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Abstract—Accurate detection of multi-class instance objects in 
remote sensing images (RSIs) is a fundamental but challenging 
task in the field of aviation and satellite image processing, which 
plays a crucial role in a wide range of practical applications. 
Compared with the natural image-based object detection task, 
RSIs-based object detection still faces two main challenges: 1) The 
instance objects often present large variations in object size, and 
they are densely arranged in the given input images; 2) Complex 
background distributions around instance objects tend to cause 
boundary blurring, making it difficult to distinguish instance 
objects from the background, resulting in undesired feature 
learning interference. In this paper, to address the above 
challenges, we propose a novel RSI anchor-free object detection 
framework that consists of two key components: a cross-channel 
feature pyramid network (CFPN) and multiple foreground- 
attentive detection heads (FDHs). First, an anchor-free baseline 
detector with the CFPN structure is developed to extract features 
from different convolutional layers and incorporates these 
multi-scale features through parameterized cross-channel 
learning processes, learning the semantic relations across 
different scales and levels. Next, each FDH is designed to predict 
an attention map to enhance the features of the foreground region 
in RSIs. Furthermore, under this scale-aware anchor-free 
baseline detector structure, we design a curriculum-style 
optimization objective that dynamically reweights training 
instances during the current training epoch, enabling the detector 
to receive relatively easy instances that match with its current 
ability. Experimental results on three publicly available object 
detection datasets demonstrate that the proposed method 
outperforms existing object detection methods. 

Index Terms—Remote sensing images, anchor-free object 
detection, feature pyramid structure, foreground attention, 
curriculum learning. 

I. INTRODUCTION 

BJECT detection in remote sensing images (RSIs) aims to 
recognize and localize multi-class remote sensing objects 

from given satellite or aerial images, which plays an important 
role in a wide scope of applications, such as intelligent 
monitoring, urban planning, precision agriculture, and 
geographic information system (GIS) [1]. Benefitting from the 
rapid development of deep neural networks (DNNs) [2]-[4] in 
the computer vision community, the ability to learn a robust 
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detector which can predict the region of interests (RoIs) from 
the input image has been pushed forward a lot. 

Recently, researchers have explored a large number of 
DNNs-based detectors to address generic object detection task. 
These detectors can be roughly divided into two categories: 
anchor-based detectors [5]-[14] and anchor-free detectors 
[15]-[20]. 

Typical anchor-based detectors such as Faster RCNN [7], 
FPN [9], and SSD [10], etc., first predefine a set of region 
proposals sampled from the input image, and then learn to 
predict the category and position information of each region 
proposal, via a sparse prediction way such as the two-stage 
detection framework [5]-[9] or a dense prediction way such as 
the one-stage detection framework [10]-[14]. On the one hand, 
the two-stage detection methods aim to generate pre-default 
proposals for potential foreground objects, and then classify 
and regress these proposals by a following proposal refinement 
process that can be achieved via a fully-connected network. For 
example, Faster RCNN [7] develops a region proposal network 
(RPN) that learns to generate region proposals using a 
DNNs-based network, and FPN [9] tries to recognize objects 
with multiple scales through a feature pyramid structure where 
small objects are often recognized by the shallow layer, and 
large objects are usually detected by the high layer. On the 
other hand, the one-stage detection methods regard the 
detection task as a one-shot problem (dense prediction process) 
without relying on the region proposal generation process. 
Overall, the two-stage detectors usually have relatively higher 
detection accuracy than the one-stage detectors owing to the 
pre-generated proposals and the subsequent refinement process 
for these proposals. However, both the two-stage and the 
one-stage detectors need to predefine a set of region proposals. 
Such a large number of region proposals introduce many 
hyperparameters and instability for model learning, including 
the size, number, and aspect ratio of region proposals, 
especially for RSIs whose instance objects are usually arranged 
in a spatially dense and multi-scale way. This could result in 
extra computational cost and design choices, and further 
increase the risk of overfitting. 

In contrast, anchor-free detectors [15]-[20] decouple the 
predefined region proposals from the typical object detection 
frameworks, and thus reduce redundant computation related to 
proposals of some negative instance regions, by predicting a set 
of keypoints to represent the ROIs of a given image [16], [17]. 
For example, based on an effective keypoint estimation 
network, CornerNet [16] aims to find a pair of keypoints (the 
top-left and bottom-right corners) to detect an instance object 
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without using any predefined hyperparameters of region 
proposals, achieving a real-time and accurate detection 
framework. Different from CornerNet that produces some 
corner points from the given image, CenterNet [17] directly 
predicts the center point of each instance object and further 
regresses its object size and localization offset according to the 
size and offset prediction branch. In CornerNet and CenterNet, 
only the corner or center points of instances are positive, 
resulting in the imbalance of positive and negative samples. To 
alleviate this problem, FoveaBox [19] introduces a positive 
area where the label of each point is positive. However, the 
above keypoint-based approaches mainly focus on learning the 
generic representations to recognize and localize instance 
objects in natural images, which do not have sufficient 
generalization and representation ability for the instance 
objects in RSIs. This is mainly because the constantly variable 
object size and densely arranged instance objects in RSIs 
usually bring disturbances and interferences for feature 
learning and localization of instance objects. 

