. Under consideration of limited GPU memory, we
chose a patch that is large enough to cover the choroid region
and to be able to apply down-sampling operations in our
network region, yet small enough to make the problem
handleable. We randomly extracted 300 patches (dimensions:
224x224) from each image in a trainset set, for a total of
12,000 patches. Note that the areas of some patches
overlapped. 90% of each training set was used for training
and the remaining 10% was used for validation.

ChoroidNET was trained on each training set end-to-end
using a computer with an Intel Core i7 CPU and an NVIDIA
GeForce GTX 1070 Ti GPU. The training was performed for
50 epochs with a batch size of 4 and an initial learning rate of
0.0001. The RMSprop optimizer was used to adaptively
reduce the learning rate. The loss function ( L) was based on

the sum of binary cross entropy loss (L, ) and Dice loss
(Lp ), as shown in Egs. (2)-(4).

L(yﬂﬁ)zLBCE(y>ﬁ)+LD(yaﬁ) (2)

Lyer (v, p) =—(ylog(p) +(1- y)log(1- p)) 3

A

. 2
L,(y,p)=1- ypA “4)

y+p

where y €[0,1] and p €[0,1] respectively denote the set
of pixels in the ground truth and the set of pixels predicted
by the trained network.

The segmentation performance for the choroid layer and
choroidal vessels was quantitatively evaluated in terms of
five evaluation metrics, namely accuracy, the Dice
coefficient, precision, recall, and specificity. The formulas
for these metrics are shown in Table 2. The metrics were
calculated based on four possibilities, namely true positive
(TP), true negative (TN), false positive (FP), and false
negative (FN). The numerical results are expressed as means
+ standard deviation (SD).

TABLE 2. Formulas of evaluation metrics used in model comparison.

Metric Formula
Accuracy ((TP+TN)/(TP+FP+TN+FN)) x 100
Dice coefficient (2TP/2TP+FP+FN)) x 100
Precision (TP/(TP+FP)) x 100
Recall (TP/(TP+FN)) x 100
Specificity (TN/(TN+FP)) x 100

C. EXISTING METHODS
The performance of ChoroidNET is compared with that of
U-Net++ L3 [47], DRUNET [25], and Residual U-Net [31].
U-Net++ is an improved U-Net architecture based on
nested and dense skip connections. U-Net++ was used to
segment polyp, liver, and cell nuclei datasets. DRUNET
and Residual U-Net adopt the structure of U-NET.
DRUNET integrates residual blocks that comprise two
dilated convolutions, instead of standard convolution blocks
(except at the top level). DRUNET was designed for
segmenting optic nerve head (ONH) tissues (including the
choroid) in ONH-centered SD-OCT images. Residual U-
Net inserts a residual connection between each pair of
convolution blocks in its U-Net backbone. Residual U-Net
is used for detecting the upper and lower boundaries of the
choroid in foveal-centered SS-OCT images.

For a fair comparison, we trained and validated U-Net++,
DRUNET, and Residual U-Net using the same training and

7
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test sets used for ChoroidNET, and performed the same data
augmentation, pre-processing, and DropBlock regularization
as that in our experiment.

V. RESULTS

A. COMPARISON WITH EXISTING METHODS
This section presents the experimental results of the choroid
layer and choroidal vessel segmentation.

The segmented images produced by U-NET++,
DRUNET, Residual U-NET, and ChoroidNET were
qualitatively compared with their corresponding ground
truths and quantitatively evaluated. Figures 6 and 7 show
examples of the choroid layer and choroidal vessel
segmentation results. Table 3 compares the performance of
the choroid layer and choroidal vessel segmentation for the
tested networks.

In general, the choroid layer segmentation results for
ChoroidNET are qualitatively comparable to the ground
truths. ChoroidNET shows the best segmentation
performance (accuracy: 98.5 + 0.2, Dice coefficient: 95.1 £
0.4, precision: 94.1 + 1.6, recall: 96.1 £ 0.9, specificity:

LA
LA
LA

99.0 £ 0.3). U-Net++ segmented the choroid layer as
smooth as the ground truths, and also had the high Dice
coefficient (94.0 £ 1.1) and recall (96.0 + 0.8). However, it
was slightly inferior to ChoroidNET in terms of all
evaluation metrics and oversegmented areas outside the
choroid layer for DME images. The DRUNET produced
irregular choroid boundaries. Residual U-Net results are
similar to the ground truths; however, the segmented
boundaries of the choroid are not smooth.

