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ABSTRACT Current steganalyzers based on deep learning mostly adopt wider or deeper designs to improve 

detection performance. However, an overly complex network increases the training cost and is not conducive 

to its expansion and optimization. Moreover, steganalysis pays more attention to high-frequency information 

corresponding to the image texture. However, the deeper the network, the more likely it is to learn low-

frequency information corresponding to the image content, which is inconsistent with the goal of steganalysis. 

In response to these problems, a multi-frequency residual deep convolutional neural network for steganalysis 

of color images called MFRNet is proposed in this paper. We apply the idea of multi-frequency analysis to 

steganography detection for the first time, effectively controlling the network scale. By designing columns 

of different depths, it can learn different frequency components of steganographic noise at the same time. The 

detection performance is better than the existing networks that only learn a single frequency component of 

steganographic noise at the same depth. Therefore, it can achieve a good detection performance with a lighter 

architecture. In addition, by designing residual basic blocks with different residual shortcuts, different scales 

of steganographic noise residuals can be calculated at the same time, which can effectively suppress the 

interference of image content, so as to better reduce the impact of steganography algorithm mismatch and 

payload mismatch than the existing methods. The experimental results on PPG-LIRMM-COLOR showed 

that the proposed MFRNet outperformed the state-of-the-art model WISERNet. 

INDEX TERMS Color image steganalysis, deep learning, convolutional neural network, multi-frequency 

residual analysis, lightweight. 

I. INTRODUCTION 

Steganography and steganography have always been a focus 

of research in the field of information hiding in recent years. 

Steganography is a process of hiding a secret message in 

digital carries such as images, videos, and texts, and tries not 

to change the visual and statistical characteristics of the 

carriers[1]. Since images are easy to obtain, the related 

steganography algorithm has the most studies. According to 

its embedding principle, it can be divided into steganography 

algorithm in the spatial domain and steganography algorithm 

in the frequency domain. The earliest steganography 

algorithm in the spatial domain is the Least Significant Bit 

(LSB) algorithm, which embeds secret information by 

modifying the least important bit in the image bit layer, and 

usually performs a ±1 operation on the least significant bit [2]. 

However, it is easy to be detected because of its large changes 

to the statistical characteristics of the image. At present, the 

safest steganography algorithm recognized is the adaptive 

steganography algorithm based on the distortion minimization 

framework and "STC" coding. By limiting the embedding 

changes to the complex texture area of the image, it can 

improve the security of the steganography algorithm [3], [4]. 

The current typical adaptive steganographic algorithms in the 

spatial domain include S-UNIWARD [5], WOW [6], HILL 

[7], and HUGO [8], etc. 

As an effective detection method for steganography, 

steganalysis and steganography have been developing in 

confrontation. Traditional steganalysis algorithms are mainly 

divided into two steps: steganographic feature extraction and 

classification. For example, the classic Spatial Rich Model 

(SRM) [9] and its variants [10], [11]. They usually use hand-

designed high-pass filters to effectively extract high-

dimensional steganographic features. However, manual 

feature extraction cannot get rid of the dependence on expert 
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experience. With the development of deep learning 

technology, its ability to process complex data has brought 

new possibilities for steganalysis[32][33]. The steganalysis 

algorithm based on deep learning can automatically learn 

steganographic features through network training, and 

simultaneously perform feature extraction and classifier 

optimization. It can avoid the dependence of traditional 

manual extraction of features on experience and become a new 

development trend of steganalysis [12]. The deep learning 

steganalysis algorithms that have been proposed with good 

performance include YeNet [13], YedroudjNet [14], XuNet 

[15], SRNet[16], WangNet[43], etc.  

Unfortunately, the existing deep learning steganalysis 

algorithms are mostly designed for grayscale images. There is 

only a little research on steganalysis algorithms for color 

images. In addition, most of the existing steganalysis 

algorithms for color images are designed to detect LSB 

steganography, and do not consider the embedding 

characteristics of the adaptive steganography 

algorithm.WISERNet [17] is currently recognized as the best-

performing color image steganalysis algorithm, which was 

proposed in 2019. The channel-wise convolution method 

proposed in that paper which is used to suppress the image 

content has very good detection performance when dealing 

with color image steganalysis. 

Meanwhile, we found that the existing steganalysis network 

based on deep learning generally has the following problems: 

First, in order to improve the detection performance, the 

networks are usually designed too deep or too wide. For 

example, SRNet [16] uses up to 22 layers of convolutional 

layer, while WISERNet [17] outputs up to 1152 feature maps. 

This makes the network complexity, and excessive training 

costs are not conducive to network expansion and 

optimization. Moreover, steganalysis pays more attention to 

the high-frequency texture information of the image, which is 

the position where the secret information embedding 

probability is higher in the adaptive steganography algorithm. 

According to the frequency principle [20], the deeper the 

network, the more likely it is to learn low-frequency image 

content information, which is inconsistent with the goal of 

steganalysis. Therefore, a too deep network limits the 

improvement of steganographic detection performance. 

Second, the actual steganography detection task is faced with 

the problems of steganography algorithms mismatching and 

payload mismatching, and the existing steganalysis methods 

have not well resolved them. 

In order to solve the above problems, we introduce the idea 

of multi-frequency residual analysis into steganalysis, and a 

residual steganalysis convolutional neural network called 

MFRNet based on multi-frequency residual analysis suitable 

for color images is proposed. The main contributions of the 

proposed method are: 

1. For the first time as far as we know, the idea of multi-

frequency residual analysis is applied to steganalysis， and a 

more lightweight network is proposed. Through the idea of 

multi-frequency residual analysis, the network scale is 

effectively controlled. Our network learns simultaneously 

through columns of different depths, which can synthesize the 

learning results of different frequencies of steganographic 

noise components. Therefore, our network can achieve 

slightly better detection performance with a more lightweight 

architecture than the existing best networks that learn single-

frequency steganographic noise components. 

2. Aiming at the payload mismatch problem in actual 

steganography detection tasks, we use multi-scale analysis 

technology to extract different scales of steganographic noise 

residuals by designing basic blocks with different residual 

shortcuts. Further suppressing the interference of image 

content, and comprehensively learning the steganographic 

noise residual components of different frequencies and 

different scales, and improving the detection performance on 

images with small payload. This effectively improves the 

detection ability of the network model in the case of small 

payloads. The accuracy is greatly improved compared with the 

existing model when the steganography algorithm mismatch 

and the payload mismatch. 