Driven by the success of DNNs-based object detection 
methods [5]-[20] for natural images, some works [21]-[27] try 
to extend the study of object detection from the natural images 
to the RSIs, by leveraging the contextual information 
surrounding the instance objects to alleviate the semantic 
ambiguity caused by the variable scene layout. For example, to 
address various sizes of instance objects in RSIs, 
feature-merged single-shot detection (FMSSD) [25] is designed 
on the basis of SSD [10], utilizing an atrous spatial feature 
reconstruction module to fuse context information and a 
reweighted loss function to focus on the feature learning of 
small objects. Besides, contextual bidirectional enhancement 
(CBD-E) [26] and decoupled classification localization 
network (DCL-Net) [27] adopt a spatial-level attention 
mechanism to enhance the features of objects and boost the 
spatial consistency of prediction results. However, these works 
for RSIs still suffer from three main limitations as follows. 

Firstly, all the above detectors still rely on predefined default 
boxes (region proposals), where the final prediction results are 
often sensitive to their hyperparameter settings. Especially for 
instance objects in RSIs, their scales and layouts change 
frequently. This may increase the difficulty of presetting such 
default boxes, and further result in the scale mismatch between 
the predefined default boxes and instance objects. 

Secondly, it is inevitable that for RSIs, some unexpected 
background disturbances surrounding the instance objects 
result in decreased detection accuracy. For example, the 
background distribution surrounding objects belonging to the 
same class often varies greatly in different images. This may 
make it difficult to accurately predict the size of foreground 
objects from the complex background information. 

Thirdly, due to that RSIs often present more complicated 
scene layout and background distribution, some hard-to-learn 
instance objects or hard-to-distinguish complex backgrounds 
may cause ambiguity in the feature learning process during the 
early training stage of the object detection framework. 
However, previous methods ignore this problem and sample the 
training instances in a random learning order. 

To address the above problems, we propose a novel 
anchor-free object detection framework for RSIs, whose 
network structure mainly consists of a designed cross-channel 
feature pyramid network (CFPN) and multiple developed 
foreground-attentive detection heads (FDHs). Specifically, an 
input image is fed into a selected anchor-free baseline detector 
with the CFPN that can be aware of the scale variations of 
potential instance objects during the whole detection process. 
In the CFPN, each prediction layer that combines rich 
inter-layer semantic relationships can detect objects with a 
certain size, which effectively deals with instance objects in 
multiple scales and encodes their semantic relations across 
different layers in the anchor-free baseline detector. Next, each 
FDH is designed to predict the center, size, and offset of an 
instance object by using the output of CFPN. With the aid of 
pixel-level annotations that is converted from the bounding-box 
level annotations, the FDH can learn to predict a spatial-wise 
attention map to emphasize the foreground object of a given 
bounding-box prediction, by a soft attention enhancement 
achieved through an element-wise multiplication operation. 

Furthermore, in order to provide the ability of learning 
instance features from easy to hard for the anchor-free detection 
framework, we design a dynamic curriculum-style optimization 
objective that can be directly connected after the common 
object detection loss such as focal loss [13], and reweight each 
instance object according to a dynamically changing easy-hard 
sample threshold, further improving the initial training stability 
and final detection accuracy of the anchor-free detection 
framework. Compared with the previous methods, the proposed 
curriculum-style optimization objective can be easily integrated 
with the off-the-shelf object detection loss to achieve the 
curriculum learning for object detection task, which does not 
require any extra learnable hyperparameters nor any change of 
the training procedure. 

We conduct extensive ablation studies and experiments on 
three public benchmark datasets, including DIOR [28], NWPU 
VHR-10 [1], and RSOD [29]. The experimental results on these 
datasets and insightful analyses demonstrate that the proposed 
framework can lead to consistent detection accuracy 
improvements. 

The main contributions of this work can be concisely 
summarized as follows: 

1) Aiming at the densely-arranged objects with variable scales 
and complex background disturbances in RSIs, we propose a 
scale-aware anchor-free detection framework without the 
need to predefine extra hyperparameters of the region 
proposals such as the number and aspect ratio of the 
proposals, which mainly consists of a CFPN and multiple 
FDHs, where the CFPN can learn cross-layer/channel 
semantic relationships to predict multiple densely-arranged 
and scale-variable instance objects while each FDH is 
designed to learn a soft foreground mask to emphasize 
foreground region and decrease background interferences. 

2) To generate the object instances matched with the current 
model in different epochs of model training, a dynamic 
optimization objective is designed to reweight each sample 
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according to the initially calculated detection loss, further 
boosting the training stability and detection accuracy of the 
designed detection framework. 

3) Extensive experiments have been conducted on the three 
publicly available object detection datasets, demonstrating 
that the superiority of the proposed method. Besides, 
thorough ablation studies further verify the effectiveness of 
each designed module. 

The remainder of this paper is organized as follows: In 
Section II, the related works are briefly reviewed. In Section III, 
the proposed framework including CFPN and FDHs is 
described in detail, and then, the curriculum-style loss function 
is described. In Section IV, the experimental results, insightful 
analyses, and detailed discussions are given. Concluding 
remarks are drawn in Section V. 

