
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Abstraction Refinement-Based

Verification of Timed Automata

Ph.D. Dissertation

Tamás Tóth

Thesis supervisor:
István Majzik, Ph.D.

Budapest
2021

Tamás Tóth
http://www.mit.bme.hu/general/staff/totht

May 2021

Budapesti Műszaki és Gazdaságtudományi Egyetem
Villamosmérnöki és Informatikai Kar
Méréstechnika és Információs Rendszerek Tanszék

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Measurement and Information Systems

H-1117 Budapest, Magyar tudósok körútja 2.

doi: 10.5281/zenodo.4759047

http://www.mit.bme.hu/general/staff/totht
http://doi.org/10.5281/zenodo.4759047

Declaration of own work and references

I, Tamás Tóth, hereby declare that this dissertation, and all results claimed therein are my
own work, and rely solely on the references given. All segments taken word-by-word, or in
the same meaning from others have been clearly marked as citations and included in the
references.

Nyilatkozat önálló munkáról, hivatkozások átvételéről

Alulírott Tóth Tamás kijelentem, hogy ezt a doktori értekezést magam készítettem és ab-
ban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint,
vagy azonos tartalomban, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás
megadásával megjelöltem.

Budapest, 2021. 05. 18.

Tóth Tamás

iii

Acknowledgements

Throughout the time this dissertation was in the making, and the years of research preceding it, I had
the good fortune to receive support from a great number of colleagues and friends.

First and foremost, I’d like to express my gratitude towards my advisor István Majzik for guiding my
work with his wealth of knowledge and attention to detail.

I would also like to thank my colleagues at BME’s Fault Tolerant Systems Research Group for their
continuous help and support, and for all the stimulating discussions. I would like to acknowledge
my coauthors who I was lucky enough to work with on the papers related to this dissertation, in
chronological order, András Vörös, Ákos Hadju, Zoltán Micskei, and Rebeka Farkas.

I would like to thank Richter Gedeon’s Talentum Foundation for generously providing a scholarship
throughout my years as a PhD student.

Last but not least, I would like to say heartfelt thanks to my family for the long years of continuous
support.

v

Summary

Formal methods are mathematical techniques that enable the rigorous specification and verification
of hardware and software systems, typically in design time. Formal verification techniques are for-
mal methods for reasoning about the correctness of systems with respect to a formal specification
or property. Model checking is an automatic formal verification technique that is based on exhaus-
tive traversal of the design model’s state space. Its main advantage to more conventional verification
methods (e.g. testing) is that it is not only able to detect faults in faulty systems, but can also show
that a correct system is fault-free. However, a major difficulty in the successful application of model
checking to verification of practical systems is its high computational cost: the cardinality of a sys-
tem’s state space is typically exponential in the size of the input specification describing the system’s
behavior, a phenomenon commonly known as state space explosion. In addition, the state space is not
necessarily finite, in particular for real-time systems, where continuous variables with time dimension
are part of the specification.

Therefore, to make the problem more tractable, advanced model checkers rely on symbolic tech-

niques, where, instead of individual states, sets of states are considered during state space traversal;
and abstraction, where only parts of the system that are relevant for the requirement are considered.
As a result, the abstracted system is a simpler system whose behavior overapproximates that of the
original system, therefore, if the abstract system is correct, so is the original one. However, as the
abstracted system might admit false negatives, that is, spurious faulty behavior that is not present in
the original system, the key challenge is finding the right abstraction granularity. This process can
be automated using abstraction refinement techniques: in case of a false negative, the abstraction is
refined in a way that excludes the discovered faulty behavior.

Our goal is to provide a generic, modular and configurable model checking framework that sup-
ports the development and evaluation of abstraction refinement-based algorithms for checking safety

properties over different formalisms. In particular, by specific instantiations of our framework, we
aim to provide efficient algorithms for the model checking of real-time systems. We focus primarily
on classical timed automata with continuous clock variables, a formalism prominently used in the
area of model checking real-time systems, and its extension with discrete variables. Moreover, we in-
vestigate methods for proving liveness properties of industrial real-time systems with asynchronous
message passing. We propose several contributions towards these goals.

First, we introduce Theta, a generic, modular and configurable model checking framework for
abstraction refinement-based reachability analysis of different formalisms. For the specific case of
timed automata with discrete variables, we present a specialization of our framework that enables the
combination of various abstraction and refinement strategies for the location reachability problem.

Second, we propose an abstraction technique for timed automata based on interpolation for zones.
We propose two refinement strategies, both a combination of forward search, backward search and
interpolation. We show that our method is competitive in performance with the state of the art.

Third, we propose an abstraction technique for timed automata with discrete variables, where
refinement is based on controlling the visibility of discrete variables using interpolation for valuations.
We demonstrate that our method, combined with methods for the abstraction of clock variables, can
achieve a significant reduction in the size of the state space.

Fourth, we investigate methods for liveness checking of industrial real-time protocols with asyn-
chronous message passing. We propose the calendar system formalism, and suggest a k-induction
based approach for checking liveness properties of suchmodels. For systemswith a hierarchical struc-
ture in functionality, we propose a decomposition method that can be used to split the original liveness
checking problem into more tractable ones.

vii

sszefoglaló

A formális módszerek olyan matematikai módszerek, melyek hardver-szoftver rendszerek precíz
specifikációját és tipikusan tervezési idejű verifikációját célozzák. A formális verifikációs technikák
olyan formális módszerek, melyek lehetővé teszik rendszerek egy adott specifikáció vagy tulajdonság
szerint értelmezett helyességéről való érvelést. A modellellenőrzés a tervezési modell állapotterének
kimerítő bejárásán alapuló automatikus formális verifikációs technika, melynek a hagyományos el-
lenőrzési módszerekkel (például a teszteléssel) szemben előnye, hogy nemcsak hibás rendszerek hibá-
it képes detektálni, hanem hibamentes rendszerek helyességét is képes igazolni. A modellellenőrzés
a gyakorlatban előforduló rendszerek ellenőrzésére történő alkalmazásának nehézsége ugyanakkor
a módszer magas számítási költsége: egy rendszer állapotterének számossága tipikusan a rendszer
viselkedését leíró bemeneti specifikáció méretében exponenciális – ez közismert nevén az állapottér-
robbanás problémája. Ráadásul az állapottér nem is feltétlenül véges, például valósidejű rendszerek
esetében, ahol az idő dimenziójú folytonos változók a specifikáció részét képezik.

Ezért a probléma kezelhetőbbé tételének érdekében a fejlett modellellenőrző eszközök gyakran
alkalmaznak szimbolikus technikákat, ahol az egyes állapotok helyett állapotok halmazai képezik az
állapottérbejárás alapját; valamint absztrakciót, ahol az ellenőrzés a rendszer a vizsgált tulajdonság
szempontjából releváns részleteire fókuszál. Az absztrakció eredménye egy egyszerűbb, az eredeti
rendszer viselkedését felülbecslő rendszer, így ha az absztrakt rendszer helyes, akkor az eredeti is
az. Ugyanakkor, mivel az absztrakt rendszer hamis ellenpéldákat produkálhat – azaz az eredeti rend-
szerben nem megfigyelhető hibás viselkedéseket – a megfelelő absztrakciós granularitás megtalálása
kulcsfontosságú. Ezt a folyamatot automatizálja az absztrakciófinomítás módszere: hamis ellenpélda
esetén az absztrakció oly módon kerül hangolásra, mely kizárja a felfedezett hamis viselkedést.

Célunk egy generikus, moduláris és konfigurálhatómodellellenőrző keretrendszer biztosítása, mely
támogatja különböző formalizmusok biztonságossági tulajdonságokat vizsgáló absztrakciófinomítás-

alapú algoritmusainak fejlesztését és kiértékelését. Célunk továbbá valósidejű rendszerek modellel-
lenőrzésére hatékony algoritmusokat adni e keretrendszer konkrét megpéldányosításai által. Főként
a valósidejű rendszerek modellellenőrzésére elterjedten alkalmazott, folytonos óraváltozókkal rendel-
kező klasszikus időzített automatákra, valamint ezek diszkrét változókkal kiegészített változatára össz-
pontosítunk. Ezen felül aszinkron üzeneteket küldő ipari valósidejű protokollok előségi tulajdonsága-
inak bizonyítására adunk módszereket. E célok mentén számos kontribúciót fogalmazunk meg.

Egyrészt bemutatjuk a Theta eszközt, mely egy különböző formalizmusok elérhetőségi tulajdon-
ságainak absztrakciófinomítás-alapú ellenőrzésére szolgáló generikus, moduláris és konfigurálható
modellellenőrző keretrendszer. A diszkrét változókkal rendelkező időzített automaták ellenőrzésére a
keretrendszer egy olyan specializációját javasoljuk, mely támogatja a helyelérhetőségi problémameg-
oldására szolgáló különböző absztrakciós és finomítási stratégiák kombinálását.

Másrészt zónák feletti interpoláción alapuló absztrakciós módszert javaslunk időzített automaták
ellenőrzésére. Két finomítási stratégiát adunk, melyek az előre- és hátrafelé keresés, valamint az inter-
poláció ötvözetei. Megmutatjuk, hogy módszerünk teljesítményben a legkorszerűbbekkel versenyez.

Harmadrészt olyan, változóértékelések feletti interpoláción alapuló absztrakciós módszert javas-
lunk diszkrét változókkal rendelkező időzített automaták ellenőrzésére, ahol a finomítás a változók
láthatóságának szabályozásán alapul. Demonstráljuk, hogy módszerünk az óraváltozók feletti abszt-
rakciós módszerekkel kombinálva jelentős csökkenést tud produkálni az állapottér méretében.

Negyedrészt módszereket javaslunk aszinkron üzeneteket küldő ipari valósidejű protokollok élő-
ségi tulajdonságainak ellenőrzésére. Bemutatjuk a naptárrendszer formalizmust, és k-indukció alapú
módszert adunk ilyen modellek élőségi vizsgálatára. Funkcionalitásukban hierarchikus rendszerekre
dekompozíciós módszert adunk, mellyel az eredeti élőségi probléma kezelhetőbb részekre bontható.
viii

Contents

1 Introduction 1

1.1 Goals . 2
1.2 Summary of Challenges . 2
1.3 Structure of the Dissertation . 2

2 Background 5

2.1 Transition Systems . 5
2.2 Linear-Time Properties . 6
2.3 ω-Regular Model Checking . 7
2.4 Linear Temporal Logic . 9
2.5 Timed Automata with Discrete Variables . 10

2.5.1 Valuations . 10
2.5.2 Timed Automata . 11

3 Architecture of a Configurable Model Checking Framework 15

3.1 Related Tools . 16
3.2 Architecture and Implementation . 17

3.2.1 Formalisms and Language Frontends . 17
3.2.2 Analysis Backend . 17
3.2.3 SMT Solver Interface . 19
3.2.4 Extending and Instantiating the Framework 19

3.3 Use Cases . 19
3.3.1 Theta for Transition Systems . 20
3.3.2 Theta for Control Flow Automata . 20
3.3.3 Theta for Timed Automata . 21

3.4 Conclusions . 21
3.4.1 Thesis Summary . 21

4 A Uniform Formalization of Abstraction Refinement Strategies for Timed Automata 23

4.1 Algorithm for Lazy Reachability Checking . 23
4.1.1 Abstract Reachability Tree . 23
4.1.2 Reachability Algorithm . 25

4.2 Abstraction Refinement . 27

ix

4.3 Combination of Abstractions . 28
4.4 Implementation . 30
4.5 Conclusions . 31

4.5.1 Thesis Summary . 31

5 Lazy Reachability Checking for Timed Automata using Interpolants 33

5.1 Related Work . 34
5.2 Zones and DBMs . 34
5.3 Abstraction for Clock Variables . 35

5.3.1 Zone Abstraction . 35
5.3.2 Lazy Zone Abstraction . 36
5.3.3 Interpolation for Zones . 37
5.3.4 Abstraction Refinement for Lazy Zone Abstraction 38

5.4 Evaluation . 40
5.4.1 Diagonal-Free Models . 42
5.4.2 Models with Diagonal Guards . 42

5.5 Conclusions . 45
5.5.1 Thesis Summary . 46

6 Lazy Reachability Checking for Timed Automata with Discrete Variables 51

6.1 Related Work . 51
6.2 Abstraction and Refinement for Discrete Variables . 53

6.2.1 Explicit Tracking of Variables . 53
6.2.2 Visible Variables Abstraction . 53
6.2.3 Interpolation for Valuations . 55
6.2.4 Abstraction Refinement for Visible Variables Abstraction 55

6.3 Example . 57
6.4 Evaluation . 58

6.4.1 Diagonal-Free Models . 59
6.4.2 Models with Diagonal Guards . 60

6.5 Conclusions . 62
6.5.1 Thesis Summary . 62

7 K-Induction Based Liveness Checking of Real-Time Systems 67

7.1 k-Induction . 67
7.2 Calendar Systems . 68
7.3 Model Checking of Calendar Systems . 70

7.3.1 Finding Counterexamples for ω-Regular Properties 70
7.3.2 Proving ω-Regular Properties Using k-Induction 70

7.4 Tool Support . 72
7.5 Case Study . 72

7.5.1 Discovering Invariants . 73
7.5.2 Proving Correctness using Abstraction . 74
7.5.3 Extending the System with an Error Model 74

7.6 Conclusions . 75
7.6.1 Thesis Summary . 76

x

8 ADecompositionMethod for Liveness Checking ofHierarchical Real-TimeProtocols 81

8.1 Verification Approach . 82
8.1.1 Notation . 83
8.1.2 Modeling Transient Faults . 83
8.1.3 Decomposition of Persistence Properties . 84

8.2 Description of the Protocol . 84
8.2.1 Master Election . 85
8.2.2 Assignment of Logical Addresses . 86
8.2.3 LIOs . 87

8.3 Verification of the Protocol . 87
8.3.1 Decomposing the Verification of the Protocol 88
8.3.2 Verification of Master Election . 88
8.3.3 Verification of Logical Address Assignment 89
8.3.4 Result of the Verification . 90

8.4 Conclusions . 90
8.4.1 Thesis Summary . 90

9 Summary of the Research Results 91

9.1 Thesis 1 . 91
9.2 Thesis 2 . 92
9.3 Thesis 3 . 92
9.4 Thesis 4 . 93

A Appendix 95

A.1 Lemmas and Proofs . 95
A.2 Tables . 97

Publications 101

Publication List . 101
Publications Linked to the Theses . 101
Additional Publications (Not Linked to Theses) . 103

Bibliography 105

xi

Chapter1

Introduction

The prevalence of embedded systems in everyday use is ever increasing. This also includes their appli-
cation in safety critical systems, e.g. in the automotive, railway or avionic domain. Often, safety critical
systems are also real-time systems with time-dependent behavior and requirements. The correctness
of such systems is crucial, as a system level failure might lead to disastrous consequences, such as
environmental harm, loss of valuable equipment, or even human injury. Therefore, in order to reduce
the probability and seriousness of faults, these systems are specified in detail, and conformance to the
specification is thoroughly verified.

Formal methods are mathematical techniques that enable the rigorous specification and verifica-
tion of hardware and software systems, typically in design time. Formal verification techniques are
formal methods for reasoning about the correctness of systems with respect to a formal specification
or property. Model checking [EC82; QS82] is an automatic formal verification technique that is based
on exhaustive traversal of the design model’s state space. Its main advantage to more conventional
verification methods (e.g. testing) is that it is not only able to detect faults in faulty systems, but can
also show that a correct system is fault-free. However, a major difficulty in the successful application
of model checking to verification of practical systems is its high computational cost: the cardinality
of a system’s state space is typically exponential in the size of the input specification describing the
system’s behavior, a phenomenon commonly known as state space explosion. In addition, the state
space is not necessarily finite, in particular for real-time systems, where continuous variables with
time dimension are part of the specification.

Therefore, to make the problem more tractable, advanced model checkers rely on symbolic tech-

niques [Bur+92], where, instead of individual states, sets of states are considered during state space
traversal; and abstraction [CGL94], where only parts of the system that are relevant for the require-
ment are considered. As a result, the abstracted system is a simpler system whose behavior overap-
proximates that of the original system, therefore, if the abstract system is correct, so is the original
one. However, as the abstracted system might admit false negatives, that is, spurious faulty behavior
that is not present in the original system, the key challenge is finding the right abstraction granular-
ity. This process can be automated using abstraction refinement [Cla+00] techniques: in case of a false
negative, the abstraction is refined in a way that excludes the discovered faulty behavior.

1

1. Introduction

1.1 Goals

In order for model checking to be applicable for the verification of a given system, one has to model
the examined aspects of the system’s behavior in a suitable modeling formalism beforehand. Most
model checking algorithms solve a particular verification task for a given formalism. However, as
new designs to verify emerge, more generic tools are also needed since the appropriate formalism and
algorithm may vary based on the characteristics of the task itself, and might not be known initially.
Our goal is to provide a generic, modular and configurablemodel checking framework that supports the
development and evaluation of abstraction refinement-based algorithms for checking safety properties
over different formalisms. In particular, by specific instantiations of our framework, we aim to provide
efficient algorithms for the model checking of real-time systems. We focus primarily on classical timed

automatawith continuous clock variables, a formalism prominently used in the area ofmodel checking
real-time systems, and its extension with discrete variables. Moreover, we investigate methods for
proving liveness properties of industrial real-time systems with asynchronous message passing.

1.2 Summary of Challenges

In this dissertation, we aim to address the following challenges.

Challenge 1. Configurable abstraction refinement-based model checking. Most tools focus on
a specific algorithm and formalism to solve a particular verification task. Is it possible to
provide a generic, modular and configurable model checking framework that supports the
development, evaluation and application of abstraction refinement-based algorithms for
the reachability analysis of models in different formalisms?

Challenge 2. Abstraction refinement for timed automata.Abstraction refinement has been suc-
cessfully used in model checking, and in particular for model checking software. Is it pos-
sible to provide abstraction refinement algorithms that are efficient in the domain of real-
time systems?

Challenge 3. Model checking timed automata with discrete variables. For practical real-time
systems, design models typically contain discrete data variables with nontrivial data flow
besides real-valued clock variables. Is it possible to provide methods for alleviating state
space explosion in such models?

Challenge 4. Liveness checking for industrial real-time systems. Requirements for industrial
real-time systems are often formalized in terms of liveness properties. Is it possible to
provide methods for liveness checking of such systems, while still supporting the various
semantic features that are present in such models?

1.3 Structure of the Dissertation

The broad topic of this dissertation is thus model checking, in particular model checking real-time
systems. In Chapter 2, we briefly summarize the theoretical background of model checking relevant
to our work, and define the notations used throughout the dissertation. The remaining, core part of
the dissertation can be conceptually divided into two parts, each focusing on a different aspect of the
model checking flow.

In the first, more theoretical part, comprised of Chapter 3, Chapter 4, Chapter 5, and Chapter 6,
we treat the model checker as a white box, and work on the internals of several model checking

2

1.3. Structure of the Dissertation

algorithms. These chapters are related to each other, and exposition follows a top-down approach.
In Chapter 3, we introduce a formalism-agnostic model checking framework for abstraction refine-
ment based model checking of reachability properties. In Chapter 4, we develop a specialization of
this framework by fixing the formalism to timed automata with discrete variables, and the property
to location reachability. In Chapter 5 and Chapter 6, our goal is to build efficient methods in this
algorithmic framework.

In the second, more practice-oriented part, constituted by Chapter 7 and Chapter 8, we treat the
model checker as a black box, and develop methods around it that enable its successful use for ver-
ifying practical systems. In both chapters, exposition is based upon the verification of a respective
industrial case study, and we start from a high level specification that we formalize in a suitable mod-
eling formalism. We extend our investigations to liveness properties, as these are often required for
formalizing requirements of practical systems. In these chapters, we devise methods that enable the
derivation of the queries to be posed to the model checker in a way that the tool has a higher chance to
converge on them to a definite answer, and at the same time, a positive answer to all queries together
implies correctness of the system with respect to the high-level requirement.

The organization of the dissertation with respect to the challenges outlined in Section 1.2 is sum-
marized in Table 1.1.

Table 1.1: Organization of the dissertation

Background Chapter 2 We present the theoretical background of our work and define the
notations used throughout the dissertation.

Challenge 1

Chapter 3
We introduce Theta, a generic, modular and configurable model
checking framework for abstraction refinement-based reachability
checking of different formalisms.

Chapter 4
We present an algorithmic framework for the lazy abstraction based
location reachability checking of timed automata with discrete vari-
ables.

Challenge 2 Chapter 5
We propose abstraction refinement strategies for the location reach-
ability checking problem of timed automata based on interpolation
for zones over clock variables.

Challenge 3 Chapter 6
We propose abstraction refinement strategies for the location reach-
ability problem of timed automata with discrete variables based on
visible variables abstraction for discrete variables.

Challenge 4

Chapter 7

We propose the calendar system formalism that allows convenient
modeling of the core protocols of communicating real-time systems,
and an extension of k-induction based techniques to support the
verification of both safety and liveness properties of calendar sys-
tems.

Chapter 8
We devise an approach for the verification of real-time protocols
which combines the decomposition of the temporal specification
with abstraction.

Summary Chapter 9 We conclude our work by summarizing the contributions of this
dissertation.

3

Chapter2

Background

In this chapter, we summarize the theoretical background of our work. Moreover, we define the no-
tation used throughout the dissertation.

2.1 Transition Systems

For a wide range of modeling formalisms, an operational semantics is defined in terms of transition
systems.

Definition 2.1 (Transition system). A transition system (TS for short) is a tuple

S = (S,A, T, I) where
• S is a set of states,
• A is a set of actions,
• T ⊆ S ×A× S is the transition relation, and
• I ⊆ S is the set of initial states.
S is finite iff S and A are finite. We will denote by s

α−→ s′ iff (s, α, s′) ∈ T , and by s −→ s′

iff s
α−→ s′ for some action α ∈ A. We will say that an action α ∈ A is enabled from a state s ∈ S

iff s
α−→ s′ for some state s′ ∈ S, otherwise it is disabled. An action α ∈ A is enabled from a set of

states S′ ⊆ S iff α is enabled from some state s ∈ S′
. A state s ∈ S is terminal iff no action α ∈ A

is enabled from it. �

Sometimes, the formalism is extended by a labeling function L : S → P(AP) over some set
of atomic propositions AP to express observable properties of system states [BK08]. Throughout
this dissertation, we assume that the only observable property of the state is the state itself, and are
thus going to omit state labels to simplify exposition. Moreover, we are often going to abstract over
the structure of states and properties expressed over them, and will write s |= φ to express that
state s ∈ S satisfies some property φ over S. In particular cases, it should be clear from the context
what sort of objects s and φ are, and how the relation |= is defined. (For example, s might be a first
order interpretation over some signature, andφ a ground first order formula over the same signature.)

Definition 2.2 (Run). A finite run of length n of a transition system is an alternating sequence

of states and actions of the form ρ = s0α1s1α2 . . . αnsn such that si
αi+1−−−→ si+1 for all 0 ≤ i < n.

An infinite run of a transition system is an alternating sequence of states and actions of the form

ρ = s0α1s1α2 . . . such that si
αi+1−−−→ si+1 for all i ≥ 0. A run of a transition system is either a

5

2. Background

finite run, or an infinite run. A run is initial iff s0 ∈ I . A run is maximal if it is an infinite run, or

if it is a finite run with sn terminal. �

For convenience, we will denote runs as s0
α1−→ s1

α2−→ . . .
αn−−→ sn. A state s ∈ S is reachable iff

there exists an initial run such that sn = s. We are going to denote the set of reachable states of a
transition system S by Reach(S).

Definition 2.3 (Trace). Let ρ = s0
α1−→ s1

α2−→ . . . be a run. We will call the sequence of states

τ = s0s1 . . . the trace induced by run ρ. If ρ is finite / infinite / initial / maximal, then τ too is

called finite / infinite / initial / maximal, respectively. �

Let Traces(S) = {τ | τ is a maximal initial trace of S}.

Definition 2.4 (Path). A finite or infinite sequence of actions π is a path. Let π = α1α2 If
there exists an initial run ρ = s0

α1−→ s1
α2−→ . . ., then π is called feasible, otherwise it is infeasible.

If π is feasible, we will call such a run ρ the run induced by path π. Similarly, if π is feasible, ρ is
the run π induces, and τ is the trace ρ induces, then τ will also be referred to as the trace induced
by path π. �

2.2 Linear-Time Properties

Without loss of generality, assume that S is such that s is not terminal for all s ∈ S, and
thus Traces(S) ⊆ Sω . (Each system can be transformed to this form by angelic completion [Tre08]
where a transition s ϵ−→ s is introduced for any terminal state s ∈ S). In this context, we are going to
treat Traces(S) as a language over S, and refer to sequences σ ∈ Sω as words accordingly.

Linear-time properties define the correct traces of a system. That is, given a linear-time property
P ⊆ Sω over a transition system S , we say that S satisfies P , denoted by S |= P , iff Traces(S) ⊆ P .
Any linear time property P can be decomposed as P = Psafe ∪Plive , where Psafe is a so-called safety
property, and Plive is a liveness property [AS85].

Definition 2.5 (Safety property). A linear time property Psafe over S is a safety property iff for

all words σ ∈ Sω \ Psafe there exists a finite prefix σ̂ of σ such that Psafe ∩ {σ̂σ′ | σ′ ∈ Sω} = ∅.
Such a word σ̂ is called a bad prefix for Psafe . �

Definition 2.6 (Liveness property). A linear time property Plive over S is a liveness property
iff for all finite words σ̂ ∈ S∗

there exists an infinite word σ′ ∈ Sω such that σ̂σ′ ∈ Plive . �

The only linear-time property that is both a safety and a liveness property is Sω . (For let P be a
property that is both a safety and a liveness property, and assume σ /∈ P . As P is a safety property,
there exists a bad prefix σ̂ of σ. As P is also a liveness property, there exists a word σ′ such that σ̂σ′ ∈
P . But then σ̂ is not a bad prefix, a contradiction.)

The simplest safety properties are so-called invariant properties that require some property to
hold for all states along a trace.

6

2.3. ω-Regular Model Checking

Definition 2.7 (Invariant property). A linear time property Pinv over S is an in-
variant property iff there exists a property ϕ over states S such that Pinv =
{s0s1 . . . ∈ Sω | si |= ϕ for all i ∈ N}. Here, ϕ is called the invariant condition. �

Clearly, invariants are safety properties, as for a word s0s1 . . . ∈ Sω \ Pinv with si ̸|= ϕ for
some i ∈ N, the word s0s1 . . . si is a bad prefix.

An example for a liveness property is a persistence property that asserts that from some moment
on a condition holds continuously.

Definition 2.8 (Persistence property). A linear time property Ppers over S is a persis-
tence property iff there exists a property ϕ over set of states S such that Ppers =
{s0s1 . . . ∈ Sω | there exists i ∈ N such that sj |= ϕ for all j ≥ i}. Here, ϕ is called the persis-
tence condition. �

It is easy to see that persistence properties are liveness properties, as given a finite word σ̂ ∈ S∗,
we have σ̂σ′ ∈ Ppers for some σ′ = s0s1 . . . with si |= ϕ for all i ∈ N.

2.3 ω-Regular Model Checking

An important class of linear-time properties is the class of ω-regular properties. An ω-regular prop-
erty is a linear time property that is also an ω-regular language. An important property of ω-regular
languages is closure under complementation [Büc62; McN66; Saf88; Kla02]. We are going to define
this class of languages using so-called Büchi automata [Büc62], as the class of ω-regular languages
coincides with class of languages accepted by Büchi automata [McN66].

Definition 2.9 (Nondeterministic Büchi automaton). A nondeterministic Büchi automa-
ton (NBA for short) is a tuple (Q,Σ,∆, Q0, F) where

• Q is a finite set of states,

• Σ is a set of symbols, called the alphabet,

• ∆ ⊆ Q× Σ×Q is the transition relation,

• Q0 ⊆ Q is the set of initial states, and

• F ⊆ Q is the acceptance condition.

We will denote by q
α−→ q′ iff (q, α, q′) ∈ ∆. An automaton is nonblocking iff for all q ∈ Q

and α ∈ Σ there exists q′ ∈ Q such that q
α−→ q′. �

Definition 2.10 (Run of an NBA). Given an input word σ = A0A1A2 . . ., a run of an NBA over

a word σ is a sequence of states q0q1q2 . . . such that q0 ∈ Q0 and (qi, Ai, qi+1) ∈ ∆ for all i ∈ N.
The run is accepting if qi ∈ F for infinitely many i ∈ N. �

Definition 2.11 (Language accepted by an NBA). A word σ is accepted by an NBA B iff B
has an accepting run over σ. The language accepted by the automaton B is L(B) =
{σ | σ is accepted by B}. �

Applying the above notation, in our case, an ω-regular property P is such that P = L(B) for
some Büchi automaton B over a set of states S of a transition system S . In the following, without
loss of generality, we are going to assume NBAs to be nonblocking. (A blocking NBA can be easily

7

2. Background

transformed to a nonblocking NBA that accepts the same language by introducing a transition to
a “sink” state for all undefined transitions.) Moreover, given it makes sense to do so, in graphical
notation we are going to admit a formula φ of some logic to label an edge from a state q to q′ for
conciseness, encoding that for all symbols α ∈ Σ such that α |= φ there is a transition (q, α, q′) ∈ ∆
of the automaton. (For example, αmight be a first order interpretation over some signature, encoding
a state of a transition system, and φ a ground first order formula over the same signature.)

Example (Infinitely often p). Let p be a formula, expressing some property over Σ, and

B = (Q,Σ,∆, q0, F) the Büchi automaton depicted in Figure 2.1. Here, Q = {q0, q1}
and F = {q1} and ∆ = {(q, α, q0) | α |= ¬p} ∪ {(q, α, q1) | α |= p}. Moreover, L(B) =
{α0α1 . . . | for all i ≥ 0 there exists j ≥ i such that αj |= p}.

Example (Eventually forever p). Let p be a formula, expressing some property over Σ, and B =
(Q,Σ,∆, q0, F) the Büchi automaton depicted in Figure 2.2. Then, Q = {q0, q1, q2} and F = {q1}
and ∆ = {(q, α, q) | q ̸= q1} ∪ {(q, α, q1) | q ̸= q2 and α |= p} ∪ {(q1, α, q2) | α |= ¬p}. Moreover,

L(B) = {α0α1 . . . | there exists i ≥ 0 such that for all j ≥ i we have αj |= p}.

q0 q1

¬p

p

¬p
p

Figure 2.1: Infinitely often p

q0 q1 q2

⊤

p

p

¬p

⊤

Figure 2.2: Eventually forever p

Definition 2.12 (Product of a TS and an NBA). Let S = (S,A, T, I) and B =
(Q,Σ,∆, Q0, F) with Σ = S. Then S ⊗ B is a transition system S ′ = (S′, A′, T ′, I ′) such

that

• S′ = S ×Q,

• A′ = A,

• I ′ =
{
(s0, q) | s0 ∈ I and q0

s0−→ q for some q0 ∈ Q0

}
, and

• the transition relation T ′
is defined by the following rule.

s
α−→ s′ q

s′−→ q′

(s, q)
α−→ (s′, q′)

The language Traces(S ⊗ B) encodes the runs of B over the traces of S . According to the
automata-theoretic approach to model checking [VW86], the product system enables the checking
of ω-regular properties as follows.

Proposition 1. Let S be a transition system with sets of states S. Let P be an ω-regular property over S ,
and B a Büchi automaton with set of states Q, set of accepting states F , and with L(B) = Sω \ P . Let
moreover Ppers be the persistence property defined by condition ϕ over S × Q such that (s, q) |= ϕ
iff q /∈ F for all s ∈ S and q ∈ Q. Then S |= P iff S ⊗ B |= Ppers .

8

2.4. Linear Temporal Logic

Here, Ppers encodes that along each run of B over some trace of S , eventually only nonaccepting
states are reached, and thus accepting states occur only finitely many times. For finite state spaces,
this induces a special circle detection problem, as in that case each infinite run can be represented
by a finite prefix forming a lasso [Bie+99]. A counterexample for the property is then a lasso-shaped
run for which there is an accepting state inside the loop of the lasso, and the absence of such lassos
guarantees the property.

2.4 Linear Temporal Logic

Linear temporal logic [Pnu77], LTL for short, is a widely used logic for specifying linear time proper-
ties.

Definition 2.13 (Syntax). An LTL formula over a set of states S is defined by the grammar

φ ::= ⊤ P ¬φ φ1 ∧ φ2 Xφ φ1 U φ2

where P is some property over S. �

Boolean connectives ⊥ and ∨ and → and ↔ are defined in terms of ⊤ and ¬ and ∧ as usual.
Moreover, let Fφ ⊜ ⊤ U φ and Gφ ⊜ ¬F¬φ.

Given a sequence of states σ = (s0s1 . . . sisi+1 . . .), let σi denote the suffix (sisi+1 . . .) .

Definition 2.14 (Semantics). Let σ = s0s1s2 . . . a sequence of states. The satisfaction relation |=
for LTL is defined as follows.

σ |= ⊤
σ |= P iff s0 |= P
σ |= ¬φ iff σ ̸|= φ
σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

σ |= Xφ iff σ1 |= φ
σ |= φ1 U φ2 iff there exists j ≥ 0 such that σj |= φ2 and

for all 0 ≤ i < j we have σi |= φ1

�

Accordingly,

σ |= Gφ iff for all i ≥ 0 we have σi |= φ
σ |= Fφ iff there exists i ≥ 0 such that σi |= φ

An invariant property with condition ϕ is thus expressed by Gϕ. A persistence property with
condition ϕ is expressed by formula FGϕ. According to the semantics of the temporal connectives F
and G,

σ |= FGφ iff there exists i ≥ 0 such that for all j ≥ i we have σj |= φ

Similarly, we get

σ |= GFφ iff for all i ≥ 0 there exists j ≥ i such that σj |= φ

9

2. Background

We will denote the language induced by an LTL formula φ asWords(φ) = {σ | σ |= φ}. Given a
transition system S and an LTL-formula φ over S, the model checking problem is hence to show that
Traces(S) ⊆Words(φ), or give a counterexample.

LTL corresponds to the class of star-free languages (see e.g. [Coh91]), a proper subclass of ω-
regular languages. Thus the model checking problem for LTL can be solved by translating the formula
to check to a Büchi automaton accepting the corresponding language [WVS83; VW94]. Formally,
S |= φ iff S ⊗ B |= Ppers where L(B) = Words(¬φ) and Ppers is as defined in Proposition 1.

Example. LetB1 be the Büchi automaton depicted on Figure 2.1, andB2 be the Büchi automaton depicted

on Figure 2.2. Then L(B1) = Words(GFp), and L(B2) = Words(FGp), respectively.

2.5 Timed Automata with Discrete Variables

In the area of modeling and verifying time-dependent behavior, timed automata [AD94] is the most
prominent formalism. To make the specification of practical systems more convenient, the traditional
formalism is often extended with various syntactic and semantic constructs, in particular with the
handling of discrete variables. This section describes the formalization of one such extension, what
we call a timed automaton with discrete variables [c11]. Results in Chapter 4 and Chapter 6 are based
on this formalization of timed automata. Results in Chapter 5 have been developed for classical timed
automata [c9], but for a more uniform exposition, we present the results adapted to the more general
definition.

2.5.1 Valuations

LetC be a set of clock variables overR≥0, andD a set of data variables over Z. Let V = C∪D denote
the set of all variables.

A clock constraint is a formula φ ∈ ConstrC that is a conjunction of atoms of the form c ≺ m
and ci − cj ≺ m where c, ci, cj ∈ C and m ∈ Z and ≺ ∈ {<,≤, >,≥, .=}. In the latter case,
if i ̸= j, then a constraint is called a diagonal constraint. A data constraint is a well-formed formulaφ ∈
ConstrD built from variables in D and arbitrary function and predicate symbols interpreted over Z.
Let Constr = ConstrC ∪ ConstrD denote the set of all constraints.

