
big data and
cognitive computing

Article

Hardening the Security of Multi-Access Edge Computing
through Bio-Inspired VM Introspection

Huseyn Huseynov 1,* , Tarek Saadawi 1 and Kenichi Kourai 2

����������
�������

Citation: Huseynov, H.; Saadawi, T.;

Kourai, K. Hardening the Security of

Multi-Access Edge Computing

through Bio-Inspired VM

Introspection. Big Data Cogn. Comput.

2021, 5, 52. https://doi.org/10.3390/

bdcc5040052

Academic Editor: Min Chen

Received: 4 August 2021

Accepted: 23 September 2021

Published: 8 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, City University of New York, City College, New York, NY 10031, USA;
saadawi@ccny.cuny.edu

2 Department of Computer Science and Networks, Kyushu Institute of Technology, Fukuoka 820-8502, Japan;
kourai@csn.kyutech.ac.jp

* Correspondence: hhuseynov@ccny.cuny.edu

Abstract: The extreme bandwidth and performance of 5G mobile networks changes the way we
develop and utilize digital services. Within a few years, 5G will not only touch technology and
applications, but dramatically change the economy, our society and individual life. One of the
emerging technologies that enables the evolution to 5G by bringing cloud capabilities near to the
end users is Edge Computing or also known as Multi-Access Edge Computing (MEC) that will become
pertinent towards the evolution of 5G. This evolution also entails growth in the threat landscape
and increase privacy in concerns at different application areas, hence security and privacy plays
a central role in the evolution towards 5G. Since MEC application instantiated in the virtualized
infrastructure, in this paper we present a distributed application that aims to constantly introspect
multiple virtual machines (VMs) in order to detect malicious activities based on their anomalous
behavior. Once suspicious processes detected, our IDS in real-time notifies system administrator
about the potential threat. Developed software is able to detect keyloggers, rootkits, trojans, process
hiding and other intrusion artifacts via agent-less operation, by operating remotely or directly from
the host machine. Remote memory introspection means no software to install, no notice to malware
to evacuate or destroy data. Experimental results of remote VMI on more than 50 different malicious
code demonstrate average anomaly detection rate close to 97%. We have established wide testbed
environment connecting networks of two universities Kyushu Institute of Technology and The City
College of New York through secure GRE tunnel. Conducted experiments on this testbed deliver
high response time of the proposed system.

Keywords: security and privacy; virtualization; intrusion detection; artificial immune system; virtual
machine introspection; cloud security

1. Introduction

The main idea of the MEC initiative is bringing the clouds closer to the edge of the
network as well as to the users. According to the estimation by Cisco Annual Internet
Report [1], 5G devices and IoT connections will be over 10% of global mobile devices by
2023. Utilizing MEC architecture as a forefront for 5G mobile networks (Figure 1) enables
technological advancement to both cloud service providers (CSPs) and to businesses.
However, these remarkable benefits are not offered without cost [2]. Due to its decentralized
computational architecture, resources in MEC environment expanded across different
geographical regions [3]. Usage of edge servers and cloud computing poses a number
of security risks in various areas such as in Application-Programming Interfaces (APIs),
Virtualization and Containerization, Physical machines and others [4].

Big Data Cogn. Comput. 2021, 5, 52. https://doi.org/10.3390/bdcc5040052 https://www.mdpi.com/journal/bdcc

https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-8932-9464
https://orcid.org/0000-0003-4605-1033
https://orcid.org/0000-0002-5455-4418
https://doi.org/10.3390/bdcc5040052
https://doi.org/10.3390/bdcc5040052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bdcc5040052
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc5040052?type=check_update&version=1

Big Data Cogn. Comput. 2021, 5, 52 2 of 21

Figure 1. Multi-access Edge Computing (MEC) in 5G.

One of the most critical type of attacks in such a decentralized environment are insider
attacks. In this context, insiders can be a CSP employees having access to the physical servers
on which user data are stored. Mitigating the risk of potential insider attacks might require
CSP to ensure well coordinated routine background checks for their employees, but this
will not be enough if someone already uploaded a keylogger or installed a rootkit. Tackling
these types of attacks requires “out of the box” intrusion detection system (IDS), which we
are presenting in this paper by implementing remote virtual machine introspection (VMI).
Proposed IDS operates outside of the infected VM, which lowers to zero chances of being
compromised by any sophisticated malware.

In MEC, the adversary compromising Virtual Machines (VMs) are mostly malicious
insiders that have administrative privileges or an application that operates with escalated
privileges [4]. In this sort of situation, multiple set of attacks can be performed to the
VM including attacks to communication links by continuous data eavesdropping between
edge nodes and IoT devices [5]. These types of threats open up the affected VMs to
numerous other potential attacks such as logic bomb, trojans, spyware and other malicious
applications that could compromise the security of other data centers when the infected
VM migrates to different physical location. Data encryption is a common mechanism that
can be applied here to protect data confidentiality, but typically this cause a significant
reduction in computational resources [6].

Proposed work is a real-time, artificial immune system (AIS) based intrusion detection
and mitigation solution for MEC servers, which aims to provide autonomous security
and constant virtual machine introspection through a high degree of detection accuracy.
Developed IDS constantly introspects multiple VMs by tracking the events such as system
calls, interrupts, memory reads/writes, number of open files, network activities and other
logs. Built-in VMI tool—KVMonitor, remotely accesses VM memory and gathers data
eliminating needs to install any software in VM. Remote VMI along with network traffic
monitoring provides efficient malware protection mechanism against many new or existing
attacks such as spyware, keylogger, worm, rootkit or trojan. Fully automated, real-time,
IR-like discovery task directly into cloud fabric through volatile VM introspection. In this
paper, we are demonstrating experimental results of our testbed that connects networks
between Kyushu Institute of Technology and The City College of New York through
secure GRE tunnel. This project considered as part of the worldwide development of
an international networking and wireless platform by federating US research testbeds
including COSMOS, ORBIT, FABRIC and PEERING with exploratory facilities in Ireland,
Greece, Brazil, and Japan [7–10]. The global platform will enhance experimental research

Big Data Cogn. Comput. 2021, 5, 52 3 of 21

on a wide range of optical, wireless, SDN and NFV, blockchain, inter-domain routing
and edge computing experiments at a global scale. Conducted experiments deliver high
response time of the proposed system and efficient detection rate.

This paper is organized as follows: Section 2 provides overview of related work in
intrusion detection for MEC servers and security of Virtual Machines. Section 3 delivers a
brief background on MEC and outlines potential threat vectors in this domain. Section 4
explains the artificial immune system based IDS and the way a negative selection algorithm
(NSA) is applied in this work. Section 5 presents our intrusion detection system for MEC
environment. Section 6 illustrates a comprehensive performance evaluation of the proposed
security approach. Section 7 draws conclusion and discusses future work.

2. Related Work

With the increasing number of cyber security incidents, caused by the large attack
surfaces, intrusion detection and mitigation becomes an even more important topic of
research. Existing articles in Fog Computing and MEC security mainly focuses on ana-
lyzing the aspects of authentication, access control, intrusion detection, and user privacy.
Dsouza et al. [11] first described the advantages of Fog Computing as a new paradigm
and underlined the security issues in several scenarios, including Man-In-The-Middle
(MIM) attacks and privacy issues. Pacheco, Benitez et al. [12] propose a methodology
to develop an intrusion detection system based on anomaly behavior analysis to detect
when a Fog node has been compromised. The crucial component of their architecture is
Artificial Neural Networks (ANN), which requires the dataset of features and constant
offline training. In [13] Evmorfos et al. suggested a technique that uses Long Short-Term
Memory (LSTM) and Random Neural Networks (RNN) to tackle SYN flooding type at-
tacks in large cloud-based networks. Their detection tactics includes capturing and saving
network traffic as pcap files for further processing.

Since MEC application instantiated in the virtualized infrastructure of an MEC host,
therefore, research in development of intrusion detection systems for Virtual Machines
(VMs) is paramount in this domain. To prevent information leakage from virtual devices
and tampering with their I/O data, Futagami et al. [14] proposed a nested virtualization
application (VSBypass) that runs the entire virtualized system in an outer VM. Another
paper, written by Inokuchi and Kourai [15], addresses user privacy in virtualized environ-
ment. They propose a strong user binding to VMs by decrypting its encrypted disk inside
the trusted hypervisor. Sethi et al. [16] proposed Intrusion Detection System for cloud
infrastructure based on Deep Reinforcement Learning. They have performed extensive
experimentation using the benchmark UNSW-NB15 dataset [17]. This publicly available
dataset consists of normal traffic and nine types of attack traffic that includes DoS, DDoS,
fuzzing, backdoor, analysis, exploit, worm, and shellcode. The limitation of this dataset is
the lack of sufficiently many samples for some attack types.

Bio-inspired algorithms’ adaptability allows many researchers and practitioners to uti-
lize these techniques in solving many security-related cloud computing issues. In general,
biologically inspired algorithms can be classified into four categories, such as Evolutionary
algorithms, Swarm algorithms, Immune algorithms, and Neural algorithms [18]. Chiba et al. [19]
describe network intrusion detection system in cloud environment by applying Back Prop-
agation Neural Network and Genetic Algorithm. The anomaly detection technique builds a
model from normal behavior and any deviation from the normal model is considered to be
an outlier/attack. Obinna et al. [20] proposed a Denial-of-Service attack detection based on
Artificial Immune System. Their method is based on implementation of negative selection
algorithm that allows us to classify data as self-nonself, providing clear distinction between
normal profile and abnormal network activity (i.e., DoS attack).

