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ABSTRACT Understanding the changes in choroidal thickness and vasculature is important to monitor the 
development and progression of various ophthalmic diseases. Accurate segmentation of the choroid layer 
and choroidal vessels is critical to better analyze and understand the choroidal changes. In this study, we 
develop a dense dilated U-Net model (ChoroidNET) for segmenting the choroid layer and choroidal vessels 
in optical coherence tomography (OCT) images. The performance of ChoroidNET is evaluated using an 
OCT dataset that contains images with various retinal pathologies. Overall Dice coefficient of 95.1 ± 0.4 
and 82.4 ± 2.4 were obtained for choroid layer and vessel segmentation, respectively. Comparisons show 
that among state-of-the-art models, ChoroidNET, which produces results that are consistent with ground 
truths, is the most robust segmentation framework.  

INDEX TERMS Choroid Layer, Choroidal Vessels, ChoroidNET, Dense Dilated U-Net, Optical 
Coherence Tomography (OCT). 

I. INTRODUCTION 
In optical coherence tomography (OCT) images, the choroid 
is a dense vascular layer between the retina and the sclera. It 
comprises choroidal vessels (luminal area) embedded in 
elastic connective tissues (stromal area). Its main function is 
to supply oxygen and nourishment to the outer retina. The 
thickness and vascularity index of the choroid are choroidal 
biomarkers [1] that facilitate the diagnosis, prognosis, and 
treatment of various ophthalmic diseases or their pathological 
conditions such as age-related macular degeneration (AMD) 
[2], choroid neovascularization (CNV) which is a pathology 
that occurs in wet AMD [3], diabetic macular edema (DME) 
[4], and retinitis pigmentosa (RP) [5][6].  

OCT is a non-invasive imaging technique that captures a 
cross-sectional view of the retina, including the choroid. 
With rapid development in optical imaging technology, 
enhanced depth imaging OCT (EDI-OCT) and swept-source 

OCT (SS-OCT) enable better visualization of the choroid 
than the conventional spectral-domain OCT (SD-OCT) [7][8]. 
Figure 1 shows an OCT image of the components in the 
choroid layer, i.e., the upper boundary of the choroid (blue 
dashed line), the lower boundary of the choroid (green 
dashed line), the choroidal vessels, and the stromal area. 

The choroid has an inhomogeneous texture because it 
contains vessels. The contrast between the choroid and the 
sclera is usually low in an OCT image, and thus the lower 
boundary of the choroid, called the choroid-sclera interface 
(CSI), is fuzzy and difficult to distinguish from the choroid. 
The choroid layer and choroidal vessels in OCT images must 
thus be manually annotated, which is time-consuming, error-
prone (due to indistinct vascular structures), and subject to 
interobserver variability. Although some automated 
segmentation approaches are available, individual 
applications are required for segmenting the choroid layer 
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and choroidal vessels. To the best of our knowledge, this 
study is the first to combine the segmentation of the choroid 
layer and vessels, which is clinically important. This is done 
using a deep learning model trained on eyes with various 
pathologies. 

 
FIGURE 1.  Choroid region in an OCT image (ILM – internal limiting 
membrane, RPE – retinal pigment epithelium, BM – Bruch’s membrane, 
and CSI – choroid-sclera interface). 

In this work, we propose a dense dilated U-Net model 
called ChoroidNET for segmenting the choroid layer and 
choroidal vessels in OCT images. The automatic extraction 
of these regions would greatly assist ophthalmologists in 
diagnosis and treatment monitoring. ChoroidNET uses the 
U-Net [9] as its backbone architecture and integrates dilated 
convolutions with different dilation factors at the bottleneck. 
The dense connection of dilated convolutions exploits 
image contexts at multiple scales and improves 
segmentation performance. The experimental results 
demonstrate that ChoroidNET significantly outperforms 
existing state-of-the-art methods. We perform ablation 
studies to confirm the performance of ChoroidNET. Our 
ultimate goal is to automatically quantify clinical 
parameters that can be derived from the choroid, such as the 
luminal-to-stromal ratio and choroidal thickness. 

The main contributions of this work are: 
1) development of ChoroidNET for segmenting the 

choroid layer and choroidal vessels; 
2) highlighting of the use of dilated convolutions in both 

layer and vessel segmentation;  
3) robust segmentation of OCT images of eyes with 

various retinal pathologies;  
4) qualitative and quantitative evaluation using 

manually annotated ground truths to determine the 
reproducibility of ChoroidNET. 
 

II. LITERATURES 
Many traditional image processing methods have been 
proposed for segmenting the choroid layer fully or semi-
automatically for various retinal diseases. Graph search 
algorithm [10], graph cuts and dynamic programming [11, 
12], min-cut max-flow graph theory [13], the Dijkstra 
shortest path algorithm [14-16], active contour [17], and the 
level set method [18] have been applied to detect the choroid 
boundaries in OCT images. Poor robustness is the main 
drawback of choroid segmentation techniques based on 
traditional image processing since they are highly sensitive to 
severe pathological images. 

Deep learning has gained increasing interest in medical 
image processing research. Several deep learning models 
were recently applied to choroid segmentation to improve 
performance. To detect the choroid boundaries, Sui et al. [19] 
presented a multi-scale convolutional neural network (CNN) 
to learn the edge weights in a graph searching approach. 
Masood et al. [20] performed automatic choroid 
segmentation using a patch-based CNN and morphological 
operations. A variety of deep learning models such as CNN, 
residual network, recurrent neural network, and squeeze and 
excitation network were explored in the choroid 
segmentation works of Kugelman et al. [21] and Alonso-
Caneiro et al. [22]. They investigated the effects of patch size 
and the network architectures, and image pre-processing 
techniques on their patch-based and semantic segmentation 
networks. Chen et al. [23] used two SegNet models [24] to 
generate edge probability maps for BM and the CSI. Then, 
seam carving was applied to obtain a full choroid layer by 
finding a path of connected pixels between BM and the CSI. 
Devalla et al. [25] presented the dilated-residual U-Net 
model (DRUNET) for segmenting optic nerve head tissues, 
which contain the choroid, in OCT images of glaucomatous 
and healthy eyes. Zhang et al. [26] infused a biomarker prior 
into a global-to-local network (BIONET) for choroid 
segmentation. BIONET is composed of 1) a biomarker 
infused prediction network that learns the biomarker features, 
2) a global multi-layered segmentation module that initially 
segments all layers (retinal layers and the choroid layer) in 
OCT images, and 3) a local choroid segmentation module 
that segments the choroid using the result from the global 
module and the learned biomarker features. Hsia et al. [27] 
segmented the choroid layer using a mask region-based CNN 
model, composed of deep residual network and feature 
pyramid networks. The choroid segmentation performance of 
deep learning models is very competitive and generally better 
than those of traditional image processing techniques. 

Algorithms based on traditional image processing 
techniques have been developed for choroidal vessel 
segmentation. Srinath et al. [28] initially defined the RPE by 
finding the brightest region and the CSI by calculating the 
structural similarity index between the choroid and the sclera. 
Then, choroidal vessels were segmented in the region 
between the RPE and the CSI using the level set method. 

Recently, Liu et al. [29] presented a deep-learning-based 
choroidal vessel segmentation model adapted from 
RefineNet [30]. There have been attempts to obtain the 
choroidal thickness and vasculature from SS-OCT images. 
Zheng et al. [31] detected the choroid’s upper and lower 
boundaries in OCT images using the Residual U-Net model 
[32] and then performed binarization to detect the choroidal 
vessels using Niblack’s algorithm. Zhou et al. [33] applied an 
attenuation correction approach to compensate for the 
attenuated light in SS-OCT images as a pre-processing step 
in choroid segmentation. Then, choroidal vessel maps, which 
enable the choroidal vasculature to be visualized without 
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OCT angiography, were generated using a projection of OCT 
structural information.  

A summary of performances, datasets, advantages, and 
drawbacks/limitations of some existing choroid layer and 
vessel segmentation methods, are discussed in Table 1. 

