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Abstract— In this paper we discuss a methodology for learn-
ing human-robot collaboration tasks by human guidance. In the
proposed framework, the robot learns the task in multiple rep-
etitions of the task by comparing and adapting the performed
trajectories so that the robot’s performance naturally evolves
into a collaborative behavior. When comparing the trajectories
of two learning cycles, the problem of accurate phase determi-
nation arises because the imprecise phase determination affects
the precision of the learned collaborative behavior. To solve this
issue, we propose a new projection algorithm for measuring
the similarity of two trajectories. The proposed algorithm was
experimentally verified and compared to the performance of
dynamic time warping in learning of human-robot collaboration
tasks with Franka Emika Panda collaborative robot.

I. INTRODUCTION

An important theme in the emerging Industry 5.0 agenda

is human-robot co-working [1]. The human-centred produc-

tion paradigm provides tight collaboration between humans

and robots whenever possible, sharing common place and

common tasks. This need dictates the development of new

procedures and algorithms for natural collaboration between

robots and humans. One of the key requirements remains

the fast deployment of robots to perform a new task, where

little or even no programming is required. Learning from

Demonstration (LfD) [2] is widely applied to shorten the

programming time and to reduce the required skill level

of the operators. LfD enables us to learn or modify robot

policies in a natural way rather than by coding in a robot-

oriented programming language.

LfD is in itself a kind of physical collaboration between

a human and a robot, in which the human takes an active

role. We say a robot is a leader and a human is a follower.

This role is preferably not fixed. Instead, a humans and

a robots should share the task dynamically, taking into

account the requirements of the task and the capabilities

of both agents. In this way, it is possible to combine the

accuracy and repeatability of a robot and the adaptability and

flexibility of the human operator. Several different human-

robot cooperation schemes were proposed in the past decade,

also characterized by the underlying policy representation.

As pointed out by Calinon et al. [3], a motor skill necessary

to follow the desired path should also cope with the possible

variation of coordination patterns during the movement. One

way to ensure this property is to encode the task as a
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non-linear dynamic system, which ensures global asymp-

totic stability at the target [4]. However, multiple policy

demonstrations are required to learn such dynamic systems.

Calinon et al. [5] applied Gaussian mixture model (GMM) to

sequentially superimpose systems with varying full stiffness

matrices. This method allows to arbitrary set the direction of

the compliance and defines virtual guides [6]. It can be used

for learning of physical collaborative human-robot actions

[7]. Ewerton et al. [8] proposed a mixture of interaction prim-

itives (IP). Probabilistic motion primitives (ProMP) enable

the encoding of stochastic collaboration policies [9]. Many

human-robot collaboration schemes rely on Dynamic Motion

Primitives (DMP), where a single demonstration suffices to

encode the policy, such as bi-manual crate lid placing [10].

Learning of robot stiffness according to the path variations

while decoupling learning of spatial and temporal part of

the policy was proposed in [11]. Another concept based

on DMPs are the interaction primitives (IP) [12], where

a collaborative behavior is represented by maintaining the

distribution over DMP parameters of the policy.

The work presented in this paper is based on Speed-scaled

Cartesian space Dynamic Movement Primitives (SCDMPs)

[13], [14] and an algorithm for stiffness adaptation along the

motion trajectory [11], which we extend with a more efficient

velocity learning algorithm [15]. Furthermore, we discuss the

precision of iterative policy learning and propose a novel

technique for measuring the similarity of two trajectories

based on projection.

The paper is organized into five sections. In the next sec-

tion, we briefly review the procedures for physical Human-

Robot Cooperation (pHRC) based on stiffness learning. To

increase the accuracy of the learned policy during pHRC,

we propose to apply the trajectory similarity measures ex-

plained in Section III. Section IV describes the experimental

verification of our framework for learning a cooperative

assembly task. Finally, we conclude with summary and a

critical discussion of the proposed framework in Section V.

II. POLICY ADAPTATION DURING HUMAN-ROBOT

COOPERATION

We study physical human-robot cooperation, where both

the robot and the human operator firmly hold and manipulate

an object. Examples of such collaboration are numerous and

can be found in civil engineering, production plants, and also

in everyday life. In most cases, the problem is related to

the transportation of bulky, heavy, or very long and possibly

flexible objects. Our approach aims at allowing the initial

demonstration to evolve naturally into a collaborative task,
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A. Learning of the spatial part of the trajectory

In our learning scheme, a new trajectory is learnt by

specifying an offset p̃, q̃ to the initially demonstrated

trajectory p0, q0. The initially demonstrated trajectory is

encoded with an SCDMP, while the offset to the trajectory

are represented as a linear combination of RBFs [15]. In

this way, we eliminate the influence of the DMP integration

noise, which would otherwise accumulate during the iterative

policy improvement.