The remaining sections have the following order: Section II 

introduces the existing related work and the overall 

architecture and key part design of the proposed MFRNet. 

Section III introduces the experimental design, including 

experimental data sets, parameter settings, the learning effect 

of the proposed model, and comparative experimental results. 

The network proposed in this paper is mainly compared with 

the state-of-the-art model WISERNet。  Section IV gives 

conclusions and future research directions. 

II. THE PROPOSED NETWORK 

A.  RELATED WORK 

The earliest deep learning model used for image steganalysis 

in the spatial was QianNet [42] in 2015. It uses a high-pass 

filter to reduce image content and enhances steganographic 

noise, and uses a Gaussian activation function for feature 

extraction. Its detection performance is better than SRM based 

on manual feature extraction [9]. Since then, steganalysis 

based on deep learning has received widespread attention. 

In 2016, Xu et al. [15] proposed a new deep learning 

network XuNet for steganalysis. It uses an absolute value layer 

(ABS) after the second convolutional layer, which effectively 

improves the performance of model detection. Batch 

Normalization(BN) and TanH activation function are used in 

feature extraction, while BN and ReLU activation function are 

used in other layers, which improves the performance by 

nearly 4% compared with QianNet. 

YeNet [13] proposed in 2017 has two points of innovation. 

One is to use the SRM filter to initialize the residual co-

occurrence matrix instead of the traditional high-pass filter to 

extract the steganographic noise. The other is to introduce the 

knowledge of the selected channel into the feature extraction. 

The performance is improved by embedding probability maps 
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to weight the image texture characteristics. The adaptive 

steganalysis models designed afterward mostly borrowed the 

idea of SRM filter initialization and introduction of channel 

selection technology in YeNet. 

After that, YedroudjNet [14] proposed in 2019 combines 

the advantages of XuNet and YeNet, and once again improves 

the accuracy of steganographic detection compared to YeNet. 

SRNet[16] proposed in the same year is a good performance 

network suitable for the steganalysis of gray-scale images. It 
uses residual shortcuts to strengthen the extraction of 

steganographic noise, so as to avoid the shortage of traditional 

steganalyzers that the design of steganographic noise residual 

extraction is too dependent on expert experience and hand-

designed elements. It can be used for steganography detection 

in the space and frequency domain. But the depth of SRNet is 

too deep, that its convolutional layer reaches 22 layers. In fact, 

Xu [20] pointed out that according to the frequency principle, 

the deeper the network is more inclined to learn low-frequency 

signal components, corresponding to the image content part, 

which is not conducive to learning high-frequency 

information components. While steganalysis pays more 

attention to the high-frequency signal components that 

correspond to the image texture. Therefore, the excessively 

deep network structure of SRNet limits its ability to learn 

steganographic noise to a certain extent. In addition, an overly 

complex network increases the training cost, which is not 

conducive to the expansion, and optimization of the network.  

Sign et al. [19] applied the idea of the self-similar from 

FractalNet[18] to steganalysis, designed and implemented a 

steganalyzer SFNet in 2020. SFNet studies the proportional 

relationship between network depth and width. It points out 

that a deep network designed with a fixed ratio of width and 

depth can get better detection results than a simple deeper 

network. However, the design of the basic module of SFNet is 

relatively simple, including only two types of basic blocks: 

CBR(Convolution, BN, ReLU) and CABR(Compared with 

CBR, there is one more ABS layer). And the whole network 

also lacks the design of residual extraction, so it can not reduce 

image content very well, which is not conducive to the 

detection of steganographic noise. Meanwhile, SFNet is 

difficult to converge when the width and depth are small. 

In the same year, Wang et al. [43] proposed a CNN 

steganalysis model, WangNet, which uses a joint domain 

detection mechanism and a nonlinear detection mechanism. Its 

innovation lies in the ability to capture steganographic features 

in the spatial domain and the transform domain, thereby 

simultaneously detecting the spatial domain and the transform 

domain. And it improves the generalization performance of 

the network. Meanwhile, the detection performance of images 

with low steganography is improved. When the S-UNIWARD 

and WOW adaptive steganography algorithms of 0.2 bpp are 

detected, the detection accuracy is higher than that of 

YedroudjNet. 

Different from steganalysis for gray-scale images, 

steganalysis for color images are more complex. Color images 

can be divided into three channels, R, G, and B (Red, Green, 

and Blue). Therefore, steganalysis for color images need to 

consider the three channels at the same time. However, gray-

scale images have only one color channel. Thus, the 

conventional steganalyzers for gray-scale images are not 

suitable for steganalysis of color images. 

There are lots of researches on deep learning steganalysis 

for grayscale images. In 2018, Aljarf et al. [34] proposed an 

image steganalysis system that combines the features of color 

gradient co-occurrence matrix (CGCM) and the number of 

histogram features. It extracts a variety of CGCM and 

histogram features by using the histogram of the difference 

image, and can well detect color images in multiple formats 

(BMP, JPG) under the LSB algorithm. In the same year, 

Rasool et al. [35] proposed a steganalysis model that uses an 

enhanced grayscale statistical feature set to detect 

uncompressed RGB color images. This model shows better 

performance when detecting BMP format color images under 

the LSB steganography algorithm. In 2019, Renad et al. [38] 

proposed a model that can well detect LSB steganography 

algorithms with small payloads. It uses statistical texture 

features and machine learning methods to detect the presence 

of hidden data in the RGB color image benchmark dataset. 

However, the above models have a common problem, that 

they are not designed for adaptive steganalysis[42]. 

WISERNet [17] proposed in 2019 is currently recognized 

as the best-performing color image steganalysis algorithm. It 

theoretically proves that the summation in ordinary 

convolution can be seen as a linear collusion attack, which 

actually reduces the signal-to-noise ratio and is not conducive 

to the extraction of steganographic noise. Therefore, in the 

underlying convolutional layer, a channel-wise convolution 

method is used to suppress the image content. In the higher-

level convolutional layer, ordinary convolution is used to 

effectively improve the potential perception of steganographic 

features, so as to retain and train rich steganographic features. 

and achieve a good color image steganalysis effect. In addition, 

WISERNet improves network performance by widening the 

width of the upper convolutional layer to increase the output 

involved in the summation. However, a too wide network 

structure will increase the parameter scale, which is not 

conducive to network expansion and optimization. 

Since then, a number of steganalysis models for color 

images designed for the transform domain have been proposed 

[36][37]. Or they realize a multi-domain joint detection model 

[40][41]. However, there is currently no steganalysis scheme 

for color images in the spatial domain with better performance 

than WISERNet.  

