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ABSTRACT Visual object trackers based on deep neural networks have attained state-of-the-art 

performance in recent years. Despite the outstanding accuracy gained by deep layers, however, they also 

demand high computational cost and energy consumption in order to operate in real-time, making them 

inadequate for edge and latency-sensitive applications. In this paper, we propose an edge computing-friendly 

Siamese-based visual object tracker. This work concentrates on increasing the tracking speed by reducing 

computations through integration of side exit branches into the network, as well as skipping the multi-scale 

search for some frames. By employing exit branches, the tracker is capable of obtaining the result of easy 

samples from early layers once the criteria are satisfied. The network is trained offline to optimize a joint 

function that is composed of the weighted loss functions of all exit branches. During inference, the score map 

is derived from the network and determines the new object location, whereas multi-scale testing can identify 

scale updates which is only applied under specific conditions. Our proposed tracker deploys an adaptive scale 

search over two scales that runs at 247.5 FPS on GPU and 37.1 FPS on CPU providing a 2.5x faster rate of 

processing speed compared to SiamFC, with an acceptable amount of accuracy loss, especially when 

compared to the significant speed gain and gains in computational efficiency. 

INDEX TERMS Deep Learning, early exit, edge computing, real-time tracking, Siamese network, visual 

tracking. 

I. INTRODUCTION 

Visual Object Tracking is one of the fundamental components 

in computer vision with a diverse range of applications 

including autonomous driving, surveillance, and robotics. 

Object tracking aims to locate a target efficiently in all 

subsequent frames despite any variations in conditions or 

through any disturbances. Moreover, generic object trackers 

are capable of tracking any object regardless of its class or its 

appearance in the training dataset. 

As object tracking is an active research topic, many studies 

have proposed solutions to improve accuracy and robustness 

in order to solve common challenging problems related to 

object appearance such as deformation, occlusion, camera 

motion, and speed and scale variations [1]–[3]. With the 

remarkable success that has come through the application of 

deep neural networks to computer vision tasks, recent 

Siamese-based object tracking approaches [4]–[9] have 

introduced new state-of-the-art performance. A Siamese 

network [10] is a deep neural network whose architecture 

solves tracking problems through its ability to compare and 

identify similarities between two inputs: templates of the 

target object and images retrieved from subsequent frames. On 

the other hand, deep learning networks require more robust 

computational and memory resources, which also increases 

power demands. 

With the increasing use of smart cities and internet of things 

(IoT) applications, processing speed and computational cost 

have become almost as essential as performance [11]. Cloud 

computing is one of the common solutions used to overcome 

hardware limitations [12]. In cloud computing, data are 

processed remotely on a processing device with sufficient 

computational resources that typically utilize powerful GPUs 

for visual tasks processing. However, the required 

communication between device and server carries various 

potential risks related to data security and privacy, network 

coverage, band width, and response time [13]. In many 

applications, particularly where real-time response is critical, 

latency or network loss can be detrimental to performance. It 

is for this reason that computation should be pushed to the 

edge near the sensor, a process called edge computing. In edge 
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computing, data are processed on a device locally with no need 

for any data transfer to the cloud server. This avoids any risks 

associated with cloud computing. However, edge computing 

requires greater attention to computational resources, power 

consumption, and storage [13]. 

Recently, more effort has been expended to boost the 

tracking speed and increase accuracy. Modern correlation 

filters, and Region Proposal Network (RPN) [14] based 

tracking approaches [5], [8], [9] have introduced impressive 

performance improvements with a response time beyond the 

real-time on GPU. Although recently proposed tracking 

methods operate at high framerates, the computational 

complexity remains extremely high for many low-power 

devices operating at the edge. 

