
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 1

Challenges and Common Solutions in
Smart Contract Development

N. Kannengießer, S. Lins, C. Sander, K. Winter, H. Frey, A. Sunyaev

Abstract—Smart contracts are a promising means of formalizing and reliably enforcing agreements between entities using

distributed ledger technology (DLT). Research has revealed that a significant number of smart contracts are subject to

programming flaws, making them vulnerable to attacks and leading to detrimental effects, such as asset loss. Researchers and

developers call for a thorough analysis of challenges to identify their causes and propose solutions. To respond to these calls, we

conducted two literature reviews and diverse expert interviews and synthesized scattered knowledge on challenges and solutions.

We identified 29 challenges (e.g., code visibility, code updateability, and encapsulation) and 60 solutions (e.g., gas limit

specification, off-ledger computations, and shadowing). Moreover, we developed 20 software design patterns (SDPs) in

collaboration with smart contract developers. The SDPs help developers adjust their programming habits and thus support them

in their daily development practices. Our results provide actionable knowledge for smart contract developers to overcome the

identified challenges and offer support for comparing smart contract integration concepts across three fundamentally different

DLT protocols (i.e., Ethereum, EOSIO, and Hyperledger Fabric). Moreover, we support developers in becoming aware of

peculiarities in smart contract development and the resulting benefits and drawbacks.

Index Terms—Blockchain, Distributed Ledger Technology, Decentralized Applications (DApps), Patterns, Smart Contracts,

Software Development

—————————— ——————————

1 INTRODUCTION

MART contracts are software programs that express

logic formalized in code for the reliable enforcement of

business agreements between defined entities

(e.g., individuals, organizations, or machines) [1]. An early

form of smart contracts is enabled by the primitive Script

available for the Bitcoin blockchain to define conditional

asset transfers [2]–[4]. In 2015, the Ethereum foundation

went beyond Bitcoin Script’s primitive capabilities by

introducing the Ethereum Virtual Machine (EVM), which

enables the execution of Turing complete smart contracts1

in high-level programming languages, such as Obsidian,

Solidity, or Vyper. Following the success of Ethereum,

various DLT protocols (e.g., EOSIO or Hyperledger Fabric)

have focused on enabling smart contracts. Through Turing

completeness, smart contracts have become more

expressive and better usable for manifold decentralized

applications. However, the gain in expressiveness of smart

contract code comes with its downsides because it can

increase the complexity of smart contract code and favors

the occurrence of programming flaws. Moreover,

developers must anticipate the special characteristics of

smart contracts, such as the public visibility of smart

contract code [6], [7], the tamper resistance of deployed

1 We are aware of the discussion on the potential Turing completeness of
Bitcoin’s Script [5]. Since this discussion has not been finished, we align

smart contracts [8], [9], and access management for the

execution of smart contract functions [9]–[11].

Existing research has revealed that a significant number

of smart contracts deployed on the Ethereum blockchain

are subject to programming flaws [12]–[14] that make

smart contracts vulnerable to attacks. The criticality of flaws

became apparent in various incidents, such as the DAO
hack and the Parity Wallet hack. Each incident led to a loss

of USD $150 MM [15], [16]. Beyond Ethereum, it became

clear that smart contract development is also challenging

for other DLT protocols, including EOSIO

(e.g., USD $58,000 was stolen using faked EOS tokens [17])

and Hyperledger Fabric (e.g., dealing with phantom reads

[18]). Given the frequency and severity of flaws in smart

contract code, researchers and developers call for a

thorough analysis of the challenges that lead to flaws in

identifying their causes and proposing corresponding

solutions, ultimately improving development practices.

To reduce the challenges of smart contract development

and improve the quality of smart contract code, prior

research has identified several challenges (e.g., [10], [19]–

[21]) and proposed appropriate solutions (e.g., [8], [10],

[14]). These solutions can be largely distinguished into

automated verification and coding support. For automated

verification, existing research presents software tools

(e.g., MadMax [14] or ReGuard [22]) for automatically

identifying flaws in smart contract code (e.g., using static

analysis [23], dynamic analysis [24], or machine learning

[25]) and increasing code quality. Nevertheless, the

applicability of automated verification to smart contract

code is limited in terms of comprehensiveness

because most formal verification tools apply static patterns

with the Bitcoin documentation [3] and find Bitcoin’s smart contract
capabilities not Turing-complete.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

• N. Kannengießer, S. Lins, and A. Sunyaev are with the Institute of
Applied Informatics and Formal Description Methods, Karlsruhe
Institute of Technology, Karlsruhe, Germany. E-Mail:
{niclas.kannengiesser; lins; sunyaev}@kit.edu

• N. Kannengießer and A. Sunyaev are with the KASTEL Security
Research Labs, Karlsruhe, Germany

• C. Sander, K. Winter, and H. Frey are with the EnBW Energie Baden-
Württemberg AG, Karlsruhe, Germany. E-Mail: {c.sander; k.winter;
h.frey}@enbw.com

S

mailto:niclas.kannengiesser;%20lins;%20sunyaev%7d@kit.edu
mailto:c.sander@enbw.com
mailto:c.sander@enbw.com

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

to identify code flaws, and mostly applies to a single type

of DLT protocol, such as those using the EVM. Because of

the undecidability of several computational problems

(e.g., the halting problem), flaws such as infinite loops can

often not be proven beyond technical boundaries

(e.g., limited memory allocations).

While automated verification only applies to existing

code, coding support aims to sensitize developers to smart

contract challenges and respective. To this end, prior

research has started tackling said challenges by developing

software design patterns (SDPs; e.g., [8], [9], [26]). However,

existing SDPs for smart contract development focus on

only a few DLT protocols (foremost Ethereum) and are

scattered across various sources (e.g., scientific papers [8],

[9], [26], blogs [27], [28], and DLT-related documentation

[29]), obfuscating the actual causes for existing challenges.

Details of the proposed SDP and related solutions, such as

the problem context, are often missing, which hinders their

practical applicability for developers in day-to-day

operations. It remains unclear which features of DLT

protocols cause what challenges for smart contract

development and how developers should effectively

address these challenges.

To sensitize developers to the peculiarities of and

resulting challenges in smart contract development for

different DLT protocols and to help improve smart contract

code quality, we ask the following research questions (RQ):

RQ1: What are the key challenges in smart contract
development?

RQ2: How can developers tackle the identified
challenges?

To answer these RQs, we applied a two-step research

method. First, we conducted two complementary literature

reviews [29], [30] and diverse expert interviews to

synthesize scattered knowledge on challenges and

corresponding solutions concerning smart contract

development. In total, we identified 29 challenges,

including code visibility, concurrency, and data type

complexity, and 60 corresponding solutions, including off-

ledger computations, synchronization, and array

replacement. We further grouped these into three principal

origins—platform, programming language and execution
environment, and coding practice—according to the

individual challenge's causes. Second, we iteratively derived

and evaluated SDPs for smart contract development based

on a selected set of identified challenges and solutions

because the details of proposed solutions in general and

SDPs in particular are often missing in extant research. We

particularly applied a thorough pattern generation

approach and a strict canonical structure for SDPs

(e.g., [31]–[33]) to ease the understanding and usage of

patterns for smart contract developers and overcome the

limitations of prior research regarding pattern applicability.

This work contributes to practice, as we present

challenges developers frequently face when developing

smart contracts for Ethereum, EOSIO, and Hyperledger

Fabric and corresponding solutions. Moreover, we derived

20 SDPs in collaboration with smart contract developers

2 https://github.com/KITcii/smart-contract-dev-support

from solutions that became best practices. These help

developers avoid frequent challenges in smart contract

development and avoid common flaws in smart contract

code. By developing a three-layered hierarchy of

challenges that starts with the three principal origins for

challenges, we support developers in separately assessing

the possible drawbacks of DLT protocols and offered

programming languages and execution environments. We

thereby help developers select and configure a DLT

protocol under consideration of particular use-case

requirements and their personal preferences. For example,

developers can better assess which DLT protocol to

combine with which virtual machine as offered by

upcoming middleware, such as Neutron [34] for the

Ethereum-based Qtum framework.

We contribute to the research by synthesizing scattered

knowledge on smart contract development challenges and

solutions across three major DLT protocols—Ethereum,

EOSIO, and Hyperledger Fabric. We highlight the

implications of different design decisions for DLT protocols

for smart contract development (e.g., regarding the

characteristics of an execution environment and

corresponding programming languages). Thereby, we

support the understanding of the interplay between DLT

protocols and their smart contract execution environments.

By applying the canonical pattern structure proposed in

prior research [31]–[33], our SDPs contain detailed

descriptions of each challenge and its solution and a

discussion on benefits and boundary conditions, thereby

extending prior research that briefly outlined potential

solutions to overcome challenges.

This work is structured as follows. First, we introduce the

fundamentals of DLT, smart contract development, and

SDPs. Second, we briefly explain the applied method for

identifying smart contract development challenges and

corresponding solutions and how we derived the 20 SDPs.

Third, we present the derived challenges for smart contract

development and depict how the identified solutions and

our SDPs can overcome these challenges. Fourth, we

discuss this study and our findings in the context of related

works and describe our implications for research and

practice. We conclude with a summary and our principal

findings and describe the limitations of this work, as well as

corresponding starting points for future research. To make

the developed SDPs easy to use, we made them accessible

in our public git repository.2

2 BACKGROUND

2.1 Distributed Ledger Technology

DLT enables multiple individuals or organizations to

collectively operate a digital platform in a decentralized

manner. This decentralized digital platform is based on a

highly available and tamper-resistant distributed database

(i.e., distributed ledger), where various storage and

computing devices (i.e., nodes) maintain local copies of

stored data [35]. Nodes add data to their local ledger

version in the form of transactions. In blockchains, these

https://github.com/KITcii/smart-contract-dev-support

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 3

transactions are batched together in blocks. Transactions

can contain digital representations of assets (e.g., coins) or

the byte code of a smart contract (e.g., in Ethereum). When

a node receives a new transaction, the node first validates

the transaction [36]. Validated transactions remain in the

node’s local storage (i.e., mempool) until the nodes verify

the transaction by appending it to its local copy of the

ledger. The order in which transactions are verified is

decided by each individual node, leading to a kind of

concurrency in transaction processing [37].

Distributed ledgers operate in untrustworthy

environments characterized by the arbitrary occurrence of

Byzantine faults, comprising temporarily unreachable

nodes, crashed nodes, or malicious behavior of nodes

(e.g., double-spending of assets) [38], [39]. Byzantine faults

and network delays can cause nodes in a DLT network to

store different ledger versions and thus be in different

states. Such inconsistencies in a distributed ledger can

cause vulnerabilities in DLT systems. For example,

inconsistencies across nodes cause network partitions that

can make distributed ledgers vulnerable to tampering [35],

[39]. To resolve inconsistencies between the versions of the

ledger stored on different nodes, consensus mechanisms

are used.

Within DLT networks, nodes can have different

permissions for appending new data to the ledger

(i.e., write permissions) [35]. In permissioned DLT protocols,

only specified nodes are permitted to participate in

consensus finding and commit new data to the distributed

ledger. In permissionless DLT systems, all nodes in the DLT

network can participate in consensus finding.

When interacting with a distributed ledger, entities

(i.e., individuals, organizations, or devices) have individual

digital identities with attributes, such as a unique

pseudonym as an identifier (e.g., an account address in

Ethereum). The pseudonym can be used to reference an

account in the distributed ledger, and entities can send and

receive transactions using the pseudonym.

2.2 Smart Contracts

Smart contacts offer reliable enforcement of agreements

formalized in the program code between multiple parties.

Depending on the DLT protocol, different concepts have

been applied for the integration of smart contracts

(see Table 1). These differences often originate from design

decisions, especially concerning the consensus mechanism.

For example, the Hyperledger Fabric protocol does not

require deterministic smart contract execution to favor

consensus finding, but applies Raft as a centralized

consensus mechanism with only crash-fault tolerance and

no Byzantine fault tolerance. In contrast, the Ethereum

protocol requires determinism in smart contract execution

to make the consensus mechanism more secure, which can

be decentralized and Byzantine fault-tolerant. In the

following sections, we explain the concepts of how smart

contracts are integrated into three major open-source DLT

protocols supporting smart contracts: Ethereum, EOSIO,

and Hyperledger Fabric.

Ethereum. The Ethereum protocol natively uses a proof-of-

work-based consensus mechanism and applies the concept

of a Greedy Heaviest Observed Sub-Tree (GHOST) to

resolve inconsistencies between nodes. Smart contracts are

independently executed by all nodes in Ethereum-based

DLT networks. Still, these nodes must eventually agree on a

consistent state requiring the deterministic execution of

smart contracts. To prevent nondeterministic smart

contract execution, the EVM encapsulates smart contracts,

hindering interaction with external information systems

(i.e., oracles) and the use of real randomness (e.g., for

random number generation).

Ethereum allows for the development of smart contract

code in several high-level programming languages,

including Solidity, Obsidian, or Vyper. After development,

the smart contract code must be compiled to bytecode

(e.g., using solc compiler for Solidity or vyper compiler for

Vyper) and produce a corresponding application binary

interface (ABI) file to specify application programming

interface (API) for interactions with the smart contract. For

deployment, the bytecode is included in the payload of a

transaction issued to the Ethereum network. After the

bytecode has been deployed, the smart contract is

included in the blockchain and stored in a tamper-resistant

manner.

Each Ethereum smart contract has an individual account

with a unique address, similar to the externally owned

TABLE 1
COMPARISON BETWEEN SMART CONTRACT INTEGRATION CONCEPTS

 DLT Protocol

Characteristic EOSIO Ethereum Hyperledger Fabric

Distributed Computing All nodes execute all smart contracts
upon invocation

All nodes execute all smart contracts
upon invocation

Only defined nodes execute smart
contracts upon invocation

Deterministic Execution Required for consensus finding Required for consensus finding Not required for consensus finding but
potentially important to fulfilling the
endorsement policy

Execution Regulation
Mechanism

Execution bounded by time or by a
maximum number of instructions

Execution bounded by gas
consumption

Execution timeout

Execution Environment EOS Virtual Machine (EOSVM) Ethereum Virtual Machine (EVM) Docker container

Programming Languages C++ Solidity, Vyper Go, Java, Node.js

Deployment Process Bytecode included in the transaction Bytecode included in the transaction Manual installation by node controllers

Bytecode Storage RAM and blockchain on disk Blockchain on disk Docker container on disk

Execution Process Order-execute Order-execute Execute-order-validate

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

accounts used by entities external to the distributed ledger.

Smart contracts can receive, store, and transfer assets and

interact with other accounts. The execution of a particular

smart contract function is triggered by a transaction sent

to the smart contract address with the signature of the

target function in the data field.

In Ethereum, each node maintains its own state s.

Successfully processed transactions cause a state transition

from st to st+1 [37]. Although these nodes independently

execute smart contracts, all nodes in the DLT network must

eventually agree on a common state requiring the

deterministic execution of smart contracts following a

replicated state machine model. To prevent

nondeterministic smart contract execution, the EVM largely

encapsulates smart contracts, hindering interaction with

external information systems (i.e., oracles) and the use of

real randomness (e.g., for random number generation).

To counter denial of service in smart contract execution

(e.g., through infinite loops) and reward nodes for the

provision of computational resources for the execution of

smart contract code, the Ethereum protocol applies a

pricing scheme. The pricing scheme uses the unit gas to

measure computational resource consumption associated

with transaction processing. With each transaction, entities

pass a maximum amount of gas they are willing to spend

(i.e., gas limit) for the transaction processing (e.g., to

execute a function or deploy a smart contract) and the

corresponding amount of Ether to pay per consumed unit

of gas. If the execution exceeds the gas limit, the execution

is aborted and rolled back.

For function calls from one smart contract (A) to another

(B), Solidity offers three ways to invoke functions [40], [41]:

call, delegatecall, and staticcall. When using call

(e.g., in direct calls like ContractB.functionName(…)), the

target function provided by B is executed in a separate

context from caller contract A and can access its own smart

variable values. When using delegatecall, the target

function is executed in the context of the caller contract

and can also change variable values of the caller contract.

staticcall can be used to call a smart contract but

disallows any state changes during its execution. Attempts

to make state modifications result in an exception, and no

modifications are made.

EOSIO. Blockchains that build on the EOSIO protocol

(e.g., the EOS blockchain) natively use a consensus

mechanism consisting of two components: Delegated

Proof-of-Stake (DPoS) to elect block producers and

asynchronous Byzantine fault tolerance (aBFT) to finalize

blocks [42]. The EOSIO consensus mechanism requires all

nodes to agree on the same state of the main chain. Thus,

EOSIO imposes a deterministic execution of actions to

favor consensus finding [43].

EOSIO smart contracts are programmed in C++ and are

compiled into WebAssembly (WASM) formatted bytecode

using the eosio-cpp compiler. The compilation process also

produces an ABI file to derive the smart contract API for

interactions. For deployment, a smart contract bytecode is

put into a transaction that is sent to call the eosio.system
contract. Executable bytecodes of current EOSIO smart

contracts are hosted in the random-access memory (RAM)

of nodes. The blockchain records all transactions and

events on the disks of nodes in the DLT network [44], [45].

In EOSIO, each account is identified by a unique name

with a length of one to twelve characters [46]. Each smart

contract has a unique account and exhibits actions invoked

by accounts. Actions are invoked through action instances,

defining the target account, the name of the action to be

executed, a list of authorizations to prove permissions for

action execution, and action data (e.g., function

arguments). Action instances are included in transactions

and are executed by validating nodes in sequential order.

Upon transaction receival, nodes check whether the

authorizations included in action instances fulfill the

permissions defined for the smart contract actions to be

called. Permissions are linked to an authority table where

the individual permissions for the execution of actions are

defined by the respective smart contract owners [46]. If the

permission check fails for at least one account in an action

instance, the entire transaction processing is aborted and

no smart contract action is executed. Otherwise, the node

invokes the actions defined in the action instances [47].

Before executing the called actions, the nodeos daemon

running on each node makes a local snapshot of the state

history and loads the WASM bytecode of the smart

contract into the EOS Virtual Machine (EOSVM) for

execution [43]. During the execution of actions, EOSIO

smart contracts can invoke other contract actions by using

inline actions [48], [49]. Inline actions synchronously

execute an action in the context of the original transaction.

If an action execution is aborted, all changes made in the

transaction context are rolled back using the snapshot.

Analogous to Ethereum, EOSIO applies a mechanism to

prevent infinite loops. Developers can define a maximum

number of instructions or use a watchdog timer with a

maximum runtime for the sequential execution of actions

in a transaction [43]. If one of the defined thresholds is

exceeded, the execution of actions in the transaction is

aborted, and all changes are rolled back.

Hyperledger Fabric. Hyperledger Fabric is used to set up

permissioned blockchains, with Raft as the recommended

consensus mechanism [50]. Unlike Ethereum and EOSIO,

Hyperledger Fabric does not use a native cryptocurrency

and was designed for business use cases where known

individuals and organizations form a consortium that

operates and uses the blockchain.

To keep data confidential within consortia, Hyperledger

Fabric allows for setting up channels on top of the

consortium’s infrastructure. Channels are private

subnetworks between specific consortium members that

use granular access control based on their identities [51].

Consortium members that are part of a channel

(i.e., channel members) operate a blockchain and a world-

state database on their peer nodes isolated from other

channels. The blockchain records all transactions and

determines the world state, storing current values related

to defined business objects. Within channels, peer nodes

enforce endorsement policies for transactions, and

ordering nodes execute the consensus mechanism and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 5

commit transactions to the blockchain. Data stored on the

blockchain are only visible to members of the

corresponding channel [51].

In Hyperledger Fabric, there are chain codes that can

include multiple smart contracts [52]. To make smart

contracts available to applications [53], developers

manually install chain codes on peer nodes in the channel

that are specified in the policy to endorse transactions.

Smart contracts contain the actual transaction logic, which

can be expressed in Go, Java, or Node.js [52].

To call a smart contract function, an entity sends a

transaction proposal via its software client to peer nodes

hosting the chaincode. The transaction proposal includes

the chaincode identifier and input parameters for the

function call. Before function execution, the peer nodes

check whether the transaction proposal matches the

required format and whether the issuer is authorized to call

the smart contract according to the chaincode

endorsement policy [54]. If the transaction proposal

succeeds in these checks, the corresponding peer node

executes the smart contract function. Otherwise, the

transaction is marked invalid. Valid and invalid transactions

are stored on the blockchain, but only valid transactions

can update the world state database. After the smart

contract function is executed, the smart contract produces

a new transaction (i.e., transaction response) that includes

updates on the world state. The peer nodes send their

transaction responses to the client. The client compares the

transaction responses to check whether the smart contract

execution fulfills the endorsement policy defined for the

chaincode. For example, if the endorsement policy requires

two of three peer nodes to have an equal outcome upon

transaction execution, the client compares the transaction

responses from the three peer nodes for consistency. If at

least two peer nodes calculate an equal output, the client

creates a new transaction, including the transaction

proposal, the transaction response, and the digital

signatures of the peers. The client sends the new

transaction to the channel’s ordering nodes to be

committed to the blockchain [53].

