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A Survey on 2D and 3D Contactless Fingerprint Biometrics: A
Taxonomy, Review, and Future Directions

Xuefei Yin, Yanming Zhu, and Jiankun Hu∗, Senior Memeber, IEEE
Contactless fingerprint biometrics has achieved rapid development in the past decades thanks to its inherent advantages, such as

no physical contact between a finger and a sensor, no contamination by latent fingerprints, and more hygienic. These advantages
have paved the way for new 2D or 3D contactless fingerprint-based applications and have promoted a larger number of academic
publications in recent years. Therefore, it is necessary and important to conduct a comprehensive survey on contactless fingerprint
biometric technology, review the latest research findings on 2D and 3D contactless fingerprint recognition systems, and point out the
future development direction of contactless fingerprint biometrics. In this work, a comprehensive survey is presented to review the
2D and 3D contactless fingerprint biometrics from four essential aspects: contactless fingerprint capture, fingerprint preprocessing,
feature extraction, and template comparison. To serve as a good reference, we provide a well-structured taxonomy about contactless
fingerprint biometrics. We also identify related research problems and future research directions.

Index Terms—Biometrics, contactless fingerprint, 2D contactless fingerprint, 3D contactless fingerprint, 3D fingerprint reconstruc-
tion.

I. INTRODUCTION

A. Background

AFingerprint is one of the most popular and reliable
biometric traits and has been successfully equipped

into various applications for identity verification (one-to-one
comparison) or identification (one-to-many comparison), such
as building access control, mobile products, and contact-
less payment cards [1], [2]. As an attractive alternative to
conventional password-based verification, using fingerprints
in these applications for identity verification is convenient
because fingerprints cannot be forgotten. In forensics and
law enforcement, a fingerprint is also one of the important
biometric traits for identification as a fingerprint is considered
to be unique and consistent throughout a person’s life.

Currently, most of these applications are based on contact
fingerprints (such as live-scan and wet-inked fingerprints),
where the fingerprint capture process typically requires phys-
ical contact between a finger and the surface of a sensor.
Although contact fingerprint images are likely to possess
relatively high-contrast ridges and valleys, the physical contact
during the fingerprint acquisition simultaneously incurs some
issues [2], [3]. Firstly, the captured fingerprints are likely to
be contaminated by the latent fingerprints left by previous
users on the sensor surface [4]. Either this will result in bad-
quality fingerprint images, or it will waste time cleaning the
sensor surface. Secondly, because the pressure applied on the
surface of the sensor is different during the capture process,
fingerprints with different degrees of nonlinear distortion will
be produced. This will degrade the comparison accuracy. More
importantly, pathogens such as coronaviruses may spread
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through the sensor surface, which poses hygienic and even
pandemic risks such as COVID-19.

To address these issues raised in the contact fingerprint
recognition systems, contactless ones have been proposed in
recent years [5]–[15]. The contactless fingerprint recognition
systems are also an important component of Next-Generation
Fingerprint Technologies proposed by the National Institute
of Standards and Technology (NIST)1. Because there is no
any physical contact between a sensor and a finger during the
acquisition of contactless fingerprints, contactless fingerprint
recognition systems can effectively address the aforementioned
issues. In addition, contactless fingerprint recognition systems
have more potential advantages. For example, contactless
fingerprints captured by high-resolution cameras can provide
more details besides the ridges and valleys. These major
advantages pave the way for new contactless fingerprint-based
applications and have inspired a large number of publications
in recent years. Therefore, it is necessary and significant to
investigate the contactless fingerprint biometrics to review the
latest research results and point out the future development
direction of the contactless fingerprint biometrics.

B. Motivation

To illustrate our motivation and differentiate our survey
from other surveys, we provide a summary of the related
surveys. In 2009, Parziale et al. [16] investigated the chal-
lenges of contactless fingerprint recognition systems in terms
of fingerprint capture, data format compatibility and the design
of contactless fingerprint systems. However, this work mainly
focuses on the capture of 2D and 3D contactless fingerprints.
Besides, for 3D fingerprints, it mainly introduced stereo-
vision-based methods. In 2012, Khalil et al. [17] reviewed con-
tactless fingerprint preprocessing techniques for fingerprints
captured by a mobile phone. This work covers some issues
related to 2D contactless fingerprint preprocessing, but it lacks
the introduction to the essential technologies of 3D contactless

1https://www.nist.gov/programs-projects/next-generation-fingerprint-
technologies
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fingerprint. In 2014, Labati et al. [18] provided a brief intro-
duction about 2D and 3D contactless fingerprint recognition
technologies. This work mainly focuses on the introduction of
unwrapping algorithms that transform the contactless finger-
print images to contact-equivalent fingerprint images. It fails to
provide a comprehensive survey on 3D contactless fingerprints
in terms of 3D acquisition methods, 3D features, and 3D
template comparison. In 2019, Labati et al. [19] reviewed the
methodologies of fingerprint biometrics targeted smartphones.
It mainly focuses on the 2D contactless fingerprint recognition
systems in terms of image acquisition, preprocessing, and
template extraction and comparison. Similar to the work in
[18], there lacks a comprehensive introduction and discussion
about 3D fingerprints. In 2021, Priesnitz et al. [20] provided
an overview of contactless fingerprint recognition. But this
work only focuses on 2D contactless fingerprint biometrics,
and does not cover 3D contactless fingerprint biometrics. In
summary, the related surveys did not provide a comprehensive
review on contactless fingerprint biometrics covering the latest
2D and 3D fingerprint technologies.