In this work, we attempt to propose a CPU-friendly generic 

object tracker based on deep Siamese networks that allow a 

viable trade-off between accuracy and speed. First, we train a 

Siamese Fully Convolutional (SiamFC) [7] based tracker with 

the modified AlexNet backbone. This is done after adding 

multiple exit branches to the network in order to terminate the 

inference early at the point when accuracy is determined to be 

adequate. At each exit point, the model compares the highest 

score from a heatmap with a corresponding threshold in order 

to decide when to exit. In order to retain the lowest 

computational cost, we use fixed thresholds for comparison. 

Second, we validate the accuracy at every exit point using 

OTB2013 dataset [15] and then tune the exiting thresholds, 

evaluate the joint model on OTB2015 [16] and VOT2018 [2] 

datasets, and compare the results with SiamFC (our baseline). 

Finally, we introduce a simple adaptive multi-scale test 

method which only uses a single scale unless the score goes 

below a pre-defined threshold. Skipping multiple scales tests 

whenever possible allows for extreme reduction in 

computational costs but can also introduce reductions in 

accuracy as well. 

Our Early Exiting-Enabled Siamese tracker (SiamEE) can 

operate at an average speed 247.5 FPS on GPU and 37.1 FPS 

on CPU making it 150% faster than SiamFC. 

The rest of this paper is organized as follows. Section II 

gives an overview of literature on related works. In Section III, 

we introduce a description of early exiting-enabled network 

architecture for Siamese object tracking describing our 

training and tracking approaches including our scale-search 

skipping method. Section IV provides the implementation 

details of our tracker. The results of experiments are presented 

in Section V. Finally, Section VI concludes the paper. 

II. LITERATURE REVIEW 

A. SIAMESE-BASED OBJECT TRACKING 

Results of recent visual tracking challenges [1]–[3] have 

demonstrated improved performance with the wide use of 

Siamese-based trackers which are among the top trackers 

along with trackers based on discriminative correlation filters 

(DCF). 

The recent state-of-the-art performance of Siamese-based 

trackers has attracted growing attention, making them an 

active research topic. Siamese-based trackers predict target 

location by checking feature similarities between object 

templates and search regions where both branches share the 

same parameters. Held et al. [17] proposed a regression-based 

generic object tracker GOTURN. The high speed of the 

GOTURN tracker is due to the direct bounding box 

predictions it can perform in a single feed-forward pass, which 

is achieved by adding fully connected layers after the two 

feature extraction branches. Gordon et al. [18] presented a 

recurrent neural network-based tracker Re3 to increase 

accuracy and efficiency. Bertinetto et al. [7] proved the 

advantage of using cross correlation to improve performance 

and speed with his introduction of the SiamFC tracker. In this 

tracker, features of the template image and search image are 

cross-correlated to obtain a heatmap. The highest heatmap 

score indicates the target location. The tracker predicts the 

target scale by scanning multiple scales of image, where the 

heatmap with the highest score points to the target scale. Then, 

CFNet [6] developed a modified network structure, adding a 

correlation filter into the template branch thus achieving high 

performance using a shallower network. In contrast to 

SiamFC, CFNet recomputes the template after each frame 

instead of relying on comparisons with the initial template. 

Although the SiamFC and CFNet run beyond real-time, they 

both use a multi-scale test method that requires higher 

computational demand that limits tracker speed. 

SiamRPN [8] overcame this negative effect of multi-scale 

testing by introducing region proposal subnetwork (RPN) [14] 

after the features’ extraction layers. The region proposal 

subnetwork consists of a foreground-background 

classification branch and a proposal regression branch. 

SiamRPN achieved state-of-the-art performance while 

operating at 160 FPS. The subsequent architectures proposed 

by Zhang et al. [9] and Li et al. [5] showed a significant 

performance improvement using deeper networks. This 

improvement however comes at the cost of computational 

power and speed. 

Xu et al. [4] introduced SiamFC++ based on proposed 

guidelines to obtain a high-performance tracker while running 

over 160 FPS with an AlexNet backbone. Similar to SiamRPN 

trackers [8], SiamFC++ added classification and regression 

branches after the cross-correlated features but, moreover, it 

discarded the need of pre-defined anchor boxes. Also, 

SiamFC++ introduced the quality assessment branch 

following the guidelines in order to increase accuracy. 

