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Abstract
Temporal-relation classification plays an important role in the field of natural language processing. Various deep learning-
based classifiers, which can generate better models using sentence embedding, have been proposed to address this challenging
task. These approaches, however, do not work well due to the lack of task-related information. To overcome this problem, we
propose a novel framework that incorporates prior information by employing awareness of events and time expressions (time–
event entities) with various window sizes to focus on context words around the entities as a filter. We refer to this module
as “question encoder.” In our approach, this kind of prior information can extract task-related information from simple
sentence embedding. Our experimental results on a publicly available Timebank-Dense corpus demonstrate that our approach
outperforms some state-of-the-art techniques, including CNN-, LSTM-, and BERT-based temporal relation classifiers.

Keywords Temporal-relation classification · Neural networks · Event and time expressions · Question encoder · Timebank

1 Introduction

With the rapid development of information technology, the
number of distributed news services on the Internet has been
growing exponentially. Thus, quickly searching for news rel-
evant to each user’s interests is becoming more and more
difficult. To address this problem, temporal-relation classifi-
cation is a promising approach to constructing timelines that
allows a search engine to provide much more relevant results
and tips for users [9]. In addition, to achieve better fact-
checking, the informative events from news media should
be arranged chronologically. For example, in the 2020 U.S.
Presidential Election, Mr. Trump’s lawyers claimed that the
election was fraudulent. Afterward, the office of Pennsylva-
nia’s attorney general has said that there is no evidence to
support the claims.

By contrast, asCOVID-19 spreadsworldwide, a vast num-
ber of clinical papers have been published online [33], and
informative events from clinical papers should be arranged
chronologically to monitor the effect of various treatments
[28]. To extract and collect the most informative parts from
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clinical papers, effective information extraction [30] is an
essential technique. To observe disease progression and some
longitudinal effects of medications [14], it is also important
to improve the accuracy of temporal-relation classification
for the extracted time and event entities.

Temporal-relation classification aims to identify the rela-
tions (e.g., “BEFORE,” “OVERLAP,” and “AFTER,”) between
event and time expressions (i.e., time–event entities). For
example, the following sentence is an example of the
“BEFORE” relation between events “established” and
“believed”:

Example 1 He said he believed the “conditions for ameeting”
betweenMr. Trump andMr. Rouhani “in the next fewweeks”
had been established.

In recent years, several feature-based methods have been
proposed to address temporal-relation classification [1,12,
21,22]. However, most of them rely on the manual annota-
tion of features and rules, and this is very time-consuming
and labor-intensive. Following the recent success of neural
networks (NNs), variousNN-basedmodels, including convo-
lutional NN (CNN) [4,5,15], recurrent NN (RNN) [2,29,32],
and contextual embedding [16] using Bidirectional Encoder
Representations from Transformers (BERT) [3] have been
proposed to achieve better performance with less manual
work in temporal-relation classification. Other researchers
have proposed related works [26,31] for general relation
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classificationusingBERT, but theydidnot focus on temporal-
relation classification.

In many NN-based models proposed thus far, the classi-
fication module generates labels from sentence embedding
without any prior information. However, lacking prior infor-
mation causes some problems. For example, the decoder
generates irrelevant labels even with well-trained sentence
embeddingbecause classifiers cannot choose a necessary fea-
ture among dense features for specific tasks.

Researchers have encoded input sentences into high-
dimensional vectors that contain the semantic information
required for classification. For example, as a variant of RNN,
long short-term memory (LSTM) can automatically choose
what to remember or forget when modeling long sequences
using four specially designed “gate” structures (input mod-
ulation gate, input gate, forget gate, and output gate) [8]. By
contrast, CNNs manipulate word tokens sequentially using
sliding windows, resulting in a loss of long dependency
information, but they extract local semantic features from
pretrained word embeddings with convolutional filters [6].
For temporal-relation classification tasks, we assume that
we do not need to capture semantic information completely
because the clues of temporal-relation classification tend to
appear locally around the time–event entities.

