
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119604, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Early Exiting-Enabled Siamese Tracking for
Edge Intelligence Applications

Mohammad Fahd Hussein1, and Serkan Özbay1
1Department of Electrical and Electronics Engineering, Gaziantep University, Gaziantep 27310, Turkey

Corresponding author: Mohammad Fahd Hussein (e-mail: fahd.hus@live.com).

ABSTRACT Visual object trackers based on deep neural networks have attained state-of-the-art

performance in recent years. Despite the outstanding accuracy gained by deep layers, however, they also

demand high computational cost and energy consumption in order to operate in real-time, making them

inadequate for edge and latency-sensitive applications. In this paper, we propose an edge computing-friendly

Siamese-based visual object tracker. This work concentrates on increasing the tracking speed by reducing

computations through integration of side exit branches into the network, as well as skipping the multi-scale

search for some frames. By employing exit branches, the tracker is capable of obtaining the result of easy

samples from early layers once the criteria are satisfied. The network is trained offline to optimize a joint

function that is composed of the weighted loss functions of all exit branches. During inference, the score map

is derived from the network and determines the new object location, whereas multi-scale testing can identify

scale updates which is only applied under specific conditions. Our proposed tracker deploys an adaptive scale

search over two scales that runs at 247.5 FPS on GPU and 37.1 FPS on CPU providing a 2.5x faster rate of

processing speed compared to SiamFC, with an acceptable amount of accuracy loss, especially when

compared to the significant speed gain and gains in computational efficiency.

INDEX TERMS Deep Learning, early exit, edge computing, real-time tracking, Siamese network, visual

tracking.

I. INTRODUCTION

Visual Object Tracking is one of the fundamental components

in computer vision with a diverse range of applications

including autonomous driving, surveillance, and robotics.

Object tracking aims to locate a target efficiently in all

subsequent frames despite any variations in conditions or

through any disturbances. Moreover, generic object trackers

are capable of tracking any object regardless of its class or its

appearance in the training dataset.

As object tracking is an active research topic, many studies

have proposed solutions to improve accuracy and robustness

in order to solve common challenging problems related to

object appearance such as deformation, occlusion, camera

motion, and speed and scale variations [1]–[3]. With the

remarkable success that has come through the application of

deep neural networks to computer vision tasks, recent

Siamese-based object tracking approaches [4]–[9] have

introduced new state-of-the-art performance. A Siamese

network [10] is a deep neural network whose architecture

solves tracking problems through its ability to compare and

identify similarities between two inputs: templates of the

target object and images retrieved from subsequent frames. On

the other hand, deep learning networks require more robust

computational and memory resources, which also increases

power demands.

With the increasing use of smart cities and internet of things

(IoT) applications, processing speed and computational cost

have become almost as essential as performance [11]. Cloud

computing is one of the common solutions used to overcome

hardware limitations [12]. In cloud computing, data are

processed remotely on a processing device with sufficient

computational resources that typically utilize powerful GPUs

for visual tasks processing. However, the required

communication between device and server carries various

potential risks related to data security and privacy, network

coverage, band width, and response time [13]. In many

applications, particularly where real-time response is critical,

latency or network loss can be detrimental to performance. It

is for this reason that computation should be pushed to the

edge near the sensor, a process called edge computing. In edge

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119604, IEEE Access

VOLUME XX, 2017 2

computing, data are processed on a device locally with no need

for any data transfer to the cloud server. This avoids any risks

associated with cloud computing. However, edge computing

requires greater attention to computational resources, power

consumption, and storage [13].

Recently, more effort has been expended to boost the

tracking speed and increase accuracy. Modern correlation

filters, and Region Proposal Network (RPN) [14] based

tracking approaches [5], [8], [9] have introduced impressive

performance improvements with a response time beyond the

real-time on GPU. Although recently proposed tracking

methods operate at high framerates, the computational

complexity remains extremely high for many low-power

devices operating at the edge.

