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Digital image forensics is a key branch of digital forensics that based on forensic analysis of image authenticity and image content.
The advances in new techniques, such as smart devices, Internet of Things (IoT), artificial images, and social networks, make
forensic image analysis play an increasing role in a wide range of criminal case investigation. This work focuses on image
source identification by analysing both the fingerprints of digital devices and images in IoT environment. A new convolutional
neural network (CNN) method is proposed to identify the source devices that token an image in social IoT environment. The
experimental results show that the proposed method can effectively identify the source devices with high accuracy.

1. Introduction

The IoT is revolutionizing our everyday lives provisioning a
wide range of novel applications leverage on ecosystems of
smart and highly heterogeneous devices [1]. The use of the
fifth-generation mobile network (5G) has brought wide cov-
erage, large connection, and low delay network access ser-
vices to the IoT. In the face of heterogeneous network
access technology, mobile IoT data presents the characteris-
tics of massive, heterogeneous, and dynamic. Machine learn-
ing enables computers to automatically learn and analyze big
data and then to make decisions and predictions about
events in the real world [2]. With the wide application of
IoT devices, the security of data in massive IoT devices has
attracted much attention. Especially in the research of digital
forensics, multimedia information of IoT devices has impor-
tant analytical significance.

In recent years, social network platforms, such as Twit-
ter, Facebook, WeChat, Instagram, and Weibo, have been
increasingly used in our daily events and are changing the
way we are communicating [3]. Related reports pointed
out that in 2020, online social network users have reached

3.8 billion [4], and these users can publish and obtain vari-
ous information on social network platforms to achieve the
purpose of mutual communication and exchange. However,
the development of various image editing software also pro-
vides convenience for criminals to use social networks to
spread forged information. As a transmission medium
between users and social network platforms [5], smart
phones play an important role in the behavior of users using
social platforms to publish and share multimedia content
[6]. On the other hand, criminals can use smart phones to
post faked image information on social network platforms.
Therefore, a combination of smart phones and social net-
work platforms used for image source identification has
certain research significance. The research can help law
enforcement officers to collect more criminal evidence to
ensure the security of social network platforms and social
stability.

The accuracy of traditional camera source identification
mainly relies on the compression strength of the image that
needs to be suppressed before noise fingerprint extraction
[7]. It is therefore only suitable for camera source identifica-
tion scenes with high-quality image factors. The images
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published on social network platforms are compressed, and
the traditional camera source identification method has
low accuracy. In this paper, a novel camera source identifica-
tion model based on a convolutional neural network (CSI-
CNN) is proposed to extract the image noise fingerprint
and compare it with the preestimated device fingerprint.
The matching degree is evaluated based on the similarity
of the two fingerprints and then determines the source of
the image.

In summary, the major contributions of the proposed
work are fourfold:

(1) A novel method that combines smart mobiles and
social network platforms for image source identifica-
tion is proposed

(2) A new CNN is designed to extract the fingerprint
characteristics of image noise on social networks
and to match the device fingerprint to identify the
camera source device of the image

(3) A loss function is proposed based on deep learning
method to effectively extract the noise fingerprint
of the test image

(4) A new dataset was constructed to test the user iden-
tification framework based on camera fingerprints

2. Related Work

As we all know, the information shared on social networks is
often dominated by images. It is of great significance for
multimedia forensics to trace the source of these images
and identify the camera source by matching them with the
camera they belong to. It provides an effective method for
network evidence collection by law enforcement officers in
the event of cybercrime. To fully understand the relationship
between the social network platform images and the camera
to which it belongs, a detailed overview of the existing image
traceability technology is carried out. The existing widely
used image traceability methods mainly include camera
source identification based on photo response nonunifor-
mity (PRNU) and camera source identification based on
deep learning techniques.