II. RELATED WORKS 

A. Anchor-free Detectors 

Anchor-free detectors generally consist of two parts: 

detection backbone and detection head. The detection backbone 

encodes the input images into high-level semantic features, 

while the detection head converts the above features into 

category prediction and position offset prediction according to 

the given object annotations. Unlike the anchor-based 

detections employing a predefined set of region proposals, the 

anchor-free detections decouple the predefined region 

proposals from the DNNs-based detection structure. 

As a representative anchor-free detector, CenterNet [17] 

firstly extracts features from the input image 3W HI    of 

width W  and height H  using the detection backbone. Then 

the detection head produces three prediction maps, which can 

be regarded as a center point heatmap  ˆ 0,1
W H

C
R RY
 

 , an object 

size map 2ˆ
W H

R RS
 

 , and an offset map 2ˆ
W H

R RO
 

 , where C is the 

number of classes and 4R   represents the downsampling 

factor of the extracted features. Based on the three predicted 

maps, CenterNet can produce a bounding box as follows: 

 




ˆˆ ˆ ˆ ˆ ˆ2,   2,

ˆˆ ˆ ˆ ˆ ˆ 2,  2

i i i i i i

i i i i i i

x x w y y h

x x w y y h

 

 

   

   
 (1) 

where  ˆ ˆ,i ix y  denotes the prediction result of the center point, 

 ˆˆ ,i iw h  represents the prediction result of the object size, and 

 ˆ ˆ,i ix y   denotes the prediction result of the offset. Specifically, 

the goal of the center point heatmap Ŷ  is to predict the 

keypoints of a certain class, and the object size map Ŝ  aims to 

produce the corresponding scale predictions of an object. 

Besides, the offset is designed to recover the position offset of 

the center point location caused by the downsampling factor R . 

For example, a center point  ,x y  in the input image is mapped 

to  ,x R y R        in the Ŷ , where     refers to round down. A 

real position offset  ,x R x R y R y R         needs to be 

predicted by the offset map Ô . 

B. Feature Pyramid Network 

Due to that object detection task is often required to 

recognize and localize multiple instances with large scale 

variations, feature learning for scale-invariant patterns is 

crucial during the whole model training process [9], [30], [31]. 

Feature pyramid network (FPN) [9], as a representative 

backbone structure of multi-scale feature learning, aims to 

build multi-scale features from different high levels having rich 

semantics. Specifically, the FPN adopts a top-down pathway 

and lateral connections to construct a feature pyramid structure 

by combining two adjacent layers. In this architecture, a feature 

hierarchy consisting of multi-scale feature maps is firstly 

constructed by the backbone ConvNet (such as ResNets). Then 

the low-resolution, semantically strong features are upsampled 

in the top-down pathway and enhanced with features of the 

same spatial size from the backbone via the above lateral 

connections, in the form of element-wise addition [9]. Finally, 

different pyramidal layers are used to predict objects with 

different scales. Specifically, the layer with a relatively higher 

 

Fig. 1. The overview of the proposed detection framework and dynamic curriculum learning strategy. The detection framework is mainly composed of a 

cross-channel feature pyramid network and multiple foreground-attentive detection heads. 
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resolution predicts smaller objects while larger objects are 

recognized in a lower resolution layer. Moreover, stacked 

discriminative sparse autoencoder (SDSAE) [32] improves the 

performance of land-use classification by introducing a weakly 

supervised feature transferring annotation framework to learn 

the relations of features from different scales, and 

discriminative CNNs (D-CNNs) [33] exploits a new object 

function to learn more scale-invariant and discriminative 

representations that have small within-class scatter and large 

between-class separation. 

C. Curriculum Learning 

There is an obvious phenomenon in the natural world that the 

learning process of humans or animals generally starts from 

relatively easier concepts and gradually progresses to complex 

ones. Motivated by this fact, curriculum learning [34]-[36] 

aims to obtain an order of sample learning, and thus boost the 

convergence speed of the sample training process. The main 

challenge in curriculum learning is how to accurately evaluate 

the learning difficulty of training samples. In earlier works [34], 

[36], the learning difficulty can be given using a predefined 

heuristic threshold that is determined according to the prior 

knowledge obtained by the input dataset. Moreover, self-paced 

learning [37] adopts another concept to evaluate the learning 

difficulty for each sample, where the difficulty is determined by 

the current status of the trained model. More recently, some 

natural image-based object detection methods using self-paced 

learning concept are designed [38]-[43]. For example, by 

assigning a learnable parameter (governing the importance of 

each instance) to each class and instance, a dynamic curriculum 

with learnable parameters is constructed so that the baseline 

detector can be optimized using the learned curriculum-related 

parameters [41]. Moreover, to select the most reliable samples 

for training in current status, the prediction scores of the 

previous iterations are comprehensively considered and further 

represented as the confidence of predicted boxes [42]. It should 

be noted that, in the field of RSIs-based weakly-supervised 

object detection, a few attempts also have been made to design 

an entropy-based easy-hard instance learning network by 

means of the self-paced learning concept [44]. 

III. THE PROPOSED METHOD 

To better deal with large variations of object sizes and 

complex background information in RSIs, a novel anchor-free 

detection framework is proposed with two main parts: a 

cross-channel feature pyramid network (CFPN) and multiple 

foreground-attentive detection heads (FDHs). Meanwhile, to 

avoid poor local optima in the training of models [34], a 

dynamic curriculum-style optimization is designed. The overall 

framework is shown in Fig. 1. Details of the proposed 

framework are elaborated as follows. 

