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Biometric Identification and Presentation-Attack

Detection using Deep Neural Networks
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Abstract—We study involuntary micro-movements of both eyes, in addition to saccadic macro-movements, as biometric characteristic.
We develop a deep convolutional neural network that processes binocular eye-tracking signals and verifies the viewer’s identity. In
order to detect presentation attacks, we develop a model in which the movements are a response to a controlled stimulus. The model
detects replay attacks by processing both the controlled but randomized stimulus and the ocular response to this stimulus. We acquire
eye movement data from 150 participants, with 4 sessions per participant and conduct experiments on this new and legacy data sets
with varying tracker precision and sampling rate. We observe that the model detects replay attacks reliably. For identification and
identity verification, the model attains substantially lower error rates than prior work. We explore the relationships between training
population size, training data volume, types of visual stimuli, number of training and enrollment sessions, interval between enrollment
and probe sessions on one hand and the model performance on the other hand.
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1 INTRODUCTION

NO single biometric characteristic that is known today is
by itself sufficiently reliable for all biometric applica-

tions, unique, collectible, convenient, and universally avail-
able. For instance, while identification based on fingerprint
and iris tend to be more accurate than facial recognition,
a good-quality fingerprint cannot be obtained for approx-
imately 2-4% of the population due to degradation of the
fingerprints from manual labor or hand-related disabilities,
while long eyelashes, small eye apertures, cosmetic contact
lenses, and conditions including glaucoma and cataract pre-
vent the collection of good-quality images of the iris for an
estimated 7% of the population [1]. It is therefore desirable
to expand the space of biometric characteristics that can
be used by themselves or as part of multimodal biometric
identification systems. National population registers can
serve as an illustrating example of an application in which
multiple modalities are necessary for a biometric system to
meet required false-acceptance, false-rejection, and failure-
to-enroll rates across a large and diverse population.

At the same time, no universally reliable method for
detection of presentation attacks exists, due to both the ad-
versarial nature of the problem and the unbounded space of
possible presentation-attack instruments. Especially artifact-
detection approaches are vulnerable to the development
of new and unforseen presentation attack instruments.
Challenge-response approaches can determine whether a
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presentation exhibits liveness properties. However, if the
response requires a voluntary user action, the detection of
presentation attacks is in conflict with a convenient user
experience. If, in addition, the expected response can be
derived easily from the challenge, the presentation attack
can incorporate an automated or manually controlled re-
sponse to an observed challenge. As an example application
that calls for high resilience against presentation attacks
with unforseen attack instruments, consider physical access
control to high-security facilities.

It has long been known that the way we move our eyes
in response to a given stimulus is highly individual [2] and
more recent psychological research has shown that these
individual characteristics are reliable over time [3]. Hence,
it has been proposed to use eye movements as a behavioral
biometric characteristic [4], [5].

Human eye movements alternate between fixations of
around 250 ms during which the eye gaze is maintained on
a location from which visual input is obtained and saccades
of around 50 ms which are fast relocation movements that
can reach up to 500°/s and during which visual intake
is supressed. Moreover, three types of involuntary micro-
movements always occur during fixations which, among
other functions, prevent visual fading of the fixated im-
age. Drift movements are very slow movements of around
0.1-0.4°/s away from the center of a fixation which are
superimposed by high-frequency, low-amplitude tremor of
around 40-100 Hz whose velocity can reach up to 0.3°/s.
Microsaccades are occasional small saccades that can reach
velocities of up to 120°/s and, among other functions, bring
back the eye gaze to the intended center of a fixation after a
drift movement has occurred [6], [7], [8], [9], [10].

Prior work on biometric identification using eye move-
ments extracts fixations and saccades from the eye tracking
signal and measures the values of engineered explicit fea-



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBIOM.2021.3116875, IEEE
Transactions on Biometrics, Behavior, and Identity Science

IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE 2

tures, such as fixation durations and saccadic amplitudes
or velocities. Any information contained in the fixational
micro-movements is discarded. Since saccades and fixations
occur at a low frequency, a critical limitation of these ap-
proaches is that long eye gaze sequences of more than one
minute [11] need to be observed before the system can
reliably identify a user.

The additional information contained in the high-
frequency micro-movements bear the potential of consid-
erably speeding up the identification. Recently, a neural
network has been studied that processes a raw monocular
eye tracking signal measured during reading [12]. This ap-
proach does not rely on any prior detection of specific types
of macro- or micro-movements. In order to detect replay
attacks, we develop a model in which the eye movements
are the ocular response to a challenge in the form of a con-
trolled stimulus. In this setting, however, the identification
task becomes more challenging as fixation durations and
saccade amplitudes are largely determined by the stimulus,
and their distributional properties are less likely to vary
across individuals.

This paper reports and extends contributions of the
prior conference manuscript of Makowski et al. [13]. We
develop a deep convolutional neural network (CNN) that
(a) processes binocular eye tracking signals. In addition
to the eye-movement signals, the network processes the
relative positions of the stimuli, enabling it to (b) detect
replay attacks. We (c) perform a detailed comparison of the
convolutional neural network to prior art on a wide range
of data sets that are recorded with eye-tracking devices
that differ in their precision and sampling rate. Individual
characteristics of eye movements correlate stronger within
a session than across multiple sessions [3]. Therefore, we
(d) experimentally study a setting in which enrollment and
application data are collected on different days.

In addition to the content of the conference presenta-
tion [13], we study how (e) the size of training population,
(f) the data volume per user for training and enrollment,
(g) the type of stimuli and (h) the time intervals between
sessions affect verification performance.

The remainder of this paper is structured as follows.
Section 2 reviews existing work on biometric identifica-
tion and presentation-attack detection using oculomotoric
measurements. Section 3 states the problem settings and
Section 4 presents the DeepEyedentificationLive network and
system. Section 5 gives an overview of the data sets used
for evaluation. The experimental settings and results are
presented in Section 6. Section 7 concludes.

2 RELATED WORK

Traditionally, oculomotoric biometric identification and ver-
ification rely on eye-tracking data that is preprocessed into
saccades and fixations. Spawned by the seminal works of
Kasprowski and Ober [4] and Bednarik et al. [5], and fueled
by competitions in the following decade [14], [15], these
methods can be subsumed into three categories: aggrega-
tional [16], [17], [18], statistical [19], [20], [21], [22] and
generative methods. Suitable generative methods include
Markov [23], [24] and graphical models [11], [25], [26].

Recent work uses deep learning, either processing ex-
tracted features [27], [28] or learning an embedding end-to-
end from the raw eye tracking signal [12], [29], [30]. Out of
all prior approaches, DeepEyedentification is the only model
that is able to utilize micro-movements contained in the
raw signal. This work is further extended by Makowski
et al. [13] to handle binocular data and detect presentation
attacks. Prasse et al. [31] study the model’s susceptibility to
decreased tracking resolution.

The spectrum of visual stimuli that have been studied
ranges from a static cross [5], images [32], faces [19], [33],
[34], text [11], [12], [16], [26], video [35] and various im-
plementations of jumping points [4], [17], [36], [37], [38].
Only a handful of studies evaluate their models on stimuli
that have not also been shown to the respective user during
enrollment [11], [12], [13], [16], [26], [31], [35]. Repetitions
in stimulus sequences, unfortunately, enable an attacker to
record the oculomotoric response to the known stimulus,
and to perform a replay attack by presenting the recording
to the system. Biometric systems that do not challenge the
user with a randomized stimulus are left with the challenge
of detecting imperfections in the data that are caused by
specific presentation-attack instruments [39], [40].

