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ABSTRACT The purpose of single-image super resolution (SISR) is to reconstruct an accurate
high-resolution image from a degraded low-resolution image. Owing to the lack of information in
low-resolution images, SISR is a challenging problem. In particular, it is difficult to represent details,
including high-frequency components, such as texture and structural information. We propose the edge
profile super-resolution (EPSR) method to preserve structural information and restore texture. EPSR is
achieved by stacking modified fractal residual network (mFRN) structures hierarchically and repeatedly.
Each mFRN is composed of many residual edge profile blocks (REPBs) that extract features and preserve
the edge, structure, and texture information of the image. For implementing REPB, we design three main
modules: Residual Efficient Channel Attention Block(RECAB) module, Edge Profile(EP) module, and
Context Network(CN) module. By repeating the procedure in the mFRN structure, the EPSR method could
be used to extract high-fidelity features, thus preventing texture loss and preserving the structure with
appropriate sharpness. Experimental results show that EPSR achieves competitive performance against
state-of-the-art methods in terms of the peak signal-to-noise ratio(PSNR) and structural similarity index
measure(SSIM) evaluation metrics, as well as visual results.

INDEX TERMS Image super-resolution, contextual information, edge, image structure, texture.

I. INTRODUCTION
Single Image Super-Resolution(SISR) [1] has been the focus
of recent research. Generally, SISR targets the reconstruction
of an accurate high-resolution (HR) image from a degraded
low-resolution (LR) image. Image super-resolution(SR) is
usually applied to diverse computer vision tasks (e.g. security
and surveillance imaging [2], object recognition [3], image
generation [4], and medical imaging [5]). Although there are
many methods for the reconstruction of any LR inputs, their
solutions to the ill-posed problem [6] still demonstrate limi-
tation with regard to details such as structure and texture. For
high-fidelity image, it is necessary to represent such details
as high frequency components such as texture and structural
information. To address this issue, numerous SR methods
have been proposed, such as conventional methods [7]–[14],
deep learning methods [15]–[23] and the perceptual-driven
method [3], [24]–[28].

The associate editor coordinating the review of this manuscript and
approving it for publication was Long Xu.

A. RELATED WORK
In conventional methods, edge-based models [7]–[14]
enhance the sharpness of super-resolved image by utilizing
edge statistics. They model edge statistical dependencies
by estimating the structural connectivity between HR and
LR. Fattal [7] proposed a method for learning the prior
dependencies among the edge statistics of image gradients.
Sun et al. [8] proposed a gradient field transformation to
control the HR gradient fields and enhance the sharpness.
Yan et al. [9] proposed a method based on the gradient
profile sharpness extracted from gradient description models.
Tai et al. [10] proposed an approach to combine edge-directed
SR with detail from an image and texture examples.
Zhu et al. [11] proposed an SISR method based on gradient
reconstruction by collecting a dictionary of gradient patterns.
The edge distribution tends to depend heavily on the similar-
ities between training and test datasets. Therefore, the results
are determined by the similarities, and the performance
lacks consistency. In addition, the processes are modeled
point by point and are therefore complicated and inflexible.
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Furthermore, because they focus on the sharpness of
SR image, they face difficulties with improving texture
restoration.

On the other hand, general deep learning methods are more
flexible and effective in handling probability transformations,
including pixel distribution. They produce outstanding results
compared with previous methods [29], [30]. Deep learning
methods generally approach the SISR problem by utiliz-
ing influential feature representation and a deep end-to-end
structure. SRCNN proposed by Dong et al. [15] achieved
noteworthy performance using a three-layer convolutional
network. Later, VDSR [16] and DRCN [17] improved the
accuracy by stacking convolutional networks deeply through
residual learning. Tai et al. [18] introduced DRRN, which is
a recursive learning model based on parameter sharing, and
proposedMemNet [19], which consists of memory blocks for
a deep network. EDSR and MDSR by Lim et al. [20] signifi-
cantly improved the performance by stacking residual blocks
deeply and widely. As a result, the depth of the network
becomes a key point in the image SR. After the development
of deep networks, RDN was designed by Zhang et al. [21]
as a deep network based on the dense block to utilize
all the hierarchical features from all convolutional layers.
Zhang et al. [22] and Dai et al. [23] considered not only
increasing the depth of the network, but also applying feature
correlations in the spatial and channel dimensions.