A. Cross-channel Feature Pyramid Network 

Considering that the scales and layouts of objects in RSIs 

vary greatly, it is hard for anchor-based methods to find a 

suitable match between the default boxes to be predefined and 

the instance objects to be predicted. In order to eliminate these 

predefined sets of default boxes, we resort to the anchor-free 

detectors and select CenterNet [17] as our baseline model. 

However, such an anchor-free detection backbone, 

CenterNet, only utilizes the single-scale features from the 

highest semantic level to predict potential instance objects in 

RSIs. As a result, the above single-scale feature representations 

will lose many spatial details of objects due to the 

downsampling operation in the backbone network, which may 

give rise to large recognition and localization errors for small or 

clustered objects, especially when instance objects are densely 

arranged. On the other hand, the semantic relations between 

features of different resolutions are neglected. To address the 

above issues, a CFPN is developed, which employs a pyramid 

feature structure (FPN) to extract features from different scales 

and adopts multi-scale feature reweighting (MSFR) to learn 

semantic relations across these multi-scale features. 

As illustrated in Fig. 1, CFPN is a designed multi-layer 

anchor-free network. Firstly, to fully consider low-level 

spatial-detailed information and high-level semantically-rich 

information, FPN is used to fuse features from different 

semantic levels and generate pyramidal feature representations. 

With the employment of FPN, the multi-scale features from all 

scales are semantically strong, and thus objects of different 

scales could be predicted using the corresponding pyramidal 

layers which combine both spatial details and rich semantics. 

Meanwhile, in the multi-layer prediction of FPN, spatially 

adjacent objects could be assigned to different prediction layers, 

and thus the interferences from densely arranged instances 

could be greatly reduced. 

  

Fig. 2. The illustration of the multi-scale feature reweighting (MSFR). 
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Although FPN generates multi-scale feature representations, 

it considers each layer independently and ignores the relations 

across different scales. For example, “ship” and “harbor” 

categories often appear in the same RSI but are assigned to 

different network prediction layers, due to the large object size 

differences. However, under the FPN architecture, the above 

two categories with different object sizes are likely to be 

predicted independently, without the semantic-level 

information interaction across sizes/layers, which implies that 

the object detection network should have a good ability to 

encode the inter-scale/layer semantic relations. To obtain more 

discriminative feature maps across different scales/layers, 

MSFR is designed to learn inter-layer semantic relationships 

and reweight the input features at each scale. 

Specifically, let   1,2, ,k kH W C k K

kF
  




  denote the k-th 

layer features extracted by the FPN, where K  denotes the total 

layer number of pyramidal feature representations, and kH , 

kW  and C  represent the height, width, and channel number of 

the k-th layer features kF , respectively. As shown in Fig. 2, a 

global average pooling operation is firstly performed on 

features kF  in each scale, generating channel-wise intra-layer 

statistics 1 1 C
kF   . And then, cross-layer channel-wise 

representations 1 1 KC
oF    can be obtained by concatenating 

them as follows: 

 1 2[ , , ..., ]o KF F F F  (2) 

where [..., ...]  denotes the concatenation operation which 

concatenates K  vectors with C  dimensions along the channel 

direction to generate a vector with KC  dimensions. Based on 

the cross-layer channel-wise representations oF , two 

fully-connected layers with learnable parameters   are 

cascaded to learn inter-layer semantic dependencies across 

different scales, which can be represented by initial reweighting 

factors ( )oF . Note that, in order to fully capture the relations 

between all channels, both of the two fully-connected layers 

preserve the channel dimension. Then, the final reweighting 

factors 1 1 C
k

   which are split from the initial reweighting 

factors ( )oF  are multiplied with the corresponding input 

features kF  in channel dimension to produce reweighted 

features. Finally, the reweighted features are added to the input 

features kF  to calculate the output features 
 k kH W C

kF     of 

the CFPN in each scale as follows: 

 1 2( ( ) ) , , ...,o KSplit F     (3) 

 ( )k k k kF F F    (4) 

where the ( )Split   denotes the split operation which splits a 

vector with KC  dimensions to K  vectors with C  dimensions 

along the channel direction, k  represents the final reweighted 

factors in the k-th layer, and   and   are the channel-wise 

multiplication and element-wise addition operations, 

respectively. 

In MSFR block, with the guidance of such a channel-wise 

attention that can enforce the detection network to focus on the 

inter-scale semantic relationships, the features of strong 

correlations under different scales will be emphasized, and 

therefore the refined features contain more accurate 

information of all scales. 

B. Foreground-attentive Detection Head 

In RSIs, it is common that the background distribution is 

very complex and diversified. Even for objects belonging to the 

same class, the background representations in their 

neighborhood can vary greatly. Therefore, a robust detector 

should have a better ability to focus on the foreground region 

 

Fig. 3. The illustration of each FDH, which is composed of a size subnet with foreground enhancement, a center subnet, and an offset subnet. 
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learning so that it can successfully detect foreground objects 

from the complex background. 

To constrain the model to focus on learning foreground 

information in RSIs, the FDHs are proposed, as shown in Fig. 3. 

The motivation of the FDHs is to highlight the features from 

foreground objects and decrease the influence of cluttered 

background information. In order to realize it, an attention map 

is learned to identify the foreground region. 