ChoroidNET outperformed the other models in terms of
choroidal vessel segmentation performance. It had the
highest accuracy (97.7 = 0.4), Dice coefficient (82.4 + 2.4),
and recall (87.2 + 2.8). In particular, it had a significant
improvement on recall by 6.2%, 4.0% and 4.7% compared
to U-Net++, DRUNET, and Residual U-Net, respectively.
U-Net++ had the highest precision (80.5 £ 5.7) and
specificity (98.7 £ 0.3). Residual U-Net yielded the second-
best performance in terms of the Dice coefficient (81.0 +
2.3). For DME images, U-Net++ and Residual U-Net
segmented irrelevant areas (intraretinal fluid) outside the
choroid. DRUNET exhibited oversegmentation around the
choroid upper layer in CNV and Drusen images.

UV
L
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D
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—
=

FIGURE 6. Choroid layer segmentation results. (a) Input, (b) ground truth, and results for (c) U-Net++, (d) DRUNET, (e) Residual U-Net, and (f)
ChoroidNET. Yellow arrow indicates oversegmentation.

TABLE 3. Performance comparison of choroid layer and choroidal vessel segmentation (highest scores in bold).
Metric Residual

(mean + SD) U-Net++ DRUNET U-Net ChoroidNET

Accuracy 98.2+0.2 97.8+0.1 98.1+0.1 98.5+0.2

Dice coefficient 94.0+1.1 925+1.3 93.6+1.0 95.1+0.4

Layer  Precision 922+24 91.1£2.7 929+1.9 94.1£1.6
Recall 96.0 0.8 940+1.3 943 +0.8 96.1 £ 0.9
Specificity 98.6+0.3 98.4+0.3 98.8+0.2 99.0 + 0.3
Accuracy 97.6+0.3 974+04 97.6 0.4 97.7+0.4

Dice coefficient 80.8+2.0 80.0+2.6 81.0£2.3 824+24

Vessels  Precision 80.5 £5.7 77.0+£53 79.5+49 782 +5.6
Recall 81.0+£22 832+1.1 825+1.5 87.2+2.8
Specificity 98.7 £ 0.3 97.6+1.6 98.6+0.3 98.4+0.4
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FIGURE 7. Choroidal vessel segmentation results. (a) Input, (b) ground truth, and results for (c) U-Net++, (d) DRUNET, (e) Residual U-Net, and (f)
ChoroidNET. Yellow arrow indicates oversegmentation.

B. ABLATION STUDIES

To provide insight into each design element of
ChoroidNET, we conducted four ablation studies. The
ablation models were trained and validated using the same
training and test sets. Figure 8 shows the architectures of
the ablation models. Figures 9 and 10 show the
segmentation results of the choroid layer and the choroidal
vessels, respectively, for the ablation models and
ChoroidNET. Table 4 compares the performance of
ChoroidNET and its ablation models.

Ablation-1 and Ablation-2 did not use a dilation block in
LSM. For choroid layer segmentation, the boundaries
obtained by Ablation-1 and Ablation-2 are not as smooth as
the ground truths. The choroid layer segmentation
performance of Ablation-3 and Ablation-4 are the same as
that of ChoroidNET. ChoroidNET outperforms Ablation-1
and Ablation-2 for the choroid layer segmentation and

shows an absolute improvement of 1.2% in terms of the
Dice coefficient. The use of the dilation block in LSM
improved the vessel segmentation results of Ablation-3
(81.5 £ 2.5), Ablation-4 (81.8 + 2.5), and ChoroidNET
(82.4 + 2.4). This demonstrates the importance of the
dilation block in LSM.

For choroid vessel segmentation, Ablation-1 had the
highest recall (92.3 £ 2.2), but it oversegmented the region
outside the choroid layer and thus had the lowest precision
(68.6 = 5.6). Ablation-2 slightly outperforms Ablation-1 by
0.6% in terms of the absolute Dice coefficient. This
highlights the efficiency of the dilation block in VSM. The
performance improvements (in terms of the Dice
coefficient) of ChoroidNET over the four ablation models
are 3.7%, 3.1%, 0.9%, and 0.6%, respectively. The
improvement of ChoroidNET over Ablation-4 demonstrates
the effectiveness of the connection between LSM and VSM.