In this work, we attempt to propose a CPU-friendly generic

object tracker based on deep Siamese networks that allow a

viable trade-off between accuracy and speed. First, we train a

Siamese Fully Convolutional (SiamFC) [7] based tracker with

the modified AlexNet backbone. This is done after adding

multiple exit branches to the network in order to terminate the

inference early at the point when accuracy is determined to be

adequate. At each exit point, the model compares the highest

score from a heatmap with a corresponding threshold in order

to decide when to exit. In order to retain the lowest

computational cost, we use fixed thresholds for comparison.

Second, we validate the accuracy at every exit point using

OTB2013 dataset [15] and then tune the exiting thresholds,

evaluate the joint model on OTB2015 [16] and VOT2018 [2]

datasets, and compare the results with SiamFC (our baseline).

Finally, we introduce a simple adaptive multi-scale test

method which only uses a single scale unless the score goes

below a pre-defined threshold. Skipping multiple scales tests

whenever possible allows for extreme reduction in

computational costs but can also introduce reductions in

accuracy as well.

Our Early Exiting-Enabled Siamese tracker (SiamEE) can

operate at an average speed 247.5 FPS on GPU and 37.1 FPS

on CPU making it 150% faster than SiamFC.

The rest of this paper is organized as follows. Section II

gives an overview of literature on related works. In Section III,

we introduce a description of early exiting-enabled network

architecture for Siamese object tracking describing our

training and tracking approaches including our scale-search

skipping method. Section IV provides the implementation

details of our tracker. The results of experiments are presented

in Section V. Finally, Section VI concludes the paper.

II. LITERATURE REVIEW

A. SIAMESE-BASED OBJECT TRACKING

Results of recent visual tracking challenges [1]–[3] have

demonstrated improved performance with the wide use of

Siamese-based trackers which are among the top trackers

along with trackers based on discriminative correlation filters

(DCF).

The recent state-of-the-art performance of Siamese-based

trackers has attracted growing attention, making them an

active research topic. Siamese-based trackers predict target

location by checking feature similarities between object

templates and search regions where both branches share the

same parameters. Held et al. [17] proposed a regression-based

generic object tracker GOTURN. The high speed of the

GOTURN tracker is due to the direct bounding box

predictions it can perform in a single feed-forward pass, which

is achieved by adding fully connected layers after the two

feature extraction branches. Gordon et al. [18] presented a

recurrent neural network-based tracker Re3 to increase

accuracy and efficiency. Bertinetto et al. [7] proved the

advantage of using cross correlation to improve performance

and speed with his introduction of the SiamFC tracker. In this

tracker, features of the template image and search image are

cross-correlated to obtain a heatmap. The highest heatmap

score indicates the target location. The tracker predicts the

target scale by scanning multiple scales of image, where the

heatmap with the highest score points to the target scale. Then,

CFNet [6] developed a modified network structure, adding a

correlation filter into the template branch thus achieving high

performance using a shallower network. In contrast to

SiamFC, CFNet recomputes the template after each frame

instead of relying on comparisons with the initial template.

Although the SiamFC and CFNet run beyond real-time, they

both use a multi-scale test method that requires higher

computational demand that limits tracker speed.

SiamRPN [8] overcame this negative effect of multi-scale

testing by introducing region proposal subnetwork (RPN) [14]

after the features’ extraction layers. The region proposal

subnetwork consists of a foreground-background

classification branch and a proposal regression branch.

SiamRPN achieved state-of-the-art performance while

operating at 160 FPS. The subsequent architectures proposed

by Zhang et al. [9] and Li et al. [5] showed a significant

performance improvement using deeper networks. This

improvement however comes at the cost of computational

power and speed.

Xu et al. [4] introduced SiamFC++ based on proposed

guidelines to obtain a high-performance tracker while running

over 160 FPS with an AlexNet backbone. Similar to SiamRPN

trackers [8], SiamFC++ added classification and regression

branches after the cross-correlated features but, moreover, it

discarded the need of pre-defined anchor boxes. Also,

SiamFC++ introduced the quality assessment branch

following the guidelines in order to increase accuracy.

Huang et al. [19] introduced a high-speed adaptive tracker

by implementing an early stopping method based on

reinforcement learning. In addition to the early stopping

approach, the authors added both pixel and HOG layers in

order to process cheap features at high speed before

proceeding to the deeper layers. Also, the scale estimation is

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119604, IEEE Access

VOLUME XX, 2017 3

computed during the forward-pass using heatmaps, which

overcomes the high computation threshold required for

estimation using multiple scales tests. The tracker achieved

23 fps on a single CPU at a high level of performance.