As shown in Fig. 3, each FDH consists of three subnets: size 

subnet, center subnet, and offset subnet. For the size subnet, 

given the output features 
 k kH W C

kF     that are calculated by 

the above CFPN, a soft attention map  ( ) k kH W C
kG F     can be 

obtained through a three-layer convolution operation where 

each layer has a kernel size of 3 3 . Then the soft attention 

map ( )kG F  is split into two branches: 1) one branch produces a 

single-channel attention mask through a convolution layer with 

a kernel size of 1 1 , which is supervised by the segmentation 

loss with a pixel-level annotation; 2) Based on the calculated 

soft attention map ( )kG F , the other branch can predict the size 

 ˆˆ ,w h  of an object by a convolution layer with a kernel size of 

3 3  followed by a convolution layer with a kernel size of 

1 1  as follows: 

 ˆ ( ( ))k k kF F Exp G F    (5) 

where   and Exp  denote the element-wise multiplication 

operation and exponential operation, respectively, and the 

purpose of the exponential operation is to enhance the 

foreground regions in a soft attention way, avoiding the loss of 

useful information in feature maps. Besides, for the center 

subnet and size subset, they utilize a convolution layer with a 

kernel size of 3 3  followed by a convolution layer with a 

kernel size of 1 1  to generate the center prediction  ˆ ˆ,x y  and 

offset prediction  ˆ ˆ,x y  , respectively.  

Foreground enhancement is not applied to the center subnet 

and offset subnet, since the two subnets should focus on 

recognizing and localizing the center point of an object, but 

actually, the soft attention map ( )kG F  is used to highlight the 

object size in a region.  

In particular, inspired by a pixel-level classification way in 

semantic segmentation, the pixel-level annotation for the 

foreground region can be produced from the bounding-box 

level annotation in RSIs. The pixel-level annotation is 

generated by labelling all pixels inside the object bounding box 

as 1 and others as 0, emphasizing all pixels of foreground 

objects without requiring any additional manual labelling 

information. Finally, with the aid of the predicted attention map, 

the features of foreground objects are enhanced and the 

prediction for instance objects becomes more accurate. 

C. Initial Object Detection Loss Function 

We employ a loss function that combines object detection 

loss and semantic segmentation loss to jointly optimize the 

parameters of the proposed framework. The overall loss 

function, which includes center loss chL  , size loss sizeL  , offset 

loss offL  , and segmentation loss segL  , can be formulated as 

follows: 

 
       k k k k

ch size size off off seg seg
k k k k

L L L L L          (6) 

where k  is the index of the feature pyramid level. 

For the center subnet, focal loss [13] is used to assign larger 

weights to some hard samples during training as follows: 

 
   

     

ˆ ˆ1 log                 , if  11

ˆ ˆ1 log 1  , otherwise

xyc xyc xyc

ch
xyc

xyc xyc xyc

Y Y Y
L

N Y Y Y





  
  

  


  (7) 

where xycY  and ˆ
xycY  are the ground truth and prediction 

results of object centers, respectively.   and   are 

hyperparameters of the focal loss [13], and N denotes the 

number of keypoints in an input image. Besides, size and offset 

predictions are trained via a 1  regression loss as follows:  

 
1

1 ˆ
N

size i i
i

L S S
N 

   (8) 

 
1

1 ˆ
N

off i i
i

L O O
N 

   (9) 

where         2 1 2 1,
i i i i

iS x x y y    is the ground truth of object size, 
        ,i i i i

i c c c cO x R x R y R y R     
   

 is the ground truth of offset, 

and     refers to round down operation. Besides, ˆ
iS  and ˆ

iO  

represent the prediction results of object size and offset, 

respectively. Further, the segmentation branch is trained using 

the binary cross-entropy loss as follows: 

    
1

1
ˆ ˆlog 1 log 1

N

seg i i i i
i

L y y y y
N 

      (10) 

where iy  denotes the value of i-th pixel in pixel-level 

annotation and ˆ
iy  represents the corresponding prediction 

result. 

D. Final Curriculum-style Loss Function 

In the early training stage of deep neural networks, some 

noise samples or outliers may lead the model to a bad local 

minimum, which is more serious in RSIs since the complex 

background and scene layout of RSIs will result in more noise 

samples and outliers [34]. If the learning order for training 

samples can be performed in an easy-to-hard process, the 

generalization capability of the trained model should be further 

boosted.  

In order to provide the detection framework with samples 

that can match with current model ability, a dynamic 

curriculum-style optimization objective is designed. Inspired 

by the fact that detection loss intuitively reflects the learning 

difficulty of the sample instance in the current state, we use the 

loss in the current training iteration as the evaluation criterion 

of learning difficulty of a sample, and then transform it so as to  
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emphasize easy samples in the early stage of training. The 

designed curriculum-style loss is formulated as follows: 
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where L  is the initial object detection loss calculated by Eq. 

(6), clL  is the curriculum-style loss inserted after the object 

detection loss L , and   is the threshold to distinguish easy 

samples from hard ones. The designed curriculum-style loss 

function can dynamically cherry-pick easy samples, since we 

preset a threshold   that can be automatically calculated as the 

average of all losses from the training beginning up to now. The 

dynamic threshold   is consistent with the global status of all 

stages so far and can accurately identify easy and hard samples. 