Prior work on presentation-attack detection in the con-
text of gaze-based identification [39], [40] assumes that an
attacker generates artificial eye movements, based on a
model of a target individual’s gaze patterns. The proposed
methods use a classifier to discriminate bona fide from gen-
erated eye movements using the same engineered features
that are used for identification. This approach relies on im-
perfections of the gaze model and cannot detect an attacker
who replays actual eye movements that were recorded from
the target individual. Approaches to presentation-attack
detection that detect artifacts of specific presentation-attack
instruments have been studied widely for other biometrics;
for instance, for iris recognition. Work of Raja et al. [41] ex-
ploits phase information which is indicative of presentations
on smartphone or tablet screens.

3 PROBLEM SETTING

We will study the problems of oculomotoric biometric iden-
tification, identity verification, and presentation-attack detection.
The input to each system is given as a sequence of eye
gaze yaw and pitch angles of the left and right eye over
an observation period.

In a biometric verification scenario, each user first enrolls
with one or more enrollment sequences. At application
time, these enrollment sequences are compared to a probe
sequence by a suitable similarity metric. If a similarity
threshold is exceeded for an enrollment sequence, the pre-
sumed identity of the user is verified; or otherwise, the
user is exposed as an impostor. The algorithm performance
can be characterized by a false-match rate (FMR, fraction of
impostors among all accepted users) and a false non-match
rate (FNMR, fraction of falsely rejected users among all
rejected users). By changing the decision threshold, one can
observe a detection error tradeoff curve (DET curve). The equal
error rate (EER) is the point on this curve for which FMR
equals FNMR.
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In the identification setting, the gaze sequence that is ob-
served at application time is compared to one or more enroll-
ment sequences of multiple enrolled users. In case of a positive
identification, the outcome is the matched identity; other-
wise, the user is classified as impostor. The DET curve char-
acterizes the trade-offs between false-positive identification-
error rate (FPIR) and false-negative identification-error rate
(FNIR) for enrolled users; here, false positive identifications
can be impostors or enrolled users who are mistaken for
different enrolled users.

For comparison with previously published results, we
also conduct experiments in a multi-class classification set-
ting. Here, all users are enrolled and, at application time, a
new user has to be identified as one of the enrolled users.
Impostors do not exist in this legacy multi-class setting.
Here, we measure the identification accuracy.

In some approaches, the similarity metric is defined
as a metric on a vector of engineered features which are
extracted from the gaze sequence [16], [21]. In our approach,
the similarity metric is the the cosine similarity between
neural embeddings of gaze sequences. This embedding is
trained on a separate set of training users which is disjoint
from the users that are encountered at application time. The
neural network is trained such that the embedding is similar
for all gaze sequences of a particular user but different for
gaze sequences of distinct users.

The presentation-attack detection problem is to detect
whether the observed gaze sequence is presented with the
goal of interfering with the biometric system. We study
the case of a complete artificial replay attack by an ad-
versary who can observe both the size of the display
on which the stimulus is presented and the duration for
which each stimulus is displayed. The adversary does not,
however, have advance information about the randomized
positions of the five dots; therefore, they are limited to
replaying a gaze sequence for a random stimulus with the
same display size and display duration. We measure the
DET curve between the attack-presentation classification-error
rate (APCER)—the proportion of attack presentations incor-
rectly classified as bona fide presentations—and the bona-fide
presentation-classification error rate (BPCER)—the proportion
of bona fide presentations that are misclassified as attack.

As an example presentation-attack instrument for this
type of attack, an attacker may record eye movements of the
target person unnoticed by means of a remote eye tracker.
The attacker may then be able to perform a presentation
attack by injecting the recorded eye-gaze signal into an eye-
tracking device.

Note that presentation attacks by lifeless humans are not
possible due to the lack of eye movements, and that humans
cannot be altered to exhibit another person’s patterns of
ocular micromovements. In a nonconformant presentation,
the gaze patterns would be absent while a conformant
zero-effort presentation attack by a human impostor would
require a false match to be successful.

4 SYSTEM AND NETWORK ARCHITECTURE

This section derives the DeepEyedentificationLive1 system and
the neural network that performs binocular oculomotoric

1. The code is accessible at https://osf.io/8es7z/.

biometric identification and liveness detection. An eye scan-
ner records the user’s eye gaze while a display (see Figure 1)
shows a sequence of dots at random locations. The gaze
sequence of absolute yaw x and pitch gaze angles y of the
left l and right eye r recorded with sampling frequency
ρ in Hz is transformed into sequences of yaw δxi and
pitch δyi gaze velocities in °/s where δxi = ρ

2 (xi+1 − xi−1)
and δyi = ρ

2 (yi+1 − yi−1). These four velocity sequences
constitute four of the input channels into the network:
〈δx,l1 , . . . , δx,ln 〉 is the sequence of yaw angular velocities of
the left eye; 〈δy,l1 , . . . , δy,ln 〉 is the sequence of pitch angular
velocities; 〈δx,r1 , . . . , δx,rn 〉 and 〈δy,r1 , . . . , δy,rn 〉 are the corre-
sponding yaw and pitch velocities of the right eye.

Since the velocity of saccadic and fixational eye move-
ments occur at vastly different scales, global normalization
would squash the slow fixational drift and tremor to near-
zero and as a consequence much of the information in
the eye tracking signal would be lost. The solution to this
challenge is a model architecture with two separate subnets
that process these gaze velocities with different scaling: a
fast subnet processes the velocities in a resolution that is
suitable for high-velocity movements, and a slow subnet
in a resolution suitable for low velocities. The two subnets
have the same type of layers except for a transformation
layer that transforms the input to resolve the fast and the
slow movements, respectively.

For the fast subnet, absolute velocities below a minimal
velocity νmin are truncated and z-score normalization is
applied (see Equation 1).

tf (δ
x
i , δ

y
i ) =

{
z(0) if

√
δxi

2 + δyi
2
< νmin

(z(δxi ), z(δ
y
i )) otherwise

(1)

For the slow subnet, a sigmoidal function is applied such
that the slow fixational movements (drift and tremor) are
stretched to within the interval between −0.5 and +0.5
whereas the fast microsaccades and saccades are squashed
to values between −0.5 and −1 or +0.5 and +1 (see Equa-
tion 2). The values for the threshold νmin of Equation 1 and
the scaling factor c of Equation 2 are determined by hy-
perparameter tuning in a range of psychologically plausible
values (see Section 6.2).

ts(δ
x
i , δ

y
i ) = (tanh(cδxi ), tanh(cδyi )) (2)

The original input velocities are also fed into a subtraction
layer that computes the yaw 〈δx,r1 − δx,l1 , . . . , δx,rn − δx,ln 〉
and pitch velocity differences between the two eyes 〈δy,r1 −
δy,l1 , . . . , δy,rn − δy,ln 〉. These two channels are then stacked
with each of the outputs of the transformation layers.