Therefore, there is a lot of room for research on adaptive 

steganalysis of color images in the spatial domain. This paper 

introduces multi-frequency residual analysis and proposes a 

new solution suitable for the steganalysis of spatial color 

images. 

B.  ARCHITECTURE 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3119664, IEEE Access

 J. Lin et al.: Multi-frequency Residual Convolutional Neural Network for Steganalysis of Color Images 

2 VOLUME XX, 2021 

 
FIGURE 1. Overview design of the proposed MFRNet and four basic block

 

The core idea of the proposed MFRNet for color image 

steganalysis in this paper is multi-frequency residual analysis. 

The network consists of two modules, the color image 

preprocessing module, and the multi-frequency 

steganographic noise residual extraction and classification 

module. The overall design is shown in Fig. 1. 

1)  THE COLOR IMAGE PREPROCESSING MODULE 

The color image preprocessing module is used to reduce the 

image content, enhance the steganographic noise, thereby 

improving the steganographic noise ratio. By analyzing the 

different frequency components of the input signal, we found 

that if the input signal contains strong interference from image 

content information, the learning effect will decrease. 

Therefore, preprocessing the input image is very helpful to 

improve the performance of detection. WISERNet [15] has 

proved that channel-wise convolution operations can reduce 

the image content and enhance steganographic signals more 

effectively than ordinary convolution operations when 

detecting color images. Therefore, we also select channel-wise 

convolution in the color image preprocessing module. 

Specifically, we design a Type 0 basic block for the color 

images preprocessing part to reduce the image content and 

enhance steganographic signal. It contains a convolutional 

layer, a BN layer, and a ReLU activation. The size of the 

convolution kernel here is set to 3×3×16, the stride is set to 1. 

The input of the network is a three-channel RGB color 

image X, the definition domain of which can be expressed as 

(𝐶 × 𝐼𝑚 × 𝐼𝑛) . Among them, C represents the number of 

input channels, and C=3. I represents the value range of the 

input image, and 𝐼 ∈ [0,255]. m, n respectively represent the 

width and height of the input image.  

First, the input color image X is divided into RGB three 

channels, 𝑋1 to 𝑋3, which definition domain can be expressed 

as (𝐶 × 𝐼𝑚 × 𝐼𝑛), C=1. Then Type 0 is applied to the three 

channels for channel-wise convolution, and merge the output 

results of the three channels to finally get the output 𝑋′ of color 

image preprocessing module, whose value range can be 

expressed as (𝐶 × 𝐼𝑚 × 𝐼𝑛), and C=3. 𝑋′ is used as the input 

of the multi-frequency steganographic noise residual 

extraction and classification module. 

2)  THE MULTI-FREQUENCY STEGANOGRAPHIC NOISE 
RESIDUAL EXTRACTION AND CLASSIFICATION 
MODULE 

 

This module is the core of MFRNet. It learns multi-frequency 

steganographic noise residuals at the same time through 

columns of different depths to ensure that the network learns 

more high-frequency steganographic information while 

eliminating the interference of low-frequency image content 

as much as possible. So as to achieve a better learning effect 

with a relatively lightweight structure. This part is mainly to 

stack columns of different depths by designing 4 types of basic 

blocks Type 1-Type 4 with residual shortcuts. The kernel size 

of the convolution is set to 3*3*48, the stride is set to1. 

A key issue of this module is the calculation of residuals. In 

order to construct columns of different depths, the residual 

calculation method adopted by each type of basic block should 

be conducive to the expansion of the network. Therefore, the 

traditional method using the SRM filter [9] is not suitable for 

the proposed MFRNet. After comparison, a method of 

calculating residuals through residual shortcuts proposed in 

SRNet [14] is more conducive to the overall design of the 

network. Therefore, we use the residual shortcuts to calculate 

the residual. 

The input of this part is denoted as 𝑋′ , the domain of 

definition is (𝐶 × 𝐼𝑚 × 𝐼𝑛) , and C=3. We express a 

convolution operation as 𝑓(𝑋′). For ease of understanding, 

other non-convolutional operations such as the BN layer and 

activation function are ignored here. Then Type 1 to Type 4 

can be expressed as: 

𝐹1 = 𝑓(𝑋′) 
𝐹2 = 𝑓(𝑋′) + 𝑋′ 
𝐹3 = 𝑓(2)(𝑋′) + 𝑋′ 

 𝐹4 = 𝑓(2)(𝑋′) + 𝑓(1)(𝑋′) (1) 

Here 𝐹1 to 𝐹4 respectively represent the output of Type1 to 

Type4, including the direct mapping part and the residual part, 

corresponding to the direct branch and bypass of each basic 

block in Figure 1. "+" means short-cut, that is, unit plus here. 

The superscript n in 𝑓(𝑛)(𝑋′)  represents the number of 

convolution operations, abbreviated as 𝑓𝑛. Because multiple 

convolutions are equivalent to re-extracting and refining the 

feature map extracted by the previous convolution, the more 

convolution operations experienced, the deeper the residual 

level obtained. As shown in (1), Type 2 to Type 4 can learn 

different levels and types of residuals, and Type 4 has the 

deepest level of residuals, which is conducive to MFRNet 

extracting rich multi-scale residual features. 
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For this network, the input of the next layer of convolution 

is the output of the previous layer of convolution. Therefore, 

we denote the output 𝑓𝑛 of the nth convolution and the result 

of m times convolution again as 𝑓𝑛+𝑚.  

Then, the output 𝐽1 of the first connection layer, that is, the 

synthesis (arithmetic average) of the output of Column 1-

Column 2 can be expressed as (2). 

𝐽1 = {
1

2
[(𝑓1 + 𝑋′) + ((𝑓1 + 𝑋′)𝑓1)]} 

 =
1

2
(𝑓1 + 𝑋′ + 𝑓2 + 𝑓1) (2) 

And Column 1-Column 3 before the last join layer can be 

expressed as: 

𝐶1 = 𝑓1 + 𝑋′ 

𝐶2 =
1

2
(𝑓2 + 𝑋′)𝐽1 =

1

2
𝑓4 + 𝑓3 + 𝑓2 + 𝑓1 +

1

2
𝑋′ 

𝐶3 =
1

2
(𝑓2 + 𝑓1)[(𝑓2 + 𝑋′)𝐽1] = (𝑓2 + 𝑓1)𝐶2 

 =
1

2
𝑓6 +

3

2
𝑓5 + 2𝑓4 + 2𝑓3 +

3

2
𝑓2 +

1

2
𝑓1 (3) 

Among them, 𝐶1 − 𝐶3 represent the output of columns 1-3 

before the last join layer. It can be seen from (3) that as the 

depth deepens, the level of convolution in each column of the 

network is also deepening. The selection of the basic blocks 

that constitute each column here has been carefully designed. 