TABLE 4. Performance comparison of ablation models and ChoroidNET.

Metric Ablation-1 Ablation-2 Ablation-3 Ablation-4 ChoroidNET
(mean = SD)
Accuracy 982 =03 982 +0.3 985+02 985+02 985+02
Dice coefficient 93.9+1.2 93.9+12 95.1 + 0.4 95.1 + 0.4 95.1 + 0.4
Layer  Precision 92.6+2.2 92.6+2.2 94.1+1.6 94.1+1.6 94.1+1.6
Recall 95.1+ 1.0 95.1+1.0 96.1+0.9 96.1+0.9 96.1+0.9
Specificity 98.8 + 0.3 98.8 0.3 99.0+0.3 99.0+0.3 99.0 0.3
Accuracy 96.9 + 0.4 97.1+0.4 975+0.4 975+0.4 97.7+0.4
Dice coefficient 78.7+3.2 793422 815425 81.8+2.5 82.4+2.4
Vessels Precision 68.6+5.6 72.6+ 4.4 762453 76.5+5.4 78.2 5.6
Recall 92.3+2.2 87.5+2.1 87.5+2.1 87.7+19 872+2.8
Specificity 972+0.4 97.8+0.2 98.2+0.3 982 +0.4 98.4 + 0.4
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FIGURE 8. Ablation models of ChoroidNET (1) without dilation blocks in LSM and VSM, (2) without dilation block in LSM, (3) without dilation block in

VSM, and (4) without connection between LSM and VSM.
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FIGURE 9. Choroid layer segmentation results. (a) Input, (b) ground truth, and results for (c) Ablation-1 and Ablation-2 and (d) Ablation-3, Ablation-4,

and ChoroidNET.
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FIGURE 10. Choroidal vessel segmentation results. (a) Input, (b) ground truth, and results for (c) Ablation-1, (d) Ablation-2, (e) Ablation-3, (f) Ablation-
4, and (g) ChoroidNET. Yellow and green arrows indicate over- and undersegmentation, respectively.

C. INTRA-OBSERVER VARIABILITY

For the assessment of intra-observer variability, our
observer repeated annotating process for the choroid layer
and choroidal vessels. Table 5 shows the variability
between two sets of ground truths (GT1 and GT2) and
ChoroidNET’s  segmentation.  Intraclass  correlation
coefficient (ICC) was used to measure the variabilities. The
ICC value of 1 indicates the highest agreement between the
two observations. The intra-observer reproducibility of
choroid layer and vessel segmentation between GT1 and
GT2 were excellent (Dice coefficient: 96.1 £ 1.1 and 84.1 +
2.6) and (ICC: 0.983, 0.971). ChoroidNET also produced a
high agreement with GT1 and GT2, (Dice coefficient: 95.1
+ 0.4, 95.1 + 2.8) for choroid layer segmentation and (Dice
coefficient: 82.4 + 2.4, 82.1 + 2.8) for choroidal vessel
segmentation.  Figure 11  shows  ChoroidNET’s
segmentation results and their corresponding ground truths.

D. CONSISTENCY OF THE PROPOSED NETWORK
We included 80 more images (20 images each from CNV,
DME, Drusen, and Normal) for validating the consistency

of our proposed network. The proposed model was trained
on new training and test sets (40 images each). The training
and validation processes were performed as same as the
previous training. We then compared the performances of
two distinct trained models using two test sets. Table 6
presents the quantitative performance of the proposed
network for four sets. Set-1 corresponds to the results of
test set-1 and the trained model-1, set-2 corresponds to
results of test set-2 and the trained model-1, set 3
corresponds to results of test set-1 and the trained model-2,
and set-4 corresponds to results of test set-2 and the trained
model-2, respectively. Figure 12 shows examples of the
choroid layer and choroidal vessel segmentation results of
test set-2. The mean Dice coefficients of four sets were 95.1
+ 0.4, 957 £0.5,93.5 £ 1.3, 96.4 £ 0.5 for choroid layer
segmentation, and 82.4 £2.4,84.3+0.3,82.2+2.1,85.1 £
0.2 for choroidal vessel segmentation. Thus, ChoroidNET
showed consistent and good performance on newly tested
CNV, DME, Drusen, and Normal images.