Unlike Ethereum and EOSIO, Hyperledger Fabric does

not strictly bind smart contract execution to resources

(e.g., by gas in Ethereum or time in EOSIO). Still, developers

can define a maximum execution time per chaincode

(i.e., ExecuteTimeout).

Blockchains based on Hyperledger Fabric do not strictly

require determinism in the execution of smart contracts.

Inconsistent results from smart contract execution are

filtered out to avoid contradictions in consensus findings

after endorsing peer nodes have executed the smart

contract. Following the order-execute-validate approach in

Hyperledger Fabric instead of the execute-order approach

applied in Ethereum and EOSIO, only consistent results will

be forwarded to ordering nodes to be committed to the

blockchain after consensus finding [55].

2.3 Software Design Patterns

A pattern is an abstraction from a concrete design that

keeps recurring in specific nonarbitrary contexts [31], [56],

[57]. Patterns usually refer to the architecture or structure

of several parts in a superordinate system. They comprise a

general description of a recurring problem and an

associated solution with defined objectives and constraints.

SDPs form a special class of patterns that describe objects

and classes and their communication and customization to

solve a general software design problem in a particular

context [56]. SDPs can be further distinguished into three

abstraction levels [31]: architectural patterns, design
patterns, and idioms. Architectural patterns describe “[…] a

fundamental structural organization or scheme for

software systems and provide a set of predefined

subsystems, specify their responsibilities, and include rules

and guidelines for organizing the relationships between

them” [31, p. 12]. Design patterns provide “[…] a scheme for

refining the subsystems or components of a software

system, or the relationships between them” [31, p. 13] to

solve a general design problem within a certain context.
Idioms are patterns on the lowest level of abstraction and

“describe how to implement particular aspects of

components or the relationships between them using the

features of the given language” [31, p. 14].

3 METHODS

To answer our research questions, we applied a two-step

research approach. First, we conducted extensive literature

reviews and expert interviews following established

methodological guidelines [30], [58], [59] to identify

challenges and solutions in smart contract development.

Second, we iteratively derived and evaluated SDPs for

smart contract development based on identified

challenges and solutions, while considering extant

research, gray literature, and practitioners’ knowledge.

3.1 Identifying and Synthesizing Smart Contract
Challenges and Solutions

We applied a mixed-method approach to identify and

synthesize preliminary challenges and corresponding

solutions in smart contract development, comprising

different types of descriptive literature reviews [60]

augmented by expert interviews. We performed four

iterations of data gathering accompanied by iterative data

analyses to achieve theoretical saturation. Table 2

summarizes the objectives, applied methods, and

outcomes of each iteration. In the following sections, we

briefly summarize each iteration. Appendix A provides

detailed information on each iteration to enhance method

transparency and reproducibility.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

3.1.1 First Iteration: Snowballing Literature Review

To generate an initial set of smart contract challenges and

solutions as a foundation for our study, we conducted a

literature search utilizing the snowballing approach

proposed by Wohlin [58]. Snowballing starts with a core set

of relevant documents and then uses these to identify

further relevant documents in a specific domain through

multiple iterations of forward- and backward-snowballing.

We first applied the search string “Smart Contract*” AND
(“Challeng*” OR “Vulnerabilit*”) to Google Scholar, as

suggested by Wohlin [58], yielding 879 documents as of

July 4, 2019. We analyzed documents’ meta-information

(i.e., title, abstract, etc.), read potentially relevant

documents, and applied inclusion and exclusion criteria

(see Table 3) to identify the documents relevant to answer

our research question. This relevancy check led to a set of

ten starting documents on which we then conducted three

rounds of backward and forward searching [58], resulting

in 21 documents, including grey literature.

For the literature analysis, we applied thematic analysis

[30] to identify themes for challenges and related solutions

apparent in smart contract development. During this

thematic analysis, we performed multiple rounds of data-

driven coding. Afterward, we compared our codes and the

respective text segments to form overarching themes [30].

We were able to identify 18 candidate themes, including

exception handling and event order. We revised these

themes by applying Patton’s [61] dual criteria of internal

homogeneity (i.e., data within themes should cohere

together meaningfully) and external heterogeneity

(i.e., there should be clear and identifiable distinctions

between themes), leading to seven themes as a result.

3.1.2 Second Iteration: Focus Group Interview

We decided to conduct a second iteration for two reasons.

First, we wanted to validate our literature findings because

qualitative coding techniques bear the risk of interpretation

and other biases. Second, we strove to incorporate

knowledge from experts in the field to extend and enrich

our themes. We, therefore, conducted a focus group

interview [59] in July 2019 using a convenience sample of

five DLT experts (see Table 4). Three researchers

participated in and moderated the workshop.

We conducted the focus group interview based on an

interview guide [62] comprising a brainstorming phase

about potential challenges in smart contract development,

a discussion about potential solutions, and specific

questions to validate and gather additional data

surrounding the seven themes identified in the first

iteration. The interview lasted six hours and was recorded

and then transcribed. We applied scientific coding

techniques to analyze the interview data, especially

selective (i.e., assigning prior themes to interview data),

open (i.e., labeling new challenges and solutions discussed

in the interviews), and axial coding (i.e., identifying the

causes and consequences of each challenge) [63]. We

identified one new challenge theme—code

discoverability—and a corresponding solution, refined

existing themes by enriching their cause and consequence

descriptions, identified minor inconsistencies, and resolved

these accordingly (e.g., we unified the levels of abstraction

of the solutions).

TABLE 2
SUMMARY OF ITERATIONS TO IDENTIFY AND SYNTHESIZE SMART CONTRACT CHALLENGES AND SOLUTIONS

 Iteration 1 Iteration 2 Iteration 3 Iteration 4

Objectives • Understand the problem
domain

• Identify an initial set of smart
contract challenges and
solutions

• Verify and extend preliminary
themes

• Incorporate practice knowledge

• Extend themes

• Strive for theoretical saturation

• Verify themes

• Discuss the relevancy and
applicability of themes for
different ledgers

Data
Source

Snowballing literature review
[58]

Focus group interview Database literature review [29] Semi-structured expert
interviews

Data 21 documents on smart contract
challenges and solutions (incl.
grey literature)

Interview transcript on a six-hour
focus group with five DLT experts

86 research documents on smart
contract challenges and solutions

Nine interviews with experts
on EOSIO, Ethereum, and
Hyperledger

Data
Analyses

Thematic analysis [30] Selective, open, and axial coding
of interview findings

Thematic analysis [30] and
synthesizing prior iteration
findings

Joint extension of themes and
field notes analyses

Outcomes 146 text segments assigned and
aggregated into seven
preliminary themes of challenges
and solutions

One additional challenge theme,
refined and enriched themes of
challenges and solutions

13 themes of smart contract
challenges and respective
solutions, relating to 1018 text
segments; three principal origins

29 challenges and 60
corresponding solutions
relating to three ledgers

TABLE 3
INCLUSION AND EXCLUSION CRITERIA FOR LITERATURE

SEARCHES IN ITERATION 1 AND ITERATION 3

Type Name Description

In
cl

u
si

o
n

Challenge Naming, proposing, discussing, or revealing
smart contract challenges, vulnerabilities, or
related issues

Solution Naming, proposing, discussing, or revealing
solutions to tackle smart contract challenges,
vulnerabilities, or related issues

Concrete SDP Naming, proposing, discussing, or revealing
SDPs relating to smart contracts

Transferrable
SDP

Naming, proposing, discussing, or revealing
SDPs that are applicable or transferable to
smart contracts

Ex
cl

u
si

o
n

 Off-topic

Not dealing with DLT and smart contracts

Books Books on smart contracts

Not in English Publications in a non-English language

Duplicates Multiple identical occurrences of a document

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 7

3.1.3 Third Iteration: Database Literature Review

We decided to return to scientific literature in the next

iteration for two reasons. First, new documents may have

been published since our first literature search. Second, we

might have overlooked relevant documents given our

snowballing research approach. We, therefore, performed

a descriptive literature review [60] in scientific databases,

trying to achieve theoretical saturation.

To cover a broad set of documents, we applied the search

string ("smart contract*" OR "chaincode*") AND
("challenge*" OR "pattern*" OR "issue*" OR "develop*" OR
"programming*") in the title, abstract, or keywords (TAK) of

prominent databases, including ACM Digital Library, AISel,

EBSCOHost, IEEEXplore, Proquest, ScienceDirect, and Web

of Science. Our search yielded a total of 1,774 potentially

relevant documents as of November 6, 2020. We once

again performed a comprehensive relevancy check by

applying the same inclusion and exclusion criteria from our

first iteration (see Table 3), resulting in 86 novel relevant

documents.

We again applied thematic analysis [30] to refine our

existing themes and identify novel ones for challenges and

solutions, comprising two rounds of data-driven coding,

constant comparison of coded challenges and solutions to

identify subthemes, and frequent theme refinement. This

analysis process resulted in 13 themes, including code
efficiency, confidentiality, and determinism. To further

group these themes, we compared their different origins

and strived to identify a core set of common ones. Our

comparative analysis revealed three principal challenge

origins that can make smart contracts prone to

programming flaws (see Error! Reference source not

found.): platform, programming language and execution
environment, and coding practice.

Compared to our first snowballing literature research, we

were not only able to identify six novel high-level themes,

but also to refine and enrich existing themes, and create a

hierarchy of themes raging from text segments and initial

labels for challenges and solutions up to aggregated

challenge themes that were assigned to principal challenge

origins.

3.1.4 Fourth Iteration: Expert Interviews

While we already gathered rich information on various

challenges and were able to identify solutions for many of

them, we decided to conduct a fourth iteration due to two

reasons. First, we strove to validate our literature review

findings with further knowledge from DLT experts. Second,

most of the literature focuses on Ethereum, and the EVM

and Solidity, respectively. Hence, we were eager to reflect

the applicability of our findings to other DLT protocols. We

particularly focused on EOSIO and Hyperledger Fabric in

addition to Ethereum because these DLT protocols are

frequently used in organizational contexts and allow for

insights into three distinct smart contract integration

concepts.

In the fourth iteration, we conducted nine semi-

structured interviews [59] with DLT experts (see Table 4 for

an overview). We again prepared a guide [62] to structure

the interviews. In particular, we asked whether the

identified challenges and solutions are relevant and

applicable to other ledgers. All interviews were performed

via video conference tools between December 2020 and

February 2021 and were recorded with the permission of

participants. The average interview time was 63 minutes.

The researcher who carried out the interview took notes on

each challenge and solution discussed with the interview

partner during the interview.

After each interview, we analyzed the field notes and

compared them to our intermediate findings from the third

iteration. We enriched our theme descriptions, renamed

themes and challenges suggested by the interviewees,

added novel challenges and solutions, and added ledger-

specifics to each challenge and solution description. The

analyses results confirmed the three principal challenge

origins and led to refinements of the associated sub-

themes. More importantly, we were able to identify novel

challenges and solutions by comparing challenges and

solutions across ledgers and by considering ledger

specifics. For example, we identified the challenge of
nondeterministic behavior that only applies to smart

contracts developed in Go. By finishing the fourth iteration,

we identified 29 challenges and 60 solutions.

To ensure that we identified a reliable set of challenges

and solutions, we followed researchers stressing that an

important goal is to reach theoretical saturation in

qualitative research [64]–[66]. Theoretical saturation is

often taken to indicate that further data collection or

analysis is unnecessary based on the data analyzed hitherto

because it is unlikely that further data collection will

generate new findings [67], [68].

We first looked at our literature review protocols,

revealing that our literature analysis did not reveal new

challenges or solutions since the last twelve analyzed

documents. Similarly, we asked our interviewees during our

fourth iteration if they knew of any further challenges or

TABLE 4
OVERVIEW OF INTERVIEWEES’ DEMOGRAPHICS

 Iteration 2 Iteration 4

Number of Experts 5 9

DLT Expertise Ethereum Ethereum, EOSIO,
Hyperledger Fabric

Average Software Engineering
Experience, in years

3.9 9.1

Average Smart Contract
Development Experience, in
years

2.9 3.2

Industry Energy, IT Automotive, Energy, IT

TABLE 5
PRINCIPAL ORIGINS THAT CAN CAUSE CHALLENGES IN SMART

CONTRACT DEVELOPMENT

Component Description

Platform The protocol put in place to manage the
interactions between nodes and define the
procedures for the issuance, verification, and
storage of transactions

Programming
Language & Execution
Environment

The capabilities offered to develop smart
contracts and execute them via the distributed
ledger

Coding Practice The development activities to achieve a specified
outcome in the form of a smart contract

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

solutions that had not been discussed so far during the

interviews. We sent our manuscript to the interviewees

after finishing the writing to ask them once more if they

had any challenge or solution to add. In both cases, the

interviewees agreed that they were not aware of further

challenges and solutions to the best of their knowledge.

Consequently, we are confident that we have reached at

least a sufficient degree of theoretical saturation after

completing our fourth iteration.

3.2 Generating and Evaluating Software Design
Patterns

3.2.1 Generation of SDP

By performing multiple iterations of data gathering and

analysis, we were able to identify 29 challenges and 60

solutions. However, details of proposed solutions in general

and SDPs in particular are often missing, such as the

problem context and resulting context, which have been

requested by existing research (e.g., [31]–[33]). This lack of

information not only hinders practical applicability by

developers in day-to-day operations, but also hampers the

adjustment of their programming habits. To counteract

these issues, we next transferred the identified solutions

into SDP as actionable means.

Selection of Solutions as a Base for SDPs. Given the high

quantity and diversity of solutions, we first selected a set of

solutions as a base for developing SDPs. On the one hand,

we derived an SDP for a solution if (1) an SDP had been

proposed by prior research; (2) a problem kept recurring in

specific nonarbitrary contexts; (3) sufficient information

was available to describe the SDP in detail

(e.g., information gained from interviewees or studies); or

(4) interviewees called for the development of SDPs and

stressed their relevance and potential contribution. On the

other hand, we particularly refrained from developing SDPs

for a solution if they were (1) trivial (e.g., solution S.10.1
Read the Documentations); (2) only applicable on a limited

scale (e.g., challenge C.13 Non-deterministic Behavior
applies to smart contracts developed in Go only); or (3) on

a very low abstraction degree that prevents generalization

(e.g., solution S.21.1 recommending the usage of data type

bytes over byte[]). After applying these selection criteria,

we decided to develop 20 SDPs related to various

challenges and solutions (see Table 6).

SDP Generation. To generate SDPs, we followed existing

research providing common pattern structures [31]–[33],

comprising a name, context, problem, forces, solution,

examples, resulting context, rationale, related patterns, and

known uses of a pattern. For each pattern, we carefully

specified each structural dimension based on extant

research, interview findings, our own experiences, and

prototypical instantiations, as outlined below.

First, for each SDP we defined a meaningful name [33]. If

it was suitable, we aligned the naming of the derived smart

contract SDP with the naming of common SDPs in

traditional software engineering (e.g., Façade Pattern or

Proxy Pattern). In the results section, we refer to these

names but cite the original documents in which we found

a similar solution. We also adapted our SDP names based

on the feedback gained throughout the interviews to

increase their comprehensibility and align our wording with

the terms used in the software engineering community. For

example, we renamed the Register Contract Pattern [9] the

Observer Pattern.

We next elaborated on the context that suggests SDPs’

applicability and in which a problem and its solution recur

[33]. For each SDP, we discussed to which challenges and

solutions the pattern relates. For example, we mapped the

Checks-Effects-Interactions Pattern with challenge C.15
Cross-Account Interactions and solution S.15.4 Instruction
Order because the pattern can prevent reentrancy attacks.
This mapping helped us to ground our SDP descriptions on

extant research and interviewees' opinions. In addition, we

discussed the applicability of the pattern to Ethereum,

EOSIO, and Hyperledger Fabric.

We then defined a problem that described the objectives

to be achieved within the contexts by applying the SDP

[33]. While typical pattern objectives relate to the

mitigation of risks, such as those associated with the

removal or deactivation of smart contracts with the

Deactivation Pattern, we particularly considered problem

specifics, such as pre-conditions and boundary conditions.

We also reflected on whether the problem may appear in

each DLT protocol because they differ in their smart

contract integration concepts (see Table 1). For example,

problems leading to challenge C.21 Data Type Complexity
only relate to smart contracts based on Ethereum and

EOSIO because they bind smart contract execution to

resources (e.g., gas in Ethereum or time in EOSIO).

Afterward, we specified forces that reveal the details of a

problem and define the kinds of trade-offs that must be

considered in the presence of the tension or dissonance

they create [33], [69]. Forces commonly relate to the

characteristics of an application, such as maintainability or

response time. For example, the Token Pattern improves

maintainability but comes at the cost of code efficiency as

the number of required interactions increases. When

describing the forces and constraints and how they

interact, we considered the objectives to be achieved when

using the SDP. Analyzing potential forces also supported

us in comparing different solutions and their

appropriateness for use in the pattern.

Next, we focused on describing a solution that includes

static relationships and dynamic rules to realize the desired

outcome [33]. To define an appropriate solution

(i.e., fulfilling the SDPs’ objectives while considering the

forces), we went back to the data gathered through

identifying and synthesizing challenges and solutions and

compared proposed solutions for a given challenge. For

example, prior research proposes using the Oracle Pattern

whenever external data or real-world data is required by a

smart contract [70], [71]. We synthesized information

about oracles to come up with a solution for our SDP. We

also coped with opposing views and research findings. For

example, prior research provides different means to tackle

the challenge C.4 Randomness, whereas some of these

means have been later proven to expose flaws

(e.g., dependence on blockchain properties to generate

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 9

random numbers, such as block hash values). If needed, we

implemented solutions and tested them to ensure their

correctness and to better describe their inner functioning.

To increase the understandability and applicability, we

added an example to each SDP [33]. The example shows a

possible implementation of the solution. We took

examples from extant research, GitHub and related smart

contract repositories, interviewees’ suggestions, and

developed and tested our own examples. To further

support developers, we also provided antipattern examples

to emphasize what typically goes wrong in smart contract

development.

As the next step, we defined the resulting context that

describes the system state after applying a pattern [33]. For

explaining the resulting context, we reflected on benefits

(e.g., problems solved) and drawbacks

(e.g., further challenges caused by the pattern utilization).

To substantiate the solution, we provided a rationale

concerned with justifying how and why the solution

resolves its forces to align with the desired objectives and

why it is suitable [33]. Since we built our SDPs on

justificatory knowledge from extant research and

practitioners’ expertise, we aimed to summarize the

assumptions of why the SDP works as a solution.

Since patterns often share common forces and a

compatible initial or resulting context, we defined related

patterns [33]. Related “patterns might be predecessor

patterns whose application leads to this pattern; successor

patterns whose application follows from this pattern;

alternative patterns that describe a different solution to the

same problem but under different forces and constraints;

and codependent SDPs that may (or must) be applied

simultaneously with this pattern” [33, p. 6]. Highlighting

relations between patterns supports developers in

selecting alternative solutions to a problem. For example,

the Mutex Pattern can be used as an alternative to the

Checks-Effects-Interactions Pattern to protect smart

contracts from reentrancy attacks.

To show that the SDP is an approved solution for a

problem, we finally listed the known uses of an SDP in

existing systems [33]. We searched smart contract

databases (e.g., etherscan.io), developer repositories

(e.g., GitHub), websites (e.g., Ethereum Name Service), and

whitepapers and foundation blogs (e.g., Ethereum

foundation blog) to identify known uses of SDPs.

By applying this canonical structure to SDPs, we want to

ease the understanding and usage of patterns for smart

contract developers and overcome issues regarding

pattern applicability in prior research.

3.2.2 Derived Software Design Pattern Evaluation

Whereas we built the SDPs on the data and findings from

identifying and synthesizing challenges and solutions, we

aimed to evaluate them to ensure correctness,

comprehensibility, and practical applicability.

SDP Evaluation Criteria Derivation. To evaluate our SDPs,

we first defined a set of evaluation criteria. Therefore, we

conducted a scoping literature review to identify quality

criteria for SDPs to consider in the evaluation (see

Appendix B). We particularly focused on the most cited

scientific works on software design patterns in the English

language. Eventually, we identified 12 particularly relevant

documents on quality criteria for software design patterns

(e.g., [72]–[75]). To synthesize quality criteria across these

documents, two researchers read the relevant documents

and independently analyzed their content following the

open coding approach [63]. In total, the analysis revealed

23 criteria for the evaluation of the SDPs. Based on the

identified evaluation criteria, we created five groups to

which we assigned the evaluation criteria: flexibility,

outcome, pattern design, perception, and utilization.

Flexibility refers to the range of applicability of an SDP.

Outcome is about the results when a software design is

applied. The structure of an SDP is discussed in the group

pattern design. Perception considers the characteristics of

users’ perceptions of an SDP. Utilization refers to the

applicability of an SDP. Among the identified evaluation

criteria, we found a subset of 12 evaluation criteria suitable

for our evaluation.

Evaluation Interviews. To evaluate the SDPs, we conducted

a focus group workshop with four smart contract

developers. First, we wrote a handout that included the 12

suitable evaluation criteria and the 20 SDPs, which should

be discussed considering these twelve evaluation criteria.

For the evaluation, we organized two events: an

introductory event and a focus group interview. In the

introductory event, we discussed the handout with the four

smart contract developers to familiarize them with the

SDPs and let them share their initial thoughts. The

developers had an average experience in developing smart

contracts of 4.5 years. During the following week, the four

smart contract developers individually familiarized

themselves with the SDPs and took notes in their handouts.

The participants sent us their notes on the SDPs before the

second event to consolidate their feedback. Based on the

participants’ feedback, we developed an interview guide

for the semi-structured focus group workshop, as

recommended in existing works [76], [77]. Next, we carried

out a focus group workshop with three of the four smart

contract developers. We discussed each SDP in detail

during the workshop, elaborated on the feedback, and

jointly improved the SDPs. We recorded the focus group

workshop, subsequently transcribed the recordings, and

analyzed the transcriptions by extracting improvements for

the SDPs. We refined the SDPs accordingly and sent the

revised SDPs to the fourth participant of the introductory

event for an additional interview. We revised the SDPs

again and sent the revised version to all four participants

to gather additional comments. This final round of

feedback comprised only minor issues, such as wording

and description improvements.

4 SMART CONTRACT DEVELOPMENT

We identified three principal challenge origins in smart

contract development that can make smart contracts prone

to programming flaws (see Error! Reference source not

found.): platform, programming language and execution

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

environment, and coding practice. Associated with the

principal challenge origins, we revealed 11 sub-themes

(e.g., confidentiality challenges and interoperability

challenges), including 29 specific challenges and 60

corresponding solutions (see Table 6), including 20 SDPs. In

the following, we describe the three principal challenge

origins and their subordinate 11 challenge themes. For

each challenge theme, we describe the identified

challenges (C) and discuss the corresponding solutions (S).

If not mentioned, the identified solutions apply to

blockchains based on Ethereum, EOSIO, and Hyperledger

Fabric. If an SDP relates to a solution, we also briefly

describe the SDP. For the complete description of the SDPs,

please refer to Appendix C, D, and E or our GitHub

repository.2

4.1 Challenges Caused by the Platform

The principal challenge of the origin platform refers to the

protocol put in place to manage the interactions between

nodes and to define the procedures for the issuance,

verification, and storage of transactions.

4.1.1 Confidentiality Challenges

Challenges related to confidentiality can decrease the

degree to which unauthorized access to information is

prevented.

(C.1) Code Visibility: The protection of the deployed smart
contract code from being visible to entities with access to
the distributed ledger.

In DLT protocols, where multiple nodes execute smart

contract code (e.g., Ethereum-based and EOSIO-based

blockchains), smart contract logic is usually exposed to all

entities operating these nodes. The visibility of code to

these entities is particularly challenging for companies that

have smart contract logic at the core of their business

models and must keep this sensitive logic confidential. In

addition, visibility of tamper-resistant code facilitates the

identification of vulnerabilities and their exploitation.

Challenges related to code confidentiality preservation

apply to blockchains based on Ethereum or EOSIO. In

Hyperledger Fabric, only nodes that must endorse a

transaction store the respective chaincode. Still the

following solutions also apply to blockchains based on

Hyperledger Fabric.

(S.1.1) Off-Ledger Computations: A solution to protect

smart contract logic from being visible to all entities with

access to the distributed ledger represents the deployment

and execution of logic external to the distributed ledger

(i.e., off-ledger) using an oracle (see Oracle Pattern) [70],

[71]. Upon the invocation of a smart contract function, the

smart contract can initiate a call to a service provided by

the oracle. Before the called service invokes the callback

function of the smart contract, the oracle must convert its

response to a compatible data type. Otherwise, it can lead

to asset loss. For example, Ethereum does not support

decimal data types. Thus, oracles provide integer values to

the smart contract to avoid truncation errors (see C.26

Appropriate Data Type Use). The integration of oracles into

smart contracts is especially challenging for DLT protocols

that encapsulate smart contract execution, for example,

Ethereum-based and EOSIO-based blockchains (see

Encapsulation in Section 4.2.3). Using Hyperledger Fabric,

oracles are accessible directly from the Docker container,

where the chain code is executed.

(C.2) Data Visibility: The protection of transaction data
stored on a distributed ledger from being visible without
authorization.

In addition to smart contract bytecode, other transaction

data (e.g., number of transferred assets) are commonly

visible to entities that operate nodes. The broad visibility of

data can violate data confidentiality. Still, visibility of data

representing verifiable proofs for the happenings of events

is important for the secure functioning of the DLT system.

Protection of data visibility is challenging on blockchains

based on Ethereum, EOSIO, and Hyperledger Fabric.

(S.2.1) Data Encryption: A solution to protecting data

from unauthorized reads is to encrypt the data prior to its

submission to the DLT network [78], [79]. However, not all

transaction data can be encrypted in transactions but only

the payload data or even only parts of the payload data—

for example, if the transaction is to invoke a smart contract.

(S.2.2) Commitment Pattern: To keep data secret for a

particular time while binding an entity to that data

(e.g., binding an entity to their bid value in a bet), the

Commitment Pattern can be used [9]. The Commitment
Pattern comprises a commitment phase and a reveal phase.

In the commitment phase, each entity first individually

specifies data (e.g., a result in a lottery) and a random

nonce, concatenates these two values, and sends the hash

values of the concatenated value and the nonce to a smart

contract. The smart contract stores the hash values of the

concatenation and the nonce in a tamper-resistant way. In

the reveal phase, the entities send the plain values of the

data and nonce to the smart contract. The smart contract

checks whether the plain data and nonce match the

corresponding hash values stored in the commit phase. If

the check succeeds, the contract is executed and the plan

values are visible to any other entity with access to the

distributed ledger.

(S.2.3) Off-Ledger Data Storage: Another solution to

control data visibility is to store the data off-ledger using

oracles (see Oracle Pattern). Sensitive data are managed by

the oracle and are not stored in the distributed ledger.

Smart contracts can request information related to data

from the services offered by the oracle. On oracles, data

confidentiality can be improved by using trusted execution

environments (e.g., Intel SGX in Town Crier [80]). Although

keeping data off-ledger is most effective for protecting

data confidentiality, the use of oracles in smart contracts of

distributed ledgers with strong requirements for

determinism (e.g., EOS and Ethereum) can be challenging

because of the typically encapsulated smart contract

execution environment. Moreover, oracles can represent a

cause of nondeterminism when providing different data to

smart contracts.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 11

(S.2.4) Multi-Ledger Network: To keep data

confidentially stored in a distributed ledger, multiple

private blockchains can be operated on the same

infrastructure. For this purpose, Hyperledger Fabric offers

to set up channels between specified consortium members.

Only channel members can interact with the corresponding

blockchain. However, interactions between smart contracts

of different channels are hardly possible in Hyperledger

Fabric [52] and thus can exhibit a hurdle for applications.

Ethereum and EOSIO do not offer channels like

Hyperledger Fabric.

(S.2.5) Front-Running Prevention: Transaction payload

visibility can cause vulnerabilities to front-running in

Ethereum [81]. In front-running, a transaction T1 is sent; an

TABLE 6
OVERVIEW OF IDENTIFIED CHALLENGES AND CORRESPONDING SOLUTIONS IN SMART CONTRACT DEVELOPMENT

 DLT Protocol

Origin Challenge Solution Software Design Pattern2 EOSIO Ethereum HLF

P
la

tf
o

rm

C.1: Code Visibility S.1.1: Off-Ledger Computations Oracle Pattern X X X

C.2: Data Visibility S.2.1: Data Encryption - X X X

S.2.2: Commitment Scheme Commitment Pattern X X X

S.2.3: Off-Ledger Data Storage Oracle Pattern X X X

S.2.4: Multi-Ledger Network -

X

S.2.5: Front-Running Prevention Commitment Pattern

X

S.2.6: Private Data Collections -

X

C.3: Pseudonymity S.3.1: Identity Service Identity-Service Pattern X X

C.4: Randomness S.4.1: Centralized Randomness Generator Oracle Pattern X X X

S.4.2: Decentralized Randomness Generator Commitment Pattern X X X

C.5: Transaction-Ordering

Dependence

S.5.1: Target-State Definition Event-Ordering Pattern X X X

C.6: Code Discoverability S.6.1: Name Service Name-Service Pattern

X

C.7: Code Updatability S.7.1: Separation of Concerns Token Pattern

X

S.7.2: Observation of Addresses Observer Pattern

X

S.7.3: Static Entry Point Proxy Pattern

X

S.7.4: Static Entry Point with Additional Logic Façade Pattern

X

C.8: Execution Restriction S.8.1: Visibility Declaration - X X X

S.8.2: Account-based Authorization Guarding Pattern X X X

S.8.3: State-based Authorization Event-Ordering Pattern X X X

S.8.4: Provisional Authorization - X X X

S.8.5: Time-based Authorization - X X X

S.8.6: Smart Contract Deactivation Deactivation Pattern

X

C.9: Resource Management S.9.1: Pull-over-Push Pull Pattern

X

S.9.2: Continuable Loop Indexed-Loop Pattern X X

P
ro

gr
am

m
in

g
La

n
gu

ag
e

&
 E

xe
cu

ti
o

n
 E

n
vi

ro
n

m
en

t

C.10: Undefined Behavior S.10.1: Read the Documentations - X X X

C.11: Arithmetic Operations S.11.1: Fixed-Point Arithmetic -

X

C.12: Concurrency S.12.1: Synchronization -

X

C.13: Non-deterministic Behavior S.13.1: Cautious Use of Range Iterations -

X

C.14: Conformity to

Expectations

S.14.1: Data Type Selection - X X

S.14.2: Data Type Conversions - X X

C.15: Cross-Account Interactions S.15.1: Contract Availability Check External Call Pattern

X

S.15.2: Gas Limit Specification -

X

S.15.3: Check Return Values Error-Handling Pattern

X

S.15.4: Instruction Order Checks-Effects-Interactions

Pattern

X

S.15.5: Execution Locking Mutex Pattern

X

C.16: Encapsulation S.16.1: Push Oracle - X X

S.16.2: Pull Oracle Oracle Pattern X X

S.16.3: Decentralized Pull Oracle Oracle Pattern X X X

C.17: Error Handling S.17.1: Isolate Calls Façade Pattern X

C.18: Programming Language

Concept Compliance

S.18.1: Cautious Use - X X X

C.19: Iteration through Data Structures S.19.1: Auxiliary Data Structures - X X X

X: Challenge and solution apply to DLT protocol HLF: Hyperledger Fabric

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

adversary reads T1, creates a concurrent transaction T2, and

sends T2 with the goal that T2 executes the smart contract

before T1 to realize a particular benefit. Countering front-

running is highly specific to smart contract logic [82]. Still,

there are different ways to mitigate front-running. First,

developers should minimize the profitability of front-

running. Second, a pre-commitment scheme similar to the

Commitment Pattern can be used, where entities first

announce the use of a functionality before calling it [82].

(S.2.6) Private Data Collections: To keep data secret while

allowing nodes in a channel to see that a transaction

happened, Hyperledger Fabric offers private data

collections [83], [84]. Only a defined subset of nodes in a

channel can endorse, commit, or query the data of private

collections. Private data are stored in a separate and private

state database on authorized peers. The state database can

be accessed via chaincode. Transactions involving private

data store the hash value of the used data on the

blockchain so that nodes can check if a state between

members exists.

(C.3) Pseudonymity: The hurdles related to the verification
of identity attributes of real-world entities.

Pseudonymity can cause challenges related to

accountability and liability because the actual entities

remain unknown [7]. Pseudonyms are hard to associate

with corresponding real-world entities, especially in public

instances of EOSIO-based or Ethereum-based blockchains.

In Hyperledger Fabric, the membership service enables the

identification of entities associated with pseudonyms [85].

(S.3.1) Identity Service: To manage entities’ digital

identities and their associated pseudonyms, prior research

has proposed implementations for decentralized identity

management (e.g., [86]–[88]). In these implementations, an

identity publishes personal information about itself in a

decentralized identifier (DID) document and stores the

hash value of the DID document on a distributed ledger so

that the integrity of the DID document is provable. Real

entities can confirm or deny the information contained in

the DID document by issuing transactions with verifiable

claims that reference the associated DID. Verifiable claims

consist of an assertion to express an affirmation or denial

of the information in the DID document and an attestation

to make the claim verifiable. The more verifiable claims that

exist per DID document, the likelier it is that the

information contained is accurate [86], [88].

4.1.2 Determinism Challenges

Challenges related to determinism hinder nodes in a DLT

network from computing consistent results by following

the same protocol.

(C.4) Randomness: The difficulties of using secure random
values in smart contracts.

Random value generation is challenging in blockchains

based on Ethereum, EOSIO, and Hyperledger Fabric due to

two main causes. First, nodes in DLT networks

independently execute smart contracts in a distributed

manner. Nonetheless, all nodes must generate equal

random values to preserve determinism [21], [89]. In

blockchains based on Hyperledger Fabric, the generation

of equal random numbers can be relevant to fulfilling the

TABLE 6 (continued)
OVERVIEW OF IDENTIFIED CHALLENGES AND CORRESPONDING SOLUTIONS IN SMART CONTRACT DEVELOPMENT

 DLT Protocol

Origin Challenge Solution Software Design Pattern EOSIO Ethereum HLF

C
o

d
in

g
P

ra
ct

ic
e

C20: Data Storage S.20.1: Off-Ledger Storage Oracle Pattern X X

S.20.2: Store Data in Logs - X

C21: Data Type Complexity S.21.1: bytes over byte[] - X

S.21.2: Array Replacement - X

S.21.3: string Avoidance - X

C22: Under-optimized Code S.22.1: Constants - X X X

S.22.2: Code Optimization - X X X

S.22.3: Shadowing - X

C23: Required Interactions S.23.1: Automated Deployment Factory Pattern X

C24: Readability S.24.1: Style Guide Conformity - X X X

C25: Ease of Code Reuse S.25.1: Documentation - X X X

C26: Appropriate Data Type Use S.26.1: Integer Overflow and Underflow
Handling

Overflow/Underflow
Pattern

 X

C27: Semantic Soundness S.27.1: Argument Sanitization - X X X

S.27.2: Protection from Replay Attacks Replay-Protection Pattern X X

S.27.3: Fake-EOS Transfer Protection - X

S.27.4: Fake-EOS Notice Protection - X

S.27.5: Read-Your-Writes (RYW) Consistency - X

C28: Technical Soundness S.28.1: Fixed Compiler Version - X X X

C29: Smart Contract API Conformity S.29.1: Ethereum Request for Comments - X

 ∑Challenges;∑Solutions 22;33 26;52 16;2

7

X: Challenge and solution apply to DLT protocol HLF: Hyperledger Fabric

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 13

individual endorsement policy [90], [91]. In blockchains

based on Ethereum and EOSIO that use an order-execute

architecture, nondeterminism may cause a consensus to be

unreachable [55]. Second, high entropy

(i.e., unpredictability and bias-resistance) regarding

random value generation is fundamental to achieving a

high level of security but challenging to achieve.

Environmental variables (e.g., nodes’ local timestamps and

block hash values; see Fig. 1) should not be used for

random value generation because they are predictable or

biasable by nodes [89], [92], [93]. Seeds cannot be stored

in smart contracts deployed to EOSIO-based or Ethereum-

based blockchains because they cannot be kept secret

(see C.1 Data Visibility). Reaching high entropy in random

value generation is also challenging in Hyperledger Fabric.

(S.4.1) Centralized Randomness Generator: To enable

randomness in distributed systems while achieving

determinism, developers can use oracles (e.g., [94], [95])

like beacons [92], [96] (i.e., services that emit new random

data called beacon records at a regular rate) or other

distributed ledgers [92]. Beacons (e.g., the NIST beacon

service) offer a simple way to integrate random number

generation into smart contracts, using the Oracle Pattern

for implementation. Nonetheless, beacons can centralize

DLT applications and can be prone to manipulation.

Moreover, values of beacons that periodically change the

delivered random values can be reused by multiple smart

contracts, and can be exploited by adversaries that first

retrieve the random value and use it in an attack until the

next random value is generated by the beacon [97].

(S.4.2) Decentralized Randomness Generator: For

decentralized randomness generation, the Commitment
Pattern can be used. In the commit phase, multiple entities

send hash values h(se) of secretly generated random values

s to the Randomness Contract. The Randomness Contract

stores h(se) of authorized entities 𝑒 ∈ 𝐸, where 𝐸 is the set

of entities registered with the Randomness Contract. In the

reveal phase, the entities submit the preimage s to the

Randomness Contract. To generate a random number, the

Randomness Contract can calculate the XOR result of all

submitted preimages as a random value [98]. This

approach can be modified by requiring each entity to send

coordinates of a point in a 2D-matrix instead of random

numbers. Then, the Randomness Contract calculates the

polynomial f(x) from all coordinates using barycentric

Lagrange interpolation. The Y-axis value in f(x) represents

the random number [99]. The decentralized randomness

solution avoids single points of failure but requires each

entity to interact with the Randomness Contract two times.

Thus, the decentralized randomness solution increases the

cost and time required for random value generation.

Moreover, the last entity sending the plain value can

already predict the random number, which can cause

vulnerabilities.

To the best of our knowledge, there are still no

established best practices for randomness generation in

Ethereum-based and EOSIO-based blockchains. When

choosing a solution, developers should estimate the cost

(e.g., computational resources) of predicting or biasing the

outcome of random number generation, and in parallel

consider the gains to an attacker.

(C.5) Transaction-Ordering Dependence: The dependence
of smart contract logic on the processing order of
transactions.

In blockchains based on Ethereum, EOSIO, and

Hyperledger Fabric, transactions have counters per address

so that all transactions issued by an account are processed

in a defined order. Transactions issued by multiple

accounts can be imagined as concurrent processes [37],

making smart contracts vulnerable when relying on a

particular transaction order. This class of vulnerabilities is

caused by transaction order dependence [7], [100], [101].

Since nodes individually determine the order in which

transactions from different accounts are processed, the

state in which a smart contract is executed by a particular

transaction is unpredictable [102]. Moreover, transaction-

ordering dependence favors successful replay attacks

(see S.27.2 Protection from Replay Attacks). This challenge

also applies to Hyperledger Fabric [50], [103].

(S.5.1) Target-State Definition: To counter transaction-

ordering vulnerabilities, linearizability and synchronization

need to be ensured to guarantee that either the invocation

of a function fails or terminates successfully [104]. In

accordance with the finite state machine model, function

calls can be represented as state transitions. To allow for

state transitions only in an intended order, the Event-
Ordering Pattern recommends implementing checks that

only allow for the execution of functions from specified

states [102]. In the Event-Ordering Pattern, transactions

sent to a smart contract carry a nonce that represents the

state in which the contract should be executed. Functions

of the target smart contract are guarded by checks that

deny function execution if the nonce carried in the

transaction does not match the current nonce stored in the

contract. After each successful function execution, the

nonce is changed by the smart contract.

Fig. 1: Insecure examples of implementation for random number
generation on a distributed ledger. Both examples allow us to predict
and bias random number generation. Do not use these examples in
your productive smart contracts.

1

2

3

4

5

6

7

8

9

10

11

pragma solidity >=0.5.0 <0.7.0;

import "Math.sol";

contract InsecureRandomness2 {

uint256 seed = 1;

function random() private view returns (uint8) {

uint256 x = Math.sin(seed++) * 10000;

return x - Math.floor(x);

}

}

1

2

3

4

5

6

7

8

9

10

pragma solidity >=0.6.6 <0.7.0;

contract InsecureRandomness1 {

function random() public view returns (uint256) {

bytes32 hash = blockhash(block.number - 5);

uint256 random_number = uint(hash) % 10 + 1;

return random_number;

}

}

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

4.1.3 Maintainability Challenges

Maintainability challenges deteriorate the ease with which

deployed smart contract code can be updated, for

example, to add functionality, correct flaws, or improve

code efficiency.

(C.6) Code Discoverability: The difficulty of finding smart
contracts deployed on a distributed ledger.

Since the deployment of code costs resources (e.g., gas

in Ethereum), it is reasonable to use existing contracts or

libraries. However, it is not easy to discover them in

blockchains, where smart contract addresses are hard to

read and not intuitive (e.g., because they are represented

as hexadecimals). EOSIO overcomes this challenge by

offering entities the ability to define a human-readable

name for their account. In Hyperledger Fabric, all

organizations that execute a smart contract on their nodes

must manually deploy these contracts and thus are aware

of the contract names and where to discover the smart

contract code.

(S.6.1) Name Service: While EOSIO offers the definition

of human-readable account names associated with a smart

contract [11], the addresses of Ethereum accounts are

represented by hexadecimals, which are not intuitive for

humans to read and recall. To easily look up smart

contracts, the use of concise names instead of smart

contract addresses is promising. This solution is not

necessary in Hyperledger Fabric because all entities know

all the IDs of the required smart contracts.

To use names instead of smart contract addresses, a

Registry Contract can be put in between smart contracts to

handle their interactions (see Name-Service Pattern) [26].

Smart contracts can be registered at the Registry Contract,

which assigns a unique, user-defined name to a smart

contract address or function. Thereby, the address of the

latest smart contract version can be looked up.

(C.7) Code Updatability: The limitations in changing code
of deployed smart contracts.

After smart contract bytecode is deployed to Ethereum-

based blockchains, tamper resistance of the blockchain

decreases maintainability of the deployed contracts for

corrective, adaptive, perfective, and preventive

maintenance [105]. If the smart contract code is to be

updated, the deprecated version should be deactivated

(e.g., using selfdestruct(…) in Ethereum smart contracts

or the Deactivation Pattern), and the current contract

version should be deployed. To favor maintainability of

tamper-resistant code, developers should strictly apply a

separation of concerns and the implementation of

mechanisms that ease maintenance (see Façade Pattern

and Proxy Pattern). Challenges and solutions that relate to

code updateability apply to Ethereum-based blockchains.

Smart contracts deployed to blockchains based on EOSIO

or Hyperledger Fabric are not stored in a tamper-resistant

manner and can be updated after deployment.

(S.7.1) Separation of Concerns: To improve code

updatability, smart contracts can be modularized to

decouple the application logic from data. In this notion, the

Token Pattern separates data (i.e., tokens, balances, and

their associated account mapping) stored in a Token

Contract from the application logic in a Logic Contract.

While the Token Contract provides data about an account’s

balances without depending on the application using the

tokens [106], [107], the Logic Contract serves as an entry

point for interactions with the Token Contract. The Logic

Contract can be easily replaced with another version.

(S.7.2) Observation of Addresses: If multiple smart

contracts interact with one smart contracts (e.g., a Token

Contract), developers can implement an Observer Contract

(see Observer Pattern) [108]. Caller Contracts call Target

Contracts. The Caller Contracts register with the Observer

Contract and subscribe to address updates of Target

Contracts. A developer informs the Observer Contract

about an update of a Target Contract by sending the Target

Contract’s new address to the Observer Contract. The

Observer Contract notifies all Caller Contracts about the

new Target Contract address, and the Caller Contracts

update the new address accordingly. This SDP promises

increased efficiency in updating multiple smart contracts.

However, it might become costly (e.g., in terms of gas)

when many Caller Contracts are called to update the Target

Contract address. Since this cost must be taken by the

developer initiating the update, this approach is suitable

for updating smart contracts that are part of a project.

(S.7.3) Static Entry Point: An alternative and less costly

approach is to implement a Proxy Contract with a static

address that points to the latest version of a target smart

contract and has a similar interface to the target smart

contract (see Proxy Pattern) [9], [107]. All function calls are

made to the Proxy Contract, which forwards the calls to the

corresponding function of the target smart contract. If the

Target Contract’s address changes after an update, only the

Proxy Contract must be updated.

To update the address of imported libraries in deployed

smart contracts, the use of proxy libraries has been

proposed as a workaround [109], which follows a similar

concept as the Proxy Pattern. When implementing proxy

libraries, a regular smart contract is used as a dispatcher to

communicate with target libraries. The individual addresses

of the libraries can be updated in a storage contract called

by the dispatcher. Smart contracts that use a library make

a delegatecall to the dispatcher contracts, which calls the

respective libraries in another delegatecall.

(S.7.4) Static Entry Point with Additional Logic: To allow

for a rigorous separation of concerns by using different

smart contracts while keeping the interaction with the

separate contracts simple, the Façade Pattern can be used
[9]. In the Façade Pattern, a Façade Contract serves as a

unified interface that manages the interaction with multiple

smart contracts. The Façade Contract has functions

implemented that facilitate calls to a sequence of external

smart contract functions of different smart contracts and

handles errors. Thus, the Façade Contract can manage the

execution of different modules of an application logic

implemented in separate smart contracts. All smart

contract addresses registered with the Façade Contract are

updatable independently.

Although these mechanisms offer different ways to make

smart contracts maintainable, it is important to consider

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 15

that the tamper resistance of smart contracts is a unique

DLT characteristic and an anchor of trust into reliable

enforcement of agreements, which should not be

mitigated by exhaustive maintainability of smart contracts.

4.1.4 Regulated Executability Challenges

Challenges concerning regulated executability impact the

mechanisms put in place to regulate the execution of smart

contract code.

(C.8) Execution Restriction: The undesired executability of
smart contract functions by entities that can interact with
the distributed ledger.

In several distributed ledgers (e.g., Ethereum and EOS),

smart contracts are exposed to all nodes in a DLT network.

Thus, contracts can become subject to undesired function

calls. For example, undesired function calls to the

selfdestruct(address a) function in Ethereum smart

contracts are of particular criticality, as seen in the Parity
hack [13], [110]. After selfdestruct(address a) is

executed, all balances kept by the smart contract account

are transferred to a. Then, the smart contract is locked and

cannot be executed anymore.

(S.8.1) Visibility Declaration: Developers should carefully

declare whether functions should be callable by the

identities of the distributed ledger (e.g., using external in

Solidity [111]) or only by the smart contract itself or in its

execution context (e.g., declaring a function’s visibility

private in Solidity) [112], [113].

(S.8.2) Identity-based Authorization: To prevent

unauthorized execution of smart contract functions,

functions can be guarded by authorization checks that

ensure that only specified accounts can execute functions

in the intended context [9], [102], [106]. Therefore, function

execution can be restricted to specific accounts [106], [108].

Despite different implementations for account-based

authorization, these approaches follow a similar structure:

when a function is called, the identity is authenticated, and

its permission for the function execution is checked for

authorization (see Guarding Pattern). In EOSIO, entities

manage permissions via authorization tables. In

authorization tables, the eosio.code permission is of

particular importance because all entities whose accounts

have the eosio.code permission can transfer assets from

that account [11]. In Ethereum smart contracts, developers

should use msg.sender to identify the account that issued

the original transaction for a function call, especially when

smart contracts make external calls [89]. In EOSIO, identity-

based authorization per function is at the core of the DLT

protocol, and developers must use the authority table that

corresponds to their smart contracts to specify permissions

of accounts [46]. In Hyperledger Fabric, identity-based

authorization is largely managed via the definition of

endorsing peer nodes in the chaincode.

(S.8.3) State-based Authorization: Functions can be

protected by ensuring that accounts can only execute

functions in a particular state using the Event-Ordering
Pattern [9], [102], [106]. In the Event-Ordering Pattern, a

state variable s is defined and initialized with a nonce. The

value of s indicates a particular state of the smart contract

and is changed after each successful function call

associated with the state transition of the smart contract.

To successfully execute a function, the transaction invoking

the function must pass the current value of s as an

argument. Otherwise, the function invocation is denied.

(S.8.4) Provisional Authorization: Function execution can

be restricted to entities knowing a certain secret

(e.g., secret preimage of a hash [108]). For provisional

authorization, hash values can be stored in a smart

contract. For function invocations, entities must pass the

preimage of a stored hash value to the smart contract. If

the hash value of the preimage included in the transaction

matches the stored hash value required for authorization,

the function call proceeds. Otherwise, the call is denied.

Each hash value must only be used for a single

authorization because the preimages in the transactions

are publicly visible. Nonetheless, this solution is prone to

front running and needs additional protection [82]. For

example, accounts can be associated with individual hash

values, and hash values can only be used for authorization

when the transaction is sent from the associated accounts.

(S.8.5) Time-based Authorization: Function execution

can be restricted to time intervals (i.e., speed bump [8] or

automatic depreciation [9]) to prevent a rush of

transactions. Whenever a target smart contract receives a

transaction, it first checks whether the timestamp of the

transaction issuance is within the period that allows the

execution of a smart contract function. Otherwise, the

smart contract denies the call. When using this solution,

developers should be aware of the degree to which nodes’

local timestamps can be manipulated.

(S.8.6) Smart Contract Deactivation: In Ethereum, smart

contracts can be disabled using selfdestruct(…) or

deactivated (see Deactivation Pattern). If a smart contract

is disabled, all asset transfers to the contract’s account will

get lost [114]. Instead of disabling a contract, developers

can deactivate the contract by changing the value of an

internal state variable. After the value is changed to

deactivated, all incoming requests will be reverted.

Thereby, no assets will get lost in regular asset transfer to

a deactivated smart contract account, but the contract is

still not usable anymore [114]. Regular means that assets

are not transferred in the context of executing

selfdestruct (…) in the caller Ethereum smart contracts.

(C.9) Resource Management: The limitations regarding the
execution of smart contract functions caused by the
corresponding allocation and revocation of computational
resources by control mechanisms put in place.

The mechanisms to guarantee the termination of smart

contracts mostly limit smart contract execution by a

specific resource, such as gas in Ethereum or execution

time in EOSIO. After the resource is consumed, the

execution is aborted. The abortion of function execution

can cause denial of service, for example, in unbounded

mass operations. Unbounded mass operations can occur,

for example, when entities can add new addresses to the

balanceList array in the Ethereum smart contract

illustrated in Figure 2. Addresses kept in the balanceList

array are used for payouts initiated by calling the payout()

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

function. While looping through the balanceList array, the

execution may run out of gas or exceed the block gas limit

in Ethereum. Accordingly, the transaction is reverted, and

the address kept in the balanceList array will receive

payments leading to denial of service [14], [20], [115].

Challenges related to resource management apply to

Ethereum-based and EOSIO-based blockchains [14], [44],

[116], [117]. In Ethereum, unlike Solidity, Vyper defines an

upper bound on gas consumption per function call to

prevent DoS from operations on unbounded data

structures [115].

(S.9.1) Pull-over-Push: To counter challenges caused by

unbounded mass operations on EOSIO-based and

Ethereum-based blockchains, developers can use pull

mechanisms (see Pull Pattern). Pull mechanisms require

every entity to call the smart contract themselves, for

example to receive payments via payout(). This way, the

account the transaction has been issued from only pays gas

for their own payouts. Although the Pull Pattern is

especially proposed for payments, it also applies to other

unbounded data operations [14]. However, pull payments

can decrease the utility of DLT applications because each

account must individually invoke the smart contract.

(S.9.2) Continuable Loop: If loops over unbounded arrays

cannot be avoided, developers should keep track of the

progress inside the loop. This allows the loop to continue

in the next call at the last entry before the iterations are

aborted [14]. To make the execution of a loop continuable,

an index pointing to the index of the last successful

iteration can be used (see Indexed-Loop Pattern). When

resuming the loop, it continues at the entry after the last

successful iteration.

4.2 Challenges Caused by the Programming
Language & Execution Environment

Challenges related to an offered programming language

and execution environment for smart contracts refer to the

limitations and shortcomings of the technical conditions

offered to develop and execute smart contracts.

4.2.1 Language Definition Completeness
Challenges

Challenges pertaining to language definition completeness

relate to the incomplete coverage of a formal model in the

definition of a programming language and the resulting

undefined behaviors of smart contracts.

(C.10) Undefined Behavior: The shortcomings in the
specification of the behavior of a programming language.

Undefined behavior of a smart contract occurs when a

language’s definition of particular operations is ambiguous

or non-existent, and the smart contract relies on these

underspecified operations, altering its actual semantic

intent at compile time [118]. In Solidity, for example, the

order in which expressions are evaluated in the same

statement is not specified [111].

(S.10.1) Read the Documentations: Undefined behavior

can have individual effects on smart contract execution

depending on the specific implementation. Developers

should be aware of ambiguous or missing language

definitions to avoid unexpected program flow.

4.2.2 Theoretical Expressiveness Challenges

Challenges related to theoretical expressiveness are

concerned with the lack of functional capabilities offered

by a programming language or its execution environment.

(C.11) Arithmetic Operations: The limitations and
vulnerabilities related to using arithmetic operations.

Arithmetic operations can lead to truncation errors or

undefined behavior that can result in the loss of assets.

Truncation errors can occur in Solidity, for example, when

dividing numeric values because Solidity only supports

integer values. Challenges related to arithmetic operations

apply primarily to Solidity and EVM, which do not natively

support floating-point data types [43]. EOSIO uses softfloat
from the IEEE-754 float-point arithmetic [43] supporting

deterministic rounding behavior. In Hyperledger Fabric,

arithmetic operations offered by supported programming

languages can be used because nondeterministic behavior

is filtered by applying endorsement policies.

(S.11.1) Fixed-Point Arithmetic: Developers can use

fixed-point arithmetic to avoid truncation errors to a

certain extant [119], [120]. To express a fixed-point number,

developers must specify a fixed number of digits after the

decimal point. When using this solution, developers must

consider interactions with the smart contract with other

contracts or oracles and convert numeric values according

to the individual specifications. As an alternative to Solidity,

Vyper supports decimal fixed point numbers [121]. Still,

fixed-point arithmetic can be prone to truncation errors

when not handled appropriately.

(C.12) Concurrency: The protection from nondeterministic
behavior caused by code that is executed with time
overlaps.

In addition to the concurrency between transactions of

different accounts regarding their processing order (see C5
Transaction-Ordering Dependence), concurrency can occur

during the execution of smart contracts causing

nondeterminism. Concurrency is a challenge in

Hyperledger Fabric smart contracts that are programmed

in Go [7]. Go is designed for parallel execution and

Figure 2: Example of an unbounded data structure in Solidity that

may run into an infinite loop because of an integer overflow.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

pragma solidity >=0.5.0 <0.7.0;

contract Overflow {

address[] balanceList;

mapping(address => uint256) balances;

// Your code including a function to add addresses

function payout() {

for (unit8 i = 0; i < balanceList.length; i++) {

if(balances[balanceList[i]] > 0) {

uint8 balance = balance[balanceList[i]];

balances[balanceList[i]] = 0;

balanceList[i].transfer(balance);

}

}

}

}

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 17

supports concurrent execution using goroutines, which are

functions that run concurrently with other functions.

Concurrency is not a challenge in EOSIO-based and

Ethereum-based blockchains using the EOSVM or the EVM.

(S.12.1) Synchronization: To avoid nondeterministic

behavior in smart contracts programmed in Go, developers

can synchronize the execution of goroutines within their

contracts [122]. For synchronization, Go offers the package

sync, including WaitGroup, for low-level library use [123].

Using WaitGroup, Go code waits for a collection of Go

subroutines to finish before continuing with subsequent

computations [122].

(C.13) Non-Deterministic Behavior: The use of operations
offered by a programming language that returns arbitrary
results.

Several general-purpose programming languages

behave nondeterministically for the execution of particular

functions [7], [124]. This behavior contradicts the

requirements for determinism of most DLT protocols

(see Table 1). This challenge applies to smart contracts

developed in Go, which is currently only offered for

Hyperledger Fabric smart contracts. For example, in Go’s

type collections, range iterations over maps return values

in random order, which challenges deterministic smart

contract execution [124].

(S.13.1) Cautious Use of Range Iterations: Developers

should avoid using nondeterministic constructs if their use

can affect deterministic function execution.

4.2.3 Usability Challenges

Challenges related to usability are concerned with the

hurdles faced by developers when using a programming

language.

(C.14) Conformity to Expectations: The mismatch between
developers’ expectations of how their program should be
executed and its actual execution.

Solidity offers the declaration of different integer types

(e.g., uint8, uint32, or uint256) that resemble those in

programming language C, which can lead novice

developers to assume that an uint8 would allocate 8 bits

in memory, while an uint128 would allocate 128 bits.

However, the EVM uses simple (key, value) storage,

where each value consumes 256 bits. Variables declared as

uint8 even consume more gas than uint256 variables

because of additional operations performed to downscale

uint8 variables from uint256. Thus, integer types of

Solidity are not entirely consistent with the EVM [118],

[125], which may lead to bugs or underestimated costs.

Another example of weak typing in Solidity is the

instantiation of smart contracts within a contract. If a smart

contract SCcaller refers to an instantiation of another smart

contract SCcallee using SCcallee’s address, it is not checked

whether the smart contract instance stored on the

particular address complies with the type declaration of

SCcallee. Moreover, data type conversions of variables

3 In Solidity, each smart contract can implement a fallback function,

which is called when the function signature does not match any

storing a very large uint value to int or variables storing a

negative int value to uint can cause unexpected results

because Solidity uses two’s complement to represent int

[118], [126]. The following solutions should also be

considered for blockchains based on EOSIO:

(S.14.1) Data Type Selection: To resolve discrepancies

related to the conformity of programming languages to

their execution environment, we advise smart contract

developers to carefully read the documentation of the

programming language and the targeted execution

environment to decide on the data types to be used. In

Solidity, developers should gauge whether the benefits of

using unsigned integers other than uint256 exceed the

costs caused by increased gas consumption.

(S.14.2) Data Type Conversions: When using type

conversion from a larger data type (e.g., uint256) to a

smaller one (e.g., uint8), developers should first

thoroughly test their code to ensure that conversions do

not decrease accuracy.

(C.15) Cross-Account Interactions: Code flaws that are
caused by a call from a smart contract that involves external
sources, such as other smart contracts.

In Ethereum, there are three types of issues that can be

caused by cross-account interactions (also called external

calls) [21], [22]: first, unavailable smart contract; second,
function not found; and third, unintended function call. In

unavailable smart contract, the target smart contract does

not exist or has been destroyed. The EVM does not throw

an error if a transaction’s recipient does not exist. In EOSIO,

cleos generates an error message if an action does not

comply with the definitions of the functions or the smart

contract name. In Hyperledger Fabric, clients are notified

through an error message if a target smart contract could

not be found. In function not found, the interface of the

smart contract or library does not match the signature of

the function to be called through the transaction. In this

case, the target smart contract function cannot be found. If

the function cannot be found, the smart contract’s fallback

function 3 is invoked, which can implement arbitrary

procedures. In Solidity, no exception is thrown if a function

is not found and the caller is likely to be unaware of the

error [21]. If an entity issues a transaction to a non-existing

EOSIO account or calls a function that is not implemented

in the target contract, an HTTP 404 error is returned, and

the transaction is rolled back. The Hyperledger Fabric

protocol first checks whether the target function exists in

the smart contract before trying to execute the function.

Calls to functions that do not exist in the smart contract

trigger an unknown transaction handler [127]. In
unintended function calls, a recipient of funds

unintentionally invokes a function (e.g., from its

constructor or fallback function). For example, when a

smart contract transfers an asset to a recipient smart

contract, the recipient smart contract may have a

procedure implemented (e.g., in its fallback function),

which is executed upon receiving the assets. This procedure

function in the smart contract. If no fallback function is given in these

situations, the EVM throws an exception.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

calls for a function in the original contract. Such a sequence

of function calls is called reentrancy. Challenges caused by

cross-account interactions apply to smart contracts

developed for Ethereum-based blockchains. Smart

contracts for blockchains based on EOSIO and Hyperledger

Fabric are not prone to vulnerabilities caused by

unavailable smart contracts or calls to non-existing

functions. Moreover, the processing of instructions in smart

contracts on blockchains based on EOSIO or Hyperledger

Fabric prevents reentrancy.

(S.15.1) Contract Availability Check: To check whether a

smart contract is available (i.e., existing and not destroyed),

smart contracts of Ethereum-based blockchains can load

code associated with a target address into a bytes variable

using Solidity Assembly (see External-Call Pattern) [128]. If

the length of the value stored in the bytes variable is larger

than zero, the address is associated with a callable smart

contract. However, it cannot be uniformly checked whether

the smart contract complies with an expected data type. In

EOSIO since the Dawn 4.0 update , the availability of an

account is automatically checked in the eosio.token

contract [129].

(S.15.2) Gas Limit Specification: In Solidity, there are

three ways to transfer native assets (e.g., Ether) from a

smart contract:

(1) <recipientAddr>.send(value)

(2) <recipientAddr>.transfer(value)

(3) <recipientAddr>.call.value(value)("")

When using (1) or (2), a fixed amount of exactly 2,300 gas

is forwarded to the recipient, which should protect smart

contracts from reentrancy (as of March 2021) [20]. If an

out-of-gas exception is thrown in asset transfers, (1) only

returns false and errors must be handled manually. In

contrast, (2) further propagates the exception and

automatically reverts the callchains of the failed

transactions, which is similar to

require(<address>.send(…)). Since the Istanbul hard fork,

it is known that gas costs for instructions are not constant

and (1) and (2) may fail in the future. To counter failed asset

transfers in the future due to increased gas costs,

developers should use (3), which forwards all available gas

to the recipient contract [130]. However, using (3) can make

a smart contract vulnerable to reentrancy, which is why

developers must also implement mechanisms to protect

the contracts from corresponding attacks (see S.16.4

Protection from Reentrancy). If the execution of the target

contract runs out of gas when using (3), the function

returns false and error handling must be manually

performed similar to (1). Vyper offers

send(recipientAddr, value) to transfer assets, which

works similar to (1) [115] and, thus, is prone to failed

transactions caused by volatile gas costs.

(S.15.3) Check Return Values: In favor of proper error

handling, the Error-Handling Pattern recommends that

developers implement return values in all functions so that

their successful execution can be determined [10], [131].

This recommendation is especially important for Ethereum

smart contracts. Checks of return values are automatically

added for calls in Vyper so that failed calls are automatically

reverted [115].

(S.15.4) Instruction Order: We identified four types of

reentrancy attacks caused by external calls by Ethereum

smart contracts [12], [22], [132]: fallback reentrancy, cross-
function reentrancy, delegated reentrancy, and create-
based reentrancy. In fallback reentrancy, a smart contract

transfers assets to another contract. After receiving the

assets, the recipient contract calls the function in the

original contract that transferred the assets again from its

payable or fallback function. In cross-function reentrancy,

a smart contract function is invoked and reentered through

another function, while the smart contract is still in an

inconsistent state. Attackers can perform cross-function

reentrancy if a smart contract includes functions that read

from or write to the same variables [132], [133]. Delegated
reentrancy occurs when a smart contract imports a library

and state updates are not synchronized appropriately

[132], [133]. Create-based reentrancy can occur if a smart

contract A invokes the constructor of another contract B

before updating its state. During the execution of B’s

constructor, B can call a function in A, causing reentrancy

[132].

The Checks-Effects-Interactions Pattern defines an

execution order for instructions in a smart contract

function. First, it is necessary to check if the context is valid

to execute the function. Second, all changes are to be

applied to the values of relevant variables. Third, the

function execution can proceed. Following this execution

order, malicious smart contracts cannot reenter the same

function again in the previous state [9], [132].

(S.15.5) Execution Locking: As an alternative to the

Checks-Effects-Interactions Pattern, the Mutex Pattern can

be used to protect smart contracts from reentrancy attacks.

In the Mutex Pattern, the state of a smart contract is locked

using a mutex variable when the execution of logic to be

protected starts. After the particular logic is executed, the

code is unlocked again using the mutex variable [8], [102].

If an attacker performs a reentrancy attack within the scope

of the execution of locked protected logic, the execution of

the reentrancy call is aborted when passing the check of

the locked mutex variable. Developers can apply checks for

the mutex to every function of the smart contract [102].

However, the Mutex Pattern can become very complex

when trying to prevent reentrancy across multiple function

calls and can become prone to programming flaws that, for

example, allow attackers to lock a smart contract for an

arbitrary time or even forever [82]. In Vyper, the

@nonreentrant(<unique_key>) decorator corresponds to

the Mutex Pattern and can be used to protect functions

from reentrancy [134].

(C.16) Encapsulation: The limitations of smart contracts in
interacting with data and information systems external to
the execution environment.

To request external data (e.g., sensor data) or move the

execution of computation to oracles [70], [71], [107], smart

contracts must interact with oracles. Because of the

requirement for determinism in blockchains building on

Ethereum and EOSIO (see Table 1), these DLT systems

encapsulate smart contract execution in virtual machines

(i.e., the EOSVM and EVM) that prevent direct calls to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 19

oracles [43]. In Hyperledger Fabric, direct interaction from

smart contracts with oracles is supported [135]. Still, the

following solutions also apply to Hyperledger Fabric when

gauging how to integrate reliable oracles.

(S.16.1) Push Oracle: To retrieve external data from smart

contracts on EOSIO-based and Ethereum-based

blockchains despite their encapsulated execution, a Relay

Contract can be instantiated that is periodically updated by

an oracle[136]. The Relay Contract stores current data, and

other smart contracts can retrieve said data. However, this

approach can be inefficient due to unnecessary updates to

the Relay Contract. Moreover, this approach can introduce

vulnerabilities (e.g., toward malicious behaviors of oracle

controllers) due to the reliance on individual third parties.

(S.16.2) Pull Oracle: To make push oracles more efficient

in terms of required interactions, we propose event-driven

updates, for example, using events in the Relay Contract,

such as native Solidity events, a listener plugin for EOSIO

(e.g., EOS Watcher Plugin [137]), or periodic polls of

nodeos [138]. The oracle listens to requests triggered by

the Relay Contract for specified events (see Oracle Pattern).

Such requests may refer to arbitrary computational tasks,

for example, data storage, data retrieval, or outsourcing of

computations [80], [139]. The oracle manages the

execution of the requested tasks. Then, the oracle pushes

the results to the Relay Contract. Unfortunately, this

approach comes with the downside that the oracle is

operated by a third party, forming a single point of failure

[70], [71].

(S.16.3) Decentralized Pull Oracle: To tackle malicious

behavior of oracles while increasing their availability and

reliability, developers can use decentralized oracles [71].

Multiple oracles listen to the Relay Contract (see Oracle
Pattern), process received requests, and push their results

to the contract. The Relay Contract decides on one result

to use among those provided by the oracles, for example,

by choosing the result that has been returned by most

oracles. As an extension, an incentive mechanism should be

put in place to avoid malicious behavior of oracles (see

Oracle Pattern) [139], [140]. For example, oracles can pay

collateral when registering with the Relay Contract. After

oracles push valid results to the smart contract, they are

rewarded with coins, while oracles that push wrong results

are punished by reducing their collateral.

(C.17) Error Handling: The difficulties of implementing
thorough handling of errors and exceptions in smart
contract execution.

In Ethereum, inappropriate error handling can cause

undesired smart contract states and can even lead to asset

loss and denial of service [14]. Appropriate error handling

is, however, challenging because error handling strongly

depends on the individual call chain. A call chain describes

the sequence of function calls performed during smart

contract execution. In Solidity, a call chain can include

different types of calls (i.e., call, delegatecall, and

staticcall; see Section 2.2). The EVM propagates

exceptions up the call chain and reverts all side effects until

the last call command, which returns false. The smart

contract execution is resumed from this point, and only the

gas allocated by the call command is consumed [21].

(S.17.1) Isolate Calls: To minimize the potential damage

caused by flawed error handling for complex call chains in

the EVM, developers should isolate separate external calls

in Ethereum instead of chaining calls. This way, developers

can implement more granular error handling. To

orchestrate multiple isolated calls, the Façade Pattern

applies.

(C.18) Programming Language Concept Compliance: The
degree to which a programming language conforms to
established concepts and the use of terms in related
programming languages.

In smart contract development, protected keywords

(e.g., private or public) in established programming

languages, such as Java or C++, can mislead developers.

For example, visibility declarations in Solidity (e.g., external,
private, or public) often suggest to developers that private

variables may not be visible to other entities [20].

(S.18.1) Cautious Use: If developers have no other

opportunity to develop code than using a language with

misleading keywords, developers must be cautious.

(C.19) Iteration through Data Structures: The functionality
provided by a programming language to support the step-
by-step traversal of individual elements of a higher-level
data structure.

As in conventional software development, there are data

structures that are not iterable but that can store and return

data from a collection in O(1).
(S.19.1) Auxiliary Data Structures: To loop through non-

iterable data structures (e.g., mapping in Solidity), auxiliary

data structures (e.g., an array) can be used. Auxiliary data

structures should be iterable and store all keys of the non-

iterable data structure. When iterating over the auxiliary

data structure, its current value can be used as a key to

retrieve values of the non-iterable data structure.

4.3 Challenges Caused by Coding Practices

Challenges related to the principal challenge origin coding
practices refer to issues caused by developers in their

coding activities.

4.3.1 Code Efficiency Challenges

Code efficiency challenges refer to the constrained

quantity of allocated resources to deploy a smart contract

code (e.g., gas) and execute the deployed code on a

distributed ledger (e.g., in terms of space and time

complexity).

(C.20) Data Storage: The storage of data to keep a smart
contract operational in a trustworthy manner, but also
efficient with respect to resource consumption for smart
contract execution.

Storing data on EOSIO-based and Ethereum-based

blockchains is expensive. Therefore, developers must

consider alternatives to storing data in smart contracts. This

challenge does not apply to blockchains based on

Hyperledger Fabric.

(S.20.1) Off-Ledger Storage: Like heavy computations

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

and sensitive data, large amounts of data should be stored

off-ledger and should be managed on oracles. The Oracle
Pattern (see S.1.1 Off-Ledger Computations) describes how

smart contracts can interact with oracles. To make the

integrity of stored data provable, developers can

implement mechanisms to store a hash value of the

externally stored data in the smart contract.

(S.20.2) Store Data in Logs: Solidity offers the

implementation of events that are usually used to

communicate with oracles or frontends [141]. Events can

be used to generate logs that represent a cheap alternative

for storing data on a blockchain because a log costs only

8 gas per byte (at the time of writing the study). However,

logs are not accessible by smart contracts and only oracles

or frontends can render logged data. Using events as logs

can be reasonable, for example, when operating an

exchange. The history of entities’ deposits to a smart

contract does not need to be stored in the contract but can

be stored as logs, and only the current balances of the

entities are stored in the smart contract [141].

(C.21) Data Type Complexity: The differences between data
types with similar functionalities regarding their time and
space complexity.

The selection of appropriate data types affects the cost

of storage and execution in smart contracts based on

Ethereum and EOSIO. To provide efficient code, developers

must gauge between different data types. Still, the variety

of data types and their individual complexities regarding

storing and retrieving data differ strongly.

(S.21.1) bytes over byte[]: In Solidity, the data type

byte[] is an array of bytes but requires 31 bytes of memory

between its elements because of padding rules. Developers

can use data type bytes to reduce memory consumption

[142].

(S.21.2) Array Replacement: In Ethereum, using arrays

can be more costly than using individual variables [113]. To

save gas, developers should check whether they can

replace arrays of fixed length with a corresponding number

of individual variables.

(S.21.3) string Avoidance: In EOSIO, developers should

avoid storing variables in strings to save resources. For

example, saving SHA3-256 hash values as checksum instead

of string can reduce memory consumption from 64 bytes

to 32 bytes. The same applies to 128-bit numbers, such as

common universal unique identifiers (UUIDs), which are

typically represented as hex-string allocating 16 bytes. In

contrast, storing 128-bit numbers as string consumes

36 bytes.

(C.22) Under-Optimized Code: The optimization of smart
contract code toward better performance.

A recurring problem in software engineering is

inefficient code. Code can be inefficient due to useless

code (e.g., opaque predicates [117], [143] or dead

code [143]) or code smell (e.g., repeated operations in

loops with constant outcome [113], [143]). Useless code

consumes additional resources (e.g., gas or RAM) without

adding reasonable logic to the smart contract. For example,

dead code will never be executed, but costs gas for

deployment in Ethereum smart contracts or RAM in smart

contracts on EOSIO-based blockchains. Useless code in

combination with loops can significantly increase resource

consumption, for example, when functions with constant

outcomes are repeatedly executed within a loop.

Dispensable code is particularly important to avoid in smart

contracts running via DLT protocols that charge costs for

smart contract execution, such as in Ethereum-based and

EOSIO-based blockchains.

(S.22.1) Constants: Developers should check if they

perform computations with constant outcome. When

identifying an opaque predicate, developers can declare

the result of the computation as constant.

(S.22.2) Code Optimization: To reduce resource

consumption when executing smart contracts, developers

should check whether variables are required to produce a

particular result and dispense with variables that are not

required. Additionally, the necessity for functions in a smart

contract should be checked to avoid opaque predicates

and code smell. To identify dead code and opaque

predicates, software tools for formal verification can help

(e.g., GASPER [143]). For the optimization of Ethereum

smart contracts, existing works present approaches to

identifying and performing bytecode improvements [113],

[117], [144]. Using these approaches, dispensable

operations can be identified, and the smart contract can be

optimized.

(S.22.3) Shadowing: Developers should avoid processing

data in the persistent storage of the EVM to reduce

resource consumption [145]. Instead, developers can apply

shadowing. In shadowing, the data to be sorted is copied

from the storage into the EVM memory, which is less

resource-consuming than sorting in storage [146]. All

sorting is performed in the EVM memory.

(C.23) Required Interactions: The minimization of the
required interactions with a smart contract to achieve a
targeted result.

Distributed ledgers enable the management of digital

assets without the necessity of a trusted third party to a

certain extent. It is possible to represent ownership of real-

world assets (e.g., cars or houses) using tokens, which can

be implemented as a smart contract [147]. However, it is

challenging to create and deploy such tokens manually. For

example, an authorized entity responsible for the token

must create and deploy a smart contract for each

requesting user individually, which poses a single point of

failure and a potential source of fraud.

(S.23.1) Automated Deployment: To increase security

regarding the creation and deployment of smart contracts

(e.g., in terms of token creation and issuance, fraud

resistance, and theft), developers can use the Factory
Pattern. In the Factory Pattern, a smart contract

(i.e., Factory Contract) manages the creation and issuance

of such smart contracts (i.e., Child Smart Contracts) [148].

This pattern is consistent with the concept of factories in

existing programming languages, such as Java. In addition

to the automated creation and deployment of smart

contracts, Factory Contracts can also implement

mechanisms to better observe issued smart contracts, for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 21

example, by storing the addresses of all created smart

contracts. This solution applies to Ethereum-based

blockchains.

4.3.2 Comprehensibility Challenges

Comprehensibility challenges relate to the ease with which

entities with little experience understand how a specific

smart contract code works and how it should be used.

(C.24) Readability: The hurdles faced by developers when
reading program code.

Readability of program code across smart contracts

developed by different entities is important for increasing

its comprehensibility and maintainability [20], [101], [149].

However, developers have different programming styles,

which can decrease readability and comprehensibility.

(S.24.1) Style Guide Conformity: To favor code

readability, developers should align their individual coding

style with the style guides published for the programming

language (e.g., the Solidity style guide for Ethereum [150]

or the Go style guide for Hyperledger Fabric [151]). For

example, Ethereum developers should align with

established best practices for naming events [20]. In EOSIO,

the naming of accounts is already regulated. Style guide

conformity can be checked automatically by software tools

such as Ethlint or Solhint.

(C.25) Ease of Code Reuse: The ease with which developers
can inform themselves about the characteristics of smart
contract code to understand contract specifications for
better code reuse.

Since code reuse in publicly distributed ledgers

(e.g., those based on Ethereum or EOSIO) is often

performed [101], it is particularly important that developers

can easily understand the purpose and functioning of code,

as well as its shortcomings.

(S.25.1) Documentation: To support others in reusing

code, developers should add appropriate documentation

in the form of comments or additional files (e.g., README.md

files). The documentation should include the functioning of

the smart contract and report known shortcomings

(e.g., bugs or vulnerabilities).

4.3.3 Implementation Soundness Challenges

Challenges related to implementation soundness originate

from factors that hinder an implementation from being free

from errors and flaws.

(C.26) Appropriate Data Type Use: The degree to which
developers appropriately declare, initialize, and use
variables.

To support developers in the selection of data types,

data type inferencing is offered by several programming

languages (e.g., C++ and Solidity). Data type inference

refers to the automatic recognition of a data type likely

suitable for storing a given value and can expose a

vulnerability in programming languages, for example, due

to overflow or underflow [20], [152]. An overflow describes

the behavior of programming languages when a value

exceeds the boundary of a data type (e.g., assigning

numeric values larger than their defined maximum of 28 - 1

to uint8 variables). An underflow occurs when a value

assigned to a variable is less than the smallest defined value

that can be represented by the variable's data type. To

avoid unforeseen code flaws, developers should be aware

of the different processing of data types in storage.

(S.26.1) Integer Overflow and Underflow Handling:
Overflow and underflow can occur in Ethereum smart

contract programmed in Solidity. To counter overflow and

underflow, developers should not rely on data type

inferences but should define the targeted data type

completely [118]. For example, if a variable is declared as

uint8 through data type inference, this variable will

overflow if it is assigned a value larger than 28-1. Moreover,

developers can either manually implement checks for

overflow and underflow or use the OpenZeppelin SafeMath

library [153] for any arithmetic operations a smart contract

performs [118]. Using the SafeMath library can also prevent

most overflows and underflows of integer variables (see

Overflow/Underflow Pattern). Since Solidity v0.80, Solidity

checks for overflow and underflow and reverts arithmetic

operations [154]. Alternatively, developers can use

Vyper [121] instead of Solidity because Vyper is not prone

to overflow and underflow [115].

(C.27) Semantic Soundness: The difficulties of reaching a
state where an implementation is free from logical errors
and flaws.

To reach semantic soundness, the implementation

should adhere to the agreed-upon business logic for

interaction [12] with respect to the absence of logic,

incorrect logic, and logically correct but unfair [12]. First,

absence of logic describes smart contracts that lack

important logic, for example, to protect its

selfdestruct(…) function from being unintendedly

executed by attackers [12]. Second, incorrect logic is

concerned with a smart contract code that is syntactically

correct but logically incorrect. Third, logically correct but
unfair applies to code that is free from errors but misleads

entities so that they will be subject to fraudulent program

logic (e.g., expected payouts that will never happen, as in

Ponzi Schemes [155]).

(S.27.1) Argument Sanitization: As in conventional

software engineering, passing inappropriate arguments to

functions can cause errors or unforeseen side effects. This

also applies to blockchains based on Ethereum, EOSIO, and

Hyperledger Fabric. In Ethereum asset transfers, for

example, the EVM pads short addresses with trailing zeroes

if the recipient address is too short. The padding can result

in the transfer of a larger number of tokens than intended

[156]. To prevent wrong arguments from being processed,

developers can implement guarding functions that first

check passed arguments upon function invocation and

deny the function execution if one of the arguments does

not comply with the function requirements (e.g., using

assert(…), require(…), or revert(…) in Solidity [20]). For

example, the length of an Ethereum address passed to a

smart contract should be checked before transferring

assets to it to prevent asset loss [156].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

(S.27.2) Protection from Replay Attacks: In Ethereum-

based and EOSIO-based blockchains, the visibility of the

payload of transactions favors the exploitation of smart

contract vulnerabilities for replay attacks [7]. In a replay

attack, an adversary copies the content of a transaction

payload to their own transaction and issues their fraudulent

transaction to the same smart contract. The target smart

contract receives the original and the fraudulent

transaction and respectively executes the target function.

Often, the copied transaction payload contains data for

authentication (e.g., a digital signature). With these, critical

logic for an account can be executed (e.g., asset transfers).

To prevent replay attacks, the Replay-Protection Pattern

can be used. In this SDP, a function call may require a digital

signature of all other parameters passed to the function

and the current value of a nonce defined in the targeted

smart contract. When the function is called, the smart

contract verifies the signature based on the passed

function parameters and the nonce. After successful

verification, the nonce is changed and future transactions

with the same signature become invalid [115]. In

Hyperledger Fabric, peer nodes implement mechanisms to

protect the network from replay attacks [54]. This solution

is particularly relevant to consider when working on

publicly distributed ledgers that are in the stage of a hard

fork [157]. Valid transactions can be easily replayed from

one ledger to another. To counter replay attacks in this

scenario, a chain ID should be a required inclusion in the

digital signature. The chain ID takes the function of the

nonce.

(S.27.3) Fake-EOS Transfer Protection: In Fake-EOS
Transfer attacks, an attacker creates a token called EOS like

the native currency in EOSIO. Then, the attacker sends their

fake EOS tokens to a smart contract. If the recipient

contract does not verify the issuer of the tokens, it

considers them genuine EOS tokens and proceeds with the

function execution.

To protect smart contracts from Fake-EOS Transfer
vulnerability, smart contracts should verify that the asset

transfer has been authorized by the eosio.token contracts.

For this purpose, developers can check whether the code

parameter in the apply(…) function of the recipient

contract refers to the eosio.token contract [11], [158].

(S.27.4) Fake-EOS Notice Protection: Smart contracts in

EOSIO-based blockchains receive a notification as soon as

an asset transfer via the eosio.token contract is

completed. These notifications can be forwarded to other

smart contracts. If the notification is not checked by these

smart contracts, they may proceed as if they had received

the funds. This way, EOSIO smart contracts become

vulnerable to Fake-EOS Notices [11], [158]. In Fake-EOS
Notice, an attacker sends tokens to smart contract A. The

token transfer is handled by the eosio.token contract,

which notifies A and B about the token transfer. Upon

receiving the notification, B forwards the notification to a

smart contract C. C handles the notification as if it had

received the tokens.

To protect smart contracts from being prone to Fake-
EOS Notice, developers can check if the to argument in the

notification equals their own account; if not, C ignores the

notification [11], [158].

(S.27.5) Read-Your-Writes (RYW) Consistency: RYW

consistency is achieved when a database guarantees that,

after a variable value is updated, all subsequent calls will

read the updated value of the variable [159]. Smart

contracts of Hyperledger Fabric blockchains can access the

blockchain’s state database, such as LevelDB per default

and CouchDB as an alternative [160]. However, LevelDB

and CouchDB do not offer RYW consistency [91], which can

cause logic errors in smart contract codes that use data

from the world state database.

To achieve RYW-like behavior, developers can make

isolated calls to the database to read and write operations.

(C.28) Technical Soundness: The hurdles developers are
confronted with handling the technical capabilities and
limitations of a smart contract’s execution environment.

Smart contract development is still a novel field in

software development, and especially compilers for

domain-specific languages (e.g., Solidity) are frequently

updated. These updates fix bugs but can also change smart

contract execution compared to older compiler

versions [20].

(S.28.1) Fixed Compiler Version: To counter potential

vulnerabilities caused by different compiler versions,

developers should use fixed compiler versions [20].

4.3.4 Interoperability Challenges

Interoperability challenges related to the ease with which

smart contracts can be called by other smart contracts or

external systems (e.g., wallets) and can communicate with

systems outside the distributed ledger.

(C.29) Smart Contract API Conformity: The certainty with
which developers can rely on the uniformity of smart
contract interfaces that conform to published conventions
and standards.

Developers can develop code in their own style.

However, if each developer defines smart contract

functions differently, this can cause inconsistencies across

smart contract definitions, can inform flaws in smart

contract development (e.g., regarding function call

definitions), and hinder cross-contract interoperability

[147], [161].

(S.29.1) Ethereum Request for Comments: With an

increasing number of smart contracts deployed by

unknown entities with individual coding styles, the

definition of standardized smart contract interfaces has

become increasingly important, for example, to favor code

reusability and ease interoperability with smart contracts.

To agree on application-level standards and conventions,

members of the Ethereum community can propose

Ethereum Requests for Comments (ERCs). Smart contract

codes can be published for discussion in an ERC. After

members agree on a solution presented in an ERC, the ERC

can become an Ethereum Improvement Proposal (EIP) that

is discussed by the Ethereum community [162]. When the

community agrees on the EIP, it can become an official

standard, such as the ERC20 token standard or ERC26 and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 23

ERC137 for name registries.

5 RELATED WORK

Existing research has made valuable contributions to the

understanding of the peculiarities of smart contracts and

the resulting development challenges. These works can be

associated with three research streams: code analysis,

software testing, and system design. In works related to

code analysis, selected flaws in smart contract code

(e.g., overflow and underflow [20] or reentrancy [22]) and

their detection using formal methods have been

researched (e.g., [132], [163], [164]). For automated

detection of these flaws, software tools have been

proposed that perform formal verification (e.g., [163], [165],

[166]), dynamic code analysis (e.g., [132], [133], [152]), static

code analysis (e.g., [23], [24], [167]–[169]), or machine

learning using classifiers like XGBoost or AdaBoost

(e.g., [25]). These tools are designed to support developers

in improving their code by identifying recurring flaws in

smart contract code (e.g., by using formalized patterns of

code flaws). Multiple works on code analysis have focused

on performance optimization, especially to reduce the gas

consumption of Ethereum smart contracts (e.g., [116],

[117], [143]). For example, Chen et al. [117] presented

patterns for gas-inefficient code (e.g., opaque predicates,

dead code, and redundant SSTORE) and a software tool for

the automated identification of these patterns in bytecode.

Works associated with code analysis have also revealed

various smart contract vulnerabilities (e.g., reentrancy or

unchecked external calls) and methods for their

identification (e.g., [14], [22], [132], [163]). Despite these

endeavors, existing works on code analysis are highly

technology-centric (e.g., by focusing only on Solidity or

EVM [8], [20], [25], [115], [163]). Identified frequent flaws in

smart contract code are distributed across various works,

hindering developers from obtaining an overview of

existing challenges. Moreover, the presented tools

(e.g., [117], [131], [170]) are applicable only after a smart

contract has been developed and are not intended to

support developers in anticipating recurring development

challenges before writing the code.

To support developers in incorporating new knowledge

related to code analysis into their development routines

and directly anticipating code flaws, this work describes

challenges and corresponding solutions, including

20 SDPs. Moreover, this work extends the findings of

foremost performance- and security-focused code analysis

studies through knowledge about challenges related to

maintainability and the implementation of certain

functionalities (e.g., random number generation).

Besides code analysis, research has proposed

approaches and tools for software testing (e.g., [24], [171]–

[173]). Related works offer valuable and practical insights

that support smart contract developers in improving their

code through different testing strategies and tools. For

example, Li et al. [170] proposed a software tool for

mutation testing of Ethereum smart contract code to

identify and fix flaws in their code. Gao et al. [171]

presented an approach for automated testing of Ethereum

smart contracts and suggested browser-side events that

interact with smart contracts. These tools and respective

insights can support development practices. Still,

challenges occurring in smart contract development that

could be useful for software testing to avoid frequent code

flaws (e.g., guarding functions) remain unclear.

The challenges identified in this work can support better

planning of software testing for smart contracts on

blockchains based on Ethereum, EOSIO, and Hyperledger

Fabric. For example, tests can be developed so that all

challenges that apply to a specific DLT protocol are

covered. Thereby, our work can support the targeted

detection and elimination of frequent code flaws.

Works related to system design (e.g., [99], [139], [140],

[174]) propose specific concepts or implementations to

overcome recurring smart contract development

challenges, such as random value generation with high

entropy [96] and the integration of oracles [70]. For

example, Li et al. [100] proposed the implementation of a

lottery scheme focusing on random number generation.

They applied a commitment pattern in which entities

commit coordinates in a 2D coordinate system and

compute a random number based on the polynomial that

intersects with the coordinates. Still, these works sensitize

developers to only a few challenges and hardly make

developers aware of bad practices that should be avoided

(e.g., using block numbers for random number generation).

This work presents particularities and challenges in smart

contract development across DLT protocols. Developers

can consider these peculiarities and challenges in two

stages of the development process: first, when deciding to

use a DLT protocol for developing DLT-based decentralized

applications (DApps) that require specific smart contract

capabilities (e.g., random number generation); second,

when developing smart contracts on the chosen DLT

protocol. In doing so, we complement previous work

(e.g., [35], [175]) by assisting in the selection of suitable DLT

protocols for individual DApps with a specific focus on

smart contract integration and implementation.

Building on the described research streams (i.e., code

analysis, software testing, and system design), several

reviews and surveys on challenges in smart contract

development have been published (e.g., [9], [10], [89],

[100], [107], [148], [149], [170], [174], [176], [176], [177]).

These publications present surveys regarding formal

verification approaches (e.g., [176], [177]) and smart

contract development challenges perceived by developers

(e.g., [10], [149], [174]). Surveys on formal verification

(e.g., [176], [177]) compare different approaches for code

flaw detection regarding their capabilities and potentials

for improvements. For example, Tolmach et al. [176]

proposed formal models for smart contracts (i.e., contract-

level models and program-level models) and surveyed

smart contract specifications for different application

domains (e.g., finance and social games). Miller et al. [170]

scrutinized existing formal verification approaches

regarding their capabilities to detect flaws in smart contract

code and their applicability to different programming

languages. Surveys on formal verification revealed valuable

insights into recurring and automatically detectable

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

programming flaws, such as vulnerabilities for reentrancy

attacks and mishandled exceptions.

Extant reviews of smart contract development

challenges from the perspective of developers offer brief

explanations of challenges, their corresponding solutions,

and future research directions (e.g., [10], [101], [174], [178]).

Several review studies have focused on specific challenge

types, such as security-related challenges (e.g., [8], [19]) or

challenges related to performance [117] or

maintainability [101]. Only a few survey studies consider

different challenge types to derive comprehensive

guidance for software developers to handle these

challenges by explaining corresponding solutions (e.g., [9],

[10], [149]). Among these studies, Chen et al. [10] provided

an extensive overview of challenges in Ethereum smart

contract development derived from posts on the Ethereum

StackExchange website, validated the existence of the

identified challenges in a questionnaire with developers,

and briefly described solutions to address the perceived

challenges. Hu et al. [173] revealed development

paradigms for application domains (e.g., Auction, Loan,

and Lottery) applicable to DLT protocols with script-based

and Turing-complete blockchains, such as Bitcoin and

Ethereum. Moreover, the authors provided an overview of

tool chains that can support developers in improving the

quality of their code (e.g., through formal verification). Zou

et al. [149] focused on the Ethereum blockchain and

examined the differences between the development of

traditional software and smart contracts and highlighted

the particular challenges for the latter. They presented

procedures like frequent code audits and code reviews to

address the identified challenges and derive future

research directions.

Our work advances prior reviews by collating different

categories of smart contract challenges (e.g., [8], [9]) as well

as corresponding solutions and transforming these

solutions into detailed and actionable SDPs that align with

recommendations in existing research (e.g., [31]–[33],

[179]). By applying the canonical pattern structure

proposed in prior research [31]–[33], our SDPs contain not

only detailed descriptions of each solution, but also a

discussion on benefits and boundary conditions. Thereby,

the SDPs can help developers make better decisions for

using SDPs and ultimately avoid common smart contract

development mistakes. By iteratively discussing and

refining our literature-based results with DLT experts, we

provide empirical validation of our findings.

Finally, existing research focuses on overcoming the

challenges of smart contracts developed in Solidity or

executed in the EVM (e.g., [19], [20], [25], [163]). Only a few

studies have explored smart contract challenges related to

other DLT protocols (e.g., EOSIO [11], [180] or Hyperledger

Fabric [91], [99]). Our study broadens this one-sided

approach by considering three distinct DLT protocols with

different smart contract integration concepts and thus

shows which challenges and corresponding solutions in

smart contract development apply for which DLT protocols

considering their corresponding smart contract integration

concepts. Thereby, our work can support developers

throughout the software development lifecycle and

deepen the understanding of how smart contract

integration concepts can limit the flexibility of smart

contracts (e.g., favoring deterministic execution by

encapsulation).

6 CONCLUSIONS & FUTURE WORK

In this work, we present 29 smart contract development

challenges and 60 corresponding solutions associated with

11 sub-themes, including data visibility and

interoperability. The sub-themes relate to three principal

challenge origins (i.e., platform, programming language
and execution environment, and coding practice) that

primarily cause the individual challenges. This classification

enables a separate consideration of each principal

challenge origin so that developers can better gauge

between DLT protocols in combination with individual

execution environments. This regard will become especially

relevant for future DLT protocols that offer developers the

option to choose between execution environments. For

example, QTUM plans to integrate Neutron, a middleware

that allows developers to use the EVM or an x86 virtual

machine as desired [34]. Other DLT protocols

(e.g., Ontology 2.0 [181]) also strive to offer multiple virtual

machines in the future.

To make the generated knowledge handier for

developers and adjust their programming habits, we offer

20 SDPs that can be used to address various challenges and

augment identified solutions. We developed the 20 SDPs in

cooperation with smart contract developers who are

experts in Ethereum, EOSIO, and Hyperledger Fabric and

refined the SDPs in multiple iterations considering quality

criteria that we identified in a literature review.

Our results indicate that challenges in smart contract

development are caused by individual characteristics of

DLT protocols—foremost, the visibility of data to entities

with access to the distributed ledger, the requirement for

determinism, and the public executability of smart contract

code (see Table 6). In Ethereum, several challenges relate

to the difficult maintainability of smart contract code, which

cannot be replaced but only redeployed and thereby

assigned to a separate account. Regarding current

endeavors in DLT protocol development, the updateability

of smart contracts can cause novel challenges because

entities may call for smart contract actions that execute

unexpected logic. Where Hyperledger Fabric requires all

entities that are relevant to endorse transactions after

smart contract execution to agree on smart contract

updates, updates of smart contract code (e.g., through

replacement of the current contract version in EOSIO or by

using the Proxy Pattern in Ethereum) in especially public

DLT systems must be recognized by entities themselves

prior to interacting with the contract. The ability to update

code after deployment may decrease the trust of entities in

the agreements manifested in contract code.

Using established programming languages such as C++

or Java can reduce the entry barrier for developers because

they do not need to learn new programming languages.

Nonetheless, our interviewees explained that using

traditional general-purpose programming languages can

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 25

be misleading in smart contract development because

developers may align with their usual programming habits,

thus neglecting peculiarities in smart contract

development (e.g., regarding the visibility of variables

declared as private [20]).

Despite our efforts to answer our research questions

regarding challenges and solutions in smart contract

development, we cannot guarantee the

comprehensiveness of our work. We focused on challenges

related to current versions of execution environments,

programming language, and compilers. Accordingly, we

excluded challenges that apply to old versions, such as the

Callstack Depth Attack [19] that was fixed in October 2016

and is now practically impossible, the use of unsafe type

inferences in Solidity using var [20], and manipulating

storage variables in Solidity that automatically point to

register 0x0 when not initialized [182].

Performing two complementary literature reviews

enabled us to identify various challenges and solutions.

However, qualitative analysis techniques generally carry the

risk of interpretation biases. Although we conducted

multiple rounds of coding and refining themes during our

thematic analysis to mitigate potential interpretation

biases, researchers may come up with different theme

conceptualizations. By reviewing the ever-increasing

number of grey literature (e.g., DLT foundations’

whitepapers) and examining practitioners’ discussions on

smart contract development (e.g., developer blog and

forum entries), future research may analyze the usefulness

of the solutions presented in this work and refine the

contexts to which the solutions apply. In doing so, future

research can ultimately deepen our knowledge of common

solutions for overcoming smart contract development

challenges.

Our study has limitations concerning the number and

depth of interviews we conducted to gather data on

challenges and solutions in smart contract development

and to improve our SDPs. While we conducted various

interviews with DLT and smart contract experts, the

interviewees may have found it difficult to verbalize some

challenges of smart contract development, and future

research might gather more information on specific

findings to increase understanding. The limited number

and depth of interviews, as well as the fact that we could

not consider all SDP quality criteria presented in

Appendix B, likely left opportunities for improving the

developed SDPs. To improve the SDPs presented in this

work, the SDPs should be evaluated in a longitudinal large-

scale study considering all quality criteria presented in

Appendix B. This way, methodological limitations of this

work can be addressed, and the effectiveness of the

presented SDPs in overcoming smart contract

development challenges will be improved.

We provide a set of solutions, including SDPs, based on

related work and interview findings. Given the large

number and diversity of solutions, we selected a subset of

available solutions as the base for developing SDPs.

Developers and researchers may come up with additional

solutions and SDPs that can even improve those presented

in this work. Moreover, we have discussed the applicability

of the identified challenges and solutions with DLT experts

for Ethereum, EOSIO, and Hyperledger Fabric. Thus, it

remains unclear which challenges and solutions apply to

other DLT protocols or whether solutions applied to smart

contracts for other DLT protocols may improve the SDPs

presented in this work. To improve the presented SDPs and

understand their applicability to other DLT protocols,

future studies should investigate challenges and solutions

in smart contract development for other DLT protocols. In

this way, DLT protocol-agnostic SDPs can be uncovered,

revealing key best practices for smart contract

development.

To advance our solutions to smart contract development

challenges, we maintain a public repository, including

complete descriptions of all patterns only briefly described

in this work. We have planned to add further patterns for

blockchains based on Ethereum, EOSIO, and Hyperledger

Fabric to constantly support developers in their work.

ACKNOWLEDGMENTS

This work was carried out in the project scope “Toward

Better Smart Contract Development” and was funded by

the EnBW Energie Baden-Württemberg AG in Germany.

Moreover, this work was supported by KASTEL Security

Research Labs. We thank all the participants in the

empirical studies that contributed to this work. Moreover,

we thank N. Hasebrook and M. Pfister for their support in

analyzing the results from the focus group workshops and

refining the SDPs, as well as J. Bartsch, M. Beyene, and F.

Morsbach for their valuable input during the preparation of

this paper. Especially, we thank A. Kaiser and C. Michelbach

from Blockinfinity, P. Mesnier from Object Computing, F.

Gerbig and G. Cyriac from the BMW Group, A. Sorniotti

from IBM, and B. Sturm for their continuous support in all

stages of the development of the manuscript. The

corresponding author is N. Kannengießer.

REFERENCES

[1] N. Szabo, “Formalizing and Securing Relationships on Public Networks,”

First Monday, vol. 2, no. 9, Sep. 1997, doi: 10.5210/fm.v2i9.548.

[2] N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, and R. Zunino, “SoK: Unraveling

Bitcoin Smart Contracts,” in Principles of Security and Trust, Cham, 2018,

pp. 217–242.

[3] Bitcoin community, “Script,” Bitcoin Wiki, Jun. 16, 2019.

https://en.bitcoin.it/wiki/Script (accessed Nov. 19, 2019).

[4] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,

“Secure Multiparty Computations on Bitcoin,” in 2014 IEEE Symposium

on Security and Privacy, San Jose, CA, May 2014, pp. 443–458. doi:

10.1109/SP.2014.35.

[5] C. S. Wright, “A Proof of Turing Completeness in Bitcoin Script,” in

Intelligent Systems and Applications, vol. 1037, Y. Bi, R. Bhatia, and S.

Kapoor, Eds. Cham: Springer International Publishing, 2020, pp. 299–313.

doi: 10.1007/978-3-030-29516-5_23.

[6] X. Wang, J. He, Z. Xie, G. Zhao, and S. C. Cheung, “ContractGuard: Defend

Ethereum Smart Contracts with Embedded Intrusion Detection,” IEEE

Trans. Serv. Comput., pp. 1–14, 2019, doi: 10.1109/TSC.2019.2949561.

[7] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart Contract Security: A

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

Software Lifecycle Perspective,” IEEE Access, vol. 7, pp. 150184–150202,

2019, doi: 10.1109/ACCESS.2019.2946988.

[8] M. Wöhrer and U. Zdun, “Smart contracts: security patterns in the

ethereum ecosystem and solidity,” in 2018 International Workshop on

Blockchain Oriented Software Engineering, Mar. 2018, pp. 2–8.

[9] M. Wöhrer and U. Zdun, “Design Patterns for Smart Contracts in the

Ethereum Ecosystem,” in 2018 IEEE International Conference on Internet

of Things and IEEE Green Computing and Communications and IEEE

Cyber, Physical and Social Computing and IEEE Smart Data, Halifax, NS,

Canada, Jul. 2018, pp. 1513–1520. doi:

10.1109/Cybermatics_2018.2018.00255.

[10] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining Smart

Contract Defects on Ethereum,” IEEE Trans. Software Eng., pp. 1–17, 2020,

doi: 10.1109/TSE.2020.2989002.

[11] Y. Huang et al., “Characterizing EOSIO Blockchain,” arXiv:2002.05369 [cs],

Feb. 2020, Accessed: Mar. 09, 2021. [Online]. Available:

http://arxiv.org/abs/2002.05369

[12] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing Safety of

Smart Contracts,” presented at the Network and Distributed Systems

Security Symposium 2018, San Diego, CA, USA, 2018. doi:

http://dx.doi.org/10.14722/ndss.2018.23082.

[13] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding The Greedy,

Prodigal, and Suicidal Contracts at Scale,” arXiv:1802.06038 [cs], Feb.

2018, Accessed: Aug. 24, 2019. [Online]. Available:

http://arxiv.org/abs/1802.06038

[14] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis,

“MadMax: Surviving Out-of-Gas Conditions in Ethereum Smart

Contracts,” Proc. ACM Program. Lang., vol. 2, no. OOPSLA, pp. 1–27, Oct.

2018, doi: 10.1145/3276486.

[15] S. Palladiono, “The Parity Wallet Hack Reloaded,” OpenZeppelin, Nov. 07,

2017. https://blog.openzeppelin.com/parity-wallet-hack-reloaded/

(accessed Aug. 27, 2019).

[16] X. Zhao, Z. Chen, X. Chen, Y. Wang, and C. Tang, “The DAO attack

paradoxes in propositional logic,” in 4th International Conference on

Systems and Informatics, Nov. 2017, pp. 1743–1746.

[17] M. Young, “A Billion EOS Tokens Faked to Rob Decentralized Exchange,”

Ethereum World News, Sep. 18, 2018.

https://ethereumworldnews.com/a-billion-eos-tokens-faked-to-rob-

decentralized-exchange/ (accessed Mar. 01, 2019).

[18] D. Enyeart, “Resolve phantom reads for range queries,” The Linux

Foundation, Jul. 20, 2018. https://jira.hyperledger.org/browse/FAB-1668

(accessed Jan. 10, 2021).

[19] A. Mense and M. Flatscher, “Security Vulnerabilities in Ethereum Smart

Contracts,” in 20th International Conference on Information Integration

and Web-based Applications & Services, Yogyakarta, Indonesia, 2018,

pp. 375–380. doi: 10.1145/3282373.3282419.

[20] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko,

and Y. Alexandrov, “SmartCheck: static analysis of ethereum smart

contracts,” in 1st International Workshop on Emerging Trends in Software

Engineering for Blockchain, Gothenburg, Sweden, 2018, pp. 9–16. doi:

10.1145/3194113.3194115.

[21] N. Atzei, M. Bartoletti, and T. Cimoli, “A Survey of Attacks on Ethereum

Smart Contracts (SoK),” in Principles of Security and Trust, vol. 10204, M.

Maffei and M. Ryan, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2017, pp. 164–186. doi: 10.1007/978-3-662-54455-6_8.

[22] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “ReGuard: finding

reentrancy bugs in smart contracts,” in 40th International Conference on

Software Engineering: Companion Proceeedings, Gothenburg Sweden,

May 2018, pp. 65–68. doi: 10.1145/3183440.3183495.

[23] Y. Chinen, N. Yanai, J. P. Cruz, and S. Okamura, “Hunting for Re-Entrancy

Attacks in Ethereum Smart Contracts via Static Analysis,”

arXiv:2007.01029 [cs], Jul. 2020, Accessed: Feb. 10, 2021. [Online].

Available: http://arxiv.org/abs/2007.01029

[24] S. Akca, A. Rajan, and C. Peng, “SolAnalyser: A Framework for Analysing

and Testing Smart Contracts,” in 2019 26th Asia-Pacific Software

Engineering Conference (APSEC), Putrajaya, Malaysia, Dec. 2019, pp.

482–489. doi: 10.1109/APSEC48747.2019.00071.

[25] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “ContractWard:

Automated Vulnerability Detection Models for Ethereum Smart

Contracts,” IEEE Trans. Netw. Sci. Eng., pp. 1–1, 2020, doi:

10.1109/TNSE.2020.2968505.

[26] X. Xu, C. Pautasso, L. Zhu, Q. Lu, and I. Weber, “A Pattern Collection for

Blockchain-based Applications,” in 23rd European Conference on Pattern

Languages of Programs, Irsee Germany, Jul. 2018, pp. 1–20. doi:

10.1145/3282308.3282312.

[27] ConsenSys, “Smart Contract Security Best Practices.” Jan. 26, 2021.

Accessed: Mar. 15, 2021. [Online]. Available:

https://github.com/ConsenSys/smart-contract-best-practices/

[28] R. Xie, “Best Practices to Level Up Your Ethereum Smart Contracts,”

Hacker Noon, Oct. 09, 2018. https://hackernoon.com/best-practices-to-

level-up-your-ethereum-smart-contracts-944d5cea2cab (accessed Oct.

10, 2019).

[29] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S.

Linkman, “Systematic Literature Reviews in Software Engineering,”

Information and Software Technology, vol. 51, no. 1, pp. 7–15, 2009.

[30] V. Braun and V. Clarke, “Using thematic analysis in psychology,”

Qualitative Research in Psychology, vol. 3, no. 2, pp. 77–101, Jan. 2006,

doi: 10.1191/1478088706qp063oa.

[31] F. Buschmann, Ed., Pattern-oriented software architecture: a system of

patterns. Chichester ; New York: Wiley, 1996.

[32] J. Borchers and F. Buschmann, A Pattern Approach to Interaction Design.

USA: John Wiley & Sons, Inc., 2001.

[33] B. Appleton, “Patterns and Software: Essential Concepts and

Terminology.” 2000. Accessed: Aug. 02, 2019. [Online]. Available:

http://www.bradapp.net/docs/patterns-intro.pdf

[34] Qtum, “Neutron: Middleware for Blockchain Virtual Machines,” Medium,

Apr. 28, 2020. https://blog.qtum.org/neutron-middleware-for-

blockchain-virtual-machines-fe267353dfb2 (accessed Oct. 27, 2020).

[35] N. Kannengießer, S. Lins, T. Dehling, and A. Sunyaev, “Trade-Offs between

Distributed Ledger Technology Characteristics,” ACM CSUR, vol. 53, no. 2,

Apr. 2020, doi: 10.1145/3379463.

[36] D. Chaum, “Blind Signatures for Untraceable Payments,” in Advances in

Cryptology, Boston, MA, 1983, pp. 199–203. doi: 10.1007/978-1-4757-

0602-4_18.

[37] I. Sergey and A. Hobor, “A Concurrent Perspective on Smart Contracts,” in

Financial Cryptography and Data Security, vol. 10323, M. Brenner, K.

Rohloff, J. Bonneau, A. Miller, P. Y. A. Ryan, V. Teague, A. Bracciali, M. Sala,

F. Pintore, and M. Jakobsson, Eds. Cham: Springer International

Publishing, 2017, pp. 478–493. doi: 10.1007/978-3-319-70278-0_30.

[38] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,”

TOPLAS, vol. 4, no. 3, pp. 382–401, 1982.

[39] E.-E. Gojka, N. Kannengießer, B. Sturm, J. Bartsch, and A. Sunyaev,

“Security in Distributed Ledger Technology: An Analysis of Vulnerabilities

and Attack Vectors,” in Intelligent Computing, vol. 285, K. Arai, Ed. Cham:

Springer International Publishing, 2021, pp. 722–742. doi: 10.1007/978-

3-030-80129-8_50.

[40] V. Buterin, “Ethereum Whitepaper,” Ethereum, Feb. 09, 2021.

https://ethereum.org/en/whitepaper/ (accessed Mar. 06, 2021).

[41] V. Buterin, “EIP-214: New opcode STATICCALL,” Ethereum Improvement

Proposals, Feb. 13, 2017. https://eips.ethereum.org/EIPS/eip-7 (accessed

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 27

Oct. 27, 2020).

[42] EOSIO, “Consensus Protocol,” Nov. 24, 2020.

https://github.com/EOSIO/welcome/blob/master/docs/60_protocol-

guides/10_consensus_protocol.md#3-eosio-consensus-dpos--abft

(accessed Feb. 03, 2021).

[43] EOSIO, “EOS VM - A Low-Latency, High Performance and Extensible

WebAssembly Engine,” Nov. 08, 2019. https://github.com/EOSIO/eos-

vm (accessed Dec. 29, 2020).

[44] EOSIO, “RAM as system resource,” Nov. 24, 2020.

https://github.com/EOSIO/eosio.contracts/blob/master/docs/01_key-

concepts/02_ram.md (accessed Feb. 03, 2021).

[45] EOSIO, “Storage and Read Modes,” Sep. 01, 2020.

https://github.com/EOSIO/eos/blob/master/docs/01_nodeos/07_conce

pts/05_storage-and-read-modes.md (accessed Feb. 08, 2021).

[46] EOSIO, “Accounts and Permissions,” GitHub, Nov. 24, 2020.

https://github.com/EOSIO/welcome/blob/master/docs/60_protocol-

guides/40_accounts_and_permissions.md (accessed Feb. 03, 2021).

[47] EOSIO, “Transactions Protocol,” Nov. 24, 2020.

https://github.com/EOSIO/welcome/blob/master/docs/60_protocol-

guides/20_transactions_protocol.md (accessed Feb. 03, 2021).

[48] Blockgenic, “EOSIO Smart Contracts Tutorial.” Apr. 29, 2018. Accessed:

Feb. 08, 2021. [Online]. Available:

https://medium.com/coinmonks/eosio-smart-contracts-tutorial-

f22c3bb364d9

[49] EOSIO, “Inline Actions to External Contracts,” Dec. 01, 2020.

https://github.com/EOSIO/welcome/blob/master/docs/40_smart-

contract-guides/70_inline-action-to-external-contract.md (accessed

Feb. 08, 2021).

[50] Hyperledger Foundation, “The Ordering Service,” GitHub, Nov. 06, 2020.

https://github.com/hyperledger/fabric/blob/release-

2.2/docs/source/orderer/ordering_service.md (accessed Dec. 30, 2020).

[51] Hyperledger Foundation, “Channels,” Sep. 29, 2018. https://hyperledger-

fabric.readthedocs.io/en/release-2.2/channels.html (accessed Feb. 02,

2020).

[52] Hyperledger Architecture Working Group, “Fabric chaincode lifecycle,”

GitHub, Sep. 02, 2020.

https://github.com/hyperledger/fabric/blob/release-

2.2/docs/source/chaincode_lifecycle.md (accessed Jan. 27, 2021).

[53] Hyperledger, “Smart Contracts and Chaincode,” GitHub, Aug. 18, 2020.

https://github.com/hyperledger/fabric/blob/release-

2.2/docs/source/smartcontract/smartcontract.md (accessed Dec. 30,

2020).

[54] Hyperledger Foundation, “Transaction Flow,” GitHub, Jun. 26, 2020.

https://github.com/hyperledger/fabric/blob/release-

2.2/docs/source/txflow.rst (accessed Jan. 10, 2021).

[55] Hyperledger Foundation, “A New Approach,” GitHub, Feb. 11, 2020.

https://github.com/hyperledger/fabric/blob/release-

2.2/docs/source/whatis.md#a-new-approach (accessed Jan. 10, 2021).

[56] E. Gamma, Ed., Design patterns: elements of reusable object-oriented

software. Reading, Mass: Addison-Wesley, 1995.

[57] D. Riehle and H. Züllighoven, “Understanding and Using Patterns in

Software Development,” TAPOS, vol. 2, no. 1, pp. 3–13, 1996, doi:

https://doi.org/10.1002/(SICI)1096-9942(1996)2:1<3::AID-

TAPO1>3.0.CO;2-%23.

[58] C. Wohlin, “Guidelines for snowballing in systematic literature studies and

a replication in software engineering,” in 18th International Conference

on Evaluation and Assessment in Software Engineering, London,

England, United Kingdom, 2014, pp. 1–10. doi:

10.1145/2601248.2601268.

[59] M. D. Myers, Qualitative research in business & management, 2nd ed.

SAGE Publications Ltd, 2013.

[60] G. Paré, M. C. Trudel, M. Jaana, and S. Kitsiou, “Synthesizing information

systems knowledge: A typology of literature reviews,” Information and

Management, vol. 52, no. 2, pp. 183–199, 2015.

[61] M. Q. Patton, Qualitative research & evaluation methods: integrating

theory and practice, Fourth edition. Thousand Oaks, CA, USA, 2015.

[62] R. K. Yin, Case study research: design and methods, 4th ed. Los Angeles,

CA, USA, 2009.

[63] J. M. Corbin and A. L. Strauss, Basics of qualitative research: techniques

and procedures for developing grounded theory, 4th ed. Los Angeles,

CA, USA, 2015.

[64] G. Guest, A. Bunce, and L. Johnson, “How Many Interviews Are Enough?:

An Experiment with Data Saturation and Variability,” Field Methods, vol.

18, no. 1, pp. 59–82, Feb. 2006, doi: 10.1177/1525822X05279903.

[65] J. M. Morse, “‘Data Were Saturated . . . ,’” Qual Health Res, vol. 25, no. 5,

pp. 587–588, May 2015, doi: 10.1177/1049732315576699.

[66] P. Fusch and L. Ness, “Are We There Yet? Data Saturation in Qualitative

Research,” Qualitative Report, vol. 20, pp. 1408–1416, 2015.

[67] A. L. Strauss and J. M. Corbin, Eds., Grounded theory in practice.

Thousand Oaks: Sage Publications, 1997.

[68] B. Saunders et al., “Saturation in qualitative research: exploring its

conceptualization and operationalization,” Qual Quant, vol. 52, no. 4, pp.

1893–1907, Jul. 2018, doi: 10.1007/s11135-017-0574-8.

[69] S. McConnell, Code complete, 2nd ed. Redmond, Wash: Microsoft Press,

2004.

[70] J. Heiss, J. Eberhardt, and S. Tai, “From oracles to Trustworthy Data On-

chaining Systems,” presented at the 2019 IEEE International Conference

on Blockchain, Atlanta, GA, USA, 2019. doi:

10.1109/Blockchain.2019.00075.

[71] J. Eberhardt and J. Heiss, “Off-chaining Models and Approaches to Off-

chain Computations,” in 2nd Workshop on Scalable and Resilient

Infrastructures for Distributed Ledgers, Rennes, France, 2018, pp. 7–12.

doi: 10.1145/3284764.3284766.

[72] A. Ampatzoglou and A. Chatzigeorgiou, “Evaluation of object-oriented

design patterns in game development,” Information and Software

Technology, vol. 49, no. 5, pp. 445–454, May 2007, doi:

10.1016/j.infsof.2006.07.003.

[73] D. Khazanchi, J. D. Murphy, and S. C. Petter, “Guidelines for Evaluating

Patterns in the IS Domain,” in 2nd Midwest United States Association for

Information Systems Conference, 2008, vol. 24. [Online]. Available:

https://digitalcommons.unomaha.edu/isqafacproc/7

[74] D. Lea, “Christopher Alexander: an introduction for object-oriented

designers,” SIGSOFT Softw. Eng. Notes, vol. 19, no. 1, pp. 39–46, Jan. 1994,

doi: 10.1145/181610.181617.

[75] S. Niebuhr, K. Kohler, and C. Graf, “Engaging Patterns: Challenges and

Means Shown by an Example,” in Engineering Interactive Systems, vol.

4940, J. Gulliksen, M. B. Harning, P. Palanque, G. C. van der Veer, and J.

Wesson, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.

586–600. doi: 10.1007/978-3-540-92698-6_35.

[76] M. J. Brotherson, “Interactive Focus Group Interviewing: A Qualitative

Research Method in Early Intervention,” Topics in Early Childhood Special

Education, vol. 14, no. 1, pp. 101–118, Jan. 1994.

[77] R. L. Gorden, Interviewing: strategy, techniques, and tactics, Rev. ed.

Homewood, Ill: Dorsey Press, 1975.

[78] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, “Keccak

implementation overview.” May 29, 2012. Accessed: Jul. 15, 2019.

[Online]. Available: https://keccak.team/files/Keccak-implementation-

3.2.pdf

[79] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The

Blockchain Model of Cryptography and Privacy-Preserving Smart

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

28 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

Contracts,” in 2016 IEEE Symposium on Security and Privacy, May 2016,

pp. 839–858.

[80] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town Crier: An

Authenticated Data Feed for Smart Contracts,” in 2016 ACM SIGSAC

Conference on Computer and Communications Security, New York, NY,

USA, 2016, pp. 270–282.

[81] S. Eskandari, S. Moosavi, and J. Clark, “SoK: Transparent Dishonesty: Front-

Running Attacks on Blockchain,” in Financial Cryptography and Data

Security, vol. 11599, A. Bracciali, J. Clark, F. Pintore, P. B. Rønne, and M. Sala,

Eds. Cham: Springer International Publishing, 2020, pp. 170–189. doi:

10.1007/978-3-030-43725-1_13.

[82] ConsenSys, “Known Attacks,” GitHub, Jan. 26, 2021.

https://github.com/ConsenSys/smart-contract-best-

practices/blob/master/docs/known_attacks.md (accessed May 21,

2020).

[83] Hyperledger Foundation, “Private data,” GitHub, Jan. 29, 2020.

https://github.com/hyperledger/fabric/blob/release-

2.2/docs/source/private-data/private-data.md (accessed Feb. 02, 2021).

[84] Hyperledger Foundation, “Private Data,” GitHub, May 23, 2020.

https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data-

arch.html?highlight=private%20data (accessed Dec. 17, 2021).

[85] Hyperledger Foundation, “Membership Service Providers (MSP),”

GitHub, Jun. 25, 2020.

https://github.com/hyperledger/fabric/blob/release-

2.2/docs/source/msp.rst (accessed Jan. 05, 2021).

[86] M. Lücking, F. Kretzer, N. Kannengießer, M. Beigl, A. Sunyaev, and W. Stork,

“When Data Fly: An Open Data Trading System in Vehicular Ad-Hoc

Networks,” Electronics, vol. 1, no. 5, Mar. 2021, doi:

https://doi.org/10.3390/electronics1010005.

[87] Web of Trust Info, “did:erc725 method,” GitHub, Feb. 21, 2018.

https://github.com/WebOfTrustInfo/rwot6-

santabarbara/blob/master/topics-and-advance-readings/DID-Method-

erc725.md (accessed Oct. 21, 2020).

[88] M. Luecking, C. Fries, R. Lamberti, and W. Stork, “Decentralized Identity

and Trust Management Framework for Internet of Things,” in 2020 IEEE

International Conference on Blockchain and Cryptocurrency, Toronto,

ON, Canada, 6.05 2020, pp. 1–9. doi: 10.1109/ICBC48266.2020.9169411.

[89] S. Wang, C. Zhang, and Z. Su, “Detecting nondeterministic payment bugs

in Ethereum smart contracts,” Proc. ACM Program. Lang., vol. 3, no.

OOPSLA, pp. 1–29, Oct. 2019, doi: 10.1145/3360615.

[90] Hyperledger, “Peers,” GitHub, Sep. 19, 2019.

https://github.com/hyperledger/fabric/blob/release-

2.2/docs/source/peers/peers.md (accessed Feb. 17, 2021).

[91] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun, “Potential Risks of

Hyperledger Fabric Smart Contracts,” in 2019 IEEE International

Workshop on Blockchain Oriented Software Engineering, Hangzhou,

China, Feb. 2019, pp. 1–10. doi: 10.1109/IWBOSE.2019.8666486.

[92] J. Bonneau, J. Clark, and S. Goldfeder, “On Bitcoin as a public randomness

source.” 2015. Accessed: Sep. 17, 2018. [Online]. Available:

https://eprint.iacr.org/2015/1015.pdf

[93] C. Pierrot and B. Wesolowski, “Malleability of the blockchain’s entropy,”

Cryptogr. Commun., vol. 10, no. 1, pp. 211–233, Jan. 2018, doi:

10.1007/s12095-017-0264-3.

[94] C. Cachin, K. Kursawe, and V. Shoup, “Random Oracles in Constantinople:

Practical Asynchronous Byzantine Agreement Using Cryptography,” J

Cryptology, vol. 18, no. 3, pp. 219–246, Jul. 2005, doi: 10.1007/s00145-

005-0318-0.

[95] J. Chen and S. Micali, “Algorand: A secure and efficient distributed ledger,”

Theoretical Computer Science, vol. 777, pp. 155–183, Jul. 2019, doi:

10.1016/j.tcs.2019.02.001.

[96] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “HydRand: Practical

Continuous Distributed Randomness.” Jul. 30, 2019. Accessed: Nov. 17,

2020. [Online]. Available: https://eprint.iacr.org/2018/319

[97] K. Chatterjee, A. K. Goharshady, and A. Pourdamghani, “Probabilistic

Smart Contracts: Secure Randomness on the Blockchain,” in 2019 IEEE

International Conference on Blockchain and Cryptocurrency, Seoul,

Korea (South), May 2019, pp. 403–412. doi: 10.1109/BLOC.2019.8751326.

[98] randao, “Random number in programming is very important!” Nov. 28,

2019. Accessed: Jan. 03, 2021. [Online]. Available:

https://github.com/randao/randao/blob/master/README.md

[99] J. Li, Z. Zhang, and M. Li, “BanFEL: A Blockchain Based Smart Contract for

Fair and Efficient Lottery Scheme,” in 2019 IEEE Conference on

Dependable and Secure Computing, Hangzhou, China, Nov. 2019, pp.

1–8. doi: 10.1109/DSC47296.2019.8937559.

[100] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making Smart

Contracts Smarter,” in 2016 ACM SIGSAC Conference on Computer and

Communications Security, Vienna, Austria, 2016, pp. 254–269. doi:

10.1145/2976749.2978309.

[101] J. Chen, X. Xia, D. Lo, J. Grundy, and X. Yang, “Maintaining Smart Contracts

on Ethereum: Issues, Techniques, and Future Challenges,”

arXiv:2007.00286 [cs], Jul. 2020, Accessed: Mar. 12, 2021. [Online].

Available: http://arxiv.org/abs/2007.00286

[102] A. Mavridou and A. Laszka, “Designing Secure Ethereum Smart

Contracts: A Finite State Machine Based Approach,” arXiv:1711.09327 [cs],

Nov. 2017, Accessed: Aug. 24, 2019. [Online]. Available:

http://arxiv.org/abs/1711.09327

[103] Hyperledger Foundation, “Glossary,” GitHub, Mar. 03, 2021.

https://github.com/hyperledger/fabric/blob/master/docs/source/gloss

ary.rst (accessed Feb. 08, 2021).

[104] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena, “Exploiting the laws

of order in smart contracts,” in 28th ACM SIGSOFT International

Symposium on Software Testing and Analysis, Beijing, China, 2019, pp.

363–373. doi: 10.1145/3293882.3330560.

[105] ISO/IEC JTC 1/SC 7 Software and systems engineering, “ISO/IEC

14764:2006 Software Engineering — Software Life Cycle Processes —

Maintenance.” Sep. 2006. Accessed: May 11, 2019. [Online]. Available:

https://www.iso.org/standard/39064.html

[106] M. Bartoletti and L. Pompianu, “An Empirical Analysis of Smart Contracts:

Platforms, Applications, and Design Patterns,” in Financial Cryptography

and Data Security, 2017, pp. 494–509.

[107] C. R. Worley and A. Skjellum, “Opportunities, Challenges, and Future

Extensions for Smart-Contract Design Patterns,” in Business Information

Systems Workshops, 2019, pp. 264–276. doi:

https://doi.org/10.1007/978-3-030-04849-5_24.

[108] Y. Liu, Q. Lu, X. Xu, L. Zhu, and H. Yao, “Applying Design Patterns in Smart

Contracts,” in Blockchain – ICBC 2018, vol. 10974, S. Chen, H. Wang, and

L.-J. Zhang, Eds. Cham: Springer International Publishing, 2018, pp. 92–

106. doi: 10.1007/978-3-319-94478-4_7.

[109] M. Araoz, “Proxy Libraries in Solidity,” Medium, Mar. 06, 2017.

https://medium.com/zeppelin-blog/proxy-libraries-in-solidity-

79fbe4b970fd (accessed May 18, 2018).

[110] Parity Technologies, “A Postmortem on the Parity Multi-Sig Library Self-

Destruct,” parity, Nov. 15, 2017. https://www.parity.io/a-postmortem-on-

the-parity-multi-sig-library-self-destruct/ (accessed Jul. 22, 2019).

[111] Ethereum Foundation, “Expressions and Control Structures,” GitHub, Jun.

26, 2019.

https://github.com/ethereum/solidity/blob/v0.5.12/docs/control-

structures.rst (accessed Dec. 03, 2020).

[112] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart Contract: Attacks and

Protections,” IEEE Access, vol. 8, pp. 24416–24427, 2020, doi:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 29

10.1109/ACCESS.2020.2970495.

[113] Y. Jeng, Y. Hsieh, and J.-L. Wu, “Step-by-Step Guidelines for Making Smart

Contract Smarter,” in 2019 IEEE 12th Conference on Service-Oriented

Computing and Applications, Kaohsiung, Taiwan, Nov. 2019, pp. 25–32.

doi: 10.1109/SOCA.2019.00012.

[114] Ethereum, “Introduction to Smart Contracts,” GitHub, Dec. 20, 2020.

https://github.com/ethereum/solidity/blob/v0.8.2/docs/introduction-

to-smart-contracts.rst (accessed Jan. 18, 2021).

[115] M. Kaleem, A. Mavridou, and A. Laszka, “Vyper: A Security Comparison

with Solidity Based on Common Vulnerabilities,” in 2020 2nd Conference

on Blockchain Research & Applications for Innovative Networks and

Services, Paris, France, Sep. 2020, pp. 107–111. doi:

10.1109/BRAINS49436.2020.9223278.

[116] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino, and D. Tigano,

“Design Patterns for Gas Optimization in Ethereum,” in 2020 IEEE

International Workshop on Blockchain Oriented Software Engineering,

London, ON, Canada, Feb. 2020, pp. 9–15. doi:

10.1109/IWBOSE50093.2020.9050163.

[117] T. Chen et al., “GasChecker: Scalable Analysis for Discovering Gas-

Inefficient Smart Contracts,” IEEE Trans. Emerg. Topics Comput., pp. 1–1,

2020, doi: 10.1109/TETC.2020.2979019.

[118] C. Ferreira Torres, J. Schütte, and R. State, “Osiris: Hunting for Integer Bugs

in Ethereum Smart Contracts,” presented at the Annual Computer

Security Applications Conference, San Juan, PR, USA, Dec. 2018. doi:

https://doi.org/10.1145/3274694.3274737.

[119] M. Wöhrer and U. Zdun, “Domain Specific Language for Smart Contract

Development,” in 2020 IEEE International Conference on Blockchain and

Cryptocurrency, Toronto, ON, Canada, May 2020, pp. 1–9. doi:

10.1109/ICBC48266.2020.9169399.

[120] A. C. Cañada, “Fixed point math in Solidity,” Medium, Apr. 22, 2019.

https://medium.com/cementdao/fixed-point-math-in-solidity-

616f4508c6e8 (accessed Jan. 31, 2020).

[121] vyperlang, “Vyper,” GitHub, Jul. 02, 2020.

https://github.com/vyperlang/vyper/blob/5db35ef4eb07650eb57f769d

eba9d3dc22b646af/docs/index.rst (accessed Oct. 27, 2020).

[122] Anton Efremov, “Concurrency patterns for Hyperledger Fabric Go

chaincode,” SAP Community, Feb. 10, 2020.

https://blogs.sap.com/2020/02/10/concurrency-patterns-for-

hyperledger-fabric-go-chaincode/ (accessed Jun. 19, 2021).

[123] unknown, “Package sync,” GoLang. https://golang.org/pkg/sync/

(accessed Jul. 12, 2020).

[124] Aniruddha, “Iterating over maps in Go,” Medium, Jul. 27, 2019.

https://medium.com/i0exception/map-iteration-in-go-275abb76f721

(accessed Jan. 09, 2021).

[125] D. Perez and B. Livshits, “Smart Contract Vulnerabilities: Vulnerable Does

Not Imply Exploited,” arXiv:1902.06710 [cs], Oct. 2020, Accessed: Mar. 16,

2021. [Online]. Available: http://arxiv.org/abs/1902.06710

[126] Ethereum, “Contract ABI Specification,” Solidity v.0.6.10, Jun. 09, 2020.

https://solidity.readthedocs.io/en/v0.6.10/abi-spec.html (accessed Jul.

02, 2020).

[127] Hyperledger, “Transaction handlers,” GitHub, Jun. 27, 2020.

https://github.com/hyperledger/fabric/blob/release-

2.2/docs/source/developapps/transactionhandler.md (accessed Nov. 20,

2020).

[128] Ethereum, “Solidity Assembly,” GitHub, Oct. 11, 2019.

https://github.com/ethereum/solidity/blob/v0.5.13/docs/assembly.rst

(accessed Jan. 03, 2021).

[129] EOSIO, “eosio.token.cpp,” GitHub, May 09, 2018.

https://github.com/EOSIO/eos/blob/dawn-

v4.0.0/contracts/eosio.token/eosio.token.cpp#L76 (accessed Feb. 20,

2021).

[130] S. Marx, “Stop Using Solidity’s transfer() Now,” ConsenSys, Sep. 02, 2019.

https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-

transfer-now/ (accessed Apr. 01, 2020).

[131] K. Bhargavan et al., “Formal Verification of Smart Contracts: Short Paper,”

in 2016 ACM Workshop on Programming Languages and Analysis for

Security, 2016, pp. 91–96. doi: 10.1145/2993600.2993611.

[132] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting Existing

Smart Contracts Against Re-Entrancy Attacks,” arXiv:1812.05934 [cs], Dec.

2018, Accessed: Aug. 24, 2019. [Online]. Available:

http://arxiv.org/abs/1812.05934

[133] S. Grossman et al., “Online detection of effectively callback free objects

with applications to smart contracts,” Proc. ACM Program. Lang., vol. 2,

no. POPL, pp. 1–28, Jan. 2018, doi: 10.1145/3158136.

[134] vyperlang, “Structure of a Contract,” GitHub, Aug. 04, 2019.

https://github.com/vyperlang/vyper/blob/v0.1.0-

beta.12/docs/structure-of-a-contract.rst (accessed Jan. 04, 2021).

[135] L. Desrosiers and R. Olivieri, “Oracles: Common architectural patterns for

Hyperledger Fabric,” IBM Developer, Mar. 11, 2019.

https://developer.ibm.com/technologies/blockchain/articles/oracles-

common-architectural-patterns-for-fabric (accessed Jan. 11, 2021).

[136] X. Xu, I. Weber, and M. Staples, “Blockchain Patterns,” in Architecture for

Blockchain Applications, Cham: Springer International Publishing, 2019,

pp. 113–148. doi: 10.1007/978-3-030-03035-3_7.

[137] EOS Authority, “EOSIO Watcher Plugin by EOS Authority,” GitHub, Dec.

10, 2018. https://github.com/eosauthority/eosio-watcher-plugin

(accessed Jan. 02, 2021).

[138] EOSIO, “How EOS get data from outside world,” Github, Feb. 27, 2018.

https://github.com/EOSIO/eos/issues/1483 (accessed Feb. 13, 2021).

[139] DOS Network, “DOS Network - A Decentralized Oracle Service boosting

blockchain usability with off-chain data & verifiable computing power.”

May 29, 2020. Accessed: Jun. 02, 2020. [Online]. Available:

https://dosnetwork.github.io/docs/#/homepage

[140] J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, and A. Kastania,

“Astraea: A Decentralized Blockchain Oracle,” in 2018 IEEE International

Conference on Internet of Things and IEEE Green Computing and

Communications and IEEE Cyber, Physical and Social Computing and

IEEE Smart Data, Halifax, NS, Canada, Jul. 2018, pp. 1145–1152. doi:

10.1109/Cybermatics_2018.2018.00207.

[141] Joseph Chow, “A Guide to Events and Logs in Ethereum Smart Contracts,”

ConsenSys Blog, Jul. 06, 2016. https://consensys.net/blog/blockchain-

development/guide-to-events-and-logs-in-ethereum-smart-contracts/

(accessed Jun. 17, 2019).

[142] Ethereum Foundation, “Solidity Documentation - Types.” Jan. 14, 2019.

Accessed: Jul. 09, 2020. [Online]. Available:

https://github.com/ethereum/solidity/blob/v0.5.12/docs/types.rst

[143] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts

devour your money,” in 2017 IEEE 24th International Conference on

Software Analysis, Evolution and Reengineering, Klagenfurt, Austria, Feb.

2017, pp. 442–446. doi: 10.1109/SANER.2017.7884650.

[144] T. Chen et al., “Towards Saving Money in Using Smart Contracts,” in 2018

IEEE/ACM 40th International Conference on Software Engineering: New

Ideas and Emerging Technologies Results, May 2018, pp. 81–84.

[145] R. Hitches, “Getting Loopy with Solidity,” Medium, Oct. 16, 2018.

https://blog.b9lab.com/getting-loopy-with-solidity-1d51794622ad

(accessed Sep. 23, 2019).

[146] J. Goddard, “Shadowing Solidity Storage Variables in Memory,” Medium,

Jun. 20, 2020. https://medium.com/coinmonks/shadowing-solidity-

storage-variables-in-memory-b56f471edd81 (accessed Mar. 09, 2021).

[147] A. Sunyaev et al., “Token Economy,” Bus Inf Syst Eng, vol. 63, pp. 457–478,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333

Feb. 2021, doi: 10.1007/s12599-021-00684-1.

[148] A. Vitanov, “Solidity Smart Contracts Design Patterns,” Medium, Feb. 24,

2018. https://medium.com/@i6mi6/solidty-smart-contracts-design-

patterns-ecfa3b1e9784 (accessed Feb. 12, 2020).

[149] W. Zou et al., “Smart Contract Development: Challenges and

Opportunities,” IEEE Trans. Software Eng., pp. 1–20, 2019, doi:

10.1109/TSE.2019.2942301.

[150] Ethereum, “Style Guide,” GitHub, Jun. 23, 2020.

https://github.com/ethereum/solidity/blob/v0.7.0/docs/style-guide.rst

(accessed Nov. 27, 2020).

[151] Hyperledger, “Coding guidelines,” GitHub, Apr. 11, 2020.

https://github.com/hyperledger/fabric/blob/release-

2.2/docs/source/smartcontract/smartcontract.md (accessed Nov. 03,

2020).

[152] J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan, and Z. Chen, “EASYFLOW: Keep

Ethereum Away from Overflow,” in 2019 IEEE/ACM 41st International

Conference on Software Engineering: Companion - Companion,

Montreal, QC, Canada, 31.05 2019, pp. 23–26. doi: 10.1109/ICSE-

Companion.2019.00029.

[153] OpenZeppelin, “SafeMath.” Aug. 17, 2019. Accessed: Aug. 23, 2019.

[Online]. Available: https://github.com/OpenZeppelin/ openzeppelin-

solidity/blob/master/contracts/math/SafeMath.sol

[154] Ethereum, “Solidity v0.8.0 Breaking Changes,” GitHub, Dec. 16, 2020.

https://github.com/ethereum/solidity/blob/v0.8.0/docs/080-breaking-

changes.rst (accessed Nov. 27, 2020).

[155] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting Ponzi

Schemes on Ethereum: Towards Healthier Blockchain Technology,” in

2018 World Wide Web Conference on World Wide Web, Republic and

Canton of Geneva, Switzerland, 2018, pp. 1409–1418. doi:

10.1145/3178876.3186046.

[156] G. Konstantopoulos, “How to Secure Your Smart Contracts: 6 Solidity

Vulnerabilities and how to avoid them (Part 2),” Medium, Jan. 17, 2018.

https://medium.com/loom-network/how-to-secure-your-smart-

contracts-6-solidity-vulnerabilities-and-how-to-avoid-them-part-2-

730db0aa4834 (accessed Oct. 28, 2019).

[157] A. Hertig, “Rise of Replay Attacks Intensifies Ethereum Divide,” coinbase,

Jul. 29, 2016. https://www.coindesk.com/rise-replay-attacks-ethereum-

divide (accessed Feb. 23, 2020).

[158] L. Quan, L. Wu, and H. Wang, “EVulHunter: Detecting Fake Transfer

Vulnerabilities for EOSIO’s Smart Contracts at Webassembly-level,”

arXiv:1906.10362 [cs], Jun. 2019, Accessed: Mar. 17, 2021. [Online].

Available: http://arxiv.org/abs/1906.10362

[159] A. S. Tanenbaum and M. van Steen, Distributed systems: principles and

paradigms, 2nd ed. Upper Saddle River, NJ, USA: Maarten van Steen,

2016.

[160] Hyperledger, “Using CouchDB,” GitHub, Sep. 19, 2019.

https://github.com/hyperledger/fabric/blob/release-

2.2/docs/source/couchdb_tutorial.rst (accessed Feb. 17, 2021).

[161] N. Kannengießer, M. Pfister, M. Greulich, S. Lins, and A. Sunyaev, “Bridges

Between Islands: Cross-Chain Technology for Distributed Ledger

Technology,” presented at the Hawaii International Conference on

System Sciences (HICSS), Maui, Hawaii, USA, 2020.

[162] Ethereum Foundation, “EIP-1,” GitHub, Mar. 06, 2021.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1.md

(accessed Mar. 19, 2021).

[163] P. Antonino and A. W. Roscoe, “Formalising and verifying smart contracts

with Solidifier: a bounded model checker for Solidity,” arXiv:2002.02710

[cs], Feb. 2020, Accessed: Mar. 14, 2021. [Online]. Available:

http://arxiv.org/abs/2002.02710

[164] X. Bai, Z. Cheng, Z. Duan, and K. Hu, “Formal Modeling and Verification

of Smart Contracts,” in Proceedings of the 2018 7th International

Conference on Software and Computer Applications, Kuantan Malaysia,

Feb. 2018, pp. 322–326. doi: 10.1145/3185089.3185138.

[165] T. Abdellatif and K. L. Brousmiche, “Formal Verification of Smart Contracts

Based on Users and Blockchain Behaviors Models,” in 2018 9th IFIP

International Conference on New Technologies, Mobility and Security,

Feb. 2018, pp. 1–5. doi: 10.1109/NTMS.2018.8328737.

[166] S. Rezaei, E. Khamespanah, M. Sirjani, A. Sedaghatbaf, and S.

Mohammadi, “Developing Safe Smart Contracts,” in IEEE 44th Annual

Computers, Software, and Applications Conference, Madrid, Spain, Jul.

2020, pp. 1027–1035. doi: 10.1109/COMPSAC48688.2020.0-137.

[167] J. Feist, G. Grieco, and A. Groce, “Slither: A Static Analysis Framework for

Smart Contracts,” in 2019 IEEE/ACM 2nd International Workshop on

Emerging Trends in Software Engineering for Blockchain, Montreal, QC,

Canada, May 2019, pp. 8–15. doi: 10.1109/WETSEB.2019.00008.

[168] C. Schneidewind, I. Grishchenko, M. Scherer, and M. Maffei, “eThor:

Practical and Provably Sound Static Analysis of Ethereum Smart

Contracts,” arXiv:2005.06227 [cs], May 2020, Accessed: Mar. 14, 2021.

[Online]. Available: http://arxiv.org/abs/2005.06227

[169] Y. Huang, Q. Kong, N. Jia, X. Chen, and Z. Zheng, “Recommending

Differentiated Code to Support Smart Contract Update,” in 2019

IEEE/ACM 27th International Conference on Program Comprehension,

Montreal, QC, Canada, May 2019, pp. 260–270. doi:

10.1109/ICPC.2019.00045.

[170] A. Miller, Z. Cai, and S. Jha, “Smart Contracts and Opportunities for Formal

Methods,” in Leveraging Applications of Formal Methods, Verification

and Validation. Industrial Practice, vol. 11247, T. Margaria and B. Steffen,

Eds. Cham: Springer International Publishing, 2018, pp. 280–299. doi:

10.1007/978-3-030-03427-6_22.

[171] Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang, and Z. Chen, “MuSC: A Tool for

Mutation Testing of Ethereum Smart Contract,” in 2019 34th IEEE/ACM

International Conference on Automated Software Engineering, San

Diego, CA, USA, Nov. 2019, pp. 1198–1201. doi:

10.1109/ASE.2019.00136.

[172] J. Gao et al., “Towards Automated Testing of Blockchain-based

Decentralized Applications,” in 27th International Conference on

Program Comprehension, Piscataway, NJ, USA, 2019, pp. 294–299. doi:

10.1109/ICPC.2019.00048.

[173] E. Andesta, F. Faghih, and M. Fooladgar, “Testing Smart Contracts Gets

Smarter,” arXiv:1912.04780 [cs], Dec. 2019, Accessed: Mar. 19, 2021.

[Online]. Available: http://arxiv.org/abs/1912.04780

[174] B. Hu et al., “A comprehensive survey on smart contract construction and

execution: paradigms, tools, and systems,” Patterns, vol. 2, no. 2, p.

100179, Feb. 2021, doi: 10.1016/j.patter.2020.100179.

[175] M. E. Peck, “Blockchain world - Do you need a blockchain? This chart will

tell you if the technology can solve your problem.,” IEEE Spectrum, vol.

54, no. 10, pp. 38–60, Oct. 2017.

[176] V. Dwivedi, V. Deval, A. Dixit, and A. Norta, “Formal-Verification of Smart-

Contract Languages: A Survey,” in Advances in Computing and Data

Sciences, Singapore, 2019, pp. 738–747.

[177] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, “A Survey of Smart Contract

Formal Specification and Verification,” arXiv:2008.02712 [cs], Apr. 2021,

Accessed: Jun. 19, 2021. [Online]. Available:

http://arxiv.org/abs/2008.02712

[178] M. Demir, M. Alalfi, O. Turetken, and A. Ferworn, “Security Smells in Smart

Contracts,” in 2019 IEEE 19th International Conference on Software

Quality, Reliability and Security Companion, Sofia, Bulgaria, Jul. 2019, pp.

442–449. doi: 10.1109/QRS-C.2019.00086.

[179] C. Alexander, “The origins of pattern theory: the future of the theory, and

the generation of a living world,” IEEE Softw., vol. 16, no. 5, pp. 71–82, Oct.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 31

1999, doi: 10.1109/52.795104.

[180] N. He et al., “Security Analysis of EOSIO Smart Contracts.” Jul. 30, 2020.

Accessed: Mar. 14, 2021. [Online]. Available:

http://arxiv.org/abs/2003.06568

[181] The Ontology Team, “Multi-VM in Ontology 2.0: the First to Support

Seamless Contract Interactions Among Three Environments,” Medium,

May 12, 2020. https://medium.com/ontologynetwork/multi-vm-in-

ontology-2-0-f76178022ad4

[182] R. Hitchens, “Storage Pointers in Solidity,” Medium, 16.112018.

https://blog.b9lab.com/storage-pointers-in-solidity-7dcfaa536089

(accessed Mar. 17, 2011).