2.1. Camera Source Identification Method Based on PRNU.
The PRNU is mainly based on the use of digital imaging
equipment in the production process due to the imperfec-
tion of manufacturing of the CCD sensor array, resulting
in the imaging equipment photosensitive elements of the
photosensitive characteristics of small differences, e.g., the
most widely used is the PRNU feature proposed by [8], in
which Chen et al. highlighted that the camera noise pattern
can be used as a unique fingerprint for source camera iden-
tification [9] and image forgery detection. In [10], Li focused
on enhancing the characteristics of PRNU and constructing
a series of corresponding functions to improve the individ-
ual recognition effect of PRNU equipment. Subsequently,
others thought that the color interpolation step would have
an impact on the recognition of PRNU, so an algorithm
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for extracting PRNU only for noninterpolated pixels was
proposed. [11] is committed to the transformation of PRNU
features, using principal component analysis and hash map-
ping to reduce the dimension of PRNU, thereby improving
the recognition rate of features. [12] based on PRNU’s cam-
era source identification method, by collecting images taken
by different devices, using PRNU extraction algorithm to
extract image fingerprints from these images, and then using
methods such as average or maximum likelihood estimation
to perform fingerprints on the device and then calculate the
correlation between each device fingerprint and a given test
image, to determine the camera object that took the given
test image. [13] used wavelet filters to enhance camera’s sen-
sor pattern noise output, applied threshold formulas to
remove scene details, and enhanced PRNU quality and pat-
tern information content through enhancement methods to
improve recognition accuracy. [14] proposed a new method
of linear Gaussian filter kernel estimation based on PRNU
noise. The core idea of the method is to treat PRNU noise
as identifying fingerprints and to compare the noise resid-
uals of clean images and query images respectively. The
noise residuals extracted in JPEG are correlated, and the lin-
ear relationship between the two is obtained through math-
ematical derivation. This method has a certain effect on the
source recognition of the image after JPEG compression.

2.2. Camera Source Identification Method Based on Deep
Learning. With the development of artificial intelligence
technology and the increase of available image datasets, deep
learning technology is gradually introduced into the field of
image forensics. Also, deep learning technology can extract
the best features from a large number of training datasets,
avoiding the limitations of artificially designed features.
Due to the rise of social networking sites such as Twitter,
Facebook, WeChat, Instagram, and Weibo, researchers can
easily obtain a large number of images with complete tags,
use these images as research objects to extract image fea-
tures, and then, use the larger-scale dataset to verify the
effectiveness of the algorithm. For example, [15] applied
convolutional neural network (CNN) to camera source iden-
tification for the first time, directly learning the characteris-
tics of each camera from the acquired images for
identification. [16] proposed a camera model recognition
method based on CNN. The preprocessing layer is added
to the CNN model, including a high-pass filter applied to
the input image. CNN is used for feature extraction, and
finally, the recognition score of each camera model is output
to classify the image. [17] proposed a solution to identify
small-size image source camera, through transformation
learning to train three fusion residual networks for saturated
images, smooth images, and other images, from the three
residual networks (ResNet) [18] learning features in the
residual block to more accurately recognize the input image.
[19] proposed a method of learning twin neural networks,
which uses a unique structure to rank the similarity between
input contents. The predictive ability of the network is used
not only for new data but also for new categories in
unknown distribution. By applying it in image forensics,
the accuracy and universality of picture recognition can be
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improved. Also, [20] used the DnCNN [21] network models,
extracted higher-quality image noise fingerprints, and per-
formed correlation calculations based on the device finger-
prints estimated by the maximum likelihood estimation to
update the model parameters for better feature learning.

So far, due to the extensiveness and heterogeneity of data
information on social network platforms and the difficulty of
high computational complexity caused by large-scale data-
sets for camera source identification algorithms, it is of great
significance to combine the traditional PRNU-based noise
estimation with the deep learning-based noise estimation
and apply it to camera source identification and network
forensics.

Based on the investigation of the above-related work,
this paper integrates PRNU and deep learning to design a
camera source identification network (CSI-CNN) based on
image noise fingerprint feature extraction, which optimizes
the fully convolutional networks (FCN) [22]; network struc-
ture added the bottleneck residual block [18], combined with
the idea of wavelet denoising for design. Based on the corre-
lation between the preestimated PRNU device fingerprint
and the social network image noise fingerprint extracted by
CSI-CNN, a new loss function is designed to train, update
network parameters, extract higher-quality image noise fin-
gerprints, and obtain higher camera source identification
accuracy.