Most of these were optimized to measure the pixel dis-
tance between the SR and its corresponding HR by mean
square error(MSE) or L1. These optimizing methods tend
to cause the networks to generate an image based on the
statistical information of possible HR solutions. Even though
they reach high numerical value evaluation in terms of peak
signal-to-noise ratio(PSNR), general deep learning models
show blurry with texture loss and structural trouble results.
To represent texture and preserve the image structure, some
methods [6] simply apply edge information in a deep learning
model by utilizing it as an assistant device. However, they
designed their model to achieve a higher PSNR evaluation
metric — that is, the structural information is utilized inade-
quately.

For perceptual improvement, some methods [3], [24]–[28]
utilize the generative adversarial network(GAN) with percep-
tual loss to generate a photo realistic image. As mentioned
previously, all general deep-learning methods concentrate on
achieving a high PSNR. However, their results are blurry
and unstable structural SR images. To recover SR images
more toward realistic direction, Johnson et al. [24] proposed
perceptual loss to enhance the visual quality of SR images.
Ledig et al. [25] designed SRGAN based on adversarial loss,
and it is the first model that can generate photo-realistic
HR images. EnhanceNet by Sajjadi et al. [3] produced
high-fidelity textures SR images by applying texture loss.
Wang et al. [26] proposed ESRGAN, which enhances the
previous frameworks by constructing Residual-in-Residual
Dense Block. However, Wang et al. [27] generated more
natural textures for specific categories by exploiting

semantic segmentation maps as priors. In addition, SROBB
by Rad et al. [28] involves objective perceptual loss based
on the labels of the object, background and boundary. These
perceptual-driven methods bring perceptual enhancement by
restoring texture information related to blurriness. However,
they leave structural distortion problems and fail to recover
details such as texture. To overcome the structural limita-
tions of images, some models [13], [14] utilize structural
information by designing additional modules for preserving
the structure. Ma et al. [13] utilized edge information in
perceptual-driven methods by feeding explicit guidance to
the established model, and Nazari et al. [14] proposed an
edge-informed SRmethod based on an image inpainting task.

Although these methods compensate for the structural
defects of the GAN-based model, they do not achieve the
visual quality of HR images. Furthermore, because the dis-
criminators may cause unstable factors during the optimiza-
tion procedure, GAN-based models face difficulties with the
stability of the learning process and maintaining structural
consistency.

B. CONTRIBUTIONS
The EPSR method is designed to alleviate the issues men-
tioned above. In the SISR problem, to generate high-quality
SR images, it is important to represent high-frequency
details, such as structure and texture information. Since
these components have frequent pixel variations, they have
contextual properties, and thus displaying them is crucial
for high- quality results. To achieve this goal, we mod-
ify Fractal Residual Network(FRN) as a network struc-
ture to utilize various information in the learning process.
we call it modified Fractal Residual Network(mFRN) struc-
ture. To draw high-frequency components from diverse infor-
mation, we construct Residual Edge Profile Blocks(REPBs)
as basic blocks. An REPB consists of an Residual Efficient
Channel Attention Block(RECAB)module, Edge Profile(EP)
module and Context Network(CN) module. To extract
high-fidelity features, it is necessary to utilize informative
features that contain detail information. Hence, by referring
to previous methods [20], [22] and recent research [31],
we apply efficient channel attention(ECA) to feature extrac-
tion. This systemically organized feature provides abundant
information to the EP module. The EP module feeds struc-
tural information on the features by generating the edge
profile itself from the informative features. This module is
based on the principle of conventional edge extraction. The
EP module contributes to preserving the image structure.
However, exploiting high frequency components, such as
sharpness and textures, should be considered for high-fidelity
results. These contextual details contain complex variations
in specific regions(i.e. high frequency regions such as edge
and texture). Thus, it is difficult to maintain the detail infor-
mation in the process. To exploit high-frequency components,
we construct a Context Network(CN) module. By exposing
contextual information, this module captures pixel varia-
tion, and thus, the sharpness of the results can be enhanced
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FIGURE 1. The architecture of the proposed edge profile super-resolution (EPSR) method follows a modified fractal residual network (mFRN) structure
consisting of residual edge profile blocks (REPBs) as basic blocks. An REPB consists of the residual efficient channel attention block (RECAB), edge
profile (EP), and context network (CN) modules. we also include the explanation of components of all blocks.

properly and texture loss can be restored. By proceeding
repeatedly with this process in the network, the SR results
show structural stability and represent details with reduced
texture loss and structural distortions. Experimental results
on benchmark datasets demonstrate that our EPSR improves
the SR quality.