TABLE 5. Performance difference of intra-observer variability.

Metric

GT1 vs GT2 GT1 vs ChoroidNET GT2 vs ChoroidNET
(mean = SD)

Accuracy 98.8 £0.3 98.5+0.2 98.5£0.8
Dice coefficient 96.1 +1.1 951+04 95.1+2.8
Layer Precision 973+1.5 94.1+1.6 95.0+4.8
Recall 95.0+2.6 96.1+£0.9 953+3.2
Specificity 99.5+0.4 99.0+0.3 99.1+0.8

ICC 0.983 0.955 0.964
Accuracy 98.0+0.8 97.7+0.4 97.6 +0.9
Dice coefficient 84.1+2.6 824+24 82.1+2.8
Vessels Precision 84.4+45 782 +5.6 88.2+3.1
Recall 83.8+£3.0 872+2.8 76.7+5.1
Specificity 98.9+0.5 98.4+04 98.2+0.8

1ICC 0.971 0.840 0.861
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FIGURE 11. Intra-observer variability (a) Input, (b) ground truth (GT1), (c) ground truth (GT2), and (d) ChoroidNET result. (1t row — choroid layer and
2nd row — choroidal vessels)

TABLE 6. Quantitative performance of the proposed network for four sets.

(mé\:st:csm Set-1 Set-2 Set-3 Set-4
Accuracy 98.5+0.2 99.0+0.1 98.0+0.4 99.1+0.2
Dice coefficient 95.1+04 95.7+0.5 935+1.3 96.4+0.5
Layer  Precision 94.1+1.6 97.3+£0.3 89.8+2.9 97.1£0.8
Recall 96.1 £0.9 94.1+0.9 97.6+0.8 95.7+0.8
Specificity 99.0+0.3 99.6 +0.1 98.1+0.5 99.6 +0.1
Accuracy 97.7+04 98.3+0.2 97.7+0.4 98.4+0.2
Dice coefficient 824+24 843+0.3 822 +2.1 85.1+0.2
Vessels  Precision 782 +5.6 81.1+1.9 792 +£5.7 83.8+1.2
Recall 872+2.8 87.8+1.9 85.4+3.7 86.5+1.7
Specificity 98.4+0.4 98.9+0.1 98.5+0.4 99.1 +£0.1
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FIGURE 12. Choroid layer and vessel segmentation results of ChoroidNET using test set-2 (a) Input, (b) ground truth, (c) model-1, and (d) model-2.
(1%t row — choroid layer and 2" row — choroidal vessels)
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VI. DISCUSSION

We now present a qualitative and quantitative segmentation
analysis of the choroid layer and choroidal vessels. The
experimental results in Table 3 confirm that ChoroidNET is
the best state-of-the-art model for the segmentation of the
choroid layer and choroidal vessels.

In an eye with DME, an accumulation of fluid with cystic
properties usually occurs in the retinal layers. In an OCT
image, those accumulated fluid regions are similar to the
characteristics of choroidal vessels. For DME images, U-
Net++ and Residual U-Net had inconsistent vessel
segmentation performance compared to that of DRUNET
and ChoroidNET, as shown with the yellow arrows in Figure
7 (c and e). The objective of the standard convolutions in U-
Net++ and Residual U-Net is to extract the spatial
information in the image. A deeper network can learn more
semantic information. However, spatial information is lost at
deeper layers, and thus the network predicts incorrect regions
outside the choroid layer. Dilated convolutions reduce the
loss of spatial information by expanding the receptive field of
the network. Thus, the dilated convolutions in DRUNET and
ChoroidNET facilitate the creation of large-scale feature
maps with rich spatial information. The segmentation
performance of DRUNET and ChoroidNET is thus more
consistent for DME images.