Huang et al. [19] introduced a high-speed adaptive tracker 

by implementing an early stopping method based on 

reinforcement learning. In addition to the early stopping 

approach, the authors added both pixel and HOG layers in 

order to process cheap features at high speed before 

proceeding to the deeper layers. Also, the scale estimation is 
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computed during the forward-pass using heatmaps, which 

overcomes the high computation threshold required for 

estimation using multiple scales tests.  The tracker achieved 

23 fps on a single CPU at a high level of performance. 

B. DEEP NETWORK ACCELERATION 

The high computational costs associated with the impressive 

success of deep neural networks have attracted more attention 

to model compression and acceleration techniques. These 

include such techniques as early exiting, knowledge 

distillation, pruning, and quantization [20]. 

Early exit approaches increase inference speed and thus 

save more energy by performing predictions of easier samples 

at earlier layers. After adding exit branches in specific 

locations of the deep network, the inference starts with earlier 

layers, and at each exit point the prediction result will be 

evaluated under defined criteria in order to decide whether the 

result is satisfying.  After this evaluation, the inference either 

stops or proceeds to deeper layers. Using this architecture, 

BranchyNet [21] showed a remarkable increase in speed on 

both CPU and GPU, with accuracy comparable to many 

popular architectures. Later researches [22], [23] proposed 

learned policies for early exiting that automatically decide 

when to exit without using manually defined thresholds in 

order to maintain the accuracy. 

III. THE PROPOSED SIAMESE TRACKER 

In this section, we review the fully convolutional Siamese 

architecture as our proposed SiamEE tracker is based on 

SiamFC [7] which we modified to allow for the model to exit 

early when applicable. As shown in Fig. 1, we introduce three 

exit branches after each convolutional layer, beginning at the 

second layer and yielding four exit points including the main 

branch exit. 

A. FULLY CONVOLUTIONAL SIAMESE NETWORK FOR 
OBJECT TRACKING 

Comprising of two branches, Siamese networks can take a pair 

of images as inputs to predict an object location by comparing 

the similarities between a template patch and a search patch. 

The template image (denoted as z) represents the targeted 

object, an image which is generally taken from the first frame 

of the video and centered on the object, whereas the search 

image (denoted as x) is typically taken from subsequent frames 

which is larger than the template image and centered at the last 

object position. In both branches, the convolutional layers 

share the same parameters and are used to extract the features 

of the inputs. The feature representations are then cross-

correlated to obtain the score map. 

 𝑓𝑏(𝑧, 𝑥) = 𝜙𝑏(𝑧)⍟𝜙𝑏(𝑥), 𝑏 ∈ {1, 2,3,4} (1) 

where 𝑓𝑏 is the score map of branch b obtained by cross-

correlating ⍟ the two feature representations 𝜙𝑏 of a template 

patch z and a search region x at branch b. 

The highest value of the score map corresponds to the object 

location, which is normally close to the center as the 

displacement is generally small between two consecutive 

frames. 

B. ARCHITECTURE 

The main embedding backbone architecture matches the 

original version employed by SiamFC, which is a modified 

version of AlexNet. Inspired by BranchyNet [21], SiamEE 

introduces three additional exit branches to the network. As 

shown in Fig. 1, the exit branches are located after every 

convolutional layer except for the first layer. Experimentally, 

we found that the first layer has less ability to represent good 

features for tracking. Moreover, the score map obtained from 

the first layer has a larger size which needs to be down 

sampled to output size. The benefit of this early branch does 

not reasonably satisfy the demands of additional 

computational cost. Thus, we do not attach an early exit branch 

directly after the first layer. 