When the level of the basic block extraction residuals used in 

each column deepens with the deepening of the network level, 

the level of the learned steganographic noise residuals is also 

continuously deepening. 

Then, the learning results of each column are synthesized 

through the join layer, which retains the steganographic noise 

as much as possible through the arithmetic average operation 

and eliminates the interference of the image content. The final 

output of the network can be expressed as: 

𝐶out =
1

3
(𝐶1 + 𝐶2 + 𝐶3) 

 =
1

6
𝑓6 +

1

2
𝑓5 +

5

6
𝑓4 + 𝑓3 +

5

6
𝑓2 +

5

6
𝑓1 +

1

2
𝑋′ (4) 

It can be seen from (4) that the final output combines the 

learning results of 𝐶1 − 𝐶3 , and contains the residual 

components of steganographic noise of different frequencies. 

The level of convolution ranges from 6 times to 0 times, and 

the extracted features are very rich. Most of the existing 

networks only have one very deep column, so they can only 

learn the residual components of the steganographic noise of 

one frequency (usually low frequency). Therefore, although 

the depth of the network is deeper, it is not as rich as the 

residual features learned by our network. 

The join layer is followed by the global average pooling 

layer(GAP), which accepts the input feature map of C=48, and 

obtains the output feature map of C=1 after dimensionality 

reduction. The output of GAP is sent to the fully connected 

layer, and then the final classification label is obtained through 

the softmax layer for two classification. 

C.  MULTI-FREQUENCY RESIDUAL ANALYSIS 

The main innovation of the proposed MFRNet is to introduce 

the idea of multi-frequency residual analysis to steganalysis 

for the first time, so as to improve the overall performance of 

the network by simultaneously learning the steganographic 

noise components of different frequencies. In the previous 

section, we demonstrated through mathematical analysis how 

the idea of multi-frequency analysis works. This section will 

further demonstrate the rationality and feasibility of 

introducing the idea of multi-frequency analysis into 

steganalysis through spectrogram and Grad-CAM. 

1) APPLICATION EFFECT OF MULTI-FREQUENCY 
RESIDUAL ANALYSIS 

According to the frequency principle [20], the deeper the 

network, the more likely it is to learn low-frequency 

information, corresponding to the part of the image content, 

which is meaningless to steganalysis. Steganalysis focuses on 

the texture area of the image, which corresponds to high 

frequency information [21], [22]. Therefore, too deep network 

limits the improvement of steganalysis performance. The 

proposed MFRNet uses the idea of multi-frequency analysis 

and uses columns of different depths to learn information of 

different frequencies at the same time, which can achieve good 

steganographic detection performance through a relatively 

lightweight network. 

In order to verify the application of multi-frequency 

analysis in the network, a sine wave S(t) containing low-

frequency, intermediate-frequency, and high-frequency signal 

components is designed as the input of the network, as shown 

in (5): 

 𝑆(𝑡) = 𝑠𝑖𝑛(10πt) + 𝑠𝑖𝑛(30𝜋𝑡) + 𝑠𝑖𝑛(90𝜋𝑡) (5) 

t represents the time (t∈[0s,256s]) and S(t) represents the 

change of the constructed sine wave signal over time in (5). 

The signal waveform and spectrogram are shown in Fig. 2. It 

can be seen from Fig.2 that the main frequency components of 

S(t) are 5, 15, 45 (Hz), which are consistent with the signal 

constructed in (5). (The interference of the signal with 

frequency 0 is not considered.). The value of S(t) is normalized 

to 0-255 to generate the corresponding gray-scale image, and 

send it to the model for testing. The Grad CAM [24] of the 

detection result of MFRNet is converted into a 1D signal wave, 

and the Fourier Transform spectrogram [25], [26]is shown in 

Fig. 3. It can be seen that after the signal S(t) passes through 

MFRNet, the components of different frequencies can be 

maintained, and the high-frequency components are retained 

to the greatest extent (The peak of the frequency in the 

histogram of Fig. 3(a) is at the position corresponding to the 

high frequency). Among them, the first column learns the 

highest frequency component of the signal, and the second 

column learns the middle frequency component, the third 

column learns the low frequency component. It shows that the 

idea of multi-frequency analysis is well applied in MFRNet. 

2)  THE INFLUENCE OF MULTI-FREQUENCY RESIDUAL 
ANALYSIS ON THE EFFECT OF NETWORK LEARNING 

From the above analysis, we can see that the idea of multi-

frequency residual analysis has indeed been correctly applied 

in MFRNet. In order to better show the significance of this 

idea for improving the performance of steganographic 

detection, this section compares the MFRNet with the idea of  
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(a) 

 
(b) 

FIGURE 2..The signal waveform and spectrogram of the S(t) containing 

multi-frequency signals.(a) shows the signal waveform of S(t), and (b) 
shows the spectrogram of S(t). 
 

 
FIGURE 3. The spectrogram of the proposed MFRNet and each column. 
(a).MFRNet. (b).Column 1. (c).Column 2. (d).Column 3. 
 
TABLE 1. The detection accuracy of each column of MFRNet under 
different payload (bpc, %). 

Model/Payload 0.1 0.2 0.4 0.6 0.8 

Column 1 52.6 56.7 67.3 75.0 80.7 

Column 2 56.5 68.2 82.6 89.2 92.0 

Column 3 63.5 78.1 90.1 95.8 97.4 

MFRNet 71.6 90.1 97.2 99.2 99.2 

 

multi-frequency analysis and the network that only learns the 

residual of the steganographic noise of a single frequency. 

Specifically, extract the three columns of MFRNet for 

separate training, respectively corresponding to different 

depths of the network that only learns the residual component 

of the single-frequency steganographic noise. In order to 

ensure the normal convergence of the network, only the initial 

learning rate is reduced to 0.001, and the other experimental 

data sets and parameter settings are the same as III A. 

The trained model detects the images generated by the 

channel-by-channel S-UNIWARD algorithm under different 

payloads, and the results are shown in Table 1. 

