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Abstract: In this paper, we investigate the joint design of a transmit beampattern and angular
waveform (AW) for colocated multiple-input multiple-output (MIMO) radars. The importance of the
AW in the proposed signal processing strategy is first clarified, and then, two optimization models
are established, which are aimed at either the power spectral density (PSD) design or the spectral
compatibility and similarity design of the AW. There are two main differences between the proposed
models and existing models. First, instead of matching a desired template or maximizing the transmit
power on specific regions, the transmit beampattern in this paper is optimized to approach several
key points, which guarantees the high transmit gain and the flexible adjustment of each beam gain.
Second, instead of optimizing the performance of the transmit waveform, only the characteristics
of the AW are examined, and they can be constrained quantitatively according to their relationship
with the transmit gain. The two models can be unified into the same framework, and an efficient
algorithm is proposed to solve the problem under a constant modulus constraint. The convergence
of the proposed algorithm is demonstrated, and some improvements to reduce the computational
complexity are proposed. Numerical simulations showed that compared to the existing methods,
the proposed approach can be used to obtain a higher transmit gain, flexibly adjust each beam gain,
and more accurately control the PSD, spectral compatibility, and similarity of the AW. Moreover,
numerical simulations showed that, compared to the use of existing methods, the proposed algorithm
has higher computational efficiency.

Keywords: transmit beampattern; angular waveform; constant modulus constraint; power spectral
density; spectral compatibility; similarity constraint

1. Introduction

It is well known that multiple-input multiple-output (MIMO) radars can transmit
independent waveforms out of each transmit antenna. Because of this capability, called
“waveform diversity”, MIMO radars realize advantages in terms of parameter identifiability,
spatial resolution, and transmit beampattern design compared to a standard phased array
radar [1–3]. MIMO radars are generally categorized into two types according to the distance
between the radar antennas, namely distributed MIMO radars [4] and colocated MIMO
radars [5]. The former has antennas widely separated in space, which can make use of
the spatial diversity of the radar targets, whereas the latter has closely spaced antennas,
which can improve the spatial resolution and parameter identifiability and can introduce a
greater number of degrees of freedom in the transmit beampattern design.

Both kinds of MIMO radars need a group of waveforms, which is critical for realizing
their claimed advantages over their conventional counterparts [6–12]. To ensure the receiver
can distinguish the target returns caused by different transmit waveforms, the transmit
waveforms should be orthogonal to each other, even at different mutual delays [6–9].
Therefore, for MIMO radars, a critical problem is to design nearly orthogonal waveforms
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with good auto- and cross-correlation properties. There has been extensive work on the
design of a set of nearly orthogonal waveforms [7,13,14]. However, for colocated MIMO
radars, the transmit beampattern of nearly orthogonal waveforms is omnidirectional, which
has a low transmit gain and is more suitable for search modes or acquiring surrounding
information [15,16].

By designing a set of correlated waveforms, colocated MIMO radars can also form
a directional transmit beampattern with one or more beams, which is more applicable
to scenes with multiple targets [17,18]. Much work has been conducted on the design of
correlated waveforms to form directional transmit beampattern [10,11,19,20]. In addition
to the transmit beampattern, the temporal or spectral properties of the waveforms are
also important. Most of the above work considered the constant modulus (CM) constraint
because of the requirement for a radiofrequency amplifier. Besides the CM constraint,
in [19], the waveforms were required to satisfy the similarity constraint to share the
similar ambiguity function (AF) feature with a given reference waveform. In [10], a set of
correlated linear frequency modulation (LFM) waveforms was designed to form a desired
beampattern. Considering the spectrally crowded environment in [20], the waveforms
were optimized to form notches in a certain spatial-frequency region.

It was noted that the above constraints, such as the near orthogonality and simi-
larity constraints, are applied to each waveform from each transmit antenna. However,
for the directional transmit beampattern, the radar can only focus on the returns from the
beam directions. The angular waveforms (AWs) are defined as the waveforms coherently
synthesized from the transmit waveforms into different angular sectors with respect to
the transmit array [6,12,21]. Based on the signal processing strategy in [6,22], the AWs in
the beam directions play a more important role in the directional transmit beampattern.
Therefore, except for the CM constraint, which is the requirement of the hardware, the near
orthogonality and similarity constraints are additionally applied to the AWs under the
directional transmit beampattern. Some work [21,23–25] has investigated the joint design
of the transmit beampattern and AWs with good near orthogonality. In this paper, some
more complicated scenarios are considered, and some additional constraints are imposed
on the AWs.