B. DEEP NETWORK ACCELERATION

The high computational costs associated with the impressive

success of deep neural networks have attracted more attention

to model compression and acceleration techniques. These

include such techniques as early exiting, knowledge

distillation, pruning, and quantization [20].

Early exit approaches increase inference speed and thus

save more energy by performing predictions of easier samples

at earlier layers. After adding exit branches in specific

locations of the deep network, the inference starts with earlier

layers, and at each exit point the prediction result will be

evaluated under defined criteria in order to decide whether the

result is satisfying. After this evaluation, the inference either

stops or proceeds to deeper layers. Using this architecture,

BranchyNet [21] showed a remarkable increase in speed on

both CPU and GPU, with accuracy comparable to many

popular architectures. Later researches [22], [23] proposed

learned policies for early exiting that automatically decide

when to exit without using manually defined thresholds in

order to maintain the accuracy.

III. THE PROPOSED SIAMESE TRACKER

In this section, we review the fully convolutional Siamese

architecture as our proposed SiamEE tracker is based on

SiamFC [7] which we modified to allow for the model to exit

early when applicable. As shown in Fig. 1, we introduce three

exit branches after each convolutional layer, beginning at the

second layer and yielding four exit points including the main

branch exit.

A. FULLY CONVOLUTIONAL SIAMESE NETWORK FOR
OBJECT TRACKING

Comprising of two branches, Siamese networks can take a pair

of images as inputs to predict an object location by comparing

the similarities between a template patch and a search patch.

The template image (denoted as z) represents the targeted

object, an image which is generally taken from the first frame

of the video and centered on the object, whereas the search

image (denoted as x) is typically taken from subsequent frames

which is larger than the template image and centered at the last

object position. In both branches, the convolutional layers

share the same parameters and are used to extract the features

of the inputs. The feature representations are then cross-

correlated to obtain the score map.

 𝑓𝑏(𝑧, 𝑥) = 𝜙𝑏(𝑧)⍟𝜙𝑏(𝑥), 𝑏 ∈ {1, 2,3,4} (1)

where 𝑓𝑏 is the score map of branch b obtained by cross-

correlating ⍟ the two feature representations 𝜙𝑏 of a template

patch z and a search region x at branch b.

The highest value of the score map corresponds to the object

location, which is normally close to the center as the

displacement is generally small between two consecutive

frames.

B. ARCHITECTURE

The main embedding backbone architecture matches the

original version employed by SiamFC, which is a modified

version of AlexNet. Inspired by BranchyNet [21], SiamEE

introduces three additional exit branches to the network. As

shown in Fig. 1, the exit branches are located after every

convolutional layer except for the first layer. Experimentally,

we found that the first layer has less ability to represent good

features for tracking. Moreover, the score map obtained from

the first layer has a larger size which needs to be down

sampled to output size. The benefit of this early branch does

not reasonably satisfy the demands of additional

computational cost. Thus, we do not attach an early exit branch

directly after the first layer.

Fig. 2 shows the number of parameters utilized by each exit

branch and also compares them to the number of the baseline’s

parameters. The parameters of the overall network are

increased by 12% more than the baseline’s parameters due to

the additional convolutional layers of exit branches.

FIGURE 1. The architecture of our SiamEE tracker which consists of two main branches and four exits.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119604, IEEE Access

VOLUME XX, 2017 4

C. TRAINING WITH EXIT BRANCHES

Using (1), we obtain four different response maps

corresponding to the four exit branches. Since the objective is

to minimize the logistic loss function of every exit score map,

the network is trained offline to optimize a joint function:

ℒ = ∑ 𝑤𝑏𝐿𝑏(𝑓𝑏 , 𝑦)
4

𝑏=1
 (2)

This loss function ℒ of the branchy network is the sum of the

logistic loss of every branch output after weighting it by wb. Lb

is the logistic loss where y is a labels map with +1 values in

the true object location and -1 otherwise. Since the training

images are centered on the object, the values of the labels map

are +1 if they exist within a specific radius of the center and -

1 outside that region.