As is shown in Table 1, when the idea of multi-frequency 

noise residual analysis is not applied, the detection 

performance of a single column of MFRNet for images with 

low steganography is not good. As the depth increases, the  

   
(a)                       (b)                          (c) 

   
(d)                          (e)                          (f) 

FIGURE 4. The learning effect shown by Grad-CAM of the proposed MFRNet. 
(a). Cover. (b). Cover(blurred). (c). Steganographic area. (d).Grad-CAM. (e) 
Steganographic area + cover. (f). Grad-CAM + cover. 

 

    
            (a)                         (b)                         (c)                        (d) 

FIGURE 5. THE LEARNING EFFECT SHOWN BY GRAD-CAM OF 
COLUMNS 1-3 OF MFRNET. (A). COVER.(B). COLUMN 1. (C). COLUMN 2. 
(D). COLUMN 3. 
 

learning effect of the column that only learns a single 

frequency steganographic noise component is getting better. 

And the deeper the network (Column 3), the better the image 

detection effect for small payloads, which is in line with 

existing research. However, the learning effect of the complete 

MFRNet is better than the learning effect of any single column, 

especially when detecting images with a small payload, the 

detection accuracy is greatly improved. 

Though Accuracy can be used to evaluate the learning effect 

of the network, but it cannot visually show which areas the 

network pays attention to. Thus, we use CAM to display the 

learning effect. 

The idea of CAM was first proposed by Selvaraj in [23]. By 

visualizing the learning results after the last convolutional 

layer, the content that you pay attention to during network 

learning can be effectively displayed. However, CAM 

requires modifying the original model structure: replace the 

fully connected layer with a global average pool. In order to 

save training costs, Grad-CAM [24] is used instead, which has 

been proved that is equivalent to CAM. 

We first show the overall learning effect of the network.  

Take the 55th color image in the PPG-LIRMM-COLOR 

dataset with 0.4bpc channel-by-channel S-UNIWARD as an 

example for detecting, and use Grad-CAM to show the output 

feature map after the last connection layer of MFRNet. In 

order to better show the learning effect, the original image is 

blurred and converted to BGR format (displayed in blue). The 

Grad-CAM is superimposed on the processed original image 

for visualization; as a comparison, the steganographic position 

map is converted into a pseudo-color image and superimposed 

on the processed original image. The effect is shown in Fig. 4. 
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In Fig 4 (d), the brighter the color represents the area with 

higher attention. Comparing Fig 4 (e) and (f), it can be seen 

that the actual learning effect of the network is accurate and 

effective after introducing multi-frequency residual analysis. 

Furthermore, the learning effect of column 1-3 is shown by 

Grad-CAM. As shown in Fig. 5, from left to right, the learning 

effect of the last convolutional layer in column 1-3. The first 

row is the Grad-CAM map, and the second row is the Grad-

CAM superimposed to the cover image. It can be seen that the 

steganographic information learned by different columns is 

different, corresponding to different frequency components of 

the steganographic noise. And as the depth of the column 

deepens, it will learn more steganographic information while 

containing more interference from the image content, so the 

effect is not as good as MFRNet for multi-frequency analysis. 

It proves that the proposed multi-frequency analysis method 

can indeed effectively improve the learning effect of the 

network under the lighter network scale. And effectively avoid 

the poor learning effect of a single column. 

D.  DESIGN DETAILS 

This section will discuss other design details of the proposed 

MFRNet. The models used for testing here were trained under 

the same settings as III A, using detection accuracy as an 

evaluation indicator. 

1) DESIGN OF MULTI-SCALE RESIDUALS 

While learning multi-frequency residuals, MFRNet 

calculates residuals of different scales by designing residual 

basic blocks with different types of shortcut connections, 

which effectively improves the detection accuracy of the 

network. In order to evaluate the help of obtaining multi-scale 

residuals to improve the accuracy of network detection, we 

keep other parts of the network unchanged, and removes the 

Type 4, Type 3 and Type 2 residual basic blocks from the 

network respectively. The results are shown in Table 2. When 

only Type 1 is used, the network does not calculate residuals, 

the accuracy of detecting 0.4 bpc S-UNIWARD channel-by-

channel algorithm is less than 90%, and the learning effect is 

not good. As the types of residual basic blocks used increase, 

the scales for calculating residuals are more abundant. When 

using Type 2-Type 4 at the same time, compared to using Type 

2 only, the detection accuracy is improved by nearly 7%. It can 

be seen that compared with single-scale residual learning, 

multi-scale residual extraction can effectively improve the 

detection performance of the network. 

2) ACTIVATIONS 

The activations can add a non-linear factor to the network. By 

adding an activation after the convolutional layer, it is helpful 

for feature extraction and network convergence, and avoids 

problems such as overfitting and gradient disappearance.  

In order to explore the influence of the activations on the 

network, we compare the influence of adding activations at 

different locations of the network performance. As shown in 

Table 3, when all the basic blocks use the activations, the 

network performance is reduced by 1% compared to without 

activations at all. When only Type 1 uses ReLU, the network  

TABLE 2. The impact of multi-scale residuals on network performance. 

Model1: Replace Type2-4 with Type 1. Model 2: Replace Type 3-4 with 

Type 2. Model 3: Replace Type 4 with Type 3. Model 4: Use Type 1-Type 

4 at the same time. 
Model Accuracy(%) 

Model 1 89.7 

Model 2 90.3 

Model 3 -- 

Model 4 97.2 

 

TABLE 3. The influence of activation on network performance. Model 1: 

Without ReLU. Model2: With ReLU. Model 3: Only Type 1 with ReLU. 

Model Accuracy(%) 

Model 1 92.6 

Model 2 91.7 

Model 3 97.2 

 

performance is the best. It can be seen that the activations are 

beneficial to the ordinary convolution block, but not 

conducive to the calculation of the residual. Therefore, Type 

2-Type 4 will no longer use ReLU activation after adding 

residual shortcuts. 

In addition, in addition to the linear activation ReLU, we 

also compare the effects of the hyperbolic tangent activation 

tanh, Leaky-ReLU [30], and ELU [31]. However, they do not 

bring performance improvements to the network. Therefore, 

MFRNet finally only uses the ReLU activations in Type 1. 

3) BN LAYERS 

In order to explore the impact of the BN layers, we compare 

the detection accuracy of the network with and without the BN 

layers, which are 97.2% and 90.4%. Moreover, when the BN 

layer is not used, the network starts to converge when it is 

trained to 60k steps. And when the BN layer is used, the 

network has converged at 40k steps. It can be seen that the use 

of the BN layer can make the network converge faster and 

better, and improve the network learning effect. Therefore the 

BN layer is used after convolution layers in all types of basic 

blocks. 