In this paper, we deal with complicated scenarios from the view of signal processing,
e.g., electronic counter-countermeasures (ECCM) and spectrum congestion. Some earlier
work dealt with certain complicated scenarios from the perspective of electromagnetic
waves. For example, the work in [26] explored the influence of the magnetic field on
quantum cascade lasers. The work of [27,28] investigated the performance of a free-space
optics communication system in the maritime environment and different atmospheric
conditions. Moreover, the performance of an adaptive free-space optics communication
system was investigated in [29]. In the future, signal processing methods and electromag-
netic systems can be combined to further improve the ability to deal with the complicated
electromagnetic environment. In this paper, we only consider this problem from the view
of signal processing.

Motivated by the above issues, the following specific problems were considered in
the joint design of the directional transmit beampattern and AWs, and the corresponding
contributions were made:

(1) Directional transmit beampattern design:

The existing work [10,11,23,24] paid more attention to fitting the transmit beampat-
tern to the ideal template. However, for a transmit beampattern with multiple beams,
the target locations are known, and the transmit gain of each beam is more important.
Some work [19,20] aimed at concentrating the transmit power on specific regions; however,
the power of each beam cannot be adjusted flexibly. Because transmit power is constant,
if it is sufficiently concentrated in a certain direction, the transmit power allocated to other
spatial directions, corresponding to the sidelobe region, will be naturally suppressed. With
that in mind, the transmit beampattern in this paper was optimized to approach some key
points, which can ensure transmit gain and can flexibly adjust the transmit gain of each
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beam. This idea follows from [21]. In this paper, these key points were obtained in a more
accurate way. More importantly, with accurate approaching points, the constraints for AWs
can be described quantitatively;

(2) The power spectral density (PSD) design of AWs:

In some scenarios, especially for ECCM [30,31] and target classification [32,33], the wave-
form PSD determines the performance of the radar. There has been some work to optimize
the waveform to match the optimal PSD template [34,35]. However, these studies did
not consider the spatial properties of a set of waveforms. Therefore, in this paper, a cost
function is proposed to jointly design the transmit beampattern and the PSDs of AWs
under the CM constraint;

(3) The design of AWs with spectral compatibility and similarity:

Since the radiofrequency spectrum is a limited resource, the growing demand for more
access to the spectrum by radar and communication systems leads to serious spectrum
congestion problems. On the other hand, the designed waveform is also expected to have good
AF features. Therefore, it makes sense to design the waveform with spectral compatibility
and similarity. The work [20,36] considered the above problem. However, the similarity only
constrained each waveform out of each transmit antenna, and the work [36] did not consider
the transmit beampattern design. In this paper, a cost function is proposed to jointly design
the transmit beampattern and AWs with spectral compatibility and similarity under the CM
constraint. Because of the spectral compatibility constraint, to guarantee the feasibility of the
proposed problem, the similarity constraint of AWs was also implemented in the frequency
domain. As we know, the correlation function and the spectrum of waveforms compose a
Fourier transform pair. Therefore, the proposed cost function can also be used for the design
of AWs with near orthogonality. Compared with the existing method, the proposed method
can be used to achieve similar auto- and cross-correlation properties;

(4) The waveform optimization algorithm for the proposed cost functions:

Based on the alternating direction method of multipliers (ADMM) [37] and the modi-
fied limited memory Broyden–Fletcher–Goldfarb–Shannon (L-BFGS) method [38], a wave-
form optimization algorithm was developed to solve the proposed cost functions. The two
cost functions can be unified into the same framework and can be solved by the proposed
algorithm. The convergence of the proposed algorithm is given, and some improvements
to reduce the computational complexity are proposed.

The rest of the paper is organized as follows. Section 2 introduces the signal processing
scheme and clarifies the role of AWs. In Section 3, the two cost functions about the joint
design of transmit beampattern and AWs are proposed. The waveform optimization algo-
rithm is introduced in Section 4. Several simulation results are shown in Section 5. Some
quantitative comparisons with existing algorithms are shown in Section 6. Conclusions are
drawn in Section 7.

Notation: Standard case letters stand for scalars. Bold uppercase letters and bold
lowercase letters denote matrices and vectors, respectively. The notations (•)T, (•)∗,
and (•)H denote the transpose, conjugate, and conjugate transpose, respectively. RL×L

and CL×L denote the L × L real and complex space, respectively. vec(•) denotes the
vectorization matrix operation. diag(x) represents a diagonal matrix with its main diagonal
filled with x. ⊗ denotes the Kronecker product, and� denotes the Hadamard product. E[•]
denotes the statistical expectation. The subscript ‖•‖2 denotes the Euclidean vector norm,
and ‖•‖F denotes the Frobenius matrix norm. Im(•) is the imaginary part of the complex
variable, and Re(•) is the real part of the complex variable. |•| denotes the modulus
operation. For a vector, the operations Im(•), Re(•), and |•| are imposed in an elementwise
way. IL denotes an L× L identity matrix, and 1L denotes an L× 1 vector of ones. [•] denotes
a row vector or a closed interval; the reader can infer this according to the context. sin(•)
indicates the sine operation, and sin−1(•) is the arcsine operation. δ(•) is the unit-impulse
function. log(•) denotes the base-2 logarithm. j denotes the imaginary unit.
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2. Signal Processing Scheme and the Role of the AW

