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ABSTRACT This paper addresses the robust finite-time H∞ control problem for the uncertain singular
system by using the stability theory of dynamical systems. Firstly, a lemma is provided to show that the
singular system is finite-time stability by using the state space decomposition approach. Similar with the
proof method of this Lemma, the singular system is divided into a differential system and an algebra one.
Then, some conditions are derived to ensure the singular system being finite-time H∞ stability based on the
obtained lemma, and the state feedback control law is designed. These conditions are provided in the form
of the linear matrix inequalities and can be easily solved. Finally, a numerical example is given to illustrate
the effectiveness of the obtained results.

INDEX TERMS Finite-time stability, H∞ control, singular system, uncertainty.

I. INTRODUCTION
Singular systems can usually describe the behavior of numer-
ous physical systems such as biological systems, mechanical
engineering systems, economical systems and so on [1]-
[4]. Because singular systems are composed of algebraic
equations and differential equations, the dynamical character
of singular systems is more complex than some common
dynamical systems. Thus the stability problems related to
singular systems are more difficult to be deal with and
become an important topic for the researchers in the past
decades. For example, the authors studied the stability of
continuous singular switched systems by using the state-
space decomposition approach and provided some sufficient
conditions to guarantee the stability of these systems in [5].
By using the sliding mode control, the authors investigated
the admissibility and state estimation of singular stochastic
Markovian jump systems with uncertainties in [6] and [7],
respectively. By using the fuzzy control, the authors studied
the stability of singular system and proposed a kind of
fuzzy controller in [8]. For the discrete singular systems, the
authors investigated the issue of robust observer based on
H∞ control for uncertain discrete singular systems with time
varying delays via sliding mode control in [9].

Among all kinds of the control issues of the dynamical
systems with the external disturbances, H∞ control is a
powerful tool [10]- [14], which can describe the numerical
relationship between the measured output and the external

disturbances. For example, by constructing a delay-product-
type augmented Lyapunov-Krasovskii functional, the authors
investigated the robust H∞ control for a class of uncertain
nonlinear time-delay systems in [10].The authors investi-
gated H∞ control for a time-varying delay system by using
the T-S fuzzy control and provided a fuzzy controller in [12].

Uncertain systems are usually used to describe some prac-
tical systems which part of parameters or structures are un-
known. For these kinds of systems, there exist lots of related
research methods and results [15]- [19]. For example, [16]
investigated the robust stability of uncertain linear neutral
systems with discrete and distributed delays and proposed
some stability criteria. By using the free weighting matrices
and a sliding mode control, the authors studied the stability of
the uncertain discrete singular systems with external distur-
bances and time-varying delays in [18]. For its application,
the authors investigated the problem of designing a non-
fragile state estimator for a class of uncertain discrete-time
neural networks with time-delays by using the Lyapunov
stability theory and the explicit expression of the desired
estimators in [19].

Recently, it can be found some papers related to the finite-
time stability of the dynamical systems in [20]- [26]. Finite-
time stability means that the quadratic function related with
the system states is bounded in finite time interval when the
initial values lie in a given bound domain. In fact, finite-
time stability is much more accord with the practical sys-
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tems. For example, by constructing appropriate Lyapunov-
like functionals and using the average dwell time technique,
the authors investigated the finite-time synchronization prob-
lem for a class of uncertain coupled switched neural net-
works under asynchronous switching condition in [24]. The
authors investigates the problem of decentralized adaptive
fuzzy finite-time control for switched nonlinear large-scale
systems with actuator and sensor faults by using constructed
observer and fuzzy logic method in [25]. The finite-time
non-fragile passivity control for neural networks with time-
varying delay is studied by constructing a new Lyapunov-
Krasovskii function and utilizing Wirtinger-type inequality
in [26].

Motivated by the above discussion, we will focus on inves-
tigating the robust finite-time H∞ control for a class of con-
tinuous uncertain singular systems in the paper. As far as we
know, there are few relevant results. The main contributions
of this paper are summarized as follows: (1) Consider the
finite-time stability and H∞ control for an uncertain singular
system by using the state space decomposition approach; (2)
This paper provides some stable conditions depending on the
system parameters and the design method of state feedback
controller, and these results reveals directly the connection of
the system parameters and its performance; (3) The results
are given in the form of linear matrix inequalities and are
easy to solve.