Therefore, it is necessary and significant to conduct a
comprehensive survey on the contactless fingerprint biomet-
rics to review the latest research findings on 2D and 3D
contactless fingerprint recognition systems, and point out the
future development direction of the contactless fingerprint
biometrics. In this work, a comprehensive survey is presented
to review the 2D and 3D contactless fingerprint biometrics
covering fingerprint capture, fingerprint preprocessing, feature
extraction, template comparison, and open research directions.
To serve as a good reference, we provide a well-structured
taxonomy about contactless fingerprint biometrics.

C. Main Contribution

This work is to provide a comprehensive survey on contact-
less fingerprint recognition systems, including 2D contactless
fingerprint recognition systems and 3D contactless fingerprint
recognition systems. The main contributions of this study are
as follows:

• We summarize the state-of-the-art 2D contactless finger-
print recognition systems, covering each stage from the
image acquisition to template comparison and anti-spoof.

• We provide a comprehensive overview on 3D finger-
print recognition systems, especially the 3D fingerprint
reconstruction technologies, including stereo vision based
methods, structured light scanning based methods, and
photometric stereo based methods.

• We propose a taxonomy to systematically present the 2D
and 3D contactless fingerprint recognition systems.

• We identify open research problems existing in the cur-
rent contactless fingerprint recognition system and dis-
cuss future research directions for these open problems.

The rest of this paper is organized as follows. Section
II presents the proposed taxonomy to contactless fingerprint
biometrics. In Section III, we introduce the acquisition of
contactless fingerprints, including 2D and 3D fingerprints. Sec-
tion IV discusses the preprocessing of 2D and 3D contactless
fingerprints. In Section V, we mainly focus on the review

of feature extraction in 2D and 3D fingerprints. Template
comparison of 2D and 3D fingerprints is presented in Section
VI. Finally, we provide the open research problems for future
research and summarize the survey in Section VII.

II. TAXONOMY OF CONTACTLESS FINGERPRINT
BIOMETRICS

Based on the characteristics of contactless fingerprint bio-
metrics, we propose a taxonomy emphasizing 2D and 3D
contactless fingerprint biometrics, as shown in Fig. 1. In this
taxonomy, we focus contactless fingerprint biometrics on four
aspects: 1) contactless fingerprint acquisition, 2) contactless
fingerprint preprocessing, 3) 2D and 3D feature extraction, and
4) contactless fingerprint comparison. Contactless fingerprint
acquisition reviews the acquisition of 2D and 3D contact-
less fingerprints, which provides a comprehensive comparison
of state-of-the-art 3D contactless reconstruction methods. In
contactless fingerprint preprocessing, we summarize four key
stages, including fingertip extraction, ridge orientation esti-
mation, ridge frequency estimation, and ridge/valley enhance-
ment. Feature definition and extraction are then reviewed for
2D and 3D contactless fingerprints. Finally, we review 2D and
3D contactless fingerprint recognition.

III. CONTACTLESS FINGERPRINT CAPTURING
TECHNIQUES

A. 2D Contactless Fingerprint Capturing Techniques
2D contactless fingerprint acquisition is mainly based on

optical devices, such as a camera or a lens. The acquisition
can be divided into two categories: 1) smartphone-based
acquisition and 2) digital camera-based acquisition.

1) Smartphone-based Acquisition
As smartphones or mobile phones are usually equipped with

high-quality cameras and are widely available, they are utilized
to capture 2D contactless fingerprints in the literature [21]–
[28]. Derawi et al. [21] evaluated the performance of a contact-
less fingerprint recognition system based on 1,320 fingerprint
images captured by a Nokia N95 and a HTC Desire under
normal lighting conditions. This work pointed out that the
image quality is likely to be affected by the embedded flash.
Differently, Stein et al. [22] captured 2D fingerprint images
with embedded flash in a dark environment. The experiment
showed that using the flash spotlight in dark environments
can significantly reduce camera noise, thereby improving the
image quality. Sankaran et al. [26] investigated the influence
of environmental illumination and background on contactless
fingerprint images captured by a smartphone. The experiment
showed that not only illumination but also backgrounds play
a strong influence on the image quality. To capture a high-
quality fingerprint image, video-based contactless fingerprint
recognition systems were developed in the literature [23], [24].
In these systems, a high-quality fingerprint image is selected
from frames of a short video. Alkhathami et al. [25] proposed
generating roll-equivalent fingerprint images by mosaicking
three images captured sequentially with a smartphone. Carney
et al. [27] proposed a multi-finger contactless fingerprint
capture system based on smartphones. As an advantage, up to
five fingerprints can be extracted from a multi-finger image.
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Fig. 1: Proposed Taxonomy to Contactless Fingerprint Biometrics.