3. The Proposed Method

The core idea of the social network image source identifica-
tion method proposed in this paper is to identify the camera
device source of the images posted by the user on the social
network. That is, the noise fingerprint features can be
extracted from the images on the social network through
CSI-CNN designed in this paper, and the extracted noise
fingerprint is correlated with the preestimated camera fin-
gerprints; afterwards, the calculated correlation is used to
determine whether the image on the social network is a real
image taken by the camera held by the user. Camera finger-
print estimation and social network noise fingerprint extrac-
tion are the key contents of camera source identification,
which will be introduced in detail in this section.

3.1. Camera Fingerprint Extractions. The social network
image source identification method based on camera source
recognition requires preestimation of the camera fingerprint,
that is, the PRNU value. The specific process includes two
parts: determining the camera sensor output model and
PRNU estimation.

3.1.1. Camera Sensor Output Model. The imaging process of
the camera is very complicated. The light is focused on
Charge-Coupled Device (CCD) or Complementary Metal-
Oxide Semiconductor (CMOS). The CCD or CMOS
completes the conversion of optical signals to signals, and
the electrical signals are converted into digital by analog to
digital converter. The signal is converted into a digital image
through digital signal processing.

In the camera imaging process, the sensor will leave sen-
sor pattern noise (SPN) in any image taken, which is an
inherent feature of digital cameras, which is mainly caused
by photo response nonuniformity and fixed-pattern noise
(FPN). Even with the same type of sensor, the output value
of the photosensitive unit will be different, which produces
PRNU. It is unique to a single sensor. Aiming at the com-
plexity and polymorphism of camera imaging, [8] proposed
a camera sensor output model:

I=g"- [1+K)Y+&"+0. (1)

Among them, I represents the noise image, K represents
the multiplicative factor, which is the zero-average noise sig-
nal leading to PRNU, and g represents the color channel
gain coeflicient. The gain coeflicient adjusts the pixel inten-
sity level according to the sensitivity of the pixels in the
red, green, and blue spectral bands to get the correct white
balance. y represents the gamma correction coefficient. &
represents other noise. ® represents quantization noise.
Equation (1) is expanded into Taylor’s formula and
expressed as:

I=1,+I,-K'+0. (2)

Among them, I represents a clean image without noise.
K stands for PRNU. 0 indicates that the noise includes fixed-
pattern noise, quantization noise, shot noise, etc.

3.1.2. PRNU Estimation. The camera fingerprint K value can
be estimated from N images taken by the camera. The spe-
cific process is as follows:

(1) Use denoising filter F for denoising

Iy=F(I). (3)

Among them, I} represents the image after removing the
additive noise. F represents the denoising filter. I represents
a noisy image.

(2) Get noise residual

W=I-I,=IK +n. (4)

Among them, W represents the noise residual, and # is
the set of all noises except multiplicative noise.

(3) PRNU estimation

The maximum likelihood estimation can be used to esti-
mate the value of K; it can be expressed as [23, 24]:

N
K= ZK:I WKIK .

N
ZK:II?<
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F1GURE 1: CSI-CNN network structure. This network is a fully convolutional network and does not change the length and width of the input
image, its input is a 3-channel RGB image, and the output is a single-channel noise residual image.

3.2. Image Noise Extractions. After obtaining the PRNU of
the device, it is necessary to extract the noise of the test
image. CSI-CNN is designed in this section, noise finger-
print can be extracted through CSI-CNN, and the correla-
tion calculation is performed with the preestimated PRNU
value to determine whether the test image belongs to the
corresponding device. This section proposes the CSI-CNN
network model and introduces in detail how to build the
network structure and the training process of the model.