The network additionally processes the positions of the
visual stimuli to which the gaze sequence is the oculomo-
toric response. In our experiments on presentation-attack
detection, dots are displayed at five random positions in
each trial. The stimuli are represented as offsets in x and y
direction to the previous stimulus position: 〈δx,s1 , . . . , δx,sn 〉
and 〈δy,s1 , . . . , δy,sn 〉, where each δsi is the offset in degrees
between the stimulus displayed at times i and i− 1; in most
time steps, the stimulus position does not change. Note that
when a stimulus is displayed from time t to time t′ and the
user’s eye gaze moves from the previous stimulus to exactly

 https://osf.io/8es7z/.
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Fig. 1. DeepEyedentificationLive architecture. The left strand depicts the
fast subnet, the right one the slow subnet.

the new stimulus within this interval, then, both for the left
and right eye, it holds that

t′∑
i=t

δxi −
t′∑
i=t

δx,si =
t′∑
i=t

δyi −
t′∑
i=t

δy,st = 0. (3)

The network processes the input in one-dimensional
convolutions over time. This is in analogy to other CNN ar-
chitectures that process time-sequential data—for instance,
speech recognition—and in contrast to image-processing
CNNs that use two-dimensional convolutions. The six input
sequences are processed as six channels, in analogy to the
red, green and blue channels by image processing CNNs.
Convolutional neural networks require an input sequence
of fixed width. Therefore, the network processes the gaze
sequences in windows of 1,000 time steps, which corre-
sponds to one second of input data. All input sequences
are therefore split into subsequences of 1,000 ms, and the
results—the similarity metric for identity verification, and
the activation of the output unit for liveness detection—are
averaged across all subsequences of each gaze sequence.

Parameter f in Figure 1 shows the number of filters,
k specifies the kernel size of convolutions. Parameter m
characterizes the number of units of fully connected layers.
The values of these parameters are determined by hyperpa-
rameter tuning (see Section 6.2). Convolutional and fully
connected layers are all batch normalized and followed
by a ReLu activation function. Each convolutional layer is
followed by an average pooling layer with pooling size 2
and stride of 1. The network has a sigmoid layer for the
liveness ouput.

For the purpose of training the network, a softmax
output layer with one unit for each training user is added.
The network is then trained on gaze sequences of training
users by minimizing the cross-entropy loss. For half of the
training sequences, the correct stimulus is presented to the
network as input and the target liveness output is +1. In the
remaining cases, a random stimulus with the same display
size and display duration is chosen and the target liveness
output value is -1. After training, the identification softmax
layer is discarded and the embedding layer provides the
neural feature embedding of each gaze sequence. Because
the network has learned to identify the training users based
on the activations of the embedding units, the embedding
distills signals that vary across individuals and are indica-
tive of the viewer’s identity.

The similarity metric between enrollment and applica-
tion sequence is given by the cosine similarity, averaged
over all input windows of 1,000 ms. The similarity value
between an application sequence and a user is the maximum
similarity over that user’s enrollment sequences. During the
enrollment process, the embedding of one or several gaze
sequences are determined and stored in a database.
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TABLE 1
Data sets with information on the eye tracking device in use, its nominal precision in degrees of visual angle and sampling frequency in Hz, the

tracked eyes, use of a chin rest, total number of subjects together with the number of sessions and trials per session, as well as the average trial
duration and overall recording time per subject in seconds including their standard deviations

Data set Device Prec. Freq. Eye(s) Chin rest # subj. # sess. # trials Trial dur. Rec./subj.

JuDo1000 [42] EyeLink Portable Duo 0.01 1000 both yes 150 4 108 3 ± 1.6 1152 ± 0
CEM-I (SIM) [43] Tobii TX300 0.09 300 both yes 22 1 8 64 ± 47 465 ± 288
CEM-I (COM) [43] Tobii TX300 0.09 300 both yes 22 1 2 207 ± 17 386 ± 75
CEM-I (COG) [43] Tobii TX300 0.09 300 both yes 22 1 2 99 ± 51 180 ± 95
CEM-I (TEX) [43] Tobii TX300 0.09 300 both yes 22 1 4 40 ± 20 148 ± 71
CEM-II (TEX) [43] EyeLink 1000 0.01 1000 right yes 32 1 4 51 ± 10 192 ± 38
CEM-III (SIM) [43] PlayStation Eye N/A 75 right yes 173 1 2 89 ± 8 177 ± 18
CEM-III (COM) [43] PlayStation Eye N/A 75 right yes 173 1 2 133 ± 16 264 ± 32
CEM-III (RAN) [43] PlayStation Eye N/A 75 right yes 164 1 2 77 ± 7 154 ± 13
CEM-III (TEX) [43] PlayStation Eye N/A 75 right yes 172 1 2 46 ± 5 91 ± 10
GazeBase (RAN) [44] EyeLink 1000 0.01 1000 left yes 322 1-9 2 101 ± 0.03 553 ± 511
GazeBase (TEX) [44] EyeLink 1000 0.01 1000 left yes 322 1-9 2 60 ± 0.04 329 ± 304
GazeBase (FXS) [44] EyeLink 1000 0.01 1000 left yes 322 1-9 2 15 ± 0.01 82 ± 76
GazeBase (VD1) [44] EyeLink 1000 0.01 1000 left yes 322 1-9 2 58 ± 1.50 320 ± 296
GazeBase (VD2) [44] EyeLink 1000 0.01 1000 left yes 322 1-9 2 58 ± 1.5 320 ± 296
GazeBase (BLG) [44] EyeLink 1000 0.01 1000 left yes 322 1-9 2 37 ± 20 203 ± 178
GazeBase (HSS) [44] EyeLink 1000 0.01 1000 left yes 322 1-9 2 101 ± 0.08 554 ± 512

5 DATA SETS

We collect the JuDo1000 data set23 of binocular eye move-
ment data (horizontal and vertical gaze coordinates) from
150 participants (18 to 46 years old, mean age 24 years),
each of whom participate in four experimental sessions
with a lag of at least one week between any two sessions.
Eye movements are recorded using an Eyelink Portable
Duo eye tracker (tripod mounted camera) at a sampling
frequency of 1,000 Hz. Participants are seated in front of a
38×30 cm (1280×1024 px) computer monitor with a viewing
distance of 68 cm at a height adjustable table with their head
stabilized by a chin- and forehead rest.

In each session, participants are presented with a total
of 108 experimental trials in which a black dot with a
diameter of 0.59 cm (20 px) appears consecutively at 5
random grid positions on a white background. The duration
for which each dot is displayed is varied between 250, 500
and 1000 ms with a fixed value within each trial; the size of
the screen area in which the dots appear is varied between
7.6×14.0 cm, 11.4×17.0 cm, and 19.0×23.0 cm around the
center of the monitor with a fixed area within each trial.
The largest screen area corresponds to ±7.9 (and ±6.3)
degrees of visual angle horizontally (and vertically). The
distance between two consecutive dot positions ranges from
1.6 to 20.3 degrees of visual angle. The combination of
display duration and areas results in nine trial configurations.
Figure 2 shows example eye-movement traces of the left and
right eye for different display duration and areas.

2. The JuDo1000 data set is accessible at https://osf.io/5zpvk/.
3. Participants have been informed about the purpose of the research

and the procedure of collecting eye-tracking data and have given their
informed consent. The study is exempt from approval by the ethic
committee of the University of Potsdam because participants are of
age and have given their informed consent and, furthermore, being
subjected to eye tracking holds no potential of experiencing bodily or
mental harm.

Fig. 2. Exemplary eye traces for trial configurations 500 ms stimulus
display duration and small grid (left), and 250 ms display duration on big
grid (right). The cross is displayed before the onset of the trial.

The GazeBase data set [44] contains gaze recordings of
322 college-aged participants who are recorded monocularly
with an EyeLink 1000 eye tracker at a sampling frequency
of 1,000 Hz. Participants are placed at a viewing distance
of 55 cm to a monitor with a display size of 47.4×29.7 cm
(1680×1050 px), while their heads are stabilized by a chin
and forehead rest. Participants are recorded over two iden-
tical, consecutive recording sessions with a break of at most
5 minutes and in which they perform seven tasks: A random
saccade (RAN), a reading task (TEX), two video viewing
tasks (VD1 and VD2), a fixation task (FXS), a horizontal
saccade task (HSS) and a gaze-driven game called Balura
(BLG). This experiment is repeated over a time period of
37 months, resulting in 9 recording rounds. Particpants
of subsequent round are recruited only from the pool of
participants of the previous round.

The RAN task resembles our experiment in the JuDo1000
data set. It requires participants to follow a target point,
which appears at random screen positions with a display
duration of 1000 ms. The target points appear in ±15 (and
±9) degrees of visual angle horizontally (and vertically) [44].

https://osf.io/5zpvk/
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The distance between two consecutive dot positions ranges
from 0.26 to 33.7 degrees of visual angle.

The CEM-I data set [43] contains binocular data of a
single session for 22 different subjects and is recorded with
the Tobii TX300 eye tracker. The vendor reports a spatial
precision of 0.09° at the selected sampling frequency of
300 Hz. In each session, the subjects are presented four
different types of distinct stimuli: eight simple patterns
(SIM), two complex patterns (COM), two cognitive patterns
(COG) and four textual patterns (TEX) [43].

The CEM-II data set [43] contains right-eye monocular
data of a single session for 32 different subjects and is
recorded with the EyeLink 1000 eye tracker. The vendor
reports a spatial precision of 0.01° at the selected sampling
frequency of 1,000 Hz. In each session, the subjects are
presented the same textual patterns as in CEM-I.

The CEM-III data set [43] contains right-eye monocular
data recorded with the PlayStation Eye eye tracker at 75 Hz.
The spatial precision remains unspecified. The stimulus
types include simple, complex and textual patterns from the
CEM-I data set, as well as an additional random saccade
task stimulus (RAN). Each stimulus is presented for two
trials. The number of subjects for each stimulus type vary
from 164 to 173.

6 EXPERIMENTS

This section reports on the experimental results for bio-
metric identification, identity verification and presentation-
attack detection.

6.1 Hardware and Framework

For all experiments we use a server with 40-core Intel Xeon
CPU E5-2640 processor, 128 GB memory and GeForce GTX
TITAN X GPU. For training the network we use Keras,
TensorFlow, and the Adam optimizer with a learning rate
of 0.001 for the slow and fast subnets, and a learning rate
of 0.0001 for the remaining layers. We use a batch size of
64. We use early stopping with a patience of 10 epochs. The
loss for early stopping is measured on validation data that
is removed from training and evaluation data (see Section
6.2).

6.2 Hyperparameter Tuning

We tune the hyperparameters with a random grid search in
the parameter search space shown in Table 2. As validation
data we use one hold-out trial from each configuration per
session, which is removed from the training and testing data
of the final model. We constrain kernel sizes and number
of filters of the convolutional layers to be identical within
layers 1-3, 4-7 and 8-9 of both subnets. Kernel sizes are
furthermore constrained to be smaller or equal and filter
sizes greater or equal to the previous layer block. Figure 1
shows the best parameter configuration.

The parameters for the respective input transformations
of the fast and slow subnet—i.e., velocity threshold νmin and
scaling factor c—are tuned in a range of psychologically
plausible values on the JuDo1000 data set. νmin is set to 40°/s
and c to 0.02.

TABLE 2
Parameter space used for random grid search: kernel size k and

number of filters f of all convolutional layers and number of units m of
all fully connected layers. Table as in Makowski et al. [13].

Parameter Search space
k {3, 5, 7, 9}
f {32, 64, 128, 256, 512}
m {64, 128, 256, 512}

6.3 Identification and Identity Verification

For the JuDo1000 and GazeBase data sets, we resample 10
times, in each iteration randomly selecting a population of
users to train an embedding. Unless we specifically study
smaller training populations, we train the embedding on 125
users for the JuDo1000 data set and 100 users for GazeBase.
In each resampling round, we select 25 test users who are
disjoint from the training users. In the verification setting,
each test user is enrolled in turn, and the remaining 24 users
act as impostors. In the identification setting, 20 users are
selected as enrolled users and 5 users act as impostors.

Enrollment and test data are also split across recording
sessions. Unless we specifically control the number of en-
rollment sessions in an experiment, for the JuDo1000 data
set a user is enrolled using 9 trials with different trial
configurations from 3 enrollment sessions; this results in
a total of 24 seconds of enrollment data. At application
time, embeddings are calculated from probe sequences of
the disjoint fourth test session.

In the GazeBase data, the number of sessions per user
varies, and the gaze patterns are vastly different across
stimulus types. In each of 10 resampling rounds, we select
25 test users for whom at least 8 sessions are available; 100
distinct users with at least 2 sessions serve as training users.
For each stimulus type, a user is enrolled in turn using
24 seconds of enrollment data for the same stimulus type
drawn from sessions 1 through 4, the remaining 24 test users
act as impostors. Data from sessions 5 through 8 are used as
probe sequences.

Since there is no publicly available implementation of
Lohr et al. [28] and Friedman et al. [22], we compare Deep-
EyedenticationLive to published results [22], [28] in the
exact same experimental setting. We perform 4-fold cross
validation over the 269 subjects of the GazeBase TEX data
set. In each fold, three-quarters of the subjects are used
for training while the remaining are left out for testing. At
application time, round one of session one of the test users
is used for enrollment and round one of session two serves
as probe sequence.

To obtain comparable results on the CEM data sets, we
use the same multi-class identification evaluation protocol
as Holland and Komogortsev [16]: Each stimulus type is
evaluated separately. For each stimulus type, we randomly
resample 20 times from the data set, in each iteration using
half of the subjects as training users and the other half as en-
rolled users. At application time, each trial from the enrolled
users in turn serves as test instance and the remaining trials
are used as enrollment data. A correct identification occurs
when the similarity between a test trial and the enrollment
data of the true user exceeds a threshold and is higher than
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the similarity to the enrollment data of any other enrolled
user.

6.3.1 Reference Methods
As representatives for deep learning based methods we
compare against the DeepEyedentification network, which
differs from DeepEyedentificationLive in that it can only pro-
cess monocular data and lacks presentation-attack detection;
and Abdelwahab and Landwehr [29], who train a distri-
butional sequence embedding on raw gaze sequences and
pupil dilations. Additionally, we compare against two recent
representatives for deep metric learning based approaches:
Whereas Lohr et al. [28] learn an embedding from extracted
features of scanpaths by optimizing the triplet loss, Ab-
delwahab and Landwehr [30] train the same distributional
sequence embedding as presented in their prior study [29]
end-to-end by optimizing the Wasserstein loss.

Additionally, we compare against several representa-
tives for statistical methods. Statistical methods first pre-
process the gaze recording into types of macro-movements
and then extract features from these, such as the fixation du-
rations and amplitude, velocity, or acceleration of saccadic
movements. Two scanpaths are compared by computing
the similarity of their feature distributions by applying
statistical tests. We compare against Holland and Komogort-
sev [20], which is the first method of this kind and Rigas et
al. [21]. Both were re-implemented by ourselves. As a more
recent method, we compare to Friedman et al. [22] who
preprocess the gaze recording into fixations, saccades and
post-saccadic oscillations, then extract over 1000 features
from these low-frequency macro-movements and finally
perform a feature selection using the intra-class coefficient
as a measure of test-retest reliability.

In order to offer a comparison to Lohr et al. and Friedman
et al., we are limited to report the performance of both
presented in Lohr et al. [28] and to evaluate our model
in the exact same evaluation protocol they use, because of
unavailable source code and implementational details.

6.3.2 Comparison to Prior Art
This section compares the performance of DeepEyedentifica-
tionLive to the performance of known approaches to ocu-
lomotoric identification on the JuDo1000, GazeBase and the
CEM data sets.

For the JuDo1000 data set, Figure 4 and Table 4 show the
identification performance of DeepEyedentificationLive and
the baseline models for 20 enrolled users, averaged across
all trial configurations. Here, the EER decreases from 0.1197
for one second of input data at test time to 0.0774 after
10 seconds. DeepEyedentificationLive obtains a lower FNIR
than DeepEyedentification for every FPIR and every trial
duration. The difference between the monocular DeepEye-
dentification and binocular DeepEyedentificationLive and are
explained by the additional information that the binocular
model receives as input. The performance gap between
DeepEyedentificationLive on one hand and Holland and Ko-
mogortsev and Rigas et al. on the other hand is dramatic.
It should be noted that both baselines use distributional
properties of fixation durations and saccadic properties
which here are largely dominated by the controlled stimuli.
The performance gap to Abdelwahab and Landwehr [29]

can be attributed to the fact that their architecture is not
suitable for short input windows and high sampling rates.
For the same model trained with the Wasserstein loss; i.e.,
Abdelwahab and Landwehr [30], we obtain a performance
equal to random guessing. We therefore did not include it
into our performance comparisons.

In the verification setting, shown averaged across all trial
configurations in Figure 3 and Table 3, there is only one
identity each imposter can be confused with. Here, the EER
ranges from 0.091 for one second to 0.0301 for 10 seconds
of input at test time. Again the performance gap to the
baselines is dramatic.

Table 5—adapted from Prasse et al. [31]—shows the iden-
tification accuracy of the different methods for each of the
CEM data sets. The rows labeled “ours” report results of our
own implementation of the reference methods whereas the
row labeled “Holland & Komogortsev” documents results
published by Holland and Komogortsev [45]. The difference
between these numbers might be due to differing prepro-
cessing algorithms and threshold parameters. While we
label micro-saccades as saccades, Holland and Komogortsev
treat them as part of a fixation. In addition to the prepro-
cessing and possible implementational details, the fusion
metrics used to combine the different fixational and saccadic
features differs between our implementation and the one
used by Holland and Komogortsev for the evaluation of
their model: Whereas they train a linear model to weight
the different features, we apply the simple mean metrics as
used by Rigas et al. [21] in their main evaluation of their
model and the method of Holland and Komogortsev [20].

We can see in Table 5 that the DeepEyedentificationLive
network outperforms the models of Rigas et al. [21] and
Holland and Komogortsev [20] in most; differences are
statistically significant for the COM and TEX stimuli on
CEM-I (Tobii TX300 with 0.09° precision and 300 Hz) and all
CEM-III tasks (PlayStation Eye with unspecified precision
and 75 Hz). Only for the simple-patterns stimulus of CEM-
I, our implementation of Holland and Komogortsev [20]
significantly outperforms DeepEyedentificationLive.

Table 6 compares DeepEyedentificationLive to published
results of Lohr et al. [28] and Friedman et al. [22] for stimuli
of 60 seconds on the GazeBase TEX data set. We see that
DeepEyedentificationLive outperforms Lohr et al. [28] and
performs as well as Friedman et al. [22]. This method ex-
tracts features from low-frequency macro-movements and
therefore it is not plausible that it could perform well on
short sequences. By contrast, we see in Table 7 that with
only 10 seconds of input, DeepEyedentificationLive reaches
a similarly low error rate. We cannot run the method of
Friedman et al. [22] in a setting with shorter stimuli because
no implementation is available and some details of the
method are not disclosed.

We conclude that the ongoing micro-scale eye move-
ments comprise many individual characteristic patterns
which are lost when only considering macro-scale eye
movements that take place less frequently. Perhaps sur-
prisingly, even trackers with low precision and sampling
rate contain enough identifying information outside of sac-
cade and fixation features to give DeepEyedentificationLive
an advantage over statistical methods that use engineered
features of fixations and saccades.
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Fig. 3. Comparison of methods for oculomotoric identity verification on the JuDo1000 data set. False-Non Matching Rate (FNMR) over False-Match
Rate (FMR). Colored bands show the standard error. Figure adapted from Makowski et al. [13].

TABLE 3
Performance metrics ± standard errors on the JuDo1000 data set for the verification setting. Values marked “*” are significantly worse (p < 0.05)

than results for DeepEyedentificationLive.

Metric DeepEyedentificationLive DeepEyedentification Rigas et al. 2016 H & K 2013a A & L 2020

EER @ 1 s 0.091 ± 0.0169 0.1391 ± 0.0177 0.5187 ± 0.0152* 0.4996 ± 0.0126* 0.1515 ± 0.1018*
EER @ 5 s 0.0397 ± 0.0129 0.0713 ± 0.0169 0.4527 ± 0.0187* 0.4556 ± 0.0206* 0.2055 ± 0.0666*
EER @ 10 s 0.0301 ± 0.0124 0.0548 ± 0.0179 0.4535 ± 0.0092* 0.4642 ± 0.0165* 0.1721 ± 0.0673*
FNMR @ FMR 10−2 @ 1 s 0.4843 ± 0.0838 0.659 ± 0.0678 0.9809 ± 0.0066* 0.9849 ± 0.0048* 0.99 ± 0.0*
FNMR @ FMR 10−2 @ 5 s 0.2567 ± 0.1043 0.446 ± 0.1045 0.9731 ± 0.007* 0.9766 ± 0.008* 0.9764 ± 0.0113*
FNMR @ FMR 10−2 @ 10 s 0.2201 ± 0.1096 0.3721 ± 0.1131 0.9509 ± 0.0113* 0.9712 ± 0.0091* 0.9755 ± 0.0103*
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Fig. 4. Performance of state-of-the-art methods for oculomotoric identification on the JuDo1000 data set. . False-Negative Identification-Error Rate
(FNIR) over False-Positive Identification-Error Rate (FPIR). Colored bands show the standard error. Figure adapted from Makowski et al. [13].

TABLE 4
Performance metrics ± standard errors on the JuDo1000 data set for the identification setting. Values marked “*” are significantly worse (p < 0.05)

than results for DeepEyedentificationLive.

Metric DeepEyedentificationLive DeepEyedentification Rigas et al. 2016 H & K 2013a A & L 2020

EER @ 1 s 0.1197 ± 0.0073 0.1549 ± 0.0069* 0.4314 ± 0.0139* 0.4577 ± 0.0152* 0.1493 ± 0.101*
EER @ 5 s 0.0838 ± 0.0077 0.1024 ± 0.0070 0.4522 ± 0.0112* 0.4706 ± 0.0078* 0.2018 ± 0.0642*
EER @ 10 s 0.0774 ± 0.0079 0.0917 ± 0.0071 0.4456 ± 0.0095* 0.4695 ± 0.0108* 0.1718 ± 0.0666*
FNIR @ FPIR 10−2 @ 1 s 0.5033 ± 0.0250 0.6429 ± 0.0216* 0.9757 ± 0.0054* 0.9823 ± 0.0076* 0.9899 ± 0.0001*
FNIR @ FPIR 10−2 @ 5 s 0.2546 ± 0.0256 0.4013 ± 0.0322* 0.976 ± 0.0057* 0.9851 ± 0.0029* 0.9724 ± 0.0068*
FNIR @ FPIR 10−2 @ 10 s 0.2143 ± 0.0225 0.3474 ± 0.0374* 0.961 ± 0.0061* 0.9802 ± 0.0048* 0.9763 ± 0.006*
FNIR @ FPIR 10−3 @ 1 s 0.7997 ± 0.0206 0.8702 ± 0.021* 0.987 ± 0.0047* 0.9878 ± 0.0076* 0.9989 ± 0.0001*
FNIR @ FPIR 10−3 @ 5 s 0.4928 ± 0.0427 0.6571 ± 0.0352 0.9875 ± 0.0044* 0.9911 ± 0.0027* 0.9943 ± 0.0017*
FNIR @ FPIR 10−3 @ 10 s 0.4014 ± 0.0459 0.5857 ± 0.0426 0.9884 ± 0.0042* 0.9896 ± 0.0037* 0.9948 ± 0.0018*

6.3.3 Impact of the Size of the Training Population
We conduct a further experiment to measure the impact of
the training-population size on the performance of Deep-
EyedentificationLive. We train the network on 25, 50, 75,
100, and 125 users using a softmax output layer with as
many output units. We conduct experiments in which (a)
the total volume of training data increases proportionally to

the amount of training users and in which (b) we keep the
total volume constant by reducing the duration of gaze data
per user proportionally. Given a maximum training time of
28,800 seconds, a training setup with 25 users includes 1152
seconds per user, whereas for a training setup with 100 users
288 seconds per user are included.

Figure 5a shows equal-error rates for both settings. In-
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TABLE 5
Identification accuracies ± standard error (in %) on the CEM data sets with different stimulus types. The second and third rows present our
re-implementation of Rigas et al. (2016) and Holland and Komogortsev (2013), the bottom row shows the numbers reported by Holland and

Komogortsev [45, Table 4]. Values marked “*” are significantly worse (p < 0.05) than results for DeepEyedentificationLive. Values marked “†” are
significantly better (p < 0.05) than results for DeepEyedentificationLive. Table adapted from Prasse et al. [31].

CEM-I CEM-II CEM-III
Method SIM COM COG TEX TEX SIM COM RAN TEX
DeepEyedentificationLive 63 ± 2 67 ± 3 56 ± 2 75 ± 2 80 ± 2 34 ± 1 37 ± 1 43 ± 1 35 ± 1
Rigas et al. (ours) 67 ± 2 37 ± 2* 55 ± 2 41 ± 1* 78 ± 1 8 ± 2* 8 ± 2* 5 ± 1* 6 ± 1*
Holland & Komogortsev (ours) 68 ± 2† 31 ± 2* 48 ± 2* 33 ± 2* 71 ± 2* 8 ± 2* 7 ± 2* 5 ± 1 * 5 ± 1*
Holland & Komogortsev 53 22 19 31 38 7 5 5 4

TABLE 6
Comparison of DeepEyedentificationLive to published results [28] for a

stimulus of 60 seconds on the GazeBase TEX dataset.

TEX
DeepEyedentificationLive EER @ 60 s 0.047 ± 0.003
Lohr et al. [28] EER @ 60 s 0.063 ± 0.010 [28]
Friedman et al. [22] EER @ 60 s 0.047 ± 0.018 [28]

creasing the number of different users during the initial
training stage appears to improves the model performance
even if the total volume of training data stays constant, and
even more so if the volume of training data increases. The
differences between measurement points are not statistically
significant for a constant amount of training data and the
p-value of a comparison between 125 and 25 users for an
increasing amount of training data reaches 0.058 based on
a two-sided t-test. An uptick in EER for 75 users is not
statistically significant and likely due to chance. While we
can see diminishing returns per additional user for larger
training population, the curve does not appear to level off—
much larger training populations will likely result in more
accurate models. The shape of this curve for substantially
larger training populations remains to be explored in large-
scale experiments.

6.3.4 Impact of Data Volume per User
In the next experiment, we explore the impact of the du-
ration of gaze data per training user and the data volume
during enrollment on the model’s accuracy.

First, we keep the number of training users at a constant
number of 125, while increasing the data volume per train-
ing user from 15 to 300 seconds. Figure 5b demonstrates
clearly that increasing the training data volume per user
leads to better model performance; at a maximum duration
of 300 seconds, the curve shows no sign of leveling off. The
difference between 15 and 300 training users is significant
(p < 0.001) based on a two-sided t-test.

In the next experiment, we train the model on all
available data and vary the duration of enrollment gaze
sequences between 15 seconds and 300 seconds. Figure 5b
indicates no benefit of increasing the enrollment sequence
beyond 60 seconds; differences are not statistically signifi-
cant

6.3.5 Impact of Session Bias
We explore the network’s ability to generalize across record-
ing sessions. Addressing this topic is relevant because oculo-

motor control may be influenced by the user’s mental state,
the time of day, and other confounding factors.

As there are exactly four sessions available for each user
in the JuDo1000 data set, we evaluate on this available range
of number of sessions. We first examine the number of
training sessions by randomly drawing a particular number
of training sessions and using all the data per session. In
a second run, we inversely adjust the duration of training
data per session to keep the overall training-data volume
constant.

We observe in Figure 5c that increasing the number
of sessions per training user improves the model’s perfor-
mance. The effect is even more strongly pronounced if the
total data volume increases with the number of sessions.

Finally, we train the network on all four sessions of
training users and vary the number of sessions from which
enrollment sequences are drawn between 1 and 4. We draw
24 seconds per user from the enrollment sessions for en-
rollment and test the model on an unseen session. We can
observe an almost linear descent in EER when varying the
used number of enrollment sessions.

We conclude that in the studied range of 1 through
4 sessions, increasing the number of recordings sessions
per training user, and increasing the number of enrollment
sessions reduces the equal error rate; the incremental benefit
of additional sessions appears to level off after 3 sessions.
Differences are not statistically significant.

6.3.6 Impact of Stimulus Type
We conduct a further experiment to evaluate various stimuli
types in regard to the performance of DeepEyedentification-
Live. The broad range of visual stimuli used in the GazeBase
data set is ideal for such an evaluation. The training popu-
lations contain 100 randomly drawn users for whom at least
two sessions are available. As in the experiments before, we
create a test population of 25 users, where a single user is
to be enrolled and verified while the users of the remaining
population are treated as impostors. We enroll each test user
in turn with data from 3 of the first 4 sessions and verify on
a randomly drawn session from sessions 5 to 8.

Table 7 shows that the equal error rate varies widely
across stimuli types. The differences get more pronounced
by increasing the length of test recordings.

The equal error rate is lowest for the reading task (TEX),
followed by the game (BLG), and horizontal saccade task
(HSS). Error rates are substantially higher for the random
saccade (RAN), and video viewing tasks (VD1 and VD2).
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Fig. 5. Identity verification performance of the DeepEyedentificationLive model on the Judo1000 data set. Error bars show the standard error.

The fixation task (FXS) results in the highest error rate. We
conclude that unconstrained eye movements such as during
reading are best suitable for biometric identification. While
watching jumping dots or videos, eye movements are more
strongly influenced by the stimulus; forced fixations lead to
the least variability across persons and are least suitable for
identification.

6.3.7 Impact of the Time Interval Between Sessions
We want to study whether the time interval between en-
rollment and identity verification has an influence on the
model performance. To this end, we evaluate DeepEyedentifi-
cationLive on the GazeBase data set, where time lags between
sessions account for up to 32 months.

The dates of each session are specified to within ranges.
We use sessions 1 to 4 for enrollment. The resulting time
lag intervals available in our evaluation are therefore 5 to 14
months (sessions 1-4 to session 5), 11 to 20 months (sessions
1-4 to session 6), 18 to 26 months (sessions 1-4 to session 7)
and 23 to 32 months (sessions 1-4 to session 8).

The resulting Figure 6 does not exhibit any correlation
between interval length and equal error rate. However, we
observe that the equal error rate varies across sessions; ses-
sions 6 and 8 appear to be “harder” whereas sessions 5 and
7 are “easier”. Inspection of the data shows that “harder”
sessions have a higher rate of tracker loss, indicating that
the data quality is the dominant factor.
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Fig. 6. Performance metrics ± standard errors of the DeepEyedentifica-
tionLive model for different stimuli on the GazeBase data set. Users are
enrolled using 3 of the first 4 sessions and tested on a session in the
future. Error bars show the standard error.

6.4 Presentation-Attack Detection
We simulate an attacker who has observed the number of
stimuli, display duration, and the size of the display area,

and who is able to record and replay, without detectable
imperfections, a gaze sequence of the target individual for
this exact configuration or is able to control the input to the
system. Since we use a randomized stimulus, the attacker
does not know the display positions of the jumping dot.

We evaluate presentation-attack detection on the
JuDo1000 and GazeBase data set. We randomly resample 10
times, in each iteration selecting 125 users for training and
25 users for testing. At test time, a decision is made based
on an input recording of one trial. We generate examples of
attacks by pairing a test gaze sequence with a stimulus se-
quence for which the positions have been randomly drawn
with the same display duration and area. For each bona fide
presentation in the data, we create one attack presentation.

We compare DeepEyedentificationLive against a simple
heuristic and a Random Forest model with engineered fea-
tures. The heuristic is based on Equation 3; it measures, how
well the fixation sequence matches the sequence of stimuli
by computing the average, over four stimulus relocations,
of the differences between the aggregate gaze movements
during presentation of the stimulus and the offset between
current and last stimulus. Based on a threshold, a pair of
fixation sequence and stimuli is classified as attack or bona
fide. The Random Forest baseline uses the four differences
between aggregate eye movements and stimulus offsets
during presentation of one of the stimuli and the average
of these values as features.

Prior work on presentation-attack detection for gaze-
based identification assumes that the presentation is gen-
erated with imperfections in the distributional features of
the user’s fixation durations and amplitude and velocity
features of saccades [39], [40]. In our setting, the attacker
replays a recorded gaze sequence of the target user. There-
fore, this known approach cannot distinguish these replay
attacks from bona fide presentations and we do not include
it in the experimental comparison. Reference methods that
detect specific artifacts that are indicative of a particu-
lar presentation-attack instrument are generally ineffective
against different attack instruments. For instance, prior
work that exploits phase information which is indicative of
smartphone screens [46], or other methods that detect video
presentations by detecting mobile devices cannot detect a
presentation attack using 3D-printed eyeball replicas. We
therefore do not believe that including these methods in our
experimental comparison would provide new insights.

To investigate the influence of display durations on
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TABLE 7
Performance metrics ± standard errors of DeepEyedentificationLive on the GazeBase on different stimuli. Users are enrolled using 3 of the first 4

sessions and tested on a randomly selected session from 5-8.

RAN TEX FXS VD1 VD2 BLG HSS
EER @ 1 s 0.218 ± 0.040 0.162 ± 0.016 0.333 ± 0.047 0.287 ± 0.047 0.264 ± 0.038 0.193 ± 0.024 0.163 ± 0.032
EER @ 5 s 0.163 ± 0.047 0.100 ± 0.021 0.297 ± 0.059 0.219 ± 0.052 0.208 ± 0.050 0.103 ± 0.026 0.114 ± 0.033
EER @ 10 s 0.148 ± 0.049 0.074 ± 0.021 0.259 ± 0.065 0.185 ± 0.052 0.188 ± 0.054 0.081 ± 0.025 0.102 ± 0.033

presentation-attack detection performance, we evaluate the
models on three subsets of the data (using only trials with
250 ms, 500 ms or 1000 ms display duration in training
and test respectively). As Figure 7 and Table 8 show, we
attain the lowest EER of 0.011, when only using data from
trials with 500 ms stimulus display duration and an EER
of 0.041 when using all experimental configurations. The
performance gap between DeepEyedentificationLive and
both baseline methods is dramatic. The last row of Table
8 and Figure 8 shows the results for presentation-attack
detection on the RAN task of GazeBase. We observe that
presentation-attack detection performance is comparable to
the performance on JuDo1000 in the configuration of a
display duration per dot of 1 s.

TABLE 8
Presentation-attack detection with one trial as input at test time. Table
shows EER for different display durations (250ms, 500ms, 1000ms) of

the five dots. Time in seconds denotes resulting trial length. Values
marked “*” are significantly worse (p < 0.05) than results for

DeepEyedentificationLive.

DeepEye.Live Random Forest Heuristic
EER 0.041 ± 0.004 0.171 ± 0.005* 0.202 ± 0.009*
EER @ 1.25s 0.073 ± 0.003 0.208 ± 0.014* 0.225 ± 0.016*
EER @ 2.5s 0.011 ± 0.004 0.146 ± 0.005* 0.175 ± 0.009*
EER @ 5.0s 0.051 ± 0.004 0.160 ± 0.006* 0.204 ± 0.006*
EER @ 5.0s (GazeBase) 0.021 ± 0.001 0.118 ± 0.001* 0.121 ± 0.001*

7 CONCLUSION

We have developed DeepEyedentificationLive, a convolutional
network for oculomotoric biometric identification that pro-
cesses both the controlled stimulus and the binocular re-
sponse in the form of sequences of gaze velocities. The
model determines an embedding of gaze sequences and
simultaneously performs presentation-attack detection.

We conclude that DeepEyedentificationLive dramatically
outperforms reference methods that extract explicit saccadic
and fixational features on the JuDo1000 data set that we
recorded with a high-precision eye tracker as well as on
most viewing tasks of the legacy CEM-I and CEM-III data
sets that were recorded with low sampling rates and preci-
sion. By processing the low-velocity, high-frequency micro-
movements in a separate sub-network, DeepEyedentifica-
tionLive is able to automatically identify micro-movement
features that vary across individuals. DeepEyedentification-
Live only receives gaze velocities as input and hence is in-
sensitive to user-specific offsets that otherwise would have
to be compensated by calibration.

Deep neural networks for biometric identification re-
quire a separate set of training users to train the embedding.

From our experiments we can conclude that more data is
better in almost any aspect: increasing the number of training
users, the volume of gaze data per training user, the number
of sessions per training user and the number of enrollment
sessions continues to improve the model’s performance
across the studied range. By contrast, increasing the vol-
ume enrollment data beyond 60 seconds for a user does
not appear to have a beneficial effect. We do not observe
any performance deterioration when the interval between
enrollment and identity verification grows to as much as 32
months.

With regard to the stimulus type, we conclude that
unconstrained viewing tasks such as reading a text are
best suitable for biometric identification whereas watching
jumping dots or videos, or performing forced fixations are
more challenging because the scanpath is largely deter-
mined by the stimulus. By showing randomized jumping
dots, DeepEyedentificationLive is able to compare a controlled
visual stimulus to the induced ocular response at the cost of
identity verification becoming more challenging. We have
demonstrated that DeepEyedentificationLive is able to identify
users even in this setting.

Our model of an attacker who is informed about the
display duration and area and can replay gaze sequences
of the target individual without imperfection is arguably
the most challenging attacker model. We conclude that five
stimuli displayed for 500 ms each are the best configuration
for presentation-attack detection under investigation.

We conclude that using eye movements bears high po-
tential for applications that require a fast and unobtrusive
identification. Eye movements are a necessary prerequisite
of vision, and are therefore available for a large fraction
of the population. Eye movements are orthogonal to estab-
lished biometric features, but could potentially be measured
using the same infrared sensors that can also be used for
iris scans or face recognition. Hence, it might complement
these technologies in a multimodal biometric system that
could be more robust to colored contact lenses and small
eye apertures—which may prevent the use of iris scans—
and niqabs and masks, which pose problems for facial
identification. We made the JuDo1000 data set available to
the research community.
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Fig. 7. Presentation-attack detection performance with one trial as input at test time using data from trials with a dot on-screen duration of 250, 500,
and 1000 ms from the Judo1000 data set. Bona-Fide Presentation-Classification Error Rate (BPCER) over Attack-Presentation Classification-Error
Rate (APCER). Colored bands show the standard error.
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Fig. 8. Presentation-attack detection performance with one trial as
input at test time using data from trials with a dot on-screen
duration of one second from the GazeBase data set. Bona-
Fide Presentation-Classification Error Rate (BPCER) over Attack-
Presentation Classification-Error Rate (APCER). Colored bands show
the standard error.
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[15] P. Kasprowski and K. Harkeżlak, “The second eye movements
verification and identification competition,” in Proceedings of the
International Joint Conference on Biometrics (IJCB), 2014.

[16] C. Holland and O. V. Komogortsev, “Biometric identification via
eye movement scanpaths in reading,” in Proceedings of the Interna-
tional Joint Conference on Biometrics (IJCB), 2011, pp. 1–8.

[17] N. Cuong, V. Dinh, and L. S. T. Ho, “Mel-frequency cepstral
coefficients for eye movement identification,” in ICTAI 2012, 2012,
pp. 253–260.

[18] D. L. Silver and A. Biggs, “Keystroke and eye-tracking biometrics
for user identification,” in ICAI 2006, vol. 2, 2006, pp. 344–348.

[19] I. Rigas, G. Economou, and S. Fotopoulos, “Biometric identifi-
cation based on the eye movements and graph matching tech-
niques,” Pattern Recogntion Letters, vol. 33, pp. 786–792, 2012.

[20] C. Holland and O. Komogortsev, “Complex eye movement pattern
biometrics: Analyzing fixations and saccades,” in ICB 2013, 2013.

[21] I. Rigas, O. Komogortsev, and R. Shadmehr, “Biometric recogni-
tion via eye movements: Saccadic vigor and acceleration cues,”
ACM Transactions on Applied Perception, vol. 13, no. 2, p. 6, 2016.

[22] L. Friedman, M. S. Nixon, and O. V. Komogortsev, “Method to
assess the temporal persistence of potential biometric features:
Application to oculomotor, gait, face and brain structure
databases,” PLOS ONE, vol. 12, no. 6, pp. 1–42, 06 2017. [Online].
Available: https://doi.org/10.1371/journal.pone.0178501

[23] H.-J. Yoon, T. R. Carmichael, and G. Tourassi, “Gaze as a biomet-
ric,” in SPIE Medical Imaging Conference: Image Perception, Observer
Performance, and Technology Assessment, 2014.

[24] H. Yoon, T. Carmichael, and G. Tourassi, “Temporal stability of
visual search-driven biometrics,” in SPIE Medical Imaging: Image
Perception, Obserformance, and Technology Assessment, 2015.

[25] N. Landwehr, S. Arzt, T. Scheffer, and R. Kliegl, “A model of indi-
vidual differences in gaze control during reading,” in Proceedings
of Empirical Methods in Natural Language Processing, 2014, pp. 1810–
1815.

[26] A. Abdelwahab, R. Kliegl, and N. Landwehr, “A semiparametric
model for Bayesian reader identification,” in Proceedings of Empiri-
cal Methods in Natural Language Processing, 2016, pp. 585–594.

[27] A. George and A. Routray, “A score level fusion method for eye
movement biometrics,” Pattern Recognition Letters, vol. 82, pp. 207–
215, 2016.

[28] D. Lohr, H. Griffith, S. Aziz, and O. Komogortsev, “A metric

https://doi.org/10.1371/journal.pone.0178501


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBIOM.2021.3116875, IEEE
Transactions on Biometrics, Behavior, and Identity Science

IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE 13

learning approach to eye movement biometrics,” in 2020 IEEE
International Joint Conference on Biometrics (IJCB), 2020, pp. 1–7.

[29] A. Abdelwahab and N. Landwehr, “Quantile layers: Statistical ag-
gregation in deep neural networks for eye movement biometrics,”
in Machine Learning and Knowledge Discovery in Databases. ECML
PKDD 2019. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2020, pp. 332–348.

[30] ——, “Deep Distributional Sequence Embeddings Based on a
Wasserstein Loss,” arXiv:arXiv:1912.01933, 2019.
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Lena A. Jäger is Associate Professor at the Department of Compu-
tational Linguistics, University of Zurich and leader of the Junior Re-
search Group Artificial Intelligence for Eye Tracking Data (AEye) at the
Department of Computer Science, University of Potsdam. She received
a doctoral degree in Cognitive Science from the University of Potsdam
in 2015.

Tobias Scheffer is a Professor of Computer Science at the University
of Potsdam. He received a doctoral degree in 1999 from Technische
Universität Berlin. He served as Program Co-Chair of the International
Conference on Machine Learning in 2011 and of ECML PKDD in 2006.

https://osf.io/5zpvk/
http://arxiv.org/abs/2009.06171
http://arxiv.org/abs/2009.06171