2) Digital Camera-based Acquisition

Compared with smartphone based acquisitions, digital cam-
era based acquisitions are more flexible in system design [29]–
[35]. In digital camera-based systems, white or color LEDs
are usually utilized to provide predicable lighting. Wang et
al. [29] designed an optical, contactless, compact fingerprint
capture system which is mainly composed of three cameras
and some color LEDs. As three cameras were used in this
system to capture different views of a finger, the placement
of a finger during the capture process is more user-friendly.
Similarly, Khodadoust et al. [35] also developed a three-
camera (PULNIX TM-7EX) device with blue light-emitting

diodes to capture multiple views of a finger. Compared with
the system in [29], this system can capture finger-vein and
finger-knuckle images. Noh et al. [30] developed a contactless
capture system equipped with a charge-coupled device (CCD)
camera, a stepping motor, a mirror, and green LEDs. As an
advantage, this system can capture five fingerprint images
once time. But the capture time is up to 2.5 seconds. The
experiments showed that this system can capture high-quality
and high-contrast fingerprint image. Tsai et al. [31] built a
contactless fingerprint reader based on a digital variable-focus
liquid lens for fast focus plane scanning. The capture of the
multiple focal planes is approximately 0.2 second. Then a
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TABLE I: Comparison of 3D Fingerprint Reconstruction of the State-of-the-art Methods.

Categories
Senor Types

& Ref.
Reconstruction Time

Development

Platform

Indirect Accuracy∗
Relative

Cost

Relative

System SizeEER∗∗ (%)
Ridge/Valley

Recovery

Photometric

Stereo

a camera [43] ∼ 180s for 60K points Matlab, CPU@2.7 GHz nul

yes
low smalla camera [11] ∼ 7.5s for 2.8M points i5-7200 CPU@2.50 GHz 1.02

a camera [37] ∼ 3s for 1.2M points i7-4770 CPU@3.40 GHz
protocol A: 1.41

protocol B: 1.25

Structured
a DLP projector

& a camera [7]
∼ 1s for 5M points no details nul

yes high bulky

Light Scanning
a DLP projector

& a camera [38]
∼ 0.5s for 450K points C++ and no more details nul

Stereo Vision

five cameras [41] computationally expensive no details nul

no
medium medium

three cameras [10] ∼ 90s for 45K points Matlab, T9600 CPU@2.80 GHz nul

two cameras [42] ∼ 24s for 1.2M points Matlab, Xeon CPU@3.60 GHz
dataset A: 0.06

dataset B: 1.2

two cameras [15] ∼ 0.1s for 1.2M points Matlab, i7-5500U CPU@2.4 GHz 0.66 yes

∗ Note: As there is no consistent quantification of 3D fingerprint reconstruction accuracy, we compare the accuracy in an indirect way in terms of EER
and ridge/valley recovery.
∗∗ Note: the values of EER come from the corresponding original papers and are calculated according to different datasets and protocols.

high-quality image with proper focus is selected to extract
a fingerprint. Raghavendra et al. [32] developed a capture
system consisting of a CMOS camera, 40 near infrared LEDs,
and visible light LEDs. As an advantage, finger vein can be
captured simultaneously. Different from the aforementioned
systems, Weissenfeld et al. [33] designed a mobile system
equipped with a camera, a quad-core CPU and an accelerator
FPGA. This system is also designed to capture four finger-
prints once time. Genovese et al. [34] proposed a capture
system equipped with a high-resolution camera and LEDs.
Compared with other capture systems, this system can capture
and extract sweat pores in a fingertip.

B. 3D Contactless Fingerprint Capturing Techniques

3D fingerprint reconstruction is an essential component of
3D fingerprint recognition systems. In recent years, several
methods have been proposed to construct 3D fingerprints,
which can be classified into three categories according to their
imaging techniques: 1) photometric stereo [11], [36], [37]; 2)
structured light scanning [7], [38]–[40]; and 3) stereo vision
[10], [15], [41], [42]. Table I gives a brief review of the state-
of-the-art 3D fingerprint reconstruction methods.

1) Photometric Stereo based 3D Fingerprint Reconstruc-
tion

Photometric stereo-based methods need to capture multiple
2D fingerprint images under different illuminations by using
a fixed high-speed camera. The principle of photometric
stereo is that 3D surface reflectance can be calculated by its
orientation with respect to the observer and the light source
[44]. Many photometric stereo-based methods were proposed
to reconstruct 3D fingerprint information by calculating the
surface normal [11], [36], [37], [43]. The hardware system of

these methods is usually composed of a high-speed camera and
several LEDs. The advantage is that these systems are gener-
ally low-cost and possesses a compact size. However, these
methods are likely to be time-consuming due to the extensive
computation of surface normal for each pixel. For example,
the method in [43] showed that about 180 seconds are needed
for reconstructing a 3D fingerprint with the resolution of 300
× 200. Moreover, these methods require large random-access
memory to store the pre-calibrated data [11], [37].

2) Structured Light Scanning based 3D Fingerprint Recon-
struction

The system of capturing 3D fingerprint based on structured
light scanning is usually comprised of several high-speed cam-
eras and a DLP projector. During the capture process, multiple
2D fingerprint images are captured under pattern illuminations.
Its principle is triangulation, where 3D depth information is
calculated according to the point correspondences between
images. In methods [7], [40] and [38], the correspondence
between observed points and projected pattern points is pre-
encoded precisely, thus 3D fingerprints are reconstructed by
measuring the deformation of the projected patterns. The
advantage is that they can recover ridge-valley details and
achieve relatively accurate 3D depth information. However,
the hardware system of these methods is expensive and bulky
due to the special projector and high-speed cameras.