4) OPERATION FOR JOIN LAYERS  

In order to explore the impact of different operations of the 

join layers, we compare the maximum, minimum, arithmetic 

average and addition operations. The detection accuracy are 

89.0%, 75.0%, 97.2% and 86.6%. It is found that the max and 

min operations will overemphasize the dominant signal, and 

add operation retains all the learned information. However, the 

use of the arithmetic average can better average the learning 

results of each column. It retains as much steganographic 

information as possible while effectively eliminating the 

interference of image content. Therefore we adopt arithmetic 

average as the best selection operation in the join layers. 

5) POOLING LAYER 

In order to confirm the impact of the pooling layers on network 

performance, the paper tried different pooling operations. 

When we try to use average pooling layers to gradually reduce 

the dimensionality, but the network could not converge. It is 

because the average pool is equivalent to a low-pass filter, 

which enhances the image content and suppresses 

steganographic noise by averaging adjacent embedding 
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changes. It is unfavorable for steganalysis. This view is also 

confirmed in SRNet [16]. MFRNet only uses a GAP to reduce 

the dimensionality of the feature map. 

6) OPTIMIZER 

We compare two optimizers, Adam and Adamax [27]. Finally, 

Adamax is chosen because the detection performance is higher 

and it can converge faster. 

7) NUMBER OF COLUMNS  

We try to expand the number of columns of the network, but 

found that it does not significantly help the improvement of 

performance. When the number of columns is set to 4, the 

detection performance of the network is only improved by less 

than 1%. Therefore, we finally set 3 columns to achieve a 

better balance between network scale and performance. 

III. EXPERIMENTS 

A.  DATASETS AND PARAMETERS 

The dataset used in our experiments is PPG-LIRMM-COLOR 

[28], which contains 10000 color images in ppm format of 

different types (people, landscapes, buildings, etc.) with a size 

of 512*512. Ppm is a simple image format that can retain stego 

signal to the utmost extent, and is often used for steganography 

and steganalysis of color images. In order to facilitate the 

learning of CNN network, the size of the images is all 

converted to 256*256 in the experiment. 

Our main detection target in the experiment is the channel-

by-channel adaptive steganography algorithm (S-UNIWARD, 

HILL, WOW, HUGO) with different payloads (0.1-0.8 bpc). 

The training set contained 6,000 cover images and 6,000 stego 

images. Both verification set and test set contained 2,000 

cover images and 2,000 stego images. 

The steganalyzers used for comparison are mainly 

WISERNet [17]. WISERNet was proposed in 2019 as the 

state-of-the-art adaptive steganalysis model for color images. 

The underlying channel-by-channel convolution strategy 

proposed by it has a significant effect on steganalysis of color 

images. 

 Meanwhile, we also select YedroudjNet [14]、SRNet 

[16], and WangNet [43] several spatial or joint domain gray 

image steganalysis models. YedroudjNet proposed in 2018 

is a representative network with nice performance using 

SRM filters. And SFNet proposed in 2019 has better 

performance than SRNet when the network width and depth 

are small. WangNet is a cross-domain joint detection model 

proposed in 2020. It improves the detection accuracy of 

images with small steganography rates through a joint 

domain detection mechanism and a non-linear detection 

mechanism, which is better than other solutions. We apply 

the same channel-wise convolution to the lowest level 

convolution because the original SRNet and YedroudjNet 

are designed for images of gray-scale. They are expressed as 

color-YedroudjNet, color-SRNet and color-WangNet in the 

experiment. 

The above-selected model covers the latest and most 

representative solutions in the image steganalysis field in 

recent years, and is reproduced strictly in accordance with 

the parameter settings in the original paper. Thus making our 

experimental data more convincing. 

The proposed model is trained using images generated by 

the channel-by-channel S-UNIWARD steganography, 0.4 

bpc. The max generations of epoch is200 and the batch-size 

was 20. The learning rate is 0.01. The learning rate decline 

method is exponential decline and the decay rate is 0.95. The 

parameters of color-YedroudjNet, color-SRNet, color-

WangNet, and WISERNet are set according to [14], [16], 

[43], and [17]. The learning rate is set to 0.4, 0.01,0.4 and 

0.001 respectively. 

B.  COMPARISION OF NETWORK SIZE 

One of the main problems of the existing steganalysis 

algorithms based on deep learning is that the model is too 

complex, which makes the training cost very high, which is 

not conducive to the expansion and optimization of the model. 

Thus, it is necessary to reasonably control the complexity of 

the network. This part we evaluate the complexity of the 

model from three aspects: the depth and width of the network, 

the scale of the parameters, and the average training time cost.  

1) DEPTH AND WIGTH 

Table 4 displays the comparison of the width and depth of the 

network. The definition of the width here relates to WISERNet 

[17], which refers to the number of channels of the 

convolution kernels in each convolutional layer of the network. 

While the depth is counted by the number of convolutional 

layers used by the network. The greater the depth and width of 

the network, the more complex the network. Here color-

WangNet uses 2D and 3D convolution at the same time, so it 

is not suitable for comparison. 

As is shown in Table 4, the width of the proposed MFRNet 

is much lower than WISERNet and color-YedroudjNet, and 

the depth is much lower than color-SRNet. Thus it can be seen 

that both in terms of depth and width, MFRNet has more 

advantages. 

2) PARAMETER SCALE 

In addition, the parameter scale is used to evaluate the 

complexity of the model, which includes the number of model 

parameters and the required GPU storage space. It can be used 

to measure the resource occupation of different models and 

facilitate the training and optimization of the model on the 

GPU. 