 
III. METHODS 
This section describes the network architecture and 
components of ChoroidNET. ChoroidNET is a patch-based 
model that adopts the structure of U-Net [9]. To denoise and 
enhance the contrast of OCT images, we preprocess each 
extracted patch using normalized gamma-corrected contrast-
limited adaptive histogram equalization [34]. Training is then 
performed using the preprocessed patches. During training, 
we also perform data augmentation, which includes affine 
transformation, horizontal flipping, random distortion, and 
zooming. 

A. NETWORK ARCHITECTURE 
Figure 2 shows the network architecture of ChoroidNET. 
The model comprises a layer segmentation module (LSM) 
and a vessel segmentation module (VSM). Each module 
consists of an encoder path, a decoder path, and a dilation 
block, which uses dense dilated convolutions, instead of 
standard convolutions. The blocks used in the network are 
defined as follows. A standard (purple) block corresponds to 
the resulting activation map from two consecutive 3×3 
standard convolutions. All layers in a standard block are 
regularized by DropBlock (DB) [35], batch-normalized (BN) 
[36], and activated by a rectified linear unit (ReLU) [37]. A 
gray block represents the activation map forwarded from the 
encoder path that is concatenated with the corresponding up-
sampled map in the decoder path. The red and yellow blocks, 
at the bottleneck of LSM and VSM, respectively, are dilation 
blocks that comprise six dilated convolutions with different 
dilation factors. These dilation blocks help ChoroidNET to 
overcome the loss of detailed spatial information and 
difficulty in extracting contextual semantic features. 
ChoroidNET thus has a good segmentation accuracy, 
resulting in smooth boundaries of the choroid layer. The 
intersection area of the input patch and the choroid layer 
prediction from LSM is fed into VSM to obtain a more 
consistent segmentation of choroidal vessels. 
 
Encoder Path. At each level of the encoder path, the 
number of feature vectors is doubled. Thus, the bottommost 
level of the encoder path generates high-level semantic 
features. The purpose of the encoder path is to capture the 
contextual information of the input patches. This 
information is then fed to the decoder path through skip 
connections [38]. 
 
Decoder Path. After each level of the decoder path, a 2×2 
up-sampling operation is applied to restore the image to its 
original size. The purpose of the decoder path is to perform 

semantic segmentation by concatenating up-sampled 
outputs and the contextual information transferred from the 
encoder path via skip connections. The features generated 
by the dilation block are added to achieve multi-scale 
context aggregation. Finally, a 1×1 convolution and a 
sigmoid activation are applied to obtain the pixel-wise 
binary segmentation for each pixel.  
 
Dilated Convolutions. A dilated convolution refers to a 
convolution conducted with a dilated filter. Yu et al. [39] 
and Chen et al. [40] reported that dilated convolutions can 
be used instead of down-sampling operations to expand the 
receptive field without degrading the resolution of 
intermediate feature maps by inserting zeros between the 
pixels of the kernel. Consider convolutional kernel lK  with 
a kernel size of k k× in dilated layer l . The receptive field 

lKF of kernel lK  can be calculated as: 

( 1) ( 1)
l lK KF k k D= + − × −    (1) 

where 
lKD denotes the dilation rate of kernel lK . Figure 3 

shows how the dilated convolutions adaptively enlarge the 
field of views by increasing the dilation rates.  

For the dilation block of LSM, we increase the dilation 
factors in increments of 2. We experimentally found that this 
increasing order of dilation factors yields better performance 
in the choroid layer segmentation. However, aggressively 
increasing dilation factors is less effective for small objects 
such as choroidal vessels. Dilated convolutions with 
increasing dilation factors lead to weak spatial inconsistency 
between neighboring pixels; thus, it fails to aggregate local 
features. To address this, Hamaguchi et al. [41] used a local 
feature extractor after large contexts are aggregated by 
increasing the dilation factors. The local feature extractor 
helps to extract local features by decreasing the dilation 
factors. Inspired by this concept, for the dilation block of 
VSM, we first increase the dilation factors gradually and then 
decrease them to recover consistency between neighboring 
pixels.  

 
DropBlock. Dropout [42] is a widely used regularization 
technique for fully connected networks. It prevents the 
overfitting caused by coadaptation on the training dataset 
by reducing the complexity of the network architecture and 
randomly dropping out independent features. However, this 
technique is less effective for convolutional networks where 
the features are spatially correlated because semantic 
information can still leak through in the networks. Thus, 
Ghiasi et al. [43] proposed DropBlock [35], which is a form 
of structured dropout, for effectively regularizing 
convolutional networks. We apply DropBlock to prevent 
our network from overfitting and to effectively remove 
semantic information. Figure 4 shows how DropBlock 
discards some contiguous regions that contain certain 
semantic information from a feature map of the choroid 
layer.  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124993, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (September 2021) 

 

4 

TA
B

LE
 1

.  A
 b

rie
f d

es
cr

ip
tio

n 
of

 re
ce

nt
 e

xi
st

in
g 

m
et

ho
ds

 fo
r t

he
 c

ho
ro

id
 la

ye
r a

nd
 v

es
se

l s
eg

m
en

ta
tio

n.
 

D
ra

w
ba

ck
s/L

im
ita

tio
ns

 

Th
re

sh
ol

di
ng

-b
as

ed
 u

pp
er

 
bo

un
da

ry
 d

et
ec

tio
n 

m
ay

 b
e 

se
ns

iti
ve

 to
 se

ve
re

 
pa

th
ol

og
y 

pr
es

en
t i

n 
th

e 
im

ag
e.

 

To
 c

on
fir

m
 th

e 
ro

bu
stn

es
s, 

on
ly

 tw
o 

SS
-O

C
T 

im
ag

es
 

of
 e

ye
s w

ith
 A

M
D

 a
nd

 
C

N
V

 w
er

e 
te

ste
d.

 V
es

se
l 

se
gm

en
ta

tio
n 

pe
rfo

rm
an

ce
 

w
as

 n
ot

 re
po

rte
d.

 
Th

e 
al

go
rit

hm
 w

as
 te

ste
d 

on
 sm

al
l d

at
as

et
s. 

Th
e 

al
go

rit
hm

 m
ay

 n
ot

 b
e 

ro
bu

st 
fo

r t
he

 im
ag

es
 

w
hi

ch
 h

av
e 

po
or

er
 q

ua
lit

y 
th

an
 E

D
I-O

C
T 

im
ag

es
. 

Th
er

e 
is 

a 
la

ck
 o

f 
pe

rfo
rm

an
ce

 te
sti

ng
 o

n 
pa

th
ol

og
ic

al
 im

ag
es

.  
 

C
ho

ro
id

al
 v

es
se

l 
se

gm
en

ta
tio

n 
w

as
 n

ot
 

pe
rfo

rm
ed

. 

C
ho

ro
id

al
 v

es
se

l 
se

gm
en

ta
tio

n 
w

as
 n

ot
 

pe
rfo

rm
ed

. 

A
dv

an
ta

ge
s 

Pe
rfo

rm
an

ce
 w

as
 

ev
al

ua
te

d 
in

 te
rm

s o
f i

nt
er

-
an

d 
in

tra
-o

bs
er

ve
r 

va
ria

bi
lit

y.
 

Pe
rfo

rm
an

ce
 w

as
 v

al
id

at
ed

 
ag

ai
ns

t t
w

o 
ex

pe
rt 

ob
se

rv
er

s. 

C
ho

ro
id

 se
gm

en
ta

tio
n 

w
as

 
pe

rfo
rm

ed
 in

 b
ot

h 
pe

rip
ap

ill
ar

y 
an

d 
fo

ve
al

-
ce

nt
er

ed
 O

C
T 

im
ag

es
. 

R
ea

l-t
im

e 
hu

m
an

 
in

te
ra

ct
io

n 
w

as
 o

ffe
re

d 
to

 
gu

id
e 

C
SI

 se
gm

en
ta

tio
n 

in
te

lli
ge

nt
ly

. 