We first published our work in [25] and proposed a novel
framework to classify temporal relations with a “question
encoder” using the context of time–event entities as prior
information. In this paper, we explore a new CNN-based
framework and update our method with the detailed moti-
vation to elaborate our question encoder module. We also
add the new baselines with the CNN-based method [4] and
the methods [26,31] using BERT [3]. Our contributions are
summarized as follows.

1. Weupdate our extractormodule named“question encoder”
to incorporate various window sizes to focus on context
words around the entities. This module is used to extract
the required information from sentence embeddings for
classification using expressions for time and an event. In
contrast, we update our sentence encoder to keep simple
using convolutional layers with a filter window size of 3.
We also update our optimizer using the learning rate opti-
mizer AdamW [18]: Adam with weighted decay, which
was proposed recently instead of Adam [11].

2. We conduct comparative experiments on the Timebank-
Dense corpus [1]. We update our baselines including the
CNN-based method [4] and the methods [26,31] using
BERT [3]. We also discuss the effectiveness of the ques-
tion encoder module. Experimental results show that our
question encoder module can significantly improve the
performance, not only with CNNs but also with LSTMs.
We also describe how to set the hyperparameters in our
model.

3. To solve the problem with the lack of training data, we
expand some of the Timebank-Dense dataset by includ-
ing the reversed examples, and this significantly improves
the performance, especially for a smaller number of train-
ing samples. Finally, our proposed model with expanded
training data demonstrates significantly improved perfor-
mance to 0.699 and 0.732 inMacro andMicro F1 scores,
respectively.

2 Related work

2.1 Feature-basedmethods for temporal-relation
classification

In earlier works, traditional feature-based machine learn-
ing approaches have achieved acceptable performance in
temporal-relation classification. For example, Chambers et
al. [1] used amaximumentropy classifierwith the lexical fea-
tures such as token, lemma, POS tag of event, tense, aspect
of an event, or syntactic features such as syntactic parse tree
path between the event and time. Mirza and Tonelli [22]
employed L2-regularized logistic regression to classify tem-
poral relations by incorporating word-embedding features,
demonstrating its effectiveness.

However, to make machine learning algorithms work
much better, the unstructured texts need to be converted into
numeric representations that can be understood by the algo-
rithms. In this framework, laborious feature engineering is
required.

In addition, challenges remain, and human-annotated fea-
tures do not guarantee acceptable performance due to the
impact of errors from the subjective judgment in the process.

2.2 Bidirectional LSTM-basedmethods for
temporal-relation classification

In temporal-relation classification, the shortcomingsdescribed
in the previous subsection indicate that the traditional
approaches do not work well, motivating researchers to
employ NNs, which can automatically extract effective fea-
tures, instead of complicated feature engineering.

At the same time, LSTM-based models can learn the
rules automatically and also achieve higher performance by
simply giving more input data. For example, Cheng and
Miyao [2] employed LSTM in a bidirectional form (Bi-
LSTM) by taking dependency paths as the input, resulting
in better temporal-relation classification. To enhance their
work, Zhang et al. [32] proposed using deep Bi-LSTM,
demonstrating that the deep neural approach can learn rep-
resentations more semantically.

On the other hand, Liu et al. [17] leveraged an attention
mechanism [19] to improve the system performance of neu-
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ral network models. Word-level attention weights could be
interpreted as importance measures in given contexts, i.e.,
temporal-relation indicators for each relation instance of a
sentence. They implemented the attention mechanism on top
of the LSTM or GRU model.

2.3 CNN-basedmethods for temporal-relation
classification

By contrast, several researchers have proposed temporal-
relation classification methods using CNNs [4,5]. Do and
Jeong [5] proposed a CNN architecture for temporal-relation
classification. They used lexical features forwindowprocess-
ing and contextual features for convolution and max-pooling
operations. Their approach, however, did not outperform
state-of-the-art methods. Dligach et al. [4] found that CNN
models outperform LSTM models for temporal-relation
extraction tasks, although their dataset differs from ours
introduced in Sect. 4.1. In their CNN-based model, the
embedding layer was followed by a convolution layer that
applied convolving filters of various sizes to extract n-gram-
like features that were then pooled by a max-pooling layer.
The output of the max-pooling layer was fed into a fully
connected dense layer that was followed by the final softmax
layer outputting the probability distribution over the possible
classes for the input. The filter sizes of CNN models in [4]
were 2, 3, 4, and 5.