Fig. 2 shows the number of parameters utilized by each exit 

branch and also compares them to the number of the baseline’s 

parameters. The parameters of the overall network are 

increased by 12% more than the baseline’s parameters due to 

the additional convolutional layers of exit branches. 

FIGURE 1. The architecture of our SiamEE tracker which consists of two main branches and four exits. 
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C. TRAINING WITH EXIT BRANCHES 

Using (1), we obtain four different response maps 

corresponding to the four exit branches. Since the objective is 

to minimize the logistic loss function of every exit score map, 

the network is trained offline to optimize a joint function: 

ℒ = ∑ 𝑤𝑏𝐿𝑏(𝑓𝑏 , 𝑦)
4

𝑏=1
 (2) 

This loss function ℒ of the branchy network is the sum of the 

logistic loss of every branch output after weighting it by wb. Lb 

is the logistic loss where y is a labels map with +1 values in 

the true object location and -1 otherwise. Since the training 

images are centered on the object, the values of the labels map 

are +1 if they exist within a specific radius of the center and -

1 outside that region. 

D. TRACKING ALGORITHM 

Beginning with the closest exit branch to the input, the score 

map of the branch is obtained. Then the maximum score is 

compared to a pre-defined threshold 𝛾𝑏. If this score is less 

than 𝛾𝑏, then the score map is returned as a final output and 

the inference stops. Otherwise, the process continues all the 

way to the last point with examining the corresponding output 

at every exit branch successively. For a single sample, the 

output of each convolutional layer is computed only once and 

fed to next layers if the exit criteria were not satisfied. 

Since our goal is to achieve reasonable accuracy without 

seeking extra computational overhead, we do not incorporate 

any dynamic rule for early exiting. Instead, we define fixed 

thresholds and tune them after the training is over. Moreover, 

these manually designated thresholds come in handy for 

adjusting the accuracy-speed trade-off. 

During online tracking, the search image is compared to the 

initial template image, which is not updated in each frame, 

which means that the feature representations of the template 

image are computed only once for all exit branches and then 

used for all subsequent frames. This results in fast inference. 

After attaining the score map, the object displacement is 

calculated by multiplying the network stride by the maximum 

score position with respect to the center, after applying cosine 

window to the response map in order to alleviate the effects of 

the boundary discontinuity, assuming that the displacement is 

small from frame to frame. 

The exhaustive scale search strategy is another key source 

of expensive computations. Since the purpose of this study is 

to reduce computational cost while permitting a reasonable 

accuracy loss, we modified the scale search method by 

introducing a simple skipping rule. Skipping the scale search 

offers significant computational savings due to the fact that the 

scale difference can be negligible in frequent frames in many 

scenarios, particularly when running at high speed. As our 

model does not provide prediction confidence, we use the 

maximum value of the predicted score map instead. A greater 

score indicates a higher confidence. To decide whether we can 

skip the multi-scale search in the next frame, we observe this 

score value. If the score is decreasing, we then apply multi-

scale search in the next frame. In this work, we only compared 

the score of the current frame with the previous score. 

However, there are other factors influencing the score, like the 

object appearance and occlusion. Using history vector holding 

of the most recent scores, instead of employing a single score 

for comparison, can better represent the score change. 

IV. IMPLEMENTATION DETAILS 

A. TRAINING PHASE 

Our training procedure is similar to [7]. We use a modified 

AlexNet as a backbone. We then obtain its parameters by 

minimizing (2) with SGD, with a momentum of 0.9. The 

parameters are initialized by the improved Xavier method. The 

network is then trained for 50 epochs using batch size 8 with 

a learning rate decaying with a fixed factor at each epoch from 

10−2 to 10−5. The training set is ImageNet Video [24] which 

contains 4417 videos. The training set is curated to obtain 

template images with size of 127×127×3 and test images with 

size of 255×255×3 in which the target is centered. 

We selected the weights wb of (2) to be 0.3,0.4,0.5,1 for 

each branch respectively starting from the closest branch to the 

input. While calibrating our tracking problem, we discovered 

that granting a high weight to earlier exits adversely affects 

tracker accuracy. 