Considering that the color image preprocessing module is 

shared by all networks participating in the comparison, and is 

also the core part of the color picture steganalysis network, it 

is convenient for comparison and has representative 

significance. Therefore we only compared the parameter scale 

of the color image preprocessing layer here. The number of 

convolution kernel channels is all recorded as 3 in this 

experiment. Set the original cover image to be 55.ppm of PPG-

LIRMM-COLOR. Set batch size to 4. Set the computing 

device to be a TITAN X model GPU server with 12G video 

memory.  
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TABLE 4. Comparison of network depth and width 

Model Width Depth 

(Shallowest/deepest) 

color-YedroudjNet 3*30/32/64/128 6 

color-SRNet 3*16/48 22 

color-WangNet -- -- 

WISERNet 72/288/1152 3 

MFRNet 3*16/48 2/7 

 

TABLE 5. Comparison of parameter scale of preprocessing layer 

Model Kernels Size 
Parameter 

Scale 

CPU 

Space/MB 

color-YedroudjNet (3,30,5,5) 23595210 94.38 

color-SRNet (3,16,3,3) 12583344 50.33 

color-WangNet   (3,30,5,5） 23595210 94.38 

WISERNet   (3,30,5,5） 23595210 94.38 

MFRNet (3,16,3,3) 12583344 50.33 

 

TABLE 6. Comparison of training time(s) 

Model Training Time Scale 

color-YedroudjNet 152.3 

color-SRNet 346.028 

color-WangNet 353 

WISERNet 239 

MFRNet 346 

 

The parameter scale of the network preprocessing layer is 

given in Table 5.The parameter scale of the proposed MFRNet 

is reduced by about half compared with WISERNet and color-

YedroudjNet. Combined with the smaller network depth and 

width of MFRNet, it can be concluded that the overall 

parameter scale of MFRNet is much smaller than other 

existing networks. 

3)  TRAINING TIME SCALE 

Finally, the training time scale is compared. The size of 

dataset for training is 6000 pairs of cover/stego images, and 

the batch size is 20. The average time of 10 epochs after the 

model is running stably is used to measure the training time 

scale. As shown in Table 6, the proposed MFRNet is in the 

same order of magnitude as the existing network in terms of 

training time scale, and the gap is within an acceptable range. 

Moreover, combined with subsequent analysis, the 

performance of MFRNet is slightly better than that of 

WISERNet, which means that MFRNet can efficiently detect 

steganographic images with a lighter structure. 

C.  PERFORMANCE OF MFRNET WHEN DETECTING 
ADAPTIVE STEGANOGRAPHY ALGORITHMS  

As can be seen from the previous section, MFRNet is more 

lightweight than existing steganalysis networks in terms of 

model complexity. But for a steganalysis algorithm, the 

detection accuracy is also very important. This section we first 

test the performance of the MFRNet detection performance on 

adaptive steganography algorithm proposed in the most ideal 

situation. That is, when the parameters of the dataset during 

model training and detection are consistent. 

Table 7 shows the performance of each model trained with 

0.4 bpc S-UNIWARD to detect 0.4 bpc steganographic 

images. The index is accuracy. It can be seen that the detection 

performance of the proposed MFRNet is 1.4% better than the 

existing best model WISERNet, and it is better than the 

existing gray-scale image steganalysis scheme combined with 

the color image steganalysis strategy. It can be seen that 

MFRNet can achieve better performance with a more 

lightweight network structure.  the detection accuracy of 

MFRNet is about 1.4% higher than WISERNet. 

D. PERFORMANCE OF MFRNET IN ACTUAL 
STEGANOGRAPHY DETECTION TASKS 

As can be seen from the previous experimental results, 

MFRNet can be implemented in an ideal environment with a 

more lightweight architecture due to the performance of 

existing solutions. However, in actual steganography 

detection tasks, the detection conditions are often more 

demanding than the experimental environment. For example, 

the steganography algorithm and payloads in the application 

are often unknown. Therefore, in order to ensure the 

practicability of the designed steganalysis algorithm, it is 

usually necessary to consider the influence of the mismatch of 

the steganalysis algorithm and the mismatch of the payloads. 

This section will give the performance of MFRNet when the 

payload is mismatched and when the steganography algorithm 

is mismatched. 

1) PAYLOAD MISMATCH 

The payload mismatch is a common situation in actual 

steganography detection tasks and a relatively low detection 

difficulty, so we will discuss it first. Generally speaking, the 

smaller the payload is, the less secret information is embedded 

and the more difficult it is to detect. Therefore, the existing 

models generally have poor detection performance on images 

with low steganography rates, and generally have better 

detection performance on images with larger steganography 

rates. How to improve the detection performance of images 

with low steganography rate. Adaptive steganalysis is a 

problem that needs to be solved urgently. 

We use the trained models to detect S-UNIWARD adaptive 

steganography images of 0.1, 0.2, 0.6, and 0.8 bpc respectively, 

and the detection results are shown in Table 8. 

It can be seen that when the payload is mismatched, 

MFRNet will have less impact. Especially for images with low 

payloads, its performance is much better than existing 

steganalysis networks. When the payload is 0.2 bpc, the 

detection accuracy of MFRNet is 90.1%, which is 25.7% 

higher than WISERNet, and 17.1% higher than color-

WangNet. Even compared with WangNet, which has good 

performance in detecting small payloads, our MFRNet has 

better performance. Moreover, when detecting 0.6 and 0.8 bpc 

images with lower difficulty, the performance of the proposed 

MFRNet has also been improved and is higher than other 

existing solutions. 
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TABLE 7. Model performance when detecting 0.4 bpc S-UNIWARD 

adaptive steganography algorithm (%) 

Model Accuracy 

color-YedroudjNet 90.8 

color-SRNet 96.2 

color-WangNet 87.0 

WISERNet 95.8 

MFRNet 97.2 

 
TABLE 8. Detection accuracy of channel-by-channel S-UNIWARD 
algorithm under different payload when payload mismatch (bpc, %) 

Model/bpc 0.1 0.2 0.6 0.8 

color-YedroudjNet 53.0 64.6 97.3 98.0 

color-SRNet 54.0 72.6 98.0 97.9 

color-WangNet 54.5 68.2 91.1 91.9 

WISERNet 52.2 64.4 97.2 96.9 

MFRNet 71.6 90.1 99.2 99.2 

 

FIGURE 6. The detection accuracy of the channel-by-channel S-UNIWARD 
algorithm under different payloads 
 
TABLE 9. Detection accuracy of different channel-by-channel 

steganography under 0.4 bpc (%) 

Model HILL WOW HUGO 

color-YedroudjNet 90.6 91.0 89.2 

color-SRNet 96.0 96.6 95.7 

color-WangNet 85.9 86.9 87.8 

WISERNet 94.8 95.3 94.8 

MFRNet 96.5 96.7 97.2 

 

TABLE 10. Comparison of network performance between MFRNet and 

steganalyzers with selection channel(%,bpc).Model 1 represents color-

YedroudjNet with selection channel. Model 2 represents MFRNet 

Algorithm Model/Payload 0.1 0.2 0.3 0.4 0.5 

S-UNIWARD Model 1 56.3 69.4 84.5 91.2 93.2 

Model 2 71.6 90.1 94.8 97.8 98.1 

HILL Model 1 59.2 74.5 86.0 91.3 92.8 

Model 2 69.7 86.5 93.8 96.5 97.5 

WOW Model 1 60.7 76.8 86.4 89.8 90.6 

Model 2 73.5 89.1 95.1 96.8 97.9 

 

Fig. 6 shows a more intuitive display. It can be seen that 

MFRNet is competitive when the payload is mismatched. As 

analyzed in II D, the proposed MFRNet can achieve such an 

excellent detection performance of steganography images 

when payload mismatch is related to the idea of multi-

frequency analysis. The experimental results in this section 

also prove this point well. 