A clock update (clock reset) is an assignment u ∈ UpdateC of the form c := m where c ∈ C
and m ∈ Z. A data update is an assignment u ∈ UpdateD of the form d := t where d ∈ D and t is
a term built from variables in D and function symbols interpreted over Z. Let Update = UpdateC ∪
UpdateD denote the set of all updates.

The set of variables appearing in a term t (in a formula φ) is denoted by vars(t) (by vars(φ)).
Similarly, the set of variables occurring in an update is denoted by vars(u), that is, vars(x := t) =
vars(t) ∪ {x}.

A valuation over a finite set of variables is a function that maps variables to their respective
domains. We will denote by V(X) the set of valuations over a set of variables X . Throughout the
dissertation we will allow partial functions as valuations. We will denote by def(σ) the domain of
definition of a valuation σ, that is, def(σ) = {x | σ(x) ̸= ⊥}. We extend valuations to range over
terms and formulas the usual way, with the possibility that the value of a term is undefined over a
valuation.

We will denote by σ |= φ iff formula φ is satisfied under valuation σ. Let JφK stand for the set
of models of a formula φ, formally defined as JφK = {σ ∈ (V ◦ vars)(φ) | σ |= φ}, where ◦ denotes

10

2.5. Timed Automata with Discrete Variables

function composition as usual. Given a valuation σ, we denote by form(σ) the formula characterizing
the valuation, that is, form(σ) =

∧
x∈def(σ) x

.
= σ(x).

Remark 1. Note that in the context of partial valuations, σ |= ¬φ is a strictly stronger statement than

σ ̸|= φ. For example, {x←[1} ̸|= y
.
= 1 but it is not the case that {x←[1} |= y ̸ .= 1.

Let σ ⪯ σ′ iff σ(x) = σ′(x) for all x ∈ def(σ′). Moreover, let A ⪯ B iff for all σ ∈ A there
exists σ′ ∈ B such that σ ⪯ σ′. Clearly, ⪯ is a partial order over sets of valuations. We will denote
the restriction of valuation σ to a set of variables X by σ↾X , that is, (σ↾X)(x) = σ(x) if x ∈ X
and (σ↾X)(x) = ⊥ if x /∈ X . We lift the notion to sets of valuations with the obvious meaning. Let
moreover LσM = {σ′ ∈ V(V) | σ′ ⪯ σ}, also defined for sets of valuations in the obvious way.

We state the following lemmas (without proof).

Lemma 1. σ ⪯ σ′ ⇒ σ′ |= φ⇒ σ |= φ

Lemma 2. σ ⪯ σ′ ⇔ σ |= form(σ′)

Lemma 3. A ⪯ B ⇒ A↾X ⪯ B↾X

We will denote by ⊗ the partial function over valuations that is defined as

(σ ⊗ σ′)(x) =


σ(x) if x ∈ def(σ)

σ′(x) if x ∈ def(σ′)

⊥ otherwise

if σ(x) = σ′(x) for all x ∈ def(σ) ∩ def(σ′), and is undefined otherwise. We extend this function to
sets of valuations in both parameters in the obvious way.

Finally, given a valuation σ and an update x := t, we denote by σ{x := t} the valuation σ′ such
that σ′(x) = σ(t) and σ′(x′) = σ(x′) for all x′ ̸= x. For a sequence of updates, let σ{ϵ} = σ and
σ{u · µ} = σ{u}{µ}, where u is an update and µ is a sequence of updates.

2.5.2 Timed Automata

Definition 2.15 (Syntax). Syntactically, a timed automaton with discrete variables is a tuple

A = (L,C,D, T, ℓ0) where
• L is a finite set of locations,

• C is a finite set of continuous clock variables over R≥0,

• D is a finite set of discrete data variables over Z,
• T ⊆ L × P(Constr) × Update∗ × L is a finite set of transitions, where for a transition

(ℓ,G, µ, ℓ′), the set G ⊆ Constr is a set of guards, and µ ∈ Update∗ is a sequence of

updates, and

• ℓ0 ∈ L is the initial location. �

Remark 2. According to the above definition, clearly C ∩ D = ∅. Note that given a guard g ∈ G,
either vars(g) ⊆ C , or vars(g) ⊆ D. Similarly, given an update u, either vars(u) ⊆ C , or vars(u) ⊆ D.

Example (Fischer’s Protocol for Mutual Exclusion). As an example, consider the automaton

Fischeri, depicted in Figure 2.3. Given some i > 0 and a, b ∈ N, this automaton is formally defined

as Fischer i =
(
Li, Ci, Di, Ti, ℓ

0
i

)
where

11

2. Background

ℓ0i ℓ1i

ℓ2iℓ3i

t0i :
[
id

.
= 0

]
xi := 0

t1i : [xi ≤ a] xi := 0 ; id := it2i :
[
id

.
= 0

]
xi := 0

t3i : [xi ≥ b]
[
id

.
= i

]

t4i : id := 0

Figure 2.3: Timed automaton model Fischeri

• Li =
{
ℓ0i , ℓ

1
i , ℓ

2
i , ℓ

3
i

}
,

• Ci = {xi},
• Di = {id}, and
• Ti =

{
t0i , t

1
i , t

2
i , t

3
i , t

4
i

}
where

– t0i =
(
ℓ0i , {id

.
= 0} , xi := 0, ℓ1i

)
,

– t1i =
(
ℓ1i , {xi ≤ a} , (xi := 0, id := i), ℓ2i

)
,

– t2i =
(
ℓ2i , {id

.
= 0} , xi := 0, ℓ1i

)
,

– t3i =
(
ℓ2i , {xi ≥ b, id

.
= i} , ε, ℓ3i

)
, and

– t4i =
(
ℓ3i , ∅, id := 0, ℓ0i

)
.

Here, xi ≤ a is a clock constraint, id
.
= 0 is a data constraint, xi := 0 is a clock update, and id := i

is a data update.

It is possible to compose automata to obtain a more complex system using interleaving.

Definition 2.16 (Interleaving of Timed Automata). Let Ai =
(
Li, Ci, Di, Ti, ℓ

0
i

)
. Then the

interleaving of A1 and A2 is A1 ∥ A2 = (L,C,D, T, ℓ0) where
• L = L1 × L2,

• C = C1 ∪ C2,

• D = D1 ∪D2,

• ℓ0 =
(
ℓ01, ℓ

0
2

)
, and

• T is defined by the following rules.

(ℓ1, G, µ, ℓ
′
1) ∈ T1 ℓ2 ∈ L2

transition of A1
((ℓ1, ℓ2), G, µ, (ℓ

′
1, ℓ2)) ∈ T

(ℓ2, G, µ, ℓ
′
2) ∈ T2 ℓ1 ∈ L1

transition of A2
((ℓ1, ℓ2), G, µ, (ℓ1, ℓ

′
2)) ∈ T

Definition 2.17 (Semantics). Let σ0 be the unique total function σ0 : V 7→ {0}. The operational
semantics of a timed automaton is given by a labeled transition system with initial state (ℓ0, σ0)
and two kinds of transitions:

12

2.5. Timed Automata with Discrete Variables

• Delay: (ℓ, σ) δ−→ (ℓ′, σ′) for some real number δ ≥ 0 where ℓ′ = ℓ and σ′ = delayδ(σ) with

delayδ(σ)(x) =

{
σ(x) + δ if x ∈ C
σ(x) otherwise

• Action: (ℓ, σ) t−→ (ℓ′, σ′) for some transition t = (ℓ,G, µ, ℓ′) where σ′ = actiont(σ) with

actiont(σ) =

{
⊥ if σ |= ¬g for some g ∈ G
σ{µ} otherwise �

In caseD = ∅, the above definition for semantics coincides with the semantics of timed automata
in the usual sense [BY04]. Throughout the dissertation, we will refer to a timed automaton with
discrete variables simply as a timed automaton.

We will use the notation C = V(V), and refer to a valuation σ ∈ C as a concrete state. A state of a
timed automaton is a state of its semantics, that is, a pair (ℓ, σ) where ℓ ∈ L and σ ∈ C. A run (path)
of a timed automaton is a run (path) of its semantics. A location ℓ ∈ L is reachable iff state (ℓ, σ) is
reachable for some concrete state σ ∈ C. Clearly, if a location is reachable then it is reachable along
a run of the form · δ0−→ (ℓ0, σ

′
0)

t1−→ · δ1−→ (ℓ1, σ1)
t2−→ · δ2−→ . . .

tk−→ · δk−→ (ℓk, σk). This observation
enables the definition of a symbolic semantics for timed automata as follows.

Definition 2.18 (Symbolic semantics). Let Σ0 = {delayδ(σ0) | δ ≥ 0}, that is, the set of con-
crete states reachable from σ0 by a delay transition. The symbolic semantics of a timed automaton is

a labeled transition system with initial state (ℓ0,Σ0) and transitions of the form (ℓ,Σ)
t−→ (ℓ′,Σ′)

where t = (ℓ, ·, ·, ℓ′) and Σ′ = post t(Σ) with the concrete post-image operator

post t(σ) = {(delayδ ◦ actiont)(σ) | δ ≥ 0} , �

defined for paths as post ϵ = id and post t·π = postπ ◦ post t.

We will refer to a pair (ℓ,Σ) with ℓ ∈ L and Σ ⊆ C as a symbolic state.

Definition 2.19 (Symbolic run). A symbolic run of a timed automaton is an initial run of its

symbolic semantics (ℓ0,Σ0)
t1−→ (ℓ1,Σ1)

t2−→ . . .
tk−→ (ℓk,Σk) where Σk ̸= ∅. �

Example. The following is a symbolic run of Fischer1 ∥ Fischer2.((
ℓ01, ℓ

0
2

)
, {{id ←[0, x1 ←[v, x2 ←[v} | v ≥ 0}

)
t01−→((

ℓ11, ℓ
0
2

)
, {{id ← [0, x1 ←[v1, x2 ←[v2} | 0 ≤ v1 ≤ v2}

)
t02−→((

ℓ11, ℓ
1
2

)
, {{id ← [0, x1 ←[v1, x2 ←[v2} | 0 ≤ v2 ≤ v1}

)
t11−→((

ℓ21, ℓ
1
2

)
, {{id ←[1, x1 ←[v1, x2 ← [v2} | v2 ≥ 0, 0 ≤ v2 − v1 ≤ a}

)
t31−→((

ℓ31, ℓ
1
2

)
, {{id ←[1, x1 ← [v1, x2 ←[v2} | v1 ≥ b, 0 ≤ v2 − v1 ≤ a}

)
13

2. Background

Let σ ∈ {{id ←[1, x1 ← [v1, x2 ←[v2} | v1 ≥ b, 0 ≤ v2 − v1 ≤ a}, and assume a < b. Then the

run described above can not be extended by the transition t22, as in this case, σ |= x2 > a, and
thus actiont22(σ) = ⊥.

Proposition 2. For a timed automaton, a location ℓ ∈ L is reachable iff there exists a symbolic run

with ℓk = ℓ [DT98].

Let pret = post−1
t and postXt (Σ) = post t(Σ)↾X for X ∈ {C,D}. Let moreover preCt =

(postCt)
−1. Furthermore, let ν0 = Σ0↾D and Z0 = Σ0↾C .

Remark 3. As a consequence of Remark 2, it can be shown that in general, a symbolic state (ℓ,Σ)
occurring in a symbolic run of timed automaton is such that Σ = ν ⊗ Z , where ν = Σ↾D is a data

valuation, and Z = Σ↾C is a special set of clock valuations, called a zone (see Section 5.2). Moreover,

post t(ν ⊗ Z) = postDt (ν)⊗ postCt (Z).

Clearly, a transition t = (ℓ, ·, ·, ℓ′) is enabled from a symbolic state (ℓ,Σ) iff post t(Σ) ̸= ∅.
Moreover, given a path π = t1t2 . . . tn such that ti = (ℓi−1, ·, ·, ℓi) for all 0 < i ≤ n, clearly, π is
feasible iff postπ(Σ0) ̸= ∅. Later on in the dissertation, we are often going to use these terms in the
more specific sense, as the necessary assumptions are going to hold by construction. This enables us
to disregard the location component in a symbolic state or a symbolic run, simplifying exposition.
Moreover, we define the following similar terms.

Definition 2.20 (Data-feasible path). We will say that a path π is data-feasible iff

postDπ (ν0) ̸= ∅ otherwise it is data-infeasible. �

Definition 2.21 (Clock-feasible path). We will say that a path π is clock-feasible iff

postCπ (Z0) ̸= ∅, otherwise it is clock-infeasible. �

Remark 4. Let π = t1t2 . . . tn such that ti = (ℓi−1, ·, ·, ℓi) for all 0 < i ≤ n. By Remark 3 and

induction, π is feasible iff it is data-feasible and clock-feasible.

14

Chapter3

Architecture of a Configurable

Model Checking Framework

To tackle state space explosion and make model checking tractable, model checkers typically rely on
some sort of abstraction [CC77], where only relevant aspects of system behavior are considered during
state space traversal [CGL94]. The abstract system obtained so is then a less complex system whose
behavior overapproximates that of the original, concrete system. As a result, if no faulty behavior is
present in the abstract model, then neither is there one in the original model. On the other hand, the
abstract system might admit false negatives, that is, spurious faulty behavior that is not present in
the original system. The key challenge is thus finding the right abstraction granularity that is coarse
enough to make model checking efficient, yet fine enough to exclude spurious counterexamples.

Counterexample-guided abstraction refinement (CEGAR) [Cla+00] is a well known, generic ap-
proach that automates this process. It is based on an abstraction refinement loop, roughly consisting
of the following steps.

1. Abstract. Build the abstract model based on the current abstraction granularity.
2. Check. Perform model checking on the abstract model. If no counterexample is found, then the

original model is correct.
3. Concretize. Otherwise, try to concretize the counterexample, that is, check if it corresponds to

some execution in the original model. If so, the execution found this way is a counterexample
in the original model.

4. Refine. Otherwise, the counterexample is spurious. Automatically refine the abstraction by
adding details to the analysis, and start over.

There are several model checking tools that implement some variant of the above scheme. Ap-
proaches vary in many aspects, including the following.

• Formalism. What sort of model does the tool take as input? Examples include simple imperative
programs and timed automata.

• Abstract domain. What sort of abstraction is the algorithm based on, i.e. what sort of syntactic
objects are used to represent abstractions and abstract states, and how do they map to seman-
tics? Examples include predicates [GS97; CU98; BPR01], where abstract states are expressed as
Boolean formulas (typically restricted to conjunctive literals) over a predefined set of predicates
over state variables; and explicit values [BL13], where abstract states are projections of concrete
states over a set of tracked or visible variables.

• Abstraction strategy. How is the abstract state space constructed? When is search pruned, or
refinement invoked? These details typically vary between approaches.

15

3. Architecture of a Configurable Model Checking Framework

• Refinement strategy. How are refinements computed? Examples include weakest precondition

computation [Hen+02], where in case of a spurious counterexample (predicate) analysis is en-
richedwith new predicates from the unsat core of the intersection of the current abstraction and
the “bad region”, obtained by iteratively computing backwards the weakest formula expressing
states that can take the transition towards the error; and interpolation [Hen+04], which is a
more general approach based on the computation of Craig interpolants [Cra57], formulas that
– similarly to the unsat core – certify unsatisfiability but whose atoms might not appear in the
weakest precondition and thus might converge better to an invariant. (Also, see [Die+17] for a
detailed comparison of these two basic approaches.)

Generally, most tools focus on a specific algorithm and formalism to solve a particular verification
task efficiently. However, as new tasks emerge, more generic tools are also needed since the appro-
priate formalism and algorithm are usually not known initially. Theta1 is a generic, modular and
configurable model checking framework, aiming to support the development and evaluation of ab-
straction refinement-based algorithms for the reachability analysis of different formalisms. The main
distinguishing characteristic of Theta is its architecture that allows the combination of various ab-
stract domains and strategies for abstraction and refinement, applied to models of various formalisms
with higher level language frontends.

Theta primarily aims to support researchers by providing a framework where new components
and combinations can easily be implemented, evaluated and compared. Concrete tools have also been
built for the verification of transition systems, control flow automata and timed automata, combining
different abstract domains (including predicates, explicit values and zones) and refinement strategies
(including interpolation and unsat cores). Measurement results show strong dependency on the mod-
els and analysis components, motivating the need for a configurable framework. Furthermore, we
also used Theta for education at our university, where students implemented model checkers using
components from the framework.

3.1 Related Tools

Abstraction refinement is a widely used approach for model checking software. Several tools, e.g.
Slam [BR01], Blast [Bey+07] and SatAbs [Cla+05] are based on predicate abstraction. Lazy ab-
straction tools like Impact [McM06] and Wolverine [KW11] use Craig interpolation [McM03] to
compute abstractions over the predicate domain without expensive post-image computation. Some
tools apply abstraction refinement over domains other than predicates: the tool Dagger [Gul+08]
supports refinement for octagon and convex polyhedra domains, and the algorithm Vinta [AGC12]
applies abstraction refinement over intervals. Frameworks CPAchecker [BK11] and Ufo [Alb+12]
support configurability by the definition of abstract domains, post operators and refinement strate-
gies, but only targeting software models. The LTSmin tool supports various formalisms through its
Partitioned Next-State Interface (PINS) [Kan+15], but instead of abstraction refinement, its main focus
is on symbolic and parallel model checking algorithms.

Novelty in the Theta framework is that it aims to combine the concept of configurability with
formalism independence: the core analysis algorithms can be implemented independently of the in-
put formalisms, and relevant combinations of them can be selected to verify models of several input
formalisms. In this chapter we focus on the architecture of Theta and the use cases demonstrating
the efficient use of the tools that are derived from the framework.

1https://github.com/FTSRG/theta

16

https://github.com/FTSRG/theta

3.2. Architecture and Implementation

Analysis back-end

Interpreter

Abstraction refinement loop

Abstractor

Transfer function

✔ ✘

Init function

Action function

SMT solver interface

Abstract domain

Actions Precision

RefinerART

Formalisms and language front-ends

Transition systems Timed automataControl flow automata

...
AIGER UPPAAL XTAC programsPLC

Initial
precision

Proof

Abstract
counterexample

Counter-
example

Refined
precision

Figure 3.1: Architecture of the Theta framework

3.2 Architecture and Implementation

Figure 3.1 shows the architecture of Theta (with continuous arrows representing data flow, and
dashed arrows representing dependence). The main parts of the framework are the formalism and
language frontends, the analysis backend and the SMT solver interface.

3.2.1 Formalisms and Language Frontends

One goal of the Theta framework is to enable the analysis of several formalisms. Formalisms are
usually low level, mathematical representations based on first order logic formulas and graph like
structures. Each formalism supports higher level languages that can be mapped to that particular
formalism by a language frontend (consisting of a specific parser and possibly reductions for sim-
plification of the model). Currently, transition systems, control flow automata and timed automata
are the supported formalisms with frontends for higher level languages as AIGER, PLC, C programs
and Uppaal XTA models. Section 3.3 describes instantiations of the framework for each of these for-
malisms.

3.2.2 Analysis Backend

The core of the framework, the analysis backend consists of three main parts: the abstract domain,
the interpreter and the abstraction refinement loop for reachability analysis, with only the interpreter
being strictly dependent on the formalisms.

Abstract domain. The semantic basis of the analysis is an abstract domain with a set of abstract
states, its bottom element and a preorder over the states. The accuracy of a given analysis is formally

17

3. Architecture of a Configurable Model Checking Framework

represented by an element of a set of precisions. (As a typical example, the precision might be a set of
state variables that the analysis is expected to track – the larger the cardinality of this set is, the more
precise the analysis is.) The formalism for which the analysis is performed defines a set of actions,
that serve as input to post-image computation.

Interpreter. Given a precision, an interpreter defines an abstract operational semantics over the ab-
stract domain and set of actions. The abstract initial states are given by an init function. For an action,
the abstract successors of a state are computed by a transfer function. An action function determines
for an abstract state a set of actions that are enabled from that state. The interpreter plays an impor-
tant role in the generality of the framework, as it decouples the notion of abstraction (represented by
the abstract domain over which it is defined) from the notion of formalism (represented by the set of
actions over which it is defined).

Abstraction refinement loop. The reachability analysis is performed by the abstraction refine-

ment loop. As usual for lazy abstraction methods [McM06], its central data structure is an abstract

reachability tree (ART), with nodes annotated with abstract states that represent overapproximations
of reachable states along a given path, and edges annotated with actions. The ART is manipulated by
the two main components of the loop. Using an interpreter, the abstractor constructs the ART w.r.t
the current precision and an abstraction strategy, the latter of which is determined by the following
basic operations.

• Expand. When should the abstractor expand a node, i.e. grow the tree by computing and adding
to the tree all its abstract successors?

• Cover. How should the abstractor attempt to prune the search by looking for covering nodes,
i.e. nodes that represent abstract states that entail the abstract state of the current node?

• Terminate. Under what conditions should the state space exploration terminate?
If no target nodes – nodes that are deemed unsafe based on the input model – are encountered,

the constructed ART serves as an evidence for the safety of the input model. Otherwise, given a tar-
get node, the refiner is invoked to analyze the abstract path for feasibility. If the path is feasible, it
is a counterexample to safety. Otherwise, the refiner carries out its refinement strategy to ensure
that the analysis can continue without encountering the same spurious counterexample again (re-
finement progress). This can typically be achieved by pruning nodes and computing a new analysis
precision (overapproximation-driven approach), or by uncovering nodes and strengthening labels
(underapproximation-driven approach), both of which includes partial deconstruction of the ART.

Currently, built-in domains in Theta include predicates, explicit values, zones, and the Cartesian
abstract domain that allows the sound combination of abstract domains. There are custom interpreters
provided for actions of transition systems, control flow automata and timed automata. For predicates
and explicit values, given an action function, there are also interpreters based on SMT solving over
a generic symbolic transition system interface where the set of initial states and the transition re-
lation are expressed in terms of FOL formulas. A default abstractor implementation is built-in that
relies on the domain and the interpreter, also parameterizable with a search strategy. Besides some
custom refiner implementations, for symbolic transition systems, interpolation and unsat core-based
refinement strategies for predicates and explicit values are provided out-of-the-box.

18

3.3. Use Cases

3.2.3 SMT Solver Interface

The framework provides a general SMT solver interface that supports incremental solving, unsat
cores, and the generation of binary and sequence interpolants. The solver interface can be used by the
analysis components. Typically, the preorder over states and the transfer function are implemented
in terms of queries to an SMT solver. A refiner component may use the interface to check feasibility
of an abstract path and to generate interpolants or unsat cores for abstraction refinement. Currently,
the interface is implemented by the SMT solver Z3 [MB08], but it can easily be extended with new
solvers.

3.2.4 Extending and Instantiating the Framework

The framework can easily be extended with new formalisms and analyses. As an example, suppose
that one wants to add support for the reachability checking of Petri nets [Mur89]. First, the formalism
has to be implemented, which is a collection of simple classes representing places, transitions and
arcs of Petri nets. A possible language frontend could be the standard PNML format for Petri nets.

In order to perform reachability checking, the analysis backend has to be extended as well. The
semantics of Petri nets can be described as a symbolic transition system, for example by representing
places (marked with tokens) with integer variables and transitions as FOL formulas adding/subtract-
ing from places. Therefore, some abstract domains (such as predicates and explicit values) along with
abstraction and refinement strategies (such as interpolation) work out of box if the action function
is implemented. An action of a Petri net can be represented as the formula describing a Petri net
transition and the action function as a function that returns all such transitions. The init and transfer
functions thus work out of the box for the abstract domains mentioned before.

Instantiating an executable tool from the framework (see examples in Section 3.3) is also straight-
forward. A (command line or GUI) application has to be written that takes the parameters (path of
the input model, domain, abstraction and refinement strategies, etc.), parses the input model using
the language frontends and instantiates and runs the analysis.

3.3 Use Cases

The following section presents three use cases for tools that are built on top of the Theta framework.
We point out that the measurements and a part of the implementation described in Section 3.3.1 and
in Section 3.3.2 are not results of the author of this dissertation, and thus should not be considered as
such. The inclusion of these results serve as an illustration for the utility of the framework.

Furthermore, we would like to refer to some other lines of research unrelated to this disserta-
tion but related to the Theta framework2. Theta has been integrated as a verification backend in
Gamma [Mol+18], a tool for modeling and model integration based on statecharts. This way, Theta
enabled the verification of selected protocols and algorithms of an electronic railway interlocking
system modeled in Gamma. For the verification of C programs, the tool Gazer-Theta has been pro-
posed [ÁSH21]. The tool has been submitted to the 10th International Competition on Software Ver-
ification (SV-COMP 2021) [Bey21], where it competed in 9 subcategories.

2For a complete list of related papers, visit https://ftsrg.mit.bme.hu/theta/publications/.

19

https://ftsrg.mit.bme.hu/theta/publications/

3. Architecture of a Configurable Model Checking Framework

3.3.1 Theta for Transition Systems

The tool Theta-sts is an instantiation of the Theta framework for reachability analysis of (sym-
bolic) transition systems, based on an earlier, preliminary version [c6]. As input language, the tool
supports the AIGER format (also used in the Hardware Model Checking Competition [Cab+16]) and
an intermediate language for describing PLCmodels [Fer+15]. The tool relies on the built-in predicate
and explicit value domains and refinement strategies based on binary interpolation, sequence inter-
polation and formulas from unsat cores. Some additional utilities are also implemented, for example
inferring the initial precision and simplifying the input system.

Figure 3.2 (from [HM17]) shows a heatmap of the execution time of 20 analysis configurations
on 12 hardware (hw) and 6 PLC models. White squares correspond to a timeout. Configurations are
abbreviated with the first letter of the domain (predicate, explicit), the refinement strategy (binary
interpolation, sequence interpolation, unsat cores), the initial precision (empty, property-based) and
the exploration strategy (DFS, BFS). The heatmap shows that no single configuration can verify all
models and the execution time is very diverse, motivating the need for a configurable framework.

EBEB
EBED
EBPB
EBPD
ESEB
ESED
ESPB
ESPD
EUEB
EUED
EUPB
EUPD
PBEB
PBED
PBPB
PBPD
PSEB
PSED
PSPB
PSPD

hw
1

hw
2

hw
3

hw
5

hw
4

hw
6

hw
7

hw
8

hw
9

hw
10

hw
11

hw
12

pl
c1

pl
c2

pl
c3

pl
c4

pl
c5

pl
c6

Model

C
on

fig
ur

at
io

n

3

4

5

T (ms, log10)

Figure 3.2: Heatmap of execution time (ms) for transition systems (logarithmic scale)

3.3.2 Theta for Control Flow Automata

The tool Theta-cfa is an instantiation of the Theta framework for the reachability analysis of control
flow automata. As input language, the tool supports a subset of C, enhanced by various size reduction
techniques such as compiler optimizations and program slicingmethods [c15]. This tool uses the same
built-in abstract domains and refinement strategies as the Theta-sts tool, only the interpreter differs.

Figure 3.3 (from [c15]) presents a heatmap of the verification time of 16 analysis configurations on
9 models from SV-COMP [Bey16], selected from those categories that are currently supported by our
C frontend. Configurations are abbreviated with the first letter of the slicing method (none, backward,
value, thin), the compiler optimizations (true, false) and the exploration strategy (DFS, BFS). Similarly
to transition systems, different configurations are more suitable for different input models.

20

3.4. Conclusions

VTD
VTB
VFD
VFB
TTD
TTB
TFD
TFB
BTD
BTB
BFD
BFB
NTD
NTB
NFD
NFB

ec
a/

1.
c

ec
a/

2.
c

ec
a/

3.
c

ec
a/

4.
c

lo
ck

s/
1.

c
lo

ck
s/

2.
c

lo
ck

s/
3.

c
ss

h/
1.

c
ss

h/
2.

c

Model

C
on

fig
ur

at
io

n

30

60

90

120
T (s)

Figure 3.3: Heatmap of execution time (s) for C programs

3.3.3 Theta for Timed Automata

The tool Theta-xta is an instantiation of the Theta framework for reachability checking of timed
automata with discrete variables. As input language, the tool supports a reasonable subset of the
Uppaal 4.x XTA format3,4. The results of Chapter 4, of Chapter 5, and of Chapter 6 are implemented
in Theta-xta. For details, we refer the reader to the respective chapters.

3.4 Conclusions

In this chapter we introduced Theta, a configurable model checking framework for abstraction
refinement-based reachability analysis for different formalisms. We described the architecture that
helps to implement, evaluate and combine various algorithms in a modular way for different for-
malisms. We also demonstrated the applicability of the framework by use cases for the verification
of hardware, PLC, software and timed automata models. Results of the evaluation with configuring
and combining different analysis modules support the need for a generic framework, such as Theta.
Subsequent results in Chapter 4 are built on top of our framework.

3.4.1 Thesis Summary

This concludes Thesis 1.1 of this dissertation. We summarize it as follows.

Thesis 1.1 Architecture of a configurable model checking framework. I designed the architec-
ture, interfaces and generic algorithmic components of Theta, a generic, modular, and config-
urable model checking framework that enables the combination of various abstract domains,
interpreters, and strategies for abstraction and refinement, applied to models of various for-
malisms.

3Not supporting procedures and composite types other than arrays of synchronization channels.
4See the web help on http://www.uppaal.org for a language reference.

21

http://www.uppaal.org

Chapter4

A Uniform Formalization

of Abstraction Refinement Strategies

for Timed Automata

We address the location reachability problem of timed automata with discrete variables. Overall, we
propose a formal algorithmic framework that enables the uniform formalization of several abstract
domains and refinement strategies for both clock and discrete variables. The main elements are a
generic algorithm for lazy reachability checking and an abstract reachability tree as its central data
structure. The main advantage of the framework is that, based on the notion of the direct product
abstract domain, it allows the seamless combination of various lazy abstraction methods, resulting
in many distinct algorithm configurations that together admit efficient verification of a wide range
of timed automata models. This algorithmic framework allows a straightforward implementation of
these strategies in our open source model checking framework Theta [c10], this way enabling the
practical evaluation of the proposed algorithm configurations. The configurability of this framework
also allows the integration of existing efficient lazy abstraction algorithms for clock variables based
on LU -bounds [HSW13], thus admitting the combination and comparison of our methods with the
state-of-the-art in Chapter 5 and in Chapter 6.

4.1 Algorithm for Lazy Reachability Checking

In this section we present our uniform approach, a lazy reachability checking algorithm that allows
the combination of various abstract domains and refinement strategies. It is based on the notion of
Abstract Reachability Tree, which is defined in the sequel. Then the algorithm itself is described.

4.1.1 Abstract Reachability Tree

The central data structure of the algorithm is an abstract reachability tree.

Definition 4.1 (Abstract domain). For our purposes, an abstract domain for a timed automa-

ton A is a tuple D = (S,⊑, init, post, J·K) such that

• S is set of abstract states,

• ⊑ ⊆ S × S is a preorder,

23

4. A Uniform Formalization of Abstraction Refinement Strategies for Timed Automata

• init ∈ S is the abstract initial state,

• post : T × S → S is the abstract post-image operator, and

• J·K : S → P(C) is the concretization function. �

For soundness, we assume the following properties to hold.

Definition 4.2 (Sound abstraction). An abstract domain (S,⊑, init, post, J·K) is sound iff
• s1 ⊑ s2 ⇒ Js1K ⊆ Js2K,
• Σ0 ⊆ JinitK, and
• post tJsK ⊆ Jpostt(s)K. �

The tree structure of an abstract reachability tree is given by an unwinding.

Definition 4.3 (Unwinding). An unwinding of a timed automaton A is a tuple

U = (N,E, n0,MN ,ME , ▷) where
• (N,E) is a directed tree rooted at node n0 ∈ N ,

• MN : N 7→ L is the node labeling,

• ME : E 7→ T is the edge labeling and

• ▷ ⊆ N ×N is the covering relation.

For an unwinding we require that the following properties hold:

• MN (n0) = ℓ0,
• for each edge e ∈ E with e = (n, n′) the transition ME(e) = (ℓ, ·, ·, ℓ′) is such that

MN (n) = ℓ andMN (n
′) = ℓ′,

• for all nodes n and n′ such that n ▷ n′ it holds thatMN (n) =MN (n
′). �

The term n ▷ n′ marks that search from node n of the unwinding is to be pruned, as another
node n′ admits all runs that are feasible from n. We define the following shorthand notations for
convenience: ℓn =MN (n) and te =ME(e).

Definition 4.4 (Abstract reachability tree). An abstract reachability tree (ART) for a timed au-

tomatonA over a sound abstract domainD is a labeled unwinding, that is, a pair G = (U,ψ)where
• U is an unwinding of A, and
• ψ : N 7→ S is a labeling of nodes by abstract states. �

We will use the following shorthand notation: sn = ψ(n). We define the following properties for
nodes.

Definition 4.5 (Properties of nodes). A node n is expanded iff for all transitions t ∈ T such

that t = (ℓ, ·, ·, ·) and ℓn = ℓ, either t is disabled from JsnK, or n has a successor for t. A node n
is covered iff n ▷ n′ for some node n′. It is excluded iff it is covered or it has an excluded parent. A

node is complete iff it is either expanded or excluded. A node n is ℓ-safe iff ℓn ̸= ℓ.

For an ART to be useful for reachability checking, we have to ensure that the tree represents an
over-approximation of the set of reachable states. Therefore we introduce restrictions on the labeling,
as formalized in the next definition.

Definition 4.6 (Well-labeled node). A node n of an ART G for a timed automaton A is

well-labeled iff the following conditions hold:

• (initiation) if n = n0, then Σ0 ⊆ JsnK,

24

4.1. Algorithm for Lazy Reachability Checking

• (consecution) if n ̸= n0, then for its parent m and the transition t = t(m,n) it holds that
post tJsmK ⊆ JsnK

• (coverage) if n ▷ n′ for some node n′, then JsnK ⊆ Jsn′K and n′ is not excluded. �

Besides preserving reachable states, we will also ensure that nodes represent runs of the automa-
ton. We formalize this in the following definitions.

Definition 4.7 (Feasible node and transition). Let n be a node of an ART G, and π the path

from n0 to n in G. Then n is feasible iff π is feasible. Moreover, a transition t is feasible from n iff

the path π · t is feasible. �

The above definitions for nodes can be extended to trees.

Definition 4.8 (Properties of ARTs). An ART is complete, ℓ-safe, well-labeled or feasible iff all

its nodes are complete, ℓ-safe, well-labeled, or feasible, respectively. �

A well-labeled ART preserves reachable states, which is expressed by the following proposition.

Proposition 3. Let G be a complete, well-labeled ART for a timed automaton A. If A has a symbolic

run (ℓ0,Σ0)
t1−→ (ℓ1,Σ1)

t2−→ . . .
tk−→ (ℓk,Σk) then G has a non-excluded node n such that ℓk = ℓn

and Σk ⊆ JsnK.

Proof. We prove the statement by induction on the length k of the symbolic run. If k = 0,
then ℓ0 = ℓn0 and Σ0 ⊆ Jsn0K by condition initiation, thus n0 is a suitable witness. Suppose the
statement holds for runs of length at most k−1. Hence there exists a non-excluded nodem such that
ℓk−1 = ℓm and Σk−1 ⊆ JsmK.

Clearly transition tk is not disabled from JsmK, as then by the induction hypothesis it would also
be disabled from Σk−1, which contradicts our assumption. As m is complete and not excluded, it is
expanded, and thus has a successor n for transition tk with ℓn = ℓk. By condition consecution, we
have post tkJsmK ⊆ JsnK. AsΣk−1 ⊆ JsmK, by the monotonicity of images in⊆, we obtainΣk ⊆ JsnK.

Thus if n is not covered, then it is a suitable witness for the statement. Otherwise there exists a
node n′ such that n ▷ n′. By condition coverage, we know that JsnK ⊆ Jsn′K and n′ is not excluded,
thus n′ is a suitable witness.