3) Stereo Version based 3D Fingerprint Reconstruction
stereo vision-based 3D fingerprint systems are usually com-

prised of two or multiple cameras. During the capture process,
2D fingerprint images are captured from different views. The
3D fingerprints are reconstructed by calculating 3D depth
information between corresponding points according to the
triangulation principle. The advantage is that the systems are
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simple, low-cost and relatively compact. However, current
methods are usually time-consuming because of the extensive
computation of the correspondences between pixel points. To
speed up the calculation, Liu et al. [10] proposed to establish
the correspondence based on minutiae and SIFT points [45] to
model the 3D fingerprint surface. Labati et al. [42] proposed a
3D fingerprint reconstruction system with only two views and
used a correlation-based algorithm to establish the correspon-
dence. However, these methods take 1.5 minutes to construct
one 3D fingerprint. Besides, these methods fail to recover
ridge-valley details since the correspondence establishment is
based on blocks rather than pixels. Compared with the stereo
vision-based methods, Yin et al. [15] proposed a ridge-valley-
guided method, which can achieve the details of ridges and
valleys with a low cost of reconstruction time.

4) Other Reconstruction Methods
In addition to the aforementioned methods, other methods

based on optical coherence tomography (OCT) and ultrasonic
imaging (UI) have been proposed for 3D fingerprint recon-
struction [46]–[50]. The OCT-based methods in [46], [47]
calculate 3D fingerprint information based on interferometry
principle [51]. As an advantage, these methods are accurate
and have potential capability against spoofing attacks [52].
However, the cost of this type of systems is particularly high,
at least $7000 according to the report in [53]. The UI-based
methods [48]–[50] calculate 3D fingerprint information by
measuring acoustic time-of-flight. The capture systems in these
methods are at low cost, but the capture process is usually
time-consuming, taking about 5 seconds to produce a 3D
fingerprint with the resolution of 1000 dpi [50]. Besides, the
UI-based methods are not completely contactless because they
require pressing fingers against a plate during the acquisition
process. In addition, Galbally et al. [54] proposed a 3D
fingerprint capture system based on laser sensing. As an
advantage, this system can directly capture the 3D fingerprint
models as point-clouds.

C. Summary

In this section, we reviewed the acquisition methods of 2D
and 3D contactless fingerprints. In the design of 2D acqui-
sition systems, smartphone-based systems are more portable
and convenient. Compared with smartphone-based acquisition,
digital camera-based system are more flexible in the system
design. In the design of 3D acquisition system, structured
light scanning can produce reconstructed results with ridges
and valleys. But the cost of this type of systems is likely
relative high due to the projector and high-speed camera.
The photometric stereo and stereo vision tend to be time-
consuming.

IV. PREPROCESSING OF CONTACTLESS FINGERPRINT

The preprocessing of contactless fingerprints aims to im-
prove the contrast between ridges and valleys to facilitate
the subsequent feature extraction. Compared with contact
fingerprint images such as rolled fingerprints in which the
ridges are usually in black and the valleys are usually in

white, contactless fingerprint images are of relatively low-
contrast between ridges and valleys, as shown in Fig. 2. The
preprocessing of contactless fingerprints contains four main
components: 1) extraction of a fingertip, 2) estimation of
ridge orientation, 3) estimation of ridge frequency, and 4)
enhancement of ridges and valleys

(a) Contact fingerprint 1 1 from
FVC2002-DB1-A [55]

(b) Contactless fingerprint
1 1 1 0 from dataset [9]

Fig. 2: Comparison of a contact fingerprint and a contactless
fingerprint: (a) a contact fingerprint image with image ID

1 2 from FVC2002-DB1-A [55]; (b) a contactless fingerprint
image with image ID 1 1 1 0 from a benchmark dataset [9].

A. Extraction of Fingertip

The region of interest (ROI) of a fingerprint image is the
fingertip area covering ridge-valley pattern or feature points
such as minutiae which can be used to effectively compare
two fingerprints. Most methods extract the ROI based on the
skin color [23], [25], [26], [56]. Ravi et al. [56] utilized a
threshold approach based on the skin color to extract the ROI
from the background. This method is very simple, but this
extraction method suffers from the image background. Stein
et al. [23] used a fixed threshold to extract the RIO on the
red-channel of a fingerprint image. To improve this approach,
Alkhathami et al. [25] and Sankaran et al. [26] adopted
adaptive threshold approaches to segment the ROI from the
background. Differently, Noh et al. [30] proposed using local
image contrast and ridge frequency to extract the ROI. The
final ROI was obtained by combining the extracted regions
by these two approaches. Compared with simple threshold
approaches, Wasnik et al. [24] proposed an approach based
on histogram equalization and K-means clustering to segment
the ROI and the background. To effectively extract the ROI,
Yin et al. [2] proposed a simple but effective method based
on a convolutional neural network by learning the patterns of
fingertip areas and knuckle areas.

B. Estimation of Ridge Orientation

The ridge orientation is an essential characteristic of fin-
gerprints, which indicates the ridge flows. The methods can
be typically divided into two categories: 1) gradient-based
methods and 2) frequency domain-based methods.
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1) Gradient-based Methods
Gradient-based methods are widely used to estimate ridge

orientation in the area of contactless fingerprints [2], [13], [25],
[56], [57]. The gradient in a local region represents the ratio
of intensity change and is perpendicular to the ridge flow. In
1987, Kass et al. [58] proposed a robust method for local gra-
dient estimation. Liu et al. [57] used a gradient-based method
to estimate local orientation for contactless fingerprints. Yin
et al. [2] developed an orientation estimation method based
on guided-image filtering and gradient estimation. There are
two main advantage to gradient-based methods: 1) the local
orientation estimation is computation-efficient and 2) it is
robust to image noise in local regions.