Some of the existing works on cloud-based IDS and VM introspection were used
publicly available datasets. However, these datasets were not designed for Software
Defined Networks (SDN). Many existing datasets described here were created by recording
and processing pcap files utilizing different tools. Some other listed works focused on

Big Data Cogn. Comput. 2021, 5, 52 4 of 21

application of bio-inspired algorithms only in detection network based attacks through
local VM introspection. Therefore, there is a high possibility that those systems will not
be able to detect anomalies in already compromised MEC servers. An important idea of
remote VMI presented in this work is that IDS residing in a client machine is able to access
multiple VMs running on different hosts across the world. Therefore, the proposed system
can introspect many VMs and at the same time cannot be compromised by malicious
application launched on remote host or guest machines.

3. Security Threats in Multi-Access Edge Computing

MEC technology aims to reduce communication latency between IoT devices and
centralized cloud by storing data at the edge of network rather than at some distant data
centers [21]. The key aspects of MEC implementation will be massive bandwidth, compute
and storage availability at remote locations, reduced latency, minimized network traffic
and less compute on the device. Shifting computing requirements from devices to the edge
nodes at MEC will reduce energy consumption and deliver new devices, such as portable
augmented/virtual reality (AR/VR) headsets. In addition, organizations will benefit from
MEC by developing a scalable and efficient IoT capabilities known as Mobile Internet of
Things (MIoT) [22].

MEC architecture is designed for optimal softwarization of functions and efficient
infrastructure utilization. As shown in Figure 2, all MEC applications and application
platform services are software applications running on hardware components that consist of
multiple virtual machines. This design allows us to lower the cost of hardware components
by combining off-the-shell elements with function virtualization. For example, the MEC
virtualization manager layer shown in Figure 2 provides Infrastructure as a Service (IaaS)
facilities, which will provision for flexible and efficient multi-tenancy, run-time and hosting
environment for MEC application platform services.

Figure 2. MEC server platform [23].

Big Data Cogn. Comput. 2021, 5, 52 5 of 21

Compared to conventional on-premises data centers, the diversity of MEC architecture
and its distributed nature awakes different types of vulnerabilities and privacy concerns.
We have classified these threats into three main categories based on attack vectors: virtual-
ization, application and network based threats. Table 1 illustrates a summary of categorized
data security challenges in edge computing.

Table 1. Categorization of attack vectors in edge computing paradigm.

Asset Virtualization Application Networking

Challenges

• VM Escape
• Hyperjacking
• VM Manipulation
• Malicious Insiders
• Zero-day Exploit

• Data Tampering
• Privacy Leakage
• API Abuse
• Security Misconfiguration
• Zero-day Exploit
• Injection

• Denial of Service
• Man-in-the-Middle

(MitM)
• Spoofing
• Zero-day Exploit
• Eavesdropping

• Virtualization threats. Virtualization is an integral attribute of MEC architecture. The
hypervisor being a controlled mechanism of virtualization layer, controls access to
hardware resources. This allows each VM to run on a shared hardware and at the same
time to hide the presence of others. While virtual machines provides an isolated secure
environment there are several types of vulnerabilities they can be exposed to. If an
attacker succeeds in taking control of the hypervisor either being a malicious insider or
through injection of a fraudulent hypervisor then this considered as a hyperjacking attack.
Spurious hypervisor will manage the entire system and regular security measures will
be ineffective in detecting this adversary. VM escape is another threat factor when the
process is “breaking out” of the VM where it is running and gets access to the host
machine [24]. MEC infrastructure can be affected by VM manipulation attack, where
software with escalated privileges or a malicious insider can take control of VM and
perform necessary modifications. In addition, arbitrary container access manipulation
can lead to a control takeover attack on the container, and there is a possibility of data
manipulation or data leakage through open API vulnerabilities in MEC applications.

• Application threats. Third party applications running in MEC servers can pose a fatal
security threats by exposing virtual machines to different malicious applications. With
current AI-driven technologies cybercriminals can develop more sophisticated malware
to perform data-tampering attacks by injecting a malevolent client. Injection attacks occur
when malicious code is embedded into unsecured software. SQL injections and XSS
(cross-site scripting) are well known examples of this type attack. Attacks targeting
hypervisor software or container engines can lead to data leakage within MEC applica-
tions [21]. Often, indirectly launched attacks through remotely controlled software or
other malware-infected applications can spread to many MEC applications. Keyloggers,
rootkits, spyware/adware, worms, ransomware, trojans and other villainous threats poses po-
tential risks for virtual machines. Often hackers can exploit the vulnerability in software
before developers can detect it, that exploit becomes known as a zero-day attack and all
three layers in Table 1 can be vulnerable to zero-day attack.

• Networking threats. Denial of Service (DoS) attack is one of the most common and age-
long threats in network infrastructure. DoS can shut down a machine or network by
flooding the target with traffic, or sending it information that triggers a crash [20]. An
additional type of DoS attack is the Distributed Denial of Service (DDoS) attack. A DDoS
happens when multiple systems orchestrate a synchronized DoS attack to a single target.
The essential difference is that instead of being attacked from one location, the target is
attacked from multiple locations at once. In MEC systems, DoS attacks can carry only
limited damage to network as described in [4]. Consequently, localized architecture of
edge data centers prevents major damage to its core components. MEC systems are
also vulnerable to Man-in-the-Middle (MitM) attacks, when a hacker or malicious agent
intercepts and alters communication of two or more parties while they believe that

Big Data Cogn. Comput. 2021, 5, 52 6 of 21

they are communicating with each other directly [25,26]. Software Defined Network
(SDN) opens up an avenue for DNS spoofing attacks, when adversary divert traffic to
an IP address other than where it was originally directed. Therefore, since the MEC
architecture relies on virtualization, this type of attacks can disrupt not only multiple
connected VMs but also affect all other elements of infrastructure.

Proposed work mainly focuses on detecting security threats in MECs from application
and networking perspective. Our approach is based on implementation of remote virtual
machine introspection (VMI) followed by applying screening through artificial immune
system (AIS) algorithms. Inspired by theoretical immunology, AIS found its application
in various Computer Science problems [27]. Utilizing evolutionary algorithms provide
efficient anomaly detection mechanism through continuous training on normal models
and producing a set of patterns (detectors).

4. Artificial Immune System Based Intrusion Detection

IDSes are usually classified by their approach of detecting attacks. Two main categories
are signature-based detection and anomaly-based detection. One of the largest drawbacks
of signature-based IDSes is that they mainly rely on signature database in order to detect
attacks. Therefore, they may not recognize a new type of attack if its not listed in their
database. On the other hand, anomaly-based IDSses typically work by taking into account
a baseline of the normal traffic and any deviation from the normal considered as a threat [4].
Conversely, there can be a large number of false positives from anomaly-based IDSes
compared to signature-based detection techniques. Therefore, efficiency of anomaly-based
IDSes depends on multiple factors such as types of implemented algorithms, targeted
systems, amount of generated input data, type of selected features, application complexity,
response time and so on.

Artificial Immune System (AIS) is an area of artificial intelligence that focuses on
algorithms abstracted from the models that exist in immunology [28]. These computational
models of algorithms inspired by the principles of human immune system (HIS) and
have characteristics of learning, adaptation, self-organization, memory and scalability.
By imitating HIS these algorithms have developed as an effective solution for scientific
computing and engineering applications [27]. Among various applications are data mining,
pattern recognition, anomaly detection, predictive analytics, industrial control systems
and IoT.

4.1. Negative Selection Algorithm

There are several class of algorithms inspired by various immunological theories.
The most common of them are Clonal Selection Algorithm, Immune Network Algorithm,
Negative Selection Algorithm (NSA) and Dendritic Cell Algorithm. This class of algorithms
are generally used for classification and pattern recognition problems, where the problem
space is modeled based on available knowledge. NSA is inspired by positive (self) and
negative (nonself) selection process that resembles analogy of the human immune system
(HIS). Forest et al. [29] describe initial steps of NSA as randomly generated detectors, such
as B cells in HIS. These detectors later in the process are used to match with incoming set
of data for anomaly detection. Many alternatives of Negative Selection Algorithm have
been developed since the original version was first introduced [29], but despite this the
original NSA is still popular. The main idea in NSA is that given shape-space U is divided
into two sets: a self set S and a nonself set N, as shown below

U = S ∪ N and S ∩ N = ∅ (1)

NSA consist of two phases: detector generation phase and nonself detection phase. The
generation of detectors Figure 3 involves screening the entire system to obtain its normal
profile. This considered one of the challenges in NSA because self elements do not remain
unchanged through the whole time. Therefore, continuous learning and building a self pro-

Big Data Cogn. Comput. 2021, 5, 52 7 of 21

file is an important factor of the algorithm. Once the normal profile is obtained, we utilize
Genetic Algorithm to generate candidate detectors that differ from normal set [27]. Nonself
detection phase is a separate process that constantly utilizes previously built set of detectors
to determine potential anomaly. Algorithm 1 illustrates a pseudocode of a basic negative
selection algorithm. A detector is defined as d = (C, rd), where C = {c1, c2, ..., cm}, ci ∈ R,
is an m-dimensional point that corresponds to the center of a unit hyper-sphere with rd ∈ R
as its unit radius. For the generic NSA shown in Algorithm 1, rd = rs.