4.1.2 Reachability Algorithm

The pseudocode of the algorithm is shown in Algorithm 1. The algorithm gets as input a timed au-
tomatonA and a distinguished error location ℓe ∈ L. The goal of the algorithm is to decide whether ℓe
is reachable forA. To this end the algorithm gradually constructs an ART forA and continually main-
tains its well-labeledness and feasibility. Upon termination, it either witnesses reachability of ℓe by a
feasible node n such that ℓn = ℓe, which by Definition 4.7 corresponds to a symbolic run of A to ℓe,
or produces a complete, well-labeled, ℓe-safe ART that proves unreachability of ℓe by Proposition 3.

The main data structures of the algorithm are the ART G and sets passed and waiting . Set passed
is used to store nodes that are expanded, and waiting stores nodes that are incomplete. The algorithm
consists of two subprocedures, close and expand. Procedure close attempts to cover a node n by
some other node. It calls a procedure cover that tries to force cover the node by adjusting its label
so that it is subsumed by the label of some candidate node n′. Procedure expand expands a node n
by creating its successors. To avoid creating infeasible nodes, it calls a procedure disable that checks
feasibility of a given transition t, and adjusts the labeling of n so that if t is infeasible from n, then

25

4. A Uniform Formalization of Abstraction Refinement Strategies for Timed Automata

Algorithm 1 Reachability algorithm
1: ensure ρ = safe iff ℓe is unreachable for A
2: function explore(A, ℓe) returns ρ ∈ {safe,unsafe}
3: let n0 be a node with ℓn0 = ℓ0 and sn0 = init
4: N ← {n0}, E ← ∅, ▷← ∅
5: let G be an ART for A over N , E and ▷
6:
7: passed ← ∅, waiting ← {n0}
8: invariant G is well-labeled and feasible
9: while n ∈ waiting for some n do

10: waiting ← waiting \ {n}
11: if ℓn = ℓe then
12: return unsafe
13: else

14: close(n)
15: if n is not covered then

16: expand(n)
17: return safe

18: invariant G is well-labeled and feasible
19: procedure close(n)
20: for all n′ ∈ passed such that ℓn = ℓn′ do

21: cover(n, n′)
22: if sn ⊑ sn′ then

23: ▷← ▷ ∪ {(n, n′)}
24: return

25: invariant G is well-labeled and feasible
26: ensure n is expanded
27: procedure expand(n)
28: for all t ∈ T such that t = (ℓ, ·, ·, ℓ′) with ℓ = ℓn do

29: if not disable(n, t) then
30: let s′ = postt(sn)
31: let n′ be a new node with ℓn′ = ℓ′ and sn′ = s′

32: let e = (n, n′) be a new edge with te = t
33: N ← N ∪ {n′}
34: E ← E ∪ {e}
35: waiting ← waiting ∪ {n′}
36: passed ← passed ∪ {n}

37: invariant G is well-labeled and feasible
38: procedure cover(n, n′)

39: invariant G is well-labeled and feasible
40: ensure β iff t is disabled from JsnK
41: ensure ¬β iff t is feasible from n
42: function disable(n, t) returns β
26

4.2. Abstraction Refinement

it also becomes disabled from JsnK. Both close and expand potentially modify the labeling of some
nodes as a side effect, but in a way that maintains well-labeledness and feasibility of the ART. Natu-
rally, the implementation of procedures cover and disable depends on the abstract domain, and are
described in Section 4.2 in detail.

The algorithm consists of a single loop in line 9 that employs the following strategy. The loop
consumes nodes from waiting one by one. If waiting becomes empty, then A is deemed safe. Other-
wise, a node n is removed from waiting . If the node represents the error location, then A is deemed
unsafe. Otherwise, in order to avoid unnecessary expansion of the node, the algorithm tries to cover
it by a call to close. If there are no suitable candidates for coverage, then the algorithm establishes
completeness of the node by expanding it using expand, which puts it in passed , and puts all its
successors in waiting .

We show that explore is correct with respect to the procedure contracts listed in Algorithm 1. We
focus on partial correctness, as termination depends on the particular abstract domain and refinement
method used. We note that in general, termination can be easily ensured using the right extrapolation
operator for clock variables [HSW13; WJ15][c9].

Proposition 4. Procedure explore is partially correct: if explore(A, ℓe) terminates, then the result

is safe iff ℓe is unreachable for A.

Sketch. Let covered = {n ∈ N | n is covered}. It is easy to verify that the algorithm maintains the
following invariants:

• N = passed ∪ waiting ∪ covered ,
• passed is a set of non-excluded, expanded, ℓe-safe nodes,
• waiting is a set of non-excluded, non-expanded nodes,
• covered is a set of covered, non-expanded, ℓe-safe nodes.
It is easy to see that under the above assumptions sets passed , waiting and covered form a parti-

tion of N . Assuming that G is well-labeled and feasible, partial correctness of the algorithm is then a
direct consequence: At line 12 a node is encountered that is not ℓe-safe, thus by Definition 4.7 there is
a symbolic run ofA to ℓe; conversely, at line 17 the set waiting is empty, so G is complete and ℓe-safe,
and as a consequence of Proposition 3 the location ℓe is indeed unreachable for A.

What remains to show is that the algorithm maintains well-labeledness and feasibility of G. We
assume that procedures cover and disable maintain well-labeledness and feasibility, which we prove
to hold in Section 4.2.

Initially, node n0 is well-labeled, asΣ0 ⊆ JinitK = Jsn0K, thus n0 satisfies initiation. It also trivially
satisfies feasibility, as post ϵ(Σ0) = Σ0 ̸= ∅. Procedure close trivially maintains well-labeledness and
feasibility, as it just possibly adds a covering edge for two nodes such that condition coverage is not
violated. In procedure expand, if disable(n, t) for a transition t, then t is not feasible from n, and the
labeling is adjusted so that t is disabled from JsnK. Otherwise, t is feasible from n, and a successor
node n′ is created. Clearly, n′ is feasible as t is feasible. Moreover, post tJsnK ⊆ Jpostt(sn)K = Jsn′K,
thusn′ satisfies consecution. Thus according to the contract,n becomes expanded, and all its successors
are well-labeled and feasible, so well-labeledness and feasibility of G is preserved. □

4.2 Abstraction Refinement

Algorithm 1 is abstracted over the particular abstract domain used to well-label the constructed ART.
Moreover, it declares two procedures, cover and disable, that perform forced covering and abstrac-
tion refinement over the abstract domain, respectively. In Chapter 5 and Chapter 6, we describe several

27

4. A Uniform Formalization of Abstraction Refinement Strategies for Timed Automata

possible abstract domains, and corresponding abstraction refinement strategies, that can be used for
model checking timed automata with discrete variables.

In the listings of the given refinement strategies, we are going to refer to a simple procedure
update that enables safely updating the labeling for a given node in the ART.

Algorithm 2 Safely updating the abstraction
1: invariant G is well-labeled and feasible
2: require n root⇒ Σ0 ⊆ JsK
3: require (m,n) ∈ E with t = t(m,n) for somem⇒ post tJsmK ⊆ JsK
4: ensure sn = s
5: procedure update(n, s)
6: for allm such thatm ▷ n and sm ̸⊑ s do
7: ▷← ▷ \ (m,n)
8: waiting ← waiting ∪ {m}
9: sn ← s

Proposition 5. update is totally correct: If either n is the root andΣ0 ⊆ JsK, or there exists an edge e =
(m,n) with te = t for somem and post tJsmK ⊆ JsK, then update(n, s) terminates and ensures sn = s.
Moreover, it preserves well-labeledness and feasibility of G.

Proof. Termination of the procedure is trivial. Moreover, the procedure trivially maintains feasibility
of G, as it does not create new nodes. At the end of the procedure, sn = s is ensured. Clearly, n is
well-labeled: initiation and consecution is ensured by contract, and coverage is ensured by the loop due
to soundness of the abstract domain. □

4.3 Combination of Abstractions

Our approach is based on the direct product of abstract domains [CC79], as described below.

Definition 4.9 (Direct product domain). Let Di =
(
Si,⊑i, initi, posti, J·Ki

)
for i ∈ {1, 2}.

Then their direct product is the abstract domain D1 × D2 = (S,⊑, init, post, J·K) where
• S = S1 × S2,
• (s1, s2) ⊑ (s′1, s

′
2) iff s1 ⊑1 s

′
1 and s2 ⊑2 s

′
2 (thus ⊑ is a preorder),

• init = (init1, init2),
• postt(s1, s2) =

(
post1t (s1), post

2
t (s2)

)
, and

• J(s1, s2)K = Js1K1 ∩ Js2K2. �

In later descriptions, when it is clear from the context, we are going to omit indexes when
referring to components of a direct product (and write e.g. (postt(s1), postt(s2)) instead of(
post1t (s1), post

2
t (s2)

)
).

Proposition 6. If D1 and D2 are sound, then D1 × D2 is sound.

In case of timed automata with discrete variables according to Definition 2.15, abstraction and
refinement can be conveniently defined compositionally, where clock variables and discrete variables
are handled by separate abstractions. Algorithm 3 describes a straightforward method for achieving
this separation.

28

4.3. Combination of Abstractions

Algorithm 3 Combination of abstractions
1: procedure cover×(n, n′)
2: coverD(n, n′)
3: coverC(n, n′)

4: invariant G is well-labeled and feasible
5: procedure coverD(n, n′)

6: invariant G is well-labeled and feasible
7: procedure coverC (n, n′)

8: function disable×(n, t) returns β
9: return disableD(n, t) or

disableC(n, t)

10: invariant G is well-labeled and feasible
11: define (s1, s2) = sn
12: ensure β iff t is disabled from Js1K
13: ensure ¬β iff t is data-feasible from n
14: function disableD(n, t) returns β

15: invariant G is well-labeled and feasible
16: define (s1, s2) = sn
17: ensure β iff t is disabled from Js2K
18: ensure ¬β iff t is clock-feasible from n
19: function disableC (n, t) returns β

In the above description, in line 10 and line 15, we refer to the preservation of well labeledness
for the two projections of the ART. This weaker assumption will simplify proofs of correctness for
the component refiners. We show that this implies well-labeledness in the original sense.

Total correctness of cover× follows from total correctness of coverD and coverC . We show total
correctness of disable× as follows.

Proposition 7. disable× is totally correct: disable×(n, t) terminates and preserves well-labeledness

and feasibility of G; moreover, it returns false iff t is feasible from n, and ensures that t is disabled
from JsnK otherwise.

Proof. Termination of the procedure is trivial. Moreover, the procedure trivially maintains feasibility
of G, as it does not create new nodes.

First we show that disable× maintains well-labeledness. By contract, disableC and disableD
preserve well-labeledness of G (in the weaker sense described above). Let sn = (s1, s2) for root
noden. AsΣ0 ⊆ Js1K andΣ0 ⊆ Js2K, clearlyΣ0 ⊆ Js1K∩Js2K = J(s1, s2)K, thus initiation is preserved.
Now let sm = (s1, s2) and sn = (s′1, s

′
2) for nodes m and n such that (m,n) ∈ E and t = t(m,n).

As post t is an image and post tJs1K ⊆ Js′1K and post tJs2K ⊆ Js′2K, we have post tJ(s1, s2)K =
post t(Js1K ∩ Js2K) ⊆ post tJs1K∩ post tJs2K ⊆ Js′1K∩ Js′2K = J(s′1, s

′
2)K, thus consecution is preserved.

Finally, let sm = (s1, s2) and sn = (s′1, s
′
2) for nodes m and n such that m ▷ n. As Js1K ⊆ Js′1K and

Js2K ⊆ Js′2K, clearly J(s1, s2)K = Js1K ∩ Js2K ⊆ Js′1K ∩ Js′2K = J(s′1, s
′
2)K, thus coverage is preserved.

Assume that t is feasible from n. Then t is both data- and clock-feasible from n by Remark 4. Thus
disableD(n, t) = false and disableC(n, t) = false by contract, from which disable×(n, t) = false
follows directly. Assume that t is not feasible from n. Then t is either not data- or not clock-feasible
from n by Remark 4. Assume t is not data-feasible from n. Thus disableD(n, t) = true and t becomes
disabled from Js1K by contract. As a consequence, disable×(n, t) = true, and t becomes disabled
from JsnK = J(s1, s2)K = Js1K ∩ Js2K. The other case follows symmetrically. □

29

4. A Uniform Formalization of Abstraction Refinement Strategies for Timed Automata

To simplify exposition, we are going to treat the labeling of nodes by abstract states ψ as a lens
(in simple terms, a pair consisting of a “getter” and a “setter”) that can be used to deeply manipulate
the structure of a given label. Thus later in the text, when we refer to sn, we are going to mean the
corresponding component of a direct product based on the context.

4.4 Implementation

The notions described in this chapter have been implemented in the Theta framework. In order to
make exposition for this and upcoming chapters simpler we made some simplifications exploiting the
fact that the formalism in our case is fixed to timed automata. Although themapping between concepts
introduced in this and the previous chapter is mostly straightforward, for clarity we summarize our
implicit assumptions in Table 4.1.

Table 4.1: Implementation in the Theta framework

Theta concept Implementation

Abstract domain

The set of abstract states S and the preorder ⊑. In all our
Theta domains for timed automata, the top-level abstract
domain is the location domain that tracks the current loca-
tion, and wraps all other domains over clock and discrete
variables. In our exposition this domain is implicitly en-
coded in the notion of unwinding.

Precision

Our approach is underapproximation-driven, and thus
does not rely on explicit representation of precision. The
precision is thus the “unit precision”, i.e. a single element
set.

Action A transition t ∈ T .

Init function For the location domain it is p 7→ {ℓ0}. For the domains
described here, it is p 7→ {init}.

Transfer function
For the location domain it is the obvious function implied
by T . For the domains described here, it is p 7→ t 7→ s 7→
postt(s).

Action function Defined over the location domain; it is (ℓ, ·) 7→
{t ∈ T | t = (ℓ, ·, ·, ·)}.

Abstract reachability tree The ART, with the caveat that the notion of unwinding as
described here implicitly encodes the location domain.

Abstractor Procedure explore.

Refiner Procedures cover and disable.

30

4.5. Conclusions

4.5 Conclusions

In this chapter, we presented an algorithmic framework for the lazy abstraction based location reach-
ability checking of timed automata with discrete variables. We formalized the combination of ab-
stractions and proved its properties. This framework allowed the straightforward implementation of
efficient model checkers using configurable combined strategies, as described in Chapter 5 and Chap-
ter 6. The different abstraction refinement strategies discussed in those chapters is summarized in
Table 4.2.

Table 4.2: Summary of refinement strategies

Lazy Zone Interpolation Lazy Valuation Interpolation
Forward Backward Forward Backward

D DZI DEI
cover coverZI coverEI
disable disableZI disableEI

Propagation blockfw blockbw refinefw refinebw
Interpolation interpolateZ interpolateE

Future Work. According to the algorithm described in this chapter, refinement is triggered
upon encountering a disabled transition. An interesting direction would be to experiment with
counterexample-guided refinement for both the abstraction of discrete and continuous variables.
Moreover, there are several possibilities for fine-tuning the proposed algorithm. For example, the
algorithm as described applies an aggressive covering strategy, as it tries all possible nodes for cover-
age before expanding a node. The investigation of more sophisticated covering strategies (e.g. forced
covering as in [McM06]) might yield better scaling with respect to execution time. Additionally, by
memoizing abstract states, the memory footprint of the algorithm may be significantly reduced.

4.5.1 Thesis Summary

This concludes Thesis 1.2 of this dissertation. We summarize it as follows.

Thesis 1.2 A uniform formalization of abstraction refinement strategies for timed automata. I
proposed and proved correct a formal algorithmic framework that enables the uniform formal-
ization and combined use of various abstract domains and abstraction refinement strategies for
the location reachability checking of timed automata.

31

Chapter5

Lazy Reachability Checking

for Timed Automata using Interpolants

The reachability problem of timed automata [AD94] deals with the question whether a given error
location is reachable from an initial state along the transitions of the automaton. The standard solution
of this problem involves performing a forward exploration in the so-called zone-graph induced by
the automaton [DT98]. There, each abstract state is a zone, a special set of concrete states that can be
represented as the solution set for a set of clock constraints.

To ensure performance and termination, model checkers for timed automata usually apply some
sort of generalization of zones based on maximal lower- and upper bounds [Beh+04] (LU -bounds)
appearing in the guards of the automaton. This can be performed directly by extrapolation [Beh+04]
parameterized by bounds obtained by static analysis [Beh+03]. Alternatively, bounds can be propa-
gated lazily for all transitions [Her+11] or along an infeasible path [HSW13], which, combined with
an efficient method for inclusion checking [HSW12] with respect to a non-convex abstraction in-
duced by the bounds, results in an efficient method for reachability checking of timed automata.
This latter approach is a form of lazy abstraction, a variant of counterexample-guided abstraction
refinement [Cla+03] (CEGAR), where – instead of eagerly computing abstractions using an abstract
post-image operator, a typically expensive operation – abstraction is computed on-the-fly and locally
in the state space along a single execution path where more precision is necessary.

In this chapter, we propose a similar lazy algorithm for reachability checking of timed automata.
However, instead of propagating the bounds appearing in guards, the algorithm considers the guards
themselves: if the abstraction is too coarse to exclude an infeasible path, a zone representing the
guards of a disabled transition is propagated backwards using pre-image computation. Based on the
pre-image, we compute a zone strong enough to block the disabled transition in form of an inter-
polant [McM03]. In a similar fashion, we use interpolation to effectively prune the search space by
enforcing coverage of a newly discovered state with an already visited state when possible. We pro-
pose two refinement strategies in this framework. Both methods are a combination of forward search,
backward search and zone interpolation, and can be considered as a generalization of zone interpo-
lation to sequences of transitions of a timed automaton.

We compared the proposed interpolation basedmethod and the non-convexLU -abstraction based
method [HSW13] on the usual benchmark models for timed automata. Results show that our method
performs similarly to the highly sophisticated algorithm of [HSW13], and in cases can even generate
a smaller state space. Moreover, it turned out that for some models the proposed refinement strategies
are less sensitive to search order, thus are more robust against bad decisions during search.

33

5. Lazy Reachability Checking for Timed Automata using Interpolants

5.1 Related Work

Lazy abstraction [Hen+02] is an approach widely used for model checking, and in particular for model
checking software. It consists of building an abstract reachability graph on-the fly, representing an
abstraction of the system, and refining a part of the tree in case a spurious counterexample is found.
Lazy abstraction with interpolants [McM06] (also known as Impact) and lazy annotation [McM10]
are both lazy abstraction techniques for software where refinement is performed using interpolant
generation.

For timed automata, a lazy abstraction approach based on non-convex LU -abstraction [Beh+04]
and on-the-fly propagation of bounds has been proposed [HSW13]. A significant difference of this al-
gorithm compared to usual lazy abstraction algorithms is that it builds an abstract reachability graph
that preserves exact reachability information (a so-called adaptive simulation graph). As a conse-
quence it is able to apply refinement as soon as the abstraction admits a transition disabled in the
concrete system. In our work, we apply the same approach, but for a different abstract domain, with
different refinement strategies.

The work closest to ours is difference bound constraint abstraction [WJ15]. The refinement
method presented there and our refinement strategy we refer to as the binary (BWITP) strategy are
highly analogous, and both are very similar to lazy annotation. However, our refinement strategy
that we refer to as the sequence (FWITP) strategy is different in concept. Moreover, in [WJ15], ab-
stractions are sets of difference constraints, and refinement rules are defined on a case-by-case basis
for guards, resets and delay. In our work, we represent abstractions as canonical difference bound
matrices, and define abstraction refinement in more general terms, as a combination of symbolic for-
ward and backward search and zone interpolation. This formulation enables a simple generalization
of our approach to automata with diagonal constraints in guards [BLR05] and to updatable timed
automata [Bou04], as well as to the application of backward exploration. Moreover, by representing
abstractions as canonical difference bound matrices, known zone-based abstraction methods can be
considered orthogonal to our approach.

A more recent result related to our work appeared in [RSM19]. There, abstraction refinement is
performed using zone interpolation as well, but interpolants are computed to be minimal at a cost
O(|C|4), instead of the O(|C|3) cost of non-minimal interpolants.

5.2 Zones and DBMs

A zone Z ∈ Z is the set of solutions of a clock constraint φ ∈ ConstrC , that is
Z = {η ∈ V(C) | η |= φ}. If Z and Z ′ are zones and t ∈ T , then ∅, and V(C), and Z0, and Z ∩ Z ′,
and postCt (Z) and preCt (Z ′) are also zones. In the context of zones, we will denote ∅ by ⊥ and V(C)
by ⊤. Zones are not closed under complementation, but the complement of any zone is the union of
finitely many zones. For a zone Z , we are going to denote a minimal set of such zones by ¬Z .

Zones can be efficiently represented by difference bound matrices [Dil90]. A bound is either∞,
or a finite bound of the form (m,≺) where m ∈ Z and ≺ ∈ {<,≤}. Difference bounds can be
totally ordered by “strength”, that is, (m,≺) < ∞ and (m1,≺1) < (m2,≺2) for m1 < m2 and
(m,<) < (m,≤). Moreover the sum of two bounds is defined as b+∞ =∞ and (m1,≤)+(m2,≤) =
(m1 +m2,≤) and (m1, <) + (m2,≺) = (m1 +m2, <).

A difference bound matrix (DBM) over X = {x0, x1, . . . , xn} is a square matrix M of bounds
of order n + 1 where an element Mij = (m,≺) represents the clock constraint xi − xj ≺ m. We
denote by JMK the zone induced by the conjunction of constraints stored in M . We say that M is

34

5.3. Abstraction for Clock Variables

consistent iff JMK ̸= ⊥. The following is a simple sufficient and necessary condition for a DBM to be
inconsistent.

Proposition 8. A DBMM is inconsistent iff there exists a negative cycle inM , that is, a set of pairs of

indexes {(i1, i2), . . . , (ik−1, ik), (ik, i1)} such thatMi1,i2 + . . .+Mik−1,ik +Mik,i1 < (0,≤) [Dil90].

For a consistent DBMM , we say it is canonical iff constraints in it cannot be strengthened with-
out losing solutions, formally, iff Mi,i = (0,≤) for all 0 ≤ i ≤ n and Mi,j ≤ Mi,k + Mk,j for
all 0 ≤ i, j, k ≤ n. For convenience, we will also consider the inconsistent DBM M with the single
finite boundM0,0 = (0, <) canonical. Up to the ordering of clocks, the canonical form is unique.

The zone operations described above, as well as set inclusion ⊆ over zones, can be efficiently
implemented in terms of canonical DBMs [BY04]. Therefore, we will refer to a canonical DBM M
(syntax) and the zone JMK it represents (semantics) interchangeably throughout the dissertation.

Moreover, for two DBMsM1 andM2, we will denote bymin(M1,M2) the (not necessarily canon-
ical) DBM M where Mi,j = min(M1,ij ,M2,ij). It can be easily shown that Jmin(M1,M2)K =
JM1K∩ JM2K, as well as set inclusion⊆ over zones, can be efficiently implemented in terms of canon-
ical DBMs [BY04]. Therefore, we will refer to a canonical DBM M (syntax) and the zone JMK it
represents (semantics) interchangeably throughout the dissertation.

5.3 Abstraction for Clock Variables

First, we address abstraction refinement over clock variables.

5.3.1 Zone Abstraction

Most model checkers for timed automata rely on zones for abstracting clock valuations. We define
zone abstraction in our framework as follows.

Definition 5.1 (Zone abstraction). We define zone abstraction as the abstract domain

DZ =
(
Z,⊆, Z0, post

C , L·M
)
. �

Note that in the absence of discrete variables, Definition 5.1 corresponds to the usual definition
of zone abstraction.

Proposition 9. DZ is sound.

We define coverZ as a no-op, thus its total correctness is trivial. Moreover, we define disableZ
as disableZ(n, t) iff postt(Z) ⊑ ⊥ for Z = sn.

Proposition 10. disableZ is totally correct: disableZ(n, t) terminates and preserves well-labeledness

and feasibility of G; moreover, it returns false iff t is clock-feasible from n, and ensures that t is disabled
from JsnK otherwise.

Proof. Termination of the procedure is trivial. Well-labeledness and feasibility follow from the fact
that the procedure has no side effects. Let π be the path induced by n. Notice that Z = postCπ (Z0).
Assume postCt (Z) ̸= ⊥. Then by definition, t is clock-feasible from n, and the procedure returns false.
Now assume postCt (Z) = ⊥. Then by definition, t is not clock-feasible from n. But t is also disabled
from LZM, and the procedure returns true.

35

5. Lazy Reachability Checking for Timed Automata using Interpolants

5.3.2 Lazy Zone Abstraction

To obtain a coarser abstraction, we extend zone abstraction with interpolation as follows.

Definition 5.2 (Lazy zone abstraction). Let DZI = (S,⊑, init, post, J·K) be the abstract do-
main over DZ with

• S = Z × Z ,
• (Z,W) ⊑ (Z ′,W ′) iffW ⊑W ′

,

• init = (init,⊤),
• postt(Z,W) = (postt(Z),⊤), and
• J(Z,W)K = JW K. �

Proposition 11. DZI is sound.

Given an abstract state (Z,W), the purpose of Z is to encode an exact set of reachable valuations,
whereas the purpose of W is to represent a safe overapproximation of Z . This potentially enables
better coverage between nodes, thus faster convergence, compared to the purely zone-based setting.
In order to efficiently maintain this relationship however, we have to define procedure coverZI and
disableZI accordingly. To maintain well-labeledness, these procedures rely on a procedure block
that performs abstraction refinement by safely adjusting labels of nodes.

Algorithm 4 Lazy zone abstraction

1: procedure coverZI (n, n′)
2: let (Z, ·) = sn
3: let (·,W ′) = sn′

4: if Z ⊆W ′
then

5: for all B ∈ ¬W ′
do

6: block(n,B)

7: function disableZI (n, t)
8: let (Z,W) = sn
9: let Z ′ = postCt (Z)
10: if Z ′ = ⊥ then

11: block(n, preCt (⊤))
12: return true
13: else

14: return false

15: invariant G is well-labeled and feasible
16: define (Z,W) = sn
17: require Z ∩B ⊆ ⊥
18: ensureW ∩B ⊆ ⊥
19: procedure block(n, B)

In coverZI , as Z ⊆ W ′ and B ∩W ′ ⊆ ⊥, clearly Z ∩ B ⊆ ⊥, thus calling block(n,B) is safe.
Other than that, total correctness of coverZI follows trivially from total correctness of block (see
later). To show the correctness of disableZI , we state the following simple lemma that establishes a
connection between preC and postC .

Lemma 4. Z ∩ preCt (Z
′) ⊆ ⊥ ⇔ postCt (Z) ∩ Z ′ ⊆ ⊥

Proposition 12. disableZI is totally correct: disableZI(n, t) terminates and preserves well-

labeledness and feasibility of G; moreover, it returns false iff t is clock-feasible from n, and ensures that t
is disabled from JsnK otherwise.

36

5.3. Abstraction for Clock Variables

Proof. Termination of the procedure is trivial. Well-labeledness and feasibility follow from the to-
tal correctness of block. Let π be the path induced by n. Notice that Z = postCπ (Z0). Assume
postCt (Z) ̸= ⊥. Then by definition, t is clock-feasible from n, and the procedure returns false. Now
assume postCt (Z) = ⊥. Then by definition, t is not clock-feasible from n. By Lemma 4, we get
Z ∩ preCt (⊤) ⊆ ⊥. Thus block(n, preCt (⊤)) can be called, and as a result, W ∩ preCt (⊤) ⊆ ⊥.
By Lemma 4, we get postCt (W) = ⊥. Thus t becomes disabled from LW M, and the procedure returns
true.

5.3.3 Interpolation for Zones

The proposed refinement strategies for zone abstraction, and in particular, the different implementa-
tions of block are based on interpolation, defined over zones expressed in terms of canonical DBMs.

Definition 5.3 (Zone interpolant). Given zones A and B such that A ∩ B ⊆ ⊥, a zone inter-

polant is a zone I such that A ⊆ I and I ∩B ⊆ ⊥ and I is defined over the clocks that appear in
both A and B. �

This definition of a zone interpolant is analogous to the definition of an interpolant in the
usual sense [McM03]. As zones correspond to formulas in DL(Q), a theory that admits interpola-
tion [CGS08], an interpolant always exists for a pair of disjoint zones. Algorithm 5 is a direct adapta-
tion of the graph-based algorithm of [CGS08] for DBMs. For simplicity, we assume that A and B are
defined over the same set of clocks with the same ordering, and are both canonical (naturally, these
restrictions can be lifted).

Algorithm 5 Interpolation for canonical DBMs
1: require A ∩B ⊆ ⊥
2: ensure I is a zone interpolant for A and B
3: function interpolateZ (A, B) returns I
4: if A ⊆ ⊥ then

5: return ⊥
6: else if B ⊆ ⊥ then

7: return ⊤
8: else

9: letM = min(A,B)
10: let C = {(i1, i2), . . . , (ik−1, ik), (ik, i1)} be a negative cycle inM
11: let CA = {(i, j) ∈ C | Ai,j =Mi,j}

12: let Ii,j =


(0,≤) if i = j

Ai,j if (i, j) ∈ CA
∞ otherwise

13: let I = [Ii,j]
14: return I

After checking the trivial cases, the algorithm searches for a negative cycle in min(A,B) to wit-
ness its inconsistency. This can be done e.g. by running a variant of the Floyd-Warshall algorithm.The
interpolant I is then the DBM induced by the constraints in the negative cycle that come from A. It
is easy to verify that I is indeed an interpolant.

37

5. Lazy Reachability Checking for Timed Automata using Interpolants

Proposition 13. Function interpolateZ is totally correct: if A ∩ B ⊆ ⊥, then interpolateZ(A,B)
terminates and ensures A ⊆ I and I ∩ B ⊆ ⊥. Moreover, it preserves well-labeledness and feasibility

of G.

Proof. Function interpolateZ has no side effect, it thus trivially maintains feasibility and well-
labeledness. In the trivial cases, I is clearly an interpolant. AssumeA ̸= ⊥ andB ̸= ⊥. AsA∩B ⊆ ⊥
by contract, there exists a negative cycle C inmin(A,B) by Proposition 8. As A is canonical, we can
assume that no two edges are subsequent in CA, thus the DBM I induced by CA is clearly canonical.
The properties of an interpolant directly follow from the definitions of CA and I .

5.3.4 Abstraction Refinement for Lazy Zone Abstraction

Tomaintain well-labeledness, procedures cover and disable rely on a procedure block that performs
abstraction refinement by safely adjusting labels of nodes. Algorithm 6 describes two methods for
abstraction refinement based on interpolation for zones. Both methods are based on pre- and post-
image computation, and can be considered as a generalization of zone interpolation to sequences of
transitions of a timed automaton. The main difference between the two strategies is that blockfw
(which we refer to as the “forward” zone interpolation strategy) propagates the interpolant forward
using postC ; whereas blockbw (which we refer to as the “backward” zone interpolation strategy)
propagates “bad” zones, obtained as the complement of the interpolant, backward using preC .

Algorithm 6 Refinement strategies for lazy zone abstraction

1: ensureW ⊆ I
2: ensure I ∩B ⊆ ⊥
3: function blockfw(n, B) returns I
4: if W ∩B ⊆ ⊥ then

5: returnW
6: else

7: if (m,n) ∈ E for somem then

8: let t = t(m,n)
9: let B′ = preCt (B)
10: let A′ = blockfw(m,B′)
11: let A = postCt (A

′)
12: else

13: let A = Z

14: let I = interpolateZ(A,B)
15: update(n, (Z,W ∩ I))
16: return I

17: procedure blockbw(n, B)
18: if W ∩B ⊆ ⊥ then

19: return

20: else

21: let I = interpolateZ(Z,B)
22: if (m,n) ∈ E for somem then

23: let t = t(m,n)
24: for all B′ ∈ ¬I do
25: let B′′ = preCt (B

′)
26: blockbw(m,B′′)

27: update(n, (Z,W ∩ I))

In order to make proofs of correctness for the two refinement strategies more concise, we state
the following simple lemmas.

Lemma 5. postCt (Z) ⊆ Z ′ ⇒ post tLZM ⊆ LZ ′M

Lemma 6. LZ ∩ Z ′M = LZM ∩ LZ ′M

38

5.3. Abstraction for Clock Variables

Proposition 14. blockfw is totally correct: if Z ∩B ⊆ ⊥, then blockfw(n,B) terminates and ensures

W ⊆ I and I ∩B ⊆ ⊥ andW ∩B ⊆ ⊥. Moreover, it preserves well-labeledness and feasibility of G.

Proof. Termination of the procedure is trivial. Moreover, the procedure trivially maintains feasibility
of G, as it does not create new nodes. Thus we focus on partial correctness and the preservation of
well-labeledness. By contract (Algorithm 4),Z∩B ⊆ ⊥ is ensured. Moreover, notice thatW ∩B ⊆ ⊥
follows fromW ⊆ I and I ∩B ⊆ ⊥, thus it is sufficient to establish the latter two claims.

If W ∩ B ⊆ ⊥, then I = W , so W ⊆ I and I ∩ B ⊆ ⊥ are trivially established. Moreover,
well-labeledness is trivially maintained, as no refinement is performed.

Otherwise, ifn is the root, thenA = Z . Thus interpolateZ(A,B) can be called, and the resulting
interpolant I is such that Z ⊆ I and I ∩ B ⊆ ⊥. As in this case Z = Z0, clearly Σ0 ⊆ LIM. Thus
Σ0 ⊆ LW ∩ IM by initiation and Lemma 6. Therefore, update(n, (Z,W ∩ I)) can be called, which
establishesW ⊆ I , while preserving the well-labeledness of G.

Otherwise, there exists a transition t = tm,n for some node m. Since Z = postCt (Z
′) and

B′ = preCt (B), we have Z ′ ∩B′ ⊆ ⊥ for (Z ′,W ′) = sm by Lemma 4. Thus blockfw(m,B′) can be
called, and as a result, A′ is such that W ′ ⊆ A′ and A′ ∩ B′ ⊆ ⊥ by contract. As A = postCt (A

′),
we obtain A ∩ B ⊆ ⊥ by Lemma 4. Thus interpolateZ(A,B) can be called, and the resulting
interpolant I is such that A ⊆ I and I ∩ B ⊆ ⊥. By the monotonicity of images in ⊆, we have
postCt (W

′) ⊆ A. Hence postCt (W ′) ⊆ I , from which post tLW ′M ⊆ LIM follows by Lemma 5. Thus
post tLW ′M ⊆ LW ∩ IM by consecution and Lemma 6. Therefore, update(n, (Z,W ∩ I)) can be called,
which establishesW ⊆ I , while preserving the well-labeledness of G.

Proposition 15. blockbw is totally correct: if Z ∩B ⊆ ⊥, then blockbw(n,B) terminates and ensures

W ∩B ⊆ ⊥. Moreover, it preserves well-labeledness and feasibility of G.

Proof. Termination of the procedure is trivial. Moreover, the procedure trivially maintains feasibility
of G, as it does not create new nodes. Thus we focus on partial correctness and the preservation of
well-labeledness. By contract, Z ∩B ⊆ ⊥ is ensured.

If W ∩ B ⊆ ⊥, then the contract is trivially satisfied. Moreover, well-labeledness is trivially
maintained, as no refinement is performed.

Otherwise, interpolateZ(Z,B) can be called, and the resulting interpolant I is such that Z ⊆ I
and I ∩ B ⊆ ⊥. We show that at the end of the procedure, the claimW ⊆ I , and thusW ∩ B ⊆ ⊥
holds.

Assume n is the root node. In this case Z = Z0, thus clearly Σ0 ⊆ LIM. Thus Σ0 ⊆ LW ∩ IM by
initiation and Lemma 6. Therefore, update(n, (Z,W ∩ I)) can be called, which establishesW ⊆ I ,
while preserving the well-labeledness of G.

Now assume there exists a transition t = tm,n for some nodemwith (Z ′,W ′) = sm. LetB′ ∈ ¬I ,
and B′′ = preCt (B

′). Clearly, Z ∩B′ ⊆ ⊥. As Z = postCt (Z
′), we obtain Z ′ ∩B′′ ⊆ ⊥ by Lemma 4.