After training, we then tune the exit thresholds 𝛾𝑏 using a 

simple method. First, we establish three special variants of the 

network, each of them comprised of a targeted branch, that we 

tune its threshold, and the last branch. In other words, the three 

formed variants only contain two exit branches: the first and 

last branches, the second and last branches, and, finally, the 

last two branches. Then we screen over 𝛾𝑏 by evaluating 

tracker performance under different values. The screening is 

performed using OTB2013 dataset. Lastly, we select the 

thresholds that satisfy our desired accuracy and speed. 

Although this method is time-consuming, it is only performed 

once after the training, so it does not affect the inference. 

B. TEST PHASE 

0.42M

1.41M

2.19M

2.63M
2.34M

B1 B2 B3 B4 SiamFC

Number of network parameters

FIGURE 2. Comparison between number of the backbone parameters of 
each exit branch and the baseline. 
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The output of our network is a score map with a size of 17×17. 

We upsample it to 272×272 and use the highest score to 

calculate the translation after penalizing large displacements 

by applying a cosine window on the score map. 

To demonstrate the effects of the scale search method, we 

implemented four variants of our tracker: SiamEE (Siamese 

with Early Exiting) with exhaustive search over 3 scales {0.95, 

1, 1.05}, SiamEE-3AS with adaptive search over 3 scales 

{0.95, 1, 1.05}, SiamEE-2AS with adaptive search over 2 

scales {0.95, 1.05}, and No-EE-2AS which is early exiting-

disabled with adaptive search over 2 scales {0.95, 1.05}. 

When searching over three scales, no-scaling is given a higher 

priority by multiplying the scores corresponding to the scaled 

object by 0.97. In adaptive scale search, no-scaling will be 

applied on the next frame if the current score is greater than 

the score threshold. This threshold is calculated by subtracting 

a small number β = 0.3 from the score of the previous frame. 

The early exiting approach is applied to the branchy trackers 

using the value 5 for all exit thresholds. 

We evaluated our proposed tracker on a device with an Intel 

i7-10750H CPU, and NVIDIA GeForce GTX 1650 GPU. 

V. EXPERIMENTS 

We first performed our experiments on OTB2013 to compare 

the results at each exit branch independently. We then used a 

special variant SiamEE-2B which consists of the first and last 

exit branches only, so that we were able to study the effects of 

exit threshold 𝛾𝑏. Finally, we tested our four variants on 

OTB2015 and VOT2018 benchmarks. 

As the tracking speed is hardware-dependent, we also 

performed experiments on the baseline using the same 

resources. To achieve that, we re-implemented the tracking 

method of SiamFC-3s and used the originally submitted 

trained model. Additionally, we included the reported results 

of the baseline and another state-of-the-art tracker (SiamRPN) 

in our tables. Unless we declare that the result is reported, it 

refers to the results obtained by our implementation. 

A. RESULTS ON OTB20 13 

OTB2013 dataset [15] contains 50 videos for the evaluation of 

trackers. Fig. 3 shows the results of every exit branch 

individually in addition to SiamFC-3s (baseline). The 

precision plot (left) is based on the center location error, which 

is calculated as the average of the Euclidean distances between 

the center of the predicted bounding box and the center of the 

ground-truth of all frames of a sequence. The success plot 

(right) uses the average overlap of the predicted bounding box 

and the ground-truth which is drawn by generating threshold 

values from 0 to 1 then computing the percentage of overlap 

ratios exceed each threshold. We use precision scores as our 

accuracy metric, a score which is derived from predictions 

whose center location resides within a specific distance from 

the center of the ground-truth. OTB uses a distance threshold 

= 20 pixels for evaluation, so we report precision at point 20 

as the precision score. 