D. TRACKING ALGORITHM

Beginning with the closest exit branch to the input, the score

map of the branch is obtained. Then the maximum score is

compared to a pre-defined threshold 𝛾𝑏. If this score is less

than 𝛾𝑏, then the score map is returned as a final output and

the inference stops. Otherwise, the process continues all the

way to the last point with examining the corresponding output

at every exit branch successively. For a single sample, the

output of each convolutional layer is computed only once and

fed to next layers if the exit criteria were not satisfied.

Since our goal is to achieve reasonable accuracy without

seeking extra computational overhead, we do not incorporate

any dynamic rule for early exiting. Instead, we define fixed

thresholds and tune them after the training is over. Moreover,

these manually designated thresholds come in handy for

adjusting the accuracy-speed trade-off.

During online tracking, the search image is compared to the

initial template image, which is not updated in each frame,

which means that the feature representations of the template

image are computed only once for all exit branches and then

used for all subsequent frames. This results in fast inference.

After attaining the score map, the object displacement is

calculated by multiplying the network stride by the maximum

score position with respect to the center, after applying cosine

window to the response map in order to alleviate the effects of

the boundary discontinuity, assuming that the displacement is

small from frame to frame.

The exhaustive scale search strategy is another key source

of expensive computations. Since the purpose of this study is

to reduce computational cost while permitting a reasonable

accuracy loss, we modified the scale search method by

introducing a simple skipping rule. Skipping the scale search

offers significant computational savings due to the fact that the

scale difference can be negligible in frequent frames in many

scenarios, particularly when running at high speed. As our

model does not provide prediction confidence, we use the

maximum value of the predicted score map instead. A greater

score indicates a higher confidence. To decide whether we can

skip the multi-scale search in the next frame, we observe this

score value. If the score is decreasing, we then apply multi-

scale search in the next frame. In this work, we only compared

the score of the current frame with the previous score.

However, there are other factors influencing the score, like the

object appearance and occlusion. Using history vector holding

of the most recent scores, instead of employing a single score

for comparison, can better represent the score change.

IV. IMPLEMENTATION DETAILS

A. TRAINING PHASE

Our training procedure is similar to [7]. We use a modified

AlexNet as a backbone. We then obtain its parameters by

minimizing (2) with SGD, with a momentum of 0.9. The

parameters are initialized by the improved Xavier method. The

network is then trained for 50 epochs using batch size 8 with

a learning rate decaying with a fixed factor at each epoch from

10−2 to 10−5. The training set is ImageNet Video [24] which

contains 4417 videos. The training set is curated to obtain

template images with size of 127×127×3 and test images with

size of 255×255×3 in which the target is centered.

We selected the weights wb of (2) to be 0.3,0.4,0.5,1 for

each branch respectively starting from the closest branch to the

input. While calibrating our tracking problem, we discovered

that granting a high weight to earlier exits adversely affects

tracker accuracy.

After training, we then tune the exit thresholds 𝛾𝑏 using a

simple method. First, we establish three special variants of the

network, each of them comprised of a targeted branch, that we

tune its threshold, and the last branch. In other words, the three

formed variants only contain two exit branches: the first and

last branches, the second and last branches, and, finally, the

last two branches. Then we screen over 𝛾𝑏 by evaluating

tracker performance under different values. The screening is

performed using OTB2013 dataset. Lastly, we select the

thresholds that satisfy our desired accuracy and speed.

Although this method is time-consuming, it is only performed

once after the training, so it does not affect the inference.

B. TEST PHASE

0.42M

1.41M

2.19M

2.63M
2.34M

B1 B2 B3 B4 SiamFC

Number of network parameters

FIGURE 2. Comparison between number of the backbone parameters of
each exit branch and the baseline.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119604, IEEE Access

VOLUME XX, 2017 5

The output of our network is a score map with a size of 17×17.

We upsample it to 272×272 and use the highest score to

calculate the translation after penalizing large displacements

by applying a cosine window on the score map.

To demonstrate the effects of the scale search method, we

implemented four variants of our tracker: SiamEE (Siamese

with Early Exiting) with exhaustive search over 3 scales {0.95,

1, 1.05}, SiamEE-3AS with adaptive search over 3 scales

{0.95, 1, 1.05}, SiamEE-2AS with adaptive search over 2

scales {0.95, 1.05}, and No-EE-2AS which is early exiting-

disabled with adaptive search over 2 scales {0.95, 1.05}.

When searching over three scales, no-scaling is given a higher

priority by multiplying the scores corresponding to the scaled

object by 0.97. In adaptive scale search, no-scaling will be

applied on the next frame if the current score is greater than

the score threshold. This threshold is calculated by subtracting

a small number β = 0.3 from the score of the previous frame.

The early exiting approach is applied to the branchy trackers

using the value 5 for all exit thresholds.

We evaluated our proposed tracker on a device with an Intel

i7-10750H CPU, and NVIDIA GeForce GTX 1650 GPU.

V. EXPERIMENTS

We first performed our experiments on OTB2013 to compare

the results at each exit branch independently. We then used a

special variant SiamEE-2B which consists of the first and last

exit branches only, so that we were able to study the effects of

exit threshold 𝛾𝑏. Finally, we tested our four variants on

OTB2015 and VOT2018 benchmarks.

As the tracking speed is hardware-dependent, we also

performed experiments on the baseline using the same

resources. To achieve that, we re-implemented the tracking

method of SiamFC-3s and used the originally submitted

trained model. Additionally, we included the reported results

of the baseline and another state-of-the-art tracker (SiamRPN)

in our tables. Unless we declare that the result is reported, it

refers to the results obtained by our implementation.

A. RESULTS ON OTB20 13

OTB2013 dataset [15] contains 50 videos for the evaluation of

trackers. Fig. 3 shows the results of every exit branch

individually in addition to SiamFC-3s (baseline). The

precision plot (left) is based on the center location error, which

is calculated as the average of the Euclidean distances between

the center of the predicted bounding box and the center of the

ground-truth of all frames of a sequence. The success plot

(right) uses the average overlap of the predicted bounding box

and the ground-truth which is drawn by generating threshold

values from 0 to 1 then computing the percentage of overlap

ratios exceed each threshold. We use precision scores as our

accuracy metric, a score which is derived from predictions

whose center location resides within a specific distance from

the center of the ground-truth. OTB uses a distance threshold

= 20 pixels for evaluation, so we report precision at point 20

as the precision score.

FIGURE 3. The results of the exit branches on OTB2013 compared with
the baseline (SiamFC-3s). The precision plots are based on the center
location error whereas the success plots represent the average overlap
between the predicted bounding box and the ground-truth.

TABLE I

THE RESULTS OF SIAMEE-2B ON OTB2013 WITH DIFFERENT EXIT

THRESHOLDS

As shown in Fig. 3, the inference of earlier branches is

performed with greater speed, but the accuracy is lower. The

first exit branch is 59.2% faster than the last one, but its

accuracy is about 8.2% lower. In comparison with the

baseline, the last branch achieves the closest success and

precision scores, but it operates at lower speeds due to the

additional computations required for other exit branches.

Tracker performance using different exit threshold values is

listed in Table I. Increasing the threshold encourages more

samples to exit earlier which speeds up the inference at the

cost of accuracy.

B. RESULTS ON OTB2015

We tested our tracker variants, SiamEE-3S, SiamEE-3AS,

SiamEE-2AS, and No-EE-2AS, on the 100 videos of

OTB2015 dataset [16] and compared the results with the

original SiamFC tracker results. As shown in Table II, our

proposed SiamEE-2AS tracker achieves the fastest inference

running at more than 247 FPS, which is 160% faster than

SiamFC, while our precision and success scores remain

satisfying with 5.8% and 6.5% loss in each of them

respectively. SiamEE-2AS also operates at real-time speed on

CPU (37.1 FPS) making it CPU-friendly tracker.

The results of No-EE-2AS demonstrates that the skipping

of the multi-scale search with no early exiting accelerated the

tracking by 117.4% with only 2.3% loss in precision and 3%

loss in success score. On the other hand, early exiting-enabled

tracker with the exhaustive multi-scale search (SiamEE-3S) is

able to run 20% faster than the baseline but with the cost of

3.9% loss in precision and 4.6% loss in success.