In the U-Net architecture, the number of filters is doubled
after down-sampling in the encoder path and halved after up-
sampling in the decoder path. However, in the DRUNET
architecture, only 16 filters are used in both standard blocks
and residual blocks. DRUNET thus had poor vessel
segmentation performance for CNV and Drusen images. The
filter of a convolutional layer captures the patterns in image
data. A higher number of filters allows the network to learn
more complex patterns (abstractions) contained in image data
and extract useful features. As a result, DRUNET was unable
to separate the choroid pattern from the neovascular
membrane in CNV images and mistakenly segment small
drusen (which occurs in the complex between RPE and the
choroid) as the choroidal vessels, as illustrated with the
yellow arrows in Figure 7 (d). U-Net++, Residual U-Net and
ChoroidNET use a high number of filters (the same as that in
U-Net), which considerably improves the recognition and
segmentation of the choroid layer and vessels.

Overall, the segmentation performance of ChoroidNET
is similar and consistent with the ground truths. U-Net++,
DRUNET, and Residual U-Net are sensitive to the
pathologies (subretinal and intraretinal fluid) present in
CNV, DME, and Drusen images. In contrast, there is no
significant difference in the segmentation performance of
ChoroidNET for CNV, DME, Drusen, and Normal images.

The number of parameters used by a network depends on
the number of filters. ChoroidNET and Residual U-Net each
use approximately 4.5 million parameters (compared to 2.2
million for U-Net++ and only 40,000 for DRUNET) and thus

have a much higher computational cost and use much more
memory. This is a major drawback of ChoroidNET.

We also evaluated the segmentation performance of
ChoroidNET based on the prediction scores of the receiver
operator characteristics area under the curve (ROC-AUC)
and the precision-recall area under the curve (PR-AUC).
ROC-AUC indicates the tradeoff between the true positive
rate (TPR) and false positive rate (FPR). PR-AUC represents
the tradeoff between precision and recall. The range of scores
is [0, 1]. A higher score indicates a better model performance.
ChoroidNET obtained (ROC-AUC: 0.997 £ 0.001, PR-AUC:
0.989 £ 0.002) for choroid layer segmentation and (ROC-
AUC: 0.992 £ 0.001, PR-AUC: 0.906 + 0.018) for choroidal
vessel segmentation, respectively.

Further, we performed ablation studies to demystify the
architecture of the proposed network. We also measured
the intra-observer variability for choroid layer and vessel
segmentation. To access the consistency and robustness of
the proposed model, we tested ChoroidNET’s performance
using an additional dataset that contains 80 images (with
CNV, DME, Drusen, and Normal).

In summary, ChoroidNET significantly outperforms U-
Net++, DRUNET and Residual U-Net and is robust for
images with various retinal pathologies. In addition, it
provides good tradeoffs between TPR and FPR, and
between precision and recall for both choroid layer and
choroidal vessel segmentation. ChoroidNET is thus the
most robust model.

VII. CONCLUSION

In this study, we proposed ChoroidNET, a robust
segmentation model for segmenting both the choroid layer
and choroidal vessels in OCT images. ChoroidNET uses U-
NET as a backbone and adds dense dilated convolutions at
the bottleneck of LSM and VSM. The performance of
ChoroidNET was evaluated using an OCT dataset. The
numerical results indicate that ChoroidNET outperforms U-
Net++, DRUNET, and Residual U-Net, and is robust to
cases of pathological abnormality (i.e., neovascular
membrane and associated subretinal fluid in CNV, retinal-
thickening-associated intraretinal fluid in DME, and
multiple drusen).

Clinical research has shown that choroidal structures, in
terms of changes in the luminal and stromal areas, and
visual functions are highly correlated in diseased eyes [48-
50]. Based on the segmentation results of ChoroidNET, our
work could be extended to offer accurate quantification of
clinical parameters derived from the choroid. These
parameters can be used to find clinical correlations between
choroidal changes and other clinical measures. It would be
helpful for ophthalmologists to monitor changes in the
choroid layer over time for various eye diseases.

In this work, we considered the segmentation of the
choroid layer and choroidal vessels in OCT images. We
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will consider the segmentation of the retinal layers, the

RPE,

and the sclera in future studies because the

pathologies of other tissues in the retina are important for
diagnosing diseases such as Alzheimer’s disease [51],
AMD, diabetic retinopathy, and scleritis.
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