The contribution of this work can be summarized as
follows:
• We propose our edge profile super resolution (EPSR)
for high-quality image SR using image properties. The
network is designed to learn diverse features from the
original LR image.

• Our EPSR can preserve structural information stably by
extracting the edge components itself.

• By exploiting contextual information, our EPSR can
recover such details as structure and texture.

The remainder of this paper is organized as fol-
lows. In Section II,, the proposed method is explained.
In Section III, the proposed method is compared experimen-
tally with previous methods. The conclusions of the study are
presented in Section IV.

II. METHODOLOGY
In this section, an overview of EPSR is presented. Then,
the details of REPBs are introduced. Informative features
are formed by utilizing structural information and exploiting
high-frequency components. Finally, the objective functions
are described.

A. OVERVIEW
The overall structure is described in Fig.1. As researched
in [21], [32], we apply one convolution layer to extract the
shallow feature from the LR input. To utilize diverse infor-
mation in the process, we modify the FRN skip connec-
tion structure proposed by Kwak and Son [33] as shown
in Fig.1. we call it mFRN. mFRN consists of REPBs.
Since the self-similarity property of themFRN structure gains

deep depth and provides a large receptive field, REPBs can
obtain diverse information and generate informative features
effectively, which include high-frequency components con-
taining such details as structural information and texture.
Then, the deep features from themFRN structure are upscaled
by the upscale module. We apply this upscaling module
as in previous work [21], [34]. According to the process,
the upscaled feature is converted into an SR image using one
convolution layer.

B. RESIDUAL EDGE PROFILE BLOCK (REPB)
Due to self-similarity of the mFRN structure, abundant
diverse frequency information can be bypassed. Based on this
information, our proposed REPBs can focus on exploiting
high-frequency components by utilizing influential features
with structural information and exposing contextual informa-
tion. The REPB consists of three parts: the RECAB, EP, and
CN module.

1) RESIDUAL EFFICIENT CHANNEL ATTENTION BLOCK
(RECAB)
As proposed for EDSR and MDSR [20], the feature is
extracted by removing batch normalization layers. Thus,
the range flexibility of the EPSR can be maintained and the
feature extraction can be formulated as

FFE = HFE (Finput ), (1)

where the output FFE and HFE (·) stand for the feature and
function from the feature extraction of the REPB block,
respectively. Here, Finput is the input feature of the
REPB block. In the SISR problem, RCAN proposed by
Zhang et al. [22] considers feature interdependencies and
utilizes mutual independence by applying the channel
attention process from SENet [35]. However, this process
has shown that dimensionality reduction results in side
effects in channel prediction. By messing up the direct
correspondence between its channel and weight, it captures
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FIGURE 2. Extracted edges of ‘‘ img_048’’ by edge profile modules.

unnecessary dependencies across all channels empiri-
cally. To avoid this problem, we use efficient channel
attention(ECA) by [31]. ECA captures local cross-channel
interaction by using 1D convolution of size k , where
kernel size k implies the coverage of local cross-channel
interaction and the number of neighbors involved in the
attention prediction of one channel. This process can be
expressed as

weca = σ (C1Dk (g(FFE ))), (2)

where C1Dk denotes 1D convolution, weca is the scale statis-
tics of the channel, and g(·) stands for global average pooling.
Then, FFE is rescaled as

F̂FE = weca · FFE , (3)

where F̂FE stands for the rescaled feature.
To utilize the informative features from ECA, we apply a

residual block to the network.We transform residual block by
applying a weighted summation.