The rest of this paper is organized as follows. In section
2, the dynamical system and some preliminaries are given.
In section 3, the finite-time H∞ stability criteria are derived
from the state feedback controller. In section 4, a numerical
example is provided to illustrate the effectiveness of the pro-
posed method. In the last section, conclusions are presented.

Notation. Rn and Rn×m, respectively, denote the n-
dimensional Euclidean space and the set of all n × m real
matrices, ||a|| =

√
a21 + a22 + ...+ a2n represents the norm

of vector a = (a1, a2, ..., an)T ∈ Rn. In is an n×n identical
matrix, λmax(A) and λmin(A) stand for the maximum and
the minimum eigenvalues of matrixA, respectively. ∗ denotes
the symmetric parts on the matrix principal diagonal. In
this paper, all matrices are assumed to have appropriate
dimensions.

II. PROBLEM STATEMENT AND PRELIMINARIES
In this paper, we consider the following singular system{

Eẋ = (A+4A)x(t) + (B +4B)u(t) +D1w(t),
z̃(t) = (C +4C)x(t) +D2w(t),

(1)
where x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn is the system
state, z̃(t) = (z̃1(t), z̃2(t), ..., z̃q(t))

T ∈ Rq is the controlled
output, u(t) ∈ Rm is the control input. A ∈ Rn×n, B ∈
Rn×m, C ∈ Rq×n, D1 ∈ Rn×p, D2 ∈ Rq×p are some
known matrices. ∆A,∆B and ∆C are some unknown ma-
trices and express the uncertainty of system parameters and

satisfy

[∆A,∆B] = G1H(t)[F1, F2],∆C = G2H(t)F3,

where H(t) is an unknown time-varying matrix and satisfies
HT (t)H(t) ≤ I for t ≥ 0. G1, G2, F1, F2, F3 are some
known matrices with appropriate dimensions. The distur-
bance w(t) ∈ Rp satisfies ||w(t)|| ≤

√
d for a given

scalar d ≥ 0. E is an n-order singular matrix and satisfies
rank(E) = r < n.

Definition 1. [27] For the singular system

Eẋ(t) = Ax(t). (2)

(i) Singular system (2) is called regular if det(sE − A) is
not identical zero.

(ii) Singular system (2) is called impulse-free if
deg(det(sE −A)) = rank(E).

Definition 2. For given scalars c2 > c1 > 0 and T > 0,
system (1) with u(t) = 0 is said to be the finite-time stability
on (c1, c2, R, T ) if

xT (0)Rx(0) ≤ c1 ⇒ xT (t)Rx(t) ≤ c2,∀t ∈ [0, T ],

where R ∈ Rn×n is a positive define symmetric matrix.
Definition 3. [28] Define the H∞ norm of system (1) as

||Tzw||∞ = sup{ ||z̃(t)||
||w(t)||

, w(t) ∈ L2[0,+∞), ||w(t)|| 6= 0}.

Under zero initial condition, if ||Tzw||∞ < γ, then system (1)
is said to possess H∞ performance with attenuation index γ.

In this paper, we intend to design the following state
feedback controller

u(t) = Kx(t) (3)

such that system (1) is finite-time stable and possesses H∞
performance with attenuation index γ, where K ∈ Rm×n is
the control gain matrix to be determined in the later.

Substituting (3) into system (1), one gets the closed-loop
system {

Eẋ = Āx(t) +D1w(t),
z̃(t) = (C +4C)x(t) +D2w(t),

(4)

where Ā = A+BK +4A+4BK.
In what follows, we give some necessary lemmas to be

used in the later.
Lemma 1. For any a, b ∈ Rn and ε1 > 0, there is

2aT b ≤ ε1aTa+ ε−11 bT b.