Thus blockbw(m,B′′) can be called, which ensuresW ′∩B′′ ⊆ ⊥ by contract. Thus postCt (W ′)∩B′ ⊆
⊥ by Lemma 4. Hence postCt (W

′) ⊆ I , from which post tLW ′M ⊆ LIM follows by Lemma 5. Thus
post tLW ′M ⊆ LW ∩ IM by consecution and Lemma 6. Therefore, update(n, (Z,W ∩ I)) can be called,
which establishesW ⊆ I , while preserving the well-labeledness of G.

We would like to point out that for refinement with blockfw, syntactically, it is sufficient to store
a single zone at each node, thus obtaining a major optimization in memory consumption. In partic-
ular, it is sufficient to store Z at leaves, and store W at non-leaf nodes. This is due to the fact that
while running the algorithm, Z is only necessary when expand is called, and when the interpolant

39

5. Lazy Reachability Checking for Timed Automata using Interpolants

is computed for the initial node, in this later situation Z being obvious. On the other hand,W is only
necessary when calling cover, where covering nodes are always non-leaf. Moreover, it is always safe
to treatW as ⊥ for leafs.

5.4 Evaluation

We implemented a prototype version of our algorithm and refinement strategies in the open source
model checking framework Theta [c10]. Our tool performs location reachability checking on models
given in a reasonable language subset1 of the Uppaal 4.0 XTA format.

To enable comparison to the state-of-the-art, we implemented in our framework a variant of the
lazy abstraction method of [HSW13] based on LU -bounds as an alternative refinement strategy for
clock variables (by defining the domain, cover and disable accordingly). The main difference in
our implementation compared to [HSW13] is that when performing abstraction refinement, bounds
are propagated from all guards on an infeasible path, and not just from ones that contribute to the
infeasibility. Because of this, refinement in the resulting algorithm is extremely cheap, but as the
comparison of our data with that of [HSW13] suggests, for the models examined in both papers, the
algorithm is similarly as space- and time-efficient as the original one.

The algorithms are evaluated for both breadth-first and depth-first search orders of ART expan-
sion. By combining all the possible alternatives, this results in 6 distinct algorithm configurations:

• as search order, breadth-first (BFS) or depth-first (DFS) search,
• for refinement over clock variables, forward (FWITP) or backward (BWITP) zone interpolation,
or lazy a≼LU abstraction (LU).

Each algorithm configuration is encoded as a string containing two characters, specifically the
first character of the name of each selected parameter. So for example, the configuration with BFS as
search order, LU as refinement strategy over clock variables is going to be encoded as BL.

As inputs we considered 51 timed automata models in total, which we divided to three distinct
categories. For each model, the number of clock variables / number of discrete variables is given in
parentheses.

• Category PAT: classic timed automata models from the Pat benchmark set2.
– critical n with n ∈ {3, 4} (n/1): Critical Region with n processes.
– csma n with n ∈ {9, 10, 11, 12} (n/1): CSMA/CD protocol with n processes.
– fddi n with n ∈ {50, 70, 90, 110} (3n+ 1/1): FDDI token ring with n processes.
– fischernwithn ∈ {7, 8, 9, 10} (n/1): Fischer’s mutual exclusion protocol withn processes.
– lynch n with n ∈ {7, 8, 9} (n/2): Lynch-Shavit protocol with n processes.

• Category MCTA: model containing a significant number of discrete variables (relative to the
number of clock variables). Most of the models come from the Mcta benchmark set3, while
some of them come from the Uppaal benchmark set4.

– bocdp (3/26), bocdpf (3/26): models of the Bang & Olufsen Collision Detection Protocol
obtained from the Uppaal benchmark set.

– brp (7/7): a model of the Bounded Retransmission Protocol.
– c1 (3/12), c2 (3/14), c3 (3/15), c4 (3/17): models of a real-time mutual exclusion protocol

obtained from the Mcta benchmark set.
1Not supporting procedures and composite types other than arrays of synchronization channels.
2https://www.comp.nus.edu.sg/~pat/bddlib/timedexp.html
3http://gki.informatik.uni-freiburg.de/tools/mcta/benchmarks.html
4https://www.it.uu.se/research/group/darts/uppaal/benchmarks

40

https://www.comp.nus.edu.sg/~pat/bddlib/timedexp.html
http://gki.informatik.uni-freiburg.de/tools/mcta/benchmarks.html
https://www.it.uu.se/research/group/darts/uppaal/benchmarks

5.4. Evaluation

– e1 (3/41),m1 (4/11),m2 (4/13),m3 (4/13),m4 (4/15), n1 (7/11), n2 (7/13), n3 (7/13), n4 (7/15):
industrial cases studies obtained from the Mcta benchmark set.

• Fischer’s protocol with diagonal constraints, based on [Rey07]
– diag n with n ∈ {3, 4, 5, 6, 7, 8} (2n/1): the original model, containing diagonal con-

straints.
– split n with n ∈ {3, 4, 5, 6, 7, 8} (2n/n+ 1): diagonal-free model obtained from diag n by

eliminating diagonal constraints by introducing additional discrete variables and transi-
tions, following the idea described in [Bér+98].

– opt n with n ∈ {3, 4, 5, 6, 7, 8} (2n/n + 1): diagonal-free model obtained from split n by
(manually) removing some guards, updates and transitions about which it can statically
be established that they do not influence the set of reachable locations.

We performed our measurements on a machine running Windows 10 with a 2.6GHz dual core
CPU and 8GB of RAM. We evaluated the algorithm configurations for both execution time and the
number of nodes in the resulting ART. The timeout (denoted by “–" in the tables) was set to 300
seconds. The execution time shown in the following tables is the average of 10 runs, obtained from 12
deterministic runs by removing the slowest and the fastest one. For each model, the value belonging
to the single best configuration, if any, is typeset in bold. Besides the tables shown in this chapter,
tables containing all our measurement data can be found in Appendix A. Moreover, the complete set
of rawmeasurement data, along with all input models and instructions to reproduce our experiments,
are also available in a supplementary material [s14].

Performing location reachability checking on the models, Figure 5.1(a) shows the frequency with
which different relative standard deviation (RSD) values of execution time occur. It can bee seen
from the plot that higher RSD values (> 5%) are relatively rare among the measurements. Moreover,
Figure 5.1(b) shows how the RSD of execution time relates to the average execution time for each
model and configuration (in this type of figures, each point represents the average result for a given
model and configuration). Aside from a few outliers among the PAT models, it can be stated that
higher RSD values belong to small average execution times, as expected. Thus it is justifiable to base
the comparison of configurations on the average value.

0

5

10

0.000 0.025 0.050 0.075

RSD of execution time

co
un

t

(a) Frequency

1e+03

1e+04

1e+05

0.000 0.025 0.050 0.075

RSD of execution time

ex
ec

ut
io

n
tim

e
(m

s)

Category

diagonal

MCTA

PAT

(b) Compared to execution time (ms)

Figure 5.1: Relative standard deviation of execution time

41

5. Lazy Reachability Checking for Timed Automata using Interpolants

5.4.1 Diagonal-Free Models

The detailed results for the PAT models are shown in 5.1. On these models, configurations BL and
DL usually perform best in terms of execution time. When considering the size of the state space
however, there is a small variability between configurations. Moreover, we point out that our results
for configurations BL and DL are consistent with the results presented in [HSW13]. Detailed results
for the MCTA models are shown in 5.2. Here, configurations DF gives the fastest execution on most
models.

For category PAT, with respect to execution time, Fischer and Lynch provide the worst cases for
our algorithm. The reason for the higher execution time despite the same number of generated nodes
is that for these two models, the more costly refinement was not counterweighed by the smaller
number of refinements performed, as opposed to CSMA, where the interpolation-based algorithms
performed (as our logs showed) significantly less refinement steps. For FDDI, the three algorithms
performed the same small number of refinement steps each, which explains the slight relative over-
head of the interpolation-based algorithms. However, the three algorithms scale in the same way.

A more favorable case for our algorithm is provided by the model Critical. For this model, the
interpolation-based algorithmswere able to generate a 40% smaller ART. Among the two interpolation
strategies, forward interpolation was somewhat more efficient in both execution time and the size of
the generated ART.

Figure 5.2 shows that with respect to execution time, for the given models, all algorithms scale
similarly in the number of processes of the model.

We also performed pairwise comparisons on the different algorithm configurations for each defin-
ing parameter. As can be seen on Figure 5.3, on the selected benchmark set, having all other configu-
ration parameters fixed, clock refinement strategies FWITP and BWITP do not significantly differ in
performance. On both benchmarks, FWITP slightly outperforms BWITP in the size of the generated
state space. Moreover, for the MCTA models, FWITP, while for the PAT models, BWITP performs
slightly better in terms of execution time (note the logarithmic scale on the axes). An explanation for
this is that in general, FWITP tends to perform less refinement steps (as refinement is performed in
a single iteration), whereas BWITP performs refinement steps more cheaply (as no post-image com-
putation is involved). In our experiments, the two algorithms performed roughly the same number of
refinement steps for the PAT models (probably due to discovering the same or similar simple invari-
ants), in which case BWITP has an advantage. In the case of MCTA models however, in general, the
number of refinement steps performed was in favor of FWITP.

Clock refinements LU and FWITP are compared on Figure 5.4. With respect to execution time, LU
performs better in category PAT, whereas FWITP performs better in categoryMCTA. However, with
respect to +the size of the state space, FWITP outperforms LU.

Figure 5.5 compares the impact of the two search orders on performance. With respect to exe-
cution time, DFS generally outperforms BFS on the MCTA models, whereas on the PAT models, the
performance of the two search orders is balanced. When considering the size of the state space, the
tendency is similar.

5.4.2 Models with Diagonal Guards

We also evaluated how the different configurations are able to handle models with diagonal con-
straints. As our benchmark, we used the diagonal version of Fischer’s mutual exclusion algorithm, as
presented in [Rey07]. We considered two approaches:

42

5.4. Evaluation

1e+04

3e+04

1e+05

3e+05

9 10 11 12

number of processes

ex
ec

ut
io

n
tim

e
(m

s)

config

BB

BF

BL

DB

DF

DL

(a) CSMA

3e+03

1e+04

3e+04

1e+05

60 80 100

number of processes

ex
ec

ut
io

n
tim

e
(m

s)

config

BB

BF

BL

DB

DF

DL

(b) FDDI

3e+03

1e+04

3e+04

1e+05

7 8 9 10

number of processes

ex
ec

ut
io

n
tim

e
(m

s)

config

BB

BF

BL

DB

DF

DL

(c) Fischer

3000

10000

30000

7.0 7.5 8.0 8.5 9.0

number of processes

ex
ec

ut
io

n
tim

e
(m

s)

config

BB

BF

BL

DB

DF

DL

(d) Lynch

Figure 5.2: Scaling of execution time (ms) with number of processes

1e+03

1e+04

1e+05

1e+03 1e+04 1e+05

BWITP

F
W

IT
P

MCTA PAT

(a) Execution time (ms)

1e+03

1e+04

1e+05

1e+06

1e+03 1e+04 1e+05 1e+06

BWITP

F
W

IT
P

MCTA PAT

(b) Number of nodes

Figure 5.3: Clock refinement: FWITP vs. BWITP

43

5. Lazy Reachability Checking for Timed Automata using Interpolants

3e+03

1e+04

3e+04

1e+05

3e+05

1e+03 1e+04 1e+05

FWITP

LU

MCTA PAT

(a) Execution time (ms)

1e+03

1e+04

1e+05

1e+06

1e+03 1e+04 1e+05 1e+06

FWITP

LU

MCTA PAT

(b) Number of nodes

Figure 5.4: Clock refinement: LU vs. FWITP

1e+03

1e+04

1e+05

3e+03 1e+04 3e+04 1e+05 3e+05

BFS

D
F

S

MCTA PAT

(a) Execution time (ms)

1e+03

1e+04

1e+05

1e+06

1e+04 1e+05 1e+06

BFS

D
F

S

MCTA PAT

(b) Number of nodes

Figure 5.5: Search order: DFS vs. BFS

1. Eager elimination of difference constraints by introducing new discrete variables (models split
n and manually optimized versions opt n).

2. Applying abstraction refinement to the model with diagonal constraints directly (models diag
n).

5.3 shows our detailed measurement data for all three types of models.
In case of models diag n, clock refinement strategy LU is not applicable. The other four configu-

rations, using FWITP for the handling of clocks, perform well regardless of search strategy, with BF

44

5.5. Conclusions

being the fastest. In fact, in case of this particular model, not eliminating diagonal constraints, and
using zone interpolation seems to be the best of the examined approaches.

1e+03

1e+04

1e+05

1e+03 1e+04 1e+05

BWITP

F
W

IT
P

diag opt split

(a) Execution time (ms)

1e+03

1e+04

1e+05

1e+03 1e+04 1e+05

BWITP

F
W

IT
P

diag opt split

(b) Number of nodes

Figure 5.6: Clock refinement: FWITP vs. BWITP

As Figure 5.6, shows, there is a significant difference in the performance of the two interpolation
strategies, with FWITP having the better performance.

Finally, we point out that in case a model with diagonal constraints is analyzed by applying zone
interpolation on its own (e.g. without zone splitting [BY04]), then termination is not guaranteed. In
particular, during our experiments, we found that the algorithm diverges on the well-known example
presented in [Bou03].

5.5 Conclusions

In this chapter we proposed a lazy reachability checking algorithm for timed automata based on inter-
polation for zones. Moreover, we proposed two refinement strategies, both a combination of forward
search, backward search and interpolation. We demonstrated with experiments that - even without
the use of extrapolation - the method is competitive with sophisticated non-convex abstractions in
both execution time and memory consumption.

Future Work. As the method we proposed computes abstractions in terms of zones, it is straight-
forward to combine it with existing zone-based abstractions for timed automata. In particular, we
believe that a combination with a≼LU would potentially yield a more efficient method with no con-
siderable overhead, as backward propagation of LU -bounds is much cheaper than the propagation
of interpolants. In this setting, interpolation can be considered as a further reduction on top of a≼LU
abstraction.

An interesting application of our approach would be to apply it to further expressive variants
of timed automata, e.g. to updatable timed automata [Bou04] with updates of the form xi := c or
xi := xi + c (shift) or xi := xj (copy) or, more generally, even xi := xj + c. As all these operations

45

5. Lazy Reachability Checking for Timed Automata using Interpolants

yield zones both for forward and backward computation, with a generalization of preC and postC ,
the approach becomes directly applicable. Naturally, due to general undecidability and the lack of a
suitable extrapolation operator, termination can not be guaranteed in some of these cases [Bou04].

We note that by switching the role of preC and postC in the algorithm, a variant can be obtained
that performs backward exploration in a lazymanner. Such an algorithmmight result in an interesting
method for simple timed automata with a restricted use of integer operations. Moreover, we note that
although our current implementation is based on DBMs, the adaptation of the method to e.g. minimal
constraint systems is straightforward, and is possibly more efficient.

5.5.1 Thesis Summary

This concludes Thesis 2 of this dissertation. We summarize it as follows.

Thesis 2 Lazy reachability checking for timed automata using interpolants. I proposed a solu-
tion for the location reachability problem of timed automata based on the following steps.

• I defined interpolation for zones, and gave an algorithm for computing a zone interpolant
from two inconsistent zones, represented as canonical difference bound matrices.

• Based on pre- and post-image computation for timed automata in the zone abstract do-
main, I generalized the notion of zone interpolation to sequences of interpolants, this way
enabling its use for abstraction refinement-based location reachability checking of timed
automata.

• I proposed forward and backward zone interpolation as approaches to lazy abstraction
refinement.

• I experimentally evaluated the performance of the proposed abstraction refinement strate-
gies, and showed that these compare favorably to known methods based on efficient lazy
non-convex abstractions.

46

5.5. Conclusions

Table 5.1: Detailed results for Pat models

a Execution time (s)

Model BB BF BL DB DF DL

critical 3 1.6 1.7 1.9 2.0 2.0 1.8
critical 4 37.0 34.4 41.4 46.3 41.4 34.9

csma 9 8.2 8.7 7.2 16.3 18.4 32.1
csma 10 19.2 20.6 17.1 51.6 60.0 150.3
csma 11 49.7 53.2 43.2 207.4 254.7 –
csma 12 141.4 154.8 125.8 – – –

fddi 50 – – 9.1 3.0 3.0 2.1

fddi 70 – – 22.3 5.1 5.3 3.7

fddi 90 – – 49.5 9.5 9.7 7.1

fddi 110 – – 86.8 14.9 15.4 11.4

fischer 7 3.1 3.3 2.3 3.0 3.3 2.3

fischer 8 7.8 8.4 5.4 8.1 8.5 5.2

fischer 9 24.8 28.3 14.1 26.5 28.9 14.1

fischer 10 99.2 116.1 48.9 105.7 120.1 49.9

lynch 7 4.4 4.5 3.1 4.0 4.3 2.9

lynch 8 11.1 11.9 7.1 11.3 12.2 6.7

lynch 9 38.8 44.4 21.2 39.3 44.1 20.2

b Number of nodes

Model BB BF BL DB DF DL

critical 3 13641 12981 21699 19036 18310 25697
critical 4 433787 394525 777784 635308 564014 1043487

csma 9 78552 78552 78552 98989 98989 217656
csma 10 200649 200649 200649 274759 274759 745149
csma 11 501432 501432 501432 787898 787898 –
csma 12 1230757 1230757 1230757 – – –

fddi 50 – – 2098 503 503 503
fddi 70 – – 2961 703 703 703
fddi 90 – – 3881 903 903 903
fddi 110 – – 4678 1103 1103 1103

fischer 7 26405 26405 26405 26405 26405 26405
fischer 8 95353 95353 95353 95353 95353 95353
fischer 9 339211 339211 339211 339211 339211 339211
fischer 10 1191211 1191211 1191211 1191211 1191211 1191211

lynch 7 46915 46915 46915 46915 46915 46915
lynch 8 162801 162801 162801 162801 162801 162801
lynch 9 563491 563491 563491 563491 563491 563491

47

5. Lazy Reachability Checking for Timed Automata using Interpolants

Table 5.2: Detailed results for Mcta models

a Execution time (s)

Model BB BF BL DB DF DL

bocdp 9.5 10.2 6.1 9.0 8.5 6.0

bocdpf 19.9 20.9 12.1 15.8 16.2 10.3

brp 23.1 12.9 7.1 28.4 20.2 8.7

c1 2.6 2.3 3.0 2.1 1.7 2.0
c2 7.3 5.5 6.5 4.7 4.0 4.3
c3 8.0 6.4 8.1 5.3 4.7 4.8
c4 66.2 46.6 82.7 36.6 29.3 33.6

e1 4.8 3.9 4.4 2.9 2.5 2.6
m1 2.3 2.2 3.4 1.3 1.0 1.8
m2 6.1 5.2 9.4 3.1 2.6 4.4
m3 6.2 6.0 9.8 2.9 2.6 4.7
m4 21.2 17.9 43.9 7.4 6.1 10.8
n1 2.9 2.6 3.8 1.5 1.3 1.9
n2 7.9 7.0 11.9 3.4 3.1 4.3
n3 8.0 6.8 12.2 4.0 3.5 5.5
n4 31.0 28.9 57.5 9.3 8.7 21.3

b Number of nodes

Model BB BF BL DB DF DL

bocdp 98314 94801 96460 97125 84643 97462
bocdpf 218745 212225 209430 196782 183402 197234
brp 110600 72117 115675 150970 111705 169672

c1 22157 20967 32963 18802 18614 22968
c2 73326 67433 103476 57896 57170 69760
c3 94286 86285 136015 77698 76335 95548
c4 968171 876266 1365289 758739 737964 932334

e1 35989 31247 47199 23729 23657 27513
m1 8998 8541 27216 4753 3625 15233
m2 40413 31932 112634 18737 15471 60995
m3 40054 38128 118485 17797 16189 68091
m4 172868 145378 464477 72302 61915 215984
n1 9030 7645 26467 4466 3898 13869
n2 40640 33054 122680 16477 15514 53212
n3 40983 32493 122178 20484 16677 74393
n4 178362 150864 493530 72527 69308 326938

48

5.5. Conclusions

Table 5.3: Detailed results for diagonal models

a Execution time (s)

Model BB BF BL DB DF DL

diag 3 0.2 0.2 – 0.2 0.2 –
diag 4 0.6 0.6 – 0.9 0.7 –
diag 5 1.5 1.5 – 4.0 1.8 –
diag 6 4.9 4.9 – 56.1 6.0 –
diag 7 19.3 19.9 – – 25.7 –
diag 8 99.2 104.1 – – 144.2 –

split 3 0.8 0.7 0.6 1.1 0.8 0.6

split 4 19.7 7.1 5.5 30.0 5.4 5.3

split 5 – – 259.4 – – –
split 6 – – – – – –
split 7 – – – – – –
split 8 – – – – – –

opt 3 0.3 0.3 0.2 0.3 0.4 0.2

opt 4 1.5 1.6 0.9 2.1 1.8 0.8

opt 5 11.8 12.7 4.8 35.4 15.8 4.1

opt 6 221.3 244.4 49.9 – – 39.3

opt 7 – – – – – –
opt 8 – – – – – –

b Number of nodes

Model BB BF BL DB DF DL

diag 3 199 193 – 246 220 –
diag 4 1045 933 – 1800 1262 –
diag 5 4926 4181 – 17929 5515 –
diag 6 21685 17815 – 264445 24772 –
diag 7 90252 73137 – – 100147 –
diag 8 360233 291593 – – 406392 –

split 3 2448 1929 3137 3277 2096 3322
split 4 79998 34579 68999 132835 31827 82939
split 5 – – 1572515 – – –
split 6 – – – – – –
split 7 – – – – – –
split 8 – – – – – –

opt 3 621 619 621 652 639 655
opt 4 5534 5591 5666 8234 6092 5837
opt 5 53714 51465 51431 155731 63504 54586
opt 6 525802 494997 474498 – – 541533
opt 7 – – – – – –
opt 8 – – – – – –

49

Chapter6

Lazy Reachability Checking

for Timed Automata

with Discrete Variables

In the context of timed automata, methods rarely address the problem of abstraction for discrete data

variables that often appear in specifications for practical real-time systems, or do so by applying a fully
SMT based approach, relying on the efficiency of underlying decision procedures for the abstraction
of both continuous and discrete variables.

In our work, we address the location reachability problem of timed automata with discrete vari-
ables by proposing an abstraction method that can be used to lazily control the visibility of discrete

variables occurring in such specifications: if the abstraction is too coarse to disable an infeasible tran-
sition, then we propagate the pre-image of the transition backward using weakest precondition com-
putation, and use interpolation (defined for variable assignments) to extract a set of visible variables
[Kur94; CGS04; Cha+02; Gru06] that are sufficient to block the transition from the abstract state. We
use interpolation in a similar fashion to attempt to enforce coverage of a newly discovered state with
an already visited state when possible, this way effectively pruning the search space. Our method
does not rely on an interpolating SMT solver, and can be freely combined with zone-based forward
search (eager or lazy) methods for efficient handling of clock variables.

We evaluated the proposed abstraction method by combining it with lazy refinement techniques
for continuous variables. Results show that in terms of execution time our method performs similarly
to lazymethodswithout abstraction of discrete variables, but generates a smaller (in cases significantly
smaller) state space.

6.1 Related Work

Symbolic handling of integer variables for timed automata is often supported by unbounded fully sym-
bolic SMT-based approaches. Symbolic backward search techniques like [CGR10] and [MPS11] are
based on the computation and satisfiability checking of pre-images. In [Hoj+14], reachability check-
ing for timed automata is addressed by solving Horn clauses. In the ic3-based [Bra11] technique of
[KJN12b], the problem of discrete variables is not addressed directly, but the possibility of general-
ization over discrete variables is (to some extent) inherent in the technique. In [IW14], also based on
ic3, generalization of counterexamples to induction is addressed for both discrete and clock variables

51

6. Lazy Reachability Checking for Timed Automata with Discrete Variables

by zone-based pre-image computation. The abstraction methods proposed in our work are completely

theory agnostic, and do not rely on an SMT-solver.
In [DKL07], an abstraction refinement algorithm is proposed for timed automata that handles

clock and discrete variables in a uniform way. There, given a set of visible variables, an abstracted
timed automaton is derived from the original by removing all assignments to abstracted variables,
and by replacing all constraints by the strongest constraint that is implied and that does not contain
abstracted variables. In case the model checker finds an abstract counterexample, a linear test automa-
ton is constructed for the path, which is then composed with the original system to check whether
the counterexample is spurious. If the final location of the test automaton is unreachable, a set of
relevant variables is extracted from the disabled transition that will be included in the next iteration
of the abstraction refinement loop. In our work, we use a similar approach, but instead of building
abstractions globally on the system level and then calling to a model checker for both model checking
and counterexample analysis, we use a more integrated, lazy abstraction method, where the abstrac-
tion is built on-the-fly, and refinement is performed locally in the state space where more precision is
necessary.

Interpolation for variable assignments was first described in [BL13]. There, the interpolant is com-
puted for a prefix and a suffix of a constraint sequence, and an inductive sequence of interpolants is
computed by propagating interpolants forward using the abstract post-image operator. In our work,
we define interpolation for a variable assignment and a formula, and compute inductive sequences
of interpolants by propagating interpolants both forward and backward, using post-image and weak-
est precondition computation, respectively. In our context, this enables us to consider a suffix of an
infeasible path, instead of the whole path, for computing inductive sequences of interpolants.

Timed automata with diagonal constraints are exponentially more concise than diagonal-free
timed automata [BC05]. In [Bér+98], a method has been proposed that eliminates diagonal constraints
occurring in timed automata specifications, resulting in an (in general) exponential blowup in the size
of the automaton. An extrapolation method has been proposed in [BY04] that handles diagonal con-
straints on-the-fly. A refinement-based approach has been described in [Bou04] that does not remove
all diagonal constraints systematically. Instead, it performs forward model checking using the stan-
dard extrapolation operator used for diagonal-free timed automata, whichmight admit false negatives.
In case a counterexample is found, it is analyzed for feasibility. If the counterexample is spurious, a
set of diagonal constraints is selected and eliminated from the model, resulting in a newmodel, which
is then fed back to the model checker. An implementation of the algorithm is described in [Rey07].
In [GMS18], the LU-abstraction based simulation relation of [Beh+04] is extended to models with di-
agonal constraints. The corresponding simulation test, which generalizes the inclusion test defined
in [HSW12] for the diagonal-free setting, is shown to be NP-complete, and is implemented in terms
of SMT solving. In our work, we examine two methods for analyzing timed automata with diagonal
constraints. The first is based on the eager elimination of diagonal constraints, however, as our algo-
rithms support discrete variables, instead of introducing new locations, we introduce a new discrete

variable per constraint. In case abstraction refinement is used for these variables [c11], a method is
obtained that considers constraints as needed, similarly to [Bou04]. However, instead of building a
new model and running the model checker from scratch, this method is lazy, and performs abstrac-
tion refinement locally in the state space where more precision is necessary. The second approach is
based on zone interpolation, which supports diagonal constraints, as well as other extensions [c9],
automatically. Thus in this case, elimination of diagonal constraints is not necessary. Unfortunately,
this method is not complete in itself, as without a suitable abstraction function, it does not guarantee
termination on all models. A more recent, complete algorithm for the problem appeared in [GMS19]
that is based on a novel simulation relation for timed automata with diagonal constraints. For the

52

6.2. Abstraction and Refinement for Discrete Variables

model on which both methods have been evaluated, the two algorithms exhibit similar performance.
An improved version of this approach, focusing on updatable timed automata, appeared in [GMS20].

We provide an algorithmic framework in which we uniformly formalize, prove correct and eval-
uate our abstraction refinement strategies and their combinations. Moreover, besides a refinement
strategy that propagates interpolants backward, we introduce a novel strategy that performs abstrac-
tion refinement by forward propagation of interpolants. Furthermore, we present an empirical evalu-
ation of the algorithm configurations that the framework offers on a benchmark containing 51 timed
automata models. In particular, we examine how the different configurations perform on models con-
taining diagonal constraints.

6.2 Abstraction and Refinement for Discrete Variables

In the following, we describe strategies for the handling of discrete variables that appear in timed
automata specifications.

6.2.1 Explicit Tracking of Variables

The most straightforward way for the handling discrete variables is to explicitly track their value.

Definition 6.1 (Explicit domain). Let E = V(D). We define the abstraction that tracks discrete

variables explicitly as the abstract domain DE =
(
E ,=, ν0, postD, L·M

)
. �

Proposition 16. DE is sound.

Similarly to zone abstraction, we define coverE to be a no-op, thus its total correctness is trivial.
Moreover, let disableE(n, t) ⊜ (postt(ν) ⊑ ⊥) where ν = sn.

Proposition 17. disableE is totally correct: disableE(n, t) terminates and preserves well-labeledness

and feasibility of G; moreover, it returns false iff t is data-feasible from n, and ensures that t is disabled
from JsnK otherwise.

Proof. Termination of the procedure is trivial. Well-labeledness and feasibility follow from the fact
that the procedure has no side effects. Let π be the path induced by n. Notice that ν = postDπ (ν0).
Assume postDt (ν) ̸= ⊥. Then by definition, t is data-feasible from n, and the procedure returns false.
Now assume postDt (ν) = ⊥. Then by definition, t is not data-feasible from n. But t is also disabled
from LνM, and the procedure returns true. □

6.2.2 Visible Variables Abstraction

Instead of explicitly tracking in all states the values for all variables, by tracking in each state only
those that play a role in unreachability of a given location along a path through the state, and “hiding”
all the others, the size of the explored state space can be significantly reduced. In the following, we
describe such an abstract domain, together with the corresponding refinement strategies.

Definition 6.2 (Visible variables domain). Let DEI = (S,⊑, init, post, J·K) be the abstract

domain over DE with

• S = V(D)× P(D),
• (ν,Q) ⊑ (ν ′, Q′) iff ν ⪯ ν ′↾Q′ and Q′ ⊆ Q (thus ⊑ is a preorder),

53

6. Lazy Reachability Checking for Timed Automata with Discrete Variables

• init = (init, ∅),
• postt(ν,Q) = (postt(ν), ∅), and
• J(ν,Q)K = Lν↾QM. �

Proposition 18. DEI is sound.

Algorithm 7 describes the corresponding refinement methods. Both coverEI and disableEI rely
on a procedure refine for abstraction refinement. Moreover, disableEI depends on a weakest pre-
condition operator, defined by the following property.

Definition 6.3 (Weakest discrete precondition). Let wpDt (φ) be the formula such that

ν |= wpDt (φ) iff postDt (ν) |= φ for all ν and φ, with respect to t. �

Algorithm 7 Visible variables abstraction

1: procedure coverEI (n, n′)
2: let (ν, ·) = sn
3: let (ν ′, Q′) = sn′

4: if ν ⪯ ν ′↾Q′ then

5: refine(n, form(ν ′↾Q′))

6: function disableEI (n, t)
7: let (ν, ·) = sn
8: let ν ′ = postDt (ν)
9: if ν ′ = ⊥ then

10: refine(n,wpDt (⊥))
11: return true
12: else

13: return false

14: invariant G is well-labeled and feasible
15: define (ν,Q) = sn
16: require ν |= φ
17: ensure ν↾Q |= φ
18: procedure refine(n, φ)

In coverEI , as ν ⪯ ν ′↾Q′ , we have ν |= form(ν ′↾Q′) by Lemma 2, thus calling
refine(n, form(ν ′↾Q′)) is safe. Other than that, total correctness of coverEI follows trivially from
total correctness of refine (see later).

Proposition 19. disableEI is totally correct: disableEI(n, t) terminates and preserves well-labeledness

and feasibility of G; moreover, it returns false iff t is data-feasible from n, and ensures that t is disabled
from JsnK otherwise.

Proof. Termination of the procedure is trivial. Well-labeledness and feasibility follow from the to-
tal correctness of refine. Let π be the path induced by n. Notice that ν = postDπ (ν0). Assume
postDt (ν) ̸= ⊥. Then by definition, t is data-feasible from n, and the procedure returns false. Now
assume postDt (ν) = ⊥. Then by definition, t is not data-feasible from n. As postDt (ν) |= ⊥, by Defini-
tion 6.3, we get ν |= wpDt (⊥). Thus refine(n,wpDt (⊥)) can be called, and as a result, ν↾Q |= wpDt (⊥).
By Definition 6.3, we get postDt (ν↾Q) |= ⊥, thus clearly postDt (ν↾Q) = ⊥. Thus t becomes disabled
from Lν↾QM, and the procedure returns true. □

54

6.2. Abstraction and Refinement for Discrete Variables

6.2.3 Interpolation for Valuations

The proposed refinement strategies for discrete variables, and in particular, different implementations
of refine are based on the notion of a valuation interpolant, defined over a valuation and a formula.

Definition 6.4 (Valuation interpolant). Given a valuation σ and a formulaφ such that σ |= φ,
a valuation interpolant is a valuation σ′ such that σ ⪯ σ′ and σ′ |= φ and def(σ′) ⊆
def(σ) ∩ vars(φ). �

Algorithm 8 Interpolation for valuations
1: invariant G is well-labeled and feasible
2: require σ |= φ
3: ensure σ↾I is an interpolant for σ and φ
4: function interpolateE (σ, φ) returns I
5: let X = def(σ) ∩ vars(φ)
6: I ← X
7: for all x ∈ X do

8: let I ′ = I \ {x}
9: if σ↾I′ |= φ then

10: I ← I ′

11: return I

Proposition 20. Function interpolateE is totally correct: if σ |= φ, then interpolateE(σ, φ) termi-

nates and ensures σ↾I |= φ. Moreover, it preserves well-labeledness and feasibility of G.

Proof. Function interpolateE has no side effect, it thus trivially maintains feasibility and well-
labeledness. Moreover, it is easy to see that it satisfies its contract, as the postcondition is an invariant
for the loop. □

Next, we show how valuation interpolants can be used for hiding variables that are irrelevant
with respect to the reachability of a given location along a path.

6.2.4 Abstraction Refinement for Visible Variables Abstraction

Algorithm 9 outlines two strategies for abstraction refinement over the visible variables abstract do-
main. Symmetrically to the variants of block, procedure refinefw (which we refer to as the “forward”
valuation interpolation strategy) propagates interpolants forward using postD; whereas procedure
refinebw (which we refer to as the “backward” valuation interpolation strategy) propagates inter-
polants backward using wpD along the path to be refined.

To make our formal description more concise, we state the following simple lemmas.

Lemma 7. α ⪯ β ⇒ postDt (α) ⪯ postDt (β)

Lemma 8. postDt (ν) ⪯ ν ′ ⇒ post tLνM ⊆ Lν ′M

Lemma 9. Lν↾A∪BM = Lν↾AM ∩ Lν↾BM

55

6. Lazy Reachability Checking for Timed Automata with Discrete Variables

Algorithm 9 Refinement strategies for visible variables abstraction

1: ensure I ⊆ Q
2: ensure ν↾I |= φ
3: function refinefw(n, φ) returns ν↾I
4: if ν↾Q |= φ then

5: return ν↾Q
6: else

7: if (m,n) ∈ E for somem then

8: let t = t(m,n)
9: let φ′ = wpDt (φ)
10: let α′ = refinefw(m,φ′)
11: let α = postDt (α

′)
12: else

13: let α = ν

14: let I = interpolateE(α,φ)
15: update(n, (ν,Q ∪ I))
16: return ν↾I

17: procedure refinebw(n, φ)
18: if ν↾Q |= φ then

19: return

20: else

21: let I = interpolateE(ν, φ)
22: if (m,n) ∈ E for somem then

23: let t = t(m,n)
24: let φ′ = wpDt (form(ν↾I))
25: refinebw(m,φ′)

26: update(n, (ν,Q ∪ I))

Proposition 21. refinefw is totally correct: if ν |= φ, then refinefw(n, φ) terminates and ensures

I ⊆ Q and ν↾I |= φ and ν↾Q |= φ. Moreover, it preserves well-labeledness and feasibility of G.