FRECAB =
w1

ε +
∑2

i=1 wi
Finput +

w2

ε +
∑2

i=1 wi
F̂FE , (4)

where FRECAB is the final extracted feature and wi is a
learnable weight, which is a scalar per feature. By applying
ReLU to each wi, it is ensured that wi ≥ 0, and the ε value
is fixed as 0.00001 to avoid numerical instability. Similar to
the interpolation, the values of each weight range from 0 to 1.
Since these two weight values are learnable parameters, they
find more proper values for producing well-balanced features
in every training process. From the process, the informa-
tive feature is generated by considering the interdependen-
cies among feature channels, thereby providing connectivity
among channels and discriminative ability in network.

2) EDGE PROFILE (EP) MODULE
In SISR, it is important point to maintain structure for
high-quality SR images. To consider structural information,
we construct an EP module based on the conventional image
processing principle. This module extracts the edge profile
itself from the systemically organized feature using RECAB.
Intuitively, the edge area has a rapid variance in pixels as
shown in Fig.3. This means that there are large pixel gradient

FIGURE 3. Extracting edge profile process.

values in the edge area. Next, the onset and end of disconti-
nuities (e.g. step and ramp discontinuities) in the image are
described as edge areas. To extract the edge profile of an
image, we consider utilizing the discontinuous property of
the edge. As shown in Fig.3, the blurred image was subtracted
from the original image to obtain the edge mask (or profile).
Therefore, this process can be formulated as:

g(x, y) = f (x, y)− f̄ (x, y), (5)

where g(x, y), f (x, y) and f̄ (x, y) are the edge mask, original
image and blurred image, respectively. We convert this pro-
cess to a deep learning method. First, an image was generated
from the feature FRECAB, which comes from feature extrac-
tion, using one convolution layer.

IblockSR = HblockSR(FRECAB), (6)

where IblockSR is an image produced from feature FRECAB,
and HblockSR(·) can be denoted as image reconstruction in the
EPmodule, which generates an RGB-channel image from the
64-channel feature. To form a blurred image, we transfer the
arithmetic mean filter concept using average pooling. Let’s
denote Sxy as the set of coordinates in a rectangular subim-
age window of size m × n where the center point is (x, y).
Then, this filter computes the average values of the original
image i(x, y) in the area defined by Sxy. In other words,

î(x, y) =
1
mn

∑
(s,t)∈Sxy

i(s, t), (7)

where î(x, y) is a blurred image of i(x, y). Based on this
operation, if one defines the window size as 3 × 3, it can
also be an average pooling operation. Thus, a blurred image
is formed by using it.

Iblockblur = Hblur (IblockSR), (8)
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where Iblockblur is the blurred image from IblockSR, and
Hblur (·) denotes average pooling with a kernel size of 3 × 3
and padding margin of 1. From the operation in Eq.5,
to obtain an edge profile(or mask), IblockSR is subtracted by
Iblockblur . Then, we apply the ReLU operation on the edge
profile(or mask) to obtain the outer line.

M = ReLU (IblockSR 	 Iblockblur ), (9)

where M denotes edge profile(or mask) in the REPB, and
	 is element-wise subtraction. To guide the edge in the
training process, IblockSR is concatenated withM

Iguided = Concat(IblockSR,M ), (10)

where Iguided and Concat(·) denote a guided image and con-
catenation operation, respectively. Finally, to generate the
feature of the EP module, one convolution layer is used, and
then the feature FFE information is provided by using the
residual structure.

FEP = FFE + HEP(Iguided ), (11)

where FEP stands for the feature from the EP module with a
channel size is 64, andHEP(·) denotes the edge profilemodule
of the REPB. By extracting the structural information, we can
obtain structure-preserving effects.

3) CONTEXT NETWORK (CN) MODULE
From the EP module, we can obtain informative feature
with structural information. These features could be benefi-
cial for preserving the structure. However, this module has
limitations in handling high-frequency components, such as
the texture and sharpness of the structure. Since the details
have frequent pixel variations, they can be difficult to cap-
ture. To reveal these contextual components, we construct
a CN module.

Inspired by a previous study [36], we design a CN mod-
ule that is based on dilated convolutions. We apply the
CN module following the EP module. As described in the
CN part of Fig.1, the CN module consists of four 3 × 3
dilated convolution networks, whose dilated factors are 1, 2,
4, and 1 in order. To prevent loss of resolution or coverage,
we consider the expansion of the receptive field to set up
dilated factors exponentially. Intuitively, the CN module can
improve the learning of the feature maps by passing them
through multiple layers that expose contextual information.
Subsequently, the output feature is added to the input feature
as a residual block.