C
on

st
ru

ct
io

n 
of

 a
 th

ic
kn

es
s 

m
ap

 o
f t

he
 c

ho
ro

id
 la

ye
r i

n 
th

e 
sa

m
e 

vo
lu

m
e 

im
ag

e 
w

as
 p

er
fo

rm
ed

. 

Th
e 

m
ul

ti-
sc

al
e 

C
N

N
 

co
m

bi
ne

s l
oc

al
 a

nd
 g

lo
ba

l 
in

fo
rm

at
io

n,
 a

t c
oa

rs
e,

 
m

id
dl

e,
 a

nd
 fi

ne
 im

ag
e 

sc
al

es
, w

hi
ch

 is
 im

po
rta

nt
 

fo
r o

bj
ec

t s
eg

m
en

ta
tio

n 
    H

ig
h 

se
gm

en
ta

tio
n 

pe
rfo

rm
an

ce
 w

as
 c

la
im

ed
 

an
d 

th
e 

th
ic

kn
es

s m
ap

 
co

ns
tru

ct
io

n 
of

 th
e 

ch
or

oi
d 

la
ye

r i
n 

th
e 

sa
m

e 
vo

lu
m

e 
im

ag
e 

w
as

 p
ro

vi
de

d.
 

Pe
rf

or
m

an
ce

 
V

al
ue

 
85

.0
%

 

92
.9

%
 

3.
34

 p
ix

el
s 

   6.
65

 p
ix

el
s 

 92
.7

 ±
 3

.6
 

 90
.0

 ±
 4

.0
 

  1.
59

 ±
 1

.6
5 

  2.
17

 ±
 1

.7
7 

0.
9 

 9.
5 

 4.
6 

± 
4.

8 
11

.4
 ±

 1
1.

0 

97
.4

 ±
 2

.3
 

M
et

ri
cs

 
O

ve
rla

p 
ra

tio
 

(C
ho

ro
id

 L
ay

er
) 

D
ic

e 
co

ef
fic

ie
nt

 
(C

ho
ro

id
 L

ay
er

) 

U
ns

ig
ne

d 
er

ro
r 

(fo
ve

al
-c

en
te

re
d)

 

U
ns

ig
ne

d 
er

ro
r 

(p
er

ip
ap

ill
ar

y)
 

D
ic

e 
co

ef
fic

ie
nt

 
(C

ho
ro

id
 L

ay
er

) 

(C
ho

ro
id

 L
ay

er
) 

D
ic

e 
co

ef
fic

ie
nt

  

M
ea

n 
sig

ne
d 

di
ffe

re
nc

e 

M
ea

n 
un

sig
ne

d 
di

ffe
re

nc
e 

M
ea

n 
sq

ua
re

 e
rro

r 
(B

M
) 

M
ea

n 
sq

ua
re

 e
rro

r 
(C

SI
) 

A
bs

ol
ut

e 
er

ro
r (

B
M

) 
A

bs
ol

ut
e 

er
ro

r (
C

SI
) 

D
ic

e 
co

ef
fic

ie
nt

 
(C

ho
ro

id
 L

ay
er

) 

D
at

as
et

 

21
2 

pe
rip

ap
ill

ar
y 

H
ig

h 
D

ef
in

iti
on

-O
C

T 
im

ag
es

 o
f e

ye
s f

ro
m

 
pa

tie
nt

s (
di

se
as

e 
un

sp
ec

ifi
ed

) 

19
0 

fo
ve

al
-c

en
te

re
d 

ED
I-O

C
T 

im
ag

es
 o

f 
ey

es
 w

ith
ou

t a
 

hi
sto

ry
 o

f r
et

in
al

 
di

se
as

es
 

15
 fo

ve
al

-c
en

te
re

d 
an

d 
17

 p
er

ip
ap

ill
ar

y 
ED

I-O
C

T 
im

ag
es

 o
f 

he
al

th
y 

ey
es

 a
nd

 e
ye

s 
w

ith
 m

ul
tip

le
 

sc
le

ro
si

s 

30
 fo

ve
al

-c
en

te
re

d 
ED

I-O
C

T 
im

ag
es

 o
f 

ey
es

 fr
om

 p
at

ie
nt

s 
w

ith
 d

ia
be

te
s 

60
0 

fo
ve

al
-c

en
te

re
d 

SS
-O

C
T 

im
ag

es
 fr

om
 

he
al

th
y 

su
bj

ec
ts 

91
2 

fo
ve

al
-c

en
te

re
d 

ED
I-O

C
T 

im
ag

es
 

(6
18

 n
or

m
al

 im
ag

es
 

an
d 

29
4 

m
ac

ul
ar

 
ed

em
a 

im
ag

es
) 

52
5 

fo
ve

al
-c

en
te

re
d 

O
C

T 
im

ag
es

 o
f 

he
al

th
y,

 sh
or

t-
si

gh
te

d,
 

gl
au

co
m

at
ou

s, 
an

d 
D

M
E 

ey
es

 

Se
gm

en
ta

tio
n 

M
et

ho
d 

V
es

se
l 

- Se
gm

en
te

d 
th

e 
ch

or
oi

da
l v

es
se

ls
 

us
in

g 
O

tsu
’s

 
cl

us
te

rin
g 

m
et

ho
d.

 

- - - - - 

L
ay

er
 

D
et

ec
te

d 
th

e 
ch

or
oi

d 
up

pe
r 

bo
un

da
ry

 b
y 

th
re

sh
ol

di
ng

 a
nd

 C
SI

 
by

 se
ar

ch
in

g 
th

e 
sh

or
te

st
 p

at
h 

of
 

th
e 

gr
ap

h 
w

ith
 th

e 
m

ax
-m

in
 fl

ow
 

in
 th

e 
gr

ad
ua

l i
nt

en
si

ty
 d

is
ta

nc
e 

im
ag

e.
 

Se
gm

en
te

d 
th

e 
ch

or
oi

d 
la

ye
r u

sin
g 

D
ijk

st
ra

’s
 sh

or
t p

at
h 

al
go

rit
hm

 
an

d 
de

pt
h-

ba
se

d 
in

te
ns

ity
 

no
rm

al
iz

at
io

n 
te

ch
ni

qu
e.

 

Tr
an

sf
or

m
ed

 th
e 

in
pu

t i
m

ag
e 

in
to

 
a 

ne
ut

ro
so

ph
ic

 sp
ac

e 
th

at
 c

on
ta

in
s 

tru
e,

 fa
ls

e,
 a

nd
 in

de
te

rm
in

at
e 

se
ts

. 
Th

en
, t

he
 D

ijk
str

a 
sh

or
te

st 
pa

th
 

al
go

rit
hm

 w
as

 a
pp

lie
d 

to
 d

et
ec

t 
th

e 
ch

or
oi

d 
bo

un
da

rie
s b

as
ed

 o
n 

th
e 

ca
lc

ul
at

ed
 w

ei
gh

ts
 b

et
w

ee
n 

pa
irs

 o
f n

od
es

 in
 th

e 
im

ag
e.

 

Se
gm

en
te

d 
th

e 
ch

or
oi

d 
up

pe
r 

bo
un

da
ry

 u
sin

g 
a 

va
ria

tio
na

l 
ac

tiv
e-

co
nt

ou
r m

od
el

 a
nd

 C
SI

 b
y 

m
in

im
iz

in
g 

an
 e

ne
rg

y 
fu

nc
tio

n 
m

od
el

 u
sin

g 
a 

dy
na

m
ic

 
pr

og
ra

m
m

in
g 

te
ch

ni
qu

e.
 