For samples with losses smaller than the threshold  , i.e., 

0L   , we regard them as easy samples and the loss of them 

would be amplified since the weighting factor 
 L  M

 would 

equal to   via the designed function  xM . In contrast, hard 

samples with the initial object detection losses bigger than   

would be weakened, as the weighting factor equals to 1/  . 

With the aid of the designed curriculum-style loss function, 

easy samples can contribute more optimization loss for the 

update of model parameters during the earlier stage of the 

training process. As training continues, the predictive ability of 

the detection model will increase as the number of simple 

samples increases, so that the model can learn the 

curriculum-related knowledge of all samples globally. 

Through such a reweighting of loss, the dynamic 

curriculum-style optimization objective successfully realizes a 

curriculum that pays more attention to easy samples in the early 

stage, without adding any extra learnable hyperparameters or 

computational cost. Meanwhile, the designed curriculum-style 

optimization objective always can fit the current status of the 

training model since the change of loss is synchronous with that 

of the model. 

IV. EXPERIMENTAL RESULTS AND ANALYSES 

A. Dataset Description 

Our method is evaluated on the three public remote sensing 

object detection datasets, including DIOR [28], NWPU 

VHR-10 [1], and RSOD [29]. DIOR is a large-scale dataset 

with a wide range of object size variations. RSOD involves 

both urban and suburban backgrounds, which enriches the 

diversity of dataset. Unlike the above two datasets which 

contain only RGB images, NWPU VHR-10 consists of 715 

RGB images and 85 pan-sharpened color infrared images. 

Representative instances of these three datasets are displayed in 

Fig. 4. 

1) DIOR: The dataset is a very large-scale open-source data- 

   
(a) 

   
(b) 

   
(c) 

Fig. 4. Representative examples of three datasets. (a) DIOR. (b) NWPU 
VHR-10 (The first column is an RGB image and the second and the third 
columns are two pan-sharpened color infrared images). (c) RSOD. 
 

TABLE I 
EVALUATION RESULTS (MAP) ON DIOR, NWPU VHR-10 AND RSOD DATASETS. 

COO DENOTES CURRICULUM-STYLE OPTIMIZATION OBJECTIVE. 

Method DIOR 
NWPU 

VHR-10 RSOD 

Anchor-based 

Faster RCNN [7] 54.1 87.3 92.0 

SSD [10] 58.6 83.1 87.9 

YOLOv3 [12] 57.1 87.3 \ 

RetinaNet [13] 66.1 89.6 91.2 

FMSSD [25] \ 90.4 \ 

CBD-E [26] 67.8 95.0 94.2 

DCL-Net [27] \ 94.6 94.6 

Anchor-free 

CenterNet [17] 57.7 83.7 78.3 

CornerNet [16] 64.9 \ \ 

FCOS [18] \ 92.1 93.7 

FoveaBox [19] 69.0 91.4 94.0 

CFPN+FDHs+COO 73.5 96.8 95.6 

 
TABLE II 

RESULTS OF ABLATION STUDIES ON DIOR AND NWPU VHR-10 DATASETS.  

COO DENOTES CURRICULUM-STYLE OPTIMIZATION OBJECTIVE. 

Method DIOR 
NWPU 

VHR-10 Params 
Times 

(s) 
Baseline FPN CFPN FDHs COO mAP mF1 mAP mF1 

√     57.7 53.2 83.7 77.8 204.34M 0.065 

√ √    68.3 63.6 93.7 87.4 209.35M 0.071 

√  √   69.6 64.8 94.8 88.7 213.85M 0.071 

√   √  60.2 56.5 86.8 79.9 209.44M 0.066 

√  √ √  71.7 66.3 96.2 91.2 261.88M 0.078 

√  √ √ √ 73.5 67.6 96.8 92.5 261.88M 0.078 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3115796, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

 8

 

                
 (a) (b) 

                
 (c) (d) 

                
 (e) (f) 

Fig. 5. The confusion matrices of ablation experiments on the DIOR dataset. (a) Baseline. (b) Baseline + FPN. (c) Baseline + CFPN. (d) Baseline + FDHs. (e) 
Baseline + CFPN + FHDs. (f) Baseline + CFPN + FHDs + COO, COO denotes curriculum-style optimization objective. The categories are listed in Table III.  
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set containing 20 kinds of objects categories and 23464 images 

with a unified size of 800×800 pixels, in which 192472 

instances are annotated. Besides, we use the officially divided 

train set and validation set for model training, and test set for 

testing use.  

2) NWPU VHR-10: It is a challenging ten-class geospatial 

object detection dataset. NWPU VHR-10 consists of 800 

high-resolution RSIs, including 650 positive images and 150 

negative images having no targets of the given object classes. In 

this paper, we randomly select 80% samples for model training 

and 20% samples for testing use from its positive image set, 

which is consistent with the splitting way in [25], [26].  

3) RSOD: It is an open dataset for object detection in RSIs, 

which includes 4 kinds of objects: aircraft, playground, 

overpass, and oiltank. The dataset contains a total of 976 RSIs 

and 6950 instances. It is randomly split into train set and test set 

according to the proportion of 8 : 2, which is consistent with the 

splitting way in [26], [27]. 