3.2.1. Network Structure. The overall network structure of
the proposed CSI-CNN is shown in Figure 1. The construc-
tion ideas mainly include:

(1) The middle layer uses batch normalization (BN) and
convolution kernel stacking ideas. The main reason
for adopting this idea is that when the neural
network is trained using minibatch in this paper, dif-
ferent batch data distributions are different, the net-
work must learn to adapt to different distributions in
each iteration, which will greatly reduce the training
speed of the network. Using the BN method for data
standardization can speed up the training process
and improve the denoising performance. Using a
stack of full convolution kernels allows the network
to accept inputs of any size

(2) The network structure design uses the bottleneck
residual block and uses a 1x1 convolution kernel
to subtly reduce the feature dimension and reduce
the number of network parameters, to prevent the
occurrence of overfitting

According to the above network construction ideas, the
input of CSI-CNN is the image to be tested y = kx + v, where
k is multiplicative noise (noise fingerprint) [25], v is additive
noise (background noise) [26], and x is clean image. Unlike

the SPN-CNN model training a set of models for one image
data, the CSI-CNN proposed in this paper has better gener-
alization. It can be applied to multiple cameras after one
training and can achieve a good training effect. The network
structure of CSI-CNN is shown in Figure 1. (1) Conv+ReLU:
for the input layer, 128 x 3 convolution kernels with a size of
3 x 3 are used for convolution [27, 28], and ReLU (Rectified
Linear Unit) is used to achieve nonlinear output between
neurons. (2) Conv+ReLU+BN: for the self-network, this
paper uses the bottleneck residual block, which passes
through 1 x1x128, 3 x3x32, and 1x 1 x 32 convolution
kernels, performs convolution, and performs batch normal-
ization and ReLU activation function to output a 128-
dimensional feature matrix. (3) Conv: for the output layer,
a convolution kernel with a size of 3 x 3 x 128 is used to out-
put the image multiplicative noise fingerprint w. Table 1
shows the parameter list of the network.

3.2.2. Model Training. Figure 2 shows the training frame-
work of the CSI-CNN network proposed in this paper. First,
the dataset is divided into a verification dataset, a fingerprint
estimation dataset, a training dataset, and a test dataset at a
ratio of 1:1:6:2. Then, we use the camera pictures in the
fingerprint estimation set to estimate camera’s fingerprint
set by Section 3.1.2 PRNU estimation process, which is
called Kset. We start the network training process, randomly
extract an image I from the training set, and take a subimage
I' from it according to the preset size and then randomly
one label € {0,1}; when label =1, take the source camera
fingerprint image I from Kset and take the subgraph K' at
the same position as I' from K and output {1,I',K'} as a
pair; when label =0, randomly select a subgraph K'’ with
the same size as I' from the set Kset — K and output {0, 1',
K''} as a pair. In the experiment, each batch contains 64 pairs,
and the default size of the subimage is 64 x 64.
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The loss function designed in this paper uses the cosine
distance to measure the similarity between the network out-
put and the predicted PRNU value and calculates the loss
through the idea of segmentation, and finally, uses it to
update the parameters in the network. It enables the network
to better extract the characteristics of noise fingerprint for
camera source identification.

loss(x, y,I) =1-max (1 - p(x,y),0) + (1 = 1)
[min (p(x,),0) - ¢ + |p(x. y)|]-

Among them, p(x,y) = (x-y)/(Ix[llyll), x represents the
noise residual of a single image output by the network, y rep-
resents the camera fingerprint estimated by the method in
Section 3.1.2, 1€{0,1}; when /=1, it means that x and y
are in the same position on the same camera; otherwise,
I=0. At that time, the loss function became

loss(x, y) = min (p(x, ), 0) - ¢ + [p(x, y)|- (7)

This means that x and y are not from the same position
of the same camera. We hope that p(x, ) is as close as pos-
sible to 0, whether it is from 0" to 0. It is still close to 0 from
07, so the loss function adds |p(x,y)|. However, the two
cases of p(x, y) taking positive and negative must be treated
differently. When label = 1, the loss function becomes

loss(x, y) = max (1 — p(x, y),0). (8)

This means that from the same position of the same
camera, we should hope that p(x, y) is as close as possible
to 1. This trend should be closer to 17, and the loss function
for p(x, y) the penalty for negative numbers is very large, so
the loss becomes a number greater than 1. Different from the
loss function, MSE(x, y) = (1/n)Y 1 (x; — yi)2 is proposed in
[20]. The loss function based on cosine distance proposed in
this paper measures the degree of similarity between image’s
noise fingerprint and camera’s PRNU fingerprint in the
direction, while the loss function in [20] can only measure
the absolute difference in space between the two.