Proof. Termination of the procedure is trivial. Moreover, the procedure trivially maintains feasibility
of G, as it does not create new nodes. Thus we focus on partial correctness and the preservation of
well-labeledness. By contract, ν |= φ is ensured. Moreover, notice that ν↾Q |= φ follows from I ⊆ Q
and ν↾I |= φ by Lemma 1, thus it is sufficient to establish the latter two claims.

If ν↾Q |= φ, then I = Q, so I ⊆ Q and ν↾I |= φ are trivially established. Moreover, well-
labeledness is trivially maintained, as no refinement is performed.

Otherwise, if n is the root, then α = ν. Thus interpolateE(α,φ) can be called, and the resulting
interpolant I is such that ν↾I |= φ. As in this case ν = ν0, clearly Σ0 ⊆ Lν↾IM. Thus Σ0 ⊆ Lν↾Q∪IM
by initiation and Lemma 9. Therefore, update(n, (ν,Q ∪ I)) can be called, which establishes I ⊆ Q,
while preserving the well-labeledness of G.

Otherwise, there exists a transition t = tm,n for some node m. Since ν = postDt (ν
′) and

φ′ = wpDt (φ), we have ν ′ |= φ′ for (ν ′, Q′) = sm by Definition 6.3. Thus refinefw(m,φ′) can
be called, and as a result, α′ is such that α′ = ν ′↾I′ and I ′ ⊆ Q′ and α′ |= φ′ by contract for
some I ′. As α = postDt (α

′), we obtain α |= φ by Definition 6.3. Thus interpolateE(α,φ) can
be called, and the resulting interpolant I is such that α↾I |= φ. Clearly ν ′ ⪯ α′, thus ν ⪯ α by
Lemma 7. Therefore, ν↾I = α↾I , as I ⊆ def(α). From this, ν↾I |= φ follows directly. Moreover,
as ν ′↾Q′ ⪯ ν ′↾I′

′, by Lemma 7, we have postDt (ν ′↾Q′) ⪯ α. Hence postDt (ν ′↾Q′) ⪯ ν↾I , from which
post tLν ′↾Q′M ⊆ Lν↾IM follows by Lemma 8. Thus post tLν ′↾Q′M ⊆ Lν↾Q∪IM by consecution and Lemma 9.
Therefore, update(n, (ν,Q ∪ I)) can be called, which establishes I ⊆ Q, while preserving the well-
labeledness of G. □

Proposition 22. refinebw is totally correct: if ν |= φ, then refinebw(n, φ) terminates and ensures

ν↾Q |= φ. Moreover, it preserves well-labeledness and feasibility of G.

56

6.3. Example

ℓ0a ℓ1a . . . ℓka

t1a : a1 := 0 t2a : a2 := 0 tka : ak := 0

ℓ0b ℓ1b
. . . ℓkb

t1b : b1 := 0 t2b : b2 := 0 tkb : bk := 0

ℓ0c ℓ1c . . . ℓkc

t1c : [a1
.
= b1

.
= 1] t2c : [a2

.
= b2

.
= 1] tkc : [ak

.
= bk

.
= 1]

ℓd
td : a1 := a1 + 1 ; a2 := a2 + 1 ; . . . ; ak := ak + 1 ;

b1 := b1 + 1 ; b2 := b2 + 1 ; . . . ; bk := bk + 1

Figure 6.1: Automaton Ak

Proof. Termination of the procedure is trivial. Moreover, the procedure trivially maintains feasibility
of G, as it does not create new nodes. Thus we focus on partial correctness and the preservation of
well-labeledness. By contract, ν |= φ is ensured.

If ν↾Q |= φ, then the contract is trivially satisfied. Moreover, well-labeledness is trivially main-
tained, as no refinement is performed.

Otherwise interpolateE(ν, φ) can be called, and the resulting interpolant I is such that ν↾I |= φ.
We show that at the end of the procedure, the claim I ⊆ Q, and thus by Lemma 1 also ν↾Q |= φ holds.

Assume n is the root node. In this case ν = ν0, thus clearly Σ0 ⊆ Lν↾IM. Thus Σ0 ⊆ Lν↾Q∪IM
follows by initiation and Lemma 9. As a consequence, update(n, (ν,Q ∪ I)) can be called, which
establishes I ⊆ Q, while preserving the well-labeledness of G.

Now assume there exists a transition t = tm,n for some node m with (ν ′, Q′) = sm. Clearly,
ν ⪯ ν↾I , thus ν |= form(ν↾I) by Lemma 2. As ν = postDt (ν

′) and φ′ = wpDt (form(ν↾I)) we obtain
ν ′ |= φ′ by Definition 6.3. Thus refinebw(m,φ′) can be called, which ensures ν ′↾Q′ |= φ′ by contract.
Thus postDt (ν ′↾Q′) |= form(ν↾I) by Definition 6.3. Hence postDt (ν

′↾Q′) ⪯ ν↾I by Lemma 2, from
which post tLν ′↾Q′M ⊆ Lν↾IM follows by Lemma 8. Thus post tLν ′↾Q′M ⊆ Lν↾Q∪IM by consecution and
Lemma 9. As a consequence, update(n, (ν,Q ∪ I)) can be called, which establishes I ⊆ Q, while
preserving the well-labeledness of G.

6.3 Example

In this section, we give an example that demonstrates how the algorithm described above lazily con-
trols the visibility of discrete variables of the system during construction of the abstraction. We are
going to consider refinefw.

Figure 6.1 shows automaton Ak, a modified version of the examples given in [LNZ04; HSW13]
where clock variables are replaced by discrete variables and a component is added that nondetermin-
istically increments all variables. The resulting automaton is the parallel composition of four compo-
nents, and has 2k discrete variables, namely a1, a2, . . . , ak and b1, b2, . . . , bk.

As an example, we are going to considerA1, the simplest version of the automaton. For simplicity,
we are going to omit the indexes in names whenever possible. Figure 6.2 shows part of the ART
produced by the algorithm. Here, normal edges represent edges of the unwinding (elements of the
relation E), dashed edges represent covering edges (elements of the relation ▷), and dotted edges
represent edges of the unwinding that lead to subtrees omitted from the figure. For each node, the set
of visible variables is shown.

57

6. Lazy Reachability Checking for Timed Automata with Discrete Variables

n0

{a}

n1

{a}

n2

{a}
n3

∅

n4

∅
n5

∅
n6

∅
n7

∅

n9

∅
n8

∅
n10

∅
n11

∅

n12

∅

ta tb td

tb td

td tb tc td

td tc tb td

td

Figure 6.2: ART of A1

Let sni = si = (νi, Qi) and ℓni = ℓi for each node ni. The algorithm starts by instantiating the
root node n0 with Q0 = ∅. As transition tc is not data-feasible from n0, but also not yet disabled
from Lν0↾Q0M = ⊤, the set of visible variables Q0 has to be refined. Hence during refinement, a will
be included in the set of visible variables, ensuring ν0↾Q0 = {a←[0} |= (a ̸ .= 1 ∨ b ̸ .= 1) = wpDtc (⊥).
For the same reason, awill become visible when expanding n1 and n2. For any other node ni however,
tc is either not an outgoing transition of location ℓi, or is enabled from LνiM, thus no refinement will be
triggered during expansion, resulting in the coarse abstractionQi = ∅. This enables coverage between
nodes that assign different concrete values to the variables. For example, covering edges (n5, n4)
and (n10, n9) are only possible because b is not visible in either nodes (as ν4 = ν9 = {a← [1, b←[1}
and ν5 = ν10 = {a← [1, b←[0}). Evenmore importantly, the algorithm is able to quickly cover nodes
that result from the second firing of td along a path, thus the resulting ART remains finite. Even if
the number of times td can be taken is bounded by some number N , an algorithm that handles dis-
crete variables explicitly would generate a significantly larger state space depending onN . Similarly,
as k increases, the advantage of the abstraction based method compared to the explicit handling of
variables becomes increasingly notable.

6.4 Evaluation

To evaluate our refinement strategies, we considered the same 51 timed automata models as inputs
as in Chapter 5. We performed our measurements on a machine running Windows 10 with a 2.6GHz
dual core CPU and 8GB of RAM. We evaluated the algorithm configurations for both execution time
and the number of nodes in the resulting ART. By combining all the possible alternatives, this results
in 18 distinct algorithm configurations.

• as search order, breadth-first (BFS) or depth-first (DFS) search,
• for clock variables, forward (FWITP) or backward (BWITP) zone interpolation, or lazy a≼LU
abstraction (LU),

58

6.4. Evaluation

• for discrete variables, forward (FWITP) or backward (BWITP) valuation interpolation, or no
refinement (NONE).

Each algorithm configuration is encoded as a string containing three characters, specifically the
first character of the name of each selected parameter. So for example, the configuration with BFS
as search order, LU as refinement strategy for clock variables, and NONE as refinement strategy for
discrete variables, is going to be encoded as BLN. The timeout (denoted by “–" in the tables) was set
to 300 seconds. The execution time shown in the following tables is the average of 10 runs, obtained
from 12 deterministic runs by removing the slowest and the fastest one. For each model, the value
belonging to the single best configuration, if any, is typeset in bold. For comparison, the results for the
best configuration without discrete refinement (· ·N) are presented as well. Besides the tables shown
in this chapter, tables containing all our measurement data can be found in Appendix A. Moreover,
the complete set of raw measurement data, along with all input models and instructions to reproduce
our experiments, are also available in a supplementary material [s14].

For the configurations that handle discrete variables explicitly (· · N), we partitioned the set of
nodes of the ART based on the value of the data valuation, this way saving theO(n) cost of checking
inclusion for valuations. This optimization also significantly reduces the number of nodes for which
coverage is checked and attempted during close. Apart from this and the difference in refinement
strategies, the implementation of the configurations is shared.

Performing location reachability checking on the models, Figure 6.3(a) shows the frequency with
which different relative standard deviation (RSD) values of execution time occur. It can be seen from
the plot that higher RSD values (> 5%) are relatively rare among the measurements. Moreover, Fig-
ure 6.3(b) shows how the RSD of execution time relates to the average execution time for each model
and configuration (in this type of figures, each point represents the average result for a given model
and configuration). Aside from a few outliers among the PAT models, it can be stated that higher
RSD values belong to small average execution times, as expected. Thus it is justifiable to base the
comparison of configurations on the average value.

0

10

20

0.00 0.02 0.04 0.06 0.08

RSD of execution time

co
un

t

(a) Frequency

1e+03

1e+04

1e+05

0.00 0.02 0.04 0.06 0.08

RSD of execution time

ex
ec

ut
io

n
tim

e
(m

s)

Category

diagonal

MCTA

PAT

(b) Compared to execution time (ms)

Figure 6.3: Relative standard deviation of execution time

6.4.1 Diagonal-Free Models

Figure 6.4 shows that on the selected benchmark set, having all other configuration parameters fixed,
discrete refinement strategies FWITP and BWITP do not significantly differ in performance. Here,

59

6. Lazy Reachability Checking for Timed Automata with Discrete Variables

BWITP tends to perform better in terms of execution time. Therefore, we are going to omit detailed
results discrete refinement FWITP for the rest of the section.

1e+03

1e+04

1e+05

1e+03 1e+04 1e+05

BWITP

F
W

IT
P

MCTA PAT

(a) Execution time (ms)

1e+03

1e+04

1e+05

1e+06

1e+03 1e+04 1e+05 1e+06

BWITP

F
W

IT
P

MCTA PAT

(b) Number of nodes

Figure 6.4: Discrete refinement: FWITP vs. BWITP

The detailed results for the PAT models are shown in 6.1. As these models do not contain many
discrete variables, performing refinement over discrete variables does not have a positive effect on
performance, as expected. It can be observed however that the overhead of refinement is not signifi-
cant. Detailed results for theMCTA models are shown in 6.2. Here, configurations DFN or DFB give
the fastest execution on most models. Moreover, configuration DFB generates the least number of
nodes in almost all cases, which highlights the advantages of our new interpolation based algorithm
presented first in [c11].

Figure 6.5 shows the pairwise comparison of interpolation-based and explicit handling of discrete
variables. On the MCTA models, BWITP is always able to generate an — in some cases, significantly
— smaller state space. Unsurprisingly, the same reduction effect is not present on PAT models, where
there are only one or two discrete variables. Despite the significant reduction in state space, on the
models considered, aside from a couple of cases, BWITP is somewhat slower. Beside the obvious
overhead of running abstraction refinement, this can be explained with the optimization of coverage
checking applied in the explicit case, as described above.

6.4.2 Models with Diagonal Guards

Analogously as in Chapter 5, we evaluated how the different configurations are able to handle models
with diagonal constraints. 6.3 shows our detailed measurement data for all three types of models.

In case of models diag n, as the number of discrete variables is low, using zone interpolation
without discrete refinement is still the fastest of the examined approaches.

Models split n, where diagonal constraints are eliminated, enable the comparison of our approach
with state-of-the-art approaches presented in [Rey07; GMS18]. We point out that our results for con-
figuration BL are consistent with the results presented in [GMS18]. In these models, by using valua-

60

6.4. Evaluation

1e+03

1e+04

1e+05

1e+03 1e+04 1e+05

BWITP

N
O

N
E

MCTA PAT

(a) Execution time (ms)

1e+03

1e+04

1e+05

1e+06

1e+03 1e+04 1e+05 1e+06

BWITP

N
O

N
E

MCTA PAT

(b) Number of nodes

Figure 6.5: Discrete refinement: NONE vs. BWITP

tion interpolation, both execution times and the size of the state space can be significantly reduced.
In particular, configuration BFB significantly outperforms all the other configurations.

In general, all configurations benefited greatly from the manual optimization that we applied for
models opt n. However, using valuation interpolation still significantly improves performance for all
configurations (Figure 6.6). Moreover, configuration BFB is still by far the most successful configu-
ration. This also highlights the beneficial effects of combining abstraction refinement strategies for
clock and discrete variables, in line with our results in [c11].

1e+03

1e+04

1e+05

1e+03 1e+04 1e+05

BWITP

N
O

N
E

diag opt split

(a) Execution time (ms)

1e+03

1e+04

1e+05

1e+06

1e+03 1e+04 1e+05

BWITP

N
O

N
E

diag opt split

(b) Number of nodes

Figure 6.6: Discrete refinement: NONE vs. BWITP

61

6. Lazy Reachability Checking for Timed Automata with Discrete Variables

6.5 Conclusions

In this chapter, we proposed a lazy algorithm for the location reachability problem of timed automata
with discrete variables. The method is based on controlling the visibility of discrete variables by using
interpolation for valuations of variables. We demonstrated with experiments that our abstraction and
refinement strategy, combined with lazy methods for the abstraction of continuous clock variables,
can achieve significant reduction in the size of the generated state space during search, typically with
low or no overhead in execution time, and in cases even with an additional speedup.

FutureWork. A interesting direction would be to experiment with different abstract domains (e.g.
intervals, octahedra, or polyhedra), and investigate alternative refinement strategies for the discrete
variables of timed systems. Furthermore, althoughwe evaluated our abstractionmethod in the context
of timed systems, the technique itself can be applied in amore general context, e.g. for model checking
imperative programs.

6.5.1 Thesis Summary

This concludes Thesis 3 of this dissertation. We summarize it as follows.

Thesis 3 Lazy reachability checking for timed automata with discrete variables. I proposed a
solution for the location reachability problem of timed automata with discrete variables based
on the following steps.

• I defined interpolation between a valuation and a formula, and gave an algorithm for
computing valuation interpolants.

• Based on weakest precondition computation for transitions of timed automata, I general-
ized the notion of valuation interpolation to sequences of interpolants, this way enabling
its use for abstraction refinement-based location reachability checking.

• I proposed forward and backward valuation interpolation as approaches to lazy abstrac-
tion refinement.

• I experimentally evaluated the performance of the proposed abstraction refinement strate-
gies, and showed that these are suitable to significantly reduce the number of states gen-
erated during state space exploration of timed automata models with many discrete vari-
ables.

62

6.5. Conclusions

Table 6.1: Detailed results for Pat models

a Execution time (s)

Model BestN Time BBB BFB BLB DBB DFB DLB

critical 3 BBN 1.6 2.2 2.1 2.6 2.8 2.7 2.7
critical 4 BFN 34.4 45.2 42.1 55.4 56.4 50.6 48.8

csma 9 BLN 7.2 12.8 13.4 11.7 20.0 22.0 35.9
csma 10 BLN 17.1 31.7 33.0 28.7 61.2 69.3 155.2
csma 11 BLN 43.2 82.4 85.6 72.4 229.3 270.6 –
csma 12 BLN 125.8 241.0 254.7 208.7 – – –

fddi 50 DLN 2.1 – – 9.6 3.3 3.3 2.3
fddi 70 DLN 3.7 – – 22.9 5.5 5.8 4.1
fddi 90 DLN 7.1 – – 50.3 9.7 10.2 7.5
fddi 110 DLN 11.4 – – 90.0 15.3 15.9 11.9

fischer 7 DLN 2.3 4.1 4.1 3.2 4.1 4.3 3.2
fischer 8 DLN 5.2 9.7 10.3 7.2 9.8 10.1 7.1
fischer 9 DLN 14.1 30.5 34.1 19.6 31.7 34.2 18.9
fischer 10 BLN 48.9 117.8 135.3 65.4 123.1 139.1 65.7

lynch 7 DLN 2.9 6.3 6.4 4.9 5.5 5.8 4.4
lynch 8 DLN 6.7 16.2 17.4 11.5 15.1 16.3 10.1
lynch 9 DLN 20.2 56.8 62.0 36.2 52.1 56.9 31.2

b Number of nodes

Model BestN Nodes BBB BFB BLB DBB DFB DLB

critical 3 BFN 12981 13641 12981 21699 19036 18310 25697
critical 4 BFN 394525 434393 395188 772221 635308 564014 1043487

csma 9 BBN 78552 78552 78552 78552 98989 98989 217656
csma 10 BBN 200649 200649 200649 200649 274759 274759 745149
csma 11 BBN 501432 501432 501432 501432 787898 787898 –
csma 12 BBN 1230757 1230757 1230757 1230757 – – –

fddi 50 DBN 503 – – 2098 503 503 503
fddi 70 DBN 703 – – 2961 703 703 703
fddi 90 DBN 903 – – 3881 903 903 903
fddi 110 DBN 1103 – – 4678 1103 1103 1103

fischer 7 BBN 26405 26405 26405 26405 26405 26405 26405
fischer 8 BBN 95353 95353 95353 95353 95353 95353 95353
fischer 9 BBN 339211 339211 339211 339211 339211 339211 339211
fischer 10 BBN 1191211 1191211 1191211 1191211 1191211 1191211 1191211

lynch 7 BBN 46915 46915 46915 46915 46915 46915 46915
lynch 8 BBN 162801 162801 162801 162801 162801 162801 162801
lynch 9 BBN 563491 563491 563491 563491 563491 563491 563491

63

6. Lazy Reachability Checking for Timed Automata with Discrete Variables

Table 6.2: Detailed results for Mcta models

a Execution time (s)

Model BestN Time BBB BFB BLB DBB DFB DLB

bocdp DLN 6.0 13.1 13.2 11.5 10.8 10.2 10.1
bocdpf DLN 10.3 17.1 15.9 14.5 10.1 9.3 9.3

brp BLN 7.1 20.2 13.4 9.5 32.8 17.8 18.7

c1 DFN 1.7 4.9 4.4 5.4 3.4 3.1 3.6
c2 DFN 4.0 10.6 8.7 11.8 6.8 6.2 7.0
c3 DFN 4.7 11.7 9.8 13.6 7.7 7.1 8.2
c4 DFN 29.3 86.6 70.7 117.8 46.0 41.7 50.6

e1 DFN 2.5 6.0 5.5 6.5 4.7 4.1 4.6
m1 DFN 1.0 2.9 2.7 5.2 1.4 1.2 1.9
m2 DFN 2.6 8.1 7.1 14.7 2.5 2.4 4.8
m3 DFN 2.6 8.1 8.1 17.2 3.8 3.0 5.9
m4 DFN 6.1 32.4 28.9 84.8 6.5 6.3 16.3
n1 DFN 1.3 3.4 2.9 5.5 1.3 1.3 1.9
n2 DFN 3.1 8.8 7.4 17.7 2.8 2.8 5.4
n3 DFN 3.5 9.0 8.4 17.7 3.4 3.0 5.5
n4 DFN 8.7 35.4 30.9 87.7 7.1 6.6 22.3

b Number of nodes

Model BestN Nodes BBB BFB BLB DBB DFB DLB

bocdp DFN 84643 33591 32639 33030 32537 29846 33341
bocdpf DFN 183402 41707 38492 40083 29557 26544 30230
brp BFN 72117 52410 36761 58825 95439 56786 119826

c1 DFN 18614 19041 17156 27058 15174 14973 18292
c2 DFN 57170 51588 44906 71657 40179 39644 48069
c3 DFN 76335 57676 50713 81524 47911 46593 56833
c4 DFN 737964 378267 339560 502423 327474 318480 389018

e1 DFN 23657 26461 24677 37105 20520 20299 23931
m1 DFN 3625 4907 4394 13171 2279 1901 4970
m2 DFN 15471 18182 16246 44095 5723 5673 16603
m3 DFN 16189 18447 18369 49032 9181 7181 20291
m4 DFN 61915 69661 66255 157864 20787 20335 61606
n1 DFN 3898 5163 4222 13731 2000 1921 4579
n2 DFN 15514 18628 15648 49197 6070 5933 18315
n3 DFN 16677 18779 17177 48007 7083 6536 18031
n4 DFN 69308 71159 63674 160825 21150 18798 74430

64

6.5. Conclusions

Table 6.3: Detailed results for diagonal models

a Execution time (s)

Model BestN Time BBB BFB BLB DBB DFB DLB

diag 3 BBN 0.2 0.3 0.3 – 0.3 0.3 –
diag 4 BBN 0.6 0.7 0.7 – 1.0 0.8 –
diag 5 BFN 1.5 1.8 1.7 – 4.7 2.0 –
diag 6 BBN 4.9 5.8 5.7 – 62.2 6.9 –
diag 7 BBN 19.3 21.3 21.4 – – 27.7 –
diag 8 BBN 99.2 108.3 111.8 – – 153.6 –

split 3 DLN 0.6 0.6 0.3 0.4 0.7 0.5 0.4
split 4 DLN 5.3 4.2 1.0 1.9 9.0 1.9 2.5
split 5 BLN 259.4 74.6 3.1 19.9 – 11.8 45.4
split 6 – – – 11.6 – – – –
split 7 – – – 58.5 – – – –
split 8 – – – – – – – –

opt 3 DLN 0.2 0.4 0.3 0.3 0.4 0.4 0.3
opt 4 DLN 0.8 1.6 0.9 0.9 2.7 1.2 1.0
opt 5 DLN 4.1 9.9 2.8 4.3 79.1 7.8 4.5
opt 6 DLN 39.3 161.5 10.0 36.4 – – 43.9
opt 7 – – – 47.1 – – – –
opt 8 – – – 293.5 – – – –

b Number of nodes

Model BestN Nodes BBB BFB BLB DBB DFB DLB

diag 3 BFN 193 199 193 – 246 220 –
diag 4 BFN 933 1045 933 – 1800 1262 –
diag 5 BFN 4181 4926 4181 – 17929 5515 –
diag 6 BFN 17815 21685 17815 – 264445 24772 –
diag 7 BFN 73137 90252 73137 – – 100147 –
diag 8 BFN 291593 360233 291593 – – 406392 –

split 3 BFN 1929 585 333 664 946 492 811
split 4 DFN 31827 8163 1833 7144 23459 3847 12527
split 5 BLN 1572515 121370 9388 90877 – 27135 207627
split 6 – – – 45566 – – – –
split 7 – – – 211828 – – – –
split 8 – – – – – – – –

opt 3 BFN 619 341 252 350 401 372 399
opt 4 BBN 5534 2726 1330 2591 5674 2305 3268
opt 5 BLN 51431 24455 6550 20987 180464 23529 29124
opt 6 BLN 474498 230929 30634 178954 – – 272734
opt 7 – – – 137788 – – – –
opt 8 – – – 601970 – – – –

65

Chapter7

K-Induction Based Liveness Checking

of Real-Time Systems

The formal proof of correctness of the behavior of safety critical systems is a challenging task as these
systems are often fault-tolerant, real-time distributed systems with time-dependent data processing.
We faced this problem in checking the correctness of an industrial protocol, the ProSigma SCAN
protocol developed by one of our industrial partners, that is responsible for safe transmission of the
status of field modules to a control center. We addressed the verification problem by formal mod-
eling and model checking. Our first attempts using several classic modeling formalisms and model
checking tools (e.g. timed automata [AD94]) revealed difficulties. First, the use and processing of
time-stamps (that was included in the protocol) was either not allowed, or resulted in an infinite state
space that could not be handled. Accordingly, we turned towards formalisms that support induction
based proofs, and in particular, the technique of k-induction [SSS00; BC00; MRS03; ES03]. However, k-
induction based techniques supported only the verification of safety properties (invariants). This way
we decided to extend the capabilities of these techniques to support the checking of liveness prop-
erties. Second, the formalism that supported k-induction required quite low-level transition systems
that were not easy to construct and understand by engineers. Accordingly, we decided to provide a
higher-level formalism (so-called calendar systems) that is more easy to use, and can be automatically
mapped to the underlying lower level formalism. This formalism proved to be advantageous to find
modeling problems by static analysis, and identify invariants that are often required in k-induction
based proofs.

In this chapter we introduce the framework that supports these achievements. After briefly de-
scribing k-induction in Section 7.1, the new results are presented. The adapted formalism is introduced
in Section 7.2. The extensions of k-induction our model checking approach is based on are discussed
in Section 7.3. The tool support we provided is summarized in Section 7.4. Finally, we present the vali-
dation of our approach by verifying and industrial protocol that motivated our research in Section 7.5.
Reference to related work appear in the relevant sections.

7.1 k-Induction

To prove an invariant property P over a transition system S, one typically applies induction over the
transition relation.

67

7. K-Induction Based Liveness Checking of Real-Time Systems

s |= P for all s ∈ I (base case)
s |= P then s′ |= P for all s, s′ ∈ S with s −→ s′ (ind. hyp.)
s |= P for all s ∈ Reach(S)

A more general approach is k-induction, which progresses as follows.

si |= P for all 0 ≤ i ≤ n for any initial trace s0s1 · · · sn of length n < k
si |= P for all 0 ≤ i < k then sk |= P for any trace s0s1 · · · sk of length k
si |= P for all si ∈ Reach(S)

Given an auxiliary invariant (or lemma)L, one can strengthen the induction hypothesis. In certain
cases this enables proving the property by restricting evaluation of the induction step toL-states. The
resulting proof scheme is as follows.

si |= P for all 0 ≤ i ≤ n for any initial trace s0s1 · · · sn of length n < k
si |= P and si |= L for all 0 ≤ i < k then sk |= P for any trace s0s1 · · · sk of length k
si |= L for all si ∈ Reach(S)
si |= P for all si ∈ Reach(S)

Naturally, the above method also generalizes to a set {L0, L1, . . . , Ln} of lemmas as well.

7.2 Calendar Systems

Inspired by the paper [DS04], we adapted for our purposes the formalism of calendar automata, as
it supports the modeling of time-dependent behavior, the use of time-stamps, and k-induction based
model checking. Calendar automata is a formalism for describing timed systems as transition systems.
Its main idea is based on that of discrete event simulation: instead of clocks of timed automata (that
store the time elapsed since a past event), it uses variables to store events scheduled to occur at a
point of time in the future. Although this way time progresses to infinity, resulting in an infinite state
space, the formalism is easy to handle with induction.

Time progress is modeled as follows. A calendar automaton has a set of timeouts that stores local
events and an event calendar for messages the automata schedule for each other. A discrete transition
may update timeouts to future values or dispatch messages to the calendar, again, scheduled to occur
in the future. Such transitions must also consume a current message from the calendar or update a
current timeout to prevent instantaneous loops. Time progress transitions are enabled if no current
events are available, that is, if the time is lower than any point in time when an event is scheduled
to occur. If so, they update time to the time value of the next event. Provided this behavior, the time
value of events may never be lower than the current time, and maximal time progress is guaranteed.

To increase model checking performance, we applied two modifications.
• To shorten paths in the state spacewe adapted themethod ofmerging discrete and time progress
transitions introduced in [Pik05]. By doing so, the induction depth needed to verify properties
is significantly decreased.

• To eliminate the need for updating momentarily irrelevant timeouts to future values, we mod-
ified time progress semantics so that only a valid subset of timeouts is taken into account by
determining time value for the next step. This is performed by enabling the possibility for tran-
sitions to explicitly validate and invalidate timeouts, thus marking the set of timeouts that are
taken into account. This way a great deal of nondeterminism and deadlocks are eliminated, thus
improving the performance of the verification.

68

7.2. Calendar Systems

On top of the modified semantics we developed a higher level formalism, the calendar system

formalism that makes modeling easier, yet is still suitable for describing a broad range of systems.
The next paragraphs describe its syntax and semantics in detail.

Let ∆ = {[a, b], (b, c], [b, c), (b, c) | 0 ≤ a ≤ b < c and a, b, c ∈ N} and A? = A ∪ {none} and
A! = A \ {none}. Moreover, for a pair p = (a, b), let fst(p) = a and snd(p) = b.

Definition 7.1 (Syntax). A calendar system is a tuple (L,T ,M ,→, ℓ0,T0) where
• L is a finite set of locations,

• T is a finite set of timeouts,

• M is a finite set of messages,

• → ⊆ L×Event ×ActionM ×P(ActionT)×L is the transition relation, where Event =
T ∪M is the set of triggering events,ActionM = (M ×∆)? is the set of message sending
actions and ActionT = T ×∆?

is a set of timeout setting actions,
• ℓ0 ∈ L is the initial location, and finally,

• T0 : T → ∆?
is a function that assigns timeouts their initial value.

A state of a calendar system is a pair (ℓ, σ) with ℓ ∈ L and σ a function with domain T ∪ {C, τ}
such that σ(τ) ∈ R≥0 tracks the current time, σ(x) ∈ R?

≥0 tracks the current value of a timeout
x ∈ T , and with multiset σ(C), called the event calendar, where for an element (m, t) ∈ σ(C),
number t ∈ R≥0 is the point in time message m ∈ M is scheduled to occur. Initial states are of
the form (ℓ0, σ0) where σ0(τ) = 0 and σ0(C) = ∅ and for all x ∈ T we have σ0(x) ∈ T0(x) if
T0(x) ∈ ∆ and σ0(x) = none otherwise. Moreover, for each transition ℓ e,µ,S−−−→ ℓ′ of the calendar
system, there is a transition (ℓ, σ)

e−→ (ℓ′, σ′) in the transition system defining its semantics such that
σ′(τ) = min(σ(T)! ∪ (snd ◦ σ)(C)), and the following conditions hold.

• For all x ∈ T , exactly one of the following rules applies for the next value of timeout x.

(x, δ) ∈ S δ = none
invalidate x

σ′(x) = none

(x, δ) ∈ S δ ∈ ∆ d ∈ δ
set x

σ′(x) = σ(x) + d

∀δ.(x, δ) /∈ S
skip x

σ′(x) = σ(x)

• Exactly one of the following rules applies for the next value of the calendar C .

e ∈ T σ(e) = σ(τ) µ = none
e over / send none

σ′(C) = σ(C)

e ∈ T σ(e) = σ(τ) µ = (m, δ) d ∈ δ
e over / sendm

σ′(C) = σ(C) ∪ {(m,σ(t) + d)}

e ∈M (e, σ(t)) ∈ σ(C) µ = none
e received / send none

σ′(C) = σ(C) \ {(e, σ(t))}

69

7. K-Induction Based Liveness Checking of Real-Time Systems

e ∈M (e, σ(t)) ∈ σ(C) µ = (m, δ) d ∈ δ
e received / sendm

σ′(C) = σ(C) \ {(e, σ(t))} ∪ {(m,σ(t) + d)}

For modeling purposes, it is convenient to describe systems compositionally. For that we also
defined the composition of calendar systems, which is the interleaving of two systems.

7.3 Model Checking of Calendar Systems

A useful structural feature of calendar automata is that time never exceeds any time value of sched-
uled events [DS04]. Our formalism preserves this property with respect to values of currently valid
timeouts and calendar events. Other invariants like the minimal and maximal value of events relative
to time at a given control location or possible elements of the set of valid timeouts at a given control
location can be automatically determined by processing a graph induced by the calendar system. In
the following we present our achievements in the verification of calendar systems.

7.3.1 Finding Counterexamples for ω-Regular Properties

As described before, model checking of an ω-regular property can be solved by searching for lassos
in the product system of the original system and the automaton representing the negated property.
Since calendar systems have a dense-time semantics with a monotonically increasing time variable
(thus resulting in a continuous, infinite state space), in order to find lassos in the semantics, one needs
a suitable bisimulation over states of the product system. Our solution was to partition states by the
time value of their scheduled events relative to current time. Formally, two states (ℓ1, σ1) and (ℓ2, σ2)
are considered equivalent iff ℓ1 = ℓ2 and

• for all timeouts x ∈ T , we have σ1(x) = none iff σ2(x) = none
• for all timeouts x ∈ T , if σ1(x) ̸= none and σ2(x) ̸= none, then σ1(x)−σ1(τ) = σ2(x)−σ2(τ)
• there exists a bijection π : σ1(C) → σ2(C) such that for all c ∈ σ1(C) with c = (m1, t1)
and π(c) = (m2, t2), we havem1 = m2 and t1 − σ1(τ) = t2 − σ2(τ)

Although the quotient state space that can be produced with this bisimulation is still not finite,
it contains lasso-shaped runs that can be recognized on the fly. This can be done by a synchronous
observer of the system that nondeterministically saves the current state and compares each following
state to that saved state [BAS02; SB06]. If the two are equal with regard to the bisimulation relation,
they are the intersection of an (abstract) lasso-shaped run.

However, this bisimulation is not necessarily coarse enough to find each such trace of the calendar
system, so the method is only capable of finding counterexamples. The problem is a manifestation of
the one presented in [KJN12a] for timed automata, and a witness for this statement, as depicted in
Figure 7.1, can be constructed analogously to the example presented there.

7.3.2 Proving ω-Regular Properties Using k-Induction

Proving ω-regular properties (including liveness properties) of calendar systems with k-induction
can also be attempted by constructing the product system. To prove that the number of accepting
states occurring in every run of the product system is finite, one can try to find an upper bound
l for the number of accepting states of a run. If such number exists, the property must hold. This
method, known as k-liveness, is complete for finite systems: if the property holds then there is an
upper bound [CS12].

70

7.3. Model Checking of Calendar Systems

a

b

x over:
set x(0, 1]

y over:
set y[1]

set x(0, 1]
set y[1]

Figure 7.1: A calendar system with no simple loop

Suppose the capacity of the calendar is restricted to some finite number. Although the semantics
of such a calendar system is not finite, there exists a finite system that is bisimilar to it. This statement
can be proven by giving such a bisimulation relation. Since calendar systems are very similar to timed
automata (as by scheduling events only intervals bounded by natural numbers are allowed), region
equivalence [AD94] can be applied for this purpose. The only considerable difference is that instead of
clock values the time value of events relative to current time would be taken into account, and a clock
in the unbounded clock region would correspond to an invalid timeout. Formally, two states (ℓ1, σ1)
and (ℓ2, σ2) are considered equivalent iff ℓ1 = ℓ2 and

• for all timeouts x ∈ T , we have σ1(x) = none iff σ2(x) = none
• for all timeouts x, y ∈ T such that σ1(x) ̸= none and σ1(y) ̸= none and σ2(x) ̸= none and
σ2(y) ̸= none, we have

– ⌊σ1(x)− σ1(τ)⌋ = ⌊σ2(x)− σ2(τ)⌋
– {σ1(x)− σ1(τ)} = 0 iff {σ2(x)− σ2(τ)} = 0
– {σ1(x)− σ1(τ)} ≤ {σ1(y)− σ1(τ)} iff {σ2(x)− σ2(τ)} ≤ {σ2(y)− σ2(τ)}

• there exists a bijection π : σ1(C) → σ2(C) such that for all c, c′ ∈ σ1(C) with c = (m1, t1)
and c′ = (m′

1, t
′
1) and π(c) = (m2, t2) and π(c′) = (m′

2, t
′
2), we have

– m1 = m2

– ⌊t1 − σ1(τ)⌋ = ⌊t2 − σ2(τ)⌋
– {t1 − σ1(τ)} = 0 iff {t2 − σ2(τ)} = 0
– {t1 − σ1(τ)} ≤ {t′1 − σ1(τ)} iff {t2 − σ2(τ)} ≤ {t′2 − σ2(τ)}

• moreover, for all x ∈ T such that σ1(x) ̸= none and σ2(x) ̸= none and c ∈ σ1(C) such that
c = (m1, t1) and π(c) = (m2, t2), we have

– {t1 − σ1(τ)} ≤ {σ1(x)− σ1(τ)} iff {t2 − σ2(τ)} ≤ {σ2(x)− σ2(τ)}
– {σ1(x)− σ1(τ)} ≤ {t1 − σ1(τ)} iff {σ2(x)− σ2(τ)} ≤ {t2 − σ2(τ)}

As a consequence, under the above assumption, for a calendar system for that a ω-regular property
holds, there exists a suitable upper bound l, namely any upper bound of its finite counterpart. As
conclusion, our method can be considered complete just like in the finite case. (Naturally, as usual for
k-induction, verification might require additional lemmas to succeed.)