B. Experimental Setup 

We select CenterNet [17] as our anchor-free baseline model 

and adopt ResNet-101 [2] as the backbone network for feature 

extraction. For experiments on all benchmark datasets, 

following the hyperparameter setting in CenterNet [17], we set 

size , off , and seg  to 0.1, 1, and 1, respectively, and a 

Focal-loss parameters of 2   and 4   for the center 

heatmap learning. During the training process, learning rate is 

set to 5e-5 and decays by a factor of 0.1 at epoch 20 and 30, 

respectively. For all datasets, the overall training process ends 

when 40 epochs are reached. 

For the image size, the input images of three datasets are all 

resized to 800×800 pixels in the training phase and keep the 

original resolution during the inference stage. For all datasets, 

we use cropping, random flip and random scaling (between 0.6 

and 1.3), as data augmentation in the training stage, which is 

same with the settings in CenterNet [17]. As for inference, flip 

test is utilized for augmentation. 

For all the following experiments, mean average precision 

(mAP) and mean F1-socre (mF1) under the threshold of 0.5 is 

used to evaluate the model’s average detection accuracy across 

all classes, which is consistent with the evaluation setup in 

[25]-[27]. 

C. Comparison with Other Methods 

In this part, we compare the proposed methods with seven 

representative anchor-based object detection methods: Faster 

RCNN [7], SSD [10], YOLOv3 [12], RetinaNet [13], FMSSD 

[25], CBD-E [26], and DCL-Net [27]; and four state-of-the-art 

anchor-free detectors: CenterNet [17], CornerNet [16], FCOS 

[18] and FoveaBox [19]. Table Ⅰ reports the comparison results 

of detection accuracy with the ten state-of-the-art methods on 

DIOR, NWPU VHR-10, and RSOD datasets, respectively. The 

experimental results demonstrate that the proposed framework 

(CFPN+FDHs+COO) achieves the highest mAP on all the 

benchmark datasets. 

D. Ablation Studies 

We perform ablation studies to verify the effectiveness of 

each designed part and the corresponding experimental results 

are reported in Table II. It can be seen from Table II that the 

combination of CFPN and FDHs is beneficial to improve 

detection accuracy. Meanwhile, the dynamic curriculum-style 

optimization objective further enhances the detection ability of 

the model. Compared with the baseline, the proposed 

framework significantly improves the mAP on DIOR and 

NWPU VHR-10 by 15.8% and 13.1%, respectively. 

Meanwhile, the results of mF1 on these two datasets also gain 

substantial improvements by 14.4% and 14.7%, respetively. 

In order to analyze the effect of each part in detail, we draw 

the heatmap confusion matrix of each ablation experiment on 

DIOR dataset in Fig. 5. Comparing Fig. 5(a) and Fig. 5(c), it 

can be observed that the detection accuracy of almost all classes 

has been improved after introducing CFPN. The detection 

accuracy of some classes having large variations in object sizes, 

such as airplane, expressway service area, harbor, wind mill, 

vastly increases by even more than 30%, indicating that CFPN 

can cope well with the variable object size in RSIs. Moreover, 

for most classes, the detection results of CFPN are better than 

that of FPN, which can be concluded by comparing Fig. 5(b) 

and Fig. 5(c), especially for airport, dam, etc, indicating that the 

semantic relations are often helpful for identifying objects, and 

verifying the effectiveness of the proposed CFPN. As for FDHs, 

it can be observed from Fig. 5(d) and Fig. 5(e) that the detection 

accuracy can be further improved, especially for classes with a 

TABLE III 
20 OBJECT CATEGORIES IN THE DIOR DATASET.  

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 

airplane airport 
baseball 

field 

basket- 
ball 

court 
bridge chimney dam 

express- 
way 

service 
area 

express- 
way 
toll 

station 

golf 
field 

ground 
track 
field 

harbor overpass ship stadium 
storage 

tank 
tennis 
court 

train 
station 

vehicle 
wind 
mill 

 

TABLE IV 
EVALUATION RESULTS (MAP %) OF DIFFERENT BACKBONES ON DIOR AND NWPU 

VHR-10 DATASETS. OURS DENOTES CFPN+FDHs+COO. 

Dataset 
ResNet-50 ResNet-101 DLA-34 

Baseline Ours Baseline Ours Baseline Ours 

DIOR 57.0 70.7 57.7 73.5 57.1 72.9 

NWPU 82.3 95.0 83.7 96.8 83.3 95.6 
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relatively complex background, such as airplane, overpass, ship, 

and stadium. Besides, with the aid of the dynamic curriculum- 

style optimization objective, the overwhelming majority of 

classes gain higher detection accuracy, which can be observed 

through the differences between Fig. 5(e) and Fig. 5(f), 

demonstrating that a model with better generalization 

capability is obtained. 

Moreover, due to that objects with the similar appearances 

widely exist in DIOR dataset, such as ground track field and 

stadium, dam and overpass, chimney and storage tank, some 

mis-predicted classes are often pairwise-related, which means 

that a certain hard-to-recognize class may be misclassified as 

another semantically-similar class and vice versa. 