Ɣ Success Precision Speed (FPS)

2 0.557 0.753 135.1

4 0.569 0.777 120.7

6 0.576 0.773 107.6

8 0.595 0.798 98.8

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119604, IEEE Access

VOLUME XX, 2017 6

TABLE II

THE RESULTS OF THE TRACKER VARIANTS ON OTB2015 WITH EXIT THRESHOLDS SET TO 5. WHERE BX% IS THE PERCENTAGE OF SAMPLES EXITED AT

BRANCH X, AND SCALE SEARCHES% IS THE PERCENTAGE OF APPLYING MULTI-SCALE SEARCH

TABLE III

THE RESULTS OF THE TRACKER VARIANTS ON VOT2018

* SiamFC has two versions [6], [7] which differs in the network

architecture. The second version of SiamFC is slower but has slightly

higher accuracy. The baseline of our work is the first version of

SiamFC whereas the recently reported results are based on the second

version.

Additionally, the results show that more than 55% of frames

are easy so that the first branch is capable of processing them.

Sample frames with various difficulties are presented in Fig.

4. Object in a search region similar to the template region is

easier to be located by a shallower network.

Table II also shows that our tracker needed to search over

multiple scales only in less than 26.5% of the frames which

extremely saves computations and thus boosts the inference.

This result was due to the fact that the scale variation is low in

most cases, and scale difference between consecutive frames

when running at high speed is negligible as well.

C. RESULTS ON VOT2018

We evaluated our tracker variants on VOT2018 dataset [2]

which includes 60 video sequences. The primary evaluation

protocol of the short-term VOT2018 challenge is done through

supervised evaluation in which the tracker is re-initialized

whenever it fails. This tracking failure is detected when the

overlap between the predicted bounding box and the ground-

truth is zero. The tracker reset is performed after five frames

from failure in order to reduce bias. The performance

measures are: Accuracy (A) regarding the average overlap

between successful prediction and the ground-truth,

Robustness (R) depending on the percentage of failures, and

Expected average overlap (EAO) with respect to both

accuracy and robustness which is estimated by taking the

average over all average overlaps of frames’ segments.

Segments are then extracted from sequences with respect to

failures, then they are normalized to a specific length by either

trimming or padding with zero. The results are reported in

Table III.

As the tracker re-initializes the template after failure, the

tracking speeds presented in Table III are lower than those in

Table II due to the additional cost for re-computing the

template.

Table III shows that our SiamEE-2AS has a close accuracy

(1.9% better) compared to our re-implemented baseline,

whereas the robustness loss is noticeable (about 19.6%).

VI. CONCLUSION

In this paper, we propose an approach that allowed us to

significantly increase tracking speed while retaining

reasonable accuracy. This was achieved by establishing a

network architecture with multiple exits that enables the

inference to stop at early stages, and applying a simple

adaptive scale search method.

Our empirical evidence shows that plenty of frames are easy

so that they can be detected at early stages alongside the

negligible scale change between successive frames, which

Tracker Success Precision FPSGPU/CPU B1% B2% B3% B4% Scale Searches%

SiamEE-3S 0.557 0.746 114.2/18 58.41 8.11 11.65 21.82 100

SiamEE-3AS 0.544 0.729 236.1/34.4 55.19 7.78 11.39 25.64 26.23

SiamEE-2AS 0.546 0.731 247.5/37.1 55.87 7.84 11.16 25.14 26.47

No-EE-2AS 0.566 0.758 207/32.7 - - - - 22.69

Baseline (SiamFC-3s) 0.584 0.776 95.2/14.9 - - - - 100

Baseline (Reported) 0.582 0.771 86/- - - - - 100

SiamRPN (Reported) 0.637 0.851 160/- - - - - -

Tracker Accuracy ↑ Robustness ↓ EAO ↑ FPSGPU/CPU

SiamEE-3S 0.486 0.754 0.171 99.64/17.18

SiamEE-3AS 0.474 0.754 0.165 177.99/30.88

SiamEE-2AS 0.482 0.768 0.167 185.26/31.65

No-EE-2AS 0.481 0.726 0.175 168.12/28.24

Baseline 0.473 0.642 0.199 89.25/14.89

Baseline
(Reported)*

0.503 0.585 0.188 36.76/-

SiamRPN

(Reported)