 

 

 

 

 

 

 

 

 

FIGURE 3. The results of the exit branches on OTB2013 compared with 
the baseline (SiamFC-3s). The precision plots are based on the center 
location error whereas the success plots represent the average overlap 
between the predicted bounding box and the ground-truth. 

 
TABLE I 

THE RESULTS OF SIAMEE-2B ON OTB2013 WITH DIFFERENT EXIT 

THRESHOLDS 

As shown in Fig. 3, the inference of earlier branches is 

performed with greater speed, but the accuracy is lower. The 

first exit branch is 59.2% faster than the last one, but its 

accuracy is about 8.2% lower. In comparison with the 

baseline, the last branch achieves the closest success and 

precision scores, but it operates at lower speeds due to the 

additional computations required for other exit branches. 

Tracker performance using different exit threshold values is 

listed in Table I. Increasing the threshold encourages more 

samples to exit earlier which speeds up the inference at the 

cost of accuracy. 

B. RESULTS ON OTB2015 

We tested our tracker variants, SiamEE-3S, SiamEE-3AS, 

SiamEE-2AS, and No-EE-2AS, on the 100 videos of 

OTB2015 dataset [16] and compared the results with the 

original SiamFC tracker results. As shown in Table II, our 

proposed SiamEE-2AS tracker achieves the fastest inference 

running at more than 247 FPS, which is 160% faster than 

SiamFC, while our precision and success scores remain 

satisfying with 5.8% and 6.5% loss in each of them 

respectively. SiamEE-2AS also operates at real-time speed on 

CPU (37.1 FPS) making it CPU-friendly tracker. 

The results of No-EE-2AS demonstrates that the skipping 

of the multi-scale search with no early exiting accelerated the 

tracking by 117.4% with only 2.3% loss in precision and 3% 

loss in success score. On the other hand, early exiting-enabled 

tracker with the exhaustive multi-scale search (SiamEE-3S) is 

able to run 20% faster than the baseline but with the cost of 

3.9% loss in precision and 4.6% loss in success. 

Ɣ Success Precision Speed (FPS) 

2 0.557 0.753 135.1 

4 0.569 0.777 120.7 

6 0.576 0.773 107.6 

8 0.595 0.798 98.8 
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TABLE II 

THE RESULTS OF THE TRACKER VARIANTS ON OTB2015 WITH EXIT THRESHOLDS SET TO 5. WHERE BX% IS THE PERCENTAGE OF SAMPLES EXITED AT 

BRANCH X, AND SCALE SEARCHES% IS THE PERCENTAGE OF APPLYING MULTI-SCALE SEARCH

 
TABLE III 

THE RESULTS OF THE TRACKER VARIANTS ON VOT2018 

* SiamFC has two versions [6], [7] which differs in the network 

architecture. The second version of SiamFC is slower but has slightly 

higher accuracy. The baseline of our work is the first version of 

SiamFC whereas the recently reported results are based on the second 

version. 

 

Additionally, the results show that more than 55% of frames 

are easy so that the first branch is capable of processing them. 

Sample frames with various difficulties are presented in Fig. 

4. Object in a search region similar to the template region is 

easier to be located by a shallower network. 

Table II also shows that our tracker needed to search over 

multiple scales only in less than 26.5% of the frames which 

extremely saves computations and thus boosts the inference. 

This result was due to the fact that the scale variation is low in 

most cases, and scale difference between consecutive frames 

when running at high speed is negligible as well. 

C. RESULTS ON VOT2018  

We evaluated our tracker variants on VOT2018 dataset [2] 

which includes 60 video sequences. The primary evaluation 

protocol of the short-term VOT2018 challenge is done through 

supervised evaluation in which the tracker is re-initialized 

whenever it fails. This tracking failure is detected when the 

overlap between the predicted bounding box and the ground-

truth is zero. The tracker reset is performed after five frames 

from failure in order to reduce bias. The performance 

measures are: Accuracy (A) regarding the average overlap 

between successful prediction and the ground-truth, 

Robustness (R) depending on the percentage of failures, and 

Expected average overlap (EAO) with respect to both 

accuracy and robustness which is estimated by taking the 

average over all average overlaps of frames’ segments. 