In the proposed framework, the backbone can extract 

features from the input images and may influence the detection 

results. To evaluate the effect of different backbones, we 

perform experiments on three representative backbones: 

ResNet-50 [2], ResNet-101 [2] and DLA-34 [17], and the 

corresponding experimental results are reported in Table IV, 

where the best results are marked in bold. It can be observed 

that all three backbones achieve state-of-the-art results in both 

datasets, which demonstrates the superiority and generalization 

of the proposed method. Moreover, ResNet-101 yields the 

highest mAP among the three backbones and is utilized in the 

following experiments.  

E. Insightful Analyses and Visual Examples 

In each FDH, the center subnet focuses on the center points 

of objects while the size subnet pays attention to the whole 

object by enhancing the foreground representations. To 

visualize the mechanism of them, we show the center points 

heatmaps and attention masks in Fig. 6. It can be seen that, for 

objects with various scales, the center points heatmaps 

highlight the centers of the target objects and the attention 

masks precisely activate the entire foreground regions. 

Although the anchor-free detection backbone with a 
pyramid structure can bring considerable performance gains 
for object detection in RSIs, fusing the features from 
different semantic levels is still crucial and needs to be 
further studied. We investigate the impact of employing 
different numbers of prediction layers K  on the detection 
accuracy. It can be observed from Fig. 7 that the optimal 
mAP can be obtained when the number of prediction layers 
equals to 3. 

For the dynamic curriculum-style loss, the weighting 
factor   affects the importance of different samples, as the 
weighting factor   becomes larger, the attention on easy 
samples will be relatively added. We investigate the 
influence of the weighting factor   in Fig. 8 and it can be 
observed that the best detection results are achieved when 

2   for both datasets. 

   
(a) 

    
(b) 

    
(c) 

Fig. 6. The visualization of center points heatmaps and attention masks. (a) 
Ground truth. (b) Center points heatmap. (c) Attention mask.  

 

 

Fig. 7. Detection accuracy (mAP %) of employing different settings of the total 
layer number of pyramidal feature representations K . 

 

Fig. 8. Detection accuracy (mAP %) of employing different values of the 
weighting factor   in Eq. (11). 
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Furthermore, in order to show the effect of dynamic 
curriculum-style optimization objective in the training 
process intuitively, we plot the variation of the proportion of 
easy and hard samples in Fig. 9. At the beginning of the 

training process, the easy and hard samples are about evenly 
divided because we use the average loss as the threshold. 
With the progress of training, the proportion of easy samples 
continues to increase while that of hard samples decreases, 

 

Fig. 9. The changing trend of the proportion of easy and hard samples. 
 

             
(a) 

             
(b) 

             
(c) 

Fig. 10. Visual detection results on DIOR dataset. (a) The ground-truth annotations. (b) Detection results predicted by CenterNet [17]. (c) Detection results 
predicted by the proposed framework. 
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and finally, most samples become easy. It is consistent with 
the idea in curriculum learning that easy samples should be 
emphasized first and then gradually transfer to overall 
samples. 

Besides, Fig. 10 shows the visual detection results of 

different methods on DIOR. It can be observed that our method 

shows better visualization results for the object detection task in 

RSIs. Compared with the baseline [17], the proposed 

framework has a better ability to capture the very small objects 

(shown in columns 1 and 2), instance objects with the 

complicated background (shown in column 3) and the dense 

arrangement (shown in columns 4). Besides, for closely related 

species, like ship and harbor (column 4), vehicle and express 

service area (column 5), our framework which utilizes the 

relationship across different scales can boost the detection 

accuracy of these classes. Meanwhile, multi-layer prediction 

and foreground size attention ensure that objects can be 

predicted accurately. 

Moreover, Fig. 11 shows the visual detection results of 

different methods on NWPU VHR-10 and RSOD. The three 

columns on the left are the detection results on NWPU VHR-10 

and the two columns on the right are the detection results on 

RSOD. It can be observed that our method shows better 

visualization results than the baseline CenterNet [17] on both 

datasets. 

V.  CONCLUSION  

In this work, we have proposed a novel region-free detection 

framework consisting of a cross-channel feature pyramid 

network (CFPN) and multiple foreground-attentive detection 

heads (FDHs), and have designed a dynamic curriculum-style 

optimization objective, towards detecting multi-class objects in 

optical RSIs. Considering that the object size and scene layout 

in RSIs often change and objects across different have semantic 

relations, the CFPN is proposed to predict multi-class objects 

with different scales and layouts without the requirement of 

predefining a set of region proposals. Due to the severe 

background interferences in RSIs, each FDH is developed to 

predict an attention map according to the semantic features 

produced by the CFPN, further enhancing the foreground 

representations by means of the calculated attention map. 

Meanwhile, a dynamic curriculum-style optimization objective 

is designed to learn features from easy to hard by reweighting 

samples and further boost the generalization capability of the 

detection model. The experimental results on the three public 

benchmark datasets demonstrate the effectiveness and 

superiority of the proposed method over several state-of-the-art 

object detection methods. 

When the orientation of an object is arbitrary, it is difficult 

for the traditional horizontal bounding box to provide the 

accurate location of the object, since the horizontal bounding 

box covers a larger region of background. On the contrary, 

oriented bounding boxes could overcome this disadvantage by 

tightly surrounding the boundary of the target object. In future 

work, we would try to supplement an angle prediction branch 

into our framework and extend it to detect objects in various 

orientations. 
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