The existence of such an upper bound can easily be stated as an invariant property over a modified
system: one must expand the system with a synchronous observer that counts the accepting states
during the run. The property is then that the value of this counter is not greater than the upper bound.
The formulated invariant property then can be checked with k-induction.

For successful verification, in our framework we support the model checker with the following
settings:

71

7. K-Induction Based Liveness Checking of Real-Time Systems

• We add a supporting lemma that the value of this counter is positive (otherwise counterexam-
ples to induction of arbitrary length could be constructed, starting from an adequately small
negative counter value).

• By a straightforward interval analysis of the calendar system model, we provide simple invari-
ants that describe the possible minimal and maximal values for timeouts at given locations of
the system, and for the dispatch time of messages, this way sorting out a significant number of
unreachable states.

• We set the induction depth k to be at least equal to the upper bound l, or else no counterexample
during the base case can be found, since the length of paths would be too small for the number
of accepting states to exceed the bound. Moreover, if the bound is greater than the induction
depth, then no path in the state space will contradict the lemma over the counter values during
the induction step, serving as a possible counterexample (if not sorted out by other lemmas),
thus enforcing the increasing of the induction depth.

7.4 Tool Support

For efficient verification of calendar systems, we developed a toolchain that supports the aforemen-
tioned modeling and verification steps. Our implementation is based on the Eclipse Modeling Frame-
work (EMF) and related technologies. It includes a domain specific language (DSL) that enables the
modular description of calendar systems and the formulation of their requirements. Its metamodel,
shown in Figure 7.2, is constructed in EMF and is augmented with a graphical concrete syntax that
enables marking control locations and transitions between them, labeled with events (receiving a
message or that a timeout is over) and actions (sending a message or setting a timeout). The static
analysis of models focused on recognizing possible design flaws like incomplete or nondeterministic
transition description or unreachable control locations. To support k-induction verification we imple-
mented the means for deriving the kind of invariants described in Section 7.3. Invariants are detected
as fix-points of recursive graph patterns that can be matched over the models using the incremental
graph pattern matcher EMF IncQuery [Ber+10].

For model checking, we implemented a code generator that automatically provides the mapping
to the lower level artifacts that are used for model checking in the SAL environment [MOS03]:

• The modular description of a transition system that corresponds to the formal semantics of the
calendar system given in the instance model.

• The description of Büchi automata belonging to the requirements, that can be synchronously
composed with the system to provide the product system.

• The tools for finding counterexamples: an observer for the bisimulation and an observer for
finding loops.

• The tools for proving properties: the counter module for proving properties and the derived
invariant properties.

7.5 Case Study

Using the methods and tool described here, we managed to formally verify liveness properties of
a communication protocol from an industrial SCADA system. During our work, we examined the
part of the protocol that establishes connections between modules and transmission of their states.
We created a model of the fault-free system as a product of two calendar systems that represent the
two participants – the so-called field and control sides – that attempt to build a connection. The

72

7.5. Case Study

Calendar metamodelbdd

Event

ReceiveMessageEvent

CompositeState

AtomicState Module

values

initialValue : Interval

Timeout

SendMessageAction

SetTimeoutAction TimeoutEvent

State

Transition

StateContainer

values

offsetValue : Interval

Action

Message

1..*

initialStates

1..*

oldState

1

invalidatedTimeouts

0..*

0..*

newState 1

0..*

1

1

1

1

1

Figure 7.2: EMF metamodel of the calendar system DSL

models are presented in a graphical syntax in Figure 7.3. We fixed the timing parameters at value
{TPropMin ←[0,TPropMax ←[1,TSync ←[3,TRtMax ←[6}.

The formal model of the system enables the formal specification of requirements. We are going
to consider the protocol correct if eventually both sides of the connection reach state Connected ,
and stay in that state for the future. This can be formalized in LTL as φ = FGc, where c =
FieldLG .Connected ∧ ControlLG .Connected is the proposition expressing that the system is con-
nected. The negation of this formula is ¬φ = GF¬c, for which the corresponding Büchi automaton
is depicted in Figure 7.4.

7.5.1 Discovering Invariants

As mentioned earlier, auxiliary invariants are often crucial for successful k-induction. From the cal-
endar systemmodel of the modules in the protocol, our tooling automatically extracted the invariants
summarized in Table 7.1. Besides the invariant conditions, the table contains the required induction
depth and the time required to prove the property. The invariants have been proved relative to the
following lemmas that are invariant for any calendar system.

• 0 ≤ τ
• x ̸= none→ τ ≤ x for all x ∈ T
• τ ≤ t for all (m, t) ∈ C

73

7. K-Induction Based Liveness Checking of Real-Time Systems

Relative to these lemmas, each invariant is inductive, that is, k = 1. Additionally, we include the
invariant q0 → c for the Büchi automaton.

Table 7.1: Automatically extracted invariants of the calendar system model

Invariant k Time (s)

FieldLG .Reset → FieldLG .ToReset = none 1 < 1

FieldLG .Connecting ∨ FieldLG .Connected →
0 ≤ FieldLG .ToReset − τ ≤ TRtMax

1 < 1

0 ≤ FieldLG .ToSync − τ ≤ TSync 1 < 1

ControlLG .Reset → ControlLG .ToReset = none 1 < 1

ControlLG .Connecting ∨ ControlLG .Connected →
0 ≤ ControlLG .ToReset − τ ≤ TRtMax

1 < 1

7.5.2 Proving Correctness using Abstraction

Using the abstraction technique described in [DS04], we proved further lemmas over the system.
Using this technique, it was possible to provide lemmas for the proof that are not invariant properties
over the original system. This can be achieved by extending the system with monitor components
that prescribe that whenever some given proposition Φi holds in the current state, then some propo-
sition Ψi is to hold in the next state. Semantically, each such monitor is a finite state machine for
the regular safety property G(Φi → XΨi), over which we can simply formulate an invariant that the
property holds. Naturally, this idea generalizes to any regular safety property, and even to general
ω-regular properties if we use Büchi automata as monitors and the k-liveness method for counting
occurrences of accepting states.

To prove the system correct, we defined the abstraction depicted in Figure 7.5. Each state of the
abstraction model induces a lemma, as summarized in Table 7.2, that can be proved using the method
described in Section 7.3.2. As any such lemma is a regular safety property, the Büchi automaton for
its negation can be chosen so that it effectively encodes a minimal deterministic finite automaton that
recognizes bad prefixes. In this case, the upper bound l can be chosen to 0. By proving the abstraction
properties one by one and using them as lemmas, the property φ = FGc can be easily proved.

7.5.3 Extending the System with an Error Model

As the modeled system operates in a safety critical environment, it is necessary to evaluate its correct-
ness under fault assumptions. Thus we extended the model of the system with a simple fault model,
shown in Figure 7.6, that admits the loss of a single message.

The analysis then revealed the counterexample loop depicted in Figure 7.7. The counterexample
shows that in the model, given a certain ordering of events, even the loss of a single message can
cause the modules to get stuck in an unconnected state, and prevent the connection to be established.
To make the analysis more efficient and the counterexample easier to comprehend, we performed
the bounded model checking on a discrete time model. The result is summarized in the first row
of Table 7.3.

74

7.6. Conclusions

Table 7.2: Properties describing an abstraction model

Property k l Time (s)

G(A11 → XA21) 18 0 8.93

G(A21 → XA22) 18 0 5.66

G(A22 → XA32) 19 0 4.28

G(A32 → X(A32 ∨ c)) 6 0 1.26

G(c→ Xc) 7 0 1.39

G(¬A12) 16 0 3.02

G(¬A13) 8 0 1.48

G(¬A23) 9 0 1.58

G(¬A31) 6 0 1.25

FGc 6 4 1.24

To try to fix this problem, we extended the model of FieldLG so that it responds to a received
OBJ1withOBJ2 in stateConnecting . This modification eliminated the counterexample found earlier.

The proof of the system was then elaborated as follows. Let f = FaultModel .One_left . As under
the assumption Gf , the newly added transition never fires, and thus the earlier correctness result
applies, it is sufficient to prove the property G(¬f → ¬c→ FGc). The Büchi automaton correspond-
ing to the negation of this formula is depicted in Figure 7.8. To enable verification, we provided the
invariant that the counter for l has its initial value iff the Büchi automaton is in state q0. We then
successfully proved the property, with the result summarized in the second row of Table 7.3.

This result can be further generalized. We can show that the system tolerates any finite number of
message losses by proving that themodel (without the fault model) satisfies the property starting from
any state as initial state. (A similar approach is presented in Chapter 8.) To prove this, we modified
the model and the generated SAL code by removing any constraints on the set of initial states. The
result of the analysis is shown in the third row of Table 7.3

Table 7.3: Results of the analysis

Property k l Time (s)

FGc (counterexample) 18 – 4.93

G(¬f → ¬c→ FGc) 32 29 49.36

FGc (from any state, without fault model) 32 29 78.47

7.6 Conclusions

In this chapter, we proposed (1) the extension of calendar automata to provide the calendar system
formalism that allows convenient modeling of the core protocols of communicating real-time sys-
tems, (2) the extension of k-induction based techniques to support the verification of both safety and

75

7. K-Induction Based Liveness Checking of Real-Time Systems

liveness properties of calendar systems, and (3) the tool support to perform static analysis, deriva-
tion of invariants and artifacts required for k-induction based automated verification. The framework
proved to be useful to find problems in industrial protocols.

7.6.1 Thesis Summary

This concludes Thesis 4.1 of this dissertation. We summarize it as follows.

Thesis 4.1 K-induction based liveness checking of real-time systems. I proposed the calendar
system formalism that allows convenient modeling of the core protocols of communicating real-
time systems. By a series of transformation steps, I extended k-induction based model checking
to support the verification of both safety and liveness properties of calendar systems. Moreover,
I provided a tool-supported solution for the derivation of lemmas required for successful k-
induction based automated verification.

76

7.6. Conclusions

module FieldLG

Reset

Connecting

Connected

OBJ2, OBJDOWN received:

ToSync over:
send OBJ1(TPropMin,TPropMax]

set ToSync[TSync]
set ToReset[TRtMax]

ToSync over:
send OBJ1(TPropMin, TPropMax]

set ToSync[TSync]

OBJDOWN received:

ToReset over:
invalidate ToReset

ToSync over:
send OBJUP(TPropMin, TPropMax]

set ToSync[TSync]

OBJ2 received:

OBJDOWN received:
set ToReset[TRtMax]

OBJ2 received:
set ToReset[TRtMax]

ToReset over:
invalidate ToReset

set ToSync[TSync]
invalidate ToReset

(a) Field LG

Reset

Connecting

Connected

module ControlLG

OBJUP received:

OBJ1 received:
send OBJ2(TPropMin, TPropMax]

set ToReset[TRtMax]

OBJ1 received:

ToReset over:
invalidate ToReset

OBJ1 received:

OBJUP received:
send OBJDOWN(TPropMin, TPropMax]

set ToReset[TRtMax]

OBJUP received:
send OBJDOWN(TPropMin, TPropMax]

set ToReset[TRtMax]

ToReset over:
invalidate ToReset

invalidate ToReset

(b) Control LG

Figure 7.3: Calendar system models of the protocol

77

7. K-Induction Based Liveness Checking of Real-Time Systems

q0 q1

c

¬c

c
¬c

Figure 7.4: Büchi automaton for GF¬c

A11 A12 A13

A21 A22 A23

A31 A32 Connected

reset connecting connected

F
ield

L
G

reset
connecting

connected

TIMESYNC

OBJ1

OBJ2

TIMESYNC

OBJUP

OBJUP, OBJDOWN

ControlLG

Figure 7.5: Abstraction model for proving correctness

module FaultModel

One_left No_more
OBJ1, OBJ2, OBJUP, OBJDOWN received:

Figure 7.6: Fault model

78

7.6. Conclusions

loop

FieldLG ControlLG

R
eset

C
onnecting

C
onnecting

R
eset

R
eset

C
onnecting

C
onnecting

R
eset

R
eset

4

00

3

9

12

15

10

16

19

18

TIMESYNC
OBJ1

TIMESYNC
OBJ1

OBJ2

TIMESYNC
OBJ1

OBJ2

TIMESYNC
OBJ1

TIMESYNC
OBJ1

TIMESYNC
OBJ1

OBJ2

ToReset ToReset

ToReset

ToReset

TIMESYNC

Figure 7.7: Counterexample for the property

q0 q1 q2

⊤

¬f ∧ ¬c

¬c

c

¬c
c

Figure 7.8: Büchi automaton for ¬G(¬f → ¬c→ FGc)

79

Chapter8

A Decomposition Method

for Liveness Checking

of Hierarchical Real-Time Protocols

Even for models of simple safety critical systems, model checking might be intractable due to the
inherent distributed and timed characteristic of such systems. In particular, the verification of dis-
tributed systems often leads to the well-known phenomena of state space explosion which is a major
obstacle for successful model checking. Real-time systems require methods being able to handle timed
behaviors expressed with real-valued clock variables and their relations, further increasing the com-
plexity of verification. Due to the above mentioned reasons, model checking techniques are often
unable to verify complex real-time systems in a fully automatic manner. Decomposition can serve as
a solution: safety critical systems, especially protocols used in such systems, are mainly composed
hierarchically, where different layers of functions rely on each other. Experts can exploit this lay-
ered structure to decompose the verification problem to smaller and tractable ones. In addition, the
specified properties in real-life systems are typically complex in the sense that they are usually com-
binations of reachability and liveness queries. On the basis of the expected behavior of the system and
the structure of the property specification, experts can decompose the specification and give simpler
verification problems to the model checker.

In this chapter, this decomposition approach is presented formally and demonstrated by the ver-
ification of a distributed safety critical protocol, whose main functionality is to guarantee reliable
communication between components in a distributed SCADA (Supervisory Control and Data Acqui-
sition) system. The protocol is hierarchically layered in the sense that it implements two functional-
ities: master election and the allocation of communication identifiers, where the latter functionality
is based on the former one, i.e. performed by an elected master. The requirement for the protocol
is to provide this functionality even after the occurrence of a finite number of transient faults. This
requirement is formalized in linear temporal logic and a decomposition scheme is introduced in order
to make verification feasible. The main goal of our work is to show how the structure of the system
and the specification can be exploited to provide efficient verification. This decomposition approach
is a generic scheme that can be followed in similar systems where the functions can be decomposed
and a similar combination of reachability and liveness properties shall be verified.

81

8. A Decomposition Method for Liveness Checking of Hierarchical Real-Time Protocols

8.1 Verification Approach

In general, the verification process of a fault tolerant system consists of many modeling and model
checking steps. First, the system has to be verified leaving any fault assumptions out of consideration,
thus the formal model of the fault-free system has to be developed. After the successful verification
of the fault-free system, to verify fault tolerance, possible faults and their effects on the system have
to be taken into account. Hence fault models have to be defined, that composed with the model of the
fault-free system represent the behavior of the system under the given fault assumptions.

Since the verification of all possible faults and their combinations is often infeasible, at this point
the verification engineer may restrict the range of investigated faults to selected ones. However, omit-
ting any relevant fault or combination of faults can lead to verification results that cannot be justified
with respect to the behavior of the real system. In this section we introduce a different approach,
which is based on the following assumptions and restrictions:

• We assume that the system under consideration is a distributed protocol with a layered hierar-
chy of services, where correctness of higher level functions is based on the correctness of lower
level functions. Our goal is to check the correctness of such systems under the occurrence of
finitely many faults.

• Permanent and crash faults are not modeled since the focus is the verification of resilience, i.e.
resuming the correct behavior of the system after transient faults. Permanent and crash faults
are easier to detect than transient faults and need redundancy to provide fault tolerance.

• The effects of transient faults are modeled on a logical level as disturbances in the behavior of
the related components in the form of additional transitions (called fault transitions) between
states of the fault-free model. With regard to the common fault classification (crash, omission,
timing, computation and Byzantine faults) we have the following considerations. Crash faults
are not modeled as mentioned above. Omissions are covered by fault transitions that step over
the omitted processing steps (including message sending or message processing). The effects of
delayed messages and corrupt messages are covered by the combination of fault transitions that
cause the loss of the original message and creation of a faulty one. Similarly, data corruption is
covered by fault transitions that alter the state variables. Control flow errors among states, in-
cluding the restart of the component, are also covered by fault transitions. Regarding Byzantine
faults, those faults are covered whose effects can be modeled in terms of transitions between
the states of the fault-free model.

• The resilience of the system is expressed as a persistence property: the effects caused by a
transient fault shall be tolerated in such a way that after the occurrence of a fault (and the
related disturbance), the behavior will eventually resume the correct one (this way almost all
states along a path will belong to a correct behavior).

As presented in the following sections, the second assumption allows a systematic verification of
faults, without requiring separate (manual) modeling of each fault. The third assumption enables in
certain cases the use of a decomposition approach that divides the verification task into smaller and
simpler ones.

In the following the used notations are introduced then the proof strategy for the efficient veri-
fication of fault models is detailed. Finally, the decomposition of persistence properties into simpler
properties is given.

82

8.1. Verification Approach

8.1.1 Notation

We introduce the following notations for two different restrictions of a transition system with re-
spect to a propositional formula. Let S = (S,A, T, I). Then Sφ = (S,A, T, S↾φ) and Sφ =
(S↾φ, A, T ↾φ, S↾φ). Here, we define S↾φ = {s ∈ S | s |= φ} and T ↾φ = T ∩ (S↾φ × S↾φ). For
example, S⊤ = (S,A, T, S), that is, S with all states considered as potential initial states. It is easy to
see that (Sψ)φ = (Sφ)ψ , thus in this case the brackets can be omitted. Moreover, (Sφ)ψ = Sφ∧ψ =
Sψ∧φ = (Sψ)φ and (Sφ)ψ = Sψ .

8.1.2 Modeling Transient Faults

A transient fault of a system is considered to change the state of a component from one state to an
other. Such a fault is for example the restart of a component (which brings the component to an
initial state) or the loss of a message in the channel. In the following the concept of a transient fault
is formalized and we show how this formalization can be exploited during formal verification.

Let S = (S,A, T, I) be a transition system. We model a fault in S as a set of transitions
F ⊆ S ×A′ × S, where a fault transition (s, α, s′) ∈ F models the effects of the occurrence of the
fault in state s. In other words, we consider transient faults that can be expressed in terms of a nonde-
terministic change of state in the fault-free system. Naturally, the range of faults that can be modeled
this way depends on the formulation of the system.

Given S and F , we can define a transition system SF that models the system with a finite number
of possible occurrences of transient fault(s) F as SF = (SF , AF , TF , IF) where

• SF = S×N. Given a state (s, n), number n is the number of transient faults that can still occur
in the system.

• AF = A ∪A′.
• IF = I × N. Initially, any finite number of faults are allowed to occur.
• TF is the smallest relation defined by the following rules:

(s, α, s′) ∈ T n ∈ N
normal transition

(s, n)
α−→ (s′, n)

(s, α, s′) ∈ F n ∈ N
fault transition

(s, n+ 1)
α−→ (s′, n)

To verify that a system S satisfies a persistence property FGφ even if a transient fault defined by
F can occur finitely many times, the following direct approach can be applied:

1. Construct SF from S and F .
2. Check SF |= FGφ.
However, the fact that the system SF satisfies a persistence property FGφ often originates from

the stronger property that S stabilizes to φ-states starting from any of its states. Using the above
notation, this can be expressed by the following rule.

S⊤ |= FGφ
fault abstractionSF |= FGφ

It is easy to see that this approach is sound, that is, if the antecedent hold, then the consequent
also holds.

83

8. A Decomposition Method for Liveness Checking of Hierarchical Real-Time Protocols

Proof. We prove the stronger property that τ |= FGφ for all τ ∈ Traces(SF). Assume S⊤ |= FGφ
and let τ = (s0, n0)(s1, n1)(s2, n2) . . . be an trace of SF . We apply induction on n0. If n0 = 0, then
τ is an initial trace of S⊤, thus the statement holds. Now assume n0 > 0. If for all i > 0 we have
(si−1, αi, si) ∈ T for some αi ∈ A, the same applies as in the base case. So assume there is a state
(si−1, ni−1) with a minimal i such that (si−1, αi, si) ∈ F for some αi ∈ A′. Since ni < ni−1, by the
induction hypothesis, τ i |= FGφ, thus τ |= FGφ.

Since the rule is sound for any F , it allows the verification of fault tolerance without the need of
explicitly modeling faults.

8.1.3 Decomposition of Persistence Properties

The resilience of the system is expressed as a persistence property FGφ. The verification of such
properties is a complex task as the model checker has to handle all traces and check if they contain fair
cycles (with fairness constraint¬φ) as counterexamples. In the following, we describe two rules that in
certain cases – in our case, the layered structure of protocol functionalities – enable the simplification
of the model checking problem of such properties. We omit soundness proofs due to their simplicity.

The first rule describes the decomposition of a persistence property according to the expected
behavior of the system. Without loss of generality, we can assume that the persistence condition is
of the form φ ∧ ψ. Here, both φ and ψ define some configuration of the system that is expected to
eventually persist. If the persistence of the system with respect to ψ depends on its persistence with
respect to φ, the following rule can be applied to simplify the model checking problem.

S |= FGφ Sφ |= FGψ
FG-detachmentS |= FG(φ ∧ ψ)

Here, all states of Sφ are φ-states. The main advantage of such a decomposition is that if φ and
ψ refer to different variables of the system, then the subproblems can be simplified significantly by
abstractions that depend on the property, such as cone of influence reduction [CGP99].

The second rule divides the model checking problem into two simpler problems.

S |= Fφ Sφ |= Gφ
G-detachmentS |= FGφ

Here, the check of S |= Fφ is a query searching for a lasso shaped initial path of (¬φ)-states (as
counterexample). The check Sφ |= Gφ basically amounts to verify whether φ is inductive, which is a
less expensive step.

8.2 Description of the Protocol

In this section, as the context and motivation of our work, the protocol and specified properties are
introduced in details. The main purpose of the protocol is to ensure stable and fault tolerant com-
munication between components of a distributed SCADA system. In the protocol, communication is
performed in two layers: the lower layer serves for administration, while the upper layer transmits
information between the components.

There are two types of components in the system: atmost four communication units, calledETH s,
and at most ten input-output units, called LIOs, that are connected via a CAN bus that serves as the

84

8.2. Description of the Protocol

SLAVE
[slaveTimer ≤ tSlave] MASTER

ETH

SYNCING
[syncTimer ≤ tSync]

[slaveTimer ≥ tSlave]

Normal(x)

[cid ≤ x]

[default] / slaveTimer := 0

Normal(x)[default] / slaveTimer := 0

[cid ≤ x]

[syncTimer ≥ tSync] / syncTimer := 0; send Normal(cid)

Figure 8.1: Master election

communication channel. Each component has a 29 bit physical address called hwid that is used in
administrative messages to identify a specific component on the bus. However, components also get
assigned a 4 bit logical address called cid that is used in the higher level communication protocols
instead of hwid to save bandwidth. The cids of ETH s are assigned statically from the range [0...3],
while LIOs obtain their cid values dynamically from the range [4...13] from a distinguished ETH
that is an elected master. cid values 14 and 15 are reserved for addressing multicast and broadcast
messages, respectively.

The functionalities of the protocol can be summarized as follows:
• Master election. From theETH s that communicate on the bus, the one with the lowest cid value
must be elected as master.

• Assignment of logical addresses. The master ETH must ensure that all LIOs have a unique cid .
Since the system is used in a critical context, it must provide the above functionalities even in the

presence of a finite number of predefined faults. Accordingly, the verification must be aimed at the
checking of the correct functionality of the protocol in a fault-free case and also in the presence of
these faults. As the protocol was designed using SysML models (with time extensions), we will refer
to the relevant statechart models to present the operation of the protocol. These statecharts were
used to derive the formal models that were the basis of verification using our fault modeling and
decomposition approach.

8.2.1 Master Election

To ensure that LIOs obtain unique logical addresses, cids can only be assigned by a distinguished
ETH called master. The purpose of master election is to ensure that during the operation of the
system, the ETH with the lowest cid is consistently considered as master by all ETH s that are up.
A simple timed statechart model of master election is depicted in Figure 8.1.

The behavior of ETH s defined by the statechart can be summarized as follows. Note that
syncTimer and slaveTimer are clock variables that are used to define time dependent behavior in
the same way as clock variables are used in the common timed automata formalism: their values are
constantly increasing by a uniform rate and can be checked in guard expressions and reset by actions.

85

8. A Decomposition Method for Liveness Checking of Hierarchical Real-Time Protocols

SLAVE

LISTENING

Assign(x, y) / cidTable[x] := y

MASTER

SEARCHING
[searchTimer ≤ tSearch]

ASSIGNING
[∀i.(cidTable[i] ≠ -1 → cidTimer[i] ≤ tCid)]

[searchTimer ≥ tSearch] / searchTimer := 0; send Search

Login(x, y)
/

sweep();
tmp := newCid(x, y);
cidTable[tmp] := y;
cidTimer[tmp] := 0;
send Assign(tmp, y)

[cidTimer[i] ≥ tCid]
[cidTable[i] ≠ -1]

/
cidTable[i] := -1

Figure 8.2: Assignment of logical addresses as (a) slave (b) master

Moreover, state invariants can be defined (written into the state symbol in square brackets) that may
also refer to clock variables.

• A message Normal(cid) is broadcasted at every tSync time units with the cid of the ETH as
payload. This message serves as a heartbeat between ETH s.

• Initially, the ETH is a slave. If for the last tSlave time units the ETH has not received any
Normal messageswith lower cid value than theETH itself has, then theETH becomesmaster.

• An ETH remains master as long as it does not receive a message Normal with a cid lower
than its own cid .

Summarizing the above, an ETH is master iff all heartbeats received in the last tSlave time units
are from ETH s with a cid not lower than its own – the reception of a message with a lower cid value
immediately brings the ETH back to the slave role.

8.2.2 Assignment of Logical Addresses

To keep record of the cids of all LIOs, each ETH maintains an array cidTable that is indexed with
cids from range [4...13] and contains hwids as values. For a cid x from the above range, anETH then
assumes that cidTable[x] is the hwid of the LIO to whom x is assigned as cid . If cidTable[x] = −1,
then x is assumed to be unassigned.

The assignment of cids is performed by themasterETH , while slaves only update their cidTables
based on received messages. The statechart model of the cid assignment is showed in Figure 8.2
for both masters and slaves. These models can be interpreted as refinement of the corresponding
composite states (containing this way sub-machines) in the model of master election.

The role of a slave ETH is simply to keep track of assigned cid values by listening to Assign
messages sent by the master and updating its cidTable based on them.

86

8.3. Verification of the Protocol

LIO

LISTENING

Search / send Login(cid, sn)

cid := -1

Assign(x, y)

[sn = y] / cid := x

[default]

Figure 8.3: Behavior of LIOs

The behavior of a master ETH can be summarized as follows (note that here searchTimer is a
clock variable and cidTimer is an array of clock variables).

• Every tSync time units it broadcasts a message Search . As a response, each LIO is supposed to
send a message Login(x, y)where x is the current cid of the LIO (-1 if undefined) and y ̸= −1
is its hwid .

• Upon receiving a message Login(x, y), the following steps are performed.
1. By calling a procedure sweep, any occurrence of a given hwid other than the first is erased

from cidTable . As it turned out during verification, this method is required for resilient
operation of the protocol.

2. Based on the entries in cidTable , a new cid is calculated by the function newCid so that
the following conditions are met.
– If y appears in cidTable as a value at some index, then the index is returned as result.

Since sweep ensures that each hwid is unique in cidTable , the result is well defined.
– Else if x ̸= −1 and x is unassigned then it is returned as result.
– Else the smallest unassigned cid is returned. The existence of such a cid is ensured

by sweep.
3. The cidTable is updated, the corresponding timer in cidTimer is reset and a message

Assign is sent with the new cid .
• Other than that, if a row of cidTable corresponding to an assigned cid was not updated in the
last tCid time units, then the cid gets unassigned.

8.2.3 LIOs

The model of a LIO is shown on Figure 8.3.
• Initially, the LIO has no cid assigned (cid = −1).
• Upon receiving a message Search , the LIO replies with a message Login(cid , hwid).
• Upon receiving a message Assign(x, y), if hwid = y, then cid is updated to x. The message is
ignored otherwise.

8.3 Verification of the Protocol

This section details the application of the approach presented in the previous section in the verifi-
cation of the protocol. The formal, dense time model of the system was constructed as a network of
timed automata, whose operational semantics can be expressed in terms of a transition system. The

87

8. A Decomposition Method for Liveness Checking of Hierarchical Real-Time Protocols

verification aims at proving the resilience of the system: even in the presence of transient faults, the
components shall be able to communicate with each other. This requires that after a finite number
of faults, the system will persistently have a unique master and all LIOs have a logical address as-
signed in a consistent way. Among others, this formulation admits the verification of correctness in
the presence of the following transient faults:

• An ETH or LIO restarts.
• The content of an ETH ’s cidTable changes.
• The cid of a LIO changes.
• The content or recipient of a message changes.
• A message is lost.
• A message is created.

8.3.1 Decomposing the Verification of the Protocol

To enable model checking, the statechart model containing the composite statecharts of all ETH s
and LIOs is mapped to a network of timed automata. Signal events are handled by an automaton
representing a bounded capacity communication channel that is able to store and delay the sent
messages until their reception. The resulting formal model can be analyzed by the model checker
Uppaal [Beh+06].

As the protocol has two functionalities (master election and assignment of communication IDs),
the requirement of resilience is a composite property that includes the temporal correctness of these
functionalities. Accordingly, resilience is formalized as a persistence property FG(φ ∧ ψ), where φ
expresses that there is a unique master in the system, whereas ψ states that each LIO was assigned
a unique logical address that corresponds to a row of the master’s cidTable .

The following proof tree shows the decomposition of this top level requirement.

S⊤ |= FGφ Sφ⊤ |= FGψ
FG-detachmentS⊤ |= FG(φ ∧ ψ)

fault abstractionSF |= FG(φ ∧ ψ)

Instead of verifying the system model with different fault configurations, we employ the fault ab-
straction rule: this simulates that the verification starts after the occurrence of any finite number of
transient faults, leaving the system in any state. The next reduction rule splits up the property accord-
ing to the FG-detachment rule: in the protocol, master election is a precondition for the successful
logical address assignment. By proving the subproperties we can infer the validity of the property
itself. Now, the task is to prove two properties referring to different aspects of the system.

• S⊤ |= FGφ expresses that the system initialized in any state will have a master and the partic-
ipants will not change their role.

• Sφ⊤ |= FGψ expresses that the system initialized in any state will finally have consistent cid
assignment, assuming there is a unique stable master.

In the following sections the proofs of these two properties are detailed.

8.3.2 Verification of Master Election

The verification of the master election protocol is reduced to the model checking of the FGφ temporal
logic specification on system S⊤. Now, the rule G-detachment can be applied, and thus the resulting
model checking queries to be proven are S⊤ |= Fφ and Sφ |= Gφ.

88

8.3. Verification of the Protocol

As these resulting temporal logic formulas refer to only some aspects of the system, cone of influ-
ence reduction can be employed to construct transition system S1 from S⊤. Behavior related to cid
assignment is not relevant in the verification of master election: no interaction in master election is
triggered or influenced by the administration of cid assignment. This enables the cone of influence
reduction to fully reduce the model to the following elements, that are included in the model S1:

• Four ETH s (with behavior as in Figure 8.1).
• Communication channel.
The model (S1)φ is the same as S1, the only difference is that the initial states are those where

the master has already been elected.
The property to be verified is φ, which refers to the situation of successful master election:
• ETH 0 is master.
• ETH 1, ETH 2 and ETH 3 are slave.
The formal proof tree that was applied in the verification of the master election protocol is the

following:

S1 |= Fφ

S⊤ |= Fφ

(S1)φ |= Gφ

Sφ |= Gφ
G-detachmentS⊤ |= FGφ

8.3.3 Verification of Logical Address Assignment

The verification of the logical address assignment protocol is reduced to the model checking of tem-
poral logic specification FGψ on system Sφ⊤. Similar to the verification of the master election protocol,
the rule G-detachment can be applied to decompose the problem into two parts. The resulting model
checking queries to be proven are Sφ⊤ |= Fψ and Sφψ |= Gψ.

In transition system Sφ⊤, the master election procedure is assumed to have been successful, thus in
the verification of cid assignment we can exploit that there will be no more changes in the roles of the
ETH s. In addition, the resulting temporal logic formulas refer only to aspects of the system related
to cid assignment. These advantages of the decomposition can be exploited and cone of influence
reduction can be applied to construct transition system S2 from Sφ⊤, where S2 contains:

• ETH 0 as master (with behavior as in Figure 8.2).
• Ten LIOs (Figure 8.3).
• Communication channel.
The property to be verified is ψ, which refers to the situation where the LIOs have unique cid

values and it is consistent with the knowledge of the master:
• For each two rows of ETH 0.cidTable , if they contain an equal value, then both values are −1
(thus the assigned cid values in the table of the master are unique).

• The cids assigned to LIOs correspond to the values in ETH 0.cidTable .
• Each LIO has a cid different from −1.
The formal proof tree that was applied in the verification of the cid assignment protocol is the

following:

S2 |= Fψ

Sφ⊤ |= Fψ

(S2)ψ |= Gψ

Sφψ |= Gψ
G-detachmentSφ⊤ |= FGψ

89

8. A Decomposition Method for Liveness Checking of Hierarchical Real-Time Protocols

8.3.4 Result of the Verification

The verification problem was decomposed according to the proof rules detailed in the previous sec-
tions. Cone of influence reduction was applied to the formal models, which significantly reduced the
size of the formal models. When the first version of the protocol design was verified, insufficiencies
were revealed in the protocol: an oscillation between states could occur that prevented the proof of
the liveness property regarding the successful cid assignment. After the required modification of the
design (among others the inclusion of the procedure sweep the Uppaal model checker could then
verify all the four tasks successfully within seconds. Without the proposed approach, namely the de-
composition and abstraction steps, the verification could not succeed due to resource limitations, and
because properties in Uppaal are restricted to a narrow subset of CTL.

8.4 Conclusions

In this chapter, we devised an approach which combines the decomposition of the temporal specifi-
cation with abstraction. Fault abstraction is used to construct a single formal model that covers the
effects of various transient faults that may disturb the operation of the protocol. This abstract model
includes all behaviors of the system where a finite number of transient faults is allowed to occur.
We proved the soundness of the approach. We introduced two decomposition rules for persistence
properties in linear temporal logic which are tailored to the problem domain. When applying these
rules, we exploited the composite structure of the system functionalities (behavior) to obtain simpler
subtasks where the system could be simplified significantly by cone of influence reduction. By using
the introduced approach, the verification of the protocol was successfully elaborated.