Algorithm 1 A Generic Negative Selection Algorithm.

1: function GENERICNSA(S, Tmax, rs)
2: . Where S - set of normal/self profiles, Tmax - max. number of detectors, rs -

matching threshold.
3: D ← ∅
4: while |D| < Tmax do
5: Generate a random detector (d)
6: if d does not match any element in S then
7: D ← D ∪ d
8: end if
9: end while

10: for All new incoming samples ν ∈ ∪ do
11: if ν matches any element in D then
12: Classify ν as a nonself sample
13: end if
14: end for
15: return D
16: end functionVersion September 19, 2021 submitted to Big Data Cogn. Comput. 9 of 21

Start

Generate random candidate X

X matches any self
sample?

Save X as a new detector

Max. number of
detectors generated?

End

Yes

Yes

No

No

Figure 3. NSA detector generation phase.

generation process is halted when the desired number of detectors is obtained. HH:Once the number of307

obtained detectors is sufficient the algorithm terminates generation process [24].308

Random
Candidates Match

Self
Samples

No

Yes

Add to the list
of detectors

Discard

Data

Match

List of
Detectors

No

Yes

Normal
(Self)

Abnormal
(Nonself)

Figure 4. Detector generation process on the left (a) and nonself detection on the right (b).

HH:The distance between detectors and self features was calculated using Squared309

(Euclidean)distance. This can also be derived using any real valued distance measures.310

d(c, x) =
m

∑
i=1

(ci − xi)
2 (2)

HH:In proposed work, we are constantly applying NSA to the data obtained from a311

VM through virtual machine introspection. If at any point IDS detects a match then this312

counts as a potential anomaly. 3:The self-space consisted of a set S, a subset of [0, 1]m; accordingly, a data313

point was represented as a feature vector x = (x1, x2, ..., xm) in [0, 1]m. At the beginning, an initial population of314

candidate detectors is generated at random. Such detectors then mature through an iterative process. 3:Given315

a set S that has a subset of [0, 1]m, we can describe a feature vector as x = (x1, x2, ..., xm)316

in [0, 1]m. By employing Genetic Algorithm initial set of candidates are being generated317

randomly and called candidate detectors. These detectors later in the process evolve318

to cover more areas around the self set. This happens during each iteration, when the319

Figure 3. NSA detector generation phase.

Big Data Cogn. Comput. 2021, 5, 52 8 of 21

A block-diagram in Figure 4 illustrates two NSA phases. During the detectors genera-
tion process any candidates that matched with self samples are removed. Once the number
of obtained detectors is sufficient the algorithm terminates generation process [27].

Version September 19, 2021 submitted to Big Data Cogn. Comput. 9 of 21

Start

Generate random candidate X

X matches any self
sample?

Save X as a new detector

Max. number of
detectors generated?

End

Yes

Yes

No

No

Figure 3. NSA detector generation phase.

generation process is halted when the desired number of detectors is obtained. HH:Once the number of307

obtained detectors is sufficient the algorithm terminates generation process [24].308

Random
Candidates Match

Self
Samples

No

Yes

Add to the list
of detectors

Discard

Data

Match

List of
Detectors

No

Yes

Normal
(Self)

Abnormal
(Nonself)

Figure 4. Detector generation process on the left (a) and nonself detection on the right (b).

HH:The distance between detectors and self features was calculated using Squared309

(Euclidean)distance. This can also be derived using any real valued distance measures.310

d(c, x) =
m

∑
i=1

(ci − xi)
2 (2)

HH:In proposed work, we are constantly applying NSA to the data obtained from a311

VM through virtual machine introspection. If at any point IDS detects a match then this312

counts as a potential anomaly. 3:The self-space consisted of a set S, a subset of [0, 1]m; accordingly, a data313

point was represented as a feature vector x = (x1, x2, ..., xm) in [0, 1]m. At the beginning, an initial population of314

candidate detectors is generated at random. Such detectors then mature through an iterative process. 3:Given315

a set S that has a subset of [0, 1]m, we can describe a feature vector as x = (x1, x2, ..., xm)316

in [0, 1]m. By employing Genetic Algorithm initial set of candidates are being generated317

randomly and called candidate detectors. These detectors later in the process evolve318

to cover more areas around the self set. This happens during each iteration, when the319

(a) (b)

Figure 4. Detector generation process on the left (a) and nonself detection on the right (b).

The distance between detectors and self features was calculated using Squared (Eu-
clidean) distance. This can also be derived using any real valued distance measures.

d(c, x) =
m

∑
i=1

(ci − xi)
2 (2)

In proposed work, we are constantly applying NSA to the data obtained from a VM
through virtual machine introspection. If at any point IDS detects a match then this counts
as a potential anomaly. Given a set S that has a subset of [0, 1]m, we can describe a feature
vector as x = (x1, x2, ..., xm) in [0, 1]m. By employing Genetic Algorithm initial set of
candidates are being generated randomly and called candidate detectors. These detectors
later in the process evolve to cover more areas around the self set. This happens during
each iteration, when the radius of each detector is calculated as rd = dValue− rs, where rs
is the variable distance around a self, Figure 5.

Figure 5. Self and nonself regions during detector generation process.

Big Data Cogn. Comput. 2021, 5, 52 9 of 21

During an iterative process, detectors are moved away from self data and the other
generated detectors. Depending on coverage, to eliminate the gap between self and nonself
data, different sized detectors were produced and evaluated on each generation. A clone
of detector is generated by moving center of the original detector by a fixed distance to
its proximity. In addition, new random detectors are introduced to explore new areas of
the nonself space. The overlap between two detectors are also computed in terms of the
distance dValue between their centers and radii. The detector generation process terminates
when a set of mature detectors evolved that can provide significant coverage of nonself
space. Figure 6 shows the flow diagram of the Genetic Algorithm process for generating
variable-sized negative detectors.

Figure 6. Genetic Algorithm for variable-sized detector generation process.

In the detection stage, the list of stored detectors are used to check whether new
incoming samples correspond to self or nonself instances. If an input sample matches a
detector, then it is identified as part of nonself, which refers that anomaly/change has
occurred (see Figure 4b).

5. Proposed Security Approach

Proposed IDS provides security in MEC environments through automated, bio-
inspired analysis of network flows, VM system calls and memory readings. Comprehensive
intrusion detection process is based on two main components: KVMonitor—a lightweight
and secure VMI module that gathers data from virtual machines and Artificial Immune
System based IDS that employs KVMonitor and performs analysis of collected data. Com-
posed information is being constantly compared to the list of detectors, any match directly
reported as anomaly.

First step of provided approach lies on detailed study of many different malicious
applications in order to discover what features of the system have been affected. Every
process, whether this is a normal system application or hidden malicious script, creates
a fingerprint in the system by constantly changing several system-wide parameters. As

Big Data Cogn. Comput. 2021, 5, 52 10 of 21

a simple example, every running process has some memory consumption that can be
tracked. At the same time, we can count how many times a particular process accessed
the network, communicated to any drivers, how many child processes it has and so on.
Table 2 illustrates eight different features and their values for four normal and abnormal
processes running in Linux based VM. First column represent process ID numbers (PID)
of running processes. All other columns are system/network based features: system calls
Write() and Read(), RssFile—size of resident file mappings, Open Files—number of open
files, Socket—number of attached file descriptors, amount of TCP and UDP connections
followed by a system call Send()—number of bytes sent by the process.

Table 2. Example of raw features for normal (green) and abnormal (red) processes.

PID Write Read RssFile Open Files Sockets TCP UDP Send

237 0 18,472,960 6788 167 126 0 0 0
1124 0 86,016 716 8 3 0 0 0
3618 0 233,472 5396 33 8 0 1 0
578 24,576 35,786,752 30,084 40 23 0 0 0
1344 4096 0 0 3 0 6 0 0
1876 57,344 36,864 0 2 0 0 0 32,768
3151 32,768 16,384 0 5 0 8 12 12,288
895 24,576 8192 0 4 0 4 3 8192

A person can differentiate processes listed in Table 2 without knowledge of normal/ab-
normal, only based on represented values. We automated this process using Negative
Selection Algorithm (NSA) giving prior knowledge about benign and malignant behavior.
To generate detectors, features are being converted to the binary tuples in accordance with
predetermined string matching rules [27].

Algorithm 2 demonstrates converting process for values of system call Write() to
the binary form. Depending on the feature, conversion process can be limited until the
value reaches certain defined constant. Applying similar transformation rules for every
other feature, final representation of binary form will be as shown on Table 3. Feature
column on this table is a concatenation of all features after converting them to the binary
form. Lines colored red are detectors since they belong to abnormal processes. On the
contrary, green lines are the features that belong to normal processes. In this example,
length of detectors l = 20 and PID = 1876 (nonself) consists of the following tuples:
C1[1110], C2[1001], C3[0], C4[011], C5[00], C6[0], C7[0], C8[1110]. For any Ci[s] and partial
matching threshold r:

1 ≤ i ≤ (l − r + 1)

Algorithm 2 Converting Value of System Call Write() to the Binary Form.