4. Experimental Verification and
Result Analysis

4.1. Dataset Description and Data Preprocessing. To evaluate
the performance of camera source identification of the pro-
posed method, we use the following four datasets for testing.

4.1.1. Vision. This dataset was established by [29]. The
images and videos of this standard evaluation library come
from 35 widely used smart phones, including 11 different
brands in total: Apple, Asus, Huawei, Lenovo, LG Electronics,
Microsoft, OnePlus, Samsung, Sony, Wiko, and Xiaomi. They
collected 7565 mobile phone images on Facebook, 34427
images through WhatsApp, and 1914 videos downloaded
from WhatsApp and YouTube. Each model of mobile phone
images are divided into five categories: smooth images,
original phone images, high-quality Facebook images, low-

TaBLE 1: The number of network parameters in CSI-CNN.

Network layer name

Parameter number

Convolution layer 1

128 x 3 x3x 3+ 128 =3584

BatchNorm 128 + 128 =256
Activation function ReLU 0
Convolution layer 2 32x 128 x1x1=4096
BatchNorm 32+32=64
Activation function ReLU 0
Convolution layer 32x32%x3x%x3=9216
BatchNorm 32+32=64
Activation function ReLU 0
Convolution layer 4 128 x 32 x 1 x 1 = 4096
Function ADD 0

BatchNorm

Convolution layer 5

128 + 128 =256
3x128%x3x3+3=3459

BatchNorm 3+3=6
Activation function ReLU 0
Function sub 0
Activation function ReLU 0

Convolution layer 6

128 x3x3x3+ 128 =3584

BatchNorm 128 + 128 =256
Activation function ReLU 0
Convolution layer 7 32x128 x 1 x1=4096
BatchNorm 32+32=64
Activation function ReLU 0
Convolution layer 8 32x32x3x3=9216
BatchNorm 32+32=64
Activation function ReLU 0
Convolution layer 9 128 x 32 x 1 x 1 =4096
Function ADD 0
Convolution layer 10 1x128x3%x3+1=1153
BatchNorm 1+1=2

quality Facebook images, and WhatsApp images. The reso-
lutions of the image are 1280 x 720 and 640 x 480.

4.1.2. Kaggle. This dataset comes from a competition on the
identification of mobile phone image sources held on the
Kaggle [30] website. This competition also provides partici-
pants with a standard evaluation library. The standard eval-
uation library is divided into two parts, one is the training
library, the other is the evaluation library. The images in
the training library come from 10 mobile phones, with a
total of 2750 images. Each mobile phone took 275 images,
and the content of these images is selected from different
scenes. The evaluation library includes a total of 2640
images. These images come from the same model of the
mobile phone as the training library, but not the same
mobile phone. Half of the images have been manually proc-
essed, compressed, and enlarged in different proportions,
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FIGURE 2: CSI-CNN network training process.
TaBLE 2: Correlation calculation results on our dataset.

Model . . .
Image Honor 10 iPhone 6 Nubia Z17 Redmi note8 Galaxy S5 Wavelet
Honor 10 0.0767 -0.0068 -0.0040 0.0058 -0.0005 0.0591
iPhone 6 -0.0067 0.0990 -0.0051 0.0026 -0.0052 0.0777
Nubia Z17 -0.0047 -0.0056 0.0670 0.0002 0.0013 0.0474
Redmi note8 0.0035 -0.0027 0.0051 0.1033 0.0024 0.0821
Galaxy S5 -0.0136 -0.0250 0.0042 0.0088 0.2610 0.2044

and some have been gamma-corrected, and the image size
has been cropped to 512 x 512.