As we know, how to optimize the transmit waveform is closely related to the real
signal processing strategy. In this section, the signal processing scheme in [6,22] is intro-
duced, which is more suitable for the colocated MIMO radar with a directional transmit
beampattern. In this scheme, receive beamforming is performed first, which transforms
the received signals into multiple spatial receive channels (SRCs) to deal with the returns
from different spatial directions. The output of receive beamforming is followed by a range
compressor (RC) whose weight is optimized to match the signal signature of this spatial
channel. Because the AW varies with the spatial direction, RCs following different receive
beamformers often have different weights. The details of each SRC and the introduced
signal processing scheme are given in Figure 1.

+ RC
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d

a
ta

SRC 1

SRC 2

SRC …

Coherent accumulation

Coherent accumulation

Coherent accumulation

(a) (b)

Figure 1. The introduced signal processing scheme. (a) The details of each SRC. (b) The signal
processing scheme.

Let us consider a colocated MIMO radar with M transmit antennas, each of which
emits a different waveform xm(l) with m = 1, 2, · · · , M and l = 1, 2, · · · , L, where L denotes
the number of discrete time samples of each pulse. Let x(l) = [x1(l), x2(l), · · · , xM(l)]T be
the l-th sample of transmit waveform and X =

[
x(1) x(2) · · · x(L)

]
be the transmit

waveform. Then, the AW at the angle θ is given by:

s(θ) = vec
(

aT
t (θ)X

)
=
(

IL ⊗ aT
t (θ)

)
x̄ (1)

where x̄ = vec(X) and at(θ) denotes the transmit steering vector. For a uniform linear array
(ULA) with half-wavelength separation between two adjacent array antennas, the transmit
steering vector is given by:

at(θ) =
[

1, e−jπ sin(θ), · · · , e−j(M−1)π sin(θ)
]T

. (2)

Hence, the power received at angle θ can be written as:

P(θ) = sH(θ)s(θ) = x̄HR(θ)x̄ (3)

where R(θ) =
(
IL ⊗ aT

t (θ)
)H(IL ⊗ aT

t (θ)
)
. P(θ) of all the locations under observation is

defined as the transmit beampattern, which represents the power distribution in space.
Assume that radar forms J beams at θj, j = 1, 2, · · · , J with the transmit power

P
(
θj
)
, j = 1, 2, · · · , J, respectively, to track the possible targets. Let Ωs =

[
−90◦, θ1 −W1

N
]
∪[

θ1 + W1
N , θ2 −W2

N
]
∪ · · · ∪

[
θJ−1 + W J−1

N , θJ −W J
N

]
∪
[
θJ + W J

N , 90◦
]
, where W j

N , j = 1, 2,
· · · , J denotes half of the natural first null beamwidth of the transmit array. Then, the base-
band equivalent of the radar returns at receive antennas is given by:

Y =
J

∑
j=1

ar
(
θj
)
sT(θj

)
+ ∑

θk∈Ωs

ar(θk)s
T(θk) + N (4)
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where ar(θ) denotes the receive steering vector and N ∈ CM×L is the channel noise with
mean zero and variance σ2. Without loss of generality, in (4), it is assumed that all scatterers
have identical complex amplitudes. Similarly, for a ULA with a half-wavelength-spaced
antenna,

ar(θ) =
[

1, e−jπ sin(θ), · · · , e−j(M̃−1)π sin(θ)
]T

(5)

where M̃ is the number of receive antennas.
According to the signal processing scheme in Figure 1, the output of receive beam-

forming for the j̃-th SRC is given by:

y j̃ = α j̃ j̃s
(

θ j̃

)
+

J

∑
j=1,j 6= j̃

α j̃js
(
θj
)
+ ∑

θk∈Ωs

α j̃ks(θk) + n j̃ (6)

where α j̃j = wH
(

θ j̃

)
ar
(
θj
)
, w
(
θj
)

denotes the receive beamformer for the j-th SRC, and

nj = NTw∗
(
θj
)
. From (6), it can be seen that the output of receive beamforming is a linear

combination of AWs from all directions, and the output power of receive beamforming can
be given by:

E
[
yH

j̃ y j̃

]
=
∣∣∣α j̃ j̃

∣∣∣2P
(

θ j̃

)
+

J

∑
j=1,j 6= j̃

∣∣∣α j̃j

∣∣∣2P
(
θj
)
+ ∑

θk∈Ωs

∣∣∣α j̃k

∣∣∣2P(θk) + σ2∥∥w
(
θj
)∥∥2

2. (7)

Considering the gain of transmit beams and receive beamforming, we have:∣∣∣α j̃ j̃

∣∣∣2 � ∣∣∣α j̃k

∣∣∣2, P
(

θ j̃

)
� P(θk). (8)

Therefore, the signals from Ωs can be ignored. We show the suppression of signals
from the sidelobes in Figure 2. In this example, a ULA with half-wavelength-spaced
antennas is selected, and M = M̃ = 10. There are two transmit beams at −30◦ and 0◦,
respectively, and the transmit waveform is:

X =


L/2︷ ︸︸ ︷

a∗t (−30◦) · · · a∗t (−30◦)

L/2︷ ︸︸ ︷
a∗t (0

◦) · · · a∗t (0
◦)


√

L
.