Lemma 2. For given scalars c2 > c1 > 0, T > 0 and a
positive define symmetric matrix R, singular system

Eẋ(t) = Ax(t) +Dw(t), (5)

is finite-time stability if there exist a positive define symmet-
ric matrix P ∈ Rn×n, nonsingular matrices M ∈ Rn×n and
N ∈ Rn×n, scalars δ > 0, µ > 0 and α > 0 such that

PE = ETPT ≥ 0, (6)
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PA+ATPT + αPE + δ−1PDDTPT < 0, (7)

(1 + 2||A−122 A21||2) · λmax(R11)
λmin(P11)·λmin(R11)

[ λmax(P11)
λmin(NTRN)

c1 + δd
α (eαT − 1)]

+2d||A−122 D21||2 ≤ µ−1c2,
(8)

and [
−µI NTR
∗ −R

]
< 0 (9)

hold, where P11, R11, A21, A22, D21 will be defined in the
later.

Proof. Because ofRank(E) = r < n, there exist two non-

singular matrices M and N such that MEN =

[
Ir 0
0 0

]
.

Firstly, we will show that system (5) is regular and impulse-
free if (6) and (7) hold.

Writing MAN =

[
A11 A12

A21 A22

]
and MD =

[
D11

D21

]
,

z(t) = N−1x(t) =

[
z1(t)
z2(t)

]
, z1(t) ∈ Rr and z2(t) ∈

Rn−r, then system (5) is

{
ż1(t) = A11z1(t) +A12z2(t) +D11w(t),
0 = A21z1(t) +A22z2(t) +D21w(t).

(10)

From (6), and letting

NTPM−1 =

[
P11 P12

P21 P22

]
, one has

NTPEN = NTPM−1 ·MEN =

[
P11 0
P21 0

]
and

NTETPTN = NTETMT ·M−TPTN =

[
PT11 PT21
0 0

]
,

which shows P11 = PT11 and P21 = 0. Moreover,

NTETREN = NTETMT ·M−TRM−1 ·MEN =

[
R11 0

0 0

]
,

where M−TRM−1 =

[
R11 R12

R21 R22

]
. Since M−TRM−1

is a positive define symmetric matrix, which gives R11 > 0.
For any a = (a1, a2, ..., an)T ∈ Rn, there are

λmin(R11)

r∑
i=1

a2i ≤ aTNTETRENa

= aT
[
R11 0
0 0

]
a

≤ λmax(R11)aT a,

(11)

λmin(P11)

r∑
i=1

a2i ≤ aTNTPENa

= aT
[
P11 0
0 0

]
a

≤ λmax(P11)

r∑
i=1

a2i

≤ λmax(P11)aT a

(12)

and

λmin(NTRN)aTa ≤ aTNTRNa ≤ λmax(NTRN)aTa.

From the above inequalities, we get

PE ≤ λmax(P11)

λmin(NTRN)
R.

Next, we will show the finite-time stability of system
(5) under the conditions (6) ∼ (9). Choosing a Lyapunov
function as

V (t) = xT (t)PEx(t),

then its derivative along with the trajectory of (5) is

V̇ (t) + αV (t) = 2xT (t)PEẋ(t) + αxT (t)PEx(t)
= 2xT (t)P [Ax(t) +Dw(t)] + αxT (t)PEx(t)
= xT (t)[PA+ATPT + αPE]x(t)
+ 2xT (t)PDw(t)
≤ xT (t)[PA+ATPT + αPE
+ δ−1PDDTPT ]x(t) + δwT (t)w(t),

(13)
where we use the fact that there exists δ > 0 such that

2xT (t)PDw(t) ≤ δ−1xT (t)PDDTPTx(t) + δwT (t)w(t).

By (7) and integrating (13) in interval [0, t] ⊆ [0, T ], one has

V (t) ≤ e−αt[V (0) + δ
∫ T
0
eατwT (τ)w(τ)dτ ]

≤ λmax(P11)
λmin(NTRN)

xT (0)Rx(0) + δd
α (eαT − 1)

≤ λmax(P11)
λmin(NTRN)

c1 + δd
α (eαT − 1).

On the other hand, there is

V (t) ≥ λmin(P11)
λmax(R11)

xT (t)ETREx(t)

= λmin(P11)
λmax(R11)

xT (t)N−T ·NTETREN ·N−1x(t)

≥ λmin(P11)
λmax(R11)

zT1 (t)R11z1(t).