1: const C = 15
2: var binary_value = 0000
3: var X = WriteSystemCall mod 4096
4: if X 6 C then
5: binary_value = convertToBinary(X)
6: end if
7: return binary_value

Big Data Cogn. Comput. 2021, 5, 52 11 of 21

Table 3. Example of self (green) and nonself (red) features in binary format.

PID Feature

237 00000000100011000000
1124 00000000100011000000
3618 00000000100011010000
578 01100000100011000000

1344 00010000001100101000
1876 11101001001100001110
3151 10000100010100110011
895 01100010010000110010

Having a list of detectors and given a collection of self-strings S as an input along with
a matching rule and a partial matching threshold, present algorithm is able to recursively
compare all the bits on each tuple and return whether a match occurs or not—nonself
detection phase, Figure 4b.

To generate binary detectors, in other words, a set of features that correspond to
abnormal processes, DEAP (Distributed Evolutionary Algorithms in Python) package has been
utilized in the proposed application [30,31].

The overall architecture of proposed application shown in Figure 7 implements secu-
rity in MEC environment through remote analysis of VM’s network and obtaining system
level process information. Using Evolutionary Algorithm within the DEAP framework and
feeding it in advance with a set of normal features, application generates sufficient amount
of detectors. During this process, Squared (Euclidean) distance (Equation (2)) is imple-
mented as a fitness function to measure the distance between self and randomly generated
nonself features.

KVMonitor is a pivotal component of proposed IDS that provides continuous and
remote VMI. VM memory introspection is performed through accessing a memory file
withing the host machine without any interruption to running system. By executing cr3
command using QEMU monitor protocol (QMP), KVMonitor connects to QEMU-KVM
and then can send necessary QMP commands as shown in Figure 8 [32]. Through the
KVMonitor proposed IDS can also introspect network of a VM by constantly capturing
packets from virtual NICs. To introspect virtual disk, KVMonitor links an available loopback
device (e.g., /dev/loop0) to a disk image by the losetup command, followed by producing
device maps and mounting them in a similar way to a disk image with qcow2 [32].

Version September 19, 2021 submitted to Big Data Cogn. Comput. 13 of 21

{ "execute": "cr3" }

{ "return": { "CR3": "0x000000001f96e000" } }

{ "execute": "xaddr",

"arguments": { "addr": "0xffffffff814a8340" } }

{ "return": { "paddr": "0x00000000014a8340" } }

Figure 7. Example of execution CR3 and XADDR commands using QMP [29].

1. Detector Generation

Normal DEAP GA Detectors

f x

2. Nonself Detection

VM

KVMonitor

IDS

VM

...

VM

host operating system

Matching

monitoring

Figure 8. MEC-based Security Solution Architecture

by producing device maps and mounting them in a similar way to a disk image with405

qcow2 [29].406

HH:KVMonitor is a crucial component of the Nonself Detection phase that provides an API for translating407

a virtual address to a physical one [29]. To introspect a virtual disk with the qcow2 format, KVMonitor uses408

network block device (NBD) for QEMU. By doing so, it allocates a real disk space only to used blocks, therefore409

saving a disk space. Several conducted experiments confirmed efficiency of memory introspection using410

KVMonitor[29]. It constantly introspects multiple virtual machines and returns raw features to the IDS. Latter411

converts these values into the appropriate binary forms and begins matching process. If application finds a412

match for any incoming set of features among the detectors, it is immediately notifies administrator about413

potential anomaly.414

HH:To introspect the network of a VM, IDS captures packets from virtual NICs of the VM. In our example,415

QEMU-KVM creates tap network devices (e.g., vnet0) similar to Xen’s full virtualization. These tap devices are416

connected to the network bridge and all the packets from/to a VM can be captured. To introspect virtual disk,417

KVMonitor associates an available loopback device (e.g., /dev/loop0) to a disk image by the losetup command,418

followed by creating device maps and mounting them in a similar way to a disk image with qcow2 [29].419

5.1. Detector Generation Using Genetic Algorithm420

A detection rule considered sufficient if it is not covering any positive samples (the
self features) and it covers a large area of nonself space. Considering self-space S as a
subset of [0, 1]n and a feature vector x = (x1, x2, ..., xn) in [0, 1]n, then a detector can be
represented as a “detector rule” in the form

Ri : if condi then nonsel f , f or i = 1, ..., m

where condi = X1 ∈ [lowi
1, highi

i] and ... and Xn ∈ [lowi
n, highi

n]. Here m is the number
of detection rules and n the dimension of the Euclidean space [24]. Pseudocode for the
Genetic Algorithm on generating detectors illustrated in Algorithm 3. In this approach
we assume that all detectors had the same shape and size; particularly, hyper-spheres of

Figure 7. MEC-based Security Solution Architecture.

Big Data Cogn. Comput. 2021, 5, 52 12 of 21
Version September 19, 2021 submitted to Big Data Cogn. Comput. 13 of 21

{ "execute": "cr3" }

{ "return": { "CR3": "0x000000001f96e000" } }

{ "execute": "xaddr",

"arguments": { "addr": "0xffffffff814a8340" } }

{ "return": { "paddr": "0x00000000014a8340" } }

Figure 7. Example of execution CR3 and XADDR commands using QMP [29].

1. Detector Generation

Normal DEAP GA Detectors

f x

2. Nonself Detection

VM

KVMonitor

IDS

VM

...

VM

host operating system

Matching

monitoring

Figure 8. MEC-based Security Solution Architecture

by producing device maps and mounting them in a similar way to a disk image with405

qcow2 [29].406

HH:KVMonitor is a crucial component of the Nonself Detection phase that provides an API for translating407

a virtual address to a physical one [29]. To introspect a virtual disk with the qcow2 format, KVMonitor uses408

network block device (NBD) for QEMU. By doing so, it allocates a real disk space only to used blocks, therefore409

saving a disk space. Several conducted experiments confirmed efficiency of memory introspection using410

KVMonitor[29]. It constantly introspects multiple virtual machines and returns raw features to the IDS. Latter411

converts these values into the appropriate binary forms and begins matching process. If application finds a412

match for any incoming set of features among the detectors, it is immediately notifies administrator about413

potential anomaly.414

HH:To introspect the network of a VM, IDS captures packets from virtual NICs of the VM. In our example,415

QEMU-KVM creates tap network devices (e.g., vnet0) similar to Xen’s full virtualization. These tap devices are416

connected to the network bridge and all the packets from/to a VM can be captured. To introspect virtual disk,417

KVMonitor associates an available loopback device (e.g., /dev/loop0) to a disk image by the losetup command,418

followed by creating device maps and mounting them in a similar way to a disk image with qcow2 [29].419

5.1. Detector Generation Using Genetic Algorithm420

A detection rule considered sufficient if it is not covering any positive samples (the
self features) and it covers a large area of nonself space. Considering self-space S as a
subset of [0, 1]n and a feature vector x = (x1, x2, ..., xn) in [0, 1]n, then a detector can be
represented as a “detector rule” in the form

Ri : if condi then nonsel f , f or i = 1, ..., m

where condi = X1 ∈ [lowi
1, highi

i] and ... and Xn ∈ [lowi
n, highi

n]. Here m is the number
of detection rules and n the dimension of the Euclidean space [24]. Pseudocode for the
Genetic Algorithm on generating detectors illustrated in Algorithm 3. In this approach
we assume that all detectors had the same shape and size; particularly, hyper-spheres of

Figure 8. Example of execution CR3 and XADDR commands using QMP [32].

5.1. Detector Generation Using Genetic Algorithm

A detection rule considered sufficient if it is not covering any positive samples (the self
features) and it covers a large area of nonself space. Considering self-space S as a subset of
[0, 1]n and a feature vector x = (x1, x2, ..., xn) in [0, 1]n, then a detector can be represented
as a “detector rule” in the form

Ri : if condi then nonsel f , f or i = 1, ..., m

where condi = X1 ∈ [lowi
1, highi

i] and ... and Xn ∈ [lowi
n, highi

n]. Here m is the number
of detection rules and n the dimension of the Euclidean space [27]. Pseudocode for the
Genetic Algorithm on generating detectors illustrated in Algorithm 3. In this approach
we assume that all detectors had the same shape and size; particularly, hyper-spheres of
a fixed size radius r in an n-dimensional space and size. The fitness function for a rule R
defined as

f itness(R) = volume(R)− α× numberO f Sel f Samples(R), where volume(R) =
(

2r√
n

)

Algorithm 3 Genetic Algorithm for Generating Detectors.