0.586 0.276 0.383 81.73/-

FIGURE 4. Sample frames with the predicted bounding box of the tracked object are selected so that they have different difficulties. We have done
this in order to illustrate the adaptive behavior of the early exiting method, which exits easier frames earlier. The shown images are picked from the
KiteSurf sequence which are from left to right: frame 1 (the template image), frame 8 exited from branch 1, frame 25 exited from branch 2, frame 30
exited from branch 3, and frame 43 exited from the last branch. Sample is easier when the search region is more similar to the template image,
because all sequence frames are compared to the template image. As shown, the object becomes harder to detect by proceeding towards the right
image, so it exits at later branches.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119604, IEEE Access

VOLUME XX, 2017 7

allowed us to drastically reduce computation costs. We

evaluated our tracker on OTB2013, OTB2015, and VOT2018

datasets and subsequently demonstrated that our approach can

accelerate inference by 150% of our baseline with an accuracy

loss less than 5%.

In this work, we concentrated on reducing computational

costs as much as possible while permitting accuracy loss.

However, future work should consider methods that maintain

the robustness of the tracker. Our next research will be focused

on exit thresholds which can be adaptive with careful attention

to computational overhead. Additionally, the skipping method

of the multi-scale search can utilize a history vector with a

specific length, instead of relying on a single score for

comparison. This history vector would hold the maximum

values of the latest score maps, which could then be analyzed

to predict skips more reliably.

REFERENCES
[1] M. Kristan et al., “The Seventh Visual Object Tracking

VOT2019 Challenge Results,” Proc. - 2019 Int. Conf.

Comput. Vis. Work. ICCVW 2019, pp. 2206–2241, 2019,

doi: 10.1109/ICCVW.2019.00276.
[2] M. Kristan et al., “The sixth visual object tracking

VOT2018 challenge results,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 11129 LNCS, no. 1, pp. 3–53, 2019,

doi: 10.1007/978-3-030-11009-3_1.

[3] M. Kristan et al., “The Eighth Visual Object Tracking
VOT2020 Challenge Results,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 12539 LNCS, pp. 547–601, 2020,

doi: 10.1007/978-3-030-68238-5_39.

[4] Y. Xu, Z. Wang, Z. Li, Y. Yuan, and G. Yu, “SiamFC++:
Towards Robust and Accurate Visual Tracking with

Target Estimation Guidelines,” Proc. AAAI Conf. Artif.

Intell., vol. 34, no. 07, pp. 12549–12556, 2020, doi:
10.1609/aaai.v34i07.6944.

[5] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan,

“SIAMRPN++: Evolution of siamese visual tracking with
very deep networks,” Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., vol. 2019-June, pp.

4277–4286, 2019, doi: 10.1109/CVPR.2019.00441.
[6] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and

P. H. S. Torr, “End-to-end representation learning for

Correlation Filter based tracking,” Proc. - 30th IEEE
Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol.

2017-Janua, pp. 5000–5008, 2017, doi:

10.1109/CVPR.2017.531.
[7] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi,

and P. H. S. Torr, “Fully-convolutional siamese networks

for object tracking,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 9914 LNCS, pp. 850–865, 2016,

doi: 10.1007/978-3-319-48881-3_56.
[8] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, “High

Performance Visual Tracking with Siamese Region

Proposal Network,” Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., pp. 8971–8980, 2018,

doi: 10.1109/CVPR.2018.00935.

[9] Z. Zhang and H. Peng, “Deeper and wider siamese
networks for real-time visual tracking,” Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol.

2019-June, pp. 4586–4595, 2019, doi:
10.1109/CVPR.2019.00472.

[10] G. Koch, “Siamese Neural Networks for One-shot Image

Recognition,” 2011.

[11] W. Yu et al., “A Survey on the Edge Computing for the

Internet of Things,” IEEE Access, vol. 6, pp. 6900–6919,

2017, doi: 10.1109/ACCESS.2017.2778504.
[12] T. Furuichi and K. Yamada, “Next generation of

embedded system on cloud computing,” Procedia -

Procedia Comput. Sci., vol. 35, pp. 1605–1614, 2014,
doi: 10.1016/j.procs.2014.08.244.