Segments are then extracted from sequences with respect to 

failures, then they are normalized to a specific length by either 

trimming or padding with zero. The results are reported in 

Table III. 

As the tracker re-initializes the template after failure, the 

tracking speeds presented in Table III are lower than those in 

Table II due to the additional cost for re-computing the 

template. 

Table III shows that our SiamEE-2AS has a close accuracy 

(1.9% better) compared to our re-implemented baseline, 

whereas the robustness loss is noticeable (about 19.6%). 

VI. CONCLUSION 

In this paper, we propose an approach that allowed us to 

significantly increase tracking speed while retaining 

reasonable accuracy. This was achieved by establishing a 

network architecture with multiple exits that enables the 

inference to stop at early stages, and applying a simple 

adaptive scale search method. 

Our empirical evidence shows that plenty of frames are easy 

so that they can be detected at early stages alongside the 

negligible scale change between successive frames, which 

Tracker Success Precision FPSGPU/CPU B1% B2% B3% B4% Scale Searches% 

SiamEE-3S 0.557 0.746 114.2/18 58.41 8.11 11.65 21.82 100 

SiamEE-3AS 0.544 0.729 236.1/34.4 55.19 7.78 11.39 25.64 26.23 

SiamEE-2AS 0.546 0.731 247.5/37.1 55.87 7.84 11.16 25.14 26.47 

No-EE-2AS 0.566 0.758 207/32.7 - - - - 22.69 

Baseline (SiamFC-3s) 0.584 0.776 95.2/14.9 - - - - 100 

Baseline (Reported) 0.582 0.771 86/- - - - - 100 

SiamRPN (Reported) 0.637 0.851 160/- - - - - - 

Tracker Accuracy ↑ Robustness ↓ EAO ↑ FPSGPU/CPU 

SiamEE-3S 0.486 0.754 0.171 99.64/17.18 

SiamEE-3AS 0.474 0.754 0.165 177.99/30.88 

SiamEE-2AS 0.482 0.768 0.167 185.26/31.65 

No-EE-2AS 0.481 0.726 0.175 168.12/28.24 

Baseline 0.473 0.642 0.199 89.25/14.89 

Baseline 
(Reported)* 

0.503 0.585 0.188 36.76/- 

SiamRPN 

(Reported) 

0.586 0.276 0.383 81.73/- 

FIGURE 4. Sample frames with the predicted bounding box of the tracked object are selected so that they have different difficulties. We have done 
this in order to illustrate the adaptive behavior of the early exiting method, which exits easier frames earlier. The shown images are picked from the 
KiteSurf sequence which are from left to right: frame 1 (the template image), frame 8 exited from branch 1, frame 25 exited from branch 2, frame 30 
exited from branch 3, and frame 43 exited from the last branch. Sample is easier when the search region is more similar to the template image, 
because all sequence frames are compared to the template image. As shown, the object becomes harder to detect by proceeding towards the right 
image, so it exits at later branches. 
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allowed us to drastically reduce computation costs.  We 

evaluated our tracker on OTB2013, OTB2015, and VOT2018 

datasets and subsequently demonstrated that our approach can 

accelerate inference by 150% of our baseline with an accuracy 

loss less than 5%. 

In this work, we concentrated on reducing computational 

costs as much as possible while permitting accuracy loss. 

However, future work should consider methods that maintain 

the robustness of the tracker. Our next research will be focused 

on exit thresholds which can be adaptive with careful attention 

to computational overhead. Additionally, the skipping method 

of the multi-scale search can utilize a history vector with a 

specific length, instead of relying on a single score for 

comparison. This history vector would hold the maximum 

values of the latest score maps, which could then be analyzed 

to predict skips more reliably. 
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