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Abstract—Smart contracts are a promising means of formalizing and reliably enforcing agreements between entities using 

distributed ledger technology (DLT). Research has revealed that a significant number of smart contracts are subject to 

programming flaws, making them vulnerable to attacks and leading to detrimental effects, such as asset loss. Researchers and 

developers call for a thorough analysis of challenges to identify their causes and propose solutions. To respond to these calls, we 

conducted two literature reviews and diverse expert interviews and synthesized scattered knowledge on challenges and solutions. 

We identified 29 challenges (e.g., code visibility, code updateability, and encapsulation) and 60 solutions (e.g., gas limit 

specification, off-ledger computations, and shadowing). Moreover, we developed 20 software design patterns (SDPs) in 

collaboration with smart contract developers. The SDPs help developers adjust their programming habits and thus support them 

in their daily development practices. Our results provide actionable knowledge for smart contract developers to overcome the 

identified challenges and offer support for comparing smart contract integration concepts across three fundamentally different 

DLT protocols (i.e., Ethereum, EOSIO, and Hyperledger Fabric). Moreover, we support developers in becoming aware of 

peculiarities in smart contract development and the resulting benefits and drawbacks. 

Index Terms—Blockchain, Distributed Ledger Technology, Decentralized Applications (DApps), Patterns, Smart Contracts, 

Software Development 

——————————  —————————— 

1 INTRODUCTION

MART contracts are software programs that express 

logic formalized in code for the reliable enforcement of 

business agreements between defined entities 

(e.g., individuals, organizations, or machines) [1]. An early 

form of smart contracts is enabled by the primitive Script 

available for the Bitcoin blockchain to define conditional 

asset transfers [2]–[4]. In 2015, the Ethereum foundation 

went beyond Bitcoin Script’s primitive capabilities by 

introducing the Ethereum Virtual Machine (EVM), which 

enables the execution of Turing complete smart contracts1 

in high-level programming languages, such as Obsidian, 

Solidity, or Vyper. Following the success of Ethereum, 

various DLT protocols (e.g., EOSIO or Hyperledger Fabric) 

have focused on enabling smart contracts. Through Turing 

completeness, smart contracts have become more 

expressive and better usable for manifold decentralized 

applications. However, the gain in expressiveness of smart 

contract code comes with its downsides because it can 

increase the complexity of smart contract code and favors 

the occurrence of programming flaws. Moreover, 

developers must anticipate the special characteristics of 

smart contracts, such as the public visibility of smart 

contract code [6], [7], the tamper resistance of deployed 

 

1 We are aware of the discussion on the potential Turing completeness of 
Bitcoin’s Script [5]. Since this discussion has not been finished, we align 

smart contracts [8], [9], and access management for the 

execution of smart contract functions [9]–[11].  

Existing research has revealed that a significant number 

of smart contracts deployed on the Ethereum blockchain 

are subject to programming flaws [12]–[14] that make 

smart contracts vulnerable to attacks. The criticality of flaws 

became apparent in various incidents, such as the DAO 
hack and the Parity Wallet hack. Each incident led to a loss 

of USD $150 MM [15], [16]. Beyond Ethereum, it became 

clear that smart contract development is also challenging 

for other DLT protocols, including EOSIO 

(e.g., USD $58,000 was stolen using faked EOS tokens [17]) 

and Hyperledger Fabric (e.g., dealing with phantom reads 

[18]). Given the frequency and severity of flaws in smart 

contract code, researchers and developers call for a 

thorough analysis of the challenges that lead to flaws in 

identifying their causes and proposing corresponding 

solutions, ultimately improving development practices.  

To reduce the challenges of smart contract development 

and improve the quality of smart contract code, prior 

research has identified several challenges (e.g., [10], [19]–

[21]) and proposed appropriate solutions (e.g., [8], [10], 

[14]). These solutions can be largely distinguished into 

automated verification and coding support. For automated 

verification, existing research presents software tools 

(e.g., MadMax [14] or ReGuard [22]) for automatically 

identifying flaws in smart contract code (e.g., using static 

analysis [23], dynamic analysis [24], or machine learning 

[25]) and increasing code quality. Nevertheless, the 

applicability of automated verification to smart contract 

code is limited in terms of comprehensiveness 

because most formal verification tools apply static patterns 

with the Bitcoin documentation [3] and find Bitcoin’s smart contract 
capabilities not Turing-complete. 
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to identify code flaws, and mostly applies to a single type 

of DLT protocol, such as those using the EVM. Because of 

the undecidability of several computational problems 

(e.g., the halting problem), flaws such as infinite loops can 

often not be proven beyond technical boundaries 

(e.g., limited memory allocations). 

While automated verification only applies to existing 

code, coding support aims to sensitize developers to smart 

contract challenges and respective. To this end, prior 

research has started tackling said challenges by developing 

software design patterns (SDPs; e.g., [8], [9], [26]). However, 

existing SDPs for smart contract development focus on 

only a few DLT protocols (foremost Ethereum) and are 

scattered across various sources (e.g., scientific papers [8], 

[9], [26], blogs [27], [28], and DLT-related documentation 

[29]), obfuscating the actual causes for existing challenges. 

Details of the proposed SDP and related solutions, such as 

the problem context, are often missing, which hinders their 

practical applicability for developers in day-to-day 

operations. It remains unclear which features of DLT 

protocols cause what challenges for smart contract 

development and how developers should effectively 

address these challenges. 

To sensitize developers to the peculiarities of and 

resulting challenges in smart contract development for 

different DLT protocols and to help improve smart contract 

code quality, we ask the following research questions (RQ): 

RQ1: What are the key challenges in smart contract 
development? 

RQ2: How can developers tackle the identified 
challenges? 

To answer these RQs, we applied a two-step research 

method. First, we conducted two complementary literature 

reviews [29], [30] and diverse expert interviews to 

synthesize scattered knowledge on challenges and 

corresponding solutions concerning smart contract 

development. In total, we identified 29 challenges, 

including code visibility, concurrency, and data type 

complexity, and 60 corresponding solutions, including off-

ledger computations, synchronization, and array 

replacement. We further grouped these into three principal 

origins—platform, programming language and execution 
environment, and coding practice—according to the 

individual challenge's causes. Second, we iteratively derived 

and evaluated SDPs for smart contract development based 

on a selected set of identified challenges and solutions 

because the details of proposed solutions in general and 

SDPs in particular are often missing in extant research. We 

particularly applied a thorough pattern generation 

approach and a strict canonical structure for SDPs 

(e.g., [31]–[33]) to ease the understanding and usage of 

patterns for smart contract developers and overcome the 

limitations of prior research regarding pattern applicability.  

This work contributes to practice, as we present 

challenges developers frequently face when developing 

smart contracts for Ethereum, EOSIO, and Hyperledger 

Fabric and corresponding solutions. Moreover, we derived 

20 SDPs in collaboration with smart contract developers 

 

2 https://github.com/KITcii/smart-contract-dev-support 

from solutions that became best practices. These help 

developers avoid frequent challenges in smart contract 

development and avoid common flaws in smart contract 

code. By developing a three-layered hierarchy of 

challenges that starts with the three principal origins for 

challenges, we support developers in separately assessing 

the possible drawbacks of DLT protocols and offered 

programming languages and execution environments. We 

thereby help developers select and configure a DLT 

protocol under consideration of particular use-case 

requirements and their personal preferences. For example, 

developers can better assess which DLT protocol to 

combine with which virtual machine as offered by 

upcoming middleware, such as Neutron [34] for the 

Ethereum-based Qtum framework. 

We contribute to the research by synthesizing scattered 

knowledge on smart contract development challenges and 

solutions across three major DLT protocols—Ethereum, 

EOSIO, and Hyperledger Fabric. We highlight the 

implications of different design decisions for DLT protocols 

for smart contract development (e.g., regarding the 

characteristics of an execution environment and 

corresponding programming languages). Thereby, we 

support the understanding of the interplay between DLT 

protocols and their smart contract execution environments. 

By applying the canonical pattern structure proposed in 

prior research [31]–[33], our SDPs contain detailed 

descriptions of each challenge and its solution and a 

discussion on benefits and boundary conditions, thereby 

extending prior research that briefly outlined potential 

solutions to overcome challenges. 

This work is structured as follows. First, we introduce the 

fundamentals of DLT, smart contract development, and 

SDPs. Second, we briefly explain the applied method for 

identifying smart contract development challenges and 

corresponding solutions and how we derived the 20 SDPs. 

Third, we present the derived challenges for smart contract 

development and depict how the identified solutions and 

our SDPs can overcome these challenges. Fourth, we 

discuss this study and our findings in the context of related 

works and describe our implications for research and 

practice. We conclude with a summary and our principal 

findings and describe the limitations of this work, as well as 

corresponding starting points for future research. To make 

the developed SDPs easy to use, we made them accessible 

in our public git repository.2 

2 BACKGROUND 

2.1 Distributed Ledger Technology 

DLT enables multiple individuals or organizations to 

collectively operate a digital platform in a decentralized 

manner. This decentralized digital platform is based on a 

highly available and tamper-resistant distributed database 

(i.e., distributed ledger), where various storage and 

computing devices (i.e., nodes) maintain local copies of 

stored data [35]. Nodes add data to their local ledger 

version in the form of transactions. In blockchains, these 

https://github.com/KITcii/smart-contract-dev-support


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

KANNENGIEßER ET AL.: CHALLENGES AND COMMON SOLUTIONS IN SMART CONTRACT DEVELOPMENT 3 

transactions are batched together in blocks. Transactions 

can contain digital representations of assets (e.g., coins) or 

the byte code of a smart contract (e.g., in Ethereum). When 

a node receives a new transaction, the node first validates 

the transaction [36]. Validated transactions remain in the 

node’s local storage (i.e., mempool) until the nodes verify 

the transaction by appending it to its local copy of the 

ledger. The order in which transactions are verified is 

decided by each individual node, leading to a kind of 

concurrency in transaction processing [37]. 

Distributed ledgers operate in untrustworthy 

environments characterized by the arbitrary occurrence of 

Byzantine faults, comprising temporarily unreachable 

nodes, crashed nodes, or malicious behavior of nodes 

(e.g., double-spending of assets) [38], [39]. Byzantine faults 

and network delays can cause nodes in a DLT network to 

store different ledger versions and thus be in different 

states. Such inconsistencies in a distributed ledger can 

cause vulnerabilities in DLT systems. For example, 

inconsistencies across nodes cause network partitions that 

can make distributed ledgers vulnerable to tampering [35], 

[39]. To resolve inconsistencies between the versions of the 

ledger stored on different nodes, consensus mechanisms 

are used. 

Within DLT networks, nodes can have different 

permissions for appending new data to the ledger 

(i.e., write permissions) [35]. In permissioned DLT protocols, 

only specified nodes are permitted to participate in 

consensus finding and commit new data to the distributed 

ledger. In permissionless DLT systems, all nodes in the DLT 

network can participate in consensus finding. 

When interacting with a distributed ledger, entities 

(i.e., individuals, organizations, or devices) have individual 

digital identities with attributes, such as a unique 

pseudonym as an identifier (e.g., an account address in 

Ethereum). The pseudonym can be used to reference an 

account in the distributed ledger, and entities can send and 

receive transactions using the pseudonym. 

2.2 Smart Contracts 

Smart contacts offer reliable enforcement of agreements 

formalized in the program code between multiple parties. 

Depending on the DLT protocol, different concepts have 

been applied for the integration of smart contracts 

(see Table 1). These differences often originate from design 

decisions, especially concerning the consensus mechanism. 

For example, the Hyperledger Fabric protocol does not 

require deterministic smart contract execution to favor 

consensus finding, but applies Raft as a centralized 

consensus mechanism with only crash-fault tolerance and 

no Byzantine fault tolerance. In contrast, the Ethereum 

protocol requires determinism in smart contract execution 

to make the consensus mechanism more secure, which can 

be decentralized and Byzantine fault-tolerant. In the 

following sections, we explain the concepts of how smart 

contracts are integrated into three major open-source DLT 

protocols supporting smart contracts: Ethereum, EOSIO, 

and Hyperledger Fabric. 

 

Ethereum. The Ethereum protocol natively uses a proof-of-

work-based consensus mechanism and applies the concept 

of a Greedy Heaviest Observed Sub-Tree (GHOST) to 

resolve inconsistencies between nodes. Smart contracts are 

independently executed by all nodes in Ethereum-based 

DLT networks. Still, these nodes must eventually agree on a 

consistent state requiring the deterministic execution of 

smart contracts. To prevent nondeterministic smart 

contract execution, the EVM encapsulates smart contracts, 

hindering interaction with external information systems 

(i.e., oracles) and the use of real randomness (e.g., for 

random number generation). 

Ethereum allows for the development of smart contract 

code in several high-level programming languages, 

including Solidity, Obsidian, or Vyper. After development, 

the smart contract code must be compiled to bytecode 

(e.g., using solc compiler for Solidity or vyper compiler for 

Vyper) and produce a corresponding application binary 

interface (ABI) file to specify application programming 

interface (API) for interactions with the smart contract. For 

deployment, the bytecode is included in the payload of a 

transaction issued to the Ethereum network. After the 

bytecode has been deployed, the smart contract is 

included in the blockchain and stored in a tamper-resistant 

manner. 

Each Ethereum smart contract has an individual account 

with a unique address, similar to the externally owned 

TABLE 1 
COMPARISON BETWEEN SMART CONTRACT INTEGRATION CONCEPTS 

  DLT Protocol  

Characteristic EOSIO Ethereum Hyperledger Fabric 

Distributed Computing All nodes execute all smart contracts 
upon invocation 

All nodes execute all smart contracts 
upon invocation 

Only defined nodes execute smart 
contracts upon invocation 

Deterministic Execution Required for consensus finding Required for consensus finding Not required for consensus finding but 
potentially important to fulfilling the 
endorsement policy 

Execution Regulation 
Mechanism 

Execution bounded by time or by a 
maximum number of instructions 

Execution bounded by gas 
consumption 

Execution timeout  

Execution Environment EOS Virtual Machine (EOSVM) Ethereum Virtual Machine (EVM) Docker container 

Programming Languages C++ Solidity, Vyper Go, Java, Node.js 

Deployment Process Bytecode included in the transaction Bytecode included in the transaction Manual installation by node controllers 

Bytecode Storage RAM and blockchain on disk Blockchain on disk Docker container on disk 

Execution Process Order-execute Order-execute Execute-order-validate 
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accounts used by entities external to the distributed ledger. 

Smart contracts can receive, store, and transfer assets and 

interact with other accounts. The execution of a particular 

smart contract function is triggered by a transaction sent 

to the smart contract address with the signature of the 

target function in the data field. 

In Ethereum, each node maintains its own state s. 

Successfully processed transactions cause a state transition 

from st to st+1 [37]. Although these nodes independently 

execute smart contracts, all nodes in the DLT network must 

eventually agree on a common state requiring the 

deterministic execution of smart contracts following a 

replicated state machine model. To prevent 

nondeterministic smart contract execution, the EVM largely 

encapsulates smart contracts, hindering interaction with 

external information systems (i.e., oracles) and the use of 

real randomness (e.g., for random number generation). 

To counter denial of service in smart contract execution 

(e.g., through infinite loops) and reward nodes for the 

provision of computational resources for the execution of 

smart contract code, the Ethereum protocol applies a 

pricing scheme. The pricing scheme uses the unit gas to 

measure computational resource consumption associated 

with transaction processing. With each transaction, entities 

pass a maximum amount of gas they are willing to spend 

(i.e., gas limit) for the transaction processing (e.g., to 

execute a function or deploy a smart contract) and the 

corresponding amount of Ether to pay per consumed unit 

of gas. If the execution exceeds the gas limit, the execution 

is aborted and rolled back. 