From these related works, we design our framework to
focus on context words around the entities on top of the CNN
model and weight them with the matrix–matrix product of
input sentence embeddings and question embeddings, which
is similar to the dot-product attention mechanism [19].

2.4 BERT-basedmethods for temporal-relation
classification

Finally, some systems [16,26,31] have been proposed based
on contextualized word representations called BERT [3].
Note that two systems [26,31] are developed for general rela-
tion classification as SemEval-2010 Task 8 [7], and they did
not focus on temporal-relation classification. Lin’s system
[16] focused on “contains” relation and “contains by” rela-
tion only for classification,whichwas similar to the “overlap”
relation. Wu and He’s approach [31] was based on the con-
catenation of a [CLS] token1 vector and two averaged entity
vectors for relationship. Soares et al. [26] and Lin et al. [16]
focused on hidden states of BERT for the symbol at the start-
ing and ending positions of entities called entity markers.

Building on previous work for temporal-relation classi-
fication, we take the CNN model as our base system with

1 [CLS] stands for classification. It is added at the beginning to represent
the meaning of the entire sentence.

Fig. 1 Architecture of our proposed framework

the question encoder and compare our proposed model with
some state-of-the-art systems for temporal-relation classifi-
cation including BERT-based ones in Sect. 4.3.

3 Our proposedmodel

In this section, we propose a CNN-based framework for
temporal-relation classification. As shown in Fig. 1, our
CNN-based framework consists of the following four main
components: sentence encoder, question encoder, extractor,
and classifier (see Sects. 3.1, 3.1, 3.3 and 3.4, respectively).
The sentence encoder encodes sentence information using
CNN, and the question encoder encodes the context infor-
mation around the entities. This information is combined in
the extractor module with matrix–matrix product operation,
which is similar to the dot-product operation in the attention
mechanism [19].

3.1 Sentence encoder

The sentence encoder module encodes input sentences into
high-dimensional embedding. Here, we employ a variant of
CNN[10] to encode input sentences, demonstrating its ability
to encode the semantic features of sentences.

Given a sentence S = {x1, x2, . . . , xT } where T denotes
the length of the sentence, the objective of the word-
embedding layer is to map each word xt into a high-
dimensional vector et . Global Vectors for Word Representa-
tion (GloVe) capture sublinear relationships of words in the
vector space [24]. GloVe word vectors are commonly used
as pretrained word representations trained by the unsuper-
vised learning algorithm. In general, GloVe outperforms the
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word2vec [20] algorithm in theword analogy tasks.Hence, in
this work, we initialize the word embeddings with the pub-
licly available 300-dimensional GloVe [24] word vectors.
Then, we use the convolutional layers to obtain the feature
map from word embeddings. Afterward, we apply a max-
pooling algorithm to identify the most important feature in
each feature map by taking themaximum value as the feature
for filters.

Hyperparameter settings

We use convolutional layers with a filter window size of
3 because the smaller size is popular and because the odd
window size will be symmetric around the word.2 In the
standard CNN approach, various window sizes were incor-
porated to allow the network to capture wider ranges of
n-grams [4,23]. In our approach, however, we suppose that
the sentence encoder should keep simple to apply matrix–
matrix product operation to the output of the question encoder
(prior information). In contrast, the question encoder should
incorporate various window sizes to focus on context words
around the entities. The length of the sentence T should
be defined according to the dataset. We also determine the
number of filters (output channels) dSE by investigating the
optimal number using a validation dataset. The details of
parameter tuning are described in Sect. 4.1. The results are a
matrix with dSE ×T −2 size to obtain the semantic sentence
embedding.

3.2 Question encoder

The sentence encoder can encode input sentences into high-
dimensional vectors that contain semantically rich infor-
mation. However, in previous work, classification modules
decode labels from sentence embedding without any prior
information. Lacking prior information results in problems
with the decoder. For example, it generates irrelevant labels
evenwithwell-trained sentence embedding because there are
too many features.