1: Initialize population by selecting random individuals from the space S
2: for i = numberO f Generations do
3: for j = populationSize/2 do
4: select two individuals (with uniform probability) as parent1 and parent2
5: apply crossover to generate an offspring (child)
6: mutate child

. calculate distances between child and both parents
7: d1 = dist(child, parent1)
8: d2 = dist(child, parent2)

. calculate fitness values for child and both parents
9: f c = f itness(child)

10: f p1 = f itness(parent1)
11: f p2 = f itness(parent2)
12: if (d1 < d2) & (f c > f p1) then
13: replace parent1 with child
14: else if (d2 6 d1) & (f c > f p2) then
15: replace parent2 with child
16: end if
17: end for
18: end for
19: return best (highly-fitted) individuals

Volume of the effective coverage of a detector was approximated as the volume of
the inscribed hypercube. The parameter α denotes a coefficient of sensitivity, which for a
specific rule determines the trade-off between the volume covered by it and its interception

Big Data Cogn. Comput. 2021, 5, 52 13 of 21

with the self-set. Therefore, fitness is calculated as a sum of the fitness values of all evolved
rules minus the overlaps between hypercubes defined by the rules.

5.2. Nonself Detection

List of generated detectors is integral part of nonself detection phase. Results of
constant VM introspection are passed to the IDS as a hash table consisting process ids as
keys and features as values. Application on the fly starts matching of received data with
the list of nonself detectors. Simplified version of matching algorithm is shown below
(Algorithm 4).

Algorithm 4 Matching Function in Nonself Detection Phase.

1: function MATCHDETECTORS(F, D, rs)
. Where F - set of features received from KVMonitor as tuples (key=pid, value=feature),
D - list of generated detectors, rs - matching threshold.

2: result← ∅
3: for detectors ∈ D do
4: for f eatures ∈ F do
5: x = (detectors ∩ f eatures.value)
6: if len(x) > rs & f eatures.key /∈ Result then
7: result.append(f eatures.key, f eatures.value)
8: end if
9: end for

10: end for
11: return result
12: end function

Algorithm compares set of incoming features with the set of nonself detectors by
taking intersection between two sets. Result of intersection x holds list of features being
matched. If the length of matched features are equal or greater than the matching threshold
rs then it is being added to the resulting dictionary. By introducing matching threshold
as an argument, we create flexibility for users to manually increase or decrease detection
accuracy. For instance, setting it lower than half number of overall features, increases
amount of false positives returned by application. This is useful to observe how certain
normal processes are close to abnormal based on their anomalous behavior.

6. Experimental Evaluation

In this section, we provide an experimental evaluation of the proposed security ap-
proach using simulation environment similar to SDN-managed IoT network. We performed
experiments to evaluate the distributed intrusion detection and mitigation model in terms
of its effect on VM system and network parameters during various attack scenarios. The
experiments were conducted on a client machine with Intel Core i7-8750H @ 2.20 GHz
processor and 16 GB RAM to introspect remote VM with Intel Xeon Silver 4114 Processor
@ 2.20 GHz and 8 GB RAM running on Ubuntu 18.04 LTS based remote host with the same
processor on 8 cores and 131 GB RAM.

For deployment of the proposed IDS, the testbed setup illustrated in Figure 9 was
used. Secure GRE tunnel was established between the labs of two universities Kyushu
Institute of Technology in Japan, where the host OS and VM have been deployed, and
The City College of New York, where the client machine with IDS has been launched.
The maximum bandwidth of each link in the network was limited to 100 Mb per second.
Modern CISCO Gigabit Smart Switch with 50 ports has been used to manage the network.

Big Data Cogn. Comput. 2021, 5, 52 14 of 21

Version September 19, 2021 submitted to Big Data Cogn. Comput. 15 of 21

Algorithm 4 Matching function in nonself detection phase

1: function MATCHDETECTORS(F, D, rs)
▷ Where F - set of features received from KVMonitor as tuples (key=pid,
value=feature), D - list of generated detectors, rs - matching threshold.

2: result← ∅
3: for detectors ∈ D do
4: for f eatures ∈ F do
5: x = (detectors ∩ f eatures.value)
6: if len(x) ⩾ rs & f eatures.key /∈ Result then
7: result.append(f eatures.key, f eatures.value)
8: end if
9: end for

10: end for
11: return result
12: end function

Internet

GRE over IPSecR1 R2

HOST OS

Infected VM

Client PC

KVMonitor

AIS based IDS

HYPERVISOR

VMI

VM
features

VM
features

Kyutech Institute Lab, Japan CUNY/CCNY Lab, USA

Figure 9. Testbed environment.

@ 2.20GHz processor and 16 GB RAM to introspect remote VM with Intel Xeon Silver445

4114 Processor @ 2.20GHz and 8 GB RAM running on Ubuntu 18.04 LTS based remote446

host with the same processor on 8 cores and 131 GB RAM.447

For deployment of the proposed IDS, the testbed setup illustrated in Figure 9 was448

used. Secure GRE tunnel was established between the labs of two universities Kyushu449

Institute of Technology in Japan, where the host OS and VM have been deployed, and450

The City College of New York, where the client machine with IDS has been launched.451

The maximum bandwidth of each link in the network was limited to 100 Mb per second.452

Modern CISCO Gigabit Smart Switch with 50 ports has been used to manage the network.453

To evaluate the detection rate and system/network performance we conducted454

experiments with more than 50 different malicious applications: trojans, adware, worms,455

keyloggers, spyware, hyperjacking attack using preinstalled rootkit on a VM. In this pa-456

per we provide results of experiments conducted on four different open-source malicious457

applications listed in Table 4.458

Proposed application successfully detected all listed vulnerabilities and classified459

every flow entry based on triggered features. VM introspection time for KVMonitor460

in this experiment was set for 10 seconds. Within this time frame intrusion detection461

application periodically received data from KVMonitor and performed nonself detection462

process. In case if anomaly is detected, application triggered push notifications and463

sent email with detailed information about potential vulnerability. Figure 10 shows the464

action upon detection of Logkeys keylogger [30] running on remote VM. Depending on465

different threat models the output information varies.466

Figure 9. Testbed environment.

To evaluate the detection rate and system/network performance we conducted ex-
periments with more than 50 different malicious applications: trojans, adware, worms,
keyloggers, spyware, hyperjacking attack using preinstalled rootkit on a VM. In this paper
we provide results of experiments conducted on four different open-source malicious
applications listed in Table 4.

Table 4. Malware used in experiments and detection results.

Malware F1 Score (%) Description

Logkeys 99 Multi functional GNU/Linux keylogger. Logs all common
character and function keys [33].

Rootkit 94
Linux based rootkit that listens to certain ports, gives escalated
privileges to user, has built-in keylogger and able to hide from
common scanners [34].

Stitch 97

Cross-platform keylogger with remote administrative tool. User
can select payload to bind into specific IP and port, listens for a
connection on that port, has option to send an email of system info
when the system boots, and option to start keylogger on boot [35].

TrojanX 94
Basic Trojan application written in Swift with minimal GUI client
on Mac OS. Uses shell scripts to set up the system to use SOCKS
proxy [36].

Proposed application successfully detected all listed vulnerabilities and classified
every flow entry based on triggered features. VM introspection time for KVMonitor in
this experiment was set for 10 s. Within this time frame intrusion detection application
periodically received data from KVMonitor and performed nonself detection process. In case
if anomaly is detected, application triggered push notifications and sent email with detailed
information about potential vulnerability. Figure 10 shows the action upon detection of
Logkeys keylogger [33] running on remote VM. Depending on different threat models the
output information varies.

Figure 10. Detection of Logkeys Keylogger.

Big Data Cogn. Comput. 2021, 5, 52 15 of 21

In the following subsections, performance measurements and detection rate of our
IDS system are reported.

6.1. Network Performance Results

The maximum available bandwidth of all the links between the switch and hosts in our
network were set to 100 Mb per second. We have utilized perfSONAR toolkit (Performance
Service-Oriented Network monitoring Architecture) [37], to measure, identify and isolate
network problems in established testbed. Built-in iPerf3 tool was used to measure the
available bandwidth between two ends of GRE tunnel. The packet sending rate was
1000 packets per second and the payload of the packets was 1000 bytes.

We measured the feature retrieval time taken by KVMonitor from remote host machine
with respect to data flow in the switch using our IDS application. Figure 11 corresponds to
retrieval of 8 best features up to 20,000 flow entries. The feature collection of all features for
20,000 flow entries was 416.4 milliseconds, whereas it was 280 milliseconds for retrieving
the 8 best features for the same number of flows. It is fairly low and does not affect the
performance of the network.

Version September 19, 2021 submitted to Big Data Cogn. Comput. 17 of 21

0.5 1 1.5 2
·104

0

100

200

300

400

500

Number of flow entries in the R2 switch

Ti
m

e
(m

s)

Figure 11. Feature retrieval and processing time of 8 best features up to 20,000 flow entries.

0.5 1 1.5 2
·104

0

100

200

300

400

500

Number of flow entries in the R2 switch

Ti
m

e
(m

s)

Figure 12. Feature retrieval and processing time of all features up to 20,000 flow entries.

received, application calculates feature vector converting raw values into binary forms496

followed by classification and all takes 54 milliseconds when the switch has 1000 flow497

entries, shown on Figure 11.498

6.2. Memory and CPU Measurements499

Most of the listed vulnerabilities developed on purpose to not waste system re-500

sources and act quietly. Especially keyloggers and rootkits are behaving as unprivileged501

programs and surreptitiously eavesdropping all the keystrokes typed by the user. Per-502

formance comparison of KVMonitor with Xen described in [29] and [35] shows that503

KVMonitor was 48 times faster than Xen in accessing VM memory and during introspec-504

tion. This is mainly because Xen is repeating mapping and unmapping for each memory505

page of VM. KVMonitor, in contrast, can map the whole memory at first and access it506

like heap memory [29]. Our remote host has eight cores and to measure average CPU507

utilization for different processes we used the Linux iostat and top commands. Under508

normal conditions, most of the time CPU usage of the host were 0%.509

Figure 13 shows the CPU utilization on the host machine during the normal state510

and while KVMonitor accesses the VM memory file. Remote offloading was 8.5% slower511

than local due to network delay and additional booting time using VNC and SSH.512

Figure 11. Feature retrieval and processing time of 8 best features up to 20,000 flow entries.