Se
gm

en
te

d 
th

e 
ch

or
oi

d 
la

ye
r u

sin
g 

th
e 

le
ve

l s
et

 m
et

ho
d 

in
 w

hi
ch

 a
 

di
sta

nc
e 

re
gu

la
riz

at
io

n 
te

rm
, a

n 
ed

ge
 c

on
str

ai
nt

 te
rm

, a
nd

 a
 re

gi
on

 
(a

ro
un

d 
th

e 
C

SI
) t

er
m

 a
re

 
em

be
dd

ed
 to

 d
et

ec
t t

he
 in

di
sti

nc
t 

C
SI

 a
nd

 to
 c

om
pe

ns
at

e 
fo

r 
in

co
ns

ist
en

t t
ex

tu
re

s i
n 

th
e 

ch
or

oi
d.

 

Se
gm

en
te

d 
B

M
 a

nd
 C

SI
 u

sin
g 

a 
co

nv
ol

ut
io

na
l n

eu
ra

l n
et

w
or

k 
(C

N
N

) w
hi

ch
 g

en
er

at
es

 g
ra

ph
-

ed
ge

 w
ei

gh
ts

 fo
r B

M
 a

nd
 C

SI
, a

nd
 

a 
gr

ap
h 

se
ar

ch
in

g 
te

ch
ni

qu
e.

 

Se
gm

en
te

d 
th

e 
ch

or
oi

d 
la

ye
r u

sin
g 

a 
pa

tc
h-

ba
se

d 
C

N
N

 m
od

el
 a

nd
 

m
or

ph
ol

og
ic

al
 o

pe
ra

tio
ns

. 

A
ut

ho
rs

 

C
he

n 
et

 a
l. 

[1
3]

 (2
01

5)
 

H
us

sia
n 

et
 

al
. [

15
] 

(2
01

8)
 

Sa
la

fia
n 

et
 

al
. [

16
] 

(2
01

8)
 

Lu
 e

t a
l. 

[1
7]

 
(2

01
3)

 

W
an

g 
et

 a
l. 

[1
8]

 (2
01

7)
 

Su
i e

t a
l. 

[1
9]

 (2
01

7)
 

M
as

oo
d 

et
 

al
. [

20
] 

(2
01

9)
 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124993, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (September 2021) 

 

5 

TA
B

LE
 1

.  
(C

on
tin

ue
d)

 
D

ra
w

ba
ck

s/L
im

ita
tio

ns
 

Th
er

e 
is 

a 
la

ck
 o

f 
pe

rfo
rm

an
ce

 te
sti

ng
 o

n 
pa

th
ol

og
ic

al
 im

ag
es

.  
 

C
ho

ro
id

al
 v

es
se

l 
se

gm
en

ta
tio

n 
w

as
 n

ot
 

pe
rfo

rm
ed

. 

C
ho

ro
id

al
 v

es
se

l 
se

gm
en

ta
tio

n 
w

as
 n

ot
 

pe
rfo

rm
ed

. 

C
ho

ro
id

al
 v

es
se

l 
se

gm
en

ta
tio

n 
in

 O
C

T 
im

ag
es

 w
as

 n
ot

 in
cl

ud
ed

. 

Th
er

e 
is 

a 
la

ck
 o

f 
pe

rfo
rm

an
ce

 te
sti

ng
 o

n 
pa

th
ol

og
ic

al
 im

ag
es

. 
C

ho
ro

id
al

 v
es

se
l 

se
gm

en
ta

tio
n 

w
as

 n
ot

 
pe

rfo
rm

ed
. 

Th
e 

al
go

rit
hm

 m
ay

 b
e 

se
ns

iti
ve

 to
 th

e 
re

tin
al

 
pa

th
ol

og
y.

 

C
ho

ro
id

 la
ye

r 
se

gm
en

ta
tio

n 
w

as
 n

ot
 

pe
rfo

rm
ed

. 

Th
e 

pe
rfo

rm
an

ce
 o

f 
ch

or
oi

da
l v

es
se

l 
se

gm
en

ta
tio

n 
w

as
 n

ot
 

re
po

rte
d.

 

A
dv

an
ta

ge
s 

IL
M

 se
gm

en
ta

tio
n 

w
as

 
al

so
 in

cl
ud

ed
 in

 th
ei

r 
ex

pe
rim

en
t. 

Co
m

pa
ris

on
s 

of
 se

gm
en

ta
tio

n 
pe

rfo
rm

an
ce

 b
as

ed
 o

n 
di

ffe
re

nt
 p

at
ch

 si
ze

s w
er

e 
al

so
 p

re
se

nt
ed

. 

Th
e 

se
gm

en
ta

tio
n 

m
od

el
 is

 
ro

bu
st 

to
 th

e 
pa

th
ol

og
y 

in
 

ey
es

 w
ith

 A
M

D
. 

Se
gm

en
ta

tio
n 

of
 o

th
er

 
O

N
H

 ti
ss

ue
s (

la
m

in
a 

cr
ib

ro
sa

, s
cl

er
a,

 e
tc

.) 
w

as
 

in
cl

ud
ed

. 

V
is

ua
liz

at
io

n 
of

 c
ho

ro
id

al
 

va
sc

ul
at

ur
e 

in
 e

n-
fa

ce
 

im
ag

es
 w

as
 fu

rth
er

 
pe

rfo
rm

ed
 u

sin
g 

a 
ge

ne
ra

tiv
e 

ad
ve

rs
ar

ia
l 

in
pa

in
tin

g 
ne

tw
or

k.
 

Th
e 

pe
rfo

rm
an

ce
s o

f R
es

N
et

-
50

, R
es

N
et

-1
01

, (
R

es
N

et
-5

0 
∩

 
R

es
N

et
-1

01
), 

an
d 

(R
es

N
et

-5
0 

∪
 R

es
N

et
-1

01
) w

er
e 

re
po

rte
d.

 

- G
oo

d 
se

gm
en

ta
tio

n 
ag

re
em

en
t b

et
w

ee
n 

th
e 

R
ef

in
eN

et
 re

su
lts

 a
nd

 
cl

in
ic

ia
ns

 (C
1 

an
d 

C
2)

 w
as

 
ac

hi
ev

ed
. 

Si
x 

ch
or

oi
da

l p
ar

am
et

er
s 

w
er

e 
m

ea
su

re
d 

ba
se

d 
on

 
th

e 
ch

or
oi

d 
la

ye
r a

nd
 

ve
ss

el
 se

gm
en

ta
tio

n 
re

su
lts

. 

Pe
rf

or
m

an
ce

 
V

al
ue

 
0.

44
 ±

 0
.1

1 
 

(in
 p

ix
el

) 

2.
53

 ±
 1

.5
2 

(in
 p

ix
el

) 

83
.0

 ±
 0

.1
 

  90
.6

 ±
 3

.5
 

91
.2

 ±
 5

.0
 

  92
.7

 ±
 0

.0
 

90
.2

 ±
 0

.9
 

87
.5

%
 

-   84
.0

 ±
 3

.5
 

82
.3

 ±
 2

.7
 

0.
22

 
  13

.2
3 

M
et

ri
cs

 
M

ea
n 

ab
so

lu
te

 e
rro

r 
(O

ut
er

 R
PE

) 

M
ea

n 
ab

so
lu

te
 e

rro
r 

(C
SI

) 
 D

ic
e 

co
ef

fic
ie

nt
 

(C
ho

ro
id

 L
ay

er
) 

(C
ho

ro
id

 L
ay

er
) 

D
ic

e 
co

ef
fic

ie
nt

 
- h

ea
lth

y 
 

- g
la

uc
om

a 

(C
ho

ro
id

 L
ay

er
) 

D
ic

e 
co

ef
fic

ie
nt

 
- h

ea
lth

y 
 

- C
N

V
 

A
cc

ur
ac

y 
(C

ho
ro

id
 L

ay
er

) 

- Se
gm

en
ta

tio
n 

ag
re

em
en

t  
C

1 
vs

 R
ef

in
eN

et
 

C
2 

vs
 R

ef
in

eN
et

 

Fa
ilu

re
 ra

tio
 (2

%
) 

(U
pp

er
 b

ou
nd

ar
y)

 
 Fa

ilu
re

 ra
tio

 (2
%

) 
(L

ow
er

 b
ou

nd
ar

y)
 

D
at

as
et

 

59
4 

fo
ve

al
-c

en
te

re
d 

SD
-O

C
T 

im
ag

es
 o

f 
ey

es
 fr

om
 9

9 
he

al
th

y 
ch

ild
re

n 

62
 fo

ve
al

-c
en

te
re

d 
ED

I-O
C

T 
im

ag
es

 o
f 

ey
es

 w
ith

 d
ry

 a
nd

 
w

et
 A

M
D

 

10
0 

O
N

H
-c

en
te

re
d 

ED
I-O

C
T 

im
ag

es
  

(4
0 

he
al

th
y 

su
bj

ec
ts

 
an

d 
60

 su
bj

ec
ts

 w
ith

 
gl

au
co

m
a)

 
1,

28
0 

fo
ve

al
-c

en
te

re
d 

O
C

T 
im

ag
es

 o
f 

he
al

th
y 

ey
es

 a
nd

 e
ye

s 
w

ith
 C

N
V

 

75
0 

fo
ve

al
-c

en
te

re
d 

ED
I-O

C
T 

im
ag

es
 o

f 
he

al
th

y 
ey

es
 

O
C

T 
im

ag
es

 

40
 fo

ve
al

-c
en

te
re

d 
SS

-O
C

T 
im

ag
es

 o
f 

ey
es

 w
ith

 
em

m
et

ro
pe

s a
nd

 h
ig

h 
m

yo
pi

a.
 

21
7 

fo
ve

al
-c

en
te

re
d 

SS
-O

C
T 

im
ag

es
 o

f 
ey

es
 w

ith
ou

t r
et

in
al

 
pa

th
ol

og
y.

 

Se
gm

en
ta

tio
n 

M
et

ho
d 

V
es

se
l 

- - - - - Se
gm

en
te

d 
th

e 
ch

or
oi

da
l v

es
se

ls
 

us
in

g 
th

e 
le

ve
l s

et
 

ap
pr

oa
ch

. 

Se
gm

en
te

d 
th

e 
ch

or
oi

da
l v

es
se

ls
 

us
in

g 
Re

fin
eN

et
 [3

0]
. 

Se
gm

en
te

d 
th

e 
ch

or
oi

da
l v

es
se

ls
 

us
in

g 
N

ib
la

ck
’s

 
bi

na
riz

at
io

n 
al

go
rit

hm
. 

L
ay

er
 

Se
gm

en
te

d 
th

e 
bo

un
da

rie
s o

f t
he

 
ou

te
r R

PE
 a

nd
 C

SI
 u

sin
g 

di
ffe

re
nt

 
de

ep
 le

ar
ni

ng
 m

et
ho

ds
 su

ch
 a

s 
st

an
da

rd
 U

-N
et

, r
es

id
ua

l n
et

w
or

k,
 

re
cu

rre
nt

 n
eu

ra
l n

et
w

or
k,

 sq
ue

ez
e 

an
d 

ex
ci

ta
tio

n 
ne

tw
or

k,
 a

nd
 th

e 
co

m
bi

ne
d 

ne
tw

or
k,

 fo
llo

w
ed

 b
y 

a 
gr

ap
h 

se
ar

ch
 p

ro
ce

du
re

. 

Se
gm

en
te

d 
B

M
 a

nd
 C

SI
 u

sin
g 

tw
o 

Se
gN

et
 m

od
el

s [
24

]. 
Th

en
, t

he
 

re
gi

on
 b

et
w

ee
n 

B
M

 a
nd

 C
SI

 w
as

 
fil

le
d 

to
 p

ro
vi

de
 a

 fu
ll 

ch
or

oi
d 

la
ye

r s
eg

m
en

ta
tio

n.
 

Se
gm

en
te

d 
op

tic
 n

er
ve

 h
ea

d 
(O

N
H

) t
is

su
es

, i
nc

lu
di

ng
 th

e 
ch

or
oi

d,
 u

sin
g 

a 
di

la
te

d-
re

sid
ua

l 
U

- N
et

 m
od

el
 (D

R
U

N
ET

). 

Se
gm

en
te

d 
th

e 
ch

or
oi

d 
la

ye
r u

sin
g 

a 
bi

om
ar

ke
r-i

nf
us

ed
 g

lo
ba

l-t
o-

lo
ca

l n
et

w
or

k 
(B

io
-N

et
). 

Se
gm

en
te

d 
th

e 
ch

or
oi

d 
la

ye
r u

sin
g 

a 
m

as
k 

re
gi

on
-b

as
ed

 C
N

N
 m

od
el

, 
co

m
po

se
d 

of
 R

es
N

et
 a

nd
 fe

at
ur

e 
py

ra
m

id
 n

et
w

or
ks

. 

D
et

ec
te

d 
th

e 
ch

or
oi

d 
bo

un
da

rie
s 

us
in

g 
st

ru
ct

ur
al

 si
m

ila
rit

y 
an

d 
ad

ap
tiv

e 
H

es
sia

n 
te

ch
ni

qu
e.

 

- Se
gm

en
te

d 
th

e 
ch

or
oi

d’
s u

pp
er

 
an

d 
lo

w
er

 b
ou

nd
ar

ie
s u

sin
g 

R
es

id
ua

l U
-N

et
 [3

2]
. 

A
ut

ho
rs

 

K
ug

el
m

an
 e

t 
al

. [
21

] 
(2

01
9)

 

C
he

n 
et

 a
l. 

[2
3]

 (2
01

7)
 

D
ev

al
la

 e
t a

l. 
[2

5]
 (2

01
8)

 

Zh
an

g 
et

 a
l. 

[2
6]

 (2
02

0)
 

H
si

a 
et

 a
l. 

[2
7]

 
(2

02
1)

 

Sr
in

at
h 

et
 a

l. 
[2

8]
 (2

01
4)

 

Li
u 

et
 a

l. 
[2

9]
 (2

01
9)

 

Zh
en

g 
et

 a
l. 

[3
1]

 (2
02

1)
 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124993, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (September 2021) 

 

6 

 
FIGURE 2.  Network architecture of ChoroidNET. 

 

 

FIGURE 3.  Representation of increasingly dilated convolutions with 3×3 
kernel and their receptive fields for (a) rate = 1 (equivalent to standard 
convolution), (b) rate = 3, and (c) rate = 5. 

 
FIGURE 4.  Illustration of how DropBlock drops features. (a) Input 
patch, (b) activation units (green area) of semantic information in (a) for 
the choroid layer, (c) DropBlock mask (yellow area) and sampled zero 
entries (red x’s), and (d) zero entries on mask expanded to zero blocks 
(black x’s around red x’s). 
 
 
 
 

 
IV. EXPERIMENTS 
This section describes the datasets used in the experiment, 
existing state-of-the-art models used for comparison, and the 
experiment and its implementation details. 

A. DATASETS 
Kermany et al. [44] published a large OCT dataset that 
contains approximately 80,000 images. These images were 

acquired via spectral-domain OCT (SD-OCT; Spectralis, 
Heidelberg Engineering) and collected from the Shiley Eye 
Institute of the University of California San Diego, the 
California Retinal Research Foundation, Medical Center 
Ophthalmology Associates, Shanghai First People’s 
Hospital, and the Beijing Tongren Eye Center. This dataset 
was constructed to evaluate methods for classifying OCT 
images into four categories, namely CNV, DME, Drusen, 
and Normal. Abnormalities, such as the neovascular 
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membrane and associated subretinal fluid in CNV images, 
retinal-thickening-associated intraretinal fluid in DME 
images, and multiple drusen, are present in their dataset. 
CNV and the appearance of drusen indicate clinical signs of 
AMD. 

In the experiment, we evaluated the performance of 
ChoroidNET using 80 OCT images (20 images from each 

category) randomly selected from this OCT dataset. Figure 5 
shows examples of OCT images used in our experiment. The 
ground truths of the choroid layer and choroidal vessels were 
annotated by an expert observer using the ibisPaint 
application [45]. 

 

 
 

FIGURE 5.  Examples of OCT images used in our experiment. 
 

B. EXPERIMENT AND IMPLEMENTATION DETAILS 
Ten images from each category were used to create a training 
set and the remaining images were used to create a test set. 
We enlarged the training set by using patches cropped from 
the original images (minimum dimensions: 230×495). 
Previous studies have shown that increasing the size of an 
image patch in a deep learning network provides a more 
precise segmentation performance since the network can 
capture more contextual information to make the prediction 
[46]. However, using a larger image patch requires larger 
memory. Under consideration of limited GPU memory, we 
chose a patch that is large enough to cover the choroid region 
and to be able to apply down-sampling operations in our 
network region, yet small enough to make the problem 
handleable. We randomly extracted 300 patches (dimensions: 
224×224) from each image in a trainset set, for a total of 
12,000 patches. Note that the areas of some patches 
overlapped. 90% of each training set was used for training 
and the remaining 10% was used for validation. 

ChoroidNET was trained on each training set end-to-end 
using a computer with an Intel Core i7 CPU and an NVIDIA 
GeForce GTX 1070 Ti GPU. The training was performed for 
50 epochs with a batch size of 4 and an initial learning rate of 
0.0001. The RMSprop optimizer was used to adaptively 
reduce the learning rate. The loss function ( L ) was based on 
the sum of binary cross entropy loss ( BCEL ) and Dice loss 
( DL ), as shown in Eqs. (2)-(4).  

ˆ ˆ ˆ( , ) ( , ) ( , )BCE DL y p L y p L y p= +    (2) 
 
 ˆ ˆ ˆ( , ) ( log( ) (1 ) log(1 ))BCEL y p y p y p= − + − −   (3) 
 

  
ˆ2ˆ( , ) 1
ˆD

ypL y p
y p

= −
+

   (4)

  

where [0,1]y∈  and ˆ [0,1]p∈  respectively denote the set 
of pixels in the ground truth and the set of pixels predicted 
by the trained network.  

The segmentation performance for the choroid layer and 
choroidal vessels was quantitatively evaluated in terms of 
five evaluation metrics, namely accuracy, the Dice 
coefficient, precision, recall, and specificity. The formulas 
for these metrics are shown in Table 2. The metrics were 
calculated based on four possibilities, namely true positive 
(TP), true negative (TN), false positive (FP), and false 
negative (FN). The numerical results are expressed as means 
± standard deviation (SD).  
 

TABLE 2.  Formulas of evaluation metrics used in model comparison. 

Metric Formula 

Accuracy ((TP+TN)/(TP+FP+TN+FN)) × 100 
Dice coefficient (2TP/(2TP+FP+FN)) × 100 
Precision (TP/(TP+FP)) × 100 
Recall (TP/(TP+FN)) × 100 
Specificity (TN/(TN+FP)) × 100 

C. EXISTING METHODS 
The performance of ChoroidNET is compared with that of 
U-Net++ L3 [47], DRUNET [25], and Residual U-Net [31]. 
U-Net++ is an improved U-Net architecture based on 
nested and dense skip connections. U-Net++ was used to 
segment polyp, liver, and cell nuclei datasets. DRUNET 
and Residual U-Net adopt the structure of U-NET. 
DRUNET integrates residual blocks that comprise two 
dilated convolutions, instead of standard convolution blocks 
(except at the top level). DRUNET was designed for 
segmenting optic nerve head (ONH) tissues (including the 
choroid) in ONH-centered SD-OCT images. Residual U-
Net inserts a residual connection between each pair of 
convolution blocks in its U-Net backbone. Residual U-Net 
is used for detecting the upper and lower boundaries of the 
choroid in foveal-centered SS-OCT images.  

For a fair comparison, we trained and validated U-Net++, 
DRUNET, and Residual U-Net using the same training and 
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test sets used for ChoroidNET, and performed the same data 
augmentation, pre-processing, and DropBlock regularization 
as that in our experiment.  
  
V. RESULTS 

A. COMPARISON WITH EXISTING METHODS 
This section presents the experimental results of the choroid 
layer and choroidal vessel segmentation. 

The segmented images produced by U-NET++, 
DRUNET, Residual U-NET, and ChoroidNET were 
qualitatively compared with their corresponding ground 
truths and quantitatively evaluated. Figures 6 and 7 show 
examples of the choroid layer and choroidal vessel 
segmentation results. Table 3 compares the performance of 
the choroid layer and choroidal vessel segmentation for the 
tested networks. 

In general, the choroid layer segmentation results for 
ChoroidNET are qualitatively comparable to the ground 
truths. ChoroidNET shows the best segmentation 
performance (accuracy: 98.5 ± 0.2, Dice coefficient: 95.1 ± 
0.4, precision: 94.1 ± 1.6, recall: 96.1 ± 0.9, specificity: 

99.0 ± 0.3). U-Net++ segmented the choroid layer as 
smooth as the ground truths, and also had the high Dice 
coefficient (94.0 ± 1.1) and recall (96.0 ± 0.8). However, it 
was slightly inferior to ChoroidNET in terms of all 
evaluation metrics and oversegmented areas outside the 
choroid layer for DME images. The DRUNET produced 
irregular choroid boundaries. Residual U-Net results are 
similar to the ground truths; however, the segmented 
boundaries of the choroid are not smooth.  

ChoroidNET outperformed the other models in terms of 
choroidal vessel segmentation performance. It had the 
highest accuracy (97.7 ± 0.4), Dice coefficient (82.4 ± 2.4), 
and recall (87.2 ± 2.8). In particular, it had a significant 
improvement on recall by 6.2%, 4.0% and 4.7% compared 
to U-Net++, DRUNET, and Residual U-Net, respectively. 
U-Net++ had the highest precision (80.5 ± 5.7) and 
specificity (98.7 ± 0.3). Residual U-Net yielded the second-
best performance in terms of the Dice coefficient (81.0 ± 
2.3). For DME images, U-Net++ and Residual U-Net 
segmented irrelevant areas (intraretinal fluid) outside the 
choroid. DRUNET exhibited oversegmentation around the 
choroid upper layer in CNV and Drusen images.  

 

 
FIGURE 6.  Choroid layer segmentation results.  (a) Input, (b) ground truth, and results for (c) U-Net++, (d) DRUNET, (e) Residual U-Net, and (f) 

ChoroidNET. Yellow arrow indicates oversegmentation. 
 

 
TABLE 3.  Performance comparison of choroid layer and choroidal vessel segmentation (highest scores in bold). 

 Metric 
(mean ± SD) U-Net++ DRUNET Residual 

U-Net ChoroidNET 

Layer 

Accuracy 98.2 ± 0.2 97.8 ± 0.1 98.1 ± 0.1 98.5 ± 0.2 
Dice coefficient 94.0 ± 1.1 92.5 ± 1.3 93.6 ± 1.0 95.1 ± 0.4 
Precision 92.2 ± 2.4 91.1 ± 2.7 92.9 ± 1.9 94.1 ± 1.6 
Recall 96.0 ± 0.8 94.0 ± 1.3 94.3 ± 0.8 96.1 ± 0.9 
Specificity 98.6 ± 0.3 98.4 ± 0.3 98.8 ± 0.2 99.0 ± 0.3 

Vessels 

Accuracy 97.6 ± 0.3 97.4 ± 0.4 97.6 ± 0.4 97.7 ± 0.4 
Dice coefficient 80.8 ± 2.0 80.0 ± 2.6 81.0 ± 2.3 82.4 ± 2.4 
Precision 80.5 ± 5.7 77.0 ± 5.3 79.5 ± 4.9 78.2 ± 5.6 
Recall 81.0 ± 2.2 83.2 ± 1.1 82.5 ± 1.5 87.2 ± 2.8 
Specificity 98.7 ± 0.3 97.6 ± 1.6 98.6 ± 0.3 98.4 ± 0.4 
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FIGURE 7.  Choroidal vessel segmentation results. (a) Input, (b) ground truth, and results for (c) U-Net++, (d) DRUNET, (e) Residual U-Net, and (f) 

ChoroidNET. Yellow arrow indicates oversegmentation. 

B. ABLATION STUDIES 
To provide insight into each design element of 
ChoroidNET, we conducted four ablation studies. The 
ablation models were trained and validated using the same 
training and test sets. Figure 8 shows the architectures of 
the ablation models. Figures 9 and 10 show the 
segmentation results of the choroid layer and the choroidal 
vessels, respectively, for the ablation models and 
ChoroidNET. Table 4 compares the performance of 
ChoroidNET and its ablation models.  

Ablation-1 and Ablation-2 did not use a dilation block in 
LSM. For choroid layer segmentation, the boundaries 
obtained by Ablation-1 and Ablation-2 are not as smooth as 
the ground truths. The choroid layer segmentation 
performance of Ablation-3 and Ablation-4 are the same as 
that of ChoroidNET. ChoroidNET outperforms Ablation-1 
and Ablation-2 for the choroid layer segmentation and 

shows an absolute improvement of 1.2% in terms of the 
Dice coefficient. The use of the dilation block in LSM 
improved the vessel segmentation results of Ablation-3 
(81.5 ± 2.5), Ablation-4 (81.8 ± 2.5), and ChoroidNET 
(82.4 ± 2.4). This demonstrates the importance of the 
dilation block in LSM.  

For choroid vessel segmentation, Ablation-1 had the 
highest recall (92.3 ± 2.2), but it oversegmented the region 
outside the choroid layer and thus had the lowest precision 
(68.6 ± 5.6). Ablation-2 slightly outperforms Ablation-1 by 
0.6% in terms of the absolute Dice coefficient. This 
highlights the efficiency of the dilation block in VSM. The 
performance improvements (in terms of the Dice 
coefficient) of ChoroidNET over the four ablation models 
are 3.7%, 3.1%, 0.9%, and 0.6%, respectively. The 
improvement of ChoroidNET over Ablation-4 demonstrates 
the effectiveness of the connection between LSM and VSM.  

 
TABLE 4.  Performance comparison of ablation models and ChoroidNET. 

 Metric 
(mean ± SD) Ablation-1 Ablation-2 Ablation-3 Ablation-4 ChoroidNET 

Layer 

Accuracy 98.2 ± 0.3  98.2 ± 0.3  98.5 ± 0.2 98.5 ± 0.2 98.5 ± 0.2 
Dice coefficient 93.9 ± 1.2 93.9 ± 1.2 95.1 ± 0.4 95.1 ± 0.4 95.1 ± 0.4 
Precision 92.6 ± 2.2 92.6 ± 2.2 94.1 ± 1.6 94.1 ± 1.6 94.1 ± 1.6 
Recall 95.1 ± 1.0 95.1 ± 1.0 96.1 ± 0.9 96.1 ± 0.9 96.1 ± 0.9 
Specificity 98.8 ± 0.3 98.8 ± 0.3 99.0 ± 0.3 99.0 ± 0.3 99.0 ± 0.3 

Vessels 

Accuracy 96.9 ± 0.4 97.1 ± 0.4 97.5 ± 0.4 97.5 ± 0.4 97.7 ± 0.4 
Dice coefficient 78.7 ± 3.2 79.3 ± 2.2 81.5 ± 2.5 81.8 ± 2.5 82.4 ± 2.4 
Precision 68.6 ± 5.6 72.6 ± 4.4 76.2 ± 5.3 76.5 ± 5.4 78.2 ± 5.6 
Recall 92.3 ± 2.2 87.5 ± 2.1 87.5 ± 2.1 87.7 ± 1.9 87.2 ± 2.8 
Specificity 97.2 ± 0.4  97.8 ± 0.2 98.2 ± 0.3 98.2 ± 0.4 98.4 ± 0.4 
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FIGURE 8.  Ablation models of ChoroidNET (1) without dilation blocks in LSM and VSM, (2) without dilation block in LSM, (3) without dilation block in 

VSM, and (4) without connection between LSM and VSM. 
 

 
FIGURE 9.  Choroid layer segmentation results. (a) Input, (b) ground truth, and results for (c) Ablation-1 and Ablation-2 and (d) Ablation-3, Ablation-4, 

and ChoroidNET. 
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FIGURE 10.  Choroidal vessel segmentation results. (a) Input, (b) ground truth, and results for (c) Ablation-1, (d) Ablation-2, (e) Ablation-3, (f) Ablation-

4, and (g) ChoroidNET. Yellow and green arrows indicate over- and undersegmentation, respectively. 
 
 

C. INTRA-OBSERVER VARIABILITY  
For the assessment of intra-observer variability, our 
observer repeated annotating process for the choroid layer 
and choroidal vessels. Table 5 shows the variability 
between two sets of ground truths (GT1 and GT2) and 
ChoroidNET’s segmentation. Intraclass correlation 
coefficient (ICC) was used to measure the variabilities. The 
ICC value of 1 indicates the highest agreement between the 
two observations. The intra-observer reproducibility of 
choroid layer and vessel segmentation between GT1 and 
GT2 were excellent (Dice coefficient: 96.1 ± 1.1 and 84.1 ± 
2.6) and (ICC: 0.983, 0.971). ChoroidNET also produced a 
high agreement with GT1 and GT2, (Dice coefficient: 95.1 
± 0.4, 95.1 ± 2.8) for choroid layer segmentation and (Dice 
coefficient: 82.4 ± 2.4, 82.1 ± 2.8) for choroidal vessel 
segmentation. Figure 11 shows ChoroidNET’s 
segmentation results and their corresponding ground truths.  
 
D. CONSISTENCY OF THE PROPOSED NETWORK 
We included 80 more images (20 images each from CNV, 
DME, Drusen, and Normal) for validating the consistency 

of our proposed network. The proposed model was trained 
on new training and test sets (40 images each). The training 
and validation processes were performed as same as the 
previous training. We then compared the performances of 
two distinct trained models using two test sets. Table 6 
presents the quantitative performance of the proposed 
network for four sets. Set-1 corresponds to the results of 
test set-1 and the trained model-1, set-2 corresponds to 
results of test set-2 and the trained model-1, set 3 
corresponds to results of test set-1 and the trained model-2, 
and set-4 corresponds to results of test set-2 and the trained 
model-2, respectively. Figure 12 shows examples of the 
choroid layer and choroidal vessel segmentation results of 
test set-2. The mean Dice coefficients of four sets were 95.1 
± 0.4, 95.7 ± 0.5, 93.5 ± 1.3, 96.4 ± 0.5 for choroid layer 
segmentation, and 82.4 ± 2.4, 84.3 ± 0.3, 82.2 ± 2.1, 85.1 ± 
0.2 for choroidal vessel segmentation. Thus, ChoroidNET 
showed consistent and good performance on newly tested 
CNV, DME, Drusen, and Normal images. 

 
TABLE 5.  Performance difference of intra-observer variability. 

 Metric 
(mean ± SD) GT1 vs GT2 GT1 vs ChoroidNET GT2 vs ChoroidNET 

Layer 

Accuracy 98.8 ± 0.3 98.5 ± 0.2 98.5 ± 0.8 
Dice coefficient 96.1 ± 1.1 95.1 ± 0.4 95.1 ± 2.8 
Precision 97.3 ± 1.5 94.1 ± 1.6 95.0 ± 4.8 
Recall 95.0 ± 2.6 96.1 ± 0.9 95.3 ± 3.2 
Specificity 99.5 ± 0.4 99.0 ± 0.3 99.1 ± 0.8 
ICC 0.983 0.955 0.964 

Vessels 

Accuracy 98.0 ± 0.8 97.7 ± 0.4 97.6 ± 0.9 
Dice coefficient 84.1 ± 2.6 82.4 ± 2.4 82.1 ± 2.8 
Precision 84.4 ± 4.5 78.2 ± 5.6 88.2 ± 3.1 
Recall 83.8 ± 3.0 87.2 ± 2.8 76.7 ± 5.1 
Specificity 98.9 ± 0.5 98.4 ± 0.4 98.2 ± 0.8 
ICC 0.971 0.840 0.861 
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FIGURE 11.  Intra-observer variability (a) Input, (b) ground truth (GT1), (c) ground truth (GT2), and (d) ChoroidNET result. (1st row – choroid layer and 

2nd row – choroidal vessels) 

TABLE 6.  Quantitative performance of the proposed network for four sets. 

 Metric 
(mean ± SD) Set-1 Set-2 Set-3 Set-4 

Layer 

Accuracy 98.5 ± 0.2 99.0 ± 0.1 98.0 ± 0.4 99.1 ± 0.2 
Dice coefficient 95.1 ± 0.4 95.7 ± 0.5 93.5 ± 1.3 96.4 ± 0.5 
Precision 94.1 ± 1.6 97.3 ± 0.3 89.8 ± 2.9 97.1 ± 0.8 
Recall 96.1 ± 0.9 94.1 ± 0.9 97.6 ± 0.8 95.7 ± 0.8 
Specificity 99.0 ± 0.3 99.6 ± 0.1 98.1 ± 0.5 99.6 ± 0.1 

Vessels 

Accuracy 97.7 ± 0.4 98.3 ± 0.2 97.7 ± 0.4 98.4 ± 0.2 
Dice coefficient 82.4 ± 2.4 84.3 ± 0.3 82.2 ± 2.1 85.1 ± 0.2 
Precision 78.2 ± 5.6 81.1 ± 1.9 79.2 ± 5.7 83.8 ± 1.2 
Recall 87.2 ± 2.8 87.8 ± 1.9 85.4 ± 3.7 86.5 ± 1.7 
Specificity 98.4 ± 0.4 98.9 ± 0.1 98.5 ± 0.4 99.1 ± 0.1 

 
FIGURE 12.  Choroid layer and vessel segmentation results of ChoroidNET using test set-2 (a) Input, (b) ground truth, (c) model-1, and (d) model-2.  

(1st row – choroid layer and 2nd row – choroidal vessels) 
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VI. DISCUSSION
We now present a qualitative and quantitative segmentation 
analysis of the choroid layer and choroidal vessels. The 
experimental results in Table 3 confirm that ChoroidNET is 
the best state-of-the-art model for the segmentation of the 
choroid layer and choroidal vessels.  

In an eye with DME, an accumulation of fluid with cystic 
properties usually occurs in the retinal layers. In an OCT 
image, those accumulated fluid regions are similar to the 
characteristics of choroidal vessels. For DME images, U-
Net++ and Residual U-Net had inconsistent vessel 
segmentation performance compared to that of DRUNET 
and ChoroidNET, as shown with the yellow arrows in Figure 
7 (c and e). The objective of the standard convolutions in U-
Net++ and Residual U-Net is to extract the spatial 
information in the image. A deeper network can learn more 
semantic information. However, spatial information is lost at 
deeper layers, and thus the network predicts incorrect regions 
outside the choroid layer. Dilated convolutions reduce the 
loss of spatial information by expanding the receptive field of 
the network. Thus, the dilated convolutions in DRUNET and 
ChoroidNET facilitate the creation of large-scale feature 
maps with rich spatial information. The segmentation 
performance of DRUNET and ChoroidNET is thus more 
consistent for DME images.  

In the U-Net architecture, the number of filters is doubled 
after down-sampling in the encoder path and halved after up-
sampling in the decoder path. However, in the DRUNET 
architecture, only 16 filters are used in both standard blocks 
and residual blocks. DRUNET thus had poor vessel 
segmentation performance for CNV and Drusen images. The 
filter of a convolutional layer captures the patterns in image 
data. A higher number of filters allows the network to learn 
more complex patterns (abstractions) contained in image data 
and extract useful features. As a result, DRUNET was unable 
to separate the choroid pattern from the neovascular 
membrane in CNV images and mistakenly segment small 
drusen (which occurs in the complex between RPE and the 
choroid) as the choroidal vessels, as illustrated with the 
yellow arrows in Figure 7 (d). U-Net++, Residual U-Net and 
ChoroidNET use a high number of filters (the same as that in 
U-Net), which considerably improves the recognition and 
segmentation of the choroid layer and vessels. 

Overall, the segmentation performance of ChoroidNET 
is similar and consistent with the ground truths. U-Net++, 
DRUNET, and Residual U-Net are sensitive to the 
pathologies (subretinal and intraretinal fluid) present in 
CNV, DME, and Drusen images. In contrast, there is no 
significant difference in the segmentation performance of 
ChoroidNET for CNV, DME, Drusen, and Normal images.  

The number of parameters used by a network depends on 
the number of filters. ChoroidNET and Residual U-Net each 
use approximately 4.5 million parameters (compared to 2.2 
million for U-Net++ and only 40,000 for DRUNET) and thus 

have a much higher computational cost and use much more 
memory. This is a major drawback of ChoroidNET.  

We also evaluated the segmentation performance of 
ChoroidNET based on the prediction scores of the receiver 
operator characteristics area under the curve (ROC-AUC) 
and the precision-recall area under the curve (PR-AUC). 
ROC-AUC indicates the tradeoff between the true positive 
rate (TPR) and false positive rate (FPR). PR-AUC represents 
the tradeoff between precision and recall. The range of scores 
is [0, 1]. A higher score indicates a better model performance. 
ChoroidNET obtained (ROC-AUC: 0.997 ± 0.001, PR-AUC: 
0.989 ± 0.002) for choroid layer segmentation and (ROC-
AUC: 0.992 ± 0.001, PR-AUC: 0.906 ± 0.018) for choroidal 
vessel segmentation, respectively. 

Further, we performed ablation studies to demystify the 
architecture of the proposed network.  We also measured 
the intra-observer variability for choroid layer and vessel 
segmentation. To access the consistency and robustness of 
the proposed model, we tested ChoroidNET’s performance 
using an additional dataset that contains 80 images (with 
CNV, DME, Drusen, and Normal).  

In summary, ChoroidNET significantly outperforms U-
Net++, DRUNET and Residual U-Net and is robust for 
images with various retinal pathologies. In addition, it 
provides good tradeoffs between TPR and FPR, and 
between precision and recall for both choroid layer and 
choroidal vessel segmentation. ChoroidNET is thus the 
most robust model. 

VII. CONCLUSION 
In this study, we proposed ChoroidNET, a robust 
segmentation model for segmenting both the choroid layer 
and choroidal vessels in OCT images. ChoroidNET uses U-
NET as a backbone and adds dense dilated convolutions at 
the bottleneck of LSM and VSM. The performance of 
ChoroidNET was evaluated using an OCT dataset. The 
numerical results indicate that ChoroidNET outperforms U-
Net++, DRUNET, and Residual U-Net, and is robust to 
cases of pathological abnormality (i.e., neovascular 
membrane and associated subretinal fluid in CNV, retinal-
thickening-associated intraretinal fluid in DME, and 
multiple drusen).  

Clinical research has shown that choroidal structures, in 
terms of changes in the luminal and stromal areas, and 
visual functions are highly correlated in diseased eyes [48-
50]. Based on the segmentation results of ChoroidNET, our 
work could be extended to offer accurate quantification of 
clinical parameters derived from the choroid. These 
parameters can be used to find clinical correlations between 
choroidal changes and other clinical measures. It would be 
helpful for ophthalmologists to monitor changes in the 
choroid layer over time for various eye diseases.  

In this work, we considered the segmentation of the 
choroid layer and choroidal vessels in OCT images. We 
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will consider the segmentation of the retinal layers, the 
RPE, and the sclera in future studies because the 
pathologies of other tissues in the retina are important for 
diagnosing diseases such as Alzheimer’s disease [51], 
AMD, diabetic retinopathy, and scleritis. 
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