FCN = FEP + Hf=1 ◦ Hf=4 ◦ Hf=2 ◦ Hf=1(FEP), (12)

where FCN is the output feature of the CN module, and
Hf=n(·) denotes a dilated convolution whose dilated factor f
is n. Because this operation captures contextual information
from the feature of the EP module FEP, EPSR can minimize
the loss of texture and recover sharpness. In other words,
recovering high-frequency components can be ensured by
minimizing the side effects and damages.

C. OBJECTIVE FUNCTIONS
Our EPSR is optimized with the set-up loss functions. Gen-
erally, L1 [20], [21], [32], [37], L2 [15], [16], [18], [19],and
adversarial and perceptual losses [3], [24] have been used in
the SR methods. To establish the effect of EPSR, we choose
two loss functions L1 and Lgradient . As proposed in previous
works, we select L1 to guarantee stable convergence. A given
training set with N LR images and their HR counterparts is
denoted as {I iLR, I

i
HR}

N
i=1. Then, we can formulate L1 loss as:

L1 =
1
N

N∑
n=1

||HEPSR(I iLR)− (I iHR)||1 (13)

Since our EPSR utilizes diverse features, REPBs generate
edge profiles depending on feature information from their
feature input. To provide a consistent standard for EPmodules
in the learning process, we consider a loss function to guide
them. Using Sobel filter [38], we can extract the gradient
maps of HR and SR and formulate gradient loss function as

Lgradient =
1
N

N∑
n=1

||S(HEPSR(I iLR))− S((I
i
HR))||1, (14)

where S(·) is the gradient function based on the Sobel
filter [38]. By adding Lgradient to L1, we can achieve an
end-to-end network without additional module training.
Therefore, the goal of training the EPSR is to optimize the
total loss function:

LTotal(θ ) = L1 + 10−1Lgradient , (15)

where θ is the parameter set of EPSR. We set the coeffi-
cient as 10−1 empirically. The loss function is optimized by
ADAM gradient descent algorithm.

III. EXPERIMENT RESULTS
A. SETTINGS
We state the settings of experiment about datasets, degrada-
tion models, evaluation, and training settings.

1) DATASETS
Following [20]–[22], we set up 800 high resolution images
from DIV2K dataset [39] as a training set. For testing,
we use 5 standard benchmark datasets: Set5 [40], Set14 [41],
B100 [42], Urban100 [43], and Manga109 [44].

2) DEGRADATION MODELS
In order to prove the effectiveness of our EPSR, we use
3 degradation models to generate LR images. First, we gen-
erate LR images with scaling factor ×2, ×3, ×4 by using
Bicubic Interpolation(BI) operation. BI degradation model
are generally used for checking the effect of super resolu-
tion as standard. Second, by using Gaussian kernel of size
7 × 7 with standard deviation 1.6, we blur HR image and
downsample it with scaling factor×3.We denote this process
as BD [45]. BD degradation model is utilized to verify the
resolution ability on blurry problem. At last, we downsample
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FIGURE 4. Ablation study with Bicubic(BI) degradation(×4) on ‘‘ img_033’’ from Urban100.

TABLE 1. Comparisons of models with different components. The best results are highlighted.

HR image with scaling factor ×3 using bicubic interpolation
and then add Gaussian noise with level 30. This process is
denoted as DN for short. DN degradation model is utilized to
prove the denoising ability.

3) EVALUATION METRICS
The SR results are evaluated with PSNR and SSIM [46] on
Y channel(i.e. luminance) of YCbCr space.

4) TRAINING SETTINGS
In training process, the training images are augmented by
randomly rotating 90◦,180◦,270◦, and horizontally flipping.
In each training batch, 8 LR color patches with size 48× 48
are extracted as input. Our model is trained by ADAM opti-
mizer with β1 = 0.9, β2 = 0.99, and ε = 1e − 8. We set
learning rate as 10−4 initially and then it is reduced to half
every 200 epochs. We implement our proposed EPSR using
Pytorch [47] on a Tesla V100 GPU.