For function calls from one smart contract (A) to another 

(B), Solidity offers three ways to invoke functions [40], [41]: 

call, delegatecall, and staticcall. When using call 

(e.g., in direct calls like ContractB.functionName(…)), the 

target function provided by B is executed in a separate 

context from caller contract A and can access its own smart 

variable values. When using delegatecall, the target 

function is executed in the context of the caller contract 

and can also change variable values of the caller contract. 

staticcall can be used to call a smart contract but 

disallows any state changes during its execution. Attempts 

to make state modifications result in an exception, and no 

modifications are made.  

 

EOSIO. Blockchains that build on the EOSIO protocol 

(e.g., the EOS blockchain) natively use a consensus 

mechanism consisting of two components: Delegated 

Proof-of-Stake (DPoS) to elect block producers and 

asynchronous Byzantine fault tolerance (aBFT) to finalize 

blocks [42]. The EOSIO consensus mechanism requires all 

nodes to agree on the same state of the main chain. Thus, 

EOSIO imposes a deterministic execution of actions to 

favor consensus finding [43]. 

EOSIO smart contracts are programmed in C++ and are 

compiled into WebAssembly (WASM) formatted bytecode 

using the eosio-cpp compiler. The compilation process also 

produces an ABI file to derive the smart contract API for 

interactions. For deployment, a smart contract bytecode is 

put into a transaction that is sent to call the eosio.system 
contract. Executable bytecodes of current EOSIO smart 

contracts are hosted in the random-access memory (RAM) 

of nodes. The blockchain records all transactions and 

events on the disks of nodes in the DLT network [44], [45]. 

In EOSIO, each account is identified by a unique name 

with a length of one to twelve characters [46]. Each smart 

contract has a unique account and exhibits actions invoked 

by accounts. Actions are invoked through action instances, 

defining the target account, the name of the action to be 

executed, a list of authorizations to prove permissions for 

action execution, and action data (e.g., function 

arguments). Action instances are included in transactions 

and are executed by validating nodes in sequential order. 

Upon transaction receival, nodes check whether the 

authorizations included in action instances fulfill the 

permissions defined for the smart contract actions to be 

called. Permissions are linked to an authority table where 

the individual permissions for the execution of actions are 

defined by the respective smart contract owners [46]. If the 

permission check fails for at least one account in an action 

instance, the entire transaction processing is aborted and 

no smart contract action is executed. Otherwise, the node 

invokes the actions defined in the action instances [47]. 

Before executing the called actions, the nodeos daemon 

running on each node makes a local snapshot of the state 

history and loads the WASM bytecode of the smart 

contract into the EOS Virtual Machine (EOSVM) for 

execution [43]. During the execution of actions, EOSIO 

smart contracts can invoke other contract actions by using 

inline actions [48], [49]. Inline actions synchronously 

execute an action in the context of the original transaction. 

If an action execution is aborted, all changes made in the 

transaction context are rolled back using the snapshot.  

Analogous to Ethereum, EOSIO applies a mechanism to 

prevent infinite loops. Developers can define a maximum 

number of instructions or use a watchdog timer with a 

maximum runtime for the sequential execution of actions 

in a transaction [43]. If one of the defined thresholds is 

exceeded, the execution of actions in the transaction is 

aborted, and all changes are rolled back. 

 

Hyperledger Fabric. Hyperledger Fabric is used to set up 

permissioned blockchains, with Raft as the recommended 

consensus mechanism [50]. Unlike Ethereum and EOSIO, 

Hyperledger Fabric does not use a native cryptocurrency 

and was designed for business use cases where known 

individuals and organizations form a consortium that 

operates and uses the blockchain. 

To keep data confidential within consortia, Hyperledger 

Fabric allows for setting up channels on top of the 

consortium’s infrastructure. Channels are private 

subnetworks between specific consortium members that 

use granular access control based on their identities [51]. 

Consortium members that are part of a channel 

(i.e., channel members) operate a blockchain and a world-

state database on their peer nodes isolated from other 

channels. The blockchain records all transactions and 

determines the world state, storing current values related 

to defined business objects. Within channels, peer nodes 

enforce endorsement policies for transactions, and 

ordering nodes execute the consensus mechanism and 
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commit transactions to the blockchain. Data stored on the 

blockchain are only visible to members of the 

corresponding channel [51]. 

In Hyperledger Fabric, there are chain codes that can 

include multiple smart contracts [52]. To make smart 

contracts available to applications [53], developers 

manually install chain codes on peer nodes in the channel 

that are specified in the policy to endorse transactions. 

Smart contracts contain the actual transaction logic, which 

can be expressed in Go, Java, or Node.js [52].  

To call a smart contract function, an entity sends a 

transaction proposal via its software client to peer nodes 

hosting the chaincode. The transaction proposal includes 

the chaincode identifier and input parameters for the 

function call. Before function execution, the peer nodes 

check whether the transaction proposal matches the 

required format and whether the issuer is authorized to call 

the smart contract according to the chaincode 

endorsement policy [54]. If the transaction proposal 

succeeds in these checks, the corresponding peer node 

executes the smart contract function. Otherwise, the 

transaction is marked invalid. Valid and invalid transactions 

are stored on the blockchain, but only valid transactions 

can update the world state database. After the smart 

contract function is executed, the smart contract produces 

a new transaction (i.e., transaction response) that includes 

updates on the world state. The peer nodes send their 

transaction responses to the client. The client compares the 

transaction responses to check whether the smart contract 

execution fulfills the endorsement policy defined for the 

chaincode. For example, if the endorsement policy requires 

two of three peer nodes to have an equal outcome upon 

transaction execution, the client compares the transaction 

responses from the three peer nodes for consistency. If at 

least two peer nodes calculate an equal output, the client 

creates a new transaction, including the transaction 

proposal, the transaction response, and the digital 

signatures of the peers. The client sends the new 

transaction to the channel’s ordering nodes to be 

committed to the blockchain [53]. 

Unlike Ethereum and EOSIO, Hyperledger Fabric does 

not strictly bind smart contract execution to resources 

(e.g., by gas in Ethereum or time in EOSIO). Still, developers 

can define a maximum execution time per chaincode 

(i.e., ExecuteTimeout). 

Blockchains based on Hyperledger Fabric do not strictly 

require determinism in the execution of smart contracts. 

Inconsistent results from smart contract execution are 

filtered out to avoid contradictions in consensus findings 

after endorsing peer nodes have executed the smart 

contract. Following the order-execute-validate approach in 

Hyperledger Fabric instead of the execute-order approach 

applied in Ethereum and EOSIO, only consistent results will 

be forwarded to ordering nodes to be committed to the 

blockchain after consensus finding [55]. 

 

2.3 Software Design Patterns 

A pattern is an abstraction from a concrete design that 

keeps recurring in specific nonarbitrary contexts [31], [56], 

[57]. Patterns usually refer to the architecture or structure 

of several parts in a superordinate system. They comprise a 

general description of a recurring problem and an 

associated solution with defined objectives and constraints. 

SDPs form a special class of patterns that describe objects 

and classes and their communication and customization to 

solve a general software design problem in a particular 

context [56]. SDPs can be further distinguished into three 

abstraction levels [31]: architectural patterns, design 
patterns, and idioms. Architectural patterns describe “[…] a 

fundamental structural organization or scheme for 

software systems and provide a set of predefined 

subsystems, specify their responsibilities, and include rules 

and guidelines for organizing the relationships between 

them” [31, p. 12]. Design patterns provide “[…] a scheme for 

refining the subsystems or components of a software 

system, or the relationships between them” [31, p. 13] to 

solve a general design problem within a certain context. 
Idioms are patterns on the lowest level of abstraction and 

“describe how to implement particular aspects of 

components or the relationships between them using the 

features of the given language” [31, p. 14]. 

3 METHODS 

To answer our research questions, we applied a two-step 

research approach. First, we conducted extensive literature 

reviews and expert interviews following established 

methodological guidelines [30], [58], [59] to identify 

challenges and solutions in smart contract development. 

Second, we iteratively derived and evaluated SDPs for 

smart contract development based on identified 

challenges and solutions, while considering extant 

research, gray literature, and practitioners’ knowledge.  

3.1 Identifying and Synthesizing Smart Contract 
Challenges and Solutions 

We applied a mixed-method approach to identify and 

synthesize preliminary challenges and corresponding 

solutions in smart contract development, comprising 

different types of descriptive literature reviews [60] 

augmented by expert interviews. We performed four 

iterations of data gathering accompanied by iterative data 

analyses to achieve theoretical saturation. Table 2 

summarizes the objectives, applied methods, and 

outcomes of each iteration. In the following sections, we 

briefly summarize each iteration. Appendix A provides 

detailed information on each iteration to enhance method 

transparency and reproducibility. 
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3.1.1 First Iteration: Snowballing Literature Review 

To generate an initial set of smart contract challenges and 

solutions as a foundation for our study, we conducted a 

literature search utilizing the snowballing approach 

proposed by Wohlin [58]. Snowballing starts with a core set 

of relevant documents and then uses these to identify 

further relevant documents in a specific domain through 

multiple iterations of forward- and backward-snowballing. 

We first applied the search string “Smart Contract*” AND 
(“Challeng*” OR “Vulnerabilit*”) to Google Scholar, as 

suggested by Wohlin [58], yielding 879 documents as of 

July 4, 2019. We analyzed documents’ meta-information 

(i.e., title, abstract, etc.), read potentially relevant 

documents, and applied inclusion and exclusion criteria 

(see Table 3) to identify the documents relevant to answer 

our research question. This relevancy check led to a set of 

ten starting documents on which we then conducted three 

rounds of backward and forward searching [58], resulting 

in 21 documents, including grey literature.  

For the literature analysis, we applied thematic analysis 

[30] to identify themes for challenges and related solutions 

apparent in smart contract development. During this 

thematic analysis, we performed multiple rounds of data-

driven coding. Afterward, we compared our codes and the 

respective text segments to form overarching themes [30]. 

We were able to identify 18 candidate themes, including 

exception handling and event order. We revised these 

themes by applying Patton’s [61] dual criteria of internal 

homogeneity (i.e., data within themes should cohere 

together meaningfully) and external heterogeneity 

(i.e., there should be clear and identifiable distinctions 

between themes), leading to seven themes as a result. 

3.1.2 Second Iteration: Focus Group Interview 

We decided to conduct a second iteration for two reasons. 

First, we wanted to validate our literature findings because 

qualitative coding techniques bear the risk of interpretation 

and other biases. Second, we strove to incorporate 

knowledge from experts in the field to extend and enrich 

our themes. We, therefore, conducted a focus group 

interview [59] in July 2019 using a convenience sample of 

five DLT experts (see Table 4). Three researchers 

participated in and moderated the workshop. 

We conducted the focus group interview based on an 

interview guide [62] comprising a brainstorming phase 

about potential challenges in smart contract development, 

a discussion about potential solutions, and specific 

questions to validate and gather additional data 

surrounding the seven themes identified in the first 

iteration. The interview lasted six hours and was recorded 

and then transcribed. We applied scientific coding 

techniques to analyze the interview data, especially 

selective (i.e., assigning prior themes to interview data), 

open (i.e., labeling new challenges and solutions discussed 

in the interviews), and axial coding (i.e., identifying the 

causes and consequences of each challenge) [63]. We 

identified one new challenge theme—code 

discoverability—and a corresponding solution, refined 

existing themes by enriching their cause and consequence 

descriptions, identified minor inconsistencies, and resolved 

these accordingly (e.g., we unified the levels of abstraction 

of the solutions).  

TABLE 2 
SUMMARY OF ITERATIONS TO IDENTIFY AND SYNTHESIZE SMART CONTRACT CHALLENGES AND SOLUTIONS 

 Iteration 1 Iteration 2 Iteration 3 Iteration 4 

Objectives • Understand the problem 
domain 

• Identify an initial set of smart 
contract challenges and 
solutions 

• Verify and extend preliminary 
themes 

• Incorporate practice knowledge 

• Extend themes 

• Strive for theoretical saturation 

• Verify themes 

• Discuss the relevancy and 
applicability of themes for 
different ledgers 

Data 
Source 

Snowballing literature review 
[58] 

Focus group interview Database literature review [29] Semi-structured expert 
interviews 

Data 21 documents on smart contract 
challenges and solutions (incl. 
grey literature) 

Interview transcript on a six-hour 
focus group with five DLT experts 

86 research documents on smart 
contract challenges and solutions 

Nine interviews with experts 
on EOSIO, Ethereum, and 
Hyperledger 

Data  
Analyses 

Thematic analysis [30] Selective, open, and axial coding 
of interview findings 

Thematic analysis [30] and 
synthesizing prior iteration 
findings 

Joint extension of themes and 
field notes analyses  

Outcomes 146 text segments assigned and 
aggregated into seven 
preliminary themes of challenges 
and solutions 

One additional challenge theme, 
refined and enriched themes of 
challenges and solutions 

13 themes of smart contract 
challenges and respective 
solutions, relating to 1018 text 
segments; three principal origins 

29 challenges and 60 
corresponding solutions 
relating to three ledgers 

 

TABLE 3 
INCLUSION AND EXCLUSION CRITERIA FOR LITERATURE 

SEARCHES IN ITERATION 1 AND ITERATION 3 

Type Name Description 

In
cl

u
si

o
n

 

Challenge Naming, proposing, discussing, or revealing 
smart contract challenges, vulnerabilities, or 
related issues 

Solution Naming, proposing, discussing, or revealing 
solutions to tackle smart contract challenges, 
vulnerabilities, or related issues 

Concrete SDP Naming, proposing, discussing, or revealing 
SDPs relating to smart contracts 

Transferrable 
SDP 

Naming, proposing, discussing, or revealing 
SDPs that are applicable or transferable to 
smart contracts 

Ex
cl

u
si

o
n

 Off-topic 
 

Not dealing with DLT and smart contracts 

Books Books on smart contracts 

Not in English Publications in a non-English language 

Duplicates Multiple identical occurrences of a document 
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3.1.3 Third Iteration: Database Literature Review 

We decided to return to scientific literature in the next 

iteration for two reasons. First, new documents may have 

been published since our first literature search. Second, we 

might have overlooked relevant documents given our 

snowballing research approach. We, therefore, performed 

a descriptive literature review [60] in scientific databases, 

trying to achieve theoretical saturation. 

To cover a broad set of documents, we applied the search 

string ("smart contract*" OR "chaincode*") AND 
("challenge*" OR "pattern*" OR "issue*" OR "develop*" OR 
"programming*") in the title, abstract, or keywords (TAK) of 

prominent databases, including ACM Digital Library, AISel, 

EBSCOHost, IEEEXplore, Proquest, ScienceDirect, and Web 

of Science. Our search yielded a total of 1,774 potentially 

relevant documents as of November 6, 2020. We once 

again performed a comprehensive relevancy check by 

applying the same inclusion and exclusion criteria from our 

first iteration (see Table 3), resulting in 86 novel relevant 

documents. 

We again applied thematic analysis [30] to refine our 

existing themes and identify novel ones for challenges and 

solutions, comprising two rounds of data-driven coding, 

constant comparison of coded challenges and solutions to 

identify subthemes, and frequent theme refinement. This 

analysis process resulted in 13 themes, including code 
efficiency, confidentiality, and determinism. To further 

group these themes, we compared their different origins 

and strived to identify a core set of common ones. Our 

comparative analysis revealed three principal challenge 

origins that can make smart contracts prone to 

programming flaws (see Error! Reference source not 

found.): platform, programming language and execution 
environment, and coding practice. 

Compared to our first snowballing literature research, we 

were not only able to identify six novel high-level themes, 

but also to refine and enrich existing themes, and create a 

hierarchy of themes raging from text segments and initial 

labels for challenges and solutions up to aggregated 

challenge themes that were assigned to principal challenge 

origins. 