8.4.1 Thesis Summary

This concludes Thesis 4.2 of this dissertation. We summarize it as follows.

Thesis 4.2 A decomposition method for liveness checking of hierarchical real-time protocols. I
proposed a generic decomposition scheme for the verification of real-time systems with a hier-
archical structure in functionality. The method is applicable when a combination of safety and
liveness properties shall be verified.

90

Chapter9

Summary of the Research Results

We conclude by comparing the challenges formulated in Section 1.2 against the contributions de-
scribed in this dissertation.

9.1 Thesis 1

Challenge 1 Configurable abstraction refinement-based model checking. Most tools focus on a
specific algorithm and formalism to solve a particular verification task. Is it possible to
provide a generic, modular and configurable model checking framework that supports
the development, evaluation and application of abstraction refinement-based algorithms
for the reachability analysis of models in different formalisms?

In Chapter 3, we introduced Theta, a generic, modular and configurable model checking frame-
work for abstraction refinement-based reachability analysis for different formalisms. We described
the architecture that helps to implement, evaluate and combine various algorithms in a modular way
for different formalisms. We also demonstrated the applicability of the framework by use cases for the
verification of hardware, PLC, software and timed automata models. Results of the evaluation with
configuring and combining different analysis modules support the need for a generic framework, such
as Theta.

For the specific case of timed automata, in Chapter 4, we presented an algorithmic framework

for the lazy abstraction based location reachability checking. We formalized the combination of ab-
stractions and proved its properties. This framework allowed the straightforward implementation of
efficient model checkers using configurable combined strategies.

We summarize Thesis 1 as follows.

Thesis 1 A framework for abstraction refinement-based reachability checking. I proposed solu-
tions formaking abstraction refinement basedmodel checking configurable in terms ofmodeling
formalism, abstract domain, and refinement strategy.
1.1 Architecture of a configurable model checking framework. I designed the architecture, inter-

faces and generic algorithmic components of Theta, a generic, modular, and configurable
model checking framework that enables the combination of various abstract domains,
interpreters, and strategies for abstraction and refinement, applied to models of various
formalisms.

91

9. Summary of the Research Results

1.2 A uniform formalization of abstraction refinement strategies for timed automata. I proposed
and proved correct a formal algorithmic framework that enables the uniform formalization
and combined use of various abstract domains and abstraction refinement strategies for
the location reachability checking of timed automata.

The results of Thesis 1 enabled the definition, implementation and empirical evaluation of novel
algorithms and algorithm combinations. Related publications are the following: [j2; c6; c10] .

9.2 Thesis 2

Challenge 2 Abstraction refinement for timed automata. Abstraction refinement has been suc-
cessfully used in model checking, and in particular for model checking software. Is it pos-
sible to provide abstraction refinement algorithms that are efficient in the domain of real-
time systems?

In Chapter 5, we proposed a lazy reachability checking algorithm for timed automata based on
interpolation for zones. Moreover, we proposed two refinement strategies, both a combination of
forward search, backward search and interpolation. We demonstrated with experiments that - even
without the use of extrapolation - the method is competitive with sophisticated non-convex abstrac-
tions in both execution time and memory consumption.

We summarize Thesis 2 as follows.

Thesis 2 Lazy reachability checking for timed automata using interpolants. I proposed a solu-
tion for the location reachability problem of timed automata based on the following steps.

• I defined interpolation for zones, and gave an algorithm for computing a zone interpolant
from two inconsistent zones, represented as canonical difference bound matrices.

• Based on pre- and post-image computation for timed automata in the zone abstract do-
main, I generalized the notion of zone interpolation to sequences of interpolants, this way
enabling its use for abstraction refinement-based location reachability checking of timed
automata.

• I proposed forward and backward zone interpolation as approaches to lazy abstraction
refinement.

• I experimentally evaluated the performance of the proposed abstraction refinement strate-
gies, and showed that these compare favorably to known methods based on efficient lazy
non-convex abstractions.

The proposed method is applicable to more expressive variants of timed automata, e.g. to au-
tomata with diagonal constraints in guards [BLR05], or to updatable timed automata [Bou04]. Related
publications are the following: [j2; c8; c9] .

9.3 Thesis 3

Challenge 3 Model checking timed automata with discrete variables. For practical real-time sys-
tems, design models typically contain discrete data variables with nontrivial data flow
besides real-valued clock variables. Is it possible to provide methods for alleviating state
space explosion in such models?

92

9.4. Thesis 4

In Chapter 6, we proposed a lazy algorithm for the location reachability problem of timed au-
tomata with discrete variables. The method is based on controlling the visibility of discrete variables
by using interpolation for valuations of variables. We demonstrated with experiments that our ab-
straction and refinement strategy, combinedwith lazymethods for the abstraction of continuous clock
variables, can achieve significant reduction in the size of the generated state space during search, typ-
ically with low or no overhead in execution time, and in cases even with an additional speedup.

We summarize Thesis 3 as follows.

Thesis 3 Lazy reachability checking for timed automata with discrete variables. I proposed a
solution for the location reachability problem of timed automata with discrete variables based
on the following steps.

• I defined interpolation between a valuation and a formula, and gave an algorithm for
computing valuation interpolants.

• Based on weakest precondition computation for transitions of timed automata, I general-
ized the notion of valuation interpolation to sequences of interpolants, this way enabling
its use for abstraction refinement-based location reachability checking.

• I proposed forward and backward valuation interpolation as approaches to lazy abstrac-
tion refinement.

• I experimentally evaluated the performance of the proposed abstraction refinement strate-
gies, and showed that these are suitable to significantly reduce the number of states gen-
erated during state space exploration of timed automata models with many discrete vari-
ables.

The proposed method does not rely on SMT solving, and is thus applicable to models with arbi-
trary expressions and statements over discrete variables, e.g. division, multiplication between vari-
ables, etc. Related publications are the following: [j1; j2; c4; c7; c11; c12; e13] .

9.4 Thesis 4

Challenge 4 Liveness checking for industrial real-time systems. Requirements for industrial real-
time systems are often formalized in terms of liveness properties. Is it possible to provide
methods for liveness checking of such systems, while still supporting the various semantic
features that are present in such models?

In Chapter 7, we proposed (1) the extension of calendar automata to provide the calendar system
formalism that allows convenient modeling of the core protocols of communicating real-time sys-
tems, (2) the extension of k-induction based techniques to support the verification of both safety and
liveness properties of calendar systems, and (3) the tool support to perform static analysis, deriva-
tion of invariants and artifacts required for k-induction based automated verification. The framework
proved to be useful to find problems in industrial protocols.

In Chapter 8, we devised an approach which combines the decomposition of the temporal speci-
fication with abstraction. Fault abstraction is used to construct a single formal model that covers the
effects of various transient faults that may disturb the operation of the protocol. This abstract model
includes all behaviors of the system where a finite number of transient faults is allowed to occur.
We proved the soundness of the approach. We introduced two decomposition rules for persistence
properties in linear temporal logic which are tailored to the problem domain. When applying these
rules, we exploited the composite structure of the system functionalities(behavior) to obtain simpler

93

9. Summary of the Research Results

subtasks where the system could be simplified significantly by cone of influence reduction. By using
the introduced approach, the verification of the protocol was successfully elaborated.

We summarize Thesis 4 as follows.

Thesis 4 Improved methods for liveness checking of industrial real-time protocols. During my
research, I proposed improvedmethods for liveness verification of industrial real-time protocols.
4.1 K-induction based liveness checking of real-time systems. I proposed the calendar system

formalism that allows convenient modeling of the core protocols of communicating real-
time systems. By a series of transformation steps, I extended k-induction based model
checking to support the verification of both safety and liveness properties of calendar
systems. Moreover, I provided a tool-supported solution for the derivation of lemmas re-
quired for successful k-induction based automated verification.

4.2 Adecompositionmethod for liveness checking of hierarchical real-time protocols. I proposed a
generic decomposition scheme for the verification of real-time systems with a hierarchical
structure in functionality. The method is applicable when a combination of safety and
liveness properties shall be verified.

We successfully applied the method during the verification of a distributed safety critical pro-
tocol, whose main functionality is to guarantee reliable communication between components in a
distributed SCADA (Supervisory Control and Data Acquisition) system. Related publications are the
following: [c3; c5] .

94

AppendixA

Appendix

In this appendix, we include details that are relevant for the evaluation of technical soundness of the
dissertation.

A.1 Lemmas and Proofs

Lemma 10. A ⪯ A↾X

Lemma 11. A ⪯ B ⇒ LAM ⊆ LBM

Lemma 12. A ⪯ B ⇒ post t(A) ⪯ post t(B)

Lemma 13. post tLAM ⊆ Lpost t(A)M

Proof of Proposition 6. Assume (s1, s2) ⊑ (s′1, s
′
2). By Definition 4.9, we have s1 ⊑ s′1 and s2 ⊑ s′2. By

soundness of D1 and D2, it follows that Js1K ⊆ Js′1K and Js2K ⊑ Js′2K. Thus Js1K∩ Js2K ⊆ Js′1K∩ Js′2K.
By Definition 4.9, it follows that J(s1, s2)K ⊆ J(s′1, s

′
2)K.

By soundness of D1 and D2, we have Σ0 ⊆ Jinit1K and Σ0 ⊆ Jinit2K. Thus Σ0 ⊆ Jinit1K ∩ Jinit2K.
By Definition 4.9, we obtain Σ0 ⊆ JinitK.

By soundness of D1 and D2, we have post tJs1K ⊆ Jpostt(s1)K and post tJs2K ⊆ Jpostt(s2)K.
Thus post tJs1K ∩ post tJs2K ⊆ Jpostt(s1)K ∩ Jpostt(s2)K. Moreover, as, post t is an image, we obtain
post t(Js1K ∩ Js2K) ⊆ post tJs1K ∩ post tJs2K. Altogether, we have post t(Js1K ∩ Js2K) ⊆ Jpostt(s1)K ∩
Jpostt(s2)K, from which post tJ(s1, s2)K ⊆ Jpostt(s1, s2)K follows by Definition 4.9.

Proof of Proposition 9. Assume Z1 ⊆ Z2. Then LZ1M ⊆ LZ2M by the monotonicity of images in ⊆.
By Lemma 10, we have Σ0 ⪯ Σ0↾C . Then by Lemma 11 it follows that LΣ0M ⊆ LΣ0↾CM. As

Σ0 = LΣ0M, we obtain Σ0 ⊆ LΣ0↾CM.
By Lemma 10, we have post t(Z) ⪯ postCt (Z). Thus by Lemma 11, we have Lpost t(Z)M ⊆

LpostCt (Z)M. By Lemma 13 it follows that post tLZM ⊆ LpostCt (Z)M.

Proof of Proposition 11. We have W ⊑W ′ ⇒ JW K ⊆ JW ′K by Proposition 9. Moreover, Σ0 ⊆ J⊤K
and post tJW K ⊆ J⊤K trivially hold.

95

A. Appendix

Proof of Lemma 5. Assume postCt (Z) ⊆ Z ′. Then LpostCt (Z)M ⊆ LZ ′M by the monotonicity of im-
ages in ⊆. Moreover, from Lemma 10, we obtain post t(Z) ⪯ postCt (Z), from which Lpost t(Z)M ⊆
LpostCt (Z)M follows by Lemma 11. Also, post tLZM ⊆ Lpost t(Z)M by Lemma 13. Thus post tLZM ⊆
LZ ′M.

Proof of Lemma 4.

Z ∩ preCt (Z
′) ⊆ ⊥

⇔ Z ∩ (postCt)
−1(Z ′) ⊆ ⊥ (by definition)

⇔ Z ⊆ ((postCt)
−1(Z ′))c

⇔ Z ⊆ (postCt)
−1((Z ′)c) (property of images)

⇔ postCt (Z) ⊆ (Z ′)c (property of images)
⇔ postCt (Z) ∩ Z ′ ⊆ ⊥ □

Proof of Proposition 16. ν = ν ′ ⇒ LνM ⊆ Lν ′M trivially holds by congruence. The rest follows by a
reasoning analogous to the one applied in Proposition 9.

Proof of Proposition 18. Assume ν ⪯ ν ′↾Q′ andQ′ ⊆ Q′. Thus we have ν↾Q ⪯ ν ′↾Q′ , and by Lemma 11
we obtain Lν↾QM ⊆ Lν ′↾Q′M. Moreover, Σ0 ⊆ Lν0↾∅M and post tLν↾QM ⊆ LpostDt (ν)↾∅M trivially hold.

Proof of Lemma 7. Assume α ⪯ β. Then post t(α) ⪯ post t(β) by Lemma 12. Thus postDt (α) ⪯
postDt (β) by Lemma 3.

Proof of Lemma 8. Assume postDt (ν) ⪯ ν ′. Then LpostDt (ν)M ⊆ Lν ′M by Lemma 11. Moreover, from
Lemma 10, we obtain post t(ν) ⪯ postDt (ν), from which Lpost t(ν)M ⊆ LpostDt (ν)M follows by
Lemma 11. Also, post tLνM ⊆ Lpost t(ν)M by Lemma 13. Thus post tLνM ⊆ Lν ′M.

96

A.2. Tables

A.2 Tables

Table A.1: Execution time for Pat and MCTA models (full)

m
od

el
B
B
B

B
B
F

B
B
N

B
FB

B
FF

B
FN

B
LB

B
LF

B
LN

D
B
B

D
B
F

D
B
N

D
FB

D
FF

D
FN

D
LB

D
LF

D
LN

cr
it
ic
al
3

2.2
2.1

1.6
2.1

2.1
1.7

2.6
2.6

1.9
2.8

2.7
2.0

2.7
2.6

2.0
2.7

2.7
1.8

cr
it
ic
al
4

45
.2

45
.4

37
.0

42
.1

41
.9

34
.4

55
.4

54
.9

41
.4

56
.4

55
.4

46
.3

50
.6

49
.6

41
.4

48
.8

48
.2

34
.9

cs
m
a
9

12
.8

13
.0

8.2
13
.4

13
.4

8.7
11
.7

11
.6

7.2
20
.0

20
.2

16
.3

22
.0

22
.0

18
.4

35
.9

36
.1

32
.1

cs
m
a
10

31
.7

32
.0

19
.2

33
.0

33
.0

20
.6

28
.7

28
.6

17
.1

61
.2

61
.9

51
.6

69
.3

70
.1

60
.0

15
5.2

15
5.7

15
0.3

cs
m
a
11

82
.4

82
.3

49
.7

85
.6

85
.9

53
.2

72
.4

71
.8

43
.2

22
9.3

23
0.8

20
7.4

27
0.6

27
3.0

25
4.7

-
-

-
cs
m
a
12

24
1.0

24
2.2

14
1.4

25
4.7

25
4.8

15
4.8

20
8.7

20
9.3

12
5.8

-
-

-
-

-
-

-
-

-
fd
di

50
-

-
-

-
-

-
9.6

9.7
9.1

3.3
3.3

3.0
3.3

3.4
3.0

2.3
2.3

2.1
fd
di

70
-

-
-

-
-

-
22
.9

22
.9

22
.3

5.5
5.6

5.1
5.8

5.9
5.3

4.1
4.2

3.7
fd
di

90
-

-
-

-
-

-
50
.3

50
.6

49
.5

9.7
9.8

9.5
10
.2

10
.6

9.7
7.5

7.4
7.1

fd
di

11
0

-
-

-
-

-
-

90
.0

89
.4

86
.8

15
.3

15
.1

14
.9

15
.9

15
.8

15
.4

11
.9

11
.9

11
.4

fis
ch
er

7
4.1

4.1
3.1

4.1
4.3

3.3
3.2

3.1
2.3

4.1
4.0

3.0
4.3

4.2
3.3

3.2
3.1

2.3
fis
ch
er

8
9.7

9.8
7.8

10
.3

10
.2

8.4
7.2

7.1
5.4

9.8
9.8

8.1
10
.1

10
.2

8.5
7.1

7.2
5.2

fis
ch
er

9
30
.5

30
.4

24
.8

34
.1

33
.6

28
.3

19
.6

19
.0

14
.1

31
.7

31
.4

26
.5

34
.2

34
.4

28
.9

18
.9

18
.7

14
.1

fis
ch
er

10
11
7.8

11
7.1

99
.2

13
5.3

13
4.4

11
6.1

65
.4

64
.3

48
.9

12
3.1

12
1.6

10
5.7

13
9.1

13
7.0

12
0.1

65
.7

64
.3

49
.9

ly
nc
h
7

6.3
6.4

4.4
6.4

6.5
4.5

4.9
4.9

3.1
5.5

5.7
4.0

5.8
6.0

4.3
4.4

4.6
2.9

ly
nc
h
8

16
.2

16
.3

11
.1

17
.4

17
.7

11
.9

11
.5

11
.7

7.1
15
.1

15
.7

11
.3

16
.3

16
.6

12
.2

10
.1

10
.8

6.7
ly
nc
h
9

56
.8

56
.4

38
.8

62
.0

62
.1

44
.4

36
.2

35
.7

21
.2

52
.1

52
.5

39
.3

56
.9

56
.9

44
.1

31
.2

31
.6

20
.2

bo
cd
p

13
.1

19
.4

9.5
13
.2

19
.3

10
.2

11
.5

17
.9

6.1
10
.8

15
.3

9.0
10
.2

14
.4

8.5
10
.1

14
.3

6.0
bo

cd
pf

17
.1

21
.7

19
.9

15
.9

22
.5

20
.9

14
.5

20
.9

12
.1

10
.1

13
.9

15
.8

9.3
12
.5

16
.2

9.3
13
.6

10
.3

br
p

20
.2

26
.6

23
.1

13
.4

20
.3

12
.9

9.5
13
.1

7.1
32
.8

20
.7

28
.4

17
.8

12
.6

20
.2

18
.7

19
.7

8.7
c1

4.9
5.1

2.6
4.4

4.4
2.3

5.4
5.7

3.0
3.4

3.8
2.1

3.1
3.4

1.7
3.6

3.8
2.0

c2
10
.6

10
.7

7.3
8.7

9.6
5.5

11
.8

12
.4

6.5
6.8

6.9
4.7

6.2
6.4

4.0
7.0

7.2
4.3

c3
11
.7

12
.3

8.0
9.8

10
.8

6.4
13
.6

14
.6

8.1
7.7

8.4
5.3

7.1
7.6

4.7
8.2

8.8
4.8

c4
86
.6

84
.4

66
.2

70
.7

71
.0

46
.6

11
7.8

11
9.6

82
.7

46
.0

50
.6

36
.6

41
.7

45
.7

29
.3

50
.6

53
.6

33
.6

e1
6.0

6.2
4.8

5.5
5.8

3.9
6.5

7.2
4.4

4.7
4.8

2.9
4.1

4.5
2.5

4.6
5.0

2.6
m
1

2.9
2.8

2.3
2.7

2.8
2.2

5.2
5.2

3.4
1.4

1.4
1.3

1.2
1.2

1.0
1.9

1.9
1.8

m
2

8.1
8.0

6.1
7.1

7.2
5.2

14
.7

15
.3

9.4
2.5

2.6
3.1

2.4
2.4

2.6
4.8

4.8
4.4

m
3

8.1
7.7

6.2
8.1

8.4
6.0

17
.2

16
.5

9.8
3.8

3.6
2.9

3.0
3.1

2.6
5.9

5.4
4.7

m
4

32
.4

33
.5

21
.2

28
.9

28
.1

17
.9

84
.8

87
.6

43
.9

6.5
7.0

7.4
6.3

6.8
6.1

16
.3

17
.7

10
.8

n1
3.4

3.2
2.9

2.9
2.7

2.6
5.5

5.2
3.8

1.3
1.4

1.5
1.3

1.3
1.3

1.9
1.8

1.9
n2

8.8
8.7

7.9
7.4

7.4
7.0

17
.7

16
.9

11
.9

2.8
3.0

3.4
2.8

2.9
3.1

5.4
5.2

4.3
n3

9.0
8.8

8.0
8.4

8.3
6.8

17
.7

16
.1

12
.2

3.4
3.3

4.0
3.0

3.2
3.5

5.5
5.6

5.5
n4

35
.4

36
.2

31
.0

30
.9

30
.7

28
.9

87
.7

87
.3

57
.5

7.1
7.8

9.3
6.6

6.6
8.7

22
.3

20
.6

21
.3

97

A. Appendix

Table A.2: Number of nodes for Pat and MCTA models (full)

m
od

el
B
B
B

B
B
F

B
B
N

B
FB

B
FF

B
FN

B
LB

B
LF

B
LN

D
B
B

D
B
F

D
B
N

D
FB

D
FF

D
FN

D
LB

D
LF

D
LN

cr
it
ic
al
3

13
64
1

13
64
1

13
64
1

12
98
1

12
98
1

12
98
1

21
69
9

21
69
9

21
69
9

19
03
6

19
03
6

19
03
6

18
31
0

18
31
0

18
31
0

25
69
7

25
50
3

25
69
7

cr
it
ic
al
4

43
43
93

43
43
93

43
37
87

39
51
88

39
51
88

39
45
25

77
22
21

77
22
21

77
77
84

63
53
08

63
53
08

63
53
08

56
40
14

56
40
14

56
40
14

10
43
48
7
10
45
22
0
10
43
48
7

cs
m
a
9

78
55
2

78
55
2

78
55
2

78
55
2

78
55
2

78
55
2

78
55
2

78
55
2

78
55
2

98
98
9

98
98
9

98
98
9

98
98
9

98
98
9

98
98
9

21
76
56

21
76
56

21
76
56

cs
m
a
10

20
06
49

20
06
49

20
06
49

20
06
49

20
06
49

20
06
49

20
06
49

20
06
49

20
06
49

27
47
59

27
47
59

27
47
59

27
47
59

27
47
59

27
47
59

74
51
49

74
51
49

74
51
49

cs
m
a
11

50
14
32

50
14
32

50
14
32

50
14
32

50
14
32

50
14
32

50
14
32

50
14
32

50
14
32

78
78
98

78
78
98

78
78
98

78
78
98

78
78
98

78
78
98

-
-

-
cs
m
a
12

12
30
75
7
12
30
75
7
12
30
75
7
12
30
75
7
12
30
75
7
12
30
75
7
12
30
75
7
12
30
75
7
12
30
75
7

-
-

-
-

-
-

-
-

-
fd
di

50
-

-
-

-
-

-
20
98

20
98

20
98

50
3

50
3

50
3

50
3

50
3

50
3

50
3

50
3

50
3

fd
di

70
-

-
-

-
-

-
29
61

29
61

29
61

70
3

70
3

70
3

70
3

70
3

70
3

70
3

70
3

70
3

fd
di

90
-

-
-

-
-

-
38
81

38
81

38
81

90
3

90
3

90
3

90
3

90
3

90
3

90
3

90
3

90
3

fd
di

11
0

-
-

-
-

-
-

46
78

46
78

46
78

11
03

11
03

11
03

11
03

11
03

11
03

11
03

11
03

11
03

fis
ch
er

7
26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

26
40
5

fis
ch
er

8
95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

95
35
3

fis
ch
er

9
33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

33
92
11

fis
ch
er

10
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1
11
91
21
1

ly
nc
h
7

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

46
91
5

ly
nc
h
8

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

16
28
01

ly
nc
h
9

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

56
34
91

bo
cd
p

33
59
1

33
69
4

98
31
4

32
63
9

32
62
7

94
80
1

33
03
0

33
14
9

96
46
0

32
53
7

32
25
2

97
12
5

29
84
6

29
56
5

84
64
3

33
34
1

33
05
2

97
46
2

bo
cd
pf

41
70
7

36
66
1

21
87
45

38
49
2

36
44
3

21
22
25

40
08
3

36
80
8

20
94
30

29
55
7

26
94
6

19
67
82

26
54
4

23
73
4

18
34
02

30
23
0

27
61
2

19
72
34

br
p

52
41
0

73
20
2

11
06
00

36
76
1

55
31
2

72
11
7

58
82
5

84
35
5

11
56
75

95
43
9

63
29
8

15
09
70

56
78
6

38
75
2

11
17
05

11
98
26

12
89
06

16
96
72

c1
19
04
1

19
64
2

22
15
7

17
15
6

17
23
0

20
96
7

27
05
8

27
60
8

32
96
3

15
17
4

15
17
4

18
80
2

14
97
3

14
97
3

18
61
4

18
29
2

18
29
2

22
96
8

c2
51
58
8

50
19
2

73
32
6

44
90
6

45
22
3

67
43
3

71
65
7

72
45
9

10
34
76

40
17
9

40
17
9

57
89
6

39
64
4

39
64
4

57
17
0

48
06
9

48
06
9

69
76
0

c3
57
67
6

57
65
3

94
28
6

50
71
3

51
92
7

86
28
5

81
52
4

82
42
7

13
60
15

47
91
1

47
91
1

77
69
8

46
59
3

46
59
3

76
33
5

56
83
3

55
93
6

95
54
8

c4
37
82
67

36
31
99

96
81
71

33
95
60

33
23
48

87
62
66

50
24
23

49
21
80

13
65
28
9

32
74
74

31
46
83

75
87
39

31
84
80

30
49
34

73
79
64

38
90
18

35
91
39

93
23
34

e1
26
46
1

25
86
6

35
98
9

24
67
7

23
35
3

31
24
7

37
10
5

38
93
8

47
19
9

20
52
0

20
53
3

23
72
9

20
29
9

20
30
0

23
65
7

23
93
1

23
92
7

27
51
3

m
1

49
07

49
35

89
98

43
94

45
11

85
41

13
17
1

13
92
9

27
21
6

22
79

22
79

47
53

19
01

19
01

36
25

49
70

47
27

15
23
3

m
2

18
18
2

18
39
8

40
41
3

16
24
6

16
55
8

31
93
2

44
09
5

44
81
2

11
26
34

57
23

57
23

18
73
7

56
73

56
73

15
47
1

16
60
3

15
54
7

60
99
5

m
3

18
44
7

18
03
7

40
05
4

18
36
9

19
18
8

38
12
8

49
03
2

46
94
8

11
84
85

91
81

85
92

17
79
7

71
81

71
60

16
18
9

20
29
1

18
20
2

68
09
1

m
4

69
66
1

71
84
5

17
28
68

66
25
5

63
47
5

14
53
78

15
78
64

16
25
64

46
44
77

20
78
7

20
68
7

72
30
2

20
33
5

20
33
5

61
91
5

61
60
6

60
08
5

21
59
84

n1
51
63

51
30

90
30

42
22

40
95

76
45

13
73
1

13
26
3

26
46
7

20
00

20
00

44
66

19
21

19
21

38
98

45
79

43
63

13
86
9

n2
18
62
8

18
44
1

40
64
0

15
64
8

15
84
9

33
05
4

49
19
7

46
56
8

12
26
80

60
70

60
70

16
47
7

59
33

59
33

15
51
4

18
31
5

17
34
8

53
21
2

n3
18
77
9

18
60
4

40
98
3

17
17
7

17
29
5

32
49
3

48
00
7

44
60
7

12
21
78

70
83

70
83

20
48
4

65
36

65
36

16
67
7

18
03
1

18
59
6

74
39
3

n4
71
15
9

71
25
0

17
83
62

63
67
4

63
49
1

15
08
64

16
08
25

16
01
54

49
35
30

21
15
0

21
37
4

72
52
7

18
79
8

18
27
7

69
30
8

74
43
0

65
09
8

32
69
38

98

A.2. Tables

Table A.3: Execution time for the diagonal version of Fischer’s protocol (full)

m
od

el
B
B
B

B
B
F

B
B
N

B
FB

B
FF

B
FN

B
LB

B
LF

B
LN

D
B
B

D
B
F

D
B
N

D
FB

D
FF

D
FN

D
LB

D
LF

D
LN

di
ag

3
0.3

0.3
0.2

0.3
0.2

0.2
-

-
-

0.3
0.3

0.2
0.3

0.3
0.2

-
-

-
di
ag

4
0.7

0.7
0.6

0.7
0.7

0.6
-

-
-

1.0
1.0

0.9
0.8

0.8
0.7

-
-

-
di
ag

5
1.8

1.8
1.5

1.7
1.7

1.5
-

-
-

4.7
4.6

4.0
2.0

2.0
1.8

-
-

-
di
ag

6
5.8

5.8
4.9

5.7
5.7

4.9
-

-
-

62
.2

61
.0

56
.1

6.9
6.8

6.0
-

-
-

di
ag

7
21
.3

21
.4

19
.3

21
.4

21
.3

19
.9

-
-

-
-

-
-

27
.7

27
.6

25
.7

-
-

-
di
ag

8
10
8.3

10
6.7

99
.2

11
1.8

11
2.2

10
4.1

-
-

-
-

-
-
15
3.6

15
2.7

14
4.2

-
-

-

sp
lit

3
0.6

0.5
0.8

0.3
0.3

0.7
0.4

0.4
0.6

0.7
0.7

1.1
0.5

0.5
0.8

0.4
0.4

0.6
sp
lit

4
4.2

4.3
19
.7

1.0
1.0

7.1
1.9

1.9
5.5

9.0
8.9

30
.0

1.9
1.9

5.4
2.5

2.4
5.3

sp
lit

5
74
.6

74
.7

-
3.1

3.1
-
19
.9

20
.4

25
9.4

-
-

-
11
.8

11
.5

-
45
.4

45
.8

-
sp
lit

6
-

-
-

11
.6

11
.7

-
-

-
-

-
-

-
-

-
-

-
-

-
sp
lit

7
-

-
-

58
.5

58
.7

-
-

-
-

-
-

-
-

-
-

-
-

-
sp
lit

8
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

op
t
3

0.4
0.4

0.3
0.3

0.3
0.3

0.3
0.3

0.2
0.4

0.4
0.3

0.4
0.4

0.4
0.3

0.3
0.2

op
t
4

1.6
1.6

1.5
0.9

0.9
1.6

0.9
0.9

0.9
2.7

2.6
2.1

1.2
1.2

1.8
1.0

1.0
0.8

op
t
5

9.9
10
.0

11
.8

2.8
2.8

12
.7

4.3
4.4

4.8
79
.1

80
.7

35
.4

7.8
8.1

15
.8

4.5
4.6

4.1
op

t
6

16
1.5

16
2.7

22
1.3

10
.0

10
.2

24
4.4

36
.4

36
.5

49
.9

-
-

-
-

-
-

43
.9

44
.7

39
.3

op
t
7

-
-

-
47
.1

47
.4

-
-

-
-

-
-

-
-

-
-

-
-

-
op

t
8

-
-

-
29
3.5

29
6.0

-
-

-
-

-
-

-
-

-
-

-
-

-

99

A. Appendix

Table A.4: Number of nodes for the diagonal version of Fischer’s protocol (full)

m
od

el
B
B
B

B
B
F

B
B
N

B
FB

B
FF

B
FN

B
LB

B
LF

B
LN

D
B
B

D
B
F

D
B
N

D
FB

D
FF

D
FN

D
LB

D
LF

D
LN

di
ag

3
19
9

19
9

19
9

19
3

19
3

19
3

-
-

-
24
6

24
6

24
6

22
0

22
0

22
0

-
-

-
di
ag

4
10
45

10
45

10
45

93
3

93
3

93
3

-
-

-
18
00

18
00

18
00

12
62

12
62

12
62

-
-

-
di
ag

5
49
26

49
26

49
26

41
81

41
81

41
81

-
-

-
17
92
9

17
92
9

17
92
9

55
15

55
15

55
15

-
-

-
di
ag

6
21
68
5

21
68
5

21
68
5

17
81
5

17
81
5

17
81
5

-
-

-
26
44
45

26
44
45

26
44
45

24
77
2

24
77
2

24
77
2

-
-

-
di
ag

7
90
25
2

90
25
2

90
25
2

73
13
7

73
13
7

73
13
7

-
-

-
-

-
-
10
01
47

10
01
47

10
01
47

-
-

-
di
ag

8
36
02
33

36
02
33

36
02
33

29
15
93

29
15
93

29
15
93

-
-

-
-

-
-
40
63
92

40
63
92

40
63
92

-
-

-

sp
lit

3
58
5

58
5

24
48

33
3

33
3

19
29

66
4

66
4

31
37

94
6

94
6

32
77

49
2

49
2

20
96

81
1

81
1

33
22

sp
lit

4
81
63

81
63

79
99
8

18
33

18
33

34
57
9

71
44

71
44

68
99
9

23
45
9

23
45
9
13
28
35

38
47

38
47

31
82
7

12
52
7

12
52
7

82
93
9

sp
lit

5
12
13
70

12
13
70

-
93
88

93
88

-
90
87
7

90
87
7
15
72
51
5

-
-

-
27
13
5

27
13
5

-
20
76
27

20
76
27

-
sp
lit

6
-

-
-

45
56
6

45
56
6

-
-

-
-

-
-

-
-

-
-

-
-

-
sp
lit

7
-

-
-
21
18
28

21
18
28

-
-

-
-

-
-

-
-

-
-

-
-

-
sp
lit

8
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

op
t
3

34
1

34
1

62
1

25
2

25
2

61
9

35
0

35
0

62
1

40
1

40
1

65
2

37
2

37
2

63
9

39
9

39
9

65
5

op
t
4

27
26

27
26

55
34

13
30

13
30

55
91

25
91

25
91

56
66

56
74

56
74

82
34

23
05

23
05

60
92

32
68

32
68

58
37

op
t
5

24
45
5

24
45
5

53
71
4

65
50

65
50

51
46
5

20
98
7

20
89
1

51
43
1
18
04
64

18
04
64

15
57
31

23
52
9

23
52
9

63
50
4

29
12
4

29
12
4

54
58
6

op
t
6

23
09
29

23
22
41

52
58
02

30
63
4

30
63
4
49
49
97

17
89
54

17
80
43

47
44
98

-
-

-
-

-
-
27
27
34

27
28
02

54
15
33

op
t
7

-
-

-
13
77
88

13
77
88

-
-

-
-

-
-

-
-

-
-

-
-

-
op

t
8

-
-

-
60
19
70

60
19
70

-
-

-
-

-
-

-
-

-
-

-
-

-

100

Publications

Publication List

Number of publications: 16
Number of peer-reviewed journal papers (written in English): 2
Number of articles in journals indexed by WoS or Scopus: 2
Number of publications (in English) with at least 50% contribution of the author: 9

Number of peer-reviewed publications: 16
Number of independent citations: 9

Publications Linked to the Theses

Journal International conference Local Technical
papers and workshop papers events reports

Thesis 1 [j2]* [c6]; [c10] — —
Thesis 2 [j2]* [c8]†; [c9] — —
Thesis 3 [j1]; [j2]* [c4]; [c7]†; [c11]; [c12] [e13] —
Thesis 4 — [c3]; [c5] — —
* These publications are attached to multiple theses.
† In the years 2016 and 2017, the PhD Minisymposium, organized by
the BUTE Department of Measurement and Information Systems, had
international participation.
This classification follows the faculty’s Ph.D. publication score system.

Journal Papers

[j1] Tamás Tóth and István Majzik. Formal verification of real-time systems with data processing.
Periodica Polytechnica Electrical Engineering and Computer Science 61(2), 2017, pp. 166–174. doi:
10.3311/PPee.9766.

[j2] Tamás Tóth and István Majzik. Configurable verification of timed automata with discrete vari-
ables. Acta Informatica (online first), 2020. doi: 10.1007/s00236-020-00393-4.

101

https://doi.org/10.3311/PPee.9766
https://doi.org/10.1007/s00236-020-00393-4

Publications

International Conference and Workshop Papers

[c3] Tamás Tóth, András Vörös, and IstvánMajzik. K-induction based verification of real-time safety
critical systems. In: Proceedings of the 8th International Conference on Dependability and Complex

Systems, DepCoS-RELCOMEX 2013, AISC, vol. 224, pp. 469–478. Springer, 2013. doi: 10.1007/978-
3-319-00945-2_43.
▷ Own contributions (1) the calendar system formalism (2) the model checking approach (3) the

implementation of the tool support (4) the modeling and verification of the case study.