4.1.3. Daxing. This dataset was established by [31]. It collects
images and videos from a wide range of smart phones of dif-
ferent brands, models, and devices. The dataset includes
43,400 images and 1,400 videos, which were taken by 90
smart phones of 22 models from 5 brands.

4.1.4. Proposed. Due to the small number of pictures of a sin-
gle camera in the above datasets, the model cannot be
trained well. To better estimate the performance of the algo-
rithm proposed in this paper, we use 5 different models of
mobile phones, including iPhone 6, Galaxy S5, Nubia Z17,
Redmi note8, and Honor 10. We randomly took 1000 differ-
ent images with each model of mobile phone.

This paper preprocesses the collected dataset. First, all
images in the dataset are cropped into blocks in the central
area and then are randomly selected as the input data of
CSI-CNN from the cropped blocks for training.

4.2. Comparison Method and Evaluation Index. During the
experiment, this paper selects different control methods
and evaluation indicators according to different experimen-
tal purposes, and all comparison methods are experimented
on the datasets used in this paper.

4.2.1. Comparison Method. When evaluating the denoising
model, this paper compares with the wavelet filter denoising
model and DnCNN [21], using these methods to obtain the
noisy image of the downloaded image on the social platform
and correlate the noisy image with the extracted noise fin-

gerprint calculation to obtain the correspondence between
the camera and the social platform image.

4.2.2. Evaluation Index. When evaluating the performance of
the CSI-CNN network model, this paper uses accuracy
(ACC), receiver-operating characteristic (ROC), and area
under curve (AUC) as evaluation indicators, which are
defined as follows:

TP + TN
ACC= .
TP + FN + TN + FP )

ROC curve, the abscissa of the curve, is the false-positive
rate (FPR), and the ordinate is the true case rate (TPR).

FP
FPR= —————, 10
FP + TN (10)

TP
TPR= ————. 11
TP + FN (1)

Among them, TP represents the number of samples
taken by a certain camera and classified by the model as
belonging to the camera. FP represents the number of sam-
ples that the image does not belong to a certain camera but is
classified as belonging to this camera by the model. FN rep-
resents the number of samples whose images did not belong
to a certain camera and were classified by the model as not
belonging to the camera. TN represents the number of sam-
ples taken by a certain camera and classified by the model as
not being taken by the camera. AUC is the area under ROC.



Wireless Communications and Mobile Computing

Sources

st .
]

DnCNN-
Wavelet - -

CSI-CNN

DnCNN

Wavelet - -0.06

-0.04

-0.02
CSI-CNN - 00

DnCNN-
Wavelet -

0.00
-0.02

-0.04
0o 1

CSI-CNN {10

DnCNN -
Wavelet -
CSI-CNN
DnCNN
Wavelet
CSI-CNN
DnCNN
Wavelet
CSI-CNN
DnCNN
Wavelet

0.15

0.10
-0.06

0.00

-0.05

csi-onN I 0.08
DnCNN -
‘Wavelet -

CSI-CNN -

DnCNN -

Wavelet
CSI-CNN

DnCNN -

Wavelet - -

csrony -h

DnCNN |
h |
I

0.06

=9
=

g2
s Z

-0.04

-0.02

-0.00

Wavelet
CSI-CNN
DnCNN -

‘Wavelet --- . : .
0 1 2 3

4 5

-0.02

-0.04

-
6 7 8 9

(e)

Twitter

CSI-CNN -
DnCNN
Wavelet -
CSI-CNN
DnCNN
Wavelet
CSI-CNN -
DnCNN
Wavelet -
CSI-CNN -
DnCNN
‘Wavelet
CSI-CNN
DnCNN
Wavelet

- 0.05

-0.05

(®)

csonn

DnCNN -

Wavelet —-

CSI-CNN -

DnCNN
Wavelet - .
CSI-CNN -
DnCNN-
Wavelet -
CSI-CNN -
DnCNN -
Wavelet -
CSI-CNN -
DnCNN -
Wavelet -