Thus

||z1(t)||2 ≤ λmax(R11)
λmin(P11)·λmin(R11)

[
λmax(P11)

λmin(NTRN)
c1 + δd

α
(eαT − 1)].

(14)
Furthermore, by (7) there is

PA+ATPT < 0,

so

NTPM−1 ·MAN +NTATMT ·M−TPTN < 0,

that is

 P11A11 +AT11P
T
11

+P12A21 +AT21P
T
12

P11A12 + P12A22

+AT21P
T
22

∗ P22A22 +AT22P
T
22

 < 0,

thus P22A22 + AT22P
T
22 < 0. Because of P22 > 0, A22 is an

invertible matrix. From Definition 1, system (5) is singular
and impulse-free.

According to (10), there is

||z2(t)|| = || −A−122 A21z1(t)−A−122 D21w(t)||
≤ ||A−122 A21|| · ||z1(t)||+ ||A−122 D21|| · ||w(t)||.

(15)
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By (8), one gets

xT (t)Rx(t) = zT (t)NTRNz(t)
≤ λmax(NTRN)(||z1(t)||2 + ||z2(t)||2)

≤ λmax(NTRN)(||z1(t)||2 + 2||A−1
22 A21||2

·||z1(t)||2 + 2||A−1
22 D21||2 · ||w(t)||2)

≤ λmax(NTRN){(1 + 2||A−1
22 A21||2)

· λmax(R11)
λmin(P11)·λmin(R11)

·[ λmax(P11)

λmin(NTRN)
c1 + δd

α
(eαT − 1)]

+2d||A−1
22 D21||2}

≤ c2,
(16)

which shows that system (5) is finite-time stability. The proof
of Lemma 2 is completed.

Remark 1. The finite-time stability for the singular dy-
namical systems is an interesting topic, there exist some
existing papers [29], [30]. Viewed from the used methods,
there mainly include two kinds of methods. One is the state
space decomposition approach, the other is to construct some
special Lyapunov functions as [29]. In fact, compared with
some dynamical systems, singular systems are composed
of algebraic equations and differential equations. Thus, the
difficult is how to decompose them into two subsystems and
finds out the connection of the states of the two subsystems
by using suitable method.

III. MAIN RESULTS
Theorem 1. For given scalars c2 > c1 > 0, T > 0 and a
positive define symmetric matrix R, if there exist a positive
define symmetric matrix P ∈ Rn×n, nonsingular matrices
M ∈ Rn×n and N ∈ Rn×n, scalars δ > 0, µ > 0 and α > 0
such that

PE = ETPT ≥ 0, (17)

PĀ+ ĀTPT + αPE + δ−1PD1D
T
1 P

T < 0, (18)

(1 + 2||Ā−122 Ā21||2) · λmax(R11)
λmin(P11)·λmin(R11)

·[ λmax(P11)
λmin(NTRN)

c1 + δd
α (eαT − 1)] + 2d||Ā−122 D1,21||2

≤ µ−1c2,
(19)[

−µI NTR
∗ −R

]
< 0, (20)

Φ1 =

[
Θ11 PD1 + (C +4C)TD2

∗ DT
2 D2 − γ2I

]
< 0, (21)

where Θ11 = PĀ + ĀTPT + (C + 4C)T (C + 4C),
then system (4) is finite-time stability on (c1, c2, R, T ) and

||Tzw||∞ ≤ γ. Where MĀN =

[
Ā11 Ā12

Ā21 Ā22

]
and

MD1 =

[
D1,11

D1,21

]
.

Proof. From lemma 2, we know that if inequalities (17) ∼
(20) hold, system (4) is the finite-time stability.

On the other hand, since

V̇ (t) + z̃T (t)z̃(t)− γ2wT (t)w(t)
= 2xT (t)P [Āx(t) +D1w(t)]− γ2wT (t)w(t)
+[(C +4C)x(t) +D2w(t)]T [(C +4C)x(t) +D2w(t)]
= ηT (t)Φ1η(t),

where V (t) is the same with Lemma 2 and η(t) =
[xT (t), wT (t)]T . Thus, from (17) and (21), one gets

||z̃(t)||2 ≤ γ2||w(t)||2,

which shows that system (4) possessesH∞ performance with
attenuation index γ.