[13] G. Plastiras, M. Terzi, C. Kyrkou, and T. Theocharidcs,

“Edge Intelligence: Challenges and Opportunities of
Near-Sensor Machine Learning Applications,” Proc. Int.

Conf. Appl. Syst. Archit. Process., vol. 2018-July, 2018,

doi: 10.1109/ASAP.2018.8445118.
[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN:

Towards Real-Time Object Detection with Region

Proposal Networks,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 39, no. 6, pp. 1137–1149, 2017, doi:

10.1109/TPAMI.2016.2577031.

[15] Y. Wu, J. Lim, and M. H. Yang, “Online object tracking:
A benchmark,” Proc. IEEE Comput. Soc. Conf. Comput.

Vis. Pattern Recognit., pp. 2411–2418, 2013, doi:

10.1109/CVPR.2013.312.
[16] Y. Wu, J. Lim, and M. H. Yang, “Object tracking

benchmark,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 37, no. 9, pp. 1834–1848, 2015, doi:
10.1109/TPAMI.2014.2388226.

[17] D. Held, S. Thrun, and S. Savarese, “Learning to track at
100 FPS with deep regression networks,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 9905 LNCS, pp. 749–
765, 2016, doi: 10.1007/978-3-319-46448-0_45.

[18] D. Gordon, A. Farhadi, and D. Fox, “Re 3 : Real-time

recurrent regression networks for visual tracking of
generic objects,” IEEE Robot. Autom. Lett., vol. 3, no. 2,

pp. 788–795, 2018, doi: 10.1109/LRA.2018.2792152.

[19] C. Huang, S. Lucey, and D. Ramanan, “Learning Policies
for Adaptive Tracking with Deep Feature Cascades,”

Proc. IEEE Int. Conf. Comput. Vis., vol. 2017-Octob, pp.

105–114, 2017, doi: 10.1109/ICCV.2017.21.

[20] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A Survey

of Model Compression and Acceleration for Deep Neural

Networks,” pp. 1–10, 2017, [Online]. Available:
http://arxiv.org/abs/1710.09282.

[21] S. Teerapittayanon, B. McDanel, and H. T. Kung,

“BranchyNet: Fast inference via early exiting from deep
neural networks,” Proc. - Int. Conf. Pattern Recognit.,

vol. 0, pp. 2464–2469, 2016, doi:

10.1109/ICPR.2016.7900006.
[22] X. Dai, X. Kong, and T. Guo, “EPNet: Learning to Exit

with Flexible Multi-Branch Network,” 2020, pp. 235–

244, doi: 10.1145/3340531.3411973.
[23] X. Chen, H. Dai, Y. Li, X. Gao, and L. Song, “Learning

to Stop While Learning to Predict,” 2020, [Online].

Available: http://arxiv.org/abs/2006.05082.
[24] O. Russakovsky et al., “ImageNet Large Scale Visual

Recognition Challenge,” Int. J. Comput. Vis., vol. 115,

no. 3, pp. 211–252, 2015, doi: 10.1007/s11263-015-

0816-y.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119604, IEEE Access

VOLUME XX, 2017 8

MOHAMMAD FAHD HUSSEIN received the

B.Sc. degree in electronic systems engineering

from the faculty of Electrical and Electronic

Engineering, Aleppo University, Aleppo, Syria,
in 2013.

He is currently pursuing the M.Sc. degree in

Electronic Circuits and Systems with the
department of Electrical and Electronics

Engineering, Gaziantep University, Gaziantep,

Turkey. His research interests include embedded
systems, edge intelligence, quantization,

computer vision, and IoT.

SERKAN ÖZBAY received the B.Sc., M.Sc.,

and Ph.D. degrees in electrical and electronics
engineering from Gaziantep University,

Gaziantep, Turkey, in 2002, 2006, and 2015,

respectively. From 2003 to 2016, he was a
Lecturer with Gaziantep University, where he is

currently an Assistant Professor. His research

interests include computer vision, deep learning,
machine learning with applications and IoT.