[c4] Tamás Tóth, András Vörös, and István Majzik. Verification of a real-time safety-critical proto-
col using a modelling language with formal data and behaviour semantics. In: Computer Safety,

Reliability, and Security. SAFECOMP 2014 Workshops, LNCS, vol. 8696, pp. 207–218. Springer,
2014. doi: 10.1007/978-3-319-10557-4_24.
▷ Own contributions (1) the modeling formalism (2) the model checking approach (3) the imple-

mentation of the tool support (4) the modeling and verification of the case study.

[c5] Tamás Tóth, András Vörös, and IstvánMajzik. A decomposition method for the verification of a
real-time safety-critical protocol. In: Software Engineering for Resilient Systems. 7th International

Workshop, SERENE 2015, LNCS, vol. 9274, pp. 31–45. Springer, 2015. doi: 10.1007/978-3-319-
23129-7_3.
▷ Own contributions (1) the model checking approach (2) the modeling and verification of the case

study.

[c6] Ákos Hajdu, Tamás Tóth, András Vörös, and István Majzik. A configurable CEGAR framework
with interpolation-based refinements. In: Formal Techniques for Distributed Objects, Components,

and Systems. 36th IFIP WG 6.1 International Conference, FORTE 2016, LNCS, vol. 9688, pp. 158–
174. Springer, 2016. doi: 10.1007/978-3-319-39570-8_11.
▷ Own contributions (1) some insight on the model checking approach (2) partial implementation

of the tool support.

[c7] Tamás Tóth and István Majzik. Formal modeling of real-time systems with data processing. In:
Proceedings of the 23rd PhD Mini-Symposium, pp. 46–49. BME Department of Measurement and
Information Systems. Accommodated by IEEE Hungary, 2016.

[c8] Tamás Tóth and István Majzik. Timed automata verification using interpolants. In: Proceedings
of the 24th PhDMini-Symposium, pp. 82–85. BME Department of Measurement and Information
Systems, 2017. doi: 10.5281/zenodo.291907.

[c9] Tamás Tóth and István Majzik. Lazy reachability checking for timed automata using inter-
polants. In: Formal Modeling and Analysis of Timed Systems. 15th International Conference, FOR-

MATS 2017, LNCS, vol. 10419, pp. 264–280. Springer, 2017. doi: 10.1007/978-3-319-65765-3_15.
[c10] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta: a frame-

work for abstraction refinement-based model checking. In: Proceedings of the 17th Conference

on Formal Methods in Computer Aided Design, FMCAD 2017, pp. 176–179. FMCAD Inc., 2017.
doi: 10.23919/FMCAD.2017.8102257.
▷ Own contributions (1) the design of the architecture, interfaces, and generic algorithmic compo-

nents of the framework (2) partial implementation of the tool support.

[c11] Tamás Tóth and István Majzik. Lazy reachability checking for timed automata with dis-
crete variables. In: Model Checking Software. 25th International Symposium, SPIN 2018, LNCS,
vol. 10869, pp. 235–254. Springer, 2018. doi: 10.1007/978-3-319-94111-0_14.

102

https://doi.org/10.1007/978-3-319-00945-2_43
https://doi.org/10.1007/978-3-319-00945-2_43
https://doi.org/10.1007/978-3-319-10557-4_24
https://doi.org/10.1007/978-3-319-23129-7_3
https://doi.org/10.1007/978-3-319-23129-7_3
https://doi.org/10.1007/978-3-319-39570-8_11
https://doi.org/10.5281/zenodo.291907
https://doi.org/10.1007/978-3-319-65765-3_15
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.1007/978-3-319-94111-0_14

Publication List

[c12] Rebeka Farkas, Tamás Tóth, Ákos Hajdu, and András Vörös. Backward reachability analysis for
timed automata with data variables. In: Automated Verification of Critical Systems, Electronic
Communications of the EASST, vol. 76, pp. 1–20. 2018. doi: 10.14279/tuj.eceasst.76.1076.
▷ Own contributions (1) some insight on the model checking approach (2) partial implementation

of the tool support.

Local Conference and Workshop Papers

[e13] Tamás Tóth and István Majzik. A framework for formal verification of real-time systems. In:
Proceedings of the 22nd PhD Mini-Symposium, pp. 12–13. BME Department of Measurement and
Information Systems. Accommodated by IEEE Hungary, 2015.

Supplementary Material

[s14] Tamás Tóth and IstvánMajzik. SupplementaryMaterial for the Paper “Configurable Verification
of Timed Automata with Discrete Variables”. Zenodo. 2020. doi: 10.5281/zenodo.3965792.

Additional Publications (Not Linked to Theses)

International Conference and Workshop Papers

[c15] Gyula Sallai and Tamás Tóth. Boosting software verification with compiler optimizations. In:
Proceedings of the 24th PhD Mini-Symposium, pp. 66–69. BME Department of Measurement and
Information Systems, 2017. doi: 10.5281/zenodo.291903.

[c16] Bence Czipó, Ákos Hajdu, Tamás Tóth, and István Majzik. Exploiting hierarchy in the
abstraction-based verification of statecharts using SMT solvers. In: International Workshop on

Formal Engineering approaches to Software Components and Architectures, FESCA 2017, EPTCS,
vol. 245, pp. 31–45. Open Publishing Association, 2017. doi: 10.4204/EPTCS.245.3.

[c17] Gyula Sallai, Ákos Hajdu, Tamás Tóth, and Zoltán Micskei. Towards evaluating size reduction
techniques for software model checking. In: Fifth International Workshop on Verification and

Program Transformation, VPT 2017, EPTCS, vol. 253, pp. 75–91. Open Publishing Association,
2017. doi: 10.4204/EPTCS.253.7.

103

https://doi.org/10.14279/tuj.eceasst.76.1076
https://doi.org/10.5281/zenodo.3965792
https://doi.org/10.5281/zenodo.291903
https://doi.org/10.4204/EPTCS.245.3
https://doi.org/10.4204/EPTCS.253.7

Bibliography

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science

126(2), 1994, pp. 183–235. doi: 10.1016/0304-3975(94)90010-8.
[AGC12] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Craig interpretation. In: Static

Analysis, LNCS, vol. 7460, pp. 300–316. Springer, 2012. doi: 10.1007/978-3-642-33125-
1_21.

[Alb+12] Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. Ufo: a framework for
abstraction- and interpolation-based software verification. In: Computer Aided Verifica-

tion, LNCS, vol. 7358, pp. 672–678. Springer, 2012. doi: 10.1007/978-3-642-31424-7_48.
[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters

21(4), 1985, pp. 181–185. doi: 10.1016/0020-0190(85)90056-0.
[ÁSH21] Zsófia Ádám, Gyula Sallai, and Ákos Hajdu. Gazer-Theta: LLVM-based verifier portfolio

with BMC/CEGAR (competition contribution). In: Tools and Algorithms for the Construc-

tion and Analysis of Systems, LNCS, vol. 12652, pp. 433–437. Springer, 2021. doi: 10.1007/
978-3-030-72013-1_27.

[BAS02] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety checking.
Electronic Notes in Theoretical Computer Science 66(2), 2002, pp. 160–177. doi: 10.1016/
S1571-0661(04)80410-9.

[BC00] Per Bjesse and Koen Claessen. SAT-based verification without state space traversal. In:
Formal Methods in Computer-Aided Design, LNCS, vol. 1954, pp. 409–426. Springer, 2000.
doi: 10.1007/3-540-40922-X_23.

[BC05] Patricia Bouyer and Fabrice Chevalier. On conciseness of extensions of timed automata.
Journal of Automata, Languages and Combinatorics 10(4), 2005, pp. 393–405. doi: 10.25596/
jalc-2005-393.

[Beh+03] Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and KimG. Larsen. Static guard anal-
ysis in timed automata verification. In: Tools and Algorithms for the Construction and Anal-

ysis of Systems, LNCS, vol. 2619, pp. 254–270. Springer, 2003. doi: 10.1007/3-540-36577-
X_18.

105

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-642-33125-1_21
https://doi.org/10.1007/978-3-642-33125-1_21
https://doi.org/10.1007/978-3-642-31424-7_48
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/978-3-030-72013-1_27
https://doi.org/10.1007/978-3-030-72013-1_27
https://doi.org/10.1016/S1571-0661(04)80410-9
https://doi.org/10.1016/S1571-0661(04)80410-9
https://doi.org/10.1007/3-540-40922-X_23
https://doi.org/10.25596/jalc-2005-393
https://doi.org/10.25596/jalc-2005-393
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/3-540-36577-X_18

Bibliography

[Beh+04] Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek. Lower and upper
bounds in zone based abstractions of timed automata. In: Tools and Algorithms for the

Construction and Analysis of Systems, LNCS, vol. 2988, pp. 312–326. Springer, 2004. doi:
10.1007/978-3-540-24730-2_25.

[Beh+06] Gerd Behrmann, Alexandre David, Kim G. Larsen, John Håkansson, Paul Pettersson,
Wang Yi, and Martijn Hendriks. Uppaal 4.0. In: Quantitative Evaluation of Systems,
pp. 125–126. IEEE, 2006. doi: 10.1109/QEST.2006.59.

[Ber+10] Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró, András Balogh, Zoltán
Balogh, and András Ökrös. Incremental evaluation of model queries over EMFmodels. In:
Model Driven Engineering Languages and Systems, LNCS, vol. 6394, pp. 76–90. Springer,
2010. doi: 10.1007/978-3-642-16145-2_6.

[Bér+98] Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Characterization of
the expressive power of silent transitions in timed automata. Fundamenta Informaticae

36(2,3), 1998, pp. 145–182. doi: 10.3233/FI-1998-36233.
[Bey+07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and RupakMajumdar. The softwaremodel

checker Blast. Software Tools for Technology Transfer 9(5), 2007, pp. 505–525. doi: 10.1007/
s10009-007-0044-z.

[Bey16] Dirk Beyer. Reliable and reproducible competition results with BenchExec and witnesses
(report on SV-COMP 2016). In: Tools and Algorithms for the Construction and Analysis of

Systems, LNCS, vol. 9636, pp. 887–904. Springer, 2016. doi: 10.1007/978-3-662-49674-9_55.
[Bey21] Dirk Beyer. Software verification: 10th comparative evaluation (SV-COMP 2021). In: Tools

and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 12652, pp. 401–
422. Springer, 2021. doi: 10.1007/978-3-030-72013-1_24.

[Bie+99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. In: Tools and Algorithms for the Construction and Analysis of

Systems, LNCS, vol. 1579, pp. 193–207. Springer, 1999. doi: 10.1007/3-540-49059-0_14.
[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press, 2008.
[BK11] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: a tool for configurable software ver-

ification. In: Computer Aided Verification, LNCS, vol. 6806, pp. 184–190. Springer, 2011.
doi: 10.1007/978-3-642-22110-1_16.

[BL13] Dirk Beyer and Stefan Löwe. Explicit-state software model checking based on CEGAR
and interpolation. In: Fundamental Approaches to Software Engineering, LNCS, vol. 7793,
pp. 146–162. Springer, 2013. doi: 10.1007/978-3-642-37057-1_11.

[BLR05] Patricia Bouyer, François Laroussinie, and Pierre-Alain Reynier. Diagonal constraints in
timed automata: forward analysis of timed systems. In: Formal Modelling and Analysis of

Timed Systems, LNCS, vol. 3829, pp. 112–126. Springer, 2005. doi: 10.1007/11603009_10.
[Bou03] Patricia Bouyer. Untameable timed automata! In: Theoretical Aspects of Computer Science,

LNCS, vol. 2607, pp. 620–631. Springer, 2003. doi: 10.1007/3-540-36494-3_54.
[Bou04] Patricia Bouyer. Forward analysis of updatable timed automata. Formal Methods in System

Design 24(3), 2004, pp. 281–320. doi: 10.1023/B:FORM.0000026093.21513.31.

106

https://doi.org/10.1007/978-3-540-24730-2_25
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/978-3-642-16145-2_6
https://doi.org/10.3233/FI-1998-36233
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/11603009_10
https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1023/B:FORM.0000026093.21513.31

Bibliography

[BPR01] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and cartesian abstrac-
tion for model checking C programs. In: Tools and Algorithms for the Construction and

Analysis of Systems, LNCS, vol. 2031, pp. 268–283. Springer, 2001. doi: 10.1007/3- 540-
45319-9_19.

[BR01] Thomas Ball and Sriram K. Rajamani. The Slam toolkit. In: Computer Aided Verification,
LNCS, vol. 2102, pp. 260–264. Springer, 2001. doi: 10.1007/3-540-44585-4_25.

[Bra11] Aaron R. Bradley. SAT-based model checking without unrolling. In: Verification, Model

Checking, and Abstract Interpretation, LNCS, vol. 6538, pp. 70–87. Springer, 2011. doi:
10.1007/978-3-642-18275-4_7.

[Büc62] Julius R. Büchi. On a decision method in restricted second order arithmetic. In: Logic,
Methodology, and Philosophy of Science, pp. 1–11. Stanford University Press, 1962.

[Bur+92] Jerry R. Burch, Edmund L. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and Computation 98(2),
1992, pp. 142–170. doi: 10.1016/0890-5401(92)90017-A.

[BY04] Johan Bengtsson and Wang Yi. Timed automata: semantics, algorithms and tools. In: Ad-
vances in Petri Nets, LNCS, vol. 3098, pp. 87–124. Springer, 2004. doi: 10.1007/978-3-540-
27755-2_3.

[Cab+16] Gianpiero Cabodi, Carmelo Loiacono, Marco Palena, Paolo Pasini, Denis Patti, Stefano
Quer, Danilo Vendraminetto, Armin Biere, Keijo Heljanko, and Jason Baumgartner. Hard-
ware model checking competition 2014: an analysis and comparison of solvers and bench-
marks. Journal on Satisfiability, Boolean Modeling and Computation 9, 2016, pp. 135–172.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages, pp. 238–252. ACM, 1977. doi: 10.1145/512950.512973.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks.
In: Principles of Programming Languages, pp. 269–282. ACM, 1979. doi: 10.1145/567752.
567778.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstraction.
Transactions on Programming Languages and Systems 16(5), 1994, pp. 1512–1542. doi: 10.
1145/186025.186051.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, 1999.
[CGR10] Alessandro Carioni, Silvio Ghilardi, and Silvio Ranise. Mcmt in the land of parametrized

timed automata. In: International Verification Workshop (VERIFY-2010), pp. 47–64. 2010.
[CGS04] Edmund M. Clarke, Anubhav Gupta, and Ofer Strichman. SAT-based counterexample-

guided abstraction refinement. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 23(7), 2004, pp. 1113–1123. doi: 10.1109/TCAD.2004.829807.
[CGS08] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient interpolant gener-

ation in satisfiability modulo theories. In: Tools and Algorithms for the Construction and

Analysis of Systems, LNCS, vol. 4963, pp. 397–412. Springer, 2008. doi: 10.1007/978-3-540-
78800-3_30.

107

https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1007/3-540-44585-4_25
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/186025.186051
https://doi.org/10.1109/TCAD.2004.829807
https://doi.org/10.1007/978-3-540-78800-3_30
https://doi.org/10.1007/978-3-540-78800-3_30

Bibliography

[Cha+02] Pankaj Chauhan, EdmundM. Clarke, James Kukula, Samir Sapra, Helmut Veith, and Dong
Wang. Automated abstraction refinement formodel checking large state spaces using SAT
based conflict analysis. In: Formal Methods in Computer-Aided Design, LNCS, vol. 2517,
pp. 33–51. Springer, 2002. doi: 10.1007/3-540-36126-X_3.

[Cla+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In: Computer Aided Verification, LNCS,
vol. 1855, pp. 154–169. Springer, 2000. doi: 10.1007/10722167_15.

[Cla+03] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Journal of
the ACM 50(5), 2003, pp. 752–794. doi: 10.1145/876638.876643.

[Cla+05] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. SatAbs: SAT-
based predicate abstraction for ANSI-C. In: Tools and Algorithms for the Construction and

Analysis of Systems, LNCS, vol. 3440, pp. 570–574. Springer, 2005. doi: 10.1007/978-3-540-
31980-1_40.

[Coh91] Joëlle Cohen-Chesnot. On the expressive power of temporal logic for infinite words. The-
oretical Computer Science 83(2), 1991, pp. 301–312. doi: 10.1016/0304-3975(91)90281-6.

[Cra57] William Craig. Three uses of the herbrand-gentzen theorem in relating model theory and
proof theory. Journal of Symbolic Logic 22(3), 1957, pp. 269–285. doi: 10.2307/2963594.

[CS12] Koen Claessen and Niklas Sörensson. A liveness checking algorithm that counts. In: For-
mal Methods in Computer-Aided Design, pp. 52–59. IEEE, 2012.

[CU98] Michael A. Colón and Tomás E. Uribe. Generating finite-state abstractions of reactive sys-
tems using decision procedures. In: Computer Aided Verification, LNCS, vol. 1427, pp. 293–
304. Springer, 1998. doi: 10.1007/BFb0028753.

[Die+17] Daniel Dietsch, Matthias Heizmann, Betim Musa, Alexander Nutz, and Andreas Podelski.
Craig vs. Newton in software model checking. In: Foundations of Software Engineering,
pp. 487–497. ACM, 2017. doi: 10.1145/3106237.3106307.

[Dil90] David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In:
Computer Aided Verification, LNCS, vol. 407, pp. 197–212. Springer, 1990. doi: 10.1007/3-
540-52148-8_17.

[DKL07] Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen. Automatic abstraction re-
finement for timed automata. In: Formal Modelling and Analysis of Timed Systems, LNCS,
vol. 4763, pp. 114–129. Springer, 2007. doi: 10.1007/978-3-540-75454-1_10.

[DS04] Bruno Dutertre and Maria Sorea. Modeling and verification of a fault-tolerant real-time
startup protocol using calendar automata. In: Formal Techniques, Modelling and Analysis

of Timed and Fault-Tolerant Systems, LNCS, vol. 3253, pp. 199–214. Springer, 2004. doi:
10.1007/978-3-540-30206-3_15.

[DT98] Conrado Daws and Stavros Tripakis. Model checking of real-time reachability properties
using abstractions. In: Tools and Algorithms for the Construction and Analysis of Systems,
LNCS, vol. 1384, pp. 313–329. Springer, 1998. doi: 10.1007/BFb0054180.

[EC82] E. Allen Emerson and EdmundM. Clarke. Using branching time temporal logic to synthe-
size synchronization skeletons. Science of Computer Programming 2(3), 1982, pp. 241–266.
doi: 10.1016/0167-6423(83)90017-5.

108

https://doi.org/10.1007/3-540-36126-X_3
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1016/0304-3975(91)90281-6
https://doi.org/10.2307/2963594
https://doi.org/10.1007/BFb0028753
https://doi.org/10.1145/3106237.3106307
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-540-75454-1_10
https://doi.org/10.1007/978-3-540-30206-3_15
https://doi.org/10.1007/BFb0054180
https://doi.org/10.1016/0167-6423(83)90017-5

Bibliography

[ES03] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. Elec-
tronic Notes in Theoretical Computer Science 89(4), 2003, pp. 543–560. doi: 10.1016/S1571-
0661(05)82542-3.

[Fer+15] Borja Fernández Adiego, Dániel Darvas, Enrique Blanco Viñuela, Jean-Charles Tournier,
Simon Bliudze, Jan Olaf Blech, and Víctor M. González Suárez. Applying model checking
to industrial-sized PLC programs. IEEE Transactions on Industrial Informatics 11(6), 2015,
pp. 1400–1410. doi: 10.1109/TII.2015.2489184.

[GMS18] Paul Gastin, Sayan Mukherjee, and Balaguru Srivathsan. Reachability in timed automata
with diagonal constraints. In: International Conference on Concurrency Theory, LIPIcs,
vol. 118, 28:1–28:17. Dagstuhl, 2018. doi: 10.4230/LIPIcs.CONCUR.2018.28.

[GMS19] Paul Gastin, Sayan Mukherjee, and Balguru Srivathsan. Fast algorithms for handling di-
agonal constraints in timed automata. In: Computer Aided Verification, LNCS, vol. 11561,
pp. 41–59. Springer, 2019. doi: 10.1007/978-3-030-25540-4_3.

[GMS20] Paul Gastin, Sayan Mukherjee, and Balguru Srivathsan. Reachability for updatable timed
automata made faster and more effective. In: Foundations of Software Technology and The-
oretical Computer Science, LIPIcs, vol. 182, 47:1–47:17. Dagstuhl, 2020. doi: 10.4230/LIPIcs.
FSTTCS.2020.47.

[Gru06] Orna Grumberg. Abstraction and refinement in model checking. In: Formal Methods for

Components and Objects, LNCS, vol. 4111, pp. 219–242. Springer, 2006. doi: 10 . 1007 /
11804192_11.

[GS97] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS. In: Com-

puter Aided Verification, LNCS, vol. 1254, pp. 72–83. Springer, 1997. doi: 10.1007/3-540-
63166-6_10.

[Gul+08] Bhargav S. Gulavani, Supratik Chakraborty, Aditya V. Nori, and Sriram K. Rajamani. Au-
tomatically refining abstract interpretations. In: Tools and Algorithms for the Construction

and Analysis of Systems, LNCS, vol. 4963, pp. 443–458. Springer, 2008. doi: 10.1007/978-
3-540-78800-3_33.

[Hen+02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy abstrac-
tion. In: Principles of Programming Languages, pp. 58–70. ACM, 2002. doi: 10.1145/503272.
503279.

[Hen+04] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Abstrac-
tions from proofs. In: Principles of Programming Languages, pp. 232–244. ACM, 2004. doi:
10.1145/964001.964021.

[Her+11] Frédéric Herbreteau, Dileep Kini, Balaguru Srivathsan, and Igor Walukiewicz. Using non-
convex approximations for efficient analysis of timed automata. In: Foundations of Soft-
ware Technology and Theoretical Computer Science, LIPIcs, vol. 13, pp. 78–89. Dagstuhl,
2011. doi: 10.4230/LIPIcs.FSTTCS.2011.78.

[HM17] Ákos Hajdu and Zoltán Micskei. Exploratory analysis of the performance of a config-
urable CEGAR framework. In: Proceedings of the 24th PhD Mini-Symposium, pp. 34–37.
BME Department of Measurement and Information Systems, 2017. doi: 10.5281/zenodo.
291895.

109

https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1109/TII.2015.2489184
https://doi.org/10.4230/LIPIcs.CONCUR.2018.28
https://doi.org/10.1007/978-3-030-25540-4_3
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.47
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.47
https://doi.org/10.1007/11804192_11
https://doi.org/10.1007/11804192_11
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-540-78800-3_33
https://doi.org/10.1007/978-3-540-78800-3_33
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/964001.964021
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.78
https://doi.org/10.5281/zenodo.291895
https://doi.org/10.5281/zenodo.291895

Bibliography

[Hoj+14] Hossein Hojjat, Philipp Rümmer, Pavle Subotic, and Wang Yi. Horn clauses for commu-
nicating timed systems. In: Horn Clauses for Verification and Synthesis, EPTCS, vol. 169,
pp. 39–52. Open Publishing Association, 2014. doi: 10.4204/EPTCS.169.6.

[HSW12] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions for timed
automata. In: Logic in Computer Science, pp. 375–384. IEEE, 2012. doi: 10.1109/LICS.2012.
48.

[HSW13] Frédéric Herbreteau, Balaguru Srivathsan, and Igor Walukiewicz. Lazy abstractions for
timed automata. In: Computer Aided Verification, LNCS, vol. 8044, pp. 990–1005. Springer,
2013. doi: 10.1007/978-3-642-39799-8_71.

[IW14] Tobias Isenberg and HeikeWehrheim. Timed automata verification via ic3 with zones. In:
Formal Methods and Software Engineering, LNCS, vol. 8829, pp. 203–218. Springer, 2014.
doi: 10.1007/978-3-319-11737-9_14.

[Kan+15] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom van
Dijk. LTSmin: high-performance language-independent model checking. In: Tools and
Algorithms for the Construction and Analysis of Systems, LNCS, vol. 9035, pp. 692–707.
Springer, 2015. doi: 10.1007/978-3-662-46681-0_61.

[KJN12a] Roland Kindermann, Tommi Junttila, and Ilkka Niemelä. Beyond lassos: complete SMT-
based bounded model checking for timed automata. In: Formal Techniques for Distributed

Systems, LNCS, vol. 7273, pp. 84–100. Springer, 2012. doi: 10.1007/978-3-642-30793-5_6.
[KJN12b] Roland Kindermann, Tommi Junttila, and Ilkka Niemelä. SMT-based induction methods

for timed systems. In: Formal Modelling and Analysis of Timed Systems, LNCS, vol. 7595,
pp. 171–187. Springer, 2012. doi: 10.1007/978-3-642-33365-1_13.

[Kla02] Felix Klaedtke. Complementation of Büchi automata using alternation. In: Erich Grädel,
Wolfgang Thomas, and Thomas Wilke (eds.), Automata Logics, and Infinite Games, LNCS,
vol. 2500, pp. 61–77. Springer, 2002. doi: 10.1007/3-540-36387-4_4.

[Kur94] Robert P. Kurshan. Computer-Aided Verification of Coordinating Processes: The Automata-

Theoretic Approach. Princeton University Press, 1994. doi: 10.1515/9781400864041.
[KW11] Daniel Kroening and Georg Weissenbacher. Interpolation-based software verification

with Wolverine. In: Computer Aided Verification, LNCS, vol. 6806, pp. 573–578. Springer,
2011. doi: 10.1007/978-3-642-22110-1_45.

[LNZ04] Denis Lugiez, Peter Niebert, and Sarah Zennou. A partial order semantics approach to the
clock explosion problem of timed automata. In: Tools and Algorithms for the Construction

and Analysis of Systems, LNCS, vol. 2988, pp. 296–311. Springer, 2004. doi: 10.1007/978-
3-540-24730-2_24.

[MB08] Leonardo de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In: Tools and Algo-

rithms for the Construction and Analysis of Systems, LNCS, vol. 4963, pp. 337–340. Springer,
2008. doi: 10.1007/978-3-540-78800-3_24.

[McM03] Kenneth L. McMillan. Interpolation and SAT-based model checking. In: Computer Aided

Verification, LNCS, vol. 2725, pp. 1–13. Springer, 2003. doi: 10.1007/978-3-540-45069-6_1.
[McM06] Kenneth L. McMillan. Lazy abstraction with interpolants. In: Computer Aided Verification,

LNCS, vol. 4144, pp. 123–136. Springer, 2006. doi: 10.1007/11817963_14.

110

https://doi.org/10.4204/EPTCS.169.6
https://doi.org/10.1109/LICS.2012.48
https://doi.org/10.1109/LICS.2012.48
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1007/978-3-319-11737-9_14
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-642-30793-5_6
https://doi.org/10.1007/978-3-642-33365-1_13
https://doi.org/10.1007/3-540-36387-4_4
https://doi.org/10.1515/9781400864041
https://doi.org/10.1007/978-3-642-22110-1_45
https://doi.org/10.1007/978-3-540-24730-2_24
https://doi.org/10.1007/978-3-540-24730-2_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14

Bibliography

[McM10] Kenneth L. McMillan. Lazy annotation for program testing and verification. In: Computer

Aided Verification, LNCS, vol. 6174, pp. 104–118. Springer, 2010. doi: 10.1007/978-3-642-
14295-6_10.

[McN66] Robert McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control 9(5), 1966, pp. 521–530. doi: 10.1016/S0019-9958(66)80013-X.

[Mol+18] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró. The
Gamma statechart composition framework: design, verification and code generation for
component-based reactive systems. In: International Conference on Software Engineering,
pp. 113–116. ACM, 2018. doi: 10.1145/3183440.3183489.

[MOS03] Leonardo de Moura, Sam Owre, and Natarajan Shankar. The SAL Language Manual. Tech.
rep. SRI-CSL-01-02 (Rev. 2). SRI International, 2003.

[MPS11] Georges Morbé, Florian Pigorsch, and Christoph Scholl. Fully symbolic model check-
ing for timed automata. In: Computer Aided Verification, LNCS, vol. 6806, pp. 616–632.
Springer, 2011. doi: 10.1007/978-3-642-22110-1_50.

[MRS03] Leonardo de Moura, Harald Rueß, and Maria Sorea. Bounded model checking and in-
duction: from refutation to verification. In: Computer Aided Verification, LNCS, vol. 2725,
pp. 14–26. Springer, 2003. doi: 10.1007/978-3-540-45069-6_2.

[Mur89] Tadao Murata. Petri nets: properties, analysis and applications. Proceedings of the IEEE
77(4), 1989, pp. 541–580. doi: 10.1109/5.24143.

[Pik05] Lee Pike. Real-Time System Verification by k-induction. Tech. rep. NASA/TM-2005-213751.
National Aeronautics and Space Administration, 2005.

[Pnu77] Amir Pnueli. The temporal logic of programs. In: Foundations of Computer Science, pp. 46–
57. IEEE, 1977. doi: 10.1109/SFCS.1977.32.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent sys-
tems in CESAR. In: International Symposium on Programming, LNCS, vol. 137, pp. 337–
351. Springer, 1982. doi: 10.1007/3-540-11494-7_22.

[Rey07] Pierre-Alain Reynier. Diagonal Constraints Handled Efficiently in Uppaal. Tech. rep. LSV-
07-02. Laboratoire Spécification et Vérification, ENS Cachan, France, 2007.

[RSM19] Victor Roussanaly, Ocan Sankur, and Nicolas Markey. Abstraction refinement algorithms
for timed automata. In:Computer Aided Verification, LNCS, vol. 11561, pp. 22–40. Springer,
2019. doi: 10.1007/978-3-030-25540-4_2.

[Saf88] Shmuel Safra. On the complexity of ω-automata. In: Foundations of Computer Science,
pp. 319–327. IEEE, 1988. doi: 10.1109/SFCS.1988.21948.

[SB06] Viktor Schuppan and Armin Biere. Liveness checking as safety checking for infinite state
spaces. Electronic Notes in Theoretical Computer Science 149(1), 2006, pp. 79–96. doi: 10.
1016/j.entcs.2005.11.018.

[SSS00] Mary Sheeran, Satnam Singh, andGunnar Stålmarck. Checking safety properties using in-
duction and a SAT-solver. In: Formal Methods in Computer-Aided Design, LNCS, vol. 1954,
pp. 127–144. Springer, 2000. doi: 10.1007/3-540-40922-X_8.

[Tre08] Jan Tretmans. Model based testing with labelled transition systems. In: Formal Methods

and Testing, LNCS, vol. 4949, pp. 1–38. Springer, 2008. doi: 10.1007/978-3-540-78917-8_1.

111

https://doi.org/10.1007/978-3-642-14295-6_10
https://doi.org/10.1007/978-3-642-14295-6_10
https://doi.org/10.1016/S0019-9958(66)80013-X
https://doi.org/10.1145/3183440.3183489
https://doi.org/10.1007/978-3-642-22110-1_50
https://doi.org/10.1007/978-3-540-45069-6_2
https://doi.org/10.1109/5.24143
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/978-3-030-25540-4_2
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/978-3-540-78917-8_1

Bibliography

[VW86] Moshe Y. Vardi and PierreWolper. An automata-theoretic approach to automatic program
verification. In: Logic in Computer Science, pp. 322–331. IEEE, 1986.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Information

and Computation 115(1), 1994, pp. 1–37. doi: 10.1006/inco.1994.1092.
[WJ15] Weifeng Wang and Li Jiao. Difference bound constraint abstraction for timed automata

reachability checking. In: Formal Techniques for Distributed Systems, LNCS, vol. 9039,
pp. 146–160. Springer, 2015. doi: 10.1007/978-3-319-19195-9_10.

[WVS83] PierreWolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about infinite computation
paths. In: Foundations of Computer Science, pp. 185–194. IEEE, 1983. doi: 10.1109/SFCS.
1983.51.

112

https://doi.org/10.1006/inco.1994.1092
https://doi.org/10.1007/978-3-319-19195-9_10
https://doi.org/10.1109/SFCS.1983.51
https://doi.org/10.1109/SFCS.1983.51

	1 Introduction
	1.1 Goals
	1.2 Summary of Challenges
	1.3 Structure of the Dissertation

	2 Background
	2.1 Transition Systems
	2.2 Linear-Time Properties
	2.3 Omega-Regular Model Checking
	2.4 Linear Temporal Logic
	2.5 Timed Automata with Discrete Variables
	2.5.1 Valuations
	2.5.2 Timed Automata

	3 Architecture of a Configurable Model Checking Framework
	3.1 Related Tools
	3.2 Architecture and Implementation
	3.2.1 Formalisms and Language Frontends
	3.2.2 Analysis Backend
	3.2.3 SMT Solver Interface
	3.2.4 Extending and Instantiating the Framework

	3.3 Use Cases
	3.3.1 Theta for Transition Systems
	3.3.2 Theta for Control Flow Automata
	3.3.3 Theta for Timed Automata

	3.4 Conclusions
	3.4.1 Thesis Summary

	4 A Uniform Formalization of Abstraction Refinement Strategies for Timed Automata
	4.1 Algorithm for Lazy Reachability Checking
	4.1.1 Abstract Reachability Tree
	4.1.2 Reachability Algorithm

	4.2 Abstraction Refinement
	4.3 Combination of Abstractions
	4.4 Implementation
	4.5 Conclusions
	4.5.1 Thesis Summary

	5 Lazy Reachability Checking for Timed Automata using Interpolants
	5.1 Related Work
	5.2 Zones and DBMs
	5.3 Abstraction for Clock Variables
	5.3.1 Zone Abstraction
	5.3.2 Lazy Zone Abstraction
	5.3.3 Interpolation for Zones
	5.3.4 Abstraction Refinement for Lazy Zone Abstraction

	5.4 Evaluation
	5.4.1 Diagonal-Free Models
	5.4.2 Models with Diagonal Guards

	5.5 Conclusions
	5.5.1 Thesis Summary

	6 Lazy Reachability Checking for Timed Automata with Discrete Variables
	6.1 Related Work
	6.2 Abstraction and Refinement for Discrete Variables
	6.2.1 Explicit Tracking of Variables
	6.2.2 Visible Variables Abstraction
	6.2.3 Interpolation for Valuations
	6.2.4 Abstraction Refinement for Visible Variables Abstraction

	6.3 Example
	6.4 Evaluation
	6.4.1 Diagonal-Free Models
	6.4.2 Models with Diagonal Guards

	6.5 Conclusions
	6.5.1 Thesis Summary

	7 K-Induction Based Liveness Checking of Real-Time Systems
	7.1 k-Induction
	7.2 Calendar Systems
	7.3 Model Checking of Calendar Systems
	7.3.1 Finding Counterexamples for Omega-Regular Properties
	7.3.2 Proving Omega-Regular Properties Using k-Induction

	7.4 Tool Support
	7.5 Case Study
	7.5.1 Discovering Invariants
	7.5.2 Proving Correctness using Abstraction
	7.5.3 Extending the System with an Error Model

	7.6 Conclusions
	7.6.1 Thesis Summary

	8 A Decomposition Method for Liveness Checking of Hierarchical Real-Time Protocols
	8.1 Verification Approach
	8.1.1 Notation
	8.1.2 Modeling Transient Faults
	8.1.3 Decomposition of Persistence Properties

	8.2 Description of the Protocol
	8.2.1 Master Election
	8.2.2 Assignment of Logical Addresses
	8.2.3 LIOs

	8.3 Verification of the Protocol
	8.3.1 Decomposing the Verification of the Protocol
	8.3.2 Verification of Master Election
	8.3.3 Verification of Logical Address Assignment
	8.3.4 Result of the Verification

	8.4 Conclusions
	8.4.1 Thesis Summary

	9 Summary of the Research Results
	9.1 Thesis 1
	9.2 Thesis 2
	9.3 Thesis 3
	9.4 Thesis 4

	A Appendix
	A.1 Lemmas and Proofs
	A.2 Tables

	Publications
	Publication List
	Publications Linked to the Theses
	Additional Publications (Not Linked to Theses)

	Bibliography