The inequalities in Theorem 1 are nonlinear on the un-
known variables, in order to solve them easily, we can
transform them into the linear matrix inequalities. Thus we
provide the following results.

Theorem 2. For given scalars c2 > c1 > 0, T > 0 and a
positive define symmetric matrix R, if there exist a positive
define symmetric matrix X ∈ Rn×n, nonsingular matrices
M ∈ Rn×n and N ∈ Rn×n, matrix W ∈ Rm×n, positive
scalars δ, µ, ε2, ε3, ε4, such that (23) ∼ (27) hold, where
Φ2,11 = AX + BW + XAT + WTBT + ε3G1G

T
1 . Then

system (4) is the finite-time stability on (c1, c2, R, T ) and
||Tzw||∞ ≤ γ.

Proof. Since[
P (A+BK) + (A+BK)TPT + αPE PD1

∗ −δI

]
+

[
PG1

0

]
H(t)

[
F1 + F2K 0

]
+

[
(F1 + F2K)T

0

]
HT (t)

[
(PG1)T 0

]
≤
[
P (A+BK) + (A+BK)TPT + αPE PD1

∗ −δI

]
+ε2

[
PG1

0

] [
(PG1)T 0

]
+ε−1

2

[
(F1 + F2K)T

0

] [
F1 + F2K 0

]
,

and using the Schur complement lemma, we know that if
(28) holds, then inequality (18) holds. Pre- and postmultiply-
ing with diag{P−1, I, I} and its transpose on the both sides
of (28), respectively, using the Schur complement lemma
again and letting P−1 = X,KP−1 = W , one gets (24).

On the other hand, according to the Schur complement
lemma, inequality (21) is equivalent with PĀ+ ĀTPT PD1 + (C + ∆C)TD2 (C + ∆C)T

∗ DT2 D2 − γ2I 0
∗ ∗ −I

 < 0.

(22)
Substituting Ā into (22) and using Lemma 1, one gets
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EXT = XET ≥ 0, (23) AX +BW +XTAT +WTBT + αEX + ε2G1G
T
1 D1 XFT1 +WTFT2

∗ −δI 0
∗ ∗ −ε2I

 < 0, (24)

(1 + 2||Ā−122 Ā21||2) · λmax(R11)
λmin(P11)·λmin(R11)

[ λmax(P11)
λmin(NTRN)

c1 + δd
α (eαT − 1)]

+2d||Ā−122 D1,21||2 ≤ µ−1c2,
(25)[

−µI NTR
∗ −R

]
< 0, (26)

Φ2 =


Φ2,11 D1 +XCTD2 XCT XFT1 +WTFT2 XFT3
∗ DT

2 D2 − γ2I + ε4D
T
2 G2G

T
2D2 ε4D

T
2 G2G

T
2 0 0

∗ ∗ −I + ε4G2G
T
2 0 0

∗ ∗ ∗ −ε3I 0
∗ ∗ ∗ ∗ −ε4I

 < 0, (27)

 P (A+BK) + (A+BK)TPT PD1 + CTD2 CT

∗ DT2 D2 − γ2I 0
∗ ∗ −I


+

 PG1

0
0

H(t)
[
F1 + F2K 0 0

]
+

 (F1 + F2K)T

0
0

HT (t)
[

(PG1)T 0 0
]

+

 0
DT2 G2

G2

H(t)
[
F3 0 0

]
+

 FT3
0
0

HT (t)
[

0 GT2 D2 GT2
]

≤

 P (A+BK) + (A+BK)TPT PD1 + CTD2 CT

∗ DT2 D2 − γ2I 0
∗ ∗ −I


+ε3

 PG1

0
0

 [ (PG1)T 0 0
]

+ε−1
3

 (F1 + F2K)T

0
0

 [ F1 + F2K 0 0
]

+ε4

 0
DT2 G2

G2

 [ 0 GT2 D2 GT2
]

+ε−1
4

 FT3
0
0

 [ F3 0 0
]
.

Thus, inequality (22) holds only if inequality (29) holds.
Where Φ3,11 = P (A + BK) + (A + BK)TPT +

ε3PG1G
T
1 P

T . Pre- and postmultiplying both sides of (29)
with diag{P−1, I, I, I, I} and its transpose, respectively,
and using the Schur complement lemma, we obtain (27). The
proof is completed.

Remark 2. Based on the above results, we can obtain some
special cases. For example, when E = In in (4), this system
is robust H∞ finite-time stability only if replacing E in (23)
∼ (27) with In and other necessary modification. In fact, for

this case, there have been some existing results [13], [31].
Which shows that our results are more general. Certainly, the
obtained results suit for system (4) without uncertainty.

IV. NUMERICAL SIMULATION
In this section, we give a numerical example to show the
effectiveness of our results.

Example 1. Consider singular system (1) with the follow-
ing parameters

E =

 1 0 2
0.5 0 0
0 0 3

 , A =

 −14 1 −3
0 −5 2
1 0 −6

 ,
B =

 −1 1
1 0
3 1

 , C =

[
2 1 1
1 1 0

]
,

D1 =

 0.5
0.5
0

 , D2 =

[
0.3
0.4

]
, G1 =

 0.1
0.2
0.3

 , G2 =

[
0.1
0.3

]
,

F1 =
[

0.1 0.1 0.3
]
, F2 =

[
0.2 −0.5

]
, F3 =

[
0.1 0 0.5

]
,

R =

 0.6 0 0
0 0.8 0
0 0 1

 , c1 = 48, c2 = 80, H(t) = sint.

By using the LMI toolbox in the MATLAB, we obtain the
following solutions of the inequalities (23) ∼ (27):

M =

 0.1603 0.0061 0.2220
0.7182 0.5368 −0.5332
−0.4286 0.8571 0.2857

 ,
N =

 0.1633 0.9866 0
0 0 1

0.9866 −0.1633 0

 ,
X =

 1.3546 −0.7605 −0.8447
−0.7605 1.6999 0.4489
−0.8447 0.4489 2.9862

 ,
W =

[
−6.1905 0.8414 1.8664
4.6434 −5.0307 4.4245

]
,

K =

[
−6.2602 −2.0860 −0.8323
4.2363 −1.8451 2.9573

]
,

ε2 = 12.2332, ε3 = 13.1024, ε4 = 3.3855, δ = 5.8727, µ = 14.7735,
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 P (A+BK) + (A+BK)TPT + αPE + ε2PG1G
T
1 P PD1 (F1 + F2K)T

∗ −δI 0
∗ ∗ −ε2I

 < 0, (28)

Φ3 =


Φ3,11 PD1 + CTD2 CT (F1 + F2K)T FT3
∗ DT

2 D2 − γ2I + ε4D
T
2 G2G

T
2D2 ε4D

T
2 G2G

T
2 0 0

∗ ∗ −I + ε4G2G
T
2 0 0

∗ ∗ ∗ −ε3I 0
∗ ∗ ∗ ∗ −ε4I

 < 0, (29)

γ = 2.2 . For the initial values x(0) = (5, 3,−5)T ,
Fig.1 is the state trajectories of system (4). Fig.2 is the
curve of the state function xT (t)Rx(t), which shows that
system (4) is finite-time stability. In fact, from these two
figures, we known that finite-time stability is milder than the
asymptotical stability. Fig.3 is the curve of H∞ performance
index γ(t) = ||z(t)||

||w(t)|| for system (4), which shows that system
(4) has H∞ performance index γ.
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Fig.1. The state trajectories of system (4).

V. CONCLUSION
In this paper, the robust finite-time H∞ control problem for
the uncertain singular system has been investigated. Through
the state space decomposition and constructing a Lyapunov
functional, some conditions which guarantee the studied
singular system to be finite-time stability and possess H∞
performance with attenuation index γ have obtained. These
results have preferably revealed the relationship between
the finite-time stability and system parameters. Moreover,
these results are provided by the form of the linear matrix
inequalities and are easy to solve. A numerical example has
shown that our method is effective.
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