During the collaborative task execution, we update the

spatial path of robot trajectories using the following set of

formulas

pl(s) = p0(s) + p̃l(s) (5)

p̃l+1(s) = ζp∆p(s) + p̃l(s), (6)

∆p(s) = pm − pl(s), (7)

where pl(s) denotes the robot’s position on the learnt tra-

jectory at phase s. p0 denotes the originally demonstrated

trajectory and p̃l(s) the learned offset at phase s from the

point on the original trajectory at the same phase. pm denotes

the measured position of the robot. pl is used as a reference

trajectory to control the robot in the next cycle. Additionally,

factor ζp defines the learning rate. By setting ζp = 1,

the updated trajectory offset p̃l+1 is equal to the measured

trajectory offset in the current learning cycle p̃m. On the

other hand, by setting ζp = 0, the trajectory offset p̃l+1

does not change and the system stops learning. After each

learning cycle, the updated trajectory offset p̃l+1 is encoded

as a linear combination of radial basis functions (RBF) [15].

For learning of orientational part of the trajectory we apply

the following update rule for quaternions

ql(s) = q̃l(s) ∗ q0(s) (8)

q̃l+1(s) = exp

(

ζo
ωωω(s)

2

)

∗ q̃l(s), (9)

ωωω(s) = 2 log(qm ∗ ql(s)), (10)

Symbol ∗ denotes quaternion multiplication, q denotes con-

jugate quaternion, and qm is the measured robot orientation.

log and exp are quaternion logarithm and exponential maps

form S3 7→ R
3 and vice versa, respectively [16].

B. Learning of the temporal part of the trajectory

Similar to positions and orientations, we also learn the

speed profile of a task with respect to speed modulation in

each human-robot collaboration cycle.

νc,l+1(s) = ζνδν(s) + νc,l(s) (11)

δν(s) = νl(s)− νl−1(s) + νh,l (12)

Signal νc is encoded as a linear combination of RBFs as

explained in Eq. (3). ζν is the learning rate similarly as in

Eq. (6). While performing a collaborative task, the operator

may stop the robot by applying a sufficiently large force in

the opposite direction of the tangent to the task. The value

of this force is determined by equations (2) and (4). In such

a case, however, we stop updating the speed scaling factor

with the equation (11), because we would distort the speed

profile of the task too much.

C. Stiffness learning

Working with a non-compliant robot can be uncomfortable

and even potentially dangerous for the operator. On the other

hand, the robot must be stiff where high accuracy is required

[17], [11]. Here we build on the idea of decreasing the

stiffness in the parts of the trajectory with higher variability

and vice versa. The variability is determined by observing the

task executions over successive repetitions and calculating

the phase-dependent variance. Concurrently with Eqs. (5–7),

we calculate the positional covariance

ΣΣΣp,l+1(s) = (1− ζp)(ΣΣΣp,l(s) + ζp∆p(s)∆p(s)T). (13)

We set the initial value for covariance matrix ΣΣΣp,1 to zero.

Similarly, the update rule for covariance of speed factors ν

is given as

Σν,l+1(s) = (1− ζν)(Σν,l(s) + ζνν
2(s)). (14)

The covariance matrices elements are encoded with RBFs,

just like position offsets and velocity scale factor. The initial

value of Σν is zero. Note that, we set the stiffness in the

tangential direction with respect to how precisely the robot

should follow the learned speed profile.

However, this variance has to be expressed in an ap-

propriate coordinate system. Let Rp denote the rotation

matrix attached to the object’s trajectory π with x coordinate

specified in the desired direction of motion and the other

two coordinates orthogonal to it, as illustrated in Fig. 1. A

suitable choice for such a rotation matrix is by calculation the

Frenet-Serret frame [18] at each sampling time. The Frenet-

Serret (FS) frame consists of three orthogonal directions

defined by the path’s tangent tp (direction of motion), normal

np, and binormal bp. We obtain the following expression for

Rp

Rp(s) = [tp(s) np(s) bp(s)], (15)

tp(s) =
ṗl(s)

‖ṗl(s)‖
, (16)

bp(s) =
ṗl(s)× p̈l(s)

‖ṗl(s)× p̈l(s)‖
, (17)

np(s) = bp(s)× tp(s) (18)

Note that the velocities ṗl and accelerations p̈l are provided

by DMP (or RBF) integration at every phase s, which ensures

smoothness. If the denominator in Eq. (16) gets close to

zero, i.e. the motion stops, we suspend the updating of Rp.