2) Frequency Domain-based Methods
Kamei et al. [59] proposed a method based on 16 directional

filters in the frequency domain. The optimal local orientation
is determined by the orientation of the filter with the highest
response in the local region. Smoothing local orientation make
it robust to image noise. Chikkerur et al. [60] proposed an
orientation estimation method based on Short Time Fourier
Transform (STFT) analysis. Local orientation of each small
block is first calculated by the STFT analysis. Then, the ori-
entation map is calculated by sliding window. The advantage
is that this method is robust to image noise. Wang et al.
[61] proposed a fingerprint orientation model based on 2D
Fourier expansions (FOMFE). As an advantage, the FOMFE
can reliably describe the overall ridge topology and is robust to
image noise. Larkin [62] introduced an orientation estimation
method based on two energy operators. The advantage is that
this method provides uniform and scale-invariant orientation
estimation.

C. Estimation of Ridge Frequency

The local ridge frequency is another essential characteristic
of fingerprints, which indicates the number of ridges per unit
length orthogonal to the local ridge orientation. The methods
can be typically divided into two categories: 1) spatial domain-
based methods and 2) frequency domain-based methods.

1) Spatial Domain-based Methods
Hong et al. [63] proposed calculating local ridge frequency

by measuring the average number of pixels between two
consecutive peaks in a local window orthogonal to the local
ridge orientation. This method is simple, but in noisy con-
tactless fingerprint images, it is difficult to reliably measure
the average number of pixels between two consecutive peaks.
To address this problem, Yang et al. [64] proposed using a
fitting approach based on x-signature. Compared with Hong
et al. [63], the fitting method is to calculate the first and second
order derivatives. The advantage is this method is more reliable
and is robust to image noise. Yin et al. [12], [13] modified this
approach to estimate the local ridge frequency for contactless
fingerprint images. However, these methods are likely to suffer
from non-well sinusoidal-shaped surfaces.

2) Frequency Domain-based Methods
Jiang [65] proposed a method for estimating the local ridge

frequency by using higher order spectra. In this method, the
signal of ridge frequency is effectively improved by using

the second and third harmonic. The advantage is that this
method is robust to image noise and provides a reliable
estimation for bad quality fingerprint images. Kovács-Vajna et
al. [66] proposed an approach by searching the maxima in the
Fourier power spectrum of a local block. Chikkerur et al. [60]
presented a method based on Short Time Fourier Transform
to estimate the local ridge frequency. The advantage of these
methods is that frequency estimation in frequency domain is
robust to noise and is usually time-saving.

D. Enhancement of Ridges and Valleys

The enhancement of ridges and valleys aims to improve the
contrast between ridges and valleys and generate a gray or
binary image. According to the filtering domain, the enhance-
ment methods can be divided into two categories: 1) spatial
domain filtering and 2) frequency domain filtering.

1) Spatial Domain Filtering
O’Gorman et al. [67], [68] firstly proposed using bell-

shaped filters to improve the contrast between ridges and
valleys of fingerprint images. These filters are defined by the
ridge orientation and frequency, and 16 filters with different
orientations are pre-built. To reduce computational complexity,
the ridge frequency is set to a constant value. However,
it simultaneously results in imprecise filtering result in the
regions with different local ridge frequencies. Hong et al. [63]
developed a similar enhancement approach based on Gabor
filters. Compared with the filters in Ref. [67], [68], the filters
in this method are dynamically determined by the local ridge
orientation and frequency. The advantage is that the filter can
fit the local pattern well, so as to obtain a more accurate
filtering result than [67], [68]. However, adaptively calculating
local ridge frequency is time-consuming. In addition, the
filtering result tends to be poor in some regions where the
local ridge pattern is not similar to a sinusoidal pattern. To
address this problem, Greenberg et al. [69] proposed reducing
the value of the standard deviations of Gaussian envelope
along the x-axes. To improve the enhancement in regions
that is not similar to a sinusoidal pattern, Yang et al. [64]
proposed another Gabor filter-based method. In this method,
different values are assigned to the positive and negative ridge
frequencies, respectively. Hence, this method can achieve good
results in regions with different positive and negative ridge
frequencies. However, this method does not perform well in
local regions with non-wave-shaped pattern, as it is usually
difficult to estimate the local ridge orientation and frequency
in those regions.

Compared with the squared Gabor filters used in [63], [64],
[67], Zhu et al. [70] presented a circular Gabor filter-based
method. In this method, a circular mask is used for each local
region to eliminate the blocky effect caused by a square mask.
However, due to the average of frequency, filtering results in
some regions are likely to blur.

To address the distortion in contactless fingerprint images,
Zhang et al. [10] proposed a Gabor filter-based method. In this
method, the nearest neighbor approach is introduced to smooth
the local orientations in particular regions, and a quadratic
function and a quadratic curve are utilized to estimate the
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local ridge frequency. However, the estimation of the local
ridge orientation and frequency suffers from image noise.
Besides, it is difficult to balance the filtering performance
between denoising and accuracy. Liu et al. [57] developed
another Gabor filter-based method for contactless fingerprint
enhancement. Their experiments showed that this method
achieves good enhancement results. However, this method is
time-consuming, taking about 10 seconds for enhancing one
image.