B. ABLATION STUDY
As discussed above, our EPSR concentrates on the structure
preservation and representation details. To demonstrate the
effectiveness of EPSR, we focus on showing the influence of
the EP and CN modules, which could affect the quality of
SR results. Therefore, we set three comparisons by decom-
posing REPB, and two comparisons are performed by feature
extractions based on RECAB or RCAB according to previous
research [22].

First, to establish a criterion, we construct a basic block
without an EP module and a CN module. In other words,
by using only RECAB, SR images are generated directly.
As shown in Fig.4, only using RECAB is effective in repre-
senting texture information. However, it is difficult to recover
the image details and edge components. We proceed with an
experiment by connecting the EPmodule to feature extraction
to examine the effect of the edge profile. Even though the
edge profile is only provided the on network, we can check

the enhancement of image reconstruction in aspect of struc-
ture preservation. Subsequently, by adding a CN, we build a
full REPB. As explained in section II, the CN helps to capture
hidden information that includes image details. In Fig.4 (e),
which is generated by EPSR, edge and texture information
are reconstructed more stable than two images.

In terms of PSNR and SSIM evaluations(See Table.1)
on all datasets, utilizing edge properties brings significant
overall benefits in each evaluations. This implies that the
EP module is helpful in preserving the image structure in
the reconstruction process as shown in the SSIM evaluations.
Furthermore, by exploiting contextual information as image
details such as texture and edge, the CN module shows a
synergistic effect with the EPmodule. As a result, the efficacy
of the EP and CN modules is verified in image results and
numerical value evaluations. Furthermore, when we remove
the EP module in our EPSR, some problems occur in recov-
ering texture and edge information like as shown in Fig.4 (c).
This shows that, even if the CN module provides benefits to
capture contextual information, it could experience difficulty
in exploiting the overall features, which can be checked in the
numerical value evaluation. This indicates the rationality of
plugging the CNmodule into the combination of RECAB and
EP modules because it concentrates on capturing contextual
information that contains image details and not tendency of
features.

Additional experiments are conducted to investigate the
relationship between the EP module and feature extraction.
In our EPSR, we choose to use ECA for extracting features
in RECAB. To verify the effect of this, we conduct an experi-
ment by substituting ECA for feature extraction with Channel
Attention(CA) taken from a previous research [22]. This
substitution is RCAB. As shown in Fig.4 (d), the EPSR based
on RCAB generates a good SR image. However, the direction
of the edge lines is incorrect. As mentioned in section II,
since CA has problems with channel predictions, it gener-
ates unclear features, and it seems that the EP module has
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TABLE 2. Quantitative results with BI degradation model. Highlight stands for the best performance, red indicates the second, and blue is the third.

difficulty finding the right edge lines. In contrast, EPSR based
on ECA feature extraction reconstructs the edge and texture
successfully. It is revealed visually in the results generated
by EPSR based on ECA feature extraction and in numerical
value evaluations on PSNR and SSIM. This indicates that the
formation of proper features is important key for extracting
the correct edge profile to preserve the structure in SR.

C. RESULT WITH BI DEGRADATION
1) QUANTITATIVE COMPARISON
To compare the effectiveness of our network with other meth-
ods, we investigate 14 state-of-the-art SR methods including
general deep learning models, perceptual-driven models

and edge-related models: SRCNN [15], DEGREE [12],
VDSR [16], LapSRN [37], EDSR [20], MemNet [19],
IDN [48], SRMDNF [45], CARN [49], RDN [21],
RCAN [22], SRGAN [25], NatSR [50], SPSR [13]. All
the quantitative comparisons for ×2, ×3 and ×4 SR are
shown in Table.2. With rich texture information datasets,
such as Set5, Set14, and BSD100, our EPSR obtains better
SSIM results compared with other networks. NatSR obtains
high results, and shows limitations on the BSD100 dataset
specifically. However, our EPSR shows very well-balanced
results compared with NatSR and achieves high performance
on all datasets. Furthermore, in PSNR, it obtains compa-
rable results with those of RCAN and RDN, whose main
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FIGURE 5. Visual Comparison for SR(×4) with BI model on Urban100. The best results are highlighted.

target is the PSNR evaluation metric. In the Urban100 and
Manga109 datasets that contain rich repeated edge informa-
tion, our EPSR achieves competitive results in both PSNR
and SSIM. Subsequently, we compare our EPSR with SPSR
and DEGREE, which utilize structure information in the
SR method. They depend on artificial edge extraction and
exhibit good improvement in structure preservation. How-
ever, the results are inferior to those of our EPSR. Overall,
our EPSR shows high or competitive performance in terms
of the PSNR and SSIM evaluation metrics.