Updating resumes when the motion becomes faster again. A

similar approach is taken in Eq. (17), when the updating is

resumed when the motion is no longer a straight line.

As mentioned above, the variances computed with (13)

need to be expressed in the trajectory coordinate system

given with FS frame. The transformation from the robot base

coordinate system to the trajectory coordinate system is done

by

ΣΣΣ(s) = Rp(s)ΣΣΣp,l(s)Rp(s)
T. (19)





Fig. 3. The collaborative task is to move the metal rod from the initial
location to the final one, where small tolerances are necessary to accomplish
the task.

Our first concern was how the learning algorithm affects

the precision of the task execution. The learning algorithm

in all experiments was the same as described in Section II,

but we applied different approaches to calculate exponential

moving average given by Eqs. (7) and (10). We compared

the results obtained with averaging robot trajectories using

a) commanded and actual robot position b) commanded and

projected actual position, as proposed in previous section

and c) commanded and actual position, where the trajectory

indices were obtained with well known similarity measure,

Dynamic Time Warping (DTW) [20]. The results for one

learning cycle are shown in Fig. 4.

Fig. 4. Average trajectory calculation using different algorithms. Avg
(green) denotes Euclidian average from commanded and actual robot
position, dtw-avg (magenta) averaging using indices obtained with DTW
and pp-avg (black) averaging using indices obtained with the proposed
projection algorithm.

As evident from the results, DTW and projection based

average calculation both returns comparable results, while

simple average deviates, resulting in inaccurate learning.

An additional indicator of the correctness of calculating the

average is the distance measure [19]. For the given case,

the distance measure for Euclidean averaging was 29.86,

for DTW 14.76, and for projection algorithm 16.03. In

practice, the results obtained using DTW and the projection

algorithm are very similar and comparable. The advantage

of the projection algorithm is that it is less computationally

demanding and does not require pre-known trajectories.

Fig. 5. Positional part of eight repetitions of collaborative policy. The
final policy is denoted with a dashed line. Note that, trajectory labelled as
1 refers to the first collaborative cycle after the initial demonstration.
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Fig. 6. Speed scaling factor ν of eight repetitions of collaborative policy
with respect to the normalized trajectory length.

Thus, one can calculate the average on the fly during human-

robot interaction.
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Fig. 7. Positional part of variances of eight repetitions of collaborative
policy. Note that all graphs are scaled to the normalized trajectory length.

Next, we evaluated the learning of stiffness and velocity

profiles. The robot was initially fully compliant. Then, the

human co-worker moved the rod from the initial to the

final position at low speed by exerting necessary forces and

torques to the robot. As a result, the robot learned the task
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Fig. 8. Learned controller gains in eight repetitions of collaborative policy.

and adjusted its stiffness. Figs. 5 and 6 show the positional

and temporal part of the eight repetitions of the task. The

estimated variances were very low at the beginning and end

of the task, where the tolerances needed to successfully insert

the rod into grooves were also very low (see Fig. 7). As

a result, the robot learned high stiffness, which prevented

deviations in these critical parts of the path. In contrast,

the deviation in the middle part of the trajectory, where the

robot only had to avoid an obstacle, and the movement was

not precisely determined, could have been greater. Therefore,

the robot learned lower stiffness on this part of the path, as

evident from Fig. 8.

In the first five repetitions, the operator constantly in-

creased the execution speed, which is also shown by the

results in Fig. 6. Thus, the robot also learned the new velocity

profile. Regardless, the human co-worker was able to stop the

movement at any time by pushing the stick in the opposite

direction of the tangent. We demonstrate this property in the

sixth to eighth cycle, where the human operator randomly

modified the task’s speed by pushing the rod in the tangential

direction of the task’s trajectory.

V. CONCLUSIONS

In the paper, we presented an improved approach to

human-robot physical collaboration, where high precision

is essential, such as for example in assembly tasks. While

this approach is based on our previously proposed algorithm

[11], we developed a better speed learning method and

a more accurate learning of trajectories [15]. The major

contribution is the novel distance measure for time series

based on projecting series points to the related trajectory.

The experimental evaluation showed that the proposed dis-

tance measure performs equally well in our human-robot

collaboration schemes as the well established DTW. An

important benefit of the proposed scheme is that our new

distance measure can be calculated on the fly during human-

robot interaction and does not require gathering of the entire

trajectory. We evaluated the overall scheme in an HRC task,

where high precision is required only in some parts of the

task.
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