2) Frequency Domain Filtering
Besides the aforementioned methods based on spatial do-

main filtering, frequency domain filtering is also widely
utilized for fingerprint enhancement. Sherlock et al. [71]
introduced Fast Fourier Transform into fingerprint image
enhancement. In this method, the Fourier transform result
of a fingerprint image is first processed by n pre-defined
global Fourier filters with variant ridge orientations. Then,
the enhancement result is finally determined by the result
of the filter whose orientation is closest to the local ridge
orientation. As an advantage, it is faster than those methods
based on spatial domain filtering. However, the constant ridge
frequency used in these global Fourier filters tends to result in
poor filtering in regions with significantly different local ridge
frequencies.

Watson et al. [72] proposed an enhancement method in the
Fourier domain, where the local ridge frequency and the local
ridge orientation are no need to compute explicitly. In this
method, a fingerprint image is first divided into a series of
overlapped blocks. For each block, a fast Fourier filter is uti-
lized to calculate its 2D discrete Fourier transform. Then, the
new transform is obtained by multiplying the power spectrum
and the 2D discrete Fourier transform. The enhancement image
is finally generated by calculating the real part of the inverse
transform. As an advantage, this method is simple. However,
the block-based scheme used in this method tends to generate
blocky effect in the enhanced image, and this method fails in
noisy regions. To address this issue, Chikkerur et al. [60] de-
veloped an enhancement method based on short-time Fourier
Transform, which divides a fingerprint image into different
overlapping blocks and calculates fast Fourier analysis on each
block. The enhancement result achieved by this method is
similar to that in [63]. As an advantage, it takes less time
than the method in [63], and simultaneously generates the
local direction and frequency in the Fourier analysis process.
However, this method is likely to fail in the regions near
singularity points. Jirachaweng et al. [73] proposed a similar
method based on frequency domain filtering. The difference
is that their block-wise filtering is processed in the discrete
cosine transform domain instead of in the Fourier domain.

E. Summary

In this section, we reviewed the contactless fingerprint
preprocessing in four aspects: 1) fingertip extraction, 2) ridge
orientation estimation, 3) ridge frequency estimation, and 4)
ridge/valley enhancement. In the fingertip extraction, we ana-
lyzed and reviewed the color-based and pattern-learning-based
methods. In the ridge orientation estimation, we reviewed the

related methods from two categories: the gradient-based meth-
ods and the frequency domain-based methods. In the ridge
frequency estimation, we reviewed the related methods from
the spatial domain and frequency domain. In the ridge/valley
enhancement, we reviewed and compared the related methods
in spatial domain filtering and frequency domain filtering.

V. FEATURE EXTRACTION

A. Minutia Definition

1) 2D Minutiae
In the standard IOS/IEC 19794-2:2011 standard2, minutia

feature points are defined into two types: ridge ending and
ridge bifurcation. The ridge ending is referred to as a ridge
skeleton endpoint or valley skeleton bifurcation, as shown in
Fig. 3 (a) and Fig. 3 (b), respectively; the ridge bifurcation
is referred to as a ridge skeleton bifurcation, as shown in
Fig. 3 (c). The origin of the coordinate system is placed
in the upper left corner of a fingerprint image, with x-axis
increasing rightward and y-axis increasing downward. A 2D

(a) Minutia of ridge
ending

(b) Minutia of ridge
ending

(c) Minutia of ridge
bifurcation

Fig. 3: Minutia types defined in the standard IOS/IEC
19794-2:2011: (a)-(b) minutia of ridge ending, and (c)

minutia of ridge bifurcation, where the dark curves are the
ridges.

minutia is typically defined by (x, y, θ, t), where x and y are
the coordinates, θ ∈ [0, 2π] is the minutia direction, and t is
the minutia type.

2) 3D Minutiae
A 3D minutia is a straightforward extension of a 2D minutia

in 3D space. It is typically defined by (x, y, z, θ, ϕ, t), where
(x, y, z) are the coordinates in 3D space, θ and ϕ are the
minutia’s directions along the 3D ridge directions in 3D space,
and t represents the minutia type [11], [15].

B. Minutia-based Feature Extraction Methods

1) 2D Minutia-based Feature Extraction Methods
For enhanced 2D contactless fingerprint images, feature

extraction methods developed for contact fingerprints can
be similarly applied to extract features [20]. According to
the definition, the 2D minutia extraction can be roughly
divided into two categories: thin-ridge-valley based extraction
and pattern based extraction. In the thin-ridge-valley based
extraction, ridges/valleys will be firstly binarized based on the
enhanced contactless fingerprint images. Then, a thin ridge-
valley map is obtained from the binary ridge-valley image

2https://www.iso.org/standard/50864.html
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by thinning the ridges and valleys. Finally, minutiae can be
detected by counting the number of thin ridge pixels in the
8-neighborhood local window [74]. In the pattern based ex-
traction, minutiae are extracted by comparing the ridge/valley
pattern in a local window with the minutia definition. For
example, in the method [75], ten ridge/valley patterns are
defined to detect minutiae, including two ridge ending patterns
and eight bifurcation patterns. As an advantage, the pattern
based extraction does need thinning ridges/valleys. As a dis-
advantage, it is likely to generate fake minutiae. The pattern
based MINDTCT algorithm [75] has been widely used to
extract minutiae on enhanced contactless fingerprint images
[12], [32], [76], [77]. Sisodia et al. [78] proposed a method
based on thin ridges/valleys to detect minutiae. Tico et al.
[79] proposed an orientation-based minutia descriptor which
incorporates local information in a circular pattern around each
minutia. Feng et al. [80] proposed a texture-based descriptor
and a minutia-based descriptor. The texture-based descriptor
is based on local ridge orientation and frequency information
at sampling points around each minutia. The minutia-based
descriptor is composed of a set of neighboring minutiae for
each minutia. Cappelli et al. [81] proposed a minutia cylinder-
code to represent each minutia. This code can effectively
incorporate the local minutia distribution in terms of relative
orientation and relative distance.