Our framework employs a question encoder to incorporate
prior information to achieve better temporal-relation classifi-
cation. Li et al. [13] noted that just two entities in a sentence
can be viewed as forming a pseudo-question when casting
relation extraction as a question-answering problem, even if
the sentence is not necessarily grammatical. For example,
as shown in Table 1, the pseudo-question about Example 1
in Sect. 1 is “believed,” “established,” and their contexts.
Note that “<pad> ” is used as the padding symbol within
the context window size = 2 in Table 1.

2 https://towardsdatascience.com/deciding-optimal-filter-size-for-
cnns-d6f7b56f9363.

Question encoder takes the pseudo-question as inputs,
given by: Q = {xe1−lCW : xe1+lCW , xe2−lCW : xe2+lCW},
where e1 and e2 denote the index of two entities, and lCW is
the window size.

Figure 2 shows the architecture of our question encoder.

Hyperparameter settings

We use three different filter window sizes (3, 4, and 5) in the
convolutional layers with the number of filters (output chan-
nels) of dQE to obtain feature maps from the constructed
question embeddings. We exclude filter size 2 because it will
not return the data with a peak centered around the word.
Afterward, we apply a max-pooling algorithm to identify the
most important feature in each featuremapby taking themax-
imum value as the feature for filters. The results are merged
as a (dQE∗6)-dimensional vector3 to obtain the semantic sen-
tence embedding, as shown in Fig. 2. Finally, we apply a fully
connected layer and unsqueeze operation to it and obtain a
matrix with the size of (T − 2) × 1 for the matrix–matrix
product with the output from the sentence encoder.

3.3 Extractor

In this step, we combine sentence embeddings and pseudo-
question embeddings to generate the necessary information
representation for classification.

We calculate a batch matrix–matrix product of sentence
embeddings and question embeddingwithwhichwe can only
extract the information necessary for the task. Therefore, we
can obtain a matrix to represent necessary information with
the size of dSE × 1.

3.4 Classifier

Thus far, we have obtained the necessary information
representation for classification. Then, we apply a linear
transformation to magnify the representation to the 2000-
dimensional space that followed the dropout function with a
ratio of 0.2.We also use another linear transformation tomap
this vector to a 5 (number of total classes)-dimensional space.
Five classes are predefined in Sect. 4.1. The classifier allows
the model to output temporal relations for input examples.
We simply employ a Sof tmax classifier to classify input
sentences into predefined classes.

4 Experiments

We conduct comparative experiments to verify the effective-
ness of our proposed approach.We first introduce the dataset,

3 Note that “*” symbol means the scalar multiplication operator.
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Table 1 Example of the context
for questioned time–event
entities in the Timebank-Dense
corpus

Constructed question
said he believed the conditions; had been established <pad> <pad>
Entity 1 Entity 2 Window size
believed established 2

Fig. 2 Architecture of our
question encoder

hyperparameters, and baseline systems used in our experi-
ments. Then, we compare the performance of our model with
some baselines. To evaluate further the effects of our pro-
posed model, we also replace the CNN part with Bi-LSTM.
We also show our experimental results with different sizes
of training data in Sect. 5.

4.1 Dataset

We conduct experiments on the Timebank-Dense corpus [1],
which contains 36 documents, including 12,715 examples.
We divide the 36 documents into 22, 5, and 9 documents for
training, validation, and testing, respectively.

The Timebank-Dense corpus is constructed to identify
temporal relations between events and times in terms of the
following four combinations: event and event (E-E), time and
time (T-T), event and time (E-T), and event and document
creation time (E-D). This dataset contains the following six
temporal-relation types: “AFTER,” “BEFORE,” “SIMUL-
TANEOUS,” “INCLUDES,” “IS_INCLUDED,” and“VAGUE.”

As in previous work, we skip the “SIMULTANEOUS”
relation type because it has only a small number of instances.