One of the important measurement we have conducted is determining the time during
which application retrieves features from the VM. It is paramount to retrieve features
quickly in order to detect potential attacks. It is also important that the process of retrieving
features will not affect productivity on the client machine. Figure 12 shows the flow entry
collection by KVMonitor up to 20,000 flow entries in the R2 switch and despite that IDS
application collected features for all of the flows in 416.4 milliseconds, which does not
cause much overhead for the application on client side.

We observe that the feature retrieval time increases linearly with the number of flow
entries in the switch. However, our IDS performs feature processing on the fly and does
not wait to finish every flow entry in the switch before taking action. Once data received,
application calculates feature vector converting raw values into binary forms followed by
classification and all takes 54 milliseconds when the switch has 1000 flow entries, shown
on Figure 11.

Big Data Cogn. Comput. 2021, 5, 52 16 of 21

Version September 19, 2021 submitted to Big Data Cogn. Comput. 17 of 21

0.5 1 1.5 2
·104

0

100

200

300

400

500

Number of flow entries in the R2 switch

Ti
m

e
(m

s)

Figure 11. Feature retrieval and processing time of 8 best features up to 20,000 flow entries.

0.5 1 1.5 2
·104

0

100

200

300

400

500

Number of flow entries in the R2 switch

Ti
m

e
(m

s)

Figure 12. Feature retrieval and processing time of all features up to 20,000 flow entries.

received, application calculates feature vector converting raw values into binary forms496

followed by classification and all takes 54 milliseconds when the switch has 1000 flow497

entries, shown on Figure 11.498

6.2. Memory and CPU Measurements499

Most of the listed vulnerabilities developed on purpose to not waste system re-500

sources and act quietly. Especially keyloggers and rootkits are behaving as unprivileged501

programs and surreptitiously eavesdropping all the keystrokes typed by the user. Per-502

formance comparison of KVMonitor with Xen described in [29] and [35] shows that503

KVMonitor was 48 times faster than Xen in accessing VM memory and during introspec-504

tion. This is mainly because Xen is repeating mapping and unmapping for each memory505

page of VM. KVMonitor, in contrast, can map the whole memory at first and access it506

like heap memory [29]. Our remote host has eight cores and to measure average CPU507

utilization for different processes we used the Linux iostat and top commands. Under508

normal conditions, most of the time CPU usage of the host were 0%.509

Figure 13 shows the CPU utilization on the host machine during the normal state510

and while KVMonitor accesses the VM memory file. Remote offloading was 8.5% slower511

than local due to network delay and additional booting time using VNC and SSH.512

Figure 12. Feature retrieval and processing time of all features up to 20,000 flow entries.

6.2. Memory and CPU Measurements

Most of the listed vulnerabilities developed on purpose to not waste system resources
and act quietly. Especially keyloggers and rootkits are behaving as unprivileged programs
and surreptitiously eavesdropping all the keystrokes typed by the user. Performance
comparison of KVMonitor with Xen described in [32,38] shows that KVMonitor was 48 times
faster than Xen in accessing VM memory and during introspection. This is mainly because
Xen is repeating mapping and unmapping for each memory page of VM. KVMonitor, in
contrast, can map the whole memory at first and access it like heap memory [32]. Our
remote host has eight cores and to measure average CPU utilization for different processes
we used the Linux iostat and top commands. Under normal conditions, most of the time
CPU usage of the host were 0%.

Figure 13 shows the CPU utilization on the host machine during the normal state
and while KVMonitor accesses the VM memory file. Remote offloading was 8.5% slower
than local due to network delay and additional booting time using VNC and SSH. During
intervals of VM introspection, CPU of the host machine correlated around 2.8–3.4 %, which
is normal because KVMonitor is only accessing QEMU-KVM memory file stored in the
host in qcow2 format. The way how KVMonitor acquire access to the VM is implemented
by utilizing a cr3 command that comes with QEMU Monitor Protocol (QMP). The latter
provides user-friendly JSON-based structure that enables access to certain functionality.
This provides fast and reliable way to access memory of a virtual machine and extract
necessary data [32].

Main processing power is balanced on the client machine, where IDS constantly
receives raw data from KVMonitor and implements nonself detection phase. In this ex-
periment, we used client machine with six cores and two threads per core. As shown on
Figure 14 CPU utilization of feature retrieval on the client machine was around 35–45%
during the period of active processing.

Big Data Cogn. Comput. 2021, 5, 52 17 of 21
Version September 19, 2021 submitted to Big Data Cogn. Comput. 18 of 21

5 10 15 20 25 30
0

20

40

60

80

100

Time (s)

H
os

tC
PU

U
ti

liz
at

io
n

(%
)

Normal state
Introspection

Figure 13. CPU utilization in the remote Host during normal state and VMI periods.

5 10 15 20 25 30
0

20

40

60

80

100

Time (s)

C
lie

nt
C

PU
U

ti
liz

at
io

n
(%

)

Normal state
IDS processing

Figure 14. CPU utilization in the Client machine during normal state and IDS activity periods.

During intervals of VM introspection, CPU of the host machine correlated around 2.8513

- 3.4 %, which is normal because KVMonitor is only accessing QEMU-KVM memory514

file stored in the host in qcow2 format. 5:First, KVMonitor obtains the value of the CR3 register515

in a virtual CPU of a VM by communicating with QEMU-KVM. For this purpose, there was added a new516

CR3 command for obtaining the value to QEMU-KVM because QEMU-KVM provides only the command517

for dumping the values of all registers in text [29]. 5:The way how KVMonitor acquire access to518

the VM is implemented by utilizing a cr3 command that comes with QEMU Monitor519

Protocol (QMP). The latter provides user-friendly JSON-based structure that enables520

access to certain functionality. This provides fast and reliable way to access memory of a521

virtual machine and extract necessary data [29].522

Main processing power is balanced on the client machine, where IDS constantly523

receives raw data from KVMonitor and implements nonself detection phase. In this524

experiment, we used client machine with six cores and two threads per core. As shown525

on Figure 14 CPU utilization of feature retrieval on the client machine was around 35-45%526

during the period of active processing.527

Figure 13. CPU utilization in the remote Host during normal state and VMI periods.

Version September 19, 2021 submitted to Big Data Cogn. Comput. 18 of 21

5 10 15 20 25 30
0

20

40

60

80

100

Time (s)

H
os

tC
PU

U
ti

liz
at

io
n

(%
)

Normal state
Introspection

Figure 13. CPU utilization in the remote Host during normal state and VMI periods.

5 10 15 20 25 30
0

20

40

60

80

100

Time (s)

C
lie

nt
C

PU
U

ti
liz

at
io

n
(%

)

Normal state
IDS processing

Figure 14. CPU utilization in the Client machine during normal state and IDS activity periods.

During intervals of VM introspection, CPU of the host machine correlated around 2.8513

- 3.4 %, which is normal because KVMonitor is only accessing QEMU-KVM memory514

file stored in the host in qcow2 format. 5:First, KVMonitor obtains the value of the CR3 register515

in a virtual CPU of a VM by communicating with QEMU-KVM. For this purpose, there was added a new516

CR3 command for obtaining the value to QEMU-KVM because QEMU-KVM provides only the command517

for dumping the values of all registers in text [29]. 5:The way how KVMonitor acquire access to518

the VM is implemented by utilizing a cr3 command that comes with QEMU Monitor519

Protocol (QMP). The latter provides user-friendly JSON-based structure that enables520

access to certain functionality. This provides fast and reliable way to access memory of a521

virtual machine and extract necessary data [29].522

Main processing power is balanced on the client machine, where IDS constantly523

receives raw data from KVMonitor and implements nonself detection phase. In this524

experiment, we used client machine with six cores and two threads per core. As shown525

on Figure 14 CPU utilization of feature retrieval on the client machine was around 35-45%526

during the period of active processing.527

Figure 14. CPU utilization in the Client machine during normal state and IDS activity periods.

6.3. Detector Generation and Nonself Detection

For detector generation process we used set of 200 records—self samples, from differ-
ent category as input to generate nonself records. Using Genetic Algorithm (GA) within
Python DEAP framework [30] we generated close to 61,000 detectors, sample shown in
Figure 15.

Application responsible for generating detectors utilize multiprocessing package that
offers both local and remote concurrency, effectively side-stepping the Global Interpreter
Lock by using sub-processes instead of threads [30]. This significantly reduces time of
evolutionary algorithm, which takes on average 4–6 s to generate list of 61,000 detectors.
Constant parameters for GA provided in Figure 16 represent size of generated detectors
24, initial population of random detectors 500, number of generations 200, amount of pool
workers in multiprocessing 4 and constant memory page size 4096.