3.1.4 Fourth Iteration: Expert Interviews 

While we already gathered rich information on various 

challenges and were able to identify solutions for many of 

them, we decided to conduct a fourth iteration due to two 

reasons. First, we strove to validate our literature review 

findings with further knowledge from DLT experts. Second, 

most of the literature focuses on Ethereum, and the EVM 

and Solidity, respectively. Hence, we were eager to reflect 

the applicability of our findings to other DLT protocols. We 

particularly focused on EOSIO and Hyperledger Fabric in 

addition to Ethereum because these DLT protocols are 

frequently used in organizational contexts and allow for 

insights into three distinct smart contract integration 

concepts. 

In the fourth iteration, we conducted nine semi-

structured interviews [59] with DLT experts (see Table 4 for 

an overview). We again prepared a guide [62] to structure 

the interviews. In particular, we asked whether the 

identified challenges and solutions are relevant and 

applicable to other ledgers. All interviews were performed 

via video conference tools between December 2020 and 

February 2021 and were recorded with the permission of 

participants. The average interview time was 63 minutes. 

The researcher who carried out the interview took notes on 

each challenge and solution discussed with the interview 

partner during the interview. 

After each interview, we analyzed the field notes and 

compared them to our intermediate findings from the third 

iteration. We enriched our theme descriptions, renamed 

themes and challenges suggested by the interviewees, 

added novel challenges and solutions, and added ledger-

specifics to each challenge and solution description. The 

analyses results confirmed the three principal challenge 

origins and led to refinements of the associated sub-

themes. More importantly, we were able to identify novel 

challenges and solutions by comparing challenges and 

solutions across ledgers and by considering ledger 

specifics. For example, we identified the challenge of 
nondeterministic behavior that only applies to smart 

contracts developed in Go. By finishing the fourth iteration, 

we identified 29 challenges and 60 solutions.  

To ensure that we identified a reliable set of challenges 

and solutions, we followed researchers stressing that an 

important goal is to reach theoretical saturation in 

qualitative research [64]–[66]. Theoretical saturation is 

often taken to indicate that further data collection or 

analysis is unnecessary based on the data analyzed hitherto 

because it is unlikely that further data collection will 

generate new findings [67], [68].  

We first looked at our literature review protocols, 

revealing that our literature analysis did not reveal new 

challenges or solutions since the last twelve analyzed 

documents. Similarly, we asked our interviewees during our 

fourth iteration if they knew of any further challenges or 

TABLE 4 
OVERVIEW OF INTERVIEWEES’ DEMOGRAPHICS 

 Iteration 2 Iteration 4 

Number of Experts 5 9 

DLT Expertise Ethereum Ethereum, EOSIO, 
Hyperledger Fabric 

Average Software Engineering 
Experience, in years 

3.9 9.1 

Average Smart Contract 
Development Experience, in 
years 

2.9 3.2 

Industry Energy, IT Automotive, Energy, IT 
 

TABLE 5 
PRINCIPAL ORIGINS THAT CAN CAUSE CHALLENGES IN SMART 

CONTRACT DEVELOPMENT 

Component Description 

Platform The protocol put in place to manage the 
interactions between nodes and define the 
procedures for the issuance, verification, and 
storage of transactions 

Programming 
Language & Execution 
Environment 

The capabilities offered to develop smart 
contracts and execute them via the distributed 
ledger 

Coding Practice The development activities to achieve a specified 
outcome in the form of a smart contract 
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solutions that had not been discussed so far during the 

interviews. We sent our manuscript to the interviewees 

after finishing the writing to ask them once more if they 

had any challenge or solution to add. In both cases, the 

interviewees agreed that they were not aware of further 

challenges and solutions to the best of their knowledge. 

Consequently, we are confident that we have reached at 

least a sufficient degree of theoretical saturation after 

completing our fourth iteration. 

3.2 Generating and Evaluating Software Design 
Patterns 

3.2.1 Generation of SDP 

By performing multiple iterations of data gathering and 

analysis, we were able to identify 29 challenges and 60 

solutions. However, details of proposed solutions in general 

and SDPs in particular are often missing, such as the 

problem context and resulting context, which have been 

requested by existing research (e.g., [31]–[33]). This lack of 

information not only hinders practical applicability by 

developers in day-to-day operations, but also hampers the 

adjustment of their programming habits. To counteract 

these issues, we next transferred the identified solutions 

into SDP as actionable means. 

 

Selection of Solutions as a Base for SDPs. Given the high 

quantity and diversity of solutions, we first selected a set of 

solutions as a base for developing SDPs. On the one hand, 

we derived an SDP for a solution if (1) an SDP had been 

proposed by prior research; (2) a problem kept recurring in 

specific nonarbitrary contexts; (3) sufficient information 

was available to describe the SDP in detail 

(e.g., information gained from interviewees or studies); or 

(4) interviewees called for the development of SDPs and 

stressed their relevance and potential contribution. On the 

other hand, we particularly refrained from developing SDPs 

for a solution if they were (1) trivial (e.g., solution S.10.1 
Read the Documentations); (2) only applicable on a limited 

scale (e.g., challenge C.13 Non-deterministic Behavior 
applies to smart contracts developed in Go only); or (3) on 

a very low abstraction degree that prevents generalization 

(e.g., solution S.21.1 recommending the usage of data type 

bytes over byte[]). After applying these selection criteria, 

we decided to develop 20 SDPs related to various 

challenges and solutions (see Table 6). 

 

SDP Generation. To generate SDPs, we followed existing 

research providing common pattern structures [31]–[33], 

comprising a name, context, problem, forces, solution, 

examples, resulting context, rationale, related patterns, and 

known uses of a pattern. For each pattern, we carefully 

specified each structural dimension based on extant 

research, interview findings, our own experiences, and 

prototypical instantiations, as outlined below. 

First, for each SDP we defined a meaningful name [33]. If 

it was suitable, we aligned the naming of the derived smart 

contract SDP with the naming of common SDPs in 

traditional software engineering (e.g., Façade Pattern or 

Proxy Pattern). In the results section, we refer to these 

names but cite the original documents in which we found 

a similar solution. We also adapted our SDP names based 

on the feedback gained throughout the interviews to 

increase their comprehensibility and align our wording with 

the terms used in the software engineering community. For 

example, we renamed the Register Contract Pattern [9] the 

Observer Pattern. 

We next elaborated on the context that suggests SDPs’ 

applicability and in which a problem and its solution recur 

[33]. For each SDP, we discussed to which challenges and 

solutions the pattern relates. For example, we mapped the 

Checks-Effects-Interactions Pattern with challenge C.15 
Cross-Account Interactions and solution S.15.4 Instruction 
Order because the pattern can prevent reentrancy attacks. 
This mapping helped us to ground our SDP descriptions on 

extant research and interviewees' opinions. In addition, we 

discussed the applicability of the pattern to Ethereum, 

EOSIO, and Hyperledger Fabric.  

We then defined a problem that described the objectives 

to be achieved within the contexts by applying the SDP 

[33]. While typical pattern objectives relate to the 

mitigation of risks, such as those associated with the 

removal or deactivation of smart contracts with the 

Deactivation Pattern, we particularly considered problem 

specifics, such as pre-conditions and boundary conditions. 

We also reflected on whether the problem may appear in 

each DLT protocol because they differ in their smart 

contract integration concepts (see Table 1). For example, 

problems leading to challenge C.21 Data Type Complexity 
only relate to smart contracts based on Ethereum and 

EOSIO because they bind smart contract execution to 

resources (e.g., gas in Ethereum or time in EOSIO). 

Afterward, we specified forces that reveal the details of a 

problem and define the kinds of trade-offs that must be 

considered in the presence of the tension or dissonance 

they create [33], [69]. Forces commonly relate to the 

characteristics of an application, such as maintainability or 

response time. For example, the Token Pattern improves 

maintainability but comes at the cost of code efficiency as 

the number of required interactions increases. When 

describing the forces and constraints and how they 

interact, we considered the objectives to be achieved when 

using the SDP. Analyzing potential forces also supported 

us in comparing different solutions and their 

appropriateness for use in the pattern. 

Next, we focused on describing a solution that includes 

static relationships and dynamic rules to realize the desired 

outcome [33]. To define an appropriate solution 

(i.e., fulfilling the SDPs’ objectives while considering the 

forces), we went back to the data gathered through 

identifying and synthesizing challenges and solutions and 

compared proposed solutions for a given challenge. For 

example, prior research proposes using the Oracle Pattern 

whenever external data or real-world data is required by a 

smart contract [70], [71]. We synthesized information 

about oracles to come up with a solution for our SDP. We 

also coped with opposing views and research findings. For 

example, prior research provides different means to tackle 

the challenge C.4 Randomness, whereas some of these 

means have been later proven to expose flaws 

(e.g., dependence on blockchain properties to generate 
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random numbers, such as block hash values). If needed, we 

implemented solutions and tested them to ensure their 

correctness and to better describe their inner functioning.  

To increase the understandability and applicability, we 

added an example to each SDP [33]. The example shows a 

possible implementation of the solution. We took 

examples from extant research, GitHub and related smart 

contract repositories, interviewees’ suggestions, and 

developed and tested our own examples. To further 

support developers, we also provided antipattern examples 

to emphasize what typically goes wrong in smart contract 

development.  

As the next step, we defined the resulting context that 

describes the system state after applying a pattern [33]. For 

explaining the resulting context, we reflected on benefits 

(e.g., problems solved) and drawbacks 

(e.g., further challenges caused by the pattern utilization).  

To substantiate the solution, we provided a rationale 

concerned with justifying how and why the solution 

resolves its forces to align with the desired objectives and 

why it is suitable [33]. Since we built our SDPs on 

justificatory knowledge from extant research and 

practitioners’ expertise, we aimed to summarize the 

assumptions of why the SDP works as a solution. 

Since patterns often share common forces and a 

compatible initial or resulting context, we defined related 

patterns [33]. Related “patterns might be predecessor 

patterns whose application leads to this pattern; successor 

patterns whose application follows from this pattern; 

alternative patterns that describe a different solution to the 

same problem but under different forces and constraints; 

and codependent SDPs that may (or must) be applied 

simultaneously with this pattern” [33, p. 6]. Highlighting 

relations between patterns supports developers in 

selecting alternative solutions to a problem. For example, 

the Mutex Pattern can be used as an alternative to the 

Checks-Effects-Interactions Pattern to protect smart 

contracts from reentrancy attacks. 

To show that the SDP is an approved solution for a 

problem, we finally listed the known uses of an SDP in 

existing systems [33]. We searched smart contract 

databases (e.g., etherscan.io), developer repositories 

(e.g., GitHub), websites (e.g., Ethereum Name Service), and 

whitepapers and foundation blogs (e.g., Ethereum 

foundation blog) to identify known uses of SDPs.  

By applying this canonical structure to SDPs, we want to 

ease the understanding and usage of patterns for smart 

contract developers and overcome issues regarding 

pattern applicability in prior research. 

3.2.2 Derived Software Design Pattern Evaluation 

Whereas we built the SDPs on the data and findings from 

identifying and synthesizing challenges and solutions, we 

aimed to evaluate them to ensure correctness, 

comprehensibility, and practical applicability.  

 

SDP Evaluation Criteria Derivation. To evaluate our SDPs, 

we first defined a set of evaluation criteria. Therefore, we 

conducted a scoping literature review to identify quality 

criteria for SDPs to consider in the evaluation (see 

Appendix B). We particularly focused on the most cited 

scientific works on software design patterns in the English 

language. Eventually, we identified 12 particularly relevant 

documents on quality criteria for software design patterns 

(e.g., [72]–[75]). To synthesize quality criteria across these 

documents, two researchers read the relevant documents 

and independently analyzed their content following the 

open coding approach [63]. In total, the analysis revealed 

23 criteria for the evaluation of the SDPs. Based on the 

identified evaluation criteria, we created five groups to 

which we assigned the evaluation criteria: flexibility, 

outcome, pattern design, perception, and utilization. 

Flexibility refers to the range of applicability of an SDP. 

Outcome is about the results when a software design is 

applied. The structure of an SDP is discussed in the group 

pattern design. Perception considers the characteristics of 

users’ perceptions of an SDP. Utilization refers to the 

applicability of an SDP. Among the identified evaluation 

criteria, we found a subset of 12 evaluation criteria suitable 

for our evaluation. 

 

Evaluation Interviews. To evaluate the SDPs, we conducted 

a focus group workshop with four smart contract 

developers. First, we wrote a handout that included the 12 

suitable evaluation criteria and the 20 SDPs, which should 

be discussed considering these twelve evaluation criteria. 

For the evaluation, we organized two events: an 

introductory event and a focus group interview. In the 

introductory event, we discussed the handout with the four 

smart contract developers to familiarize them with the 

SDPs and let them share their initial thoughts. The 

developers had an average experience in developing smart 

contracts of 4.5 years. During the following week, the four 

smart contract developers individually familiarized 

themselves with the SDPs and took notes in their handouts. 

The participants sent us their notes on the SDPs before the 

second event to consolidate their feedback. Based on the 

participants’ feedback, we developed an interview guide 

for the semi-structured focus group workshop, as 

recommended in existing works [76], [77]. Next, we carried 

out a focus group workshop with three of the four smart 

contract developers. We discussed each SDP in detail 

during the workshop, elaborated on the feedback, and 

jointly improved the SDPs. We recorded the focus group 

workshop, subsequently transcribed the recordings, and 

analyzed the transcriptions by extracting improvements for 

the SDPs. We refined the SDPs accordingly and sent the 

revised SDPs to the fourth participant of the introductory 

event for an additional interview. We revised the SDPs 

again and sent the revised version to all four participants 

to gather additional comments. This final round of 

feedback comprised only minor issues, such as wording 

and description improvements. 

4 SMART CONTRACT DEVELOPMENT 

We identified three principal challenge origins in smart 

contract development that can make smart contracts prone 

to programming flaws (see Error! Reference source not 

found.): platform, programming language and execution 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3116808,
IEEE Transactions on Software Engineering

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2020-08-0333 

 

environment, and coding practice. Associated with the 

principal challenge origins, we revealed 11 sub-themes 

(e.g., confidentiality challenges and interoperability 

challenges), including 29 specific challenges and 60 

corresponding solutions (see Table 6), including 20 SDPs. In 

the following, we describe the three principal challenge 

origins and their subordinate 11 challenge themes. For 

each challenge theme, we describe the identified 

challenges (C) and discuss the corresponding solutions (S). 

If not mentioned, the identified solutions apply to 

blockchains based on Ethereum, EOSIO, and Hyperledger 

Fabric. If an SDP relates to a solution, we also briefly 

describe the SDP. For the complete description of the SDPs, 

please refer to Appendix C, D, and E or our GitHub 

repository.2 

4.1 Challenges Caused by the Platform 

The principal challenge of the origin platform refers to the 

protocol put in place to manage the interactions between 

nodes and to define the procedures for the issuance, 

verification, and storage of transactions. 

4.1.1 Confidentiality Challenges 

Challenges related to confidentiality can decrease the 

degree to which unauthorized access to information is 

prevented. 

 

(C.1) Code Visibility: The protection of the deployed smart 
contract code from being visible to entities with access to 
the distributed ledger. 

In DLT protocols, where multiple nodes execute smart 

contract code (e.g., Ethereum-based and EOSIO-based 

blockchains), smart contract logic is usually exposed to all 

entities operating these nodes. The visibility of code to 

these entities is particularly challenging for companies that 

have smart contract logic at the core of their business 

models and must keep this sensitive logic confidential. In 

addition, visibility of tamper-resistant code facilitates the 

identification of vulnerabilities and their exploitation. 

Challenges related to code confidentiality preservation 

apply to blockchains based on Ethereum or EOSIO. In 

Hyperledger Fabric, only nodes that must endorse a 

transaction store the respective chaincode. Still the 

following solutions also apply to blockchains based on 

Hyperledger Fabric. 