0.08

0.06

g
=3
S

-0.04
-0.02
-0.00
-0.02
-0.04

-0.06

0.10

0.08

-0.06

-0.04

- -0.02
I

-
m

S

0 1 2 3 4 5 6 8

-0.00

CSI-CNN 4]
CSI-CNN
CSI-CNN -

-0.02
CSI-CNN -

CSI-CNN
DnCNN
‘Wavelet -
DnCNN-
Wavelet . -
DnCNN
‘Wavelet
DnCNN-
Wavelet -
DnCNN -
Wavelet -

-0.06

FIGURE 3: (a-f) The thermodynamic diagram of the correlation coefficient obtained by uploading our dataset to five platforms and taking

two pictures randomly from each camera in the dataset.
It is equivalent to Mann-Whitney U test and can be calcu-
lated as follows [32]:

Ziep rank; - (M +1)M
MN

AUC= 2),

(12)

Among them, M represents the number of positive sam-
ples, and N represents the number of negative samples. p
represents a positive sample. ran k; represents the descend-
ing rank of i in the sample set.

4.3. Experimental Results and Evaluation. The running envi-
ronment of the experiment is Ubuntul6.04LTS operating
system equipped with PyTorchl.0.1 and Python3.6. The
experiments are run on NVIDA graphics card GeForce
GTX1080-Ti.

This paper uses four datasets and uploads them to five
social platforms to obtain twenty different datasets. Experi-
ments are performed on these datasets, respectively, and
the correlation between the noise fingerprint obtained by
CSI-CNN and the PRNU camera fingerprint is estimated
by Section 3.1.2. Use correlation as a basic research object
for performance analysis and evaluation.
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FIGURE 4: (a-d) The histogram representation of AUC values obtained by applying three different algorithms to four datasets on five

platforms.

4.3.1. Image Denoising Experiment Results and Performance
Comparison. In order to perform camera source identifica-
tion on the image data of the social network platform, it is
first necessary to extract noise fingerprints from the image.
The quality of noise fingerprint extraction directly affects
the performance of camera source identification. In the
Our dataset, this paper randomly takes out 200 images from
the test dataset of each camera and tests the mean value of
the correlation coefficient with each camera’s fingerprint.
The results are shown in Table 2. The experimental results
show that the algorithm in this paper can extract the noise
fingerprint of the picture very well.

4.3.2. Camera Source Recognition Experiment and
Performance Comparison. In order to test the performance
of the CSI-CNN camera source identification method
proposed in this paper. We perform camera source identifi-
cation by correlating the noise fingerprint extracted by CSI-
CNN with the corresponding camera fingerprint estimated
in Equation (5). This paper compares the performance from
the four aspects of NCC, ACC, ROC curve, and AUC value.
The experiment shows the universality and robustness of
CSI-CNN in image traceability. Figure 3 shows NCC
between the acquired image and the corresponding camera
recognition after the four datasets are uploaded to five social
networking platforms and are compared with the experi-
mental results of DnCNN and wavelet denoiser. Experimen-
tal results show that the NCC identified by CSI-CNN is
higher than those identified by DnCNN and wavelet filters.
In order to better analyze and evaluate the proposed
CSI-CNN camera source identification algorithm, we use
the representative indicators of deep learning-related perfor-
mance evaluation to analyze and evaluate its performance.

TaBLE 3: Accuracy comparison (ACC).