Big Data Cogn. Comput. 2021, 5, 52 18 of 21

Figure 15. Sample of generated detectors as a result of Genetic Algorithm.

Figure 16. Genetic Algorithm parameter tuning for detectors generation.

The average F1 score (detection rate) of the nonself detection of listed in Table 4
malware was 96.86%. We divided experiments into two parts, first by exposing remote
VM separately to each of the listed malicious applications and measuring performance
along with the detection time. Second, we exposed remote VM to all four listed malware
simultaneously and then launched our IDS. In both cases anomalies were detected with
almost similar rate and IDS successfully responded on time. Figure 17 shows the results of
detection rate with respect to each malicious application.

Version September 19, 2021 submitted to Big Data Cogn. Comput. 20 of 21

Logkeys Rootkit Stitch TrojanX
0

20

40

60

80

100

Malware Name

F1
Sc

or
e

Figure 15. Detection rate of listed malware by utilizing all features.

between Kyushu Institute of Technology and The City College of New York. Presented578

results show performance evaluation as well as accuracy of intrusion detection on vari-579

ous types of malicious applications. Residing outside of the guest machine, described580

IDS cannot be subverted by any malware running in VM. This also provides significantly581

low performance impact on VM and the host machine.582

The proposed security approach is promising for achieving real-time, highly ac-583

curate detection and mitigation of attacks in MEC-based servers, which will be in584

widespread use in the 5G and beyond era. Our future work will include an extension of585

current classification mechanism to more attack types and network topologies. We aim586

to run more experiments by increasing number of remote virtual machines within our587

testbed environment. Through continuous collaboration with different universities we588

plan to expand our testbed across the world creating cloud-based simulation environ-589

ment with multiple availability zones. Continuous research on Linux kernel to explore590

more features will increase detection accuracy. In parallel, we continuously working on591

improving performance by developing more secure and reliable application.592

Acknowledgments: HH:This work is supported in part by NSF JUNO2 (Japan-USNetworkOpportunity2) (Award No. 1818884) and NSF
IRNC (Award No. 2029295).

References
1. White paper: Cisco Annual Internet Report (2018-2023). Technical Report C11-741490-01, 2020.
2. Ahmad, I.; Kumar, T.; Liyanage, M.; Okwuibe, J.; Ylianttila, M.; Gurtov, A. Overview of 5G Security Challenges and Solutions.

IEEE Communications Standards Magazine 2018, 2, 36–43. doi:10.1109/MCOMSTD.2018.1700063.
3. Ali, B.; Gregory, M.A.; Li, S. Multi-Access Edge Computing Architecture, Data Security and Privacy: A Review. IEEE Access 2021,

9, 18706–18721. doi:10.1109/ACCESS.2021.3053233.
4. Roman, R.; Lopez, J.; Mambo, M. Mobile edge computing, Fog et al.: A survey and analysis of security threats and challenges.

Future Generation Computer Systems 2018, 78, 680–698. doi:https://doi.org/10.1016/j.future.2016.11.009.
5. Hubbard, D.; Sutton, M. Top Threats to Cloud Computing v1.0. Cloud Security Alliance 2010.
6. Ranaweera, P.; Jurcut, A.D.; Liyanage, M. Realizing Multi-Access Edge Computing Feasibility: Security Perspective. 2019 IEEE

Conference on Standards for Communications and Networking (CSCN), 2019, pp. 1–7. doi:10.1109/CSCN.2019.8931357.
7. Khan Saad, S.P.; Qin, Y. Fog computing security: a review of current applications and security solutions. SpringerOpen Cloud

Computing, 6. doi:https://doi.org/10.1186/s13677-017-0090-3.
8. Dsouza, C.; Ahn, G.J.; Taguinod, M. Policy-driven security management for fog computing: Preliminary framework and a case

study. Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014), 2014,
pp. 16–23. doi:10.1109/IRI.2014.7051866.

9. Pacheco, J.; Benitez, V.H.; Tunc, C.; Grijalva, C. Anomaly Behavior Analysis for Fog Nodes Availability Assurance in IoT
Applications. 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), 2019, pp. 1–6.
doi:10.1109/AICCSA47632.2019.9035338.

Figure 17. Detection rate of listed malware by utilizing all features.

Big Data Cogn. Comput. 2021, 5, 52 19 of 21

Experimental results with only 8 primarily system-wide features after disabling net-
work features (total number of sent packets, source/destination ports, TCP/UDP usage,
and so on) speeds up detection process four times with average F1 score of 82.48%.

7. Conclusions

In this work, we proposed an automated, intelligent intrusion detection and mitigation
approach for MEC servers, which aims to provide explainable security in the IoT networks
of the 5G era. Proposed approach relies on Artificial Immune System based intrusion
detection with built-in automated virtual machine introspection module. It has been
successfully tested on remote VM over established GRE-based secure testbed between
Kyushu Institute of Technology and The City College of New York. Presented results show
performance evaluation as well as accuracy of intrusion detection on various types of
malicious applications. Residing outside of the guest machine, described IDS cannot be
subverted by any malware running in VM. This also provides significantly low performance
impact on VM and the host machine.

The proposed security approach is promising for achieving real-time, highly accurate
detection and mitigation of attacks in MEC-based servers, which will be in widespread
use in the 5G and beyond era. Our future work will include an extension of current
classification mechanism to more attack types and network topologies. We aim to run
more experiments by increasing number of remote virtual machines within our testbed
environment. Through continuous collaboration with different universities we plan to
expand our testbed across the world creating cloud-based simulation environment with
multiple availability zones. Continuous research on Linux kernel to explore more features
will increase detection accuracy. In parallel, we continuously working on improving
performance by developing more secure and reliable application.

Author Contributions: T.S. devised the project, developed the main conceptual ideas and proof
outline. K.K. designed overall model and developed KVMonitor, the VMI module. T.S. and K.K.
administered the project. The experiments were planned and separately implemented by H.H. and
K.K. Software development of IDS and its integration with KVMonitor performed by H.H. T.S. and
K.K. supervised H.H. in carrying out experimentation and numerical calculations. All authors have
read and agreed to the published version of the manuscript

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting the reported results in the present study will be
available on request from the corresponding author or the first author.

Acknowledgments: This work is supported in part by NSF JUNO2 (Japan-US Network Opportunity
2) (Award No. 1818884) and NSF IRNC (Award No. 2029295).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. White Paper: Cisco Annual Internet Report (2018–2023); Technical Report C11-741490-01; 2020. Available online: https://www.cisco.

com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on
14 September 2021).

2. Ahmad, I.; Kumar, T.; Liyanage, M.; Okwuibe, J.; Ylianttila, M.; Gurtov, A. Overview of 5G Security Challenges and Solutions.
IEEE Commun. Stand. Mag. 2018, 2, 36–43. [CrossRef]

3. Ali, B.; Gregory, M.A.; Li, S. Multi-Access Edge Computing Architecture, Data Security and Privacy: A Review. IEEE Access 2021,
9, 18706–18721. [CrossRef]

4. Roman, R.; Lopez, J.; Mambo, M. Mobile edge computing, Fog et al.: A survey and analysis of security threats and challenges.
Future Gener. Comput. Syst. 2018, 78, 680–698. [CrossRef]

5. Ranaweera, P.; Jurcut, A.D.; Liyanage, M. Realizing Multi-Access Edge Computing Feasibility: Security Perspective. In
Proceedings of the 2019 IEEE Conference on Standards for Communications and Networking (CSCN), Granada, Spain, 28–30
October 2019; pp. 1–7. [CrossRef]

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://doi.org/10.1109/MCOMSTD.2018.1700063
http://dx.doi.org/10.1109/ACCESS.2021.3053233
http://dx.doi.org/10.1016/j.future.2016.11.009
http://dx.doi.org/10.1109/CSCN.2019.8931357

Big Data Cogn. Comput. 2021, 5, 52 20 of 21

6. Khan Saad, S.P.; Qin, Y. Fog computing security: a review of current applications and security solutions. J. Cloud Comput. 2017,
6, 107593. [CrossRef]

7. Raychaudhuri, D.; Seskar, I.; Zussman, G.; Korakis, T.; Kilper, D.; Chen, T.; Kolodziejski, J.; Sherman, M.; Kostic, Z.; Gu, X.; et al.
Challenge: COSMOS: A City-Scale Programmable Testbed for Experimentation with Advanced Wireless; MobiCom ’20; Association for
Computing Machinery: New York, NY, USA, 2020. [CrossRef]

8. Raychaudhuri, D.; Seskar, I.; Ott, M.; Ganu, S.; Ramachandran, K.; Kremo, H.; Siracusa, R.; Liu, H.; Singh, M. Overview of the
ORBIT radio grid testbed for evaluation of next-generation wireless network protocols. In Proceedings of the IEEE Wireless
Communications and Networking Conference, Trento, Italy, 23–25 February 2005; Volume 3, pp. 1664–1669. [CrossRef]

9. Baldin, I.; Nikolich, A.; Griffioen, J.; Monga, I.I.S.; Wang, K.C.; Lehman, T.; Ruth, P. FABRIC: A National-Scale Programmable
Experimental Network Infrastructure. IEEE Internet Comput. 2019, 23, 38–47. [CrossRef]

10. Schlinker, B.; Arnold, T.; Cunha, I.; Katz-Bassett, E. PEERING: Virtualizing BGP at the Edge for Research. In Proceedings of the
ACM CoNEXT, Orlando, FL, USA, 9–12 December 2019.

11. Dsouza, C.; Ahn, G.J.; Taguinod, M. Policy-driven security management for fog computing: Preliminary framework and a case
study. In Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014),
Redwood City, CA, USA, 13–15 August 2014; pp. 16–23. [CrossRef]

12. Pacheco, J.; Benitez, V.H.; Tunc, C.; Grijalva, C. Anomaly Behavior Analysis for Fog Nodes Availability Assurance in IoT
Applications. In Proceedings of the 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications
(AICCSA), Abu Dhabi, United Arab Emirates, 3–7 November 2019; pp. 1–6. [CrossRef]

13. Evmorfos, S.; Vlachodimitropoulos, G.; Bakalos, N.; Gelenbe, E. Neural Network Architectures for the Detection of SYN Flood
Attacks in IoT Systems. In Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive
Environments, Corfu, Greece, 30 June–3 July 2020; Association for Computing Machinery: New York, NY, USA, 2020. [CrossRef]

14. Futagami, S.; Unoki, T.; Kourai, K. Secure Out-of-Band Remote Management of Virtual Machines with Transparent Passthrough.
In Proceedings of the 34th Annual Computer Security Applications Conference, San Juan, PR, USA, 3–7 December 2018;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 430–440. [CrossRef]

15. Inokuchi, K.; Kourai, K. UVBond: Strong User Binding to VMs for Secure Remote Management in Semi-Trusted Clouds. In
Proceedings of the 2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing (UCC), Zurich, Switzerland,
17–20 December 2018; pp. 213–222. [CrossRef]

16. Sethi, K.; Kumar, R.; Prajapati, N.; Bera, P. Deep Reinforcement Learning based Intrusion Detection System for Cloud Infrastruc-
ture. In Proceedings of the 2020 International Conference on COMmunication Systems NETworkS (COMSNETS), Bangalore,
India, 7–1 January 2020; pp. 1–6. [CrossRef]

17. The UNSW-NB15 Dataset. Available online: https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-
Datasets/ (accessed on 20 February 2021).

18. Brownlee, J. Clever Algorithms: Nature-Inspired Programming Recipes, 1st ed.; Lulu.com: 2011. Available online:
https://dl.acm.org/doi/book/10.5555/1983645 (accessed on 14 September 2021)

19. Chiba, Z. New Anomaly Network Intrusion Detection System in Cloud Environment Based on Optimized Back Propagation
Neural Network Using Improved Genetic Algorithm. Int. J. Commun. Netw. Inf. Secur. (IJCNIS) 2019, 11, 61–84.

20. Igbe, O.; Ajayi, O.; Saadawi, T. Detecting Denial of Service Attacks Using a Combination of Dendritic Cell Algorithm and the
Negative Selection Algorithm. In Proceedings of the 2017 IEEE International Conference on Smart Cloud (SmartCloud), New
York, NY, USA, 3–5 November 2017; pp. 72–77. [CrossRef]

21. Kim, Y.; Park, J.G.; Lee, J.H. Security Threats in 5G Edge Computing Environments. In Proceedings of the 2020 International
Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 21–23 October 2020;
pp. 905–907. [CrossRef]

22. Alnahdi, A.; Liu, S.H. Mobile Internet of Things (MIoT) and Its Applications for Smart Environments: A Positional Overview. In
Proceedings of the 2017 IEEE International Congress on Internet of Things (ICIOT), Honolulu, HI, USA, 25–30 June 2017.

23. 5G MEC Networking Platform by Gigabyte. Available online: https://www.gigabyte.com/Solutions/Networking/5g-imec-
networking-platform (accessed on 5 February 2021).

24. CVE-2008-0923. U.S. National Vulnerability Database (NVD), CVE-ID CVE-2008-0923, 2008. Available online: https://nvd.nist.
gov/vuln/detail/CVE-2008-0923 (accessed on 14 September 2021).

25. Stojmenovic, I.; Wen, S.; Huang, X.; Luan, H. An Overview of Fog Computing and Its Security Issues. Concurr. Comput. Pract. Exp.
2016, 28, 2991–3005. [CrossRef]

26. Zhang, L.; Jia, W.; Wen, S.; Yao, D. A Man-in-the-Middle Attack on 3G-WLAN Interworking. In Proceedings of the 2010 Interna-
tional Conference on Communications and Mobile Computing—Volume 01, Shenzhen, China, 12–14 April 2010; pp. 121–125.
[CrossRef]

27. Dasgupta, D.; Nino, F. Immunological Computation: Theory and Applications, 1st ed.; Auerbach Publications: Boca Raton, FL, USA,
2008.

28. Igbe, O.; Saadawi, T.; Darwish, I. Digital Immune System for Intrusion Detection on Data Processing Systems and Networks, U.S.
Patent 10,609,057, 31 March 2020.

29. Forest, S.; Perelson, A.; Allen, L.; Cherukuri, R. Self-Nonself Discrimination in a Computer. In Proceedings of the 1994 IEEE
Computer Society Symposium on Research in Security and Privacy, Oakland, CA, USA, 16–18 May 1994; pp. 202–212.

http://dx.doi.org/10.1186/s13677-017-0090-3
http://dx.doi.org/10.1145/3372224.3380891
http://dx.doi.org/10.1109/WCNC.2005.1424763
http://dx.doi.org/10.1109/MIC.2019.2958545
http://dx.doi.org/10.1109/IRI.2014.7051866
http://dx.doi.org/10.1109/AICCSA47632.2019.9035338
http://dx.doi.org/10.1145/3389189.3398000
http://dx.doi.org/10.1145/3274694.3274749
http://dx.doi.org/10.1109/UCC.2018.00030
http://dx.doi.org/10.1109/COMSNETS48256.2020.9027452
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://dl.acm.org/doi/book/10.5555/1983645
http://dx.doi.org/10.1109/SmartCloud.2017.18
http://dx.doi.org/10.1109/ICTC49870.2020.9289521
https://www.gigabyte.com/Solutions/Networking/5g-imec-networking-platform
https://www.gigabyte.com/Solutions/Networking/5g-imec-networking-platform
https://nvd.nist.gov/vuln/detail/CVE-2008-0923
https://nvd.nist.gov/vuln/detail/CVE-2008-0923
http://dx.doi.org/10.1002/cpe.3485
http://dx.doi.org/10.1109/CMC.2010.34

Big Data Cogn. Comput. 2021, 5, 52 21 of 21

30. DEAP. Distributed Evolutionary Algorithms in Python. Available online: https://github.com/deap/deap (accessed on 8
January 2021).

31. Fortin, F.A.; De Rainville, F.M.; Gardner, M.A.; Parizeau, M.; Gagné, C. DEAP: Evolutionary Algorithms Made Easy. J. Mach.
Learn. Res. 2012, 13, 2171–2175.

32. Kourai, K.; Nakamura, K. Efficient VM Introspection in KVM and Performance Comparison with Xen. In Proceedings of the
2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing, Singapore, 18–21 November 2014; pp. 192–202.
[CrossRef]

33. Logkeys. GNU/Linux Keylogger. Available online: https://github.com/kernc/logkeys (accessed on 30 July 2021).
34. Multifunctional Linux Rootkit. Available online: https://github.com/maK-/maK_it-Linux-Rootkit (accessed on 30 July 2021).
35. Python Based Keylogger with Remote Administration Tool. Available online: https://github.com/nathanlopez/Stitch

(accessed on 30 July 2021).
36. Minimal Swift Based Trojan Application Targeting Mac OS. Available online: https://github.com/RCD-Y/TrojanX (accessed on

30 July 2021).
37. Zurawski, J.; Balasubramanian, S.; Brown, A.; Kissel, E.; Lake, A.; Swany, M.; Tierney, B.; Zekauskas, M. perfSONAR: On-

board diagnostics for big data. In Proceedings of the IEEE International Conference on Big Data, Silicon Valley, CA, USA,
6–9 October 2013.

38. Kourai, K.; Juda, K. Secure Offloading of Legacy IDSes Using Remote VM Introspection in Semi-trusted Clouds. In Proceedings
of the 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 27 June–2 July 2016;
pp. 43–50. [CrossRef]

https://github.com/deap/deap
http://dx.doi.org/10.1109/PRDC.2014.33
https://github.com/kernc/logkeys
https://github.com/maK-/maK_it-Linux-Rootkit
https://github.com/nathanlopez/Stitch
https://github.com/RCD-Y/TrojanX
http://dx.doi.org/10.1109/CLOUD.2016.0016

	Introduction
	Related Work
	Security Threats in Multi-Access Edge Computing
	Artificial Immune System Based Intrusion Detection
	Negative Selection Algorithm

	Proposed Security Approach
	Detector Generation Using Genetic Algorithm
	Nonself Detection

	Experimental Evaluation
	Network Performance Results
	Memory and CPU Measurements
	Detector Generation and Nonself Detection

	Conclusions
	References