2) STEGANOGRAPHY ALGORITHM MISMATCH 

In the actual steganography detection task, a situation that is 

also common and more difficult to detect is the mismatch of 

the steganography algorithm. Therefore, the detection 

accuracy when detecting different steganography algorithms 

an important indicator for evaluating the practicability of the 

network. Table 9 shows the detection accuracy of the 0.4 bpc 

adaptive steganography algorithm (S-UNIWARD, HILL, 

WOW, HUGO). 

As shown in Table 9, under 0.4bpc, when detecting all 

channel-by-channel steganography algorithms, MFRNet can 

achieve better performance than other existing networks. And 

the best color image steganalysis algorithm WISERNet is 

around 1.5%. 

More importantly, the mismatch of the steganography 

algorithm has little impact on the performance of MFRNet, 

only about 1% drop). It can be seen that MFRNet can well deal 

with the problem of algorithm mismatch in actual 

steganographic detection tasks. 

3) COMPARING WITH THE METHOD OF COMBINING 
THE SELECTION CHANNEL 

In order to improve the detection performance of the 

steganalysis model detection adaptive steganography 

algorithm in the actual steganalysis detection task, a 

commonly used solution is to introduce the channel selection 

technology. Selection channel is a technology that uses prior 

knowledge such as embedded probability maps to highlight 

the contribution of steganographic noise in complex regions 

of the image texture, and can effectively improve the 

performance of the steganalysis method. Based on multi-

frequency residual analysis, MFRNet can better learn the 

content of the steganographic noise suppression image, and 

can even be better than the steganalysis method that uses the 

selected channel technology to enhance image texture. 

Thus, we select color-YedroudjNet with better performance, 

and use the selection channel to enhance its performance, 

called SCA-color-YedroudjNet as a comparison. The results 

are shown in Table 10. It can be seen that when the proposed 

MFRNet without selection channel detects multiple 

steganography algorithms with different payloads(0.1 bpc - 

0.5 bpc), the performance is better than YedroudjNet 

combined with the selection channel. This proves once again 

that the network we proposed has a strong competitive 

advantage. 

E.  COMPARISON OF THE OUTPUT FEATURE MAP 

In the previous experiment, we have described the 

performance of the proposed MFRNet in the ideal and actual 

environment through the detection accuracy index. However, 

there is still no more intuitive feeling for the actual learning 

effect of the network. We usually think that the learning ability 

of convolutional neural networks is usually unable to 

accurately describe, but the feature map can describe the 

feature extraction process very well. 

In order to show the feature extraction capabilities of the 

proposed MFRNet more clearly, the paper visualizes the 

network feature map of each convolutional layer. We still 

choose color-YedroudjNet with better performance as a 

comparison. We visualized the output feature map of the last 

convolutional layer before the GAP (Global Average Pooling)  
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(a)                                             (b)                                                                           (c) 

 

   

(d)                                           (e)                                                                           (f) 
FIGURE 7. The comparison of feature maps between YedroudjNet and MFRNet. (a). Cover image. (b). The feature map of cover generated by color-

YedroudjNet. (c). The feature map of cover generated by MFRNet. (d). Stego image. (e). The feature map of stego generated by color-YedroudjNet. (f). 

The feature map of stego generated by MFRNet. 

 

  
(a).WISERNet                                                                             (b).color-SRNet 

   
(c).color-YedroudjNet                                                                        (d).MFRNet 

FIGURE 8. Comparison of network convergence 

 

layer (layer 3 for color-YedroudjNet, and layer 6 for MFRNet.) 

Because convolutional layers before GAP are mainly used to 

extract steganographic features. When GAP is added, the 

feature map output by CNN is difficult to interpret and 

visualize. A feature map can describe the feature extraction 

process well. Both MFRNet and color-YedroudjNet are 

trained under S-UNIWARD 0.4 bpc. The comparison result of 

feature maps generated based on natural images and 

steganographic images is shown in Fig. 7.  
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The results show that the feature map generated by MFRNet 

retains less image content information, and the signal-to-noise 

ratio between the steganographic signal and the image signal 

continues to increase. Whether for steganographic images or 

natural images, this method can extract features with strong 

expressive ability. At the same time, the similarity between 

each feature map is relatively low, which is convenient for 

subsequent convolution and classification. In contrast, the 

feature map generated by color-YedroudjNet retains more 

image content information, and the difference between the 

feature maps is not obvious. 

F.  COMPARISION OF NETWORK CONVERGENCE 

In the above experiment, we have demonstrated the excellent 

performance of the network detection adaptive steganography 

algorithm. This section further demonstrates the performance 

of MFRNet through the convergence of the network. 

 In this part, the accuracy of the verification set during the 

training process is visualized through TensorBoard, and the 

smoothness value is 0.6. The training set is a randomly 

selected 6000 PPG-LIRMM-COLOR cover images and the 

corresponding stego images generated by 0.4 bpc channel-by-

channel S-UNIWARD. The batch size is set to 20, and the total 

model is 200 iterations (120K steps) to train WISERNet, 

color-SRNet, color-YedroudjNet and MFRNet. 

As shown in Fig. 8, the three models all begin to converge 

at about 40k steps. And MFRNet achieves the same fast 

convergence speed when the depth is much lower than that of 

color-SRNet. The stability of MFRNet is also very well. 

IV. CONCLUSION 

In this paper, a multi-frequency residual convolutional neural 

network MFRNet for color image steganalysis is proposed. 

For the first time, the idea of multi-frequency residual analysis 

is introduced into steganalysis, and the performance of 

WISERNet is no less than the existing color image 

steganalysis models in spatial domain with a more lightweight 

network architecture. And compared with the existing network, 

it can better deal with the mismatch problem of steganography 

in actual steganography detection tasks. 

In future work, we will aim to study the steganalysis in the 

frequency domain. In addition, we will study the detection of 

the more secure steganography algorithm for color images, 

named vector steganography algorithm. It better preserves the 

correlation between the pixels in the neighborhood of the color 

image, and the detection difficulty is also higher. 
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