Algorithm
Daaset  Platorm o oun Wavelet  DnCNN
Twitter 0.950 0.887 0.453
Facebook 0.864 0.792 0.580
Our Instagram 0.836 0.708 0.552
WecChat 0.803 0.727 0.423
WeiBo 0.937 0.843 0.460
Twitter 0.936 0.928 0.508
Facebook 0.928 0.880 0.524
Kaggle Instagram 0.840 0.756 0.492
WeChat 0.813 0.808 0.436
WeiBo 0.892 0.864 0.508
Twitter 0.744 0.696 0.384
Facebook 0.708 0.676 0.352
Vision Instagram 0.660 0.560 0.372
WeChat 0.648 0.548 0.368
WeiBo 0.728 0.604 0.368
Twitter 0.832 0.780 0.420
Facebook 0.836 0.880 0.524
Daxing Instagram 0.840 0.768 0.424
WecChat 0.764 0.652 0.408
WeiBo 0.808 0.768 0.428

Figure 4 shows that the test images in Our, Kaggle,
Vision, and Daxing datasets are uploaded to Twitter,
Facebook, WeChat, Instagram, and Weibo, and their AUC
values are calculated. The experimental results show that
the method proposed in this paper has better results.
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F1GuRre 5: The ROC curves obtained by applying three different algorithms to four datasets on five platforms.

—— Wavelet AUC=0.906
—— CSI-CNN AUC=0.932
—— DnCNN AUC=0.687

Daxing datasets.

In this paper, the camera with the largest correlation
coefficient with the image is used as the source camera,
and on this basis, the ACC value is calculated. Table 3 shows
the ACC value of image camera source identification down-

—— Wavelet AUC=0.898
—— CSI-CNN AUC=0.938
—— DnCNN AUC=0.686

—— Wavelet AUC=0.894
—— CSI-CNN AUC=0.932

—— Wavelet AUC=0.848
—— CSI-CNN AUC=0.906
—— DnCNN AUC=0.680

—— Wavelet AUC=0.853
—— CSI-CNN AUC=0.900
—— DnCNN AUC=0.678

(a—d) Our, Vision, Kaggle, and

loaded by social network platforms. The experimental
results show that for five social network platform images
with different quality factors, CSI-CNN has a higher ACC
value than the current popular wavelet filter and DnCNN
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FIGURE 6: The mean-square error (MSE) loss function and Our loss function were tested on five platforms, respectively, and the AUC

change curve on each epoch.

camera source recognition algorithm. Also, compared with
other datasets, Vision and Daxing datasets have very low
accuracy of these three algorithms. The fundamental reason
is that there are a lot of flat images in the Vision and Daxing
datasets, such as the blue sky, white clouds, and walls. After
compression by the social platform compression algorithm,
the flat image has a serious loss of high-frequency noise
information, which makes it impossible to extract effective
noise fingerprints, to calculate the correlation with the
device fingerprint.

To further evaluate the performance of the algorithm
designed in this paper, the image camera source recognizes

the ROC curve (as shown in Figure 5). The experimental
results show that for the five social network platform images,
CSI-CNN and the currently popular DnCNN and wavelet
filter camera source recognition have good performance.

In order to improve the accuracy of camera source rec-
ognition, this paper designs a new loss function. To test
the effectiveness of the loss function proposed in this paper,
we use the Daxing dataset for training and testing, and the
ratio of the training set to the test set is 3:1. The initial
learning rate is 0.001 and iterates 100 epochs, and each iter-
ation is 30 times, and the learning rate becomes 0.2 times of
the original for model training. As shown in Figure 6,
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experimental results show that compared with the loss func-
tion proposed in [20], the loss function can make the model
converge faster, and the training result is more stable.

5. Conclusion

Multimedia forensics is an important research topic in the
field of computer security. The combination of online social
networks and smart phones is of great significance to crime
prevention, evidence collection, and the security of IoT
devices. In this paper, a CSI-CNN is proposed to extract
noise fingerprints from pictures on social networks and
match the extracted noise fingerprint with camera finger-
prints to identify the camera source. We conduct experi-
ments on five online social network platforms with
different image compression levels. The experimental results
show that the CSI-CNN network model proposed in this
paper has a higher recognition effect than the current popu-
lar DnCNN and wavelet filter camera source recognition
algorithms.

With the development of deep learning and the diversi-
fication of forensic data, the method proposed in this paper
may have some limitations. To overcome these problems, we
will use pure deep learning methods to train the features of a
large number of heterogeneous forensic data and extend the
research object to the video data of social networks.
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