(9)
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Figure 2. The joint gain of the transmitter and receiver.
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For the SRC of direction −30◦, the receive beamformer is set as:

w(−30◦) = ar(−30◦) (10)

and the input noise is σ2 = 2, i.e., the input signal-to-noise-ratio (SNR) is −3 dB.
In Figure 2, we show the transmit beampattern, the output of receive beamforming for

−30◦, and the output noise level after receive beamforming. It can be seen that the signals from
the sidelobes are suppressed below the noise level, and the interference of these signals can
be ignored. In fact, for a large number of receive antennas or adaptive receive beamformers,
the signals from a beam at 0◦ can also be ignored, and we can focus on only the returns from
−30◦ [12,15]. It can be observed that in Model (4), the interference of the signals within the
mainlobe region is neglected. This is because the mainlobe power is mainly concentrated in
the signal from the beam-pointing direction, and the signals within the mainlobe region are
highly correlated. The detailed proof and results can be found in [22,39].

After the above analysis, the signals from Ωs are ignored, and the output (6) can be
approximated as:

ỹ j̃ = α j̃ j̃s
(

θ j̃

)
+

J

∑
j=1,j 6= j̃

α j̃js
(
θj
)
+ n j̃. (11)

For the j̃-th SRC, the signal from θ j̃ needs to be extracted. The matched version of the

RC for the j̃-th SRC is s
(

θ j̃

)/
P
(

θ j̃

)
, and the output of the j̃-th SRC is given by:

ỹ j̃(τ) =
sH
(

θ j̃

)
Jτ

P
(

θ j̃

)
α j̃ j̃s

(
θ j̃

)
+

J

∑
j=1,j 6= j̃

α j̃js
(
θj
)
+ n j̃


, τ = −L + 1, · · · , L− 1

(12)

where Jτ is an L× L shift matrix with the (l1, l2)-th element Jτ(l1, l2) = δ(l1 − l2 − τ).
Considering the target velocity is not accurately known, (12) can be extended to [6]:

ỹ j̃(τ) =
sH
(

θ j̃

)
Jτ

P
(

θ j̃

)
(

α j̃ j̃s
(

θ j̃

)
� f
(

θ j̃

)
+

J
∑

j=1,j 6= j̃
α j̃js
(
θj
)
� f
(
θj
)
+ n j̃

)
, τ = −L + 1, · · · , L− 1

(13)

where f
(
θj
)

denotes the Doppler steering vector of a target at θj.
From (11) to (13), we can find that the qualities of AWs, such as the AF, PSD, and cor-

relation properties, are important for the radar performance.

3. Problem Formulation

In this section, we formulate the optimization problems of the joint design of the
transmit beampattern and AWs.

3.1. Directional Transmit Beampattern Design

Considering a constant transmit power, if the transmit power is sufficiently concentrated
in a certain direction, the transmit power allocated to other spatial directions, correspond-
ing to the sidelobe region, will be naturally suppressed. Therefore, the transmit beampat-
tern only needs to approach some key points to ensure the transmit gain and beamwidth.
It is assumed that the radar forms J beams at θj, j = 1, 2, · · · , J. For the ULA with a
half-wavelength-spaced antenna, the half of the natural first null beamwidth is about
W j

N = sin−1(2/M cos θj
)
. Therefore, in order to control the beamwidth, it is desired that:

P
(

θj −W j
N

)
= P

(
θj + W j

N

)
= 0, j = 1, 2, · · · , J. (14)



Remote Sens. 2021, 13, 3392 7 of 26

Next, how to guarantee the transmit gain and concentrate the transmit power in
the mainlobe regions is considered. Considering the transmit steering vector in (2) and
‖X‖2

F = M, let v = sin θ denote the normalized direction, and the total transmit power is
given by: ∫ 1

−1 P(v)dv = x̄H
(∫ 1
−1 R(v)dv

)
x̄

= x̄H
(

IL ⊗
∫ 1
−1 a∗t (v)aT

t (v) dv
)

x̄
= 2M

(15)

where the integral term can be calculated by:

A =
∫ vu

vl

a∗t (v)aT
t (v)dv (16)

A(m1, m2) