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Abstract: The unequal-area facility layout problem (UA-FLP) is the problem of locating rectangular 
facilities on a rectangular floor space such that facilities do not overlap while optimizing some ob-
jective. The objective considered in this paper is minimizing the total distance materials travel be-
tween facilities. The UA-FLP considered in this paper considers facilities with fixed dimension and 
was motivated by the investigation of layout options for a production area at the Toyota Motor 
Manufacturing West Virginia (TMMWV) plant in Buffalo, WV, USA. This paper presents a mathe-
matical model and a genetic algorithm for locating facilities on a continuous plant floor. More spe-
cifically, a genetic algorithm, which consists of a boundary search heuristic (BSH), a linear program, 
and a dual simplex method, is developed for an UA-FLP. To test the performance of the proposed 
technique, several test problems taken from the literature are used in the analysis. The results show 
that the proposed heuristic performs well with respect to solution quality and computational time. 

Keywords: unequal area facility layout problem; fixed dimension facilities; genetic algorithm; 
boundary search 
 

1. Introduction 
1.1. Motivation of Research 

This research was motivated by the investigation of layout options for the machining 
department within the transmission production area of the Toyota Motor Manufacturing 
West Virginia (TMMWV) plant in Buffalo (West Virginia, USA). The plant manufactures 
automobile engines and automatic transmissions for specific Toyota models. TMMWV 
made modifications to one of its products, which required an investigation of the layout 
of the machining department within the transmission production area. The layout had a 
combination of two different types of machines used for machining the older product, 
called model A and model B machinery. For the production of the newer product, the 
model A machines will be reused. However, the model B machinery will not be used and 
will be removed from the layout. Other additional machines used to support production 
will be removed and replaced. For example, two pieces of equipment used to clean prod-
ucts will be replaced by a single piece of equipment. As a result, this required a re-layout 
of the machining department which consisted of cells and other pieces of equipment, 
which are called facilities. Since the facilities are of unequal-area and are rectangular 
shaped, this problem is defined as the unequal-area facility layout problem (UA-FLP). 

The UA-FLP is the problem of locating rectangular facilities on a rectangular floor 
space such that facilities do not overlap while optimizing some objective. According to 
Tompkins et al. [1], between 20 and 50% of the total operating expenses within manufac-
turing is attributed to material handling, and it is generally agreed that effective facilities 
layout planning can reduce these costs by at least 10 to 30%. Therefore, the most com-
monly used criterion to determine the efficiency of layouts is the minimization of material 
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handling cost. Material handling cost is the sum of the product of the flow of materials, 
distance, and transportation cost per unit per distance unit between each pair of facilities. 
Since the transportation cost is difficult to obtain, this paper considers minimizing the 
total weighted distance (i.e., the sum of the product of the flow of materials and distance 
between each pair of facilities). 

In the TMMWV plant, the addition and deletion of products as well as the replace-
ment of pieces of equipment caused the existing layout of one of its machining depart-
ments to be less efficient with respect to material handling costs. Therefore, the modifica-
tion of the layout was necessary. Other major factors which may cause the modification 
of a layout are changes in the product or process design as well as significant changes in 
the demand of a product. See Francis et al. [2] for a list of factors which may require a re-
layout of a manufacturing facility. 

1.2. Unequal-Area Facility Layout Problem 
As stated earlier, the UA-FLP considered in this paper is defined as the problem of 

locating rectangular facilities on a rectangular floor space such that facilities do not over-
lap while minimizing the total distance materials travel between facilities (i.e., minimizing 
total weighted distance). The rectangular floor space considered is the machining depart-
ment space within the transmission production area of the TMMWV plant. The facilities 
are defined as the manufacturing cells, inspection stations, and pieces of equipment used 
to support production (e.g., washers). The manufacturing cells consist of groups of ma-
chines with their material handling systems (e.g., conveyor system). Recall, the model A 
machines discussed earlier will be reused, and the model B machines will be removed 
from the existing layout. Since the model B machines form separate cells from the model 
A machines, the model A-machine cells will remain in the layout, and the model B-ma-
chine cells will be removed. In other words, the cells remaining in the machining depart-
ment will not change (i.e., the internal layout of the cells will not change) and their dimen-
sions are known. Since the dimensions of the cells and other pieces of equipment are 
known, the facilities have fixed dimensions. 

As a result, the assumptions for the UA-FLP considered in this paper are as follows: 
(1) Facilities may have unequal-areas and are rectangular in shape. 
(2) Floor space available for the facilities is rectangular in shape. Also, it is continuous 

and constrained (i.e., available floor space has fixed dimensions). 
(3) The dimensions of the facilities are fixed and known. 
(4) Facilities may have free orientations. 
(5) The objective of the UA-FLP is to obtain a layout such that total weighted distance is 

minimized. 
(6) The input and output points of the facilities are at the center of the facilities. 
(7) The rectilinear distance measure is used to obtain the distances between the centroids 

of two facilities. 
Note in assumption (2) that the floor space dimensions are fixed (i.e., constrained). 

Oftentimes this is the case, since most FLPs require re-layout of an already existing de-
partment or production area with fixed dimensions (i.e., fixed length and width of layout 
area), as in the TMMWV layout problem. However, the FLP becomes more complex, since 
heuristics may oftentimes produce infeasible layouts, especially when the layout area is 
tightly constrained (i.e., percentage of free space available is low). Many papers in the 
literature consider an unconstrained rectangular floor space where infeasible layouts are 
not an issue. 

Assumption 3) added with assumption 2) adds even more complexity, since the fa-
cility’s dimensions are fixed, and are not allowed to vary as in many of the UA-FLPs in 
the literature. Therefore, for UA-FLPs with tightly constrained floor space, it becomes ex-
tremely difficult to find good feasible solutions. As stated previously, TMMWV wanted 
to keep the internal layouts of the cells (i.e., some of the facilities). As a result, the 
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dimensions of these cells (facilities) are fixed. Also, they know the dimensions of the ad-
ditional machines (i.e., other facilities) purchased. It is important to note that fixed facili-
ties dimensions are very uncommon in the UA-FLP literature. Oftentimes, researchers 
consider fixed area facilities but allow the dimensions of the facilities to vary. In this case, 
the lengths and widths of the facilities are controlled using special constraints so that fa-
cilities are not too narrow. 

Assumption 4) states that facilities may have free orientations. That is, facilities may 
be either horizontally or vertically oriented. If the longer side of the facility is parallel to 
the x-axis, the facility is considered horizontally oriented, therwise, it is deemed vertically 
oriented. 

1.3. Related Research 
Montreuil [3] presented a mixed integer programming (MIP) model for the FLP 

based on the continuous representation of the floor space, but the areas of the facilities 
were equal. A similar model was developed by Heragu and Kusiak [4]. However, in this 
cases the facility areas are unequal with fixed dimensions. Since only small-size problems 
can be solved optimally using exact methods, heuristic methods were developed to solve 
the UA-FLP. For reviews of the FLP literature see Kusiak and Heragu [5], Meller and Gau 
[6], Anjos and Vieira [7], and Perez-Gosende et al. [8]. 

Based on the assumptions defined above for the proposed problem, there are only a 
few papers in the literature which consider the UA-FLP with fixed facilities dimensions. 
For example, Xiao et al. [9] introduced a zone concept to reduce the solution space and 
used a zone algorithm and simulated annealing algorithm to solve an UA-FLP where in-
put/output points are not restricted to the center of facilities. They can be located within 
or on the boundary of the facilities. The same problem was considered in Park and Seo 
[10]. The authors presented a construction algorithm and a median method for the prob-
lem. Also, Dunker et al. [11] presented a mixed integer linear program (MILP) and a GA 
for the UA-FLP where facilities may have one, two, or more input/output points. They 
decomposed the problem by forming groups of facilities with relatively high flows be-
tween them. The layout for each group of facilities is obtained by the GA. After layouts 
for groups are obtained, rectangles are drawn around facilities in each group, and the 
arrangement of these rectangles is found. The chromosomes store information on the rel-
ative locations of facilities in each group, which is used to fix corresponding binary vari-
ables in the MILP formulation, and the corresponding LP is solved to get the layout of 
facilities on the plant floor. Asl and Wong [12] used a modified particle swarm optimiza-
tion to solve the UA-FLP. The authors generalized their solution technique to solve the 
dynamic UA-FLP. Lee and Lee [13] presented a hybrid GA (HGA), which employs both 
tabu search and simulated annealing, for the UA-FLP. When a population of solutions is 
obtained in the HGA, which give the order in which facilities are placed on the plant floor, 
a shape-based block layout (SBL) approach, based on bay structure, is used to place facil-
ities on the plant floor. This produces the layout for each solution obtained from the HGA. 
Other researchers used the SBL approach for placing facilities on the plant floor. For ex-
ample, Ingole and Singh [14] used a firefly algorithm and Ingole and Singh [15] used a 
biogeography-based optimization algorithm to solve the UA-FLP. Allahyari and Azab 
[16] presented a multi-start simulated annealing algorithm for the UA-FLP, which consid-
ered aisle, but the facilities are not orientation-free. Liu et al. [17] presented a particle 
swarm optimization algorithm for a multi-objective UA-FLP. The objectives of the prob-
lem are to minimize material handling cost while maximizing the sum of the total adja-
cency value and utilization ratio of the plant floor. 

A few papers in the literature consider the dynamic UA-FLP with fixed facilities. This 
is the problem of finding positions of fixed-dimension facilities on the plant floor for a 
multi-period planning horizon such that facilities do not overlap, and the sum of the ma-
terial handling and rearrangement costs is minimized. As stated above, Asl and Wong 
[12] used a modified particle swarm optimization to solve the UA-FLP and generalized 
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their solution technique to solve a dynamic UA-FLP. McKendall and Hakobyan [18] pre-
sented a heuristic which consisted of a boundary search heuristic (BSH) with a tabu search 
(TS) heuristic for the UA-FLP and the dynamic UA-FLP. BSH is used in this paper to con-
struct layouts for the proposed genetic algorithm (GA). Hakobyan and McKendall [19] 
presented a hybrid heuristic for the dynamic UA-FLP. The hybrid heuristic consisted of a 
TS heuristic and a dual simplex method. Recall, a dual simplex method is used in the 
proposed GA. 

As stated above, BSH, presented in McKendall and Hakobyan [18], is used to con-
struct solutions (or layouts) for the proposed GA. More specifically, BSH, as a construction 
algorithm, selects facilities for placement on the plant floor based on the cumulative flow 
for each facility with all the other facilities. The facilities with higher cumulative flow are 
placed on the plant floor first. After the first facility, with the largest cumulative flow, is 
placed on the plant floor, the other facilities are placed along the boundaries of already 
placed facilities. Welgama and Gibson [20] and Mir and Imam [21] presented similar, but 
slightly different construction methods. See papers for details. 

Besides the metaheuristics mentioned above (i.e., simulated annealing, tabu search, 
GA, hybrid GA with simulated annealing and/or tabu search, firefly, particle swarm op-
timization), other metaheuristics have been used to solve UA-FLPs, without fixed facilities 
dimensions. For example, Kim and Chae [22] used monarch butterfly optimization to 
solve a UA-FLP which uses a slicing tree structure. Garcia-Hernandez et al. [23] used coral 
reefs optimization, an evolutionary-type algorithm, to solve a UA-FLP which uses a flex-
ible bay structure. Also, Palomo-Romero et al. [24] presented a parallel GA based on the 
island model to solve a UA-FLP which uses a flexible bay structure. Kulturel-Konak and 
Konak [25] presented a hybrid GA with a linear programming approach to solve a UA-
FLP which uses a new encoding scheme, which represents the relative locations (or posi-
tions) of the facilities. Once the relative locations of the facilities are set by the GA (i.e., 
binary variables are set in a mixed integer program), the corresponding linear program is 
solved to determine the actual layout of the facilities (e.g., shapes and locations of the 
facilities on the plant floor are obtained). Gonçalves and Resende [26] presented a biased-
random-key GA (BRKGA) for a UA-FLP where the facilities dimensions are not fixed. 
First, the BRKGA is used to determine the order facilities are placed on the plant floor and 
the dimensions of the facilities. Second, a novel placement strategy is used to place the 
facilities on the plant floor. Third, a linear programming model is used to improve the 
solutions (i.e., layouts). 

1.4. Contribution and Organization of Paper 
Our contribution is the application of the UA-FLP with fixed facilities dimensions to 

a layout problem encountered at the Toyota Motor Manufacturing West Virginia 
(TMMWV) plant in Buffalo, WV. Also, an effective matheuristic is presented for the pro-
posed problem which consists of a simple, but effective GA, which is able to produce high 
quality alternative layouts. More specifically, a GA is used to generate a population of 
solutions (i.e., permutations of facilities) to determine the order in which facilities should 
be placed on the plant floor. Next, a boundary search heuristic (BSH), available in the 
literature, is used to place the facilities on the plant floor to obtain the actual layouts and 
the fitness of each layout (i.e., total weighted distance). Last, the layouts obtained are used 
to set the binary variables in a mixed integer linear program, and a dual simplex method 
is used to solve the corresponding linear program efficiently. 

The remainder of the paper is organized as follows. In Section 2, a mathematical pro-
gramming formulation is presented for the proposed UA-FLP, and a small problem in-
stance is solved using the mixed integer linear programming (MILP) model. The proposed 
GA is presented in Section 3. In Section 4, some computational results of the proposed 
techniques on several test problems are given. Finally, Section 5 provides conclusions. 
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2. Mathematical Model 
2.1. Mixed Integer Linear Programming Formulation 

The indices, parameters, and variables for the UA-FLP are defined as follows: 
Indices: 
i, j = 1, …, N where N is the number of facilities. 
Parameters: 
fij = fij + fji = units of materials which flow between facility i and facility j (consider only 

upper triangular matrix) 
ai = shorter side length of facility i 
bi = longer side length of facility i 
L = length of the plant floor space available for layout 
W = width of the plant floor space available for layout 
Variables: 
(xi, yi) = the centroid (or location) of facility i 
li, wi = the length and width of facility i 
dxij, dyij = horizontal and vertical distance between the centers of facilities i and j 
oi = 1 if facility i is vertically oriented and zero otherwise 
leftij = 1 if facility i is to the left of facility j and zero otherwise 
belowij = 1 if facility i is below facility j and zero otherwise 
Next, a mixed integer linear programming (MILP) formulation is presented for the 

UA-FLP: 

Minimize z = ∑ ∑ 𝑓௜௝(𝑑𝑥௜௝ + 𝑑𝑦௜௝)ே௝வ௜ேିଵ௜ୀଵ  (1)

subject to: 

xi ≥ 0.5li Ɐi (2)

xi ≤ L − 0.5li Ɐi (3)

yi ≥ 0.5wi Ɐi (4)

yi ≤ W − 0.5wi Ɐi (5)

xi + 0.5li − xj − 0.5lj ≤ L (1 − leftij) Ɐi, j ≠ i (6)

yi + 0.5wi − yj − 0.5wj ≤ W (1 − belowij) Ɐi, j ≠ i (7)

leftij + leftji + belowij + belowji = 1Ɐi, j ≠ i (8)

li = aioi + bi (1 − oi) Ɐi (9)

wi = bioi + ai (1 − oi) Ɐi (10)

dxij ≥ xi − xj Ɐi, j > i (11)

dxij ≥ xj − xi Ɐi, j > i (12)

dyij ≥ yi − yj Ɐi, j > i (13)

dyij ≥ yj − yi Ɐi, j > i (14)

xi, yi, li, wi, dxij, dyij ≥ 0 Ɐi, j ≠ i (15)
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oi, leftij, belowij = 0 or 1 Ɐi, j ≠ i (16)

Objective function (1) minimizes the sum of the weighted distances. Constraints (2)–
(5) ensure that the facilities are within the boundary (area) of the plant floor space availa-
ble for layout. Constraints (6)–(8) are used to ensure that facilities do not overlap. Con-
straints (9)–(10) control the orientation of the facilities. For example, if facility i is horizon-
tally (vertically) oriented, set oi = 0 (oi = 1). If oi is not set to 0 or 1, the model will determine 
the orientation of facility i such that total weighted distance is minimized. Constraints 
(11)–(14) are used to obtain the rectilinear distances between the centers of facilities. Last, 
the restrictions on the variables are given in Constraints (15) and (16). Since the MILP 
model presented above can only be used to solve small-size problems in reasonable time, 
a heuristic technique is presented next for the UA-FLP, but first a small problem instance 
is solved using the model. 

2.2. Small Problem Instance 
The MILP model for the UA-FLP will be used to solve a small problem instance taken 

from Xiao et al. [9]. The data for the problem instance is given in Table 1. For instance, the 
length and width of facility 4 is 1 and 2 distance units, respectively. Also, there are 40 units 
of materials flowing from facility 2 to facility 3. Recall, to prepare fij for the MILP model, 
we obtain new fij = fij + fji. The MILP model is solved optimally using the CPLEX solver 
(version 12.4). The optimal solution is given in Table 2. For example, the center of facility 
1 is located at point (4,4) on the plant floor and its length and width is 2 and 4 distance 
units, respectively. Notice facility 1 is vertically oriented since o1 = 1 and the width of the 
facility is greater than its length. Recall, that to be vertically oriented means the longer 
side of the facility is parallel to the y-axis. Also, all the other facilities are horizontally 
oriented. See the actual layout of the plant floor in Figure 1 where the total weighted dis-
tance (i.e., the total distance materials travel) is 1842.5 distance units. The optimal solution 
was obtained in 1.25 s using the CPLEX solver on Microsoft Windows 10 running on an 
Intel Core processor with a CPU speed of 3.20 GHz equipped with 16 GB of RAM. Alt-
hough the small problem instance with six facilities was solved optimally in 1.25 s, it took 
21.3 h to solve a problem instance with eight facilities, which will be discussed later. Since 
the UA-FLP at the TMMWV plant required solving a 20-facility problem, a genetic algo-
rithm is developed for the problem. 

Table 1. Data for small UA-FLP instance. 

Facility Length Width (fij) 
(i) (ai) (bi) 1 2 3 4 5 6 
1 2 4 - 51 0 23 17 29 
2 2 3 25 - 40 10 35 0 
3 2 2 0 15 - 0 60 12 
4 1 2 20 30 10 - 0 50 
5 1 3 36 0 43 0 - 23 
6 3 4 16 48 0 19 0 - 

Building (L x 
W) 5 10       

Table 2. Output data (optimal solution) for small UA-FLP instance. 

Facility (i) xi yi li wi oi 
1 4 4 2 4 1 
2 1.5 4 3 2 0 
3 1.5 1 2 2 0 
4 2 5.5 2 1 0 
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5 1.5 2.5 3 1 0 
6 2 7.5 4 3 0 

 
Figure 1. Optimal layout for small UA-FLP instance. 

3. A Genetic Algorithm (GA) for the UA-FLP 
A GA is developed for the UA-FLP presented in previous sections. The proposed GA 

consists of a BSH, LP model, and a dual simplex method. The GA consists of the following 
five stages. See Figure 2 for a flow diagram of the stages of the proposed GA: 
(1) Randomly generate a set (or population) of solutions (P0). 
(2) The BSH presented in McKendall and Hakobyan [8] is used to construct the layout 

and determine the total weighed distance (TWD) for each solution in P0. 
(3) Based on BSH layout plans (obtained in stage 2), set binary variables leftij, belowij, and 

oi in proposed MILP, and improve layout for chromosomes in P0 or Pg using the re-
sulting LP model and the dual simplex method. 

(4) Perform crossover and mutation operations on best set of solutions from stage (3) to 
produce a new population of solutions (Pg). 

(5) Repeat stages (2) through (4) on Pg until a stopping criterion is met. 
The main components of the proposed GA are the solution representation, BSH, and 

the crossover and mutation operations. Each of these components are discussed below. 

3.1. Solution (Chromosome) Representation 
For the proposed GA, the solution or chromosome is represented as a permutation 

of the facilities {1, 2, …, N}. For example, randomly generating a chromosome for a UA-
FLP with six facilities (N = 6) may produce the following chromosome π = {2, 3, 6, 5, 1, 4}. 
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. 

Figure 2. Flow diagram of the stages of the proposed GA. 

In other words, facility 2 is in position 1 (i.e., π(1) = 2), facility 3 is in position 2 (i.e., 
π(2) = 3), and so on. That is, facility 2 will be placed on the plant floor first. Next, facility 3 
will be placed on the plant floor and so on. 

In stage 1 mentioned above, a set of chromosomes are generated randomly for the 
initial population P0. Note, the solution representation (chromosome) does not specify the 
location (xi, yi, li, wi) and orientation (oi) of each facility i. The BSH presented in McKendall 
and Hakobyan [8] is used to construct the layout and determine TWD for each chromo-
some in P0. 

3.2. Boundary Search Heuristic (BSH) 
The BSH presented in McKendall and Hakobyan [8] is a construction algorithm used 

to produce the layout and determine TWD for each chromosome in P0. Given a solution 
(chromosome) π a placement procedure is used to assign facilities to locations on the plant 
floor. First, facility in position 1 (i.e., π(1)) of π is placed first on the plant floor, then facility 
in position 2 (i.e., π(2)) is placed on the boundary of facility π(1). Note, the best location 
on the boundary is selected for the location of facility π(2) with respect to minimizing 
TWD. The facility in position k (i.e., π(k)), is placed on the boundary of already placed 
facilities (i.e., π(1), π(2), …, π(k − 1)) such that TWD is minimized and layout is feasible 
(i.e., facilities placed are within the boundary of the floor space). See McKendall and 
Hakobyan [8] for details. 

At the end of stage 2, once BSH is used to generate a layout for each chromosome in 
P0, the variables for the MILP model (i.e., xi, yi, li, wi, dxij, dyij, oi, leftij, belowij) are obtained 
for each layout. In stage 3, the chromosomes are improved using the MILP model pre-
sented earlier for the UA-FLP. More specifically, the binary variables for the relative loca-
tions (i.e., leftij, belowij) and orientations (i.e., oi) obtained by BSH for each layout are used 
as input data in the MILP for the UA-FLP. It is important to note that if a facility i is both 
to the left and below a facility j, either horizontal or vertical separation is used (i.e., either 
leftij = 1 or belowij = 1, not both), since this would greatly restrict the solution space. Never-
theless, the resulting formulation is a linear programming (LP) model. Each LP model for 
each chromosome in P0 is solved efficiently using the dual simplex method. These layouts 
often improve the layouts constructed in stage 2. Afterward, each layout is improved us-
ing the crossover and mutation operations on the best set of solutions from stage 3. Next, 
the proposed GA is presented for the UA-FLP. 
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3.3. Crossover and Mutation Operations 
The propose GA generates a number of solutions (chromosomes) and adds them to 

the new generation of chromosomes Pg, where g is the current generation (iteration) of the 
GA. At the initial iteration (g = 0), the GA starts by randomly generating the initial popu-
lation of chromosomes (P0). More specifically, each chromosome in P0 is generated ran-
domly, and the TWD and plant floor feasibility status is evaluated by constructing the lay-
out using BSH. On the other hand, each solution in Pg, for g > 0, is either randomly gener-
ated (i.e., mutation operation is used), or it is generated from two chromosomes (solu-
tions), randomly selected from population Pg-1 (i.e., crossover operation is used). The chro-
mosomes obtained by applying crossover operation inherit features from both parent 
chromosomes. At each generation g of the GA, Max_Num_Cross chromosomes are gener-
ated using crossover operation, but only Gen_Size (Gen_Size < Max_Num_Cross) best chro-
mosomes are kept in the new generation Pg. The generated chromosome is added to Pg, 
only if it is better than the worst chromosome in Pg and a chromosome similar to π has 
not already been added to Pg. After the new population Pg, for g > 0, is generated, 
Num_Rand_Chrom (Num_Rand_Chrom < Gen_Size) chromosomes are randomly generated 
(mutation operation), and replace the worst chromosomes in Pg. The chromosomes in each 
generation Pg are stored in such a way, that higher quality chromosomes precede lower 
quality chromosomes as in Drezner [27]. The stopping criterion for the proposed GA is 
the maximum amount of time Max_Duration, to run the heuristic. 

As in most GAs, where the chromosome represents a permutation of numbers, as in 
the proposed GA, the crossover operation may produce infeasible chromosomes, if a tech-
nique is not used to generate feasible chromosomes. The following technique is used to 
generate feasible chromosome π, when performing the crossover operation to parents π1 
and π2: 

Step 0:  Set k1 = 0.2N, k2 = 0.5N, cross_point = 1, and num_cross_points = 0. 
Step 1:  Set num_cross_points = num_cross_points + 1. 

Add crossover point cross_point to vector cross_points. 
Set cross_point = cross_point + Random number between k1 and k2. 
If cross_point ≥ N, then go to Step 2. 
Else go to Step 1. 

Step 2:  Set cross_point = N and num_cross_points = num_cross_points + 1. 
Add crossover point cross_point to vector cross_points. 
Set r = 1. 

Step 3:  Copy the genes (facilities) cross_pointsr through cross_pointsr+1 from chromo-
some π1 to the same positions in chromosome π. 
Set r = r + 2. 
If r < num_cross_points, go to Step 3. 
Else go to Step 4. 

Step 4:  Copy all the facilities in chromosome π2 which have not been copied from π1 
into positions in π which have not been filled, while preserving the prece-
dence order of facilities in π2. 

3.4. Pseudocode of the Proposed GA 
The steps of the proposed GA are given below: 
π_worst = worse solution in current population g (Pg) 
Recall, in Pg, chromosomes are ordered in ascending order based on TWD. 
Step 1: Initialize parameters. 

Initialize parameters Gen_Size, Max_Num_Cross > Gen_Size, 
Num_Rand_Chrom, Max_Duration. 
Set g = 0; 
Set curr_parents_offspr_count = 0 (number of chromosomes generated from 
current pair of chromosomes using the crossover operator). 
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Set TWD* = large number. 
Step 2: Start new population. 

Set chromosome_count = 0 (number of chromosomes generated at iteration g). 
Step 3: Generate chromosome. 

If chromosome_count ≥ Max_Num_Cross then go to step 5; 
Else 
If g = 0, then 

Randomly generate chromosome π. 
Else 

If curr_parents_offspr_count = 0 then 
Randomly pick two chromosomes π’ and π’’ from the gener-

ation Pg-1 and set π1 = π’ and π2 = π’’. 
Set curr_parents_offspr_count = curr_parents_offspr_count + 1; 

Else 
Set π1 = π’’, and π2 = π’. 
Set curr_parents_offspr_count = 0. 

Generate chromosome π from π1 and π2 by applying crossover opera-
tion. 

Generate the layout corresponding to chromosome π using BSH. 
Step 4: Add chromosome π to new population and run BSH with π as a starting 

solution. 
Set π_worst = Pg,Gen_Size; 
If chromosome_count < Gen_Size or TWD(π) < TWD(π_worst) 

If TWD(π) < TWD* 
Initialize TWD*, x*i, y*i, l*i, and w*i from the values TWD(π), 

xi, yi, li, and wi, respectively. 
Add chromosome π to new generation Pg. When adding the chromo-

some to the generation, make sure that the higher quality solutions precede 
lower quality solutions. Also, if chromosome_count ≥ Gen_Size, then drop the 
worst (Gen_Size-th) chromosome from Pg. 

Run the dual simplex method to improve the chromosomes. This will 
modify the values of TWD*, x*i, y*i, l*i, and w*i, if it finds a better solution, 
than the best solution found thus far. 

Set chromosome_count = chromosome_count + 1, and go to Step 3; 
Step 5:  Check stopping criterion and add random chromosomes to the new popula-

tion. 
If the heuristic has been running for more than Max_Duration minutes, then 
go to Step 6. 
Else 
Remove the last Num_Rand_Chrom (worst) chromosomes from Pg, and add 
Num_Rand_Genes randomly generated chromosomes to the generation. 
While adding new chromosomes to the generation, make sure that higher 
quality solutions precede lower quality solutions. 
Set g = g +1, and go to Step 2. 

Step 6:  Output the best solution (i.e., x*i, y*i, l*i, w*i for all i = 1, …, N), and terminate 
the heuristic; 

4. Computational Results 
A set of test problems are used in this paper in order to test the performance of the 

proposed GA. More specifically, the first problem, P8, is an eight facility problem, which 
was generated randomly. The second and third problems (i.e., P20 and P50) are 20- and 
50-facility problems available in the literature from the commercial software VIP-
PLANOPT. Also, P20 is available in Imam and Mir [28]. For the last test problem, the floor 
space is unconstrained, and the Euclidean distance measure is used to determine the 
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distances between pairs of facilities. However, the rectilinear distance measure is used on 
P8 and P20 test problems. Also, in all experiments, a PC (equipped with Microsoft Win-
dows 10, an Intel Core processor with a CPU speed of 3.20 GHz and 16 GB of RAM) was 
used to solve the test problems, and the proposed GA was coded using the C++ program-
ming language. 

Recall, the GA parameters are Gen_Size, Max_Num_Cross, Num_Rand_Chrom, and 
Max_Duration. The number of random solutions, Num_Rand_Chrom, generated at each 
generation was set to 0.1Gen_Size. The values used for parameters Gen_Size, 
Max_Num_Cross, Max_Duration are shown in Table 3. Each test problem was solved five 
times, since the GA is stochastic, and the outcome can be different for different runs. Min-
imum TWDs, means, standard deviations, % Improvements, and run times are used for 
comparison purposes. 

Table 3. GA heuristic parameter setting. 

Problem Instance Gen_Size Max_Num_Cross Max_Duration (minutes) 
P8 10 20 1 

P20 30 60 15 
P50 40 80 60 

4.1. Test Problem P8 Results and Comparisons 
As stated previously, the eight facility test problem, P8, was randomly generated. See 

Table 4 for a summary of the results. The proposed GA obtained a TWD of 5667.17 for 
each of the 1-min runs (total of five runs). However, using the MILP presented earlier and 
the CPLEX solver, the optimal solution was obtained in 21.3 h of computation time (CP), 
which gives the minimum TWD of 5637.16 (bolded in Table 4). Although the proposed 
GA did not obtain the optimal solution, the TWD obtained is only 0.53% (less than 1%) 
above the optimal TWD. Note, % Improvement = 100 × (Best TWD − TWD)/Best TWD 
(e.g., % Improvement = 100 × (5637.16 − 5667.17)/5637.16 = −0.53%). Although attempts 
were made to improve the results for the proposed GA by running the test problems for 
5 min, increasing the number of runs, etc., the same TWD of 5667.17 was obtained. It is 
well known that stochastic heuristics like GA and simulated annealing may obtain solu-
tions in the vicinity of the local optima, without ever converging to the local optima. 
Therefore, a steepest descent heuristic, as in McKendall et al. [29], can be used to ensure 
that the solutions obtained are local optimums. After running a simple tabu search heu-
ristic on the final solutions obtained by the proposed GA, the optimal solutions were ob-
tained after only a few iterations. 

Table 4. Summary of results for test problem P8. 

Method Min TWD Mean TWD Std. Dev. % Improvement CP Time 
Proposed GA 5667.17 5667.17 0 −0.53 1 m 
MPL/CPLEX 5637.16 -- -- 0 21.3 h 

4.2. Test Problem P20 Results and Comparisons 
As stated previously, the 20 facility test problem, P20, was taken from Imam and Mir 

[28]. See Table 5 for a summary of the results. The proposed GA results are compared with 
the results from the tabu search (TS) heuristic which consisted of the boundary search 
heuristic (TS/BSH) presented in McKendall and Hakobyan [18] and the multi-start simu-
lated annealing algorithm (MS-SA) presented in Allahyari and Azab [16]. It is important 
to note that the test problem was solved once using TS/BSH, but the test problem was 
solved 10 times (i.e., 10 runs) using MS-SA heuristic, and the computation time was not 
given. Recall, the test problem was solved five times using the proposed GA. However, 
the proposed GA obtained the minimum TWD of 1147 and improved the best-found TWD 
in the literature (1151.4), which is bolded in Table 5, by 0.38% in much less CP time 
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compared to TS/BSH. Also, notice how much lower the mean and standard deviation of 
the proposed GA are compared to the MS-SA. As a result, the proposed heuristic outper-
formed the other heuristics with respect to solution quality and/or CP time. 

Table 5. Summary of results for test problem P20. 

Method Min TWD Mean TWD Std. Dev. % Improvement CP Time 
Proposed GA 1147 1152.08 5.64 0.38 15 m 
TS/BSH [18] 1151.4 -- -- 0 2.9 h 
MS-SA [16] 1218.75 1270.55 20.09 -5.85 -- 

4.3. Test Problem P50 Results and Comparisons 
The 50 facility test problem, P50, available in the literature from the commercial soft-

ware VIP-PLANOPT, was solved once (one run) using the TS/BSH presented in McKen-
dall and Hakobyan [18], and five times using the proposed GA. Recall, the floor space is 
unconstrained, and the Euclidean distance measure is used to determine the distances 
between pairs of facilities. See Table 6 for a summary of the results. The proposed GA 
obtained the minimum TWD of 71,031.24 and improved the best-found TWD in the liter-
ature (71,291.4), which is bolded in Table 6, by 0.36% in less CP time. Although each of the 
five runs were 60 min for the proposed GA, only one run did not produce a better result 
than TS/BSH. 

Table 6. Summary of results for test problem P50. 

Method Min TWD Mean TWD Std. Dev. % Improvement CP Time 

Proposed GA 71,031.24 71,401.19 424.29 0.36 60 m 

TS/BSH [18] 71,291.4 - - 0 2.1 h 

5. Conclusions 
The UA-FLP is considered in this paper and is defined as the problem of locating 

rectangular facilities, with fixed dimensions, on a rectangular floor space such that facili-
ties do not overlap while minimizing the total weighted distance (TWD). This research 
was motivated by the investigation of layout options for a production area at the Toyota 
Motor Manufacturing West Virginia (TMMWV) plant in Buffalo (WV, USA). A mixed in-
teger linear programming (MILP) model and a genetic algorithm (GA) is presented for 
locating facilities on a continuous plant floor. The proposed GA consists of the boundary 
search heuristic (BSH), a linear programming (LP) model, and the dual simplex method. 
The GA is used to obtain permutations of the facilities, which specify the order in which 
facilities should be placed on the plant floor. From these permutations, BSH is used to 
construct the layouts. Then the layouts are improved using the LP model and the dual 
simplex method. Instead of solving the problem from scratch, from one LP model to an-
other, some of the right-hand side values of the LP model were updated/modified, and 
the model is quickly solved using the dual simplex method. 

The computational results show that the proposed GA is effective for solving prob-
lems with 50 or less facilities, as in the UA-FLP encountered at the TMMWV plant. How-
ever, as stated previously, in some cases the simple GA may have difficulty converging to 
the local optimum. More specifically, the GA is a stochastic heuristic, which is good for 
obtaining diverse solutions but may lack in intensification (i.e., the ability to thoroughly 
explore the regions of these diverse solutions). As a result, for future research, the tabu 
search (TS) heuristic can be used to search for the local optimum for each chromosome 
during each generation (i.e., intensify the search). This would require the development of 
a memetic heuristic (e.g., hybrid GA and TS heuristic) for the UA-FLP. Otherwise, a hy-
brid heuristic could be developed, which uses the diversification strategies of simulated 
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annealing and intensification strategies of tabu search. These heuristics can be compared 
to the proposed GA. 
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