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Abstract
Inferring the magnitude and occurrence of real-world events from natural language text is a crucial task in various domains.
Particularly in the domain of public health, the state-of-the-art document and token centric event detection approaches have
not kept the pace with the growing need for more robust event detection in public health. In this paper, we propose UPHED, a
unified approach, which combines both the document and token centric event detection techniques in an unsupervised manner
such that events which are: rare (aperiodic); reoccurring (periodic) can be detected using a generative model for the domain
of public health. We evaluate the efficiency of our approach as well as its effectiveness for two real-world case studies with
respect to the quality of document clusters. Our results show that we are able to achieve a precision of 60% and a recall of
71% analyzed using manually annotated real-world data. Finally, we also make a comparative analysis of our work with the
well-established rule-based system of MedISys and find that UPHED can be used in a cooperative way with MedISys to not
only detect similar anomalies, but can also deliver more information about the specific outbreak of reported diseases.

Keywords Retrospective public health event detection · Clustering · Event-based epidemic intelligence

1 Introduction

A public health event is defined as a specific infectious dis-
ease that is affecting a population at a specific time and place.
An important strategy, used by public health officials to mit-
igate the impact of potential threats, is to find ways to detect
the signs of a public health event as early as possible.Unstruc-
tured and informal Web documents are used as data sources
to detect facts about current infectious disease activity within
a population [19]. The body of work devoted to this effort is
known as event-based Epidemic Intelligence (e-EI) [35].

Existing event-based e-EI systems rely upon the enumer-
ation of possible types of medical reporting patterns, or rules
(e.g., MediSys [47]). This presents a huge limitation, since
given the variety of natural language, many rules may be
required, and the recall for identifying relevant events can be
low. Systems that only rely upon rule-based event detection
are limited, since the only threat indicators (e.g., keywords)
they can detect are those that are explicitly under surveil-
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lance. One way to overcome the aforementioned limitations,
is to cast a new light on the task of public health event
detection—so that it is done in an unsupervised manner.

1.1 Limitations of existing systems

There are twomajor approaches to unsupervised event detec-
tion and they can be distinguished by the type of observation
variable used to model an event.

In document-centric detection [30,46], the observation
variable is the coupling (co-occurrence) between documents
and words. Generative models are often used to capture this
coupling by introducing an unobserved (hidden) variable to
infer an event. In token-centric approaches an event is mod-
eled by the temporal correlation of bursty tokens (features)
within a document collection [18,20].

The drawback of the document-centric approaches is that
temporal aspects are not explicitly incorporated into the event
model, and no prior burst analysis is done on these repre-
sentations. In contrast, approaches based on the correlation
of bursty features can filter out a vast number of potentially
irrelevant features; yet amodel of the temporal co-occurrence
of words within a document is lost. Moreover, many types
of features that are relevant for public health event detec-
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tion (i.e., symptoms, victims, or medical conditions) are not
modeled.

1.2 Proposed solution

In our approach, UPHED—a Unified Approach to Public
Health Event Detection, we seek to overcome the limitations
of using each type of event detection approach individu-
ally; and propose a unified approach to public health event
detection for e-EI. Further, we propose that by applying an
unsupervised algorithm to public health event detection, we
help to overcome the limitations of existing e-EI systems.

To justify our hypothesis, we adapt an unsupervised
approach to our problem domain so that events which are:
rare (aperiodic); reoccurring (periodic); and domain or task-
specific, can be detected. In more detail, we combine burst
function analysis with the entity-centric feature representa-
tion in a generative model for probabilistic event detection.
Going beyond a random initialization of the probabilities
in this generative process, we instead exploit a known dis-
tribution of the features that are obtained directly from the
burst function. Additionally, in our burst analysis, we refine
the approach to feature representation by incorporating a
Cauchy–Lorentz distribution to more closely model the true
behavior of periodic, non-burst (trough) activity.

1.3 Our contributions

The contributions of this work are:

– Use of an approach to unsupervised event detection and
adaption of its feature set to the domain of public health
event.

– Presentation of a general model which, in contrast to pre-
vious approaches, incorporates two main techniques: the
burst function spectral analysis and the entity-centric fea-
ture representation of documents in a generative model.
Compared with existing solutions, our UPHED approach
results in a more efficient and accurate method to predict
public health events.

– Refining the model for representing periodic, non-burst
featureswith theCauchy–Lorentz distribution. The better
sampling achieved by such a distribution, is shown to be
more efficientwith respect to the previous representations
that use Gaussian distributions [20].

– Exploration of the cooperative nature of the proposed
approach UPHED with the well-established rule-based
system MedISys. Through a comparative analysis, the
suggested strategy not only detects similar anomalies,
but can also deliver more information about the specific
outbreak of reported diseases.

The remainder of this journal is organized as follows: we
discuss related work in Sect. 2. In Sect. 3, we present details
of our approach. Then, in Sect. 4 we present the experimental
results. Finally, we provide our conclusions in Sect. 5.

2 Related work

2.1 Event detection in public health

Three main approaches exist for the detection in public
health. They are rule-based, supervised, and hybrid.

2.1.1 Rule-based systems

A common approach to detect public health events in e-EI, is
using rule-based approaches [31,39] where regular expres-
sions are used to detect events from unstructured text. One of
the drawbacks of rule-based approaches is in building (and
maintaining) the pattern base. As reported in the survey [48],
the early method of event extraction was mainly based on
rule-based methods, and later developed into a method based
on patternmatching. Thesemethods are essentially the same,
that is, they need to build rules or templates. The event extrac-
tion method based on pattern matching refers to a method of
matching the event sentence to be extracted with the corre-
sponding template. The method based on pattern matching
is better applied in a specific field, but this method has poor
portability and flexibility. As an example of such system,
the French Animal Health Epidemic Intelligence System has
been monitoring signals of the emergence of new and exotic
animal infectious diseasesworldwide. The core component is
a combined information extraction method founded on rule-
based systems and data mining techniques. The information
extraction approach allows extraction of key information on
diseases, locations, dates, hosts and the number of casesmen-
tioned in the news [2].

We seek to go beyond these limitations by considering an
unsupervised approach to public health event detection and
compare our work to the well-established rule-based system
of MediSys.

2.1.2 Supervised detection

Recently, thework done in [11] proposesGRITS that uses the
binary relevancemethod1 to predict the disease referred to by
a body of text. This uses an ensemble of logistic regression
classifiers, one for each disease label (approximately 120).
Each classifier estimates the probability that a text passage is
associated with a single disease, given the vector of features
extracted by GRITS’ NLP algorithms. The HealthMap data

1 sklearn.multiclass.OneVsRestClassifier.
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used to train the GRITS classifiers is sufficiently large, but
each article is only labeled with one disease, even when a
text may mention multiple diseases. This means that disease
traits extracted from an article may not map specifically to
the disease that article is labeled with, negatively impacting
classifier training.

Many machine learning methods are based on trigger
words for event recognition. Current event detection research
lacks comprehensive consideration of the context of the
trigger words. In [45], the contextual information of word
is divided into sentence-level and document-level in the
method. The contextual information is captured based on
BiLSTM model. At the same time, a word representation
method suitable for trigger word classification tasks is pro-
posed in this paper. The word representation incorporates
semantic information, grammar information, and document-
level context information of word. The word vectors in the
sentence are sequentially input into BiLSTMmodel to obtain
output vectors containing sentence-level contextual informa-
tion. However, the method based on trigger words introduces
a large number of counterexamples in training, resulting in
imbalances between positive and negative examples.

Numerous supervised classifiers exist for detecting pub-
lic health events within unstructured text. In all cases, the
authors incorporate the use of some type of semantics, such
as: roles [15], hedges [12], or ngrams [26,50] in order to
capture relevant entity co-occurrences within a document. A
limitation however is that they all also use manually labeled
data to build their models. Although automatic labeling is
exploited in the work of Stewart et al. [41], this approach has
some limitations since the full sentence parsing techniques is
not only expensive, but results in semantic ambiguity, given
the parse tree representations used.

In conclusion, the current dominant role in event extrac-
tion research is method based on machine learning [48], but
this method requires large-scale labeled training corpus. If
the training corpus is not enough or the category is single,
it will seriously affect the extraction effect of the event, and
the corpus construction becomes an important task.However,
the construction of the corpus takes a lot of manpower and
time. In order to alleviate this problem, the scholars further
explored themethod of deep learning. In ourwork,we seek to
go beyond the human effort associated with building a super-
vised classifier by taking an unsupervised approach to event
detection. We compare our approach to a well-established
system: MediSys.

In the rest of the article, we rely on the event formulation
depicted in Fig. 1. It presents a graphical representation of
this model, where F is the term space size of all kinds of
entities (e.g., in figure the count of all kinds of entities is
f ). Furthermore, within the figure the concept/node Event E
is on top of the other nodes, since in the unsupervised event
detection an Event is a latent variable, whose value is defined

Fig. 1 Graphical model representation

with respect to the observed content of articles, i.e., Entities
and Time, by a generative process. A indicates the article set.

2.1.3 Hybrid models

Researches which bridge the gap between a fully super-
vised and unsupervised approach are the works done by
Paul et al. [36] and more recently by Burchard et al. in [5].
Using labeledmessages for relevance to health, they grouped
together symptoms and treatments into health-related top-
ics in an unsupervised manner. They apply the Ailment
Topic Aspect Model (ATAM) to over one and a half mil-
lion health-related tweets and discover mentions of over
a dozen ailments, including allergies, obesity and insom-
nia. Like probabilistic topic models, such as latent Dirichlet
allocation (LDA), associate word tokens with latent topics.
Documents are distributions over topics, and topics are dis-
tributions over words, often forming a semantically coherent
word set. ATAM, which models how users express their ill-
nesses and ailments in tweets, builds on the notion of topics.
It assumes that for each health-related tweet reflects a latent
ailment such as flu, allergies, or cancer. Similar to a topic,
an ailment indexes a distribution over words. Furthermore,
a recent work conducted a data-driven exploratory study of
COVID-19 information using machine learning and repre-
sentation learning methods on Twitter users’ data [10].

With these works, authors showed how Twitter has broad
applicability for public health research. The disadvantage of
these methods is that they require large-scale labeled train-
ing corpus. Furthermore, much debate and polarization exist
about the impact of social media on the health of patients
that might be considered as a non-ideal source of data [38].
The limitation of social media also from a demographic point
of view are also described by [37,43], in which Twitter users
tend to be younger and healthier than the average of the entire
population, biasing all systems and models built on top.
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2.1.4 Multilingual event extraction models

Building effective epidemiological surveillance systems is
of high importance these days. Detection of news reports on
disease outbreaks is a crucial requirement of such systems.
In the paper [33], authors study in detail the performance
of different methods on the task of epidemiological news
report detection. The evidence presented in their work sug-
gests that the models based on fine-tuned language models
and/or graph convolutional networks (training data are really
relevant here) achieve very good performance (>90%) on
the classification of multilingual epidemiological texts, not
only for high-resource languages but also for low-resource
languages.

Authors in [29] present Daniel as a text genre-based
information extraction (IE) system devoted to news. It is
efficient at distinguishing irrelevant documents in epidemic
surveillance and at filtering streams of documents with
low-resourced languages. When no classical IE system is
available or training data is scarce, Daniel can fill the gap
efficiently. Themethod described increases coverage in num-
ber of languages at low cost, rather than optimizing results
with a particular language. Wikipedia is used to screen some
common disease names to be matched with repeated charac-
ter strings. The language variations, such as declensions, are
handled by processing text at the character level, rather than
at the word level. This additionally allows Daniel to handle
various writing systems in a similar fashion. With an average
F1-measure of 0.85, Daniel scores are below state-of-the-
art systems (Puls used by MediSys or Biocaster), as authors
confirmed with their comparative evaluation [28].

Finally, we describe MediSys, the system with which
we compare our approach, that allows the selection of arti-
cles about any subject via Boolean combinations of search
words or lists of search words, organized into classes such as
Countries,CommunicableDiseases,AnimalDiseases,Orga-
nizations, etc. All the search words are multilingual. Each
subject definition is called alert, which, according to the
nature of the search words, is multilingual [31]. Section 4.5.1
will provide more details. MediSys has proven to be useful
and effective for finding documents from a large number of
Web sources [39].

In contrast to MediSys, UPHED identifies events as clus-
ters of documents associatedwith labels, i.e., a set of diseases
and locations describing clusters. In an operational setting,
we propose that after MediSys identifies documents for
which alerts are generated, UPHED can deliver more infor-
mation about the specific outbreak of the diseases reported
in those documents, by aggregating documents into larger
units than alerts, namely events. This can advantage UPHED
to use the multilingualism extraction of MediSys. With the
help of domain experts, we experiment with such a setting
and present the results in the discussion that follows.

2.2 Unsupervised detection

Twomain approaches exist for the unsupervised detection of
events from raw text. They are document-centric and token-
centric.

2.2.1 Document-centric unsupervised detection

Retrospective event detection In document centric
approaches, a document is assumed to contain the textual
mention of one or more real-world events. An event is
inferred by first modeling a document as a weighted set
of tokens and then grouping-related documents into clus-
ters based on the similarity between vectors. When no
new events are assumed to evolve over time, the prob-
lem is one of classical document cluster and referred to
as Retrospective Event Detection (RED). State-of-the-art
document-centric approaches use generative or probabilis-
tic models. So, instead of directly associating documents to
words (as in thenon-probabilistic detection), generativemod-
els associate each document with some event and each event
with some significant words, and is the approach we take in
UPHED.

Unlike previous works done in this area [6,17], we also
explore how our system can be used in a complementary
manner with an existing e-EI system.
Online event detection Conversely from RED, Online (or
New) Event Detection [4,46], the total number of events is
unknown, and increases over time. The latest document of an
incoming text stream is assigned to either an existing cluster
based on the similarity of its vector to the existing cluster
prototypes. When no existing cluster assignment is possible,
a new event is assumed to be detected.

In the study [8,9], authors presented a system to autom-
atize the event validation process by predicting whether a
given event has evidence within a set of non-annotated doc-
uments, thus simplifying the task of manually searching for
event-related information to confirm or deny its verity. The
developed system allows to specify an event, retrieves can-
didate web documents, and assesses what are the documents
(if any) where it occurs. The validation method relies on
a state of the art model for event validation. The user can
review the documents and revise the validation judgments
given by the system. Given the possibility for users to pro-
vide their own validation judgments, the application can also
be used to acquire ground truth data for a given set of input
events. Authors chose the Web as a source for documents,
due to its easy accessibility and wide event coverage. With
our approach we tailor the problem to medical news articles
available by the Joint Research Centre, later introduced, and
we focus more on event extraction rather than event valida-
tion.
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Other works focus on collecting and structuring large sets
of events, like YAGO2 [7,24], DBpedia,2 and Wikipedia
Current Events portal3 [16]. Despite the well-structured
event-related information, these works do not particularly
focus on relations between events and supporting documents.
The work in [27] presents methods for populating knowl-
edge bases by automatically extracting and organizing named
events from news corpora. The generated corpus is made
of 25,000 events and 300,000 news articles, but the ground
truth used to evaluate the grouping of documents into events
is much smaller: in total, it consists of around 100 named
events and 1600 articles in Wikinews and news sources ref-
erenced inWikipedia articles.Moreover, such ground truth is
built based on event names and the document categorization
of Wikinews and Wikipedia Current Events, without report-
ing mutual conformation of event participants with temporal
constraints. These approaches are more generic and do not
focus on health event.

InUPHED,we use a generativemodel for detecting events
and seek to explicitly model the temporal behavior of tokens
in a manner similar to online detection, but instead, we
address the problem of selecting the salient and significant
features to include in the generative model—more similar to
token-centric approaches discussed below.

2.2.2 Token-centric unsupervised detection

In contrast to the document-centric approaches of retrospec-
tive and online event detection, token-centric approaches
infer an event by modeling the temporal behavior of tokens
(features) within a collection.
Burst detection In burst detection, bursty tokens exhibits
high document frequency over a finite time window. The
underlying assumption is that if two tokens co-occur fre-
quently in the same temporal window, then they are assumed
to be semantically associated and infer an event [18].
Extensive work has also been remarkably done in on-line
detection by He et al. [21,23]. Notably in [22], the authors
propose a theoretically elegant, effective, and simple prob-
abilistic model for both offline and online topic detection
tasks, leveraging feature selection and temporally discrim-
inative weights. They show how temporal information can
be incorporated into more sophisticated generative models
like von-Mises Fisher (vMF) [3], but, as stated in their work,
no significant improvements in topic detection performance
were obtained. Furthermore, they demonstrated that for a
generative model, like vMF, due to its generative smoothing
process, the utility of discriminative features is attenuated.

In our work, we focus on unsupervised offline topic detec-
tion. We succeeded in incorporating temporal information

2 http://wiki.dbpedia.org.
3 https://en.wikipedia.org/wiki/Portal:Current_events.

into a sophisticated generative model, and in doing so, we
demonstrate the utility of discriminative features.
Feature trajectory The work in [20,44] considers the prob-
lem of analyzing features trajectories in both time and
frequency domains, with the specific goal of identifying
important and less-reported, periodic and aperiodic features.
The problem of analyzing feature trajectories for event detec-
tion uses a well-known technique in signal processing to
identify distribution of all features by spectral analysis. A
set of features with identical trends can be grouped together
to reconstruct an event in a completely unsupervised manner.
In Sect. 3.2, we present the details of such analysis, form-
ing the building blocks for our approach. Finally, spectral
analysis techniques have previously been used in [1] to iden-
tify periodicities and bursts from query logs. The authors’
focus was on detecting multiple periodicities from the power
spectrum graph, which were then used to index words for
“query-by-burst” search.

In our study, we use spectral analysis to classify word
features along twodimensions, namely periodicity andpower
spectrum.These featureswith their dimensions are later input
to the generative model for detecting events (for details see
Sect. 3.2).

3 UPHED: unified approach to public health
event detection

An event is defined as a specific episode happening at a
specific time and place [14], which may be consecutively
reported by many articles in a period. The goal of this work
is to introduce an approach to detect events in an unsuper-
vised manner. The model can also be used as a baseline for
detecting any anomalies and for building a predictive model
for the near future.

3.1 Entity-centric feature representation

As first step, we process raw text to build an entity-centric
feature representation of each document. Given a collec-
tion of text documents, we define a finite set of articles,
ai ∈ A, as well as an Event Template denoted as: T :=
(victims, diseases, locations, time).

The template T represents a set of feature types, which are
important for describing events. For a public health event, the
template provides information on who was involved; what
is the affecting disease,where, andwhen. The template was
motivated by the work presented in [40].

Figure 2 is a graphical representation of this model for the
medical case,where F is the term space size of the three kinds
of entities (i.e., Victim, Disease, and Location). A indicates
the article set.
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Fig. 2 Graphical model representation for the medical case

Content: The content of each article is represented by a
bag-of-entities, whose types are given by T . For each arti-
cle, ai , a vector is created for each of the feature types; each
entry in the vector corresponds to the frequency with which
an entity of a given type, appears in the bag-of-words rep-
resentation. For sake of clarity, the vector victims (diseases
and locations are defined similarly) is considered to be a list

< victimi1, . . . , victimi N >

and each element is the occurrence count of corresponding
entity in ai .

Time: Each event e j corresponds to a peak on an article
count versus time distribution. In other words, the model is a
mixture of many distributions of events. A peak is modeled
by a Gaussian function, where the mean is the position of
the peak and the variance is the event’s duration; i.e., the
period between the earliest and latest timestamp (or discrete
time value) for the articles of an event. A Gaussian Mixture
Model is chosen to model time.

In order to simplify our model, we assume that all feature
types of an article, given an event e j , are conditional indepen-
dent. The probability of an article ai to be associated with an
event e j is given by the product of the following individual
probabilities:

p(ai |e j ) =p(victimsi |e j ) ∗ p(diseasesi |e j )
∗ p(locationsi |e j ) ∗ p(timei |e j ) (1)

where the probabilities p(victimsi |e j ), p(diseasesi |e j ), and
p(locationsi |e j ) are computed by the Multinomial distribu-
tions imposedbyour generativemodel, as presentedhereafter
in Algorithm 2. Finally, the probability p(timei |e j ) follows
the Gaussian distribution.

3.2 Feature analysis

In ourwork,we posit that event detection involves a dual task:
the detection of periodic as well as aperiodic events. With
respect to a window of 1year, for example, aperiodic events

are also important, since they can represent an event that is
annual, e.g., season flu, or quite severe and life threatening,
such as a sudden outbreak of EHEC.

Detection of periodic as well as aperiodic events is
based on identification of periodic and aperiodic features as
described in [20] using a common technique such as the spec-
tral analysis. In this approach, features are classified with
respect to their periodicity (Pf ) and their dominant power
spectrum (S f ).

The periodicity of a feature refers to its frequency of
appearances. If the feature is aperiodic, then it occurs once
within the period P , and its Pf has a value equal to the period
itself. If the feature is periodic, then it happens regularly
with a fixed periodicity, i.e., Pf ≤ �P/2�. The periodicity
is a function of the dominant power spectrum which is com-
puted via the discrete Fourier transform applied to the feature
distributions.

3.2.1 Representative features

Let P be the duration/period (in days) of a collection of
articles, and F represents the complete feature space. The
representation vector of a feature f ∈ F is defined as fol-
lows:

Definition 1 (Feature Trajectory) The trajectory of a feature
f can be written as the sequence

y f = [y f (1), y f (2), . . . , y f (P)]

where each element y f (t) is a measure of feature f at time t,
which could be defined using the normalized DF-IDF score

y f (t) = DF f (t)

N (t)
∗ log

(
N

DF f

)

where DF f (t) is the number of articles containing feature
f at day t ; DF f is the total number of articles containing
feature f over P; N (t) is the number of articles for day t ;
and N is the total number of articles over P .

3.2.2 Spectral analysis for dominant period

Given a feature f , we decompose its feature trajectory y f

into the sequence of P complex numbers [X1, . . . , XP ] via
the discrete Fourier transform DFT:

Xk =
P∑

t=1

y f (t) ∗ e− 2π i
P (k−1)t , k = 1, 2, . . . , P

DFT can represent the original time series as a linear com-
bination of complex sinusoids, which is illustrated by the
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inverse discrete Fourier transform IDFT:

y f (t) = 1

P

P∑
k=1

Xk ∗ e− 2π i
P (k−1)t , k = 1, 2, . . . , P

where the Fourier coefficient Xk denotes the amplitude of
the sinusoid with frequency k/P .

The original trajectory can be reconstructed with just the
dominant frequencies, which can be determined from the
power spectrum using the popular periodogram estimator.
The periodogram is a sequence of the squared magnitude of
the Fourier coefficients

||Xk ||2, k = 1, 2, . . . , P/2

which indicates the signal power at frequency k/P in the
spectrum.

From the power spectrum, the dominant period is chosen
as the inverse of the frequency with respect to the highest
power spectrum, as follows.

Definition 2 (Dominant Period) The dominant period of a
given feature f is

Pf = P

argmaxk ||Xk ||2

Accordingly, we have

Definition 3 (Dominant Power Spectrum) The dominant
power spectrum of a given feature f is

S f = ||Xk ||2, with ||Xk ||2 ≥ ||X j ||2, ∀ j 	= k

In conclusion, the dominant power spectrum, S f , of a fea-
ture f is a strong indicator of its activeness at the specified
frequency; the higher is the S f , the more likely the feature
is to be relevant within the dataset. Thus, S f can be con-
sidered to filter out irrelevant features, i.e., features with a
dominant power spectrum less than a pre-fixed threshold
chosen according to the domain. After filtering out irrelevant
features, the remaining features are meaningful and could
potentially be representative for some events [20].

3.2.3 Identifying burst for aperiodic features

Let y f be the trajectory of feature f over the period P under
observation. Then, for each aperiodic feature fap, we keep
only the bursty period which is modeled by a Gaussian dis-
tribution whose tails thin down quickly, preserving more the

importance for features close to the burst and reducing their
significance proportionally to their distance from the burst.

fap(y f ) = 1√
2πσ 2

f

∗ e
− 1

2σ2f
(y f (t)−μ f )

2

(2)

The well-known Expectation Maximization (EM) algorithm
is used to compute the Gaussian density parameters μ f and
σ f [13].

3.2.4 Identifying bursts for periodic features

For periodic features, it is important to preserve their sig-
nificance from one burst and the next one, specifically in
the point of the trough where the tails of their distributions
are. To model each periodic feature f p, we chose a mixture
of K Cauchy–Lorentz distributions, where K = 
P/Pf �.
The property from Cauchy–Lorentz distribution to maintain
its tails thicker, with respect to the Gaussian distribution,
reflects better the behavior of the feature far from the bursts.
This property, as observed from the computed yw, reflects
better the distribution of periodic features, since, even for t
far from the peak of the burst, generally the feature trajectory
y f reports values important to be considered. The mixture is
described as follows

f p(y f ) =
K∑

k=1

αk ∗ 1

π

[
γ

(y f (t) − μk) + γ 2
k

]
(3)

for the mixture proportions αk of assigning y f into the kth
Cauchy–Lorentz distribution

0 ≤ αk ≤ 1 where
K∑

k=1

αk = 1,∀k ∈ [1, K ] ⊂ N (4)

Furthermore, μk is the location parameter, specifying where
is the peak of the distribution, and γk is the scale parameter
which specifies the half-width at half-maximum. μk , γk and
αk are computed using the EM algorithm [13].

3.2.5 Feature burst distributions algorithm

In this section, we present the algorithm for computing the
feature burst distributions. Algorithm 1 wraps together the
concepts and the approaches explained so far. The output of
this algorithm is all the feature burst distributions which will
be used as input for Algorithm 2. We use the notation θtype
to identify the burst distributions for all features of a specific
type, i.e., θv for victim, θd for disease, and θl for location).

In detail, the algorithm works as follows. For each fea-
ture f , we compute the feature trajectory y f , as presented in
Definition 1 of Sect. 3.2.1. Then, we decompose y f into the
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sequence of complex number via the discrete Fourier trans-
formDFT, and we compute the Dominant Period Pf and the
Dominant Power Spectrum S f , according to Definitions 2
and 3 of Sect. 3.2.2. With respect to Pf and S f , we decide to
transform the vector y f in one of the two possible modeled
vectors: (i) vector fap(y f ), following Sect. 3.2.3, if the fea-
ture is aperiodic; (ii) vector f p(y f ), following Sect. 3.2.4, if
the feature is periodic. Finally, considering the type of the
feature, we store fap(y f ) or f p(y f ) vector in one of the cor-
respondingmatrix θtype (with respect to type)which stores all
the feature of one type over the dates t . Successfully using the
feature burst distributions for having a more representative
model will be shown in Sect. 4.

3.3 Detecting public health events

Acore step in the unsupervised detection of events is the clus-
tering of articles and generation of events. Formally, from
this stage we get sets of conditional probabilities, already
introduced in Sect. 3.1 with Equation 1, and in the following
better explained: (i) p(ai |e j ) is the set of conditional proba-
bilities for an article ai , given an event e j ; (ii) p(victimsi |e j )
(p(diseasesi |e j ) and p(locationsi |e j ) are defined similarly)
is the set of conditional probabilities for occurrences of fea-
ture type victims in ai , given an event e j ; and (iii) p(e j ) is the
set of probabilities for an event e j .We use these probabilities,
as a basis for determining that an event has occurred.

3.3.1 Generative model for public health events

Numerous techniques exist for detecting events in an unsu-
pervised way (see Sect. 2). Events in the unsupervised event
detection are latent variables, whose value is defined with
respect to the observed content of articles by a generative
model. In this work, we choose to apply a retrospective event
detection algorithm since it is important in e-EI to use data
historical collection, in order to build a predictive model
of public health events for the near future. The same idea
is used in statistical methods for public health to analyze
event data from indicator-based systems (e.g., the Farring-
ton Algorithm). Additionally, we have chosen a probabilistic
generative model for event detection, because it has been
proven to be a more unified framework for handling the mul-
tiple modalities (i.e., time and content) of an article [30].

For these reasons, we base our unsupervised event detec-
tion algorithm on the Retrospective Event Detection (RED)
algorithm presented by Li et al. [30]. It relies on a generative
model where the articles are produced using Multinomial
distributions over features of multiple types. These articles
are used later as starting points for a clustering relying on
the iterative EM algorithm. In addition, in their work, the
Multinomial distributions are initialized with random prob-
abilities. Thus, the generated articles are randomly picked.

Algorithm 1: Feature Analysis using feature burst dis-
tributions
Input: A set of extracted features F ; a set of articles A; a fixed

threshold τ

Output: all the feature burst distributions θt ype, i.e., θv , θd , and θl
begin

N := count the number of articles within A;
D := count the number of distinct date t , according to
articles’ timestamps, in A;
P[|F |] := array storing the dominant period Pf for each
feature f ∈ F ;
S[|F |] := array storing the dominant power spectrum S f for
each feature f ∈ F ;
FeatureDistributions[|F |][D] := matrix storing the
vectors of feature trajectories y f for each feature f over the
dates t ;
Fourier FeatureDistributions[|F |][D] := matrix storing
the decomposition of the vectors of feature trajectories y f
into the sequence of complex vectors via the discrete Fourier
transform DFT ;
θt ype := matrix storing the modeled vectors of aperiodic
feature fap(y f ) or periodic feature f p(y f ) of feature
trajectories y f for each feature f of a t ype over the dates t ;
for each distinct date t in A do

N (t) := count the number of articles at date t ;

for each feature f in F do
DFf := count the total number of articles containing
entity f ;
for each distinct date t in A do

DFf (t) := count the number of articles containing
feature f at date t ;

DF-IDF :=
DFf (t)
N (t) ∗ log

(
N

DFf

)
;

Store DF-IDF into FeatureDistributions[ f ][t];
Compute Fourier FeatureDistributions using DFT on
FeatureDistributions;
for each feature f in F do

t ype := type of feature f ;
P[ f ] := compute the dominant period Pf of the
corresponding feature;
S[ f ] := compute the dominant power spectrum S f of the
corresponding feature;
if S[ f ] ≥ τ then

if P[ f ] >
⌈ P
2

⌉
then

Model the feature by a Gaussian distribution
(aperiodic feature fap);
Insert fap(y f ) in θt ype;

else
Model the feature by a mixture of K = 
P/Pf �
Cauchy–Lorentz distributions (periodic feature
f p);
Insert f p(y f ) in θt ype;

As part of our approach, we refine the RED algorithm by
going beyond this random initialization of probabilities—
exploiting the feature distributions fromourFeature Analysis
stage (Sect. 3.2). The underlying intuition for our approach is
based on proven results [49], which show that an initial start-
ing point estimated in a better-than-random way can, in fact,
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be expected to speed up the iterative EM algorithm converg-
ing closer to the optimum of the computed log-likelihood of
a collection of articles, than an initial point that is picked at
random. In our approach, we aggregate the computed fea-
ture distributions over the articles, and use this information
into the Multinomial distributions of the generative model.
Thus, the generated articles, used as starting points by EM
algorithm, are not totally randomly picked.

Although it has been proven that retrieved events are not
influenced by the starting points [25,42], the EM algorithm
needs to be restarted several times with several different ran-
dom starting points in order to get a good approximation of
events. Supported by the analysis in [49], we do not need
multiple restarts of the EM algorithm, since an initial start-
ing point estimated in this way, can be expected to be closer
to the optimum than a randomly picked initial point.

Our generative model is described in Algorithm 2.

Algorithm 2: Detection of Public Health Events: the
generative model

begin
Choose an event e j ∼ Multinomial(θ j );
Generate a medical article ai ∼ p(ai |e j );
Draw a timestamp timei ∼ N (μ j , σ j );
for each feature of ai , according to the type of current feature
do

Set victimiv ∼ Multinomial(θv |timei );
Set diseaseid ∼ Multinomial(θd |timei );
Set locationil ∼ Multinomial(θl |timei );

In the algorithm, the vector θ j represents event probabil-
ities initially instantiated randomly (here the definition of
event is according to the formalization of the Multinomial
distribution); μ j and σ j are parameters of the conditional
Gaussian distribution given an event e j ; θv , θd , and θl are fea-
ture burst distributions output byAlgorithm1 aggregating the
burst distributions for all features of type victim, disease, and
location over the t imei of a given event e j . Finally, we asso-
ciate to each feature of type victim—same consideration for
features of type disease and location—the probability value
extracted by its previously computed burst distribution, over
the timei of a given event e j .

3.3.2 Learning generative model parameters

After the initialization part presented inAlgorithm2,we need
to refine all the model parameters. They can be estimated
by Maximum Likelihood method following the approach
described in [30]. By introducing latent variable, i.e., events,

we can write the log-likelihood of the joint distribution as:

l(X; θ) ∝=
A∑

i=1

log

⎛
⎝ K∑

j=1

p(e j )p(ai |e j )
⎞
⎠ (5)

where X is the corpus of articles; A and K are the number
of articles and the number of events, respectively; and θ rep-
resents all the model parameters introduced in Algorithm 2,
such as θ j , μ j , and σ j for each event e j . Furthermore, as
described in Sect. 3.1 (Eq. 1), given an event e j all kinds of
information of the i th article are conditional independent.

Expectation Maximization (EM) algorithm is applied to
maximize log-likelihood. The parameters are estimated by
running E-step and M-step alternatively.

In E-step, we compute the posteriors, p(e j |ai ), by:

p(e j |ai )(t+1) = p(e j )(t) p(ai |e j )(t)
p(ai )(t)

∝ p(e j )
(t) p(ai |e j )(t)

(6)

where the upper script (t) indicates the t th iteration.
InM-step, we update the parameters of our model. Since

victims, diseases, and locations are modeled similarly, i.e.,
with independent mixture of unigrammodels, so their update
equations are the same. Then, for sake of clarity we show the
update only for the nth feature of type victim. Parameters are
updated by:

p(victimn |e j )(t+1) =
1 + ∑A

i=1 p(e j |ai )(t+1) ∗ t f (i, n)

N + ∑A
i=1

(
p(e j |ai )(t+1) ∗ ∑N

s=1 t f (i, s)
) (7)

where tf(i, n) is the count of entity victimn in ai and N is
the vocabulary size. For each type of entities, N is the size
of corresponding term space. Since the co-occurrence matrix
is very sparse, we apply Laplace smoothing [34] to prevent
zero probabilities for infrequently occurring entities in Eq. 7.

The parameters of the Gaussian Mixture Model are
updated by:

μ
(t+1)
j =

∑A
i=1 p(e j |ai )(t+1) ∗ timei∑A

i=1 p(e j |ai )(t+1)
(8)

and

σ
(t+1)
j =

∑A
i=1 p(e j |ai )(t+1) ∗ (timei − μ

(t+1)
j )2∑A

i=1 p(e j |ai )(t+1)
(9)

It is important to note that because both the means and
variances of the Gaussian functions change consistently with
the whole model, the Gaussian functions work like sliding
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windows on a time line. In this way, we overcome the short-
comings caused by the fixed windows or the fixed decaying
function parameters used in traditional news event detection
algorithms [4]. At last, the mixture proportions are updated
by:

p(e j )
(t+1) =

∑A
i=1 p(e j |ai )(t+1)

A
(10)

The EM algorithm increases the log-likelihood consis-
tently, while it will stop at a local maximum.

4 Experiments and evaluation

In our experiments, we evaluate the efficiency of our
approach against two different event detection strategies:
Rdm [30] (baseline) and GaussApp [20] (an approximation
of our approach).

4.1 Experimental goals

We examine the effectiveness of our system in detecting
a major outbreak of enterohemorrhagic Escherichia coli
(EHEC), which occurred in Northern Germany. Finally,
going beyond the EHEC case study, we conduct an exten-
sive comparative analysis of our UPHED algorithm with the
well-established rule-based system ofMediSys by analyzing
the alerts generated by MediSys versus the events detected
by our UPHED method.

For sake of transparency, in our previous works [17], we
exposed different set of evaluations: experiments on tuning
our algorithm, on features pruning, and on the selection of
the number of events.

4.2 Feature set

Table 1 presents the main categories of features collected
and their counts. The entities have been extracted using two
different named entity recognition tools: UMLS MetaMap4

and OpenCalais.5

OpenCalaiswas used to recognizediseases and all variants
of locations. MetaMap was used to identify the victim fea-
tures. MetaMap has originally been developed for indexing
biomedical literature and relies upon the Unified Medi-
cal Language System (UMLS) Metathesaurus, a very rich
biomedical vocabulary designed and maintained by the US
National Library of Medicine. Thus, it allows extracting
highly domain-specific concepts, but leads when applied to
socialmedia or news articles to false positives. For our feature

4 http://mmtx.nlm.nih.gov.
5 http://www.opencalais.com.

Table 1 Overview on the collected features

Feature types Feature categories Norm Unnorm

Victims Population group 28 4100

Age group

Family group

Animal

Diseases Diseases 917 2754

Symptoms

Locations City 955 982

Province or state

Country

Continent

Norm is the number of normalized features; Unnorm is the total number
of features before the normalization process

set we are only interested in disease names and symptoms
which are more unambiguously detected by OpenCalais. In
contrast, the more detailed information on victims provided
by MetaMap is very useful for our algorithm. For these rea-
sons, we decided to exploit these two different named entity
recognition tools.

Through manual inspection, we further found that noise
introduced into the algorithm due to multi-word expressions
caused an explosion of the number of features. This is partic-
ularly acute for a feature-centric approach such as ours in the
medical domain, inwhich features, consisting ofmanymulti-
word expressions, quite commonly exacerbate the problem
of producing irrelevant events. We normalized the features
using the UMLS MetaMap semantic network. As an exam-
ple, terms such as boy, girl, baby, child, kid were normalized
to the single feature, child.

4.3 Experiment I: efficiency comparison

The intention of this analysis is to show that the selection of
a good starting point can boost the EM algorithm to converge
quickly to the optimumand that it is unnecessary to restart the
EM algorithm multiple times with different random starting
points, as done previously—thereby improving its run time
performance.

In this section, we compare three strategies for detecting
events:

1. Rdm: The baseline of our method, which initializes the
EM algorithm with random points, as done in [30], and
adapted to the medical domain.

2. GaussApp: An approximation of our method identify-
ing bursts for periodic features using a mixture of K =

P/Pw� Gaussians, as in [20].

3. UPHED: Our revised and proposed method.
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Table 2 Efficiency comparison
of three different strategies

Rdm GaussApp UPHED

Optimum (log-likelihood) 5807 6140 6624

Best starting point (log-likelihood) 4105 4997 5981

Average running time (s) 401 287 263

Average number of iterations for EM 91 45 38

Best trial: number of iterations for EM 63 31 30

Worst trial: number of iterations for EM 121 58 50

Average number of restart of EM to get the optimum 9–10 1–2 1–2

Bold values indicate best results

DatasetTo build our data set, we collected source documents
(articles) from MediSys feed. The data were gathered for a
2months period, fromMay 1 to June 30, 2011. In total 13,076
documents were collected.
Convergence time The experimental results are shown in
Table 2. Here, we report the log-likelihood both for the best
ending points—each one named optimum—and for the best
starting points of the three strategies. The log-likelihood indi-
cates how likely the documents are generated by models
(where larger log-likelihood values are better). Averaging
over several iterations, we show the time taken for the EM
algorithm to converge as well as the number of iterations
under the best, average and worst case scenarios.
Number of restarts A consideration when using an EM
algorithm is that the convergence to a local maximum can
prematurely mislead one to use results that are sub-optimal
(i.e., the algorithm has not reached the global maximum).
Also shown in Table 2 is the number of restarts needed for
the EM algorithm to converge to its optimum.

From these results, we can conclude that in all the reported
measures, our proposedmethod UPHED performsmore effi-
ciently than Rdm and GaussApp. We can see that UPHED
reaches a better optimum compared to Rdm, which starts
from a random point. Also we notice that UPHED needs less
time and fewer iterations to reach this optimal convergence.

4.4 Experiment II: effectiveness

In this experiment, we study the large outbreak of entero-
hemorrhagic Escherichia coli (EHEC) which occurred in
Northern Germany during May and June 2011. In this sec-
tion, we illustrate how our approach effectively detected
this medical event. Also, our clustering method allowed
us to identify other non-EHEC-related medical events that
occurred during the same period.

We run our method on 13,076 documents of which 4757
were categorized in six medical events related to the EHEC
outbreak, as shown in Table 4. In addition, 4639 were clus-
tered into six additional non-EHEC-related medical events,
as reported in Table 5. Both tables show the characterizing
cluster terms resulting from our clustering. For each article

ai we evaluated its conditional probability given an event
e j , i.e., p(ai |e j ), setting a threshold of τp = 5% for each
p(ai |e j ); for p(ai |e j ) below this threshold, the article ai was
not associatedwith the event e j . Given these settings, the total
number of articles associated with the set of events is 9396.
In addition, the number of documents assigned to a cluster is
shown, as well as amanually created description of the event.
The event terms were collected by automatically selecting
for each feature type, i.e., diseases and locations, the most
probable features having their conditional probability given
an event, i.e., p(diseasesi |e j ) or p(locationsi |e j ), exceed-
ing the probability threshold τ f of 40%; for p(diseasesi |e j )
or p(locationsi |e j ) below τ f , the feature was not associated
with the event e j . Figure 3 shows an example of the condi-
tional probability of the top ten terms and entity types being
associated event E1.
Cluster quality As mentioned in [48], a ground truth data
set for public health event detection is unavailable. To eval-
uate the correctness of cluster-document assignment, we
performed amanual evaluation. The algorithmwas applied to
our data set and twelve clusters were created. These clusters
were manually assessed by three subjects who had to decide,
for each document, whether it was assigned to the correct
cluster. In more detail, for each created cluster, the testers
were confronted with the two most probable entities for dis-
ease, location and victim. These six terms were considered to
be descriptive for the cluster, or the documents belonging to
this cluster, respectively. The testers had to decide whether
the document under consideration described an event tak-
ing place in the location specified by the cluster term labels.
They had to decide whether it dealt with the disease and the
victims mentioned in the cluster description. When all three
criteria were fulfilled, the tester was asked to label this docu-
ment as correctly assigned. The quality of cluster assignment
was measured in terms of precision and recall. We are able to
achieve a precision of 60%and a recall of 71%with τp = 5%.

For clarity, we reproduce in Fig. 3 the rest of the exper-
iments with different values of τp. As expected, decreasing
τp to three resulted in an increase in recall but a decrease
in precision. It is less intuitive when the values of precision
and recall for τp are equal to two. In this case, precision con-
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Table 3 Precision and recall for different values of τp

τp (%) Precision (%) Recall (%)

5 60 71

3 41 86

2 25 18

tinues to decrease, but unexpectedly, recall also decreases.
After investigation, we found that this is due to the fact that
articles are increasingly associated with multiple clusters at
the same time and it is difficult to select the correct one.

4.4.1 Detection of EHEC-related events

All medical events reported in Table 4 are relevant to the
EHEC outbreak during May and June 2011 and show how
the situation and geographic focus changed over time. In
Fig. 4, we can see the temporal distribution of articles for all
six EHEC-related medical events.

Similar results for the medical events related to the EHEC
outbreak in Europe were also detected and documented in
the MediSys Report [32]. Our method complements these
results. In contrast, we note that we were able to arrive at
a similar outcome as MediSys, without having to perform a
manual analysis document by document, as was done in [32].
The advantage of using our unsupervised approach, is that we
were able to: 1) achieve a speed up in the process of detecting
outbreaks; and 2) better direct the investigators attention to
documents containing important information about potential
medical outbreak.

Surely, human inspection is always needed in this sce-
nario and cannot be left out, but we can do provide a faster
complementary inspection tool.

To better understand the EHEC events in Table 4 and in
Fig. 4, we summarize the key temporal developments:

– E1 presents an outbreak of enterohemorrhagic
Escherichia coli (EHEC) occurred in Northern Germany,
with a sudden rise on articles first detected at the end of
May; later, another rise was observed between June 5 and
June 11 according to German authorities announcing that
bean sprouts were the source of infection.

– E2 reports that the contagionwas causedby contaminated
Spanish vegetables. This statement was alleged at the end
of May, as can be seen in the graph with an increasing
trend of the curve, while there was another rise on June
1 when Spanish farmers announced that Spanish cucum-
bers had been tested negative for EHEC.

– E3 cites when Russia applied trade restriction for Euro-
pean vegetable products with a peak of documents on
June 3.

– E4 refers to many cases of EHEC contagion in Southern
France observed between June 3 and June 7.

– E5 reports an increasing trendwith articles onMay 27, on
thefirst Swedish tourist groupvisitingNorthernGermany
who denounced EHEC infection.

– E6 clusters together all articles mentioning the European
Commission during the discussion on the alleged con-
taminations of Spanish cucumbers and vegetables, with
a peak on sources during June 1 and June 3; furthermore,
the European Commission and Parliament were involved
on themes about the risk assessment in terms of public
health at EU level, with a rise between June 6 and June
9.

4.4.2 Detection of non-EHEC-related events

In Table 5, we see that the medical events presented are
related to other public health events that were detected also
during theEHECoutbreak. Figure 5 also depicts the temporal
development of events.

With the help of domain experts, we summarize the key
temporal developments of the non-EHEC events as follows:

– E7, E8, and E9 refer to a big occurrence ofmeasles cases,
around ten thousand reported cases in Europe. Of the
total, 72% were detected in France, almost with an inci-
dence of ten times more than measles cases occurred in
the same period 1year before (2010). Regarding E9, sev-
eral countries were selected as event terms for the feature
type locations, which we manually summarized with the
location term Europe.

– E10 reports that India’s scientific community is ready to
launch a research programme which will bring to vacci-
nate millions of people and save another 6.4 million lives
over the current decade.

– E11 clusters together articlesmentioningmedical improve-
ments in China during the past 20 years through better
infectious disease surveillance systems which have led
to decrease the mortality for tuberculosis of 8–6% per
year. The success in China has been based on sustained
efforts that have progressively achieved coverage of the
country’s vast population by tuberculosis treatment and
surveillance.

– E12 cites when the Australian research team anti-
malarial, which began in 2002 under the direction of Dr.
Margaret Phillips, identified a promising inhibitor of a
specific enzyme that the malaria parasite requires for sur-
vival. For that, her research team won the International
Project Of The Year Award.
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Fig. 3 Conditional probability
of the top ten medical condition
(med) and location (loc) terms
corresponding to EHEC event,
E1, using threshold probability
for terms greater than 40%

Table 4 Detected EHEC
outbreaks during May and June
2011

Event id Event terms fNo. docs Event description

E1 Germany, LowerSaxony,
EHEC, HUS,
gastroenteritis

1,723 Outbreak of enterohemorrhagic Escherichia
coli (EHEC) occurred in Northern Germany

E2 Spain, EHEC, hemolytic 957 The contagion was caused by contaminated
Spanish vegetables

E3 Russia, EHEC 450 Russia applied trade restrictions for European
vegetable products

E4 France, EHEC,
gastroenteritis,
vomiting

387 Many cases of EHEC contagion in France

E5 Sweden, Germany,
EHEC, diarrhea, HUS

801 First Swedish tourist group visiting Northern
Germany denounced EHEC infection

E6 Brussels, Luxembourg,
EHEC, HUS

439 Documents treating the economical
repercussion on the European market of the
entire EHEC outbreak

The columns, respectively, show: the extracted terms, number of documents, and brief description of the real
events

4.5 Experiment III: UPHED in comparison with
MediSys

In this section, we go beyond the EHEC case study and con-
duct a more extensive comparison of our UPHED algorithm
with MediSys. The comparison was carried out by analyzing
the alerts generated byMediSys versus the events detected by
our UPHED method. In Sect. 4.5.1, we first provide a back-
ground onMediSys. In Sect. 4.5.2, we describe howMediSys
alerts are generated. Then, in Sect. 4.5.3, we present a com-
parative analysis of UPHED and MediSys.

4.5.1 Overview of MediSys

MediSys is a fully automatic public health surveillance and
alerting system run by the Health Threats Unit at Direc-
torate General Health and Consumer Affairs of the European
Commission, in collaboration with the Joint Research Centre
(JRC) in Ispra, Italy.6

MediSys allows one to perform multilingual search over
its collection of health-related news articles via Boolean
combinations of search terms categorized into Countries,
Communicable Diseases, Animal Diseases, Organizations,
etc. Each subject definition is called alert.

6 https://ec.europa.eu/jrc/en/about/jrc-site/ispra.
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Fig. 4 Documents distributions
for each extracted medical event
relevant to EHEC outbreak
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Table 5 Further detected
medical events during May and
June 2011

Event id Event terms fNo. docs Event description

E7 Italy, measles, epidemic 322 Outbreak of measles occurred in Northern
Italy

E8 France, measles, rubella,
fever

448 The majority of measles cases in Europe
arose in France, around 72% of all measles
occurrences

E9 Europe, measles 2574 The second quarter 2011 registered a peak of
measles cases in all Europe

E10 India, New Delhi, malaria 571 India’s scientific community is all set to
launch a research programme on how to
better combat vector-borne diseases, after
many cases of malaria in the country

E11 China, Beijing,
tuberculosis, malaria

407 China has been sustaining efforts that have
progressively achieved coverage of the
country’s vast population by tuberculosis
treatment and surveillance

E12 Australia, Melbourne,
malaria

317 “UT Southwestern Research Team’s
Anti-Malarial Work” wins the
“International Project Of The Year Award”

One of the advantages of MediSys is that it has a large
news coverage; so, it captures many reports that would go
unnoticed by those who only read a few news sources. On the
other hand, one of the drawback of having multiple sources
is in reporting the same or near duplicate documents to users
and subsequently triggering many more alerts than actuality.

To cope with duplicates, MediSys adopts a similarity
measure to prune near-duplicate documents. The similarity
measure for the news articles is based on cosine similarity
of a simple vector-space representation of the first 200 word
tokens of each article. This means that not only multiple
reports of the same story, but also similar reports about dif-
ferent cases for the same disease may be grouped together
and filtered out. This method allows to discard entire groups
of non-influent articles at once.

4.5.2 Generating alerts in MediSys

Similar to our notion of an event, a MediSys alert is an indi-
cation, that some real-world health-related activity is taking
place. An event in MediSys is inferred by using a rule-
based approach to extract pattern from unstructured text of
news articles. Event Template in MediSys consists of the
pair: T =< Category∗,Country >; where Category∗ =<

Disease,AnimalDisease,Organizations >. Each instance of
the template (textual extraction) is referred to as an alert.

To quantify an alert, MediSys keeps a running count of all
alerts for each country. It maintains the average of all docu-
ments mentioning a specific category instance and country,
over a time window of 2weeks. An alerting function detects
a sudden increase in the number of articles for a given cate-
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Fig. 5 Documents distributions
for each extracted medical event
NOT relevant to EHEC
outbreak; from E7 to E12
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gory and country, by comparing the statistics for the last day
with the 2-week rolling average. The more articles there are
for a given category-country combination compared to the
expected number of articles (i.e., the 2-week average), the
higher is the alert level.

The histogram in logarithmic scale in Fig. 6 illustrates
seemingly how MediSys presents statistics on the alerts on
its web site. On the left side of the figure, alerts with a high
level are shown. In particular, red bars identify peaks of doc-
uments which triggered high level alerts. On the right side of
the figure, alerts with a medium level are reported and rep-
resented by yellow bars. Finally, blue bars show the average
number of documents of the last 2weeks for the combina-
tion under inspection. As can be noticed, the importance of
an alert higher is directly proportional to the deviation of the
peak from the 14-day average value.

Alert levels in MediSys are calculated by assuming a nor-
mal distribution of articles per category over time. Alert
levels are high, if the number of articles found is at least three
times the standard deviation over the last 14days, while alert
levels are medium, if the number of articles found is between
twice and three times the considered standard deviation. As
the total number of articles varies during the week (fewer
articles on Sunday and Monday), a correction is applied to
the documents’ frequencies according to the day of the week
[39].

To accomplishour comparison, aRSS tunnel feedhas been
set up between MediSys and UPHED. At present, UPHED
processes only English-language documents. Our method
triggersMediSys feeds everyminute.MediSys sends through
the tunnel documents which it categorizes as relevant to the
medical domain. Currently, the documents arrive as plain
text and UPHED applies entity extraction (Sect. 4.2). This

is done in addition to the normal processing on the MediSys
side, where running averages are monitored for all alerts, etc.

4.5.3 Comparative analysis of UPHED andMediSys

MediSys has proven to be useful and effective for finding
documents from a large number of Web sources [39]. In
contrast to MediSys, UPHED identifies events as clusters of
documents associated with labels, i.e., a set of diseases and
locations describing clusters. In an operational setting, we
propose that after MediSys identifies documents for which
alerts are generated, UPHED can deliver more information
about the specific outbreak of the diseases reported in those
documents, by aggregating documents into larger units than
alerts, namely events. With the help of domain experts, we
experiment with such a setting and present the results in the
discussion that follows.

Our experiment was based on a collection of 13,076 news
articles for a 2months period (May–June 2011). Each docu-
ment was selected if it contained specific keywords and their
synonyms, e.g.,EHEC,Malaria, Measles, Rubella, Tubercu-
losis,, etc. This collection was made available to us by JRC.

We computed MediSys alerts based on the procedure out-
lined in Sect. 4.5.2. In total 255 alerts were found. For each
alert, we considered the set of news articles associated and
computed the overlaps with each of the 12 events (i.e., clus-
ters) of articles extracted by UPHED and reported in Table 4
and Table 5. Also, a domain expert judged the accuracy of the
alert, by analyzing a sample of documents reported together
to each alert, assigning it to one of four coded categories. The
categories are outlined below. For more details, we report the
entire evaluation in “Appendix.” To summarize, each cate-
gory was identified by a color:
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Fig. 6 Selection of 20 alert statistics from MediSys from beginning of May till end of June 2011. Term EFSA identifies the European Food Safety
Authority

– Category Green: MediSys alert is related to one cluster
(event) detected by UPHED.

– Category Orange: MediSys alert is appropriated and
related to no cluster detected by UPHED.

– Category Yellow: MediSys alert reports disease out-
breaks happening in locations different from the one
shown in the alert or just inappropriate. This category
contains cases where the disease name was mentioned
but only to inform and to report an outbreak burst some-
where else in the world.

– Category Red: MediSys alert groups together articles not
categorized in UPHED events.

The categories are described in detail below and a sample
is shown in Table 6.
CategoryGreen: detected byUPHEDThe documents con-
tained in the specific alert are the same news articles related
to one particular event detected by UPHED.Within the alert,
articles mentioned one disease outbreak event. Important to
be noticed is that it is always the case where one alert, falling
in such category, contains only a small subset of articles asso-
ciated to one UPHED event. The reason is that MediSys
computes alerts based on documents which exactly match
the keywords pre-specified within the system, and it is not a

semantic approach. Furthermore, the alerts categorized here
contain documents simply treating just one or few diseases
mostly only in the location mentioned by the pre-defined
alert; thus, it is reasonable that these documents fall also in
the event relevant to that particular location and disease. On
the other hand, sinceUPHEDdetects events and, in a simplis-
tic way, co-occurrences of feature-instances (i.e., keywords
of several type), thus, each event can correspond to multiple
alerts. As an example, let the reader observe in Table 6 as
multiple alerts in the first category often are related to just
one event; this is the case of all alerts considering the country
Germany and several diseases related to event E1. In conclu-
sion, 20 alerts fell into this category and additional 11 alerts
showed a big subset of documents related to one cluster.
Category Orange: not detected by UPHED The MediSys
alert was appropriate and was related to no events detected
by UPHED. The reason why UPHED was not able to detect
these events has to be retrieved in the explanation that there
were few documents treating the particular outbreak. To let
the reader better understand, we can consider the events
reported in Tables 4 and 5. It is easy to identify that each
event contains hundreds of document associated with, out of
a total of less than 10,000 articles of the entire dataset. Thus,
it is difficult for the UPHED algorithm to detect events asso-
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Table 6 Sample of categorized alerts

Alerts Description

Category Green: Cluster detected by UPHED

Belgium:EscherichiacoliInfection Related to event E6, about documents treating the economical
repercussion of the entire outbreak on the European market

Belgium:CattleEFSA Related to event E9, about peak of measles cases in all Europe

France:EscherichiacoliInfection, France:Coma Related to E4, about many cases of EHEC contagion in France with
some case of coma

Germany:Epidemic, Germany:EscherichiacoliInfection,
Germany:Fever, Germany:Food-borne

Related to E1, about EHEC cases in Germany

India:Malaria, India:WHO Related to E10, about India’s scientific community is all set to launch a
research programme on how to combat vector-borne diseases, after
many cases of malaria

Spain:EscherichiacoliInfection Related to E2, about EHEC contagion which was caused by
contaminated Spanish vegetables. Since the entire Europe was
talking about Spain’s vegetable as the reason of EHEC outbreak, this
alert contains also many other documents reporting EHEC cases in
Europe, but the biggest overlap is with E2

Category Orange: Events not detected by UPHED

China:AIDS-HIV Cases of AIDS-HIV in China. Too few documents to be detected by
UPHED

Japan:CattleEFSA, Japan:Epidemic,
Japan:EscherichiacoliInfection

EHEC cases of different nature compared to those occurred in Europe.
The burst was caused by infected meat served in a restaurant chain.
Few documents to be detected by UPHED

UnitedKingdom:Enterohaemorrhagic,
UnitedKingdom:Haemorrhage, UnitedKingdom:Tuberculosis

Cases of tuberculosis in UK

Category Yellow: Alerts reporting disease outbreaks happening in different locations

Austria:EscherichiacoliInfection, Austria:Foodpoisoning,
Austria:WHO

Austria was always mentioned with other European countries for
statistics on EHEC infection. In some case were reported Austrians
visiting Germany and reporting EHEC

Bulgaria:EscherichiacoliInfection Bulgarian authorities specially worried about EHEC in Germany and
reporting cases in the continent

Canada:Epidemic, Canada:EscherichiacoliInfection,
Canada:Hospital

In Canada, many news reporting the European EHEC outbreak. Also,
Canada launched food inspection on food coming from EU

Germany:CattleEFSA, Germany:Coma, Germany:Diarrhoea,
Germany:Communicabledisease, Germany:Foodpoisoning

Report on EHEC cases all over Europe

For each group of alerts a description is provided with a reference to the UPHED clusters when available. Mentioned clusters are related to events
detected in Sect. 4.4. All alerts reported in Fig. 6 are presented

ciated with only tens of documents. Of course, it is always
important the proportion with respect to the entire set. On
the other hand, MediSys was capable to trigger an alert since
it detects a sudden increase in the number of articles for a
given category-country, by comparing the statistics for the
last day with the 2-weeks rolling average. Thus, for MediSys
it is sufficient a specific increasing of the standard deviation
of the particular combination category-country under obser-
vation to generate an alert. In conclusion, 11 alerts fell into
this category.
Category Yellow: alerts reporting disease outbreaks hap-
pening in different locations The third group consists of
MediSys alerts reporting disease outbreaks happening in
locations different from the one shown in the alert or just
inappropriate. Articles falling in this category truly contain

the disease name mentioned in the alert, but such disease is
not related to the country in the alert. Also, many of these
documents contain the country of the alert only to identify the
location where the article was published or where the jour-
nalist had her newspaper-headquarter. Most of these articles
described the situation in many other countries. As an exam-
ple, let us consider in Table 6 the alert mentioning Canada
and several diseases. In such a case, Canadian journalists
described the outbreak of EHEC happening in the Euro-
pean countries. Thus, it is often the case where resources
associated with alerts of this category are related to mul-
tiple UPHED events. Furthermore, since these documents
include many countries (locations), then they constitute ele-
ments of noise since one article can contribute in increasing
the counter of different alerts. This is because alerts will
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match all the countries and diseases reported in them. In sum-
mary, this category contains cases where the disease name
was mentioned but only to inform and report an outbreak
burst somewhere else in the globe. In conclusion, 116 alerts
fell into this category.
Category Red: MediSys alert with no UPHED overlap
The last group consists of alerts referring to articles not cate-
gorized in UPHED clusters. These articles did not exceed the
imposed threshold τp to be associated with an event (recall
Sect. 4.4). Often was the case that many documents cited dis-
eases in contexts unrelated to epidemics and outbreaks. The
remaining alerts fell into this category.

5 Conclusions

In this research, we observed and exploited two main char-
acteristics of text documents, i.e., their content and their
timestamps, to build an approach for clustering articles in
events with an unsupervised learner.

Both the contents and the time information of articles are
modeled explicitly and effectively. Particularly, the model of
timestamps works like auto-adaptive sliding windows on a
time line, which overcomes the inflexible usage of time win-
dows in traditional retrospective event detection algorithms.

Also, our method incorporates two main techniques: the
burst function analysis and the entity-centric feature rep-
resentation. The burst function analysis and entity-centric
feature representation were combined in a generative model
and forms the basis of our UPHED algorithm. The event
model was refined for representing periodic, non-burst fea-
tures with the Cauchy–Lorentz distribution. Our evaluations
showed that better sampling is reached by using such a distri-
bution, resulting in a more efficient algorithm, which is also
easy to implement, in practice.

Furthermore, we proved the goodness of our theoretical
study adapting our unsupervised learner to the public health
domain, extracting a particular instance of events within the
context ofEpidemic Intelligence.More specifically, the adap-
tations included the consideration of domain specific features
that allow detecting public health-related events.

For the specific domain we considered, no annotated data
set were available; thus, we performed our analysis on real-
world data sets. We demonstrated the effectiveness of our
approach in detecting a recent outbreak of enterohemorrhagic
Escherichia coli (EHEC), which occurred in Northern Ger-
many in May of 2011.

Finally, going beyond the EHEC case study, we conducted
an extensive comparative analysis of our UPHED algorithm
with the well established rule-based system of MediSys by
analyzing the alerts generated by MediSys versus the events
detected by our UPHED method. We conclude that the com-
bination of the two initially independent systems, MediSys

and UPHED, can lead to a stronger application offering users
complementary functionalities.

In conclusion,MediSys computes statistics based on exact
matching of keywords in different languages. MediSys is not
a semantic approach and is not able to detect alerts with sev-
eral locations or diseases representing the samemedical burst
or outbreak. Also, since MediSys does not explicitly select
for outbreaks, but for mentions of diseases in any context,
it is expectable that many documents might cite diseases in
contexts unrelated to epidemics and outbreaks.

On the contrary, UPHED semantically recognizes equal
public health events and it clusters together documents treat-
ing the same topic. Furthermore, our approach computes
medical events based on multiple diseases and locations at
the same time, as can be observed in Tables 4 and 5 by the
labels extracted to describe each event.

The combination of the two initially independent systems,
MediSys and UPHED, can lead to a stronger application
offering users complementary functionalities. For disease
outbreaks, which are covered by both systems, the com-
bination can lead to additional advantages overtaking the
drawbacks of both:

1. UPHED is computationally heavier and might be applied
to the document collection pre-filtered by MediSys.

2. The medical event extraction by UPHED might act as a
filter for users to identify only disease outbreak reports.

3. UPHED is not a pattern matching-based approach to
extract events; thus it is not language dependent. Thus,
UPHED might benefit from the wider categorization of
news items by MediSys as useful tool for the analysis
performed by our method.

These issues are to be tackled in future work. The entities
have been extracted using twodifferent named entity recogni-
tion tools: UMLSMetaMap and OpenCalais. In future work,
we could also explore different tools for entities extraction
in combination or in parallel to the two suggested ones: one
possibility can be using ScispaCy 7 for processing biomed-
ical, scientific, or clinical documents. Also, other sources
of data containing labels to validate clustering results will
be considered. Possibly, one source could be the WHO’s
update headings which are entries that group-related out-
break reports together. According to observations so far
illustrated, we think thatMediSys can be complementedwith
our UPHED to provide a better medical information system
able to rely on a semantic detection approach.

As a final remark, our approach has been designed to
address the limitations of existing public health event detec-
tion systems as pointed out by health officials. As a result,
our algorithm allows events that are both rare and reoccurring

7 https://allenai.github.io/scispacy/.
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to be detected. The implications for such work is that public
health officials can rely upon alternative sources of corrobo-
rating information about public health events—an important
aspect in event-based Epidemic Intelligence—since diverse
information sources can offer an additional means of miti-
gating the impact of potential health threats.
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2276680.

Appendix

In this section, we provide details about the evaluation on
Alerts extracted from Medisys. For each alert we consider
all the associated documents; then, for each Event detected
byUPHEDand reported in Tables 4 and 5,we consider all the
associated documents and we compute the overlap of docu-
ments between alert-document-set and event-document-set.
In the following table, on the first column we report alerts.
Each alert-row intersects the columns where events are pre-
sented. The intersection identifies the number of documents
in common (i.e., overlaps) between the corresponding alert
and the respective event. For each overlap, a human expert
analyzed a sample of articles and judged the accuracy of the
alert. Thus, each alert was assigned to one of the four cat-
egories presented in Sect. 4.5.3 and hereafter identified by
four different colors.

In the following Table are reported the Level of each
alert, i.e., High or Medium, the Date of the alert’s burst,
the Category it belongs to, and the overlaps between alert’s
documents with the documents associated with each event.
To summarize, each category was identified by a color:

1. Category is identified in green if the Medisys alert is
related to one cluster detected by UPHED.

2. Category is identified in orange if the Medisys alert is
appropriated and related to NO one cluster detected by
UPHED.

3. Category is identified in yellow if Medisys alert reports
disease outbreaks happening in locations different from
the one shown in the alert or just inappropriate. This
category contains caseswhere the disease namewasmen-
tioned but only to inform and to report an outbreak burst
somewhere else in the world.

4. Category is identified in light red if Medisys alert groups
together articles not written in English-language or with-
out overlap with UPHED events.
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Alerts E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 Date Level

Legenda
Related to one cluster detected by UPHED
Related to one cluster NOT detected by UPHED
Related to several outbreaks in several countries
No English documents or No overlaps with clusters by UPHED

Afghanistan:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 High
AmericanSamoa:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 07.06.2011 Medium
Australia:disease 0 0 0 0 0 0 0 0 2 0 1 8 03.06.2011 High
Austria:Diarrhoea 1 0 0 1 0 0 0 0 0 0 0 0 02.06.2011 High
Austria:ECDC 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 Medium
Austria:Enterohaemorrhagic 0 0 0 0 0 0 0 0 0 0 0 0 01.06.2011 Medium
Austria:Epidemic 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 High
Austria:EscherichiacoliInfec�on 20 16 1 10 17 3 0 0 6 0 0 0 31.05.2011 High
Austria:Fever 0 0 0 0 0 0 0 0 0 0 0 0 04.06.2011 High
Austria:Foodpoisoning 13 13 0 5 12 0 0 0 7 0 0 0 02.06.2011 Medium
Austria:Hospital 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 High
Austria:WHO 88 77 2 34 77 0 9 0 41 0 6 0 31.05.2011 High
Azerbaijan:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 07.06.2011 High
Belarus:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 21.06.2011 High
Belgium:Ca�leEFSA 0 0 0 0 0 0 0 0 3 0 0 0 16.06.2011 High
Belgium:Communicabledisease 1 1 0 0 0 1 0 0 2 0 0 0 07.06.2011 High
Belgium:Diarrhoea 0 0 0 0 0 0 0 0 0 0 0 0 25.06.2011 Medium
Belgium:ECDC 2 2 0 0 2 2 0 0 2 0 0 0 02.06.2011 Medium
Belgium:Enterohaemorrhagic 0 0 0 0 0 0 0 0 0 0 0 0 01.06.2011 Medium
Belgium:Epidemic 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 High
Belgium:EscherichiacoliInfec�on 5 4 0 0 1 22 1 0 2 0 0 0 31.05.2011 High
Belgium:Food-borne 17 16 16 0 1 17 0 0 3 0 0 0 03.06.2011 Medium
Belgium:Foodpoisoning 5 5 0 0 0 5 0 0 2 0 0 0 16.06.2011 High
Belgium:Haemorrhage 0 0 0 0 0 0 0 0 0 0 0 0 01.06.2011 High
Belgium:Hospital 0 0 0 0 0 0 0 0 0 0 0 0 16.06.2011 High
Belgium:Pharmaceu�cals 0 0 0 0 0 0 0 0 0 0 0 0 03.06.2011 High
Belgium:WHO 9 8 9 0 1 9 0 0 4 0 0 1 02.06.2011 High
Brazil:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 25.06.2011 High
Bulgaria:EscherichiacoliInfec�on 9 5 3 0 4 0 3 0 0 0 0 0 31.05.2011 Medium
Canada:Epidemic 1 1 1 0 0 0 0 0 1 0 0 0 07.06.2011 High
Canada:EscherichiacoliInfec�on 15 12 6 0 5 0 3 0 7 0 1 0 02.06.2011 High
Canada:Hospital 10 4 8 2 4 0 0 0 0 0 0 0 16.06.2011 Medium
Chile:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 01.06.2011 High
China:AIDS-HIV 0 0 0 0 0 0 0 0 0 1 10 0 03.06.2011 Medium
China:EscherichiacoliInfec�on 3 2 0 0 2 0 0 0 2 0 0 0 02.06.2011 High
China:Hospital 1 0 0 0 0 0 0 0 0 0 2 0 04.06.2011 Medium
China:Pharmaceu�cals 4 1 0 1 2 0 0 0 2 0 3 2 03.06.2011 High
China:Tuberculosis 0 0 0 0 0 0 0 0 0 1 8 0 19.05.2011 High
Croa�a:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 16.06.2011 Medium
CzechRepublic:Enterohaemorrhagic 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 High
CzechRepublic:Epidemic 0 0 0 0 0 0 0 0 0 0 0 0 28.06.2011 Medium
CzechRepublic:EscherichiacoliInfec�on 2 1 0 0 1 0 0 0 2 0 0 0 28.06.2011 High
CzechRepublic:Hospital 0 0 0 0 0 0 0 0 0 0 0 0 16.06.2011 High
CzechRepublic:WHO 0 0 0 0 0 0 0 0 0 0 0 0 04.06.2011 High
Denmark:Diarrhoea 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 High
Denmark:ECDC 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 Medium
Denmark:Enterohaemorrhagic 0 0 0 0 0 0 0 0 0 0 0 0 01.06.2011 High
Denmark:Epidemic 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 High
Denmark:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 28.06.2011 High
Denmark:Haemorrhage 0 0 0 0 0 0 0 0 0 0 0 0 01.06.2011 Medium
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Alerts E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 Date Level
Denmark:Hospital 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 High
Denmark:IntensiveCareUnit 0 0 0 0 0 0 0 0 0 0 0 0 03.06.2011 Medium
Denmark:WHO 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 High
Egypt:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 30.06.2011 High
Estonia:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 07.06.2011 High
Finland:Enterohaemorrhagic 0 0 0 0 0 0 0 0 0 0 0 0 10.06.2011 Medium
Finland:EscherichiacoliInfec�on 3 0 0 0 0 0 0 0 1 0 0 0 28.06.2011 Medium
Finland:WHO 0 0 0 0 0 0 0 0 0 0 0 0 04.06.2011 Medium
France:Ca�leEFSA 0 0 0 0 1 0 1 6 6 0 0 0 17.06.2011 Medium
France:Coma 2 0 0 8 0 0 2 0 0 0 0 0 18.06.2011 High
France:Diarrhoea 0 0 0 0 0 0 0 0 0 0 0 0 16.06.2011 High
France:ECDC 0 0 0 0 0 0 0 0 0 0 0 0 30.06.2011 High
France:Epidemic 0 0 0 0 0 0 0 0 0 0 0 0 16.06.2011 High
France:EscherichiacoliInfec�on 2 1 1 9 1 1 2 0 0 0 0 0 16.06.2011 High
France:WHO 0 0 0 0 0 0 2 1 2 1 0 0 02.06.2011 High
Georgia:EscherichiacoliInfec�on 1 1 0 0 0 0 0 0 1 0 0 0 08.06.2011 Medium
Germany:Ca�leEFSA 23 15 2 1 4 0 0 0 13 0 0 0 16.06.2011 High
Germany:Coma 23 12 0 4 12 1 1 0 7 0 0 0 17.06.2011 High
Germany:Communicabledisease 49 24 13 5 21 1 3 2 37 0 4 4 23.06.2011 High
Germany:Diarrhoea 75 47 14 5 39 9 0 0 22 0 0 0 02.06.2011 High
Germany:ECDC 28 23 1 0 19 2 0 0 7 0 0 0 31.05.2011 High
Germany:Enterohaemorrhagic 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 High
Germany:Epidemic 13 1 5 0 3 0 0 0 3 0 0 0 31.05.2011 High
Germany:EscherichiacoliInfec�on 314 54 10 3 30 5 3 1 26 0 3 0 31.05.2011 High
Germany:Fever 45 0 10 0 11 0 0 0 9 0 0 0 31.05.2011 High
Germany:Food-borne 73 2 0 0 1 0 0 1 9 0 0 0 02.06.2011 High
Germany:Foodpoisoning 37 37 1 10 30 4 0 0 12 0 0 0 31.05.2011 High
Germany:Haemorrhage 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 Medium
Germany:Hospital 52 8 7 3 15 0 0 1 21 0 1 0 16.06.2011 High
Germany:IntensiveCareUnit 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 High
Germany:MRSA 0 0 0 0 0 0 0 0 0 0 0 0 03.06.2011 High
Germany:Pathogens 11 8 0 1 5 0 0 0 6 0 0 0 01.06.2011 Medium
Germany:Pharmaceu�cals 7 4 0 1 4 0 0 0 6 0 2 2 03.06.2011 High
Germany:Travel 6 2 0 1 1 0 0 0 4 0 0 0 03.06.2011 Medium
Germany:TravelHealth 16 11 0 2 3 0 0 0 8 0 0 0 02.06.2011 High
Germany:UnknownDisease 0 0 0 0 0 0 0 0 0 0 0 0 04.06.2011 High
Germany:WHO 163 112 34 17 105 9 9 2 55 0 7 1 31.05.2011 High
Ghana:Malaria 0 0 0 0 0 0 0 0 0 0 1 0 21.06.2011 Medium
Greece:Epidemic 0 0 0 0 0 0 0 0 1 0 0 0 07.06.2011 High
Greece:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 03.06.2011 High
HongKong:EscherichiacoliInfec�on 4 1 0 0 0 0 0 0 0 0 0 0 03.06.2011 Medium
Hungary:Epidemic 0 0 0 0 0 0 0 0 0 0 0 0 01.06.2011 High
Hungary:WHO 8 0 8 0 8 0 0 0 1 0 0 0 04.06.2011 Medium
India:EscherichiacoliInfec�on 1 0 0 0 0 0 0 0 2 1 0 0 25.06.2011 Medium
India:Malaria 0 0 0 0 0 0 0 0 0 6 3 0 09.06.2011 High
India:WHO 0 0 0 0 0 0 0 0 0 3 2 0 02.06.2011 Medium
Ireland:EscherichiacoliInfec�on 14 9 9 0 3 9 2 0 6 0 2 2 25.06.2011 High
Israel:EscherichiacoliInfec�on 3 3 2 0 2 0 0 0 0 0 0 0 03.06.2011 Medium
Italy:Diarrhoea 12 2 10 0 12 0 0 0 2 0 0 0 31.05.2011 Medium
Italy:Epidemic 12 2 10 0 12 0 0 0 2 0 0 0 31.05.2011 Medium
Italy:EscherichiacoliInfec�on 22 12 10 0 20 8 9 0 2 0 0 0 31.05.2011 High
Italy:Fever 2 1 1 0 1 0 15 0 1 0 0 0 04.06.2011 High
Italy:Hospital 0 0 0 0 0 0 0 0 0 0 0 0 16.06.2011 High
Italy:WHO 2 2 1 0 1 0 13 0 2 0 0 0 02.06.2011 High
Japan:Ca�leEFSA 1 1 0 0 0 0 0 0 0 0 0 0 03.06.2011 High
Japan:Epidemic 1 1 0 1 1 0 0 0 0 0 0 0 07.06.2011 High
Japan:EscherichiacoliInfec�on 20 15 0 2 13 5 2 0 11 0 0 0 31.05.2011 High
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Alerts E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 Date Level
Kazakhstan:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 10.06.2011 Medium
Kenya:Malaria 0 0 0 0 0 0 0 0 0 0 0 0 17.06.2011 Medium
Latvia:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 03.06.2011 Medium
Lebanon:EscherichiacoliInfec�on 9 0 9 0 9 0 0 0 1 0 0 0 04.06.2011 Medium
Lebanon:WHO 8 0 8 0 8 0 0 0 0 0 0 0 04.06.2011 High
Libya:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 22.06.2011 Medium
Lithuania:EscherichiacoliInfec�on 7 7 7 7 0 0 0 0 0 0 0 0 28.06.2011 High
Luxemburg:ECDC 4 3 0 0 3 3 0 0 0 0 0 0 07.06.2011 Medium
Luxemburg:Epidemic 0 0 0 0 0 0 0 0 1 0 0 0 07.06.2011 High
Luxemburg:EscherichiacoliInfec�on 27 20 5 0 14 16 0 4 25 0 0 0 28.06.2011 High
Luxemburg:Hospital 0 0 0 0 0 0 0 0 0 0 0 0 07.06.2011 Medium
Luxemburg:WHO 3 0 1 0 0 3 0 0 4 0 0 0 03.06.2011 Medium
Mexico:EscherichiacoliInfec�on 5 5 0 0 5 0 0 0 5 0 0 0 01.06.2011 High
Mexico:WHO 5 5 0 0 5 0 0 0 5 2 2 0 04.06.2011 High
Netherlands:Diarrhoea 5 5 0 0 5 0 0 0 0 0 0 0 02.06.2011 High
Netherlands:Enterohaemorrhagic 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 High
Netherlands:Epidemic 0 0 0 0 0 0 0 0 0 0 0 0 10.06.2011 Medium
Netherlands:EscherichiacoliInfec�on 26 26 0 6 24 0 0 0 7 0 0 0 31.05.2011 High
Netherlands:Foodpoisoning 9 8 0 5 7 0 0 0 3 0 0 0 16.06.2011 High
Netherlands:Haemorrhage 0 0 0 0 0 0 0 0 0 0 0 0 01.06.2011 High
Netherlands:Hospital 2 0 0 0 0 0 0 0 0 0 0 0 16.06.2011 High
Netherlands:WHO 5 5 0 0 5 0 0 0 0 0 0 0 31.05.2011 High
Norway:Diarrhoea 1 1 1 0 1 0 0 0 0 0 0 0 03.06.2011 Medium
Norway:ECDC 5 4 0 2 1 1 0 0 0 0 0 0 03.06.2011 Medium
Norway:Epidemic 2 2 0 2 2 0 0 0 0 0 0 0 03.06.2011 High
Norway:EscherichiacoliInfec�on 43 37 1 5 36 0 4 0 25 0 4 0 31.05.2011 High
Norway:Foodpoisoning 25 23 0 7 23 0 0 0 16 0 0 0 02.06.2011 High
Norway:Hospital 0 0 0 0 0 0 0 0 0 0 0 0 04.06.2011 High
Norway:Pathogens 15 12 0 8 12 0 0 0 6 0 0 0 04.06.2011 Medium
Norway:WHO 59 49 2 14 49 0 6 0 32 0 6 0 02.06.2011 High
Pakistan:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 1 0 0 0 08.06.2011 Medium
Poland:ECDC 3 2 0 2 1 1 0 0 0 0 0 0 07.06.2011 High
Poland:Epidemic 0 0 0 0 0 0 0 0 0 0 0 0 03.06.2011 Medium
Poland:EscherichiacoliInfec�on 13 8 4 8 2 2 2 2 3 0 2 0 28.06.2011 Medium
Poland:Foodpoisoning 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 Medium
Portugal:EscherichiacoliInfec�on 1 1 1 0 1 0 0 0 0 0 0 0 31.05.2011 Medium
Romania:Epidemic 0 0 0 0 0 0 0 0 0 0 0 0 07.06.2011 High
Romania:EscherichiacoliInfec�on 4 2 4 0 0 1 0 0 3 0 0 0 07.06.2011 Medium
Russia:ECDC 0 0 0 0 0 0 0 0 12 0 0 0 02.06.2011 High
Russia:Enterohaemorrhagic 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 Medium
Russia:Epidemic 5 1 5 0 2 0 0 0 20 0 0 0 02.06.2011 High
Russia:EscherichiacoliInfec�on 48 41 66 6 21 7 4 2 35 0 2 0 31.05.2011 High
Russia:Fever 0 0 10 0 8 0 0 0 3 0 0 0 04.06.2011 High
Russia:Food-borne 13 12 13 0 0 8 3 0 1 0 0 0 03.06.2011 High
Russia:Foodpoisoning 5 2 5 0 0 0 1 0 3 0 0 0 02.06.2011 High
Russia:Haemorrhage 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 High
Russia:Hospital 0 0 0 0 0 0 0 0 0 0 0 0 01.06.2011 Medium
Russia:Pharmaceu�cals 0 0 0 0 0 0 0 0 1 0 0 0 03.06.2011 High
Russia:WHO 29 22 29 0 7 9 8 0 15 0 4 1 02.06.2011 High
Samoa:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 07.06.2011 Medium
SaudiArabia:WHO 1 0 1 0 0 0 0 0 0 0 0 0 10.06.2011 Medium
Serbia:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 01.06.2011 High
Slovakia:Enterohaemorrhagic 0 0 0 0 0 0 0 0 0 0 0 0 01.06.2011 High
Slovakia:Epidemic 0 0 0 0 0 0 0 0 0 0 0 0 09.06.2011 High
Slovakia:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 High
Slovakia:WHO 0 0 0 0 0 0 0 0 0 0 0 0 09.06.2011 Medium
Slovenia:Enterohaemorrhagic 0 0 0 0 0 0 0 0 0 0 0 0 01.06.2011 High
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Slovenia:Epidemic 0 0 0 0 0 0 0 0 0 0 0 0 08.06.2011 Medium
Slovenia:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 28.06.2011 Medium
SouthKorea:EscherichiacoliInfec�on 7 7 0 0 5 0 0 0 7 0 1 0 28.06.2011 Medium
Spain:Ca�leEFSA 1 4 1 0 3 0 0 0 5 0 0 0 02.06.2011 Medium
Spain:Communicabledisease 25 25 2 5 16 1 2 0 19 0 0 0 03.06.2011 High
Spain:Diarrhoea 11 11 0 1 9 0 0 0 4 0 0 0 02.06.2011 High
Spain:ECDC 22 22 0 0 19 2 0 0 5 0 0 0 31.05.2011 High
Spain:Enterohaemorrhagic 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 High
Spain:Epidemic 1 1 1 0 0 0 0 0 0 0 0 0 31.05.2011 High
Spain:EscherichiacoliInfec�on 187 180 21 21 118 15 2 0 68 0 2 0 31.05.2011 High
Spain:Fever 20 6 10 0 16 0 0 0 7 0 0 0 31.05.2011 High
Spain:Food-borne 23 21 12 0 8 8 3 0 9 0 0 0 02.06.2011 High
Spain:Foodpoisoning 15 15 0 5 12 2 0 0 4 0 0 0 01.06.2011 High
Spain:Haemorrhage 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 High
Spain:Hospital 2 2 0 0 0 0 0 0 2 0 0 0 31.05.2011 High
Spain:IntensiveCareUnit 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 High
Spain:Pathogens 9 9 0 1 4 1 0 0 6 0 0 0 01.06.2011 Medium
Spain:Pharmaceu�cals 6 6 0 1 2 0 0 0 6 0 0 0 02.06.2011 High
Spain:TravelHealth 10 8 0 2 3 0 0 0 3 0 0 0 02.06.2011 High
Spain:WHO 116 107 27 15 80 8 9 0 47 1 5 3 28.06.2011 High
Sweden:An�microbialresist 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 High
Sweden:Ca�leEFSA 1 0 0 1 1 0 0 1 2 0 0 0 16.06.2011 High
Sweden:Communicabledisease 19 13 2 5 19 0 0 0 8 0 0 0 03.06.2011 Medium
Sweden:Diarrhoea 19 14 0 1 16 0 0 0 4 0 0 0 02.06.2011 High
Sweden:ECDC 15 14 0 0 14 2 0 0 3 0 0 0 31.05.2011 High
Sweden:Enterohaemorrhagic 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 High
Sweden:Epidemic 6 3 2 1 6 0 0 0 2 0 0 0 31.05.2011 High
Sweden:EscherichiacoliInfec�on 170 129 8 21 145 18 2 1 10 0 3 0 31.05.2011 High
Sweden:Fever 30 6 10 0 23 0 0 0 11 0 0 0 03.06.2011 High
Sweden:Food-borne 22 18 9 1 11 9 0 0 8 0 0 0 03.06.2011 High
Sweden:Foodpoisoning 12 12 0 4 11 0 0 0 4 0 0 0 01.06.2011 High
Sweden:Haemorrhage 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 High
Sweden:Hospital 14 1 4 2 13 0 0 1 10 0 1 0 16.06.2011 Medium
Sweden:Pharmaceu�cals 0 0 0 0 0 0 0 0 0 0 0 0 03.06.2011 High
Sweden:TravelHealth 5 3 0 0 3 0 0 0 3 0 0 0 02.06.2011 Medium
Sweden:WHO 122 84 16 16 106 5 5 2 42 0 6 0 28.06.2011 Medium
Switzerland:Communicabledisease 2 2 0 2 2 0 0 0 0 0 0 0 03.06.2011 High
Switzerland:Diarrhoea 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 High
Switzerland:ECDC 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 High
Switzerland:Epidemic 2 2 0 2 2 0 0 0 0 0 0 0 02.06.2011 High
Switzerland:EscherichiacoliInfec�on 60 54 3 24 52 6 2 0 15 0 2 0 31.05.2011 High
Switzerland:Fever 0 0 0 0 0 0 0 0 0 0 0 0 04.06.2011 High
Switzerland:Haemorrhage 0 0 0 0 0 0 0 0 0 0 0 0 01.06.2011 High
Switzerland:Hospital 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 High
Switzerland:Malaria 0 0 0 0 0 0 0 0 0 1 0 0 31.05.2011 Medium
Switzerland:WHO 88 77 2 34 77 0 6 0 37 4 6 0 02.06.2011 High
Syria:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 04.06.2011 Medium
Thailand:Epidemic 0 0 0 0 0 0 0 0 0 0 0 0 11.06.2011 Medium
Thailand:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 11.06.2011 High
Turkey:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 High
Turkey:WHO 0 0 0 0 0 0 0 0 0 0 0 0 03.06.2011 High
Ukraine:EscherichiacoliInfec�on 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 High
UnitedKingdom:An�microbialresist 0 0 0 0 0 0 0 0 2 0 2 2 03.06.2011 Medium
UnitedKingdom:Ca�leEFSA 5 5 0 0 2 0 0 0 4 0 0 0 22.06.2011 Medium
UnitedKingdom:Communicabledisease 15 9 6 1 5 0 0 1 19 0 4 4 03.06.2011 High
UnitedKingdom:Diarrhoea 17 16 0 0 12 0 0 0 5 0 0 0 02.06.2011 High
UnitedKingdom:ECDC 13 12 0 0 10 0 0 0 3 0 0 0 31.05.2011 High
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UnitedKingdom:Enterohaemorrhagic 0 0 0 0 0 0 0 0 0 0 0 0 31.05.2011 Medium
UnitedKingdom:Epidemic 1 1 1 0 0 0 0 0 0 0 0 0 31.05.2011 High
UnitedKingdom:EscherichiacoliInfec�on 65 40 2 1 44 2 2 1 12 0 3 0 25.06.2011 High
UnitedKingdom:Fever 4 0 2 0 0 0 0 0 2 0 0 0 03.06.2011 Medium
UnitedKingdom:Food-borne 5 2 0 1 3 1 0 1 2 0 0 0 07.06.2011 Medium
UnitedKingdom:Foodpoisoning 16 16 1 0 11 4 0 0 12 0 0 0 02.06.2011 Medium
UnitedKingdom:Haemorrhage 0 0 0 0 0 0 0 0 0 0 0 0 02.06.2011 High
UnitedKingdom:Hospital 4 2 0 0 2 0 0 0 4 0 0 0 31.05.2011 Medium
UnitedKingdom:Malaria 0 0 0 0 0 0 0 3 8 0 0 1 29.06.2011 Medium
UnitedKingdom:Pathogens 7 7 1 0 6 0 0 0 7 0 0 0 02.06.2011 High
UnitedKingdom:Pharmaceu�cals 1 1 0 0 0 0 0 0 3 0 2 2 03.06.2011 High
UnitedKingdom:TravelHealth 4 2 0 0 1 0 0 0 1 0 0 0 03.06.2011 High
UnitedKingdom:tropicalmedicine 22 21 2 0 16 0 0 0 19 0 0 0 02.06.2011 Medium
UnitedKingdom:Tuberculosis 0 0 0 0 0 0 0 0 2 1 0 1 29.06.2011 High
UnitedKingdom:WHO 42 33 2 1 35 0 2 1 22 0 3 0 28.06.2011 High
USA:AIDS-HIV 0 0 0 0 0 0 0 0 0 0 2 0 09.06.2011 High
USA:Ca�leEFSA 9 10 2 0 0 0 0 0 6 0 0 0 03.06.2011 Medium
USA:Coma 9 5 0 2 5 0 1 0 5 0 0 0 17.06.2011 Medium
USA:Communicabledisease 13 10 2 5 6 1 0 1 7 0 2 0 03.06.2011 High
USA:Diarrhoea 34 12 11 6 19 0 0 1 1 0 1 0 03.06.2011 High
USA:ECDC 0 0 0 0 0 0 0 0 0 0 0 0 03.06.2011 Medium
USA:Epidemic 7 3 4 0 3 0 0 0 1 0 0 0 02.06.2011 High
USA:EscherichiacoliInfec�on 172 114 31 36 87 16 2 3 2 0 3 1 28.06.2011 Medium
USA:Fever 21 4 10 2 14 0 0 2 2 0 0 0 03.06.2011 High
USA:Food-borne 2 1 0 0 0 0 0 1 7 0 0 0 07.06.2011 High
USA:Foodpoisoning 10 10 1 0 7 2 0 0 8 0 0 0 02.06.2011 Medium
USA:Hospital 0 0 0 0 0 0 0 0 0 0 0 0 25.06.2011 Medium
USA:Malaria 0 0 0 0 0 0 0 0 0 2 2 10 26.05.2011 High
USA:Pathogens 24 19 2 7 15 0 0 0 2 0 1 0 02.06.2011 High
USA:Pharmaceu�cals 2 0 0 0 0 0 0 0 3 0 0 0 23.06.2011 High
USA:Salmonellosis 2 0 0 0 0 0 0 0 5 0 0 0 08.06.2011 Medium
USA:Tuberculosis 0 0 0 0 0 0 0 0 12 1 4 0 22.06.2011 Medium
USA:WHO 111 86 26 30 79 0 0 0 55 11 13 1 28.06.2011 Medium
Yemen:EscherichiacoliInfec�on 1 1 0 0 1 0 0 0 0 0 0 0 04.06.2011 High

123



Unified approach to retrospective event detection…

References

1. Al Tamime, R., Giordano, R., Hall, W.: Observing burstiness in
wikipedia articles during new disease outbreaks. In: Proceedings
of the 10th ACM Conference on Web Science, WebSci ’18, pp.
117–126. Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3201064.3201080

2. Arsevska, E., Valentin, S., Rabatel, J., de Goër de Hervé, J., Falala,
S., Lancelot, R., Roche, M.: Web monitoring of emerging animal
infectious diseases integrated in the french animal health epidemic
intelligence system. PLOS ONE 13(8), 1–25 (2018). https://doi.
org/10.1371/journal.pone.0199960

3. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Generative model-
based clustering of directional data. In: ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining
(KDD) (2003)

4. Brants, T., Chen, F., Farahat, A.: A System for new event detection.
In: In SIGIR, pp. 330–337. ACM, New York, NY, USA (2003).
https://doi.org/10.1145/860435.860495

5. Burchard, L., Schroeder, D.T., Becker, S., Langguth, J.: Resource
efficient algorithms for message sampling in online social net-
works. In: 2020 Seventh International Conference on Social
Networks Analysis, Management and Security (SNAMS), pp. 1–8
(2020). https://doi.org/10.1109/SNAMS52053.2020.9336530

6. Ceroni, A., Fisichella,M.: Towards an entity-based automatic event
validation. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C., de
Jong, F.,Radinsky,K.,Hofmann,K. (eds.)Advances in Information
Retrieval, pp. 605–611. Springer, Cham (2014)

7. Ceroni,A.,Gadiraju,U., Fisichella,M.: Justevents: a crowdsourced
corpus for event validationwith strict temporal constraints. In: Jose,
J.M., Hauff, C., Altıngovde, I.S., Song, D., Albakour, D., Watt,
S., Tait, J. (eds.) Advances in Information Retrieval, pp. 484–492.
Springer, Cham (2017)

8. Ceroni, A., Gadiraju, U., Matschke, J., Wingert, S., Fisichella,
M.: Where the event lies: predicting event occurrence in tex-
tual documents. In: Proceedings of the 39th International ACM
SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’16, p. 1157–1160. Association for Computing
Machinery, New York, NY, USA (2016). https://doi.org/10.1145/
2911451.2911452

9. Ceroni, A., Gadiraju, U.K., Fisichella, M.: Improving event detec-
tion by automatically assessing validity of event occurrence in text.
In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, CIKM ’15, pp. 1815–
1818. Association for ComputingMachinery, NewYork, NY, USA
(2015). https://doi.org/10.1145/2806416.2806624

10. Chen, N., Zhong, Z., Pang, J.: An exploratory study of Covid-
19 information on twitter in the greater region. Big Data Cogn.
Comput. 5(1), 5 (2021). https://doi.org/10.3390/bdcc5010005

11. Cinti, S., Huff, A.G., Breit, N., Allen, T., Whiting, K., Kiley, C.:
Evaluation and verification of the global rapid identification of
threats system for infectious diseases in textual data sources. Inter-
discip. Perspect. Infect. Dis. 2016, 5080746 (2016). https://doi.org/
10.1155/2016/5080746

12. Conway, M., Collier, N., Doan, S.: Using hedges to enhance a
disease outbreak report text mining system. In: BioNLP ’09: Pro-
ceedings of the Workshop on BioNLP, pp. 142–143. Association
for Computational Linguistics, Morristown, NJ, USA (2009)

13. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood
from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1),
1–38 (1977)

14. Detection, T., project, T.T.: https://www.nist.gov/publications/
topic-detection-and-tracking-evaluation-overview

15. Doan, S., Kawazoe, A., Conway, M., Collier, N.: Towards role-
based filtering of disease outbreak reports. J. Biomed. Inform.
(2008). https://doi.org/10.1016/j.jbi.2008.12.009

16. Fisichella, M., Ceroni, A.: Event detection in Wikipedia edit his-
tory improved by documents web based automatic assessment.
Big Data Cogn. Comput. 5(3), 34 (2021). https://doi.org/10.3390/
bdcc5030034

17. Fisichella, M., Stewart, A., Cuzzocrea, A., Denecke, K.: Detecting
health events on the social web to enable epidemic intelligence. In:
SPIRE, pp. 87–103 (2011)

18. Fung,G.P.C.,Yu, J.X.,Yu, P.S., Lu,H.: Parameter free bursty events
detection in text streams. In: VLDB ’05: Proceedings of the 31st
international conference on Very large data bases, pp. 181–192.
VLDB Endowment (2005)

19. Hartley, D., et al.: The landscape of international event-based bio-
surveillance. Emerg. Health Threats 3, 7096 (2010)

20. He, Q., Chang, K., Lim, E.P.: Analyzing feature trajectories for
event detection. In: SIGIR, pp. 207–214 (2007)

21. He,Q.,Chang,K., Lim,E.P.:Usingburstiness to improve clustering
of topics in news streams. In: Proceedings of the 2007 Seventh
IEEE International Conference on Data Mining, ICDM ’07, pp.
493–498. IEEE Computer Society, Washington, DC, USA (2007).
https://doi.org/10.1109/ICDM.2007.17

22. He, Q., Chang, K., Lim, E.P., Banerjee, A.: Keep it simple with
time: a reexamination of probabilistic topic detection models.
IEEETrans. Pattern Anal.Mach. Intell. 32(10), 1795–1808 (2010).
https://doi.org/10.1109/TPAMI.2009.203

23. He, Q., Chang, K., Lim, E.P., Zhang, J.: Bursty feature representa-
tion for clustering text streams. In: Proceedings of the 2007 SIAM
International Conference on Data Mining, pp. 491–496 (2007)

24. Hoffart, J., Suchanek, F., Berberich, K., Weikum, G.: Yago2: a spa-
tially and temporally enhanced knowledge base from Wikipedia.
Artif. Intell. 194, 28–61 (2012)

25. Hofmann, T.: Probabilistic latent semantic analysis. In: UAI, pp.
289–296 (1999)

26. Keller, M., Blench, M., Tolentino, H., et al.: Use of unstruc-
tured event-based reports for global infectious disease surveillance.
Emerg. Infect. Dis. 15(5), 689 (2009)

27. Kuzey, E., Vreeken, J., Weikum, G.: A fresh look on knowledge
bases: distilling named events from news. In: CIKM ’14 (2014)

28. Lejeune, G., Brixtel, R., Doucet, A., Lucas, N.: Daniel: Language
independent character-based news surveillance. In: Isahara, H.,
Kanzaki, K. (eds.) Advances in Natural Language Processing, pp.
64–75. Springer, Berlin (2012)

29. Lejeune, G., Brixtel, R., Doucet, A., Lucas, N.: Multilingual event
extraction for epidemic detection. Artif. Intell. Med. 65(2), 131–
143 (2015). https://doi.org/10.1016/j.artmed.2015.06.005

30. Li, Z., Wang, B., Li, M., Ma, W.Y.: A probabilistic model for ret-
rospective news event detection. In: SIGIR (2005)

31. Linge, J., Steinberger, R., Fuart, F., Bucci, S., Belyaeva, J., Gemo,
M.: Medisys: medical information system. In: Asimakopoulou,
Eleana, Bessis, Nik (eds.) Advanced ICTs for Disaster Man-
agement and Threat Detection: Collaborative and Distributed
Frameworks, pp. 131–142. IGI Global, Hershey (2010)

32. Linge, J.P., Mantero, J., Fuart, F., Belyaeva, J., Atkinson, M.,
van der Goot, E.: Tracking media reports on the shiga toxin-
producing Escherichia coli. In: In Proceedings of the Electronic
Healthcare International Conference (eHealth). Springer (2011)

33. Mutuvi, S., Boros, E., Doucet, A., Jatowt, A., Lejeune, G., Odeo,
M.: Multilingual epidemiological text classification: a compara-
tive study. In: Proceedings of the 28th International Conference on
Computational Linguistics, pp. 6172–6183. International Commit-
tee onComputational Linguistics, Barcelona, Spain (2020). https://
doi.org/10.18653/v1/2020.coling-main.543

34. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text clas-
sification from labeled and unlabeled documents using EM.

123

https://doi.org/10.1145/3201064.3201080
https://doi.org/10.1371/journal.pone.0199960
https://doi.org/10.1371/journal.pone.0199960
https://doi.org/10.1145/860435.860495
https://doi.org/10.1109/SNAMS52053.2020.9336530
https://doi.org/10.1145/2911451.2911452
https://doi.org/10.1145/2911451.2911452
https://doi.org/10.1145/2806416.2806624
https://doi.org/10.3390/bdcc5010005
https://doi.org/10.1155/2016/5080746
https://doi.org/10.1155/2016/5080746
https://www.nist.gov/publications/topic-detection-and-tracking-evaluation-overview
https://www.nist.gov/publications/topic-detection-and-tracking-evaluation-overview
https://doi.org/10.1016/j.jbi.2008.12.009
https://doi.org/10.3390/bdcc5030034
https://doi.org/10.3390/bdcc5030034
https://doi.org/10.1109/ICDM.2007.17
https://doi.org/10.1109/TPAMI.2009.203
https://doi.org/10.1016/j.artmed.2015.06.005
https://doi.org/10.18653/v1/2020.coling-main.543
https://doi.org/10.18653/v1/2020.coling-main.543


M. Fisichella

Mach. Learn. 39, 103–134 (2000). https://doi.org/10.1023/A:
1007692713085

35. Paquet, C., Coulombier, D., Kaiser, R., Ciotti, M.: Epidemic intel-
ligence: a new framework for strengthening disease surveillance in
Europe. Euro Surveill. 11(12), 212–214 (2006)

36. Paul, M.J., Dredze, M.: You are what you tweet: analyzing twitter
for public health. Artif. Intell. I, 265–272 (2011)

37. Rao, D., Paul, M., Fink, C., Yarowsky, D., Oates, T., Coppersmith,
G.: Hierarchical Bayesian models for latent attribute detection in
social media. In: ICWSM (2011)

38. Smailhodzic, E., Hooijsma, W., Boonstra, A., Langley, D.J.:
Social media use in healthcare: a systematic review of effects on
patients and on their relationship with healthcare professionals.
BMCHealth Serv. Res. 16(1), 442 (2016). https://doi.org/10.1186/
s12913-016-1691-0

39. Steinberger, R., Fuart, F., van der Groot, E., Best, C., von Etter, P.,
Yangarber, R.: Text mining from the web for medical intelligence.
Min. Massive Data Sets Secur. 19, 295–310 (2008)

40. Stewart, A., Fisichella, M., Denecke, K.: Detecting public health
indicators from the web for epidemic intelligence. In: eHealth, pp.
10–17 (2010)

41. Stewart, A., Smith, M., Nejdl, W.: A transfer approach to detecting
disease reporting events in blog social media. In: Proceedings of
the 22nd ACMConference on Hypertext and Hypermedia, HT ’11,
pp. 271–280. ACM, New York, NY, USA (2011). https://doi.org/
10.1145/1995966.1996001

42. Steyvers, M., Griffiths, T.: Probabilistic Topic Models. Lawrence
Erlbaum Associates, Mahwah (2007)

43. Ullah, I., Khan, S., Imran, M., Lee, Y.K.: Rweetminer: automatic
identification and categorization of help requests on twitter during
disasters. Expert Syst. Appl. 176, 114787 (2021). https://doi.org/
10.1016/j.eswa.2021.114787

44. Vlachos, M.: Identifying similarities, periodicities and bursts for
online search queries. In: Proceedings of the ACMSIGMOD Inter-
national Conference on Management of Data, pp. 131–142. ACM
Press (2004)

45. Xu, G., Meng, Y., Zhou, X., Yu, Z., Wu, X., Zhang, L.: Chi-
nese event detection based on multi-feature fusion and BiLSTM.
IEEE Access 7, 134992–135004 (2019). https://doi.org/10.1109/
ACCESS.2019.2941653

46. Yang, Y., Pierce, T., Carbonell, J.: A study of retrospective and on-
line event detection. In: SIGIR ’98: Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pp. 28–36. ACM, New York, NY,
USA (1998). https://doi.org/10.1145/290941.290953

47. Yangarber, R.: Verification of facts across document boundaries.
In: Proceedings International Workshop on Intelligent Information
Access (2006)

48. Zhan, L., Jiang, X.: Survey on event extraction technology in infor-
mation extraction research area. In: 2019 IEEE 3rd Information
Technology, Networking, Electronic andAutomationControl Con-
ference (ITNEC), pp. 2121–2126 (2019). https://doi.org/10.1109/
ITNEC.2019.8729158

49. Zhang, D., Zhai, C., Han, J., Srivastava, A., Oza, N.: Topic model-
ing for OLAP on multidimensional text databases: topic cube and
its applications. Stat. Anal. Data Min. 2(5–6), 378–395 (2009).
https://doi.org/10.1002/sam.v2:5/6

50. Zhang, Y.: Automatic extraction of outbreak information from
news. Ph.D. thesis, University of Illinois (2008)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1023/A:1007692713085
https://doi.org/10.1023/A:1007692713085
https://doi.org/10.1186/s12913-016-1691-0
https://doi.org/10.1186/s12913-016-1691-0
https://doi.org/10.1145/1995966.1996001
https://doi.org/10.1145/1995966.1996001
https://doi.org/10.1016/j.eswa.2021.114787
https://doi.org/10.1016/j.eswa.2021.114787
https://doi.org/10.1109/ACCESS.2019.2941653
https://doi.org/10.1109/ACCESS.2019.2941653
https://doi.org/10.1145/290941.290953
https://doi.org/10.1109/ITNEC.2019.8729158
https://doi.org/10.1109/ITNEC.2019.8729158
https://doi.org/10.1002/sam.v2:5/6

	Unified approach to retrospective event detection for event- based epidemic intelligence
	Abstract
	1 Introduction
	1.1 Limitations of existing systems
	1.2 Proposed solution
	1.3 Our contributions

	2 Related work
	2.1 Event detection in public health
	2.1.1 Rule-based systems
	2.1.2 Supervised detection
	2.1.3 Hybrid models
	2.1.4 Multilingual event extraction models

	2.2 Unsupervised detection
	2.2.1 Document-centric unsupervised detection
	2.2.2 Token-centric unsupervised detection


	3 UPHED: unified approach to public health event detection
	3.1 Entity-centric feature representation
	3.2 Feature analysis
	3.2.1 Representative features
	3.2.2 Spectral analysis for dominant period
	3.2.3 Identifying burst for aperiodic features
	3.2.4 Identifying bursts for periodic features
	3.2.5 Feature burst distributions algorithm

	3.3 Detecting public health events
	3.3.1 Generative model for public health events
	3.3.2 Learning generative model parameters


	4 Experiments and evaluation
	4.1 Experimental goals
	4.2 Feature set
	4.3 Experiment I: efficiency comparison
	4.4 Experiment II: effectiveness
	4.4.1 Detection of EHEC-related events
	4.4.2 Detection of non-EHEC-related events

	4.5 Experiment III: UPHED in comparison with MediSys
	4.5.1 Overview of MediSys
	4.5.2 Generating alerts in MediSys
	4.5.3 Comparative analysis of UPHED and MediSys


	5 Conclusions
	Acknowledgements
	Appendix
	References