Hyperparameter tuning using validation dataset

In our proposed method, we optimized the learning rate as
2e−5 and the number of epochs as 112 by finding the max-
imum F1 score using a validation dataset. As described in
Sect. 1, we used the AdamW optimizer [18]: Adam with
weighted decay. We set the batch size to 32. We also set the

Table 2 F1 score using validation dataset with hyperparameter dSE

dSE 8 16 32 64 128 256 512

F1 0.670 0.662 0.682 0.675 0.680 0.675 0.673

Table 3 F1 score using validation dataset with hyperparameter dQE

dQE 8 16 32 64 128 256 512

F1 0.664 0.648 0.682 0.661 0.681 0.648 0.455

Table 4 F1 score using validation dataset with context window size
lCW

lCW 3 4 5 6 7 8 9 10

F1 0.661 0.669 0.682 0.661 0.680 0.672 0.675 0.678

length of the sentence T to 130 by considering the maximum
length (145) and average length (51.7) of the training dataset
with avoiding redundant padding symbols.

Furthermore,we set hyperparametersdSE anddQE to 32by
comparing the F1 score using a validation dataset, as shown
in Tables 2 and 3. Note that the F1 score was not sensitive to
dSE so much, but dQE should be set between 32 and 128.

Finally, we set context window size lCW in the question
encoder to 5 by comparing the F1 score using the validation
dataset, as shown in Table 4.
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4.2 Baseline systems

To investigate the effectiveness of our model, we compare
our model with the following six state-of-the-art models:
MIRZA [22]. This system comprises four classifiers: a rule
set for T-T pairs and three L2-regularized logistic regression
classifiers for E-D, E-T, and E-E pairs.
CHENG [2]. This system comprises two dependency path-
based Bi-LSTM classifiers: one for E-E and E-T pairs and
one for E-D pairs.
ZHANG [32]. This is a multilayer neural Bi-LSTM model.
This model classifies temporal relations for E-E pairs only.
DLIGACH [4] This system is based on the CNN model. We
implemented their system by setting the hyperparameters as
described in [4]. We, however, replaced the optimizer from
RMSprop with AdamW [18]: Adam with weighted decay
because of the effectiveness of AdamW and the fairness of
the comparison with our proposedmethod.We optimized the
number of epochs to 151 by maximizing the F1 score using
the validation data.
WU [31]. For comparison, reflecting on the recent trend of
state-of-the-art methods, we prepared the system based on
BERT [3] for general relation classification. Wu and He used
a BERT model transformer with a sequence classification
named “BertForSequenceClassification” and AdamW opti-
mizer [18], following the original implementation. BERT is
fine-tuned using the “bert-large-uncased” model, which is
pretrained on a large and uncased corpus [3]. We optimized
the hyperparameters using validation data with a learning
rate of 4e−5 and setting the number of epochs to five.
SOARES [26]. This is another version of a BERT-based
system for general relation classification. We used a bare
BERT model transformer named “BertModel,” outputting
raw hidden states without any specific head on top and
Adamoptimizer [11], following the original implementation.
BERT is fine-tuned using a pretraining model on “bert-
large-uncased.”We optimized the hyperparameters using the
validation data with a learning rate of 1e−4 and setting the
number of epochs to 10.

4.2.1 LSTMmodel with question encoder

Finally, we add one more comparison system based on
our question encoder. In our proposed framework, the sen-
tence encoder part plays an important role because the
sentence embeddings affect the final classification accu-
racy. We demonstrate the impact of applying Bi-LSTM to
encoding sentences. We replace CNN with Bi-LSTM in our
proposed framework. That is, we apply Bi-LSTM to encode
sentence embeddings in the sentence encoder part (in Fig. 2),
while we keep the other parts (question encoder, extractor,
and classifier in Fig. 1) remain unchanged. To conduct com-
parative experiments, we first feed the embedded sequence

E = {e1, e2, . . . , eT } to a forward LSTM from the beginning
to the end and then to a backward LSTM from the end to the
beginning. Then, the forward

−→
ht and backward

←−
ht results of

each word xt are combined as [−→ht ⊕ ←−
ht ] by a concatenation

operation. Next, we use the same operations (see Sect. 3.3)
to construct pseudo-questions and extract the required infor-
mation representation for classification. Finally, the model
generates labelswith the same classifier (see Sect. 3.4. For the
Bi-LSTM layer, we set each hidden layer to 256-dimensional
and train our model for up to 50 epochs with a learning rate
of 0.01.

4.3 Overall results

We now report our experimental results on the Timebank-
Dense corpus.

Table 5 compares the results obtained by our model with
those obtained by three state-of-the-art models, DLIGACH
[4], CHENG [2], and MIRZA [22]. We observe that our pro-
posed model significantly improves the best state-of-the-art
model, CHENG [2], by an F1 score of 0.147 (28.3%), indi-
cating the effectiveness of our model.4

We compare the results by relation types for all pairs and
for E–E pairs in Tables 6 and 7 including other baselines.5

From the two tables, we conclude that our approach is more
effective for E–E pairs. This is because the context words
around the entities, which are focused on in our question
encoder, affect E–E pairs more than other pairs for temporal-
relation classification.

In Table 7, note that our CNN-based proposed model out-
performs the other seven models for all types of relations
with statistical significance (using a two-tailed t test), at a
significance level of 5% for LSTM with question encoder,
DLIGACH, andZHANGand1% forCHENG,MIRZA,WU,
andSOARES inmacro F1, particularly for the “INCLUDES”
type. The limited amount of data for the “INCLUDES” type
(5% of all data) always makes it the most difficult to find
temporal relations. However, it is remarkable that our pro-
posed model improves the F1 score by 0.254 (125.7%) for
this type compared with the best state-of-the-art model, WU
[31].Weobserved that the best baselinemodel isWU’smodel
[31] based on BERT. Our proposed model, however, still
improved the micro F1 score by 0.104 (17.3%) compared
with WU’s model.

Tables 6 and 7 show that our CNN-based method
(CNN+QE)outperforms theBi-LSTM-basedmodel (LSTM+QE)

4 Note that these results were computed based on the weighted average
of the results for E-D, E–E, and E–T pairs in Table 1 of [2]. The weight
was computed based on the distribution in Table 7 of [1].
5 Note that ZHANG classifies temporal relations between E–E pairs
only, and WU and SOARES’s approaches were developed to classify
general E–E pair relationships.
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Table 5 Overall comparison between our proposed framework and the three state-of-the-art models, DLIGACH [4], CHENG [2], andMIRZA [22],
which are a CNN model, a Bi-LSTM-based model, and a feature-based model, respectively

Systems Proposed DLIGACH [4] CHENG [2] MIRZA [22]

Micro F1 0.667 0.497 0.520 0.512

Table 6 Comparison by relation types for all pairs

Methods Approach AFTER BEFORE INCLUDES IS_ VAGUE F1 Score
INCLUDED Macro P value Micro

Proposed CNN+QE 0.738 0.730 0.409 0.371 0.710 0.592 – 0.667

LSTM+QE 0.688 0.670 0.385 0.372 0.669 0.557 ∗ 0.622

DLIGACH [4] CNN 0.429 0.423 0.073 0.178 0.710 0.363 ∗ 0.497

CHENG [2]4 LSTM 0.454 0.391 0.216 0.309 0.623 0.399 ∗ 0.520

MIRZA [22] LR 0.44 0.51 0.11 0.47 0.58 0.422 0.083 0.518

“∗”denotes that the difference between our proposed CNN-based approach (bold score) and all the other four models in macro F1 is statistically
significant for p < 0.05

Table 7 Comparison by relation types for E–E pairs

Methods Approach AFTER BEFORE INCLUDES IS_ VAGUE F1 Score
INCLUDED Macro P value Micro

Proposed CNN+QE 0.747 0.732 0.456 0.419 0.741 0.619 – 0.705

LSTM+QE 0.665 0.672 0.427 0.419 0.711 0.579 ∗ 0.661

DLIGACH [4] CNN 0.440 0.444 0.096 0.143 0.737 0.372 ∗ 0.546

CHENG [2] LSTM 0.440 0.460 0.025 0.170 0.624 0.344 ∗∗ 0.529

ZHANG [32] 0.526 0.503 0.106 0.325 0.626 0.417 ∗ 0.548

MIRZA [22] LR 0.430 0.471 0.049 0.250 0.613 0.363 ∗∗ 0.519

WU [31] BERT 0.536 0.613 0.202 0.234 0.656 0.448 ∗∗ 0.601

SOARES [26] 0.297 0.308 0.067 0.102 0.311 0.217 ∗∗ 0.444

“∗” and “∗∗”denote that the difference between our proposed CNN-based approach (bold score) and all the other seven models in macro F1 is
statistically significant for p < 0.05 and p < 0.01, respectively

in our proposed framework for “AFTER,” “BEFORE,”
“INCLUDES,” and “VAGUE” types, indicating that CNN is
effective in our proposed framework. As discussed in Sect. 1,
we assume that we do not need to capture semantic infor-
mation completely using Bi-LSTMs because the clues of
temporal-relation classification tend to appear locally around
the time–event entities. These results demonstrate that our
hypothesis is correct because CNN can take full advantage
of convolutional filters to extract local semantic features from
pretrained word embeddings.

For E–E pairs classification, thanks to question encoder,
our proposed model improves the micro F1 score by 0.159
(29.1%) compared with the ordinary CNN approach (DLI-
GACH [4]). In addition, our LSTM model with question
encoder (LSTM+QE) improves the micro F1 score by 0.132
(25.0%) and 0.113 (20.6%) compared with the existing
LSTM approaches (CHENG [2] and ZNANG [32]). Note
that the difference in macro F1 is statistically significant for
p < 0.01 (CHENG [2]) and p < 0.05 (ZHANG [32]). From

these results, we can conclude that our question encoder
module is quite effective, not only with CNNs but also with
Bi-LSTMs. LSTMcan automatically choosewhat to remem-
ber or forget when modeling long sequences using four gates
(input modulation gate, input gate, forget gate, and output
gate). Inevitably, it still keeps or forgets the wrong infor-
mation required for identifying temporal relations because
of the small training dataset. The extractor in our proposed
framework, however, can select the necessary information to
decide the relevant temporal relation based on constructed
pseudo-questions.

5 Discussion

In this section,we discusswhether the size of the training data
affects the results. NN-based models always give only slight
improvement due to the small training datasets in supervised
learning. To overcome this issue, we expand some of the
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Fig. 3 Comparison between the CNN-based and the Bi-LSTM-based
models by varying the ratio of the training data

Timebank-Dense dataset by including the reversed examples
and report experimental results conducted on the expanded
Timebank-Dense dataset.

5.1 The effect of training data size

Figure 3 compares our experimental results obtained by vary-
ing the ratio of training data by 30%, 50%, 70%, and 100%
in our CNN-based and Bi-LSTM-based models. We observe
that the CNN-based model in any ratio gives better results.
Furthermore, by employing our proposed framework, the two
models achieve satisfactory resultswith a limited size of data,
and the CNN-based model is comparable with some of the
state-of-the-art models with only 50% training samples.

Table 8 also compares our experimental results of each
relation typeobtainedbyvarying the ratio of trainingdata.We
note that in the relation type “IS_INCLUDED,” our CNN-
based method cannot improve the F1 scores sufficiently as
the size of the training data increases. In Sect. 5.2, we discuss
how to improve the accuracy of these types with a smaller
number of training samples.

5.2 Effect of data expansion

Due to the limited size of data, it can be more difficult
to classify the temporal relation for the “INCLUDES” and
“IS_INCLUDED” types. In our proposed model, thanks
to the question encoder, we can differentiate two event
entities in the temporal relation. We observe that the train-
ing data could be expanded by reversing the temporal
relation between entity A and entity B from “AFTER”
(“INCLUDES”) and “BEFORE” (“IS_INCLUDED”), and
vice versa.

Based on this observation, we can expand the Timebank-
Dense dataset by including the reversed training examples for
“AFTER,” “BEFORE,” “INCLUDES,” and “IS_INCLUDED.”
This framework enables us to double the training data avail-
able for relations other than the “VAGUE” type.

Tables 9 and 10 show examples of our data expansion
method and its statistics in each temporal relation, respec-
tively. For the original instance, there is a BEFORE relation
between the event “established” and the event “believed,”
whereas the relation between the event “believed” and the
event “established” is AFTER.

Because of limited data in Table 10, it is more diffi-
cult to classify temporal relations for the “INCLUDES” and
“IS_INCLUDED” types. As shown in Table 11, the F1 score
is improved with statistical significance (using a two-tailed
t test at a significance level of 5% in macro F1) as the
amount of available training data increases, especially for
“INCLUDES” and “IS_INCLUDED” types.

For comparison, we applied the expanded data toWU [31]
and SOARES [26] using BERT, as introduced in Sect. 4.2.
Micro F1 scores obtained by WU [31] and SOARES [26]
are 0.633 and 0.439, respectively. Compared with the results
using the original data in Table 7, our approach improved by
9.7% in micro F1 score, while WU’s approach improved by
4.6% only and SOARES’s approach decreased. From these
results, our question encoder approach is more effective to
improve the estimation with the expanded data compared
with the contextualized embedding approaches.

Note that the document genre of the Timebank-Dense cor-
pus is newspaper articles [1], and the sentence expressions
do not diversify and depend on individual style so much.
The document genre dependency is the limitation of our data
expansion approach. We should investigate the generality of
our data expansion approach with another document genre
such as clinical domain [27].

6 Conclusion and future work

In this paper, we designed a CNN-based framework for
temporal-relation classification with a question encoder to
incorporate various window sizes to focus on context words
around the entities.We assumed that task-related information
can be extracted by introducing pseudo-questions as prior
information and then by classifying labels through a classi-
fier. Our proposed model was more interpretable and robust
through the constructed questions.

Experimental results on the Timebank-Dense corpus
demonstrated that our CNN-based model with question
encoder significantly outperforms theBi-LSTM-basedmodel
with it. Our proposed model also outperforms state-of-the-
art systems including CNN-, Bi-LSTM-, and BERT-based
models. It could classify comparably with those baselines
even with a small training dataset (i.e., 50%). In addition, we
demonstrated that expanding the training data by reversing
the temporal relation improved the accuracy effectively for
the relation types with a limited number of training datasets.

123



CNN-based framework for classifying temporal relations with question encoder

Table 8 Comparison of relation
types in the CNN-based and the
Bi-LSTM-based models by
varying the ratio of training data

Relation CNN-based Bi-LSTM-based
30% 50% 70% 100% 30% 50% 70% 100%

AFTER 0.471 0.574 0.632 0.738 0.413 0.566 0.637 0.688

BEFORE 0.503 0.584 0.582 0.730 0.386 0.562 0.647 0.670

INCLUDES 0.157 0.288 0.386 0.409 0.150 0.222 0.275 0.385

IS_INCLUDED 0.218 0.302 0.418 0.371 0.160 0.298 0.400 0.372

VAGUE 0.610 0.614 0.676 0.710 0.591 0.597 0.624 0.669

Macro F1 0.392 0.472 0.539 0.592 0.340 0.449 0.517 0.557

Micro F1 0.492 0.547 0.601 0.667 0.440 0.529 0.586 0.622

Table 9 Example of original
and expanded data instances

Text Label Relation

Original instance He said he believed the
“conditions for a meeting”
between Mr. Trump and
Mr. Rouhani “in the next
few weeks” had been
established

Before established ⇒ believed

Expanded instance He said he believed the
“conditions for a meeting”
between Mr. Trump and
Mr. Rouhani “in the next
few weeks” had been
established

After believed ⇒ established

Table 10 Comparison between
the expanded and original
training data sizes

Relation # Expanded training data # Original training data

AFTER 4316 1889

BEFORE 4316 2427

INCLUDES 1733 695

IS_INCLUDED 1733 1038

VAGUE 442 442

Table 11 Experimental results
conducted on expanded data

Relation Expanded training data Original training data

AFTER 0.795 0.738

BEFORE 0.807 0.730

INCLUDES 0.617 0.409

IS_INCLUDED 0.558 0.371

VAGUE 0.767 0.718

Macro F1 0.699∗ 0.592

Micro F1 0.732 0.667

Learning sentence representation, however, remains a core
issue for temporal-relation classification. In future work, we
plan to enhance the word-embedding and sentence-encoding
approach based on contextualized word representations such
as BERT [3] to achieve much better classification accuracy.
We also plan to evaluate our approach in the clinical domain
using the THYME corpus [27] and investigate the effec-

tiveness of our model for monitoring the effect of various
treatments for the COVID-19 pandemic chronologically.
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