2) 3D Minutia-based Feature Extraction Methods
According to the definition of 3D minutiae, the detection

of 3D minutiae can be established based on the 2D minutiae.
Given a 2D minutia (x, y, θ, t), it needs to determine the values
of z and ϕ for the corresponding 3D minutia. As z is the
depth in 3D space, therefore it is easy to obtain the value of
z according to the coordinates (x, y) of the 2D minutia. The
value of ϕ can be determined by tracing the 3D fingerprint
surface along the θ direction [11]. Lin et al. [37] proposed
a Delaunay tetrahedron-based 3D minutia feature, which is
defined as a convex polyhedron consisting of four triangular
faces of 3D minutiae. As an advantage, this feature is time-
saving when used in fingerprint alignment compared with the
conventional 3D minutiae. However, its spatial topology is
susceptible to spurious and missing 3D minutiae [83]. Liu
et al. [82] proposed a 3D feature extraction approach based
on the surface curvature of a 3D fingerprint, including the
curve-skeleton and overall maximum curvatures. The curve-
skeletion of a 3D fingerprint consists of representative ver-
tical and horizontal lines. The overall maximum curvatures
are modeled by a binary quadratic function. However, this
representation achieved poor recognition accuracy [37], [82].
Yin et al. [15] proposed a novel 3D topology polymer (TTP)
feature. As an advantage, the TTP features can encode the
3D topology of minutiae distribution by projecting the 3D
minutiae onto multiple 2D planes. Ramya et al. [84] proposed
using polynomial coefficients of a polynomial curve of a 3D
fingerprint image as a template. The curve was calculated by
the distance between minutiae and singular points.

C. Other Feature Extraction Methods
Hiew et al. [85] presented an approach based on block-

wise Gabor-filter to build a feature descriptor by converting

the magnitude into a scalar number. Then, the PCA was
utilized to reduce the dimension of the descriptor. Wang et
al. [86] proposed a feature representation approach based on
local binary patterns and local gradient coding. Lin et al.
[14] proposed learning a representative feature based on a
convolutional neural network. Sankaran et al. [26] presented
a feature extraction approach based on networks to represent
the local patterns. These networks consist of a set of wavelets
which is stable to local affine transformation. As an advantage,
the higher order network coefficients can offer translation
and rotation invariant representation for contactless fingerprint
images. Yin et al. [12] proposed using the ridge count between
minutiae as a distortion-free feature representation. Wasnik et
al. [24] proposed a feature extraction approach based on the
eigenvalues of convolved images using multiscale second order
Gaussian derivatives.

D. Summary

In this section, we provided the definition of 2D minutia and
3D minutia and reviewed feature extraction methods. In the
feature extraction, we emphasized the minutia-based feature
extraction methods in 2D and 3D contactless fingerprints.
Besides, other feature extraction methods which are not based
on minutiae were also reviewed and discussed to provide a
relatively comprehensive comparison.

VI. CONTACTLESS FINGERPRINT COMPARISON

A. 2D Contactless Fingerprint Comparison

Wang et al. [86] proposed a matching scheme for 2D
contactless fingerprint based on histogram intersection, log-
likelihood statistic, and Chi square statistic to match minu-
tia descriptors. Labati et al. [87] presented an identification
method based on a neural network classifier. The classifier was
trained on a set of features, including minutiae, fingercodes
[88], and HOG [89]. Scotti et al. [8] proposed a similar method
based on a set of local features, including finger silhouette
asymmetry and fingercodes [88]. Tiwari et al. [90] developed
a method for mobile fingerprint images based on the scale-
invariant robust feature [91]. Lee et al. [92] introduced a
hardware-based contactless fingerprint recognition system in
which multiple views of 2D fingerprint images are enhanced
by an algorithm [63]. The contactless fingerprint recognition
was established by compare multiple 2D contactless finger-
print using an algorithm [93]. Sano et al. [94] developed a
contactless fingerprint recognition system by using a tradi-
tional greedy algorithm to obtain the minutiae correspondence.
However, the recognition accuracy is not good.

Genetic algorithms (GAs) have been utilized to search
the optimal geometrical transformation between two finger-
prints [95], [96]. Yin et al. [12] propose a global similarity
recognition method based on a GA to establish the minutiae
correspondence. In this method, the contactless fingerprint
comparison is formulated as a combinatorial optimization
problem. The minutiae and the minutia-pairs relationship were
used to represent the overall minutia topology.
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B. 3D Fingerprint Comparison

Liu et al. [82] proposed a 3D fingerprint comparison ap-
proach based on the curve-skeleton and overall maximum
curvatures of 3D fingerprints. Kumar et al. [11] proposed a
comparison method based on aligning 3D minutiae in 3D
space. A 3D minutia was presented by a 5-tuple composed
of three coordinates and two ridge orientations in 3D space.
This method is simple, but it is computationally expensive and
time-consuming to align two sets of 3D minutiae during the
fingerprint comparison. To reduce computational complexity,
Lin et al. [37] proposed a matching algorithm based on 3D
minutiae tetrahedron alignment. Yin et al. [15] proposed a
3D fingerprint comparison scheme using the LSA-R algorithm
[81] based on the extraction of 3D topology polymer features.
Zheng et al. [97] developed a contactless 3D fingerprint
recognition method based on recovered surface normal and
albedo information. However, this method is dependent on the
3D capture system as albedo information is used during the
comparison.

C. Summary

In this section, we mainly discussed and reviewed 2D
contactless fingerprint matching and 3D contactless fingerprint
matching. In the 2D contactless fingerprint matching, we
mainly reviewed traditional transformation based matching
methods, the neural network based methods, and GA based
methods. In the 3D contactless fingerprint matching, we
mainly reviewed and compared 3D minutia based matching
and 3D representative feature based matching.

VII. SUMMARY AND OPEN RESEARCH DIRECTIONS

In this paper, we investigated the latest developments of the
2D and 3D contactless fingerprint biometrics and proposed
a systematic taxonomy covering the primary components in
contactless fingerprint biometrics. First, we provided a com-
prehensive overview on contactless fingerprint capture tech-
nologies, including 2D contactless fingerprint capture and 3D
contactless fingerprint reconstruction. Especially for 3D con-
tactless fingerprint reconstruction technologies, we thoroughly
discussed three types of reconstruction methods, including
photometric stereo, structured light scanning, and stereo vi-
sion, in terms of capture equipment, reconstruction time, and
reconstruction results. Then, we presented an overview on
the preprocessing of contactless fingerprint images, including
extraction of fingertip, estimation of ridge orientation and
frequency, and enhancement of ridges and valleys. Further, we
discussed 2D and 3D feature extraction, including minutia-
based methods and non-minutia-based methods. Finally, we
provided an overview on 2D and 3D contactless fingerprint
comparison.

Although the contactless fingerprint biometric technology
has developed rapidly in recent years, there still exist some
issues in terms of performance, security, and privacy in this
research field. In the following discussion, we point out
some open research questions and the corresponding potential
directions.

• 2D contactless fingerprint acquisition. The existing tech-
nologies for 2D contactless fingerprint acquisition are
mainly based on optical cameras (i.e., CCD and CMOS
cameras). The fingerprint image is captured by the optical
camera based on light reflection from the skin of the
fingertip. The illumination hence plays an essential role in
the capture process. The advantage is that it is simple and
easy. As a disadvantage, the quality of 2D contactless fin-
gerprint images suffers from the appropriate illumination.
Therefore, it is necessary to develop an effective scheme
to appropriately control the illumination. In addition, the
distance between the sensor and the fingertip is also an
important factor, which would result in the fingerprint
image with quite different DPI. As 500 DPI is required
in most recognition systems or software, such as NBIS3

and Verifinger SDK4, an appropriate post-processing can
be conducted to deal with this resolution issue.

• Hardware-oriented 2D contactless fingerprint acquisition.
Because the contrast between ridges and valleys in con-
tactless 2D contactless fingerprint images suffers from
the existing optical camera-based acquisition, it would be
very promising to develop hardware-oriented acquisition
systems for high quality fingerprint image acquisition.
Currently, in order to improve the contrast between ridges
and valleys, software-oriented image processing technolo-
gies have been used to enhance 2D contactless fingerprint
images. Two main problems raise in the software-oriented
image processing. First, the enhancement of bad-quality
images is limited. If the captured image is bad-quality
(e.g., blurring), it is difficult to achieve a good one by
using software-oriented image processing. Second, the
software-oriented image processing for high-resolution
fingerprint image is likely to be time-consuming. There-
fore, it is promising to develop hardware-oriented capture
systems which aim to directly obtain fingerprint images
with high-contrast ridges and valleys.

• 3D fingerprint acquisition. Current 3D fingerprint acqui-
sition systems are primarily based on optical cameras or
DLP projectors. There are three main problems. There
exist three key issues related to the state-of-the-art 3D
fingerprint acquisition. Firstly, the size of capture systems
tends to be bulky. For example, structured light scanning
systems usually consist of at least a DLP projector and a
camera. Second, the software-oriented 3D reconstruction
is likely to be time-consuming because of the extensive
computation of 3D cloud points. The photometric stereo
based systems take more than 3 seconds [11], [37], [43].
The most important one is the reconstruction accuracy of
3D fingerprint reconstruction. Most existing methods still
suffer from the bad-quality 2D images because they are
primarily based on software-oriented reconstruction.

• Representation of 3D minutiae. Using 3D minutiae based
alignment methods [11] for fingerprint recognition is
likely to be computationally expensive. It is necessary to

3https://www.nist.gov/services-resources/software/nist-biometric-image-
software-nbis

4https://www.neurotechnology.com/verifinger.html
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develop efficient and effective feature for 3D minutiae.
Liu et al. [82] proposed one feature representation of 3D
minutiae. However, this feature representation achieved
poor performance. In recent years, deep neural networks
have been proven to have a powerful ability to extract
representative features. Therefore, it is an attractive solu-
tion to extract representative features for 3D fingerprints.
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[34] A. Genovese, E. Muñoz, V. Piuri, F. Scotti, and G. Sforza, “Towards
touchless pore fingerprint biometrics: A neural approach,” in IEEE
Congress on Evolutionary Computation, 2016, pp. 4265–4272.

[35] J. Khodadoust, M. A. Medina-Pérez, R. Monroy, A. M. Khodadoust,
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