2) QUALITATIVE COMPARISON
We present visual comparison on scale ×4. Fig.5 shows that
the EPSR results are stronger in preserving the structure
and recovering texture than those of other methods. For
‘‘ img_076 ’’ and ‘‘ img_093’’, we can observe that most of
the compared models cannot reconstruct the lattices and have
trouble with blurring effects. Other methods generate twisted
lines and squashed lattices. However, EPSR shows strength in
recovering structural properties. We can see the capabilities
of capturing the structural characteristics of objects in an
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TABLE 3. Quantitative results with BD degradation model.

TABLE 4. Quantitative results with DN degradation model.

FIGURE 6. Visual Comparison for SR(×3) with BD model on Urban100. The best results are highlighted.

image, which contributes to preserving the structural infor-
mation in the image. Our EPSR captures image details well,
including high-frequency components. In ‘‘ img_030 ’’ our
EPSR shows a clear structure in images without damage and
distortion, while most of the other methods fail to reconstruct
the fine appearance of the objects. The qualitative compar-
ison verifies that our EPSR generates a geometrically more
stable image for perceptions by utilizing structural infor-
mation extracted autonomously and exploiting contextual
components.

D. RESULT WITH BD AND DN DEGRADATION
1) QUANTITATIVE COMPARISON
We apply our EPSR with the BD degradation model, which
was used in a recent [22], Following other research [21],
we further compare various SR methods on images with

the DN degradation model. We compare our EPSR with
8-state-of-the-art SR methods with ×3 scaling factors:
SRMSR [52], SRCNN [15], FSRCNN [34], VDSR [16],
IRCNN [53], SRMDNF [45], RDN [21], and RCAN [22].
In Table.3 and Table.4, all the results are presented explicitly.
We can observe that our EPSR exhibits a higher performance
than the other methods, indicating that our EPSR is an effec-
tive method for various types of degradation models.

2) QUALITATIVE COMPARISON
We also show visual comparisons for the challenging problem
of blurring(BD) and noising(DN) degradation. First, in BD,
there are difficulties in restoring the definite texture and
structural information. Fig.6 shows that the results of EPSR
are clearer and more natural than those of the other meth-
ods. Most methods suffer from heavy blurring problem, but
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FIGURE 7. Visual Comparison for SR(×3) with DN model on BSD100. The best results are highlighted.

our EPSR recovers texture more clearly than other methods.
In particular, the structure in our results is well-preserved
without serious distortions. In DN, since there is a heavy
loss of information in the LR, it is difficult to reconstruct an
ordinary image. In Fig.7, because of heavy damages of the
input, other methods have difficulties in overcoming a lack
of information and restoring distortions. However, EPSR can
restore edge information while preventing texture loss.

The results indicates that our EPSR can cope with damage
and distortion of texture and structure by utilizing diverse
information effectively. Our EPSR alleviates these problems
significantly and can reconstruct more details compared with
those reconstructed by other methods.

IV. CONCLUSION
In this paper, we propose Edge Profile Super Resolu-
tion (EPSR) method to preserve the structural information
and to restore texture in SISR. We construct EPSR by build-
ing modified-Fractal Residual Network (mFRN) structures
hierarchically and repeatedly. mFRN is composed of residual
Edge Profile Blocks (REPBs) consisting of Residual Efficient
Channel Attention Block (RECAB), Edge Profile (EP), and
Context Network (CN) modules. RECAB generates more
informative features with high-frequency components. From
this feature, EP module produces structure-informed features
by generating the edge profile itself. Finally, the CN mod-
ule captures details by exploiting high-frequency informa-
tion, such as texture and structure with proper sharpness.
By repeating the procedure in mFRN structure, our EPSR can
extract high-fidelity features, thus preventing texture loss and
preserving the structure with appropriate sharpness. Because
our EPSR considers texture loss and structural information by
applying conventional principle to the deep learning method,
high-quality results are obtained. Extension experiments on
SR with BI, BD, and DN degradation models demonstrate
the effectiveness of our EPSR.
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