(S.1.1) Off-Ledger Computations: A solution to protect 

smart contract logic from being visible to all entities with 

access to the distributed ledger represents the deployment 

and execution of logic external to the distributed ledger 

(i.e., off-ledger) using an oracle (see Oracle Pattern) [70], 

[71]. Upon the invocation of a smart contract function, the 

smart contract can initiate a call to a service provided by 

the oracle. Before the called service invokes the callback 

function of the smart contract, the oracle must convert its 

response to a compatible data type. Otherwise, it can lead 

to asset loss. For example, Ethereum does not support 

decimal data types. Thus, oracles provide integer values to 

the smart contract to avoid truncation errors (see C.26 

Appropriate Data Type Use). The integration of oracles into 

smart contracts is especially challenging for DLT protocols 

that encapsulate smart contract execution, for example, 

Ethereum-based and EOSIO-based blockchains (see 

Encapsulation in Section 4.2.3). Using Hyperledger Fabric, 

oracles are accessible directly from the Docker container, 

where the chain code is executed. 

 

(C.2) Data Visibility: The protection of transaction data 
stored on a distributed ledger from being visible without 
authorization.  

In addition to smart contract bytecode, other transaction 

data (e.g., number of transferred assets) are commonly 

visible to entities that operate nodes. The broad visibility of 

data can violate data confidentiality. Still, visibility of data 

representing verifiable proofs for the happenings of events 

is important for the secure functioning of the DLT system. 

Protection of data visibility is challenging on blockchains 

based on Ethereum, EOSIO, and Hyperledger Fabric. 

(S.2.1) Data Encryption: A solution to protecting data 

from unauthorized reads is to encrypt the data prior to its 

submission to the DLT network [78], [79]. However, not all 

transaction data can be encrypted in transactions but only 

the payload data or even only parts of the payload data—

for example, if the transaction is to invoke a smart contract. 

(S.2.2) Commitment Pattern: To keep data secret for a 

particular time while binding an entity to that data 

(e.g., binding an entity to their bid value in a bet), the 

Commitment Pattern can be used [9]. The Commitment 
Pattern comprises a commitment phase and a reveal phase. 

In the commitment phase, each entity first individually 

specifies data (e.g., a result in a lottery) and a random 

nonce, concatenates these two values, and sends the hash 

values of the concatenated value and the nonce to a smart 

contract. The smart contract stores the hash values of the 

concatenation and the nonce in a tamper-resistant way. In 

the reveal phase, the entities send the plain values of the 

data and nonce to the smart contract. The smart contract 

checks whether the plain data and nonce match the 

corresponding hash values stored in the commit phase. If 

the check succeeds, the contract is executed and the plan 

values are visible to any other entity with access to the 

distributed ledger. 

(S.2.3) Off-Ledger Data Storage: Another solution to 

control data visibility is to store the data off-ledger using 

oracles (see Oracle Pattern). Sensitive data are managed by 

the oracle and are not stored in the distributed ledger. 

Smart contracts can request information related to data 

from the services offered by the oracle. On oracles, data 

confidentiality can be improved by using trusted execution 

environments (e.g., Intel SGX in Town Crier [80]). Although 

keeping data off-ledger is most effective for protecting 

data confidentiality, the use of oracles in smart contracts of 

distributed ledgers with strong requirements for 

determinism (e.g., EOS and Ethereum) can be challenging 

because of the typically encapsulated smart contract 

execution environment. Moreover, oracles can represent a 

cause of nondeterminism when providing different data to 

smart contracts. 
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(S.2.4) Multi-Ledger Network: To keep data 

confidentially stored in a distributed ledger, multiple 

private blockchains can be operated on the same 

infrastructure. For this purpose, Hyperledger Fabric offers 

to set up channels between specified consortium members. 

Only channel members can interact with the corresponding 

blockchain. However, interactions between smart contracts 

of different channels are hardly possible in Hyperledger 

Fabric [52] and thus can exhibit a hurdle for applications. 

Ethereum and EOSIO do not offer channels like 

Hyperledger Fabric. 

(S.2.5) Front-Running Prevention: Transaction payload 

visibility can cause vulnerabilities to front-running in 

Ethereum [81]. In front-running, a transaction T1 is sent; an 

TABLE 6 
OVERVIEW OF IDENTIFIED CHALLENGES AND CORRESPONDING SOLUTIONS IN SMART CONTRACT DEVELOPMENT 

      DLT Protocol 

Origin Challenge Solution Software Design Pattern2 EOSIO Ethereum HLF 

P
la

tf
o

rm
 

C.1: Code Visibility S.1.1: Off-Ledger Computations Oracle Pattern X X X 

C.2: Data Visibility S.2.1: Data Encryption - X X X 

S.2.2: Commitment Scheme Commitment Pattern X X X 

S.2.3: Off-Ledger Data Storage Oracle Pattern X X X 

S.2.4: Multi-Ledger Network -  
  

X 

S.2.5: Front-Running Prevention Commitment Pattern 
 

X 
 

S.2.6: Private Data Collections -  
  

X 

C.3: Pseudonymity S.3.1: Identity Service Identity-Service Pattern X X 
 

C.4: Randomness S.4.1: Centralized Randomness Generator Oracle Pattern X X X 

S.4.2: Decentralized Randomness Generator Commitment Pattern X X X 

C.5: Transaction-Ordering 

Dependence 

S.5.1: Target-State Definition Event-Ordering Pattern X X X 

C.6: Code Discoverability S.6.1: Name Service Name-Service Pattern 
 

X 
 

C.7: Code Updatability S.7.1: Separation of Concerns Token Pattern 
 

X 
 

S.7.2: Observation of Addresses Observer Pattern 
 

X 
 

S.7.3: Static Entry Point Proxy Pattern 
 

X 
 

S.7.4: Static Entry Point with Additional Logic Façade Pattern 
 

X 
 

C.8: Execution Restriction S.8.1: Visibility Declaration -  X X X 

S.8.2: Account-based Authorization Guarding Pattern X X X 

S.8.3: State-based Authorization Event-Ordering Pattern X X X 

S.8.4: Provisional Authorization - X X X 

S.8.5: Time-based Authorization - X X X 

S.8.6: Smart Contract Deactivation Deactivation Pattern 
 

X 
 

C.9: Resource Management S.9.1: Pull-over-Push Pull Pattern 
 

X 
 

S.9.2: Continuable Loop Indexed-Loop Pattern X X 
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C.10: Undefined Behavior S.10.1: Read the Documentations -  X X X 

C.11: Arithmetic Operations S.11.1: Fixed-Point Arithmetic - 
 

X 
 

C.12: Concurrency S.12.1: Synchronization - 
  

X 

C.13: Non-deterministic Behavior S.13.1: Cautious Use of Range Iterations - 
  

X 

C.14: Conformity to  

Expectations 

S.14.1: Data Type Selection -  X X 
 

S.14.2: Data Type Conversions - X X 
 

C.15: Cross-Account Interactions S.15.1: Contract Availability Check External Call Pattern 
 

X 
 

S.15.2: Gas Limit Specification - 
 

X 
 

S.15.3: Check Return Values Error-Handling Pattern 
 

X 
 

S.15.4: Instruction Order Checks-Effects-Interactions 

Pattern 

 
X 

 

S.15.5: Execution Locking Mutex Pattern 
 

X 
 

C.16: Encapsulation S.16.1: Push Oracle -  X X 
 

S.16.2: Pull Oracle Oracle Pattern X X 
 

S.16.3: Decentralized Pull Oracle Oracle Pattern X X X 

C.17: Error Handling S.17.1: Isolate Calls Façade Pattern  X  

C.18: Programming Language 

Concept Compliance 

S.18.1: Cautious Use - X X X 

C.19: Iteration through Data Structures S.19.1: Auxiliary Data Structures - X X X 

X: Challenge and solution apply to DLT protocol HLF: Hyperledger Fabric 
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adversary reads T1, creates a concurrent transaction T2, and 

sends T2 with the goal that T2 executes the smart contract 

before T1 to realize a particular benefit. Countering front-

running is highly specific to smart contract logic [82]. Still, 

there are different ways to mitigate front-running. First, 

developers should minimize the profitability of front-

running. Second, a pre-commitment scheme similar to the 

Commitment Pattern can be used, where entities first 

announce the use of a functionality before calling it [82]. 

(S.2.6) Private Data Collections: To keep data secret while 

allowing nodes in a channel to see that a transaction 

happened, Hyperledger Fabric offers private data 

collections [83], [84]. Only a defined subset of nodes in a 

channel can endorse, commit, or query the data of private 

collections. Private data are stored in a separate and private 

state database on authorized peers. The state database can 

be accessed via chaincode. Transactions involving private 

data store the hash value of the used data on the 

blockchain so that nodes can check if a state between 

members exists. 

 

(C.3) Pseudonymity: The hurdles related to the verification 
of identity attributes of real-world entities. 

Pseudonymity can cause challenges related to 

accountability and liability because the actual entities 

remain unknown [7]. Pseudonyms are hard to associate 

with corresponding real-world entities, especially in public 

instances of EOSIO-based or Ethereum-based blockchains. 

In Hyperledger Fabric, the membership service enables the 

identification of entities associated with pseudonyms [85]. 

 

(S.3.1) Identity Service: To manage entities’ digital 

identities and their associated pseudonyms, prior research 

has proposed implementations for decentralized identity 

management (e.g., [86]–[88]). In these implementations, an 

identity publishes personal information about itself in a 

decentralized identifier (DID) document and stores the 

hash value of the DID document on a distributed ledger so 

that the integrity of the DID document is provable. Real 

entities can confirm or deny the information contained in 

the DID document by issuing transactions with verifiable 

claims that reference the associated DID. Verifiable claims 

consist of an assertion to express an affirmation or denial 

of the information in the DID document and an attestation 

to make the claim verifiable. The more verifiable claims that 

exist per DID document, the likelier it is that the 

information contained is accurate [86], [88]. 

4.1.2 Determinism Challenges 

Challenges related to determinism hinder nodes in a DLT 

network from computing consistent results by following 

the same protocol. 

 

(C.4) Randomness: The difficulties of using secure random 
values in smart contracts. 

Random value generation is challenging in blockchains 

based on Ethereum, EOSIO, and Hyperledger Fabric due to 

two main causes. First, nodes in DLT networks 

independently execute smart contracts in a distributed 

manner. Nonetheless, all nodes must generate equal 

random values to preserve determinism [21], [89]. In 

blockchains based on Hyperledger Fabric, the generation 

of equal random numbers can be relevant to fulfilling the 

TABLE 6 (continued) 
OVERVIEW OF IDENTIFIED CHALLENGES AND CORRESPONDING SOLUTIONS IN SMART CONTRACT DEVELOPMENT 

      DLT Protocol 

Origin Challenge Solution Software Design Pattern EOSIO Ethereum HLF 

C
o

d
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g 
P

ra
ct
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e

 

C20: Data Storage S.20.1: Off-Ledger Storage Oracle Pattern X X  

S.20.2: Store Data in Logs -  X  

C21: Data Type Complexity S.21.1: bytes over byte[] -  X  

S.21.2: Array Replacement  -  X  

S.21.3: string Avoidance - X   

C22: Under-optimized Code S.22.1: Constants - X X X 

S.22.2: Code Optimization - X X X 

S.22.3: Shadowing -  X  

C23: Required Interactions S.23.1: Automated Deployment Factory Pattern  X  

C24: Readability S.24.1: Style Guide Conformity - X X X 

C25: Ease of Code Reuse S.25.1: Documentation - X X X 

C26: Appropriate Data Type Use S.26.1: Integer Overflow and Underflow 
Handling 

Overflow/Underflow 
Pattern 

 X  

C27: Semantic Soundness S.27.1: Argument Sanitization - X X X 

S.27.2: Protection from Replay Attacks Replay-Protection Pattern X X  

S.27.3: Fake-EOS Transfer Protection - X   

S.27.4: Fake-EOS Notice Protection - X   

S.27.5: Read-Your-Writes (RYW) Consistency -   X 

C28: Technical Soundness S.28.1: Fixed Compiler Version - X X X 

C29: Smart Contract API Conformity S.29.1: Ethereum Request for Comments -  X  

   ∑Challenges;∑Solutions  22;33 26;52 16;2

7 

X: Challenge and solution apply to DLT protocol  HLF: Hyperledger Fabric 
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individual endorsement policy [90], [91]. In blockchains 

based on Ethereum and EOSIO that use an order-execute 

architecture, nondeterminism may cause a consensus to be 

unreachable [55]. Second, high entropy 

(i.e., unpredictability and bias-resistance) regarding 

random value generation is fundamental to achieving a 

high level of security but challenging to achieve. 

Environmental variables (e.g., nodes’ local timestamps and 

block hash values; see Fig. 1) should not be used for 

random value generation because they are predictable or 

biasable by nodes [89], [92], [93]. Seeds cannot be stored 

in smart contracts deployed to EOSIO-based or Ethereum-

based blockchains because they cannot be kept secret 

(see C.1 Data Visibility). Reaching high entropy in random 

value generation is also challenging in Hyperledger Fabric. 

(S.4.1) Centralized Randomness Generator: To enable 

randomness in distributed systems while achieving 

determinism, developers can use oracles (e.g., [94], [95]) 

like beacons [92], [96] (i.e., services that emit new random 

data called beacon records at a regular rate) or other 

distributed ledgers [92]. Beacons (e.g., the NIST beacon 

service) offer a simple way to integrate random number 

generation into smart contracts, using the Oracle Pattern 

for implementation. Nonetheless, beacons can centralize 

DLT applications and can be prone to manipulation. 

Moreover, values of beacons that periodically change the 

delivered random values can be reused by multiple smart 

contracts, and can be exploited by adversaries that first 

retrieve the random value and use it in an attack until the 

next random value is generated by the beacon [97]. 

(S.4.2) Decentralized Randomness Generator: For 

decentralized randomness generation, the Commitment 
Pattern can be used. In the commit phase, multiple entities 

send hash values h(se) of secretly generated random values 

s to the Randomness Contract. The Randomness Contract 

stores h(se) of authorized entities 𝑒 ∈ 𝐸, where 𝐸 is the set 

of entities registered with the Randomness Contract. In the 

reveal phase, the entities submit the preimage s to the 

Randomness Contract. To generate a random number, the 

Randomness Contract can calculate the XOR result of all 

submitted preimages as a random value [98]. This 

approach can be modified by requiring each entity to send 

coordinates of a point in a 2D-matrix instead of random 

numbers. Then, the Randomness Contract calculates the 

polynomial f(x) from all coordinates using barycentric 

Lagrange interpolation. The Y-axis value in f(x) represents 

the random number [99]. The decentralized randomness 

solution avoids single points of failure but requires each 

entity to interact with the Randomness Contract two times. 

Thus, the decentralized randomness solution increases the 

cost and time required for random value generation. 

Moreover, the last entity sending the plain value can 

already predict the random number, which can cause 

vulnerabilities. 

 

To the best of our knowledge, there are still no 

established best practices for randomness generation in 

Ethereum-based and EOSIO-based blockchains. When 

choosing a solution, developers should estimate the cost 

(e.g., computational resources) of predicting or biasing the 

outcome of random number generation, and in parallel 

consider the gains to an attacker. 

 

(C.5) Transaction-Ordering Dependence: The dependence 
of smart contract logic on the processing order of 
transactions. 

In blockchains based on Ethereum, EOSIO, and 

Hyperledger Fabric, transactions have counters per address 

so that all transactions issued by an account are processed 

in a defined order. Transactions issued by multiple 

accounts can be imagined as concurrent processes [37], 

making smart contracts vulnerable when relying on a 

particular transaction order. This class of vulnerabilities is 

caused by transaction order dependence [7], [100], [101]. 

Since nodes individually determine the order in which 

transactions from different accounts are processed, the 

state in which a smart contract is executed by a particular 

transaction is unpredictable [102]. Moreover, transaction-

ordering dependence favors successful replay attacks 

(see S.27.2 Protection from Replay Attacks). This challenge 

also applies to Hyperledger Fabric [50], [103]. 

(S.5.1) Target-State Definition: To counter transaction-

ordering vulnerabilities, linearizability and synchronization 

need to be ensured to guarantee that either the invocation 

of a function fails or terminates successfully [104]. In 

accordance with the finite state machine model, function 

calls can be represented as state transitions. To allow for 

state transitions only in an intended order, the Event-
Ordering Pattern recommends implementing checks that 

only allow for the execution of functions from specified 

states [102]. In the Event-Ordering Pattern, transactions 

sent to a smart contract carry a nonce that represents the 

state in which the contract should be executed. Functions 

of the target smart contract are guarded by checks that 

deny function execution if the nonce carried in the 

transaction does not match the current nonce stored in the 

contract. After each successful function execution, the 

nonce is changed by the smart contract. 

 

 

Fig. 1: Insecure examples of implementation for random number 
generation on a distributed ledger. Both examples allow us to predict 
and bias random number generation. Do not use these examples in 
your productive smart contracts. 
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pragma solidity >=0.5.0 <0.7.0;

import "Math.sol";

contract InsecureRandomness2 {

uint256 seed = 1;

function random() private view returns (uint8) {

uint256 x = Math.sin(seed++) * 10000;

return x - Math.floor(x);

}

}
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pragma solidity >=0.6.6 <0.7.0;

contract InsecureRandomness1 {

function random() public view returns (uint256) {

bytes32 hash = blockhash(block.number - 5);

uint256 random_number = uint(hash) % 10 + 1;

return random_number;

}

}
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4.1.3 Maintainability Challenges 

Maintainability challenges deteriorate the ease with which 

deployed smart contract code can be updated, for 

example, to add functionality, correct flaws, or improve 

code efficiency. 

 

(C.6) Code Discoverability: The difficulty of finding smart 
contracts deployed on a distributed ledger. 

Since the deployment of code costs resources (e.g., gas 

in Ethereum), it is reasonable to use existing contracts or 

libraries. However, it is not easy to discover them in 

blockchains, where smart contract addresses are hard to 

read and not intuitive (e.g., because they are represented 

as hexadecimals). EOSIO overcomes this challenge by 

offering entities the ability to define a human-readable 

name for their account. In Hyperledger Fabric, all 

organizations that execute a smart contract on their nodes 

must manually deploy these contracts and thus are aware 

of the contract names and where to discover the smart 

contract code. 

(S.6.1) Name Service: While EOSIO offers the definition 

of human-readable account names associated with a smart 

contract [11], the addresses of Ethereum accounts are 

represented by hexadecimals, which are not intuitive for 

humans to read and recall. To easily look up smart 

contracts, the use of concise names instead of smart 

contract addresses is promising. This solution is not 

necessary in Hyperledger Fabric because all entities know 

all the IDs of the required smart contracts. 

To use names instead of smart contract addresses, a 

Registry Contract can be put in between smart contracts to 

handle their interactions (see Name-Service Pattern) [26]. 

Smart contracts can be registered at the Registry Contract, 

which assigns a unique, user-defined name to a smart 

contract address or function. Thereby, the address of the 

latest smart contract version can be looked up. 

 

(C.7) Code Updatability: The limitations in changing code 
of deployed smart contracts. 

After smart contract bytecode is deployed to Ethereum-

based blockchains, tamper resistance of the blockchain 

decreases maintainability of the deployed contracts for 

corrective, adaptive, perfective, and preventive 

maintenance [105]. If the smart contract code is to be 

updated, the deprecated version should be deactivated 

(e.g., using selfdestruct(…) in Ethereum smart contracts 

or the Deactivation Pattern), and the current contract 

version should be deployed. To favor maintainability of 

tamper-resistant code, developers should strictly apply a 

separation of concerns and the implementation of 

mechanisms that ease maintenance (see Façade Pattern 

and Proxy Pattern). Challenges and solutions that relate to 

code updateability apply to Ethereum-based blockchains. 

Smart contracts deployed to blockchains based on EOSIO 

or Hyperledger Fabric are not stored in a tamper-resistant 

manner and can be updated after deployment. 

(S.7.1) Separation of Concerns: To improve code 

updatability, smart contracts can be modularized to 

decouple the application logic from data. In this notion, the 

Token Pattern separates data (i.e., tokens, balances, and 

their associated account mapping) stored in a Token 

Contract from the application logic in a Logic Contract. 

While the Token Contract provides data about an account’s 

balances without depending on the application using the 

tokens [106], [107], the Logic Contract serves as an entry 

point for interactions with the Token Contract. The Logic 

Contract can be easily replaced with another version. 

(S.7.2) Observation of Addresses: If multiple smart 

contracts interact with one smart contracts (e.g., a Token 

Contract), developers can implement an Observer Contract 

(see Observer Pattern) [108]. Caller Contracts call Target 

Contracts. The Caller Contracts register with the Observer 

Contract and subscribe to address updates of Target 

Contracts. A developer informs the Observer Contract 

about an update of a Target Contract by sending the Target 

Contract’s new address to the Observer Contract. The 

Observer Contract notifies all Caller Contracts about the 

new Target Contract address, and the Caller Contracts 

update the new address accordingly. This SDP promises 

increased efficiency in updating multiple smart contracts. 

However, it might become costly (e.g., in terms of gas) 

when many Caller Contracts are called to update the Target 

Contract address. Since this cost must be taken by the 

developer initiating the update, this approach is suitable 

for updating smart contracts that are part of a project. 

(S.7.3) Static Entry Point: An alternative and less costly 

approach is to implement a Proxy Contract with a static 

address that points to the latest version of a target smart 

contract and has a similar interface to the target smart 

contract (see Proxy Pattern) [9], [107]. All function calls are 

made to the Proxy Contract, which forwards the calls to the 

corresponding function of the target smart contract. If the 

Target Contract’s address changes after an update, only the 

Proxy Contract must be updated. 

To update the address of imported libraries in deployed 

smart contracts, the use of proxy libraries has been 

proposed as a workaround [109], which follows a similar 

concept as the Proxy Pattern. When implementing proxy 

libraries, a regular smart contract is used as a dispatcher to 

communicate with target libraries. The individual addresses 

of the libraries can be updated in a storage contract called 

by the dispatcher. Smart contracts that use a library make 

a delegatecall to the dispatcher contracts, which calls the 

respective libraries in another delegatecall. 

(S.7.4) Static Entry Point with Additional Logic: To allow 

for a rigorous separation of concerns by using different 

smart contracts while keeping the interaction with the 

separate contracts simple, the Façade Pattern can be used 
[9]. In the Façade Pattern, a Façade Contract serves as a 

unified interface that manages the interaction with multiple 

smart contracts. The Façade Contract has functions 

implemented that facilitate calls to a sequence of external 

smart contract functions of different smart contracts and 

handles errors. Thus, the Façade Contract can manage the 

execution of different modules of an application logic 

implemented in separate smart contracts. All smart 

contract addresses registered with the Façade Contract are 

updatable independently. 

Although these mechanisms offer different ways to make 

smart contracts maintainable, it is important to consider 
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that the tamper resistance of smart contracts is a unique 

DLT characteristic and an anchor of trust into reliable 

enforcement of agreements, which should not be 

mitigated by exhaustive maintainability of smart contracts. 

4.1.4 Regulated Executability Challenges 

Challenges concerning regulated executability impact the 

mechanisms put in place to regulate the execution of smart 

contract code. 

 

(C.8) Execution Restriction: The undesired executability of 
smart contract functions by entities that can interact with 
the distributed ledger.  

In several distributed ledgers (e.g., Ethereum and EOS), 

smart contracts are exposed to all nodes in a DLT network. 

Thus, contracts can become subject to undesired function 

calls. For example, undesired function calls to the 

selfdestruct(address a) function in Ethereum smart 

contracts are of particular criticality, as seen in the Parity 
hack [13], [110]. After selfdestruct(address a) is 

executed, all balances kept by the smart contract account 

are transferred to a. Then, the smart contract is locked and 

cannot be executed anymore. 

(S.8.1) Visibility Declaration: Developers should carefully 

declare whether functions should be callable by the 

identities of the distributed ledger (e.g., using external in 

Solidity [111]) or only by the smart contract itself or in its 

execution context (e.g., declaring a function’s visibility 

private in Solidity) [112], [113]. 

(S.8.2) Identity-based Authorization: To prevent 

unauthorized execution of smart contract functions, 

functions can be guarded by authorization checks that 

ensure that only specified accounts can execute functions 

in the intended context [9], [102], [106]. Therefore, function 

execution can be restricted to specific accounts [106], [108]. 

Despite different implementations for account-based 

authorization, these approaches follow a similar structure: 

when a function is called, the identity is authenticated, and 

its permission for the function execution is checked for 

authorization (see Guarding Pattern). In EOSIO, entities 

manage permissions via authorization tables. In 

authorization tables, the eosio.code permission is of 

particular importance because all entities whose accounts 

have the eosio.code permission can transfer assets from 

that account [11]. In Ethereum smart contracts, developers 

should use msg.sender to identify the account that issued 

the original transaction for a function call, especially when 

smart contracts make external calls [89]. In EOSIO, identity-

based authorization per function is at the core of the DLT 

protocol, and developers must use the authority table that 

corresponds to their smart contracts to specify permissions 

of accounts [46]. In Hyperledger Fabric, identity-based 

authorization is largely managed via the definition of 

endorsing peer nodes in the chaincode. 

(S.8.3) State-based Authorization: Functions can be 

protected by ensuring that accounts can only execute 

functions in a particular state using the Event-Ordering 
Pattern [9], [102], [106]. In the Event-Ordering Pattern, a 

state variable s is defined and initialized with a nonce. The 

value of s indicates a particular state of the smart contract 

and is changed after each successful function call 

associated with the state transition of the smart contract. 

To successfully execute a function, the transaction invoking 

the function must pass the current value of s as an 

argument. Otherwise, the function invocation is denied. 

(S.8.4) Provisional Authorization: Function execution can 

be restricted to entities knowing a certain secret 

(e.g., secret preimage of a hash [108]). For provisional 

authorization, hash values can be stored in a smart 

contract. For function invocations, entities must pass the 

preimage of a stored hash value to the smart contract. If 

the hash value of the preimage included in the transaction 

matches the stored hash value required for authorization, 

the function call proceeds. Otherwise, the call is denied. 

Each hash value must only be used for a single 

authorization because the preimages in the transactions 

are publicly visible. Nonetheless, this solution is prone to 

front running and needs additional protection [82]. For 

example, accounts can be associated with individual hash 

values, and hash values can only be used for authorization 

when the transaction is sent from the associated accounts. 

(S.8.5) Time-based Authorization: Function execution 

can be restricted to time intervals (i.e., speed bump [8] or 

automatic depreciation [9]) to prevent a rush of 

transactions. Whenever a target smart contract receives a 

transaction, it first checks whether the timestamp of the 

transaction issuance is within the period that allows the 

execution of a smart contract function. Otherwise, the 

smart contract denies the call. When using this solution, 

developers should be aware of the degree to which nodes’ 

local timestamps can be manipulated. 

(S.8.6) Smart Contract Deactivation: In Ethereum, smart 

contracts can be disabled using selfdestruct(…) or 

deactivated (see Deactivation Pattern). If a smart contract 

is disabled, all asset transfers to the contract’s account will 

get lost [114]. Instead of disabling a contract, developers 

can deactivate the contract by changing the value of an 

internal state variable. After the value is changed to 

deactivated, all incoming requests will be reverted. 

Thereby, no assets will get lost in regular asset transfer to 

a deactivated smart contract account, but the contract is 

still not usable anymore [114]. Regular means that assets 

are not transferred in the context of executing 

selfdestruct (…) in the caller Ethereum smart contracts. 

 

(C.9) Resource Management: The limitations regarding the 
execution of smart contract functions caused by the 
corresponding allocation and revocation of computational 
resources by control mechanisms put in place. 

The mechanisms to guarantee the termination of smart 

contracts mostly limit smart contract execution by a 

specific resource, such as gas in Ethereum or execution 

time in EOSIO. After the resource is consumed, the 

execution is aborted. The abortion of function execution 

can cause denial of service, for example, in unbounded 

mass operations. Unbounded mass operations can occur, 

for example, when entities can add new addresses to the 

balanceList array in the Ethereum smart contract 

illustrated in Figure 2. Addresses kept in the balanceList 

array are used for payouts initiated by calling the payout() 
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function. While looping through the balanceList array, the 

execution may run out of gas or exceed the block gas limit 

in Ethereum. Accordingly, the transaction is reverted, and 

the address kept in the balanceList array will receive 

payments leading to denial of service [14], [20], [115]. 

Challenges related to resource management apply to 

Ethereum-based and EOSIO-based blockchains [14], [44], 

[116], [117]. In Ethereum, unlike Solidity, Vyper defines an 

upper bound on gas consumption per function call to 

prevent DoS from operations on unbounded data 

structures [115]. 

(S.9.1) Pull-over-Push: To counter challenges caused by 

unbounded mass operations on EOSIO-based and 

Ethereum-based blockchains, developers can use pull 

mechanisms (see Pull Pattern). Pull mechanisms require 

every entity to call the smart contract themselves, for 

example to receive payments via payout(). This way, the 

account the transaction has been issued from only pays gas 

for their own payouts. Although the Pull Pattern is 

especially proposed for payments, it also applies to other 

unbounded data operations [14]. However, pull payments 

can decrease the utility of DLT applications because each 

account must individually invoke the smart contract. 

(S.9.2) Continuable Loop: If loops over unbounded arrays 

cannot be avoided, developers should keep track of the 

progress inside the loop. This allows the loop to continue 

in the next call at the last entry before the iterations are 

aborted [14]. To make the execution of a loop continuable, 

an index pointing to the index of the last successful 

iteration can be used (see Indexed-Loop Pattern). When 

resuming the loop, it continues at the entry after the last 

successful iteration. 

4.2 Challenges Caused by the Programming 
Language & Execution Environment 

Challenges related to an offered programming language 

and execution environment for smart contracts refer to the 

limitations and shortcomings of the technical conditions 

offered to develop and execute smart contracts. 

 

 

4.2.1 Language Definition Completeness 
Challenges 

Challenges pertaining to language definition completeness 

relate to the incomplete coverage of a formal model in the 

definition of a programming language and the resulting 

undefined behaviors of smart contracts. 

 

(C.10) Undefined Behavior: The shortcomings in the 
specification of the behavior of a programming language. 

Undefined behavior of a smart contract occurs when a 

language’s definition of particular operations is ambiguous 

or non-existent, and the smart contract relies on these 

underspecified operations, altering its actual semantic 

intent at compile time [118]. In Solidity, for example, the 

order in which expressions are evaluated in the same 

statement is not specified [111]. 

(S.10.1) Read the Documentations: Undefined behavior 

can have individual effects on smart contract execution 

depending on the specific implementation. Developers 

should be aware of ambiguous or missing language 

definitions to avoid unexpected program flow. 

4.2.2 Theoretical Expressiveness Challenges 

Challenges related to theoretical expressiveness are 

concerned with the lack of functional capabilities offered 

by a programming language or its execution environment. 

 

(C.11) Arithmetic Operations: The limitations and 
vulnerabilities related to using arithmetic operations. 

Arithmetic operations can lead to truncation errors or 

undefined behavior that can result in the loss of assets. 

Truncation errors can occur in Solidity, for example, when 

dividing numeric values because Solidity only supports 

integer values. Challenges related to arithmetic operations 

apply primarily to Solidity and EVM, which do not natively 

support floating-point data types [43]. EOSIO uses softfloat 
from the IEEE-754 float-point arithmetic [43] supporting 

deterministic rounding behavior. In Hyperledger Fabric, 

arithmetic operations offered by supported programming 

languages can be used because nondeterministic behavior 

is filtered by applying endorsement policies. 

(S.11.1) Fixed-Point Arithmetic: Developers can use 

fixed-point arithmetic to avoid truncation errors to a 

certain extant [119], [120]. To express a fixed-point number, 

developers must specify a fixed number of digits after the 

decimal point. When using this solution, developers must 

consider interactions with the smart contract with other 

contracts or oracles and convert numeric values according 

to the individual specifications. As an alternative to Solidity, 

Vyper supports decimal fixed point numbers [121]. Still, 

fixed-point arithmetic can be prone to truncation errors 

when not handled appropriately. 

 

(C.12) Concurrency: The protection from nondeterministic 
behavior caused by code that is executed with time 
overlaps. 

In addition to the concurrency between transactions of 

different accounts regarding their processing order (see C5 
Transaction-Ordering Dependence), concurrency can occur 

during the execution of smart contracts causing 

nondeterminism. Concurrency is a challenge in 

Hyperledger Fabric smart contracts that are programmed 

in Go [7]. Go is designed for parallel execution and 

Figure 2: Example of an unbounded data structure in Solidity that 

may run into an infinite loop because of an integer overflow. 
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pragma solidity >=0.5.0 <0.7.0;

contract Overflow {

address[] balanceList;

mapping(address => uint256) balances;

// Your code including a function to add addresses

function payout() {

for (unit8 i = 0; i < balanceList.length; i++) {

if(balances[balanceList[i]] > 0) {

uint8 balance = balance[balanceList[i]];

balances[balanceList[i]] = 0;

balanceList[i].transfer(balance);

}

}

}

}
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supports concurrent execution using goroutines, which are 

functions that run concurrently with other functions. 

Concurrency is not a challenge in EOSIO-based and 

Ethereum-based blockchains using the EOSVM or the EVM. 

(S.12.1) Synchronization: To avoid nondeterministic 

behavior in smart contracts programmed in Go, developers 

can synchronize the execution of goroutines within their 

contracts [122]. For synchronization, Go offers the package 

sync, including WaitGroup, for low-level library use [123]. 

Using WaitGroup, Go code waits for a collection of Go 

subroutines to finish before continuing with subsequent 

computations [122]. 

 

(C.13) Non-Deterministic Behavior: The use of operations 
offered by a programming language that returns arbitrary 
results. 

Several general-purpose programming languages 

behave nondeterministically for the execution of particular 

functions [7], [124]. This behavior contradicts the 

requirements for determinism of most DLT protocols 

(see Table 1). This challenge applies to smart contracts 

developed in Go, which is currently only offered for 

Hyperledger Fabric smart contracts. For example, in Go’s 

type collections, range iterations over maps return values 

in random order, which challenges deterministic smart 

contract execution [124]. 

(S.13.1) Cautious Use of Range Iterations: Developers 

should avoid using nondeterministic constructs if their use 

can affect deterministic function execution. 

4.2.3 Usability Challenges 

Challenges related to usability are concerned with the 

hurdles faced by developers when using a programming 

language. 

 

(C.14) Conformity to Expectations: The mismatch between 
developers’ expectations of how their program should be 
executed and its actual execution. 

Solidity offers the declaration of different integer types 

(e.g., uint8, uint32, or uint256) that resemble those in 

programming language C, which can lead novice 

developers to assume that an uint8 would allocate 8 bits 

in memory, while an uint128 would allocate 128 bits. 

However, the EVM uses simple (key, value) storage, 

where each value consumes 256 bits. Variables declared as 

uint8 even consume more gas than uint256 variables 

because of additional operations performed to downscale 

uint8 variables from uint256. Thus, integer types of 

Solidity are not entirely consistent with the EVM [118], 

[125], which may lead to bugs or underestimated costs. 

Another example of weak typing in Solidity is the 

instantiation of smart contracts within a contract. If a smart 

contract SCcaller refers to an instantiation of another smart 

contract SCcallee using SCcallee’s address, it is not checked 

whether the smart contract instance stored on the 

particular address complies with the type declaration of 

SCcallee. Moreover, data type conversions of variables 

 

3 In Solidity, each smart contract can implement a fallback function, 

which is called when the function signature does not match any 

storing a very large uint value to int or variables storing a 

negative int value to uint can cause unexpected results 

because Solidity uses two’s complement to represent int 

[118], [126]. The following solutions should also be 

considered for blockchains based on EOSIO: 

(S.14.1) Data Type Selection: To resolve discrepancies 

related to the conformity of programming languages to 

their execution environment, we advise smart contract 

developers to carefully read the documentation of the 

programming language and the targeted execution 

environment to decide on the data types to be used. In 

Solidity, developers should gauge whether the benefits of 

using unsigned integers other than uint256 exceed the 

costs caused by increased gas consumption. 

(S.14.2) Data Type Conversions: When using type 

conversion from a larger data type (e.g., uint256) to a 

smaller one (e.g., uint8), developers should first 

thoroughly test their code to ensure that conversions do 

not decrease accuracy. 

 

(C.15) Cross-Account Interactions: Code flaws that are 
caused by a call from a smart contract that involves external 
sources, such as other smart contracts. 

In Ethereum, there are three types of issues that can be 

caused by cross-account interactions (also called external 

calls) [21], [22]: first, unavailable smart contract; second, 
function not found; and third, unintended function call. In 

unavailable smart contract, the target smart contract does 

not exist or has been destroyed. The EVM does not throw 

an error if a transaction’s recipient does not exist. In EOSIO, 

cleos generates an error message if an action does not 

comply with the definitions of the functions or the smart 

contract name. In Hyperledger Fabric, clients are notified 

through an error message if a target smart contract could 

not be found. In function not found, the interface of the 

smart contract or library does not match the signature of 

the function to be called through the transaction. In this 

case, the target smart contract function cannot be found. If 

the function cannot be found, the smart contract’s fallback 

function 3  is invoked, which can implement arbitrary 

procedures. In Solidity, no exception is thrown if a function 

is not found and the caller is likely to be unaware of the 

error [21]. If an entity issues a transaction to a non-existing 

EOSIO account or calls a function that is not implemented 

in the target contract, an HTTP 404 error is returned, and 

the transaction is rolled back. The Hyperledger Fabric 

protocol first checks whether the target function exists in 

the smart contract before trying to execute the function. 

Calls to functions that do not exist in the smart contract 

trigger an unknown transaction handler [127]. In 
unintended function calls, a recipient of funds 

unintentionally invokes a function (e.g., from its 

constructor or fallback function). For example, when a 

smart contract transfers an asset to a recipient smart 

contract, the recipient smart contract may have a 

procedure implemented (e.g., in its fallback function), 

which is executed upon receiving the assets. This procedure 

function in the smart contract. If no fallback function is given in these 

situations, the EVM throws an exception. 
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calls for a function in the original contract. Such a sequence 

of function calls is called reentrancy. Challenges caused by 

cross-account interactions apply to smart contracts 

developed for Ethereum-based blockchains. Smart 

contracts for blockchains based on EOSIO and Hyperledger 

Fabric are not prone to vulnerabilities caused by 

unavailable smart contracts or calls to non-existing 

functions. Moreover, the processing of instructions in smart 

contracts on blockchains based on EOSIO or Hyperledger 

Fabric prevents reentrancy. 

(S.15.1) Contract Availability Check: To check whether a 

smart contract is available (i.e., existing and not destroyed), 

smart contracts of Ethereum-based blockchains can load 

code associated with a target address into a bytes variable 

using Solidity Assembly (see External-Call Pattern) [128]. If 

the length of the value stored in the bytes variable is larger 

than zero, the address is associated with a callable smart 

contract. However, it cannot be uniformly checked whether 

the smart contract complies with an expected data type. In 

EOSIO since the Dawn 4.0 update , the availability of an 

account is automatically checked in the eosio.token 

contract [129]. 

(S.15.2) Gas Limit Specification: In Solidity, there are 

three ways to transfer native assets (e.g., Ether) from a 

smart contract: 

(1) <recipientAddr>.send(value) 

(2) <recipientAddr>.transfer(value) 

(3) <recipientAddr>.call.value(value)("") 

When using (1) or (2), a fixed amount of exactly 2,300 gas 

is forwarded to the recipient, which should protect smart 

contracts from reentrancy (as of March 2021) [20]. If an 

out-of-gas exception is thrown in asset transfers, (1) only 

returns false and errors must be handled manually. In 

contrast, (2) further propagates the exception and 

automatically reverts the callchains of the failed 

transactions, which is similar to 

require(<address>.send(…)). Since the Istanbul hard fork, 

it is known that gas costs for instructions are not constant 

and (1) and (2) may fail in the future. To counter failed asset 

transfers in the future due to increased gas costs, 

developers should use (3), which forwards all available gas 

to the recipient contract [130]. However, using (3) can make 

a smart contract vulnerable to reentrancy, which is why 

developers must also implement mechanisms to protect 

the contracts from corresponding attacks (see S.16.4 

Protection from Reentrancy). If the execution of the target 

contract runs out of gas when using (3), the function 

returns false and error handling must be manually 

performed similar to (1). Vyper offers 

send(recipientAddr, value) to transfer assets, which 

works similar to (1) [115] and, thus, is prone to failed 

transactions caused by volatile gas costs. 

(S.15.3) Check Return Values: In favor of proper error 

handling, the Error-Handling Pattern recommends that 

developers implement return values in all functions so that 

their successful execution can be determined [10], [131]. 

This recommendation is especially important for Ethereum 

smart contracts. Checks of return values are automatically 

added for calls in Vyper so that failed calls are automatically 

reverted [115]. 

(S.15.4) Instruction Order: We identified four types of 

reentrancy attacks caused by external calls by Ethereum 

smart contracts [12], [22], [132]: fallback reentrancy, cross-
function reentrancy, delegated reentrancy, and create-
based reentrancy. In fallback reentrancy, a smart contract 

transfers assets to another contract. After receiving the 

assets, the recipient contract calls the function in the 

original contract that transferred the assets again from its 

payable or fallback function. In cross-function reentrancy, 

a smart contract function is invoked and reentered through 

another function, while the smart contract is still in an 

inconsistent state. Attackers can perform cross-function 

reentrancy if a smart contract includes functions that read 

from or write to the same variables [132], [133]. Delegated 
reentrancy occurs when a smart contract imports a library 

and state updates are not synchronized appropriately 

[132], [133]. Create-based reentrancy can occur if a smart 

contract A invokes the constructor of another contract B 

before updating its state. During the execution of B’s 

constructor, B can call a function in A, causing reentrancy 

[132]. 

The Checks-Effects-Interactions Pattern defines an 

execution order for instructions in a smart contract 

function. First, it is necessary to check if the context is valid 

to execute the function. Second, all changes are to be 

applied to the values of relevant variables. Third, the 

function execution can proceed. Following this execution 

order, malicious smart contracts cannot reenter the same 

function again in the previous state [9], [132]. 

(S.15.5) Execution Locking: As an alternative to the 

Checks-Effects-Interactions Pattern, the Mutex Pattern can 

be used to protect smart contracts from reentrancy attacks. 

In the Mutex Pattern, the state of a smart contract is locked 

using a mutex variable when the execution of logic to be 

protected starts. After the particular logic is executed, the 

code is unlocked again using the mutex variable [8], [102]. 

If an attacker performs a reentrancy attack within the scope 

of the execution of locked protected logic, the execution of 

the reentrancy call is aborted when passing the check of 

the locked mutex variable. Developers can apply checks for 

the mutex to every function of the smart contract [102]. 

However, the Mutex Pattern can become very complex 

when trying to prevent reentrancy across multiple function 

calls and can become prone to programming flaws that, for 

example, allow attackers to lock a smart contract for an 

arbitrary time or even forever [82]. In Vyper, the 

@nonreentrant(<unique_key>) decorator corresponds to 

the Mutex Pattern and can be used to protect functions 

from reentrancy [134]. 

 

(C.16) Encapsulation: The limitations of smart contracts in 
interacting with data and information systems external to 
the execution environment. 

To request external data (e.g., sensor data) or move the 

execution of computation to oracles [70], [71], [107], smart 

contracts must interact with oracles. Because of the 

requirement for determinism in blockchains building on 

Ethereum and EOSIO (see Table 1), these DLT systems 

encapsulate smart contract execution in virtual machines 

(i.e., the EOSVM and EVM) that prevent direct calls to 
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oracles [43]. In Hyperledger Fabric, direct interaction from 

smart contracts with oracles is supported [135]. Still, the 

following solutions also apply to Hyperledger Fabric when 

gauging how to integrate reliable oracles. 

(S.16.1) Push Oracle: To retrieve external data from smart 

contracts on EOSIO-based and Ethereum-based 

blockchains despite their encapsulated execution, a Relay 

Contract can be instantiated that is periodically updated by 

an oracle[136]. The Relay Contract stores current data, and 

other smart contracts can retrieve said data. However, this 

approach can be inefficient due to unnecessary updates to 

the Relay Contract. Moreover, this approach can introduce 

vulnerabilities (e.g., toward malicious behaviors of oracle 

controllers) due to the reliance on individual third parties. 

(S.16.2) Pull Oracle: To make push oracles more efficient 

in terms of required interactions, we propose event-driven 

updates, for example, using events in the Relay Contract, 

such as native Solidity events, a listener plugin for EOSIO 

(e.g., EOS Watcher Plugin [137]), or periodic polls of 

nodeos [138]. The oracle listens to requests triggered by 

the Relay Contract for specified events (see Oracle Pattern). 

Such requests may refer to arbitrary computational tasks, 

for example, data storage, data retrieval, or outsourcing of 

computations [80], [139]. The oracle manages the 

execution of the requested tasks. Then, the oracle pushes 

the results to the Relay Contract. Unfortunately, this 

approach comes with the downside that the oracle is 

operated by a third party, forming a single point of failure 

[70], [71]. 

(S.16.3) Decentralized Pull Oracle: To tackle malicious 

behavior of oracles while increasing their availability and 

reliability, developers can use decentralized oracles [71]. 

Multiple oracles listen to the Relay Contract (see Oracle 
Pattern), process received requests, and push their results 

to the contract. The Relay Contract decides on one result 

to use among those provided by the oracles, for example, 

by choosing the result that has been returned by most 

oracles. As an extension, an incentive mechanism should be 

put in place to avoid malicious behavior of oracles (see 

Oracle Pattern) [139], [140]. For example, oracles can pay 

collateral when registering with the Relay Contract. After 

oracles push valid results to the smart contract, they are 

rewarded with coins, while oracles that push wrong results 

are punished by reducing their collateral. 

 

(C.17) Error Handling: The difficulties of implementing 
thorough handling of errors and exceptions in smart 
contract execution. 

In Ethereum, inappropriate error handling can cause 

undesired smart contract states and can even lead to asset 

loss and denial of service [14]. Appropriate error handling 

is, however, challenging because error handling strongly 

depends on the individual call chain. A call chain describes 

the sequence of function calls performed during smart 

contract execution. In Solidity, a call chain can include 

different types of calls (i.e., call, delegatecall, and 

staticcall; see Section 2.2). The EVM propagates 

exceptions up the call chain and reverts all side effects until 

the last call command, which returns false. The smart 

contract execution is resumed from this point, and only the 

gas allocated by the call command is consumed [21]. 

(S.17.1) Isolate Calls: To minimize the potential damage 

caused by flawed error handling for complex call chains in 

the EVM, developers should isolate separate external calls 

in Ethereum instead of chaining calls. This way, developers 

can implement more granular error handling. To 

orchestrate multiple isolated calls, the Façade Pattern 

applies. 

 

(C.18) Programming Language Concept Compliance: The 
degree to which a programming language conforms to 
established concepts and the use of terms in related 
programming languages. 

In smart contract development, protected keywords 

(e.g., private or public) in established programming 

languages, such as Java or C++, can mislead developers. 

For example, visibility declarations in Solidity (e.g., external, 
private, or public) often suggest to developers that private 

variables may not be visible to other entities [20]. 

(S.18.1) Cautious Use: If developers have no other 

opportunity to develop code than using a language with 

misleading keywords, developers must be cautious. 

 

(C.19) Iteration through Data Structures: The functionality 
provided by a programming language to support the step-
by-step traversal of individual elements of a higher-level 
data structure. 

As in conventional software development, there are data 

structures that are not iterable but that can store and return 

data from a collection in O(1). 
(S.19.1) Auxiliary Data Structures: To loop through non-

iterable data structures (e.g., mapping in Solidity), auxiliary 

data structures (e.g., an array) can be used. Auxiliary data 

structures should be iterable and store all keys of the non-

iterable data structure. When iterating over the auxiliary 

data structure, its current value can be used as a key to 

retrieve values of the non-iterable data structure. 

4.3 Challenges Caused by Coding Practices 

Challenges related to the principal challenge origin coding 
practices refer to issues caused by developers in their 

coding activities. 

4.3.1 Code Efficiency Challenges 

Code efficiency challenges refer to the constrained 

quantity of allocated resources to deploy a smart contract 

code (e.g., gas) and execute the deployed code on a 

distributed ledger (e.g., in terms of space and time 

complexity). 

 

(C.20) Data Storage: The storage of data to keep a smart 
contract operational in a trustworthy manner, but also 
efficient with respect to resource consumption for smart 
contract execution. 

Storing data on EOSIO-based and Ethereum-based 

blockchains is expensive. Therefore, developers must 

consider alternatives to storing data in smart contracts. This 

challenge does not apply to blockchains based on 

Hyperledger Fabric. 

(S.20.1) Off-Ledger Storage: Like heavy computations 
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and sensitive data, large amounts of data should be stored 

off-ledger and should be managed on oracles. The Oracle 
Pattern (see S.1.1 Off-Ledger Computations) describes how 

smart contracts can interact with oracles. To make the 

integrity of stored data provable, developers can 

implement mechanisms to store a hash value of the 

externally stored data in the smart contract. 

(S.20.2) Store Data in Logs: Solidity offers the 

implementation of events that are usually used to 

communicate with oracles or frontends [141]. Events can 

be used to generate logs that represent a cheap alternative 

for storing data on a blockchain because a log costs only 

8 gas per byte (at the time of writing the study). However, 

logs are not accessible by smart contracts and only oracles 

or frontends can render logged data. Using events as logs 

can be reasonable, for example, when operating an 

exchange. The history of entities’ deposits to a smart 

contract does not need to be stored in the contract but can 

be stored as logs, and only the current balances of the 

entities are stored in the smart contract [141]. 

 

(C.21) Data Type Complexity: The differences between data 
types with similar functionalities regarding their time and 
space complexity. 

The selection of appropriate data types affects the cost 

of storage and execution in smart contracts based on 

Ethereum and EOSIO. To provide efficient code, developers 

must gauge between different data types. Still, the variety 

of data types and their individual complexities regarding 

storing and retrieving data differ strongly. 

(S.21.1) bytes over byte[]: In Solidity, the data type 

byte[] is an array of bytes but requires 31 bytes of memory 

between its elements because of padding rules. Developers 

can use data type bytes to reduce memory consumption 

[142]. 

(S.21.2) Array Replacement: In Ethereum, using arrays 

can be more costly than using individual variables [113]. To 

save gas, developers should check whether they can 

replace arrays of fixed length with a corresponding number 

of individual variables. 

(S.21.3) string Avoidance: In EOSIO, developers should 

avoid storing variables in strings to save resources. For 

example, saving SHA3-256 hash values as checksum instead 

of string can reduce memory consumption from 64 bytes 

to 32 bytes. The same applies to 128-bit numbers, such as 

common universal unique identifiers (UUIDs), which are 

typically represented as hex-string allocating 16 bytes. In 

contrast, storing 128-bit numbers as string consumes 

36 bytes. 

 

(C.22) Under-Optimized Code: The optimization of smart 
contract code toward better performance. 

A recurring problem in software engineering is 

inefficient code. Code can be inefficient due to useless 

code (e.g., opaque predicates [117], [143] or dead 

code [143]) or code smell (e.g., repeated operations in 

loops with constant outcome [113], [143]). Useless code 

consumes additional resources (e.g., gas or RAM) without 

adding reasonable logic to the smart contract. For example, 

dead code will never be executed, but costs gas for 

deployment in Ethereum smart contracts or RAM in smart 

contracts on EOSIO-based blockchains. Useless code in 

combination with loops can significantly increase resource 

consumption, for example, when functions with constant 

outcomes are repeatedly executed within a loop. 

Dispensable code is particularly important to avoid in smart 

contracts running via DLT protocols that charge costs for 

smart contract execution, such as in Ethereum-based and 

EOSIO-based blockchains. 

(S.22.1) Constants: Developers should check if they 

perform computations with constant outcome. When 

identifying an opaque predicate, developers can declare 

the result of the computation as constant. 

(S.22.2) Code Optimization: To reduce resource 

consumption when executing smart contracts, developers 

should check whether variables are required to produce a 

particular result and dispense with variables that are not 

required. Additionally, the necessity for functions in a smart 

contract should be checked to avoid opaque predicates 

and code smell. To identify dead code and opaque 

predicates, software tools for formal verification can help 

(e.g., GASPER [143]). For the optimization of Ethereum 

smart contracts, existing works present approaches to 

identifying and performing bytecode improvements [113], 

[117], [144]. Using these approaches, dispensable 

operations can be identified, and the smart contract can be 

optimized. 

(S.22.3) Shadowing: Developers should avoid processing 

data in the persistent storage of the EVM to reduce 

resource consumption [145]. Instead, developers can apply 

shadowing. In shadowing, the data to be sorted is copied 

from the storage into the EVM memory, which is less 

resource-consuming than sorting in storage [146]. All 

sorting is performed in the EVM memory. 

 

(C.23) Required Interactions: The minimization of the 
required interactions with a smart contract to achieve a 
targeted result. 

Distributed ledgers enable the management of digital 

assets without the necessity of a trusted third party to a 

certain extent. It is possible to represent ownership of real-

world assets (e.g., cars or houses) using tokens, which can 

be implemented as a smart contract [147]. However, it is 

challenging to create and deploy such tokens manually. For 

example, an authorized entity responsible for the token 

must create and deploy a smart contract for each 

requesting user individually, which poses a single point of 

failure and a potential source of fraud. 

(S.23.1) Automated Deployment: To increase security 

regarding the creation and deployment of smart contracts 

(e.g., in terms of token creation and issuance, fraud 

resistance, and theft), developers can use the Factory 
Pattern. In the Factory Pattern, a smart contract 

(i.e., Factory Contract) manages the creation and issuance 

of such smart contracts (i.e., Child Smart Contracts) [148]. 

This pattern is consistent with the concept of factories in 

existing programming languages, such as Java. In addition 

to the automated creation and deployment of smart 

contracts, Factory Contracts can also implement 

mechanisms to better observe issued smart contracts, for 
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example, by storing the addresses of all created smart 

contracts. This solution applies to Ethereum-based 

blockchains. 

4.3.2 Comprehensibility Challenges 

Comprehensibility challenges relate to the ease with which 

entities with little experience understand how a specific 

smart contract code works and how it should be used. 

(C.24) Readability: The hurdles faced by developers when 
reading program code. 

Readability of program code across smart contracts 

developed by different entities is important for increasing 

its comprehensibility and maintainability [20], [101], [149]. 

However, developers have different programming styles, 

which can decrease readability and comprehensibility. 

(S.24.1) Style Guide Conformity: To favor code 

readability, developers should align their individual coding 

style with the style guides published for the programming 

language (e.g., the Solidity style guide for Ethereum [150] 

or the Go style guide for Hyperledger Fabric [151]). For 

example, Ethereum developers should align with 

established best practices for naming events [20]. In EOSIO, 

the naming of accounts is already regulated. Style guide 

conformity can be checked automatically by software tools 

such as Ethlint or Solhint. 
 

(C.25) Ease of Code Reuse: The ease with which developers 
can inform themselves about the characteristics of smart 
contract code to understand contract specifications for 
better code reuse. 

Since code reuse in publicly distributed ledgers 

(e.g., those based on Ethereum or EOSIO) is often 

performed [101], it is particularly important that developers 

can easily understand the purpose and functioning of code, 

as well as its shortcomings. 

(S.25.1) Documentation: To support others in reusing 

code, developers should add appropriate documentation 

in the form of comments or additional files (e.g., README.md 

files). The documentation should include the functioning of 

the smart contract and report known shortcomings 

(e.g., bugs or vulnerabilities). 

4.3.3 Implementation Soundness Challenges 

Challenges related to implementation soundness originate 

from factors that hinder an implementation from being free 

from errors and flaws. 

 

(C.26) Appropriate Data Type Use: The degree to which 
developers appropriately declare, initialize, and use 
variables. 

To support developers in the selection of data types, 

data type inferencing is offered by several programming 

languages (e.g., C++ and Solidity). Data type inference 

refers to the automatic recognition of a data type likely 

suitable for storing a given value and can expose a 

vulnerability in programming languages, for example, due 

to overflow or underflow [20], [152]. An overflow describes 

the behavior of programming languages when a value 

exceeds the boundary of a data type (e.g., assigning 

numeric values larger than their defined maximum of 28 - 1 

to uint8 variables). An underflow occurs when a value 

assigned to a variable is less than the smallest defined value 

that can be represented by the variable's data type. To 

avoid unforeseen code flaws, developers should be aware 

of the different processing of data types in storage. 

 

(S.26.1) Integer Overflow and Underflow Handling: 
Overflow and underflow can occur in Ethereum smart 

contract programmed in Solidity. To counter overflow and 

underflow, developers should not rely on data type 

inferences but should define the targeted data type 

completely [118]. For example, if a variable is declared as 

uint8 through data type inference, this variable will 

overflow if it is assigned a value larger than 28-1. Moreover, 

developers can either manually implement checks for 

overflow and underflow or use the OpenZeppelin SafeMath 

library [153] for any arithmetic operations a smart contract 

performs [118]. Using the SafeMath library can also prevent 

most overflows and underflows of integer variables (see 

Overflow/Underflow Pattern). Since Solidity v0.80, Solidity 

checks for overflow and underflow and reverts arithmetic 

operations [154]. Alternatively, developers can use 

Vyper [121] instead of Solidity because Vyper is not prone 

to overflow and underflow [115]. 

 

(C.27) Semantic Soundness: The difficulties of reaching a 
state where an implementation is free from logical errors 
and flaws. 

To reach semantic soundness, the implementation 

should adhere to the agreed-upon business logic for 

interaction [12] with respect to the absence of logic, 

incorrect logic, and logically correct but unfair [12]. First, 

absence of logic describes smart contracts that lack 

important logic, for example, to protect its 

selfdestruct(…) function from being unintendedly 

executed by attackers [12]. Second, incorrect logic is 

concerned with a smart contract code that is syntactically 

correct but logically incorrect. Third, logically correct but 
unfair applies to code that is free from errors but misleads 

entities so that they will be subject to fraudulent program 

logic (e.g., expected payouts that will never happen, as in 

Ponzi Schemes [155]). 

(S.27.1) Argument Sanitization: As in conventional 

software engineering, passing inappropriate arguments to 

functions can cause errors or unforeseen side effects. This 

also applies to blockchains based on Ethereum, EOSIO, and 

Hyperledger Fabric. In Ethereum asset transfers, for 

example, the EVM pads short addresses with trailing zeroes 

if the recipient address is too short. The padding can result 

in the transfer of a larger number of tokens than intended 

[156]. To prevent wrong arguments from being processed, 

developers can implement guarding functions that first 

check passed arguments upon function invocation and 

deny the function execution if one of the arguments does 

not comply with the function requirements (e.g., using 

assert(…), require(…), or revert(…) in Solidity [20]). For 

example, the length of an Ethereum address passed to a 

smart contract should be checked before transferring 

assets to it to prevent asset loss [156]. 
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(S.27.2) Protection from Replay Attacks: In Ethereum-

based and EOSIO-based blockchains, the visibility of the 

payload of transactions favors the exploitation of smart 

contract vulnerabilities for replay attacks [7]. In a replay 

attack, an adversary copies the content of a transaction 

payload to their own transaction and issues their fraudulent 

transaction to the same smart contract. The target smart 

contract receives the original and the fraudulent 

transaction and respectively executes the target function. 

Often, the copied transaction payload contains data for 

authentication (e.g., a digital signature). With these, critical 

logic for an account can be executed (e.g., asset transfers). 

To prevent replay attacks, the Replay-Protection Pattern 

can be used. In this SDP, a function call may require a digital 

signature of all other parameters passed to the function 

and the current value of a nonce defined in the targeted 

smart contract. When the function is called, the smart 

contract verifies the signature based on the passed 

function parameters and the nonce. After successful 

verification, the nonce is changed and future transactions 

with the same signature become invalid [115]. In 

Hyperledger Fabric, peer nodes implement mechanisms to 

protect the network from replay attacks [54]. This solution 

is particularly relevant to consider when working on 

publicly distributed ledgers that are in the stage of a hard 

fork [157]. Valid transactions can be easily replayed from 

one ledger to another. To counter replay attacks in this 

scenario, a chain ID should be a required inclusion in the 

digital signature. The chain ID takes the function of the 

nonce. 

(S.27.3) Fake-EOS Transfer Protection: In Fake-EOS 
Transfer attacks, an attacker creates a token called EOS like 

the native currency in EOSIO. Then, the attacker sends their 

fake EOS tokens to a smart contract. If the recipient 

contract does not verify the issuer of the tokens, it 

considers them genuine EOS tokens and proceeds with the 

function execution. 

To protect smart contracts from Fake-EOS Transfer 
vulnerability, smart contracts should verify that the asset 

transfer has been authorized by the eosio.token contracts. 

For this purpose, developers can check whether the code 

parameter in the apply(…) function of the recipient 

contract refers to the eosio.token contract [11], [158].  

(S.27.4) Fake-EOS Notice Protection: Smart contracts in 

EOSIO-based blockchains receive a notification as soon as 

an asset transfer via the eosio.token contract is 

completed. These notifications can be forwarded to other 

smart contracts. If the notification is not checked by these 

smart contracts, they may proceed as if they had received 

the funds. This way, EOSIO smart contracts become 

vulnerable to Fake-EOS Notices [11], [158]. In Fake-EOS 
Notice, an attacker sends tokens to smart contract A. The 

token transfer is handled by the eosio.token contract, 

which notifies A and B about the token transfer. Upon 

receiving the notification, B forwards the notification to a 

smart contract C. C handles the notification as if it had 

received the tokens. 

To protect smart contracts from being prone to Fake-
EOS Notice, developers can check if the to argument in the 

notification equals their own account; if not, C ignores the 

notification [11], [158]. 

(S.27.5) Read-Your-Writes (RYW) Consistency: RYW 

consistency is achieved when a database guarantees that, 

after a variable value is updated, all subsequent calls will 

read the updated value of the variable [159]. Smart 

contracts of Hyperledger Fabric blockchains can access the 

blockchain’s state database, such as LevelDB per default 

and CouchDB as an alternative [160]. However, LevelDB 

and CouchDB do not offer RYW consistency [91], which can 

cause logic errors in smart contract codes that use data 

from the world state database. 

To achieve RYW-like behavior, developers can make 

isolated calls to the database to read and write operations. 

 

(C.28) Technical Soundness: The hurdles developers are 
confronted with handling the technical capabilities and 
limitations of a smart contract’s execution environment. 

Smart contract development is still a novel field in 

software development, and especially compilers for 

domain-specific languages (e.g., Solidity) are frequently 

updated. These updates fix bugs but can also change smart 

contract execution compared to older compiler 

versions [20]. 

(S.28.1) Fixed Compiler Version: To counter potential 

vulnerabilities caused by different compiler versions, 

developers should use fixed compiler versions [20]. 

4.3.4 Interoperability Challenges 

Interoperability challenges related to the ease with which 

smart contracts can be called by other smart contracts or 

external systems (e.g., wallets) and can communicate with 

systems outside the distributed ledger. 

 

(C.29) Smart Contract API Conformity: The certainty with 
which developers can rely on the uniformity of smart 
contract interfaces that conform to published conventions 
and standards. 

Developers can develop code in their own style. 

However, if each developer defines smart contract 

functions differently, this can cause inconsistencies across 

smart contract definitions, can inform flaws in smart 

contract development (e.g., regarding function call 

definitions), and hinder cross-contract interoperability 

[147], [161]. 

(S.29.1) Ethereum Request for Comments: With an 

increasing number of smart contracts deployed by 

unknown entities with individual coding styles, the 

definition of standardized smart contract interfaces has 

become increasingly important, for example, to favor code 

reusability and ease interoperability with smart contracts. 

To agree on application-level standards and conventions, 

members of the Ethereum community can propose 

Ethereum Requests for Comments (ERCs). Smart contract 

codes can be published for discussion in an ERC. After 

members agree on a solution presented in an ERC, the ERC 

can become an Ethereum Improvement Proposal (EIP) that 

is discussed by the Ethereum community [162]. When the 

community agrees on the EIP, it can become an official 

standard, such as the ERC20 token standard or ERC26 and 
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ERC137 for name registries. 

5 RELATED WORK 

Existing research has made valuable contributions to the 

understanding of the peculiarities of smart contracts and 

the resulting development challenges. These works can be 

associated with three research streams: code analysis, 

software testing, and system design. In works related to 

code analysis, selected flaws in smart contract code 

(e.g., overflow and underflow [20] or reentrancy [22]) and 

their detection using formal methods have been 

researched (e.g., [132], [163], [164]). For automated 

detection of these flaws, software tools have been 

proposed that perform formal verification (e.g., [163], [165], 

[166]), dynamic code analysis (e.g., [132], [133], [152]), static 

code analysis (e.g., [23], [24], [167]–[169]), or machine 

learning using classifiers like XGBoost or AdaBoost 

(e.g., [25]). These tools are designed to support developers 

in improving their code by identifying recurring flaws in 

smart contract code (e.g., by using formalized patterns of 

code flaws). Multiple works on code analysis have focused 

on performance optimization, especially to reduce the gas 

consumption of Ethereum smart contracts (e.g., [116], 

[117], [143]). For example, Chen et al. [117] presented 

patterns for gas-inefficient code (e.g., opaque predicates, 

dead code, and redundant SSTORE) and a software tool for 

the automated identification of these patterns in bytecode. 

Works associated with code analysis have also revealed 

various smart contract vulnerabilities (e.g., reentrancy or 

unchecked external calls) and methods for their 

identification (e.g., [14], [22], [132], [163]). Despite these 

endeavors, existing works on code analysis are highly 

technology-centric (e.g., by focusing only on Solidity or 

EVM [8], [20], [25], [115], [163]). Identified frequent flaws in 

smart contract code are distributed across various works, 

hindering developers from obtaining an overview of 

existing challenges. Moreover, the presented tools 

(e.g., [117], [131], [170]) are applicable only after a smart 

contract has been developed and are not intended to 

support developers in anticipating recurring development 

challenges before writing the code.  

To support developers in incorporating new knowledge 

related to code analysis into their development routines 

and directly anticipating code flaws, this work describes 

challenges and corresponding solutions, including 

20 SDPs. Moreover, this work extends the findings of 

foremost performance- and security-focused code analysis 

studies through knowledge about challenges related to 

maintainability and the implementation of certain 

functionalities (e.g., random number generation). 

Besides code analysis, research has proposed 

approaches and tools for software testing (e.g., [24], [171]–

[173]). Related works offer valuable and practical insights 

that support smart contract developers in improving their 

code through different testing strategies and tools. For 

example, Li et al. [170] proposed a software tool for 

mutation testing of Ethereum smart contract code to 

identify and fix flaws in their code. Gao et al. [171] 

presented an approach for automated testing of Ethereum 

smart contracts and suggested browser-side events that 

interact with smart contracts. These tools and respective 

insights can support development practices. Still, 

challenges occurring in smart contract development that 

could be useful for software testing to avoid frequent code 

flaws (e.g., guarding functions) remain unclear. 

The challenges identified in this work can support better 

planning of software testing for smart contracts on 

blockchains based on Ethereum, EOSIO, and Hyperledger 

Fabric. For example, tests can be developed so that all 

challenges that apply to a specific DLT protocol are 

covered. Thereby, our work can support the targeted 

detection and elimination of frequent code flaws. 

Works related to system design (e.g., [99], [139], [140], 

[174]) propose specific concepts or implementations to 

overcome recurring smart contract development 

challenges, such as random value generation with high 

entropy [96] and the integration of oracles [70]. For 

example, Li et al. [100] proposed the implementation of a 

lottery scheme focusing on random number generation. 

They applied a commitment pattern in which entities 

commit coordinates in a 2D coordinate system and 

compute a random number based on the polynomial that 

intersects with the coordinates. Still, these works sensitize 

developers to only a few challenges and hardly make 

developers aware of bad practices that should be avoided 

(e.g., using block numbers for random number generation). 

This work presents particularities and challenges in smart 

contract development across DLT protocols. Developers 

can consider these peculiarities and challenges in two 

stages of the development process: first, when deciding to 

use a DLT protocol for developing DLT-based decentralized 

applications (DApps) that require specific smart contract 

capabilities (e.g., random number generation); second, 

when developing smart contracts on the chosen DLT 

protocol. In doing so, we complement previous work 

(e.g., [35], [175]) by assisting in the selection of suitable DLT 

protocols for individual DApps with a specific focus on 

smart contract integration and implementation. 

Building on the described research streams (i.e., code 

analysis, software testing, and system design), several 

reviews and surveys on challenges in smart contract 

development have been published (e.g., [9], [10], [89], 

[100], [107], [148], [149], [170], [174], [176], [176], [177]). 

These publications present surveys regarding formal 

verification approaches (e.g., [176], [177]) and smart 

contract development challenges perceived by developers 

(e.g., [10], [149], [174]). Surveys on formal verification 

(e.g., [176], [177]) compare different approaches for code 

flaw detection regarding their capabilities and potentials 

for improvements. For example, Tolmach et al. [176] 

proposed formal models for smart contracts (i.e., contract-

level models and program-level models) and surveyed 

smart contract specifications for different application 

domains (e.g., finance and social games). Miller et al. [170] 

scrutinized existing formal verification approaches 

regarding their capabilities to detect flaws in smart contract 

code and their applicability to different programming 

languages. Surveys on formal verification revealed valuable 

insights into recurring and automatically detectable 
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programming flaws, such as vulnerabilities for reentrancy 

attacks and mishandled exceptions. 

Extant reviews of smart contract development 

challenges from the perspective of developers offer brief 

explanations of challenges, their corresponding solutions, 

and future research directions (e.g., [10], [101], [174], [178]). 

Several review studies have focused on specific challenge 

types, such as security-related challenges (e.g., [8], [19]) or 

challenges related to performance [117] or 

maintainability [101]. Only a few survey studies consider 

different challenge types to derive comprehensive 

guidance for software developers to handle these 

challenges by explaining corresponding solutions (e.g., [9], 

[10], [149]). Among these studies, Chen et al. [10] provided 

an extensive overview of challenges in Ethereum smart 

contract development derived from posts on the Ethereum 

StackExchange website, validated the existence of the 

identified challenges in a questionnaire with developers, 

and briefly described solutions to address the perceived 

challenges. Hu et al. [173] revealed development 

paradigms for application domains (e.g., Auction, Loan, 

and Lottery) applicable to DLT protocols with script-based 

and Turing-complete blockchains, such as Bitcoin and 

Ethereum. Moreover, the authors provided an overview of 

tool chains that can support developers in improving the 

quality of their code (e.g., through formal verification). Zou 

et al. [149] focused on the Ethereum blockchain and 

examined the differences between the development of 

traditional software and smart contracts and highlighted 

the particular challenges for the latter. They presented 

procedures like frequent code audits and code reviews to 

address the identified challenges and derive future 

research directions.  

Our work advances prior reviews by collating different 

categories of smart contract challenges (e.g., [8], [9]) as well 

as corresponding solutions and transforming these 

solutions into detailed and actionable SDPs that align with 

recommendations in existing research (e.g., [31]–[33], 

[179]). By applying the canonical pattern structure 

proposed in prior research [31]–[33], our SDPs contain not 

only detailed descriptions of each solution, but also a 

discussion on benefits and boundary conditions. Thereby, 

the SDPs can help developers make better decisions for 

using SDPs and ultimately avoid common smart contract 

development mistakes. By iteratively discussing and 

refining our literature-based results with DLT experts, we 

provide empirical validation of our findings. 

Finally, existing research focuses on overcoming the 

challenges of smart contracts developed in Solidity or 

executed in the EVM (e.g., [19], [20], [25], [163]). Only a few 

studies have explored smart contract challenges related to 

other DLT protocols (e.g., EOSIO [11], [180] or Hyperledger 

Fabric [91], [99]). Our study broadens this one-sided 

approach by considering three distinct DLT protocols with 

different smart contract integration concepts and thus 

shows which challenges and corresponding solutions in 

smart contract development apply for which DLT protocols 

considering their corresponding smart contract integration 

concepts. Thereby, our work can support developers 

throughout the software development lifecycle and 

deepen the understanding of how smart contract 

integration concepts can limit the flexibility of smart 

contracts (e.g., favoring deterministic execution by 

encapsulation). 

6 CONCLUSIONS & FUTURE WORK 

In this work, we present 29 smart contract development 

challenges and 60 corresponding solutions associated with 

11 sub-themes, including data visibility and 

interoperability. The sub-themes relate to three principal 

challenge origins (i.e., platform, programming language 
and execution environment, and coding practice) that 

primarily cause the individual challenges. This classification 

enables a separate consideration of each principal 

challenge origin so that developers can better gauge 

between DLT protocols in combination with individual 

execution environments. This regard will become especially 

relevant for future DLT protocols that offer developers the 

option to choose between execution environments. For 

example, QTUM plans to integrate Neutron, a middleware 

that allows developers to use the EVM or an x86 virtual 

machine as desired [34]. Other DLT protocols 

(e.g., Ontology 2.0 [181]) also strive to offer multiple virtual 

machines in the future. 

To make the generated knowledge handier for 

developers and adjust their programming habits, we offer 

20 SDPs that can be used to address various challenges and 

augment identified solutions. We developed the 20 SDPs in 

cooperation with smart contract developers who are 

experts in Ethereum, EOSIO, and Hyperledger Fabric and 

refined the SDPs in multiple iterations considering quality 

criteria that we identified in a literature review. 

Our results indicate that challenges in smart contract 

development are caused by individual characteristics of 

DLT protocols—foremost, the visibility of data to entities 

with access to the distributed ledger, the requirement for 

determinism, and the public executability of smart contract 

code (see Table 6). In Ethereum, several challenges relate 

to the difficult maintainability of smart contract code, which 

cannot be replaced but only redeployed and thereby 

assigned to a separate account. Regarding current 

endeavors in DLT protocol development, the updateability 

of smart contracts can cause novel challenges because 

entities may call for smart contract actions that execute 

unexpected logic. Where Hyperledger Fabric requires all 

entities that are relevant to endorse transactions after 

smart contract execution to agree on smart contract 

updates, updates of smart contract code (e.g., through 

replacement of the current contract version in EOSIO or by 

using the Proxy Pattern in Ethereum) in especially public 

DLT systems must be recognized by entities themselves 

prior to interacting with the contract. The ability to update 

code after deployment may decrease the trust of entities in 

the agreements manifested in contract code. 

Using established programming languages such as C++ 

or Java can reduce the entry barrier for developers because 

they do not need to learn new programming languages. 

Nonetheless, our interviewees explained that using 

traditional general-purpose programming languages can 
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be misleading in smart contract development because 

developers may align with their usual programming habits, 

thus neglecting peculiarities in smart contract 

development (e.g., regarding the visibility of variables 

declared as private [20]). 

Despite our efforts to answer our research questions 

regarding challenges and solutions in smart contract 

development, we cannot guarantee the 

comprehensiveness of our work. We focused on challenges 

related to current versions of execution environments, 

programming language, and compilers. Accordingly, we 

excluded challenges that apply to old versions, such as the 

Callstack Depth Attack [19] that was fixed in October 2016 

and is now practically impossible, the use of unsafe type 

inferences in Solidity using var [20], and manipulating 

storage variables in Solidity that automatically point to 

register 0x0 when not initialized [182]. 

Performing two complementary literature reviews 

enabled us to identify various challenges and solutions. 

However, qualitative analysis techniques generally carry the 

risk of interpretation biases. Although we conducted 

multiple rounds of coding and refining themes during our 

thematic analysis to mitigate potential interpretation 

biases, researchers may come up with different theme 

conceptualizations. By reviewing the ever-increasing 

number of grey literature (e.g., DLT foundations’ 

whitepapers) and examining practitioners’ discussions on 

smart contract development (e.g., developer blog and 

forum entries), future research may analyze the usefulness 

of the solutions presented in this work and refine the 

contexts to which the solutions apply. In doing so, future 

research can ultimately deepen our knowledge of common 

solutions for overcoming smart contract development 

challenges.  

Our study has limitations concerning the number and 

depth of interviews we conducted to gather data on 

challenges and solutions in smart contract development 

and to improve our SDPs. While we conducted various 

interviews with DLT and smart contract experts, the 

interviewees may have found it difficult to verbalize some 

challenges of smart contract development, and future 

research might gather more information on specific 

findings to increase understanding. The limited number 

and depth of interviews, as well as the fact that we could 

not consider all SDP quality criteria presented in 

Appendix B, likely left opportunities for improving the 

developed SDPs. To improve the SDPs presented in this 

work, the SDPs should be evaluated in a longitudinal large-

scale study considering all quality criteria presented in 

Appendix B. This way, methodological limitations of this 

work can be addressed, and the effectiveness of the 

presented SDPs in overcoming smart contract 

development challenges will be improved. 

We provide a set of solutions, including SDPs, based on 

related work and interview findings. Given the large 

number and diversity of solutions, we selected a subset of 

available solutions as the base for developing SDPs. 

Developers and researchers may come up with additional 

solutions and SDPs that can even improve those presented 

in this work. Moreover, we have discussed the applicability 

of the identified challenges and solutions with DLT experts 

for Ethereum, EOSIO, and Hyperledger Fabric. Thus, it 

remains unclear which challenges and solutions apply to 

other DLT protocols or whether solutions applied to smart 

contracts for other DLT protocols may improve the SDPs 

presented in this work. To improve the presented SDPs and 

understand their applicability to other DLT protocols, 

future studies should investigate challenges and solutions 

in smart contract development for other DLT protocols. In 

this way, DLT protocol-agnostic SDPs can be uncovered, 

revealing key best practices for smart contract 

development. 

To advance our solutions to smart contract development 

challenges, we maintain a public repository, including 

complete descriptions of all patterns only briefly described 

in this work. We have planned to add further patterns for 

blockchains based on Ethereum, EOSIO, and Hyperledger 

Fabric to constantly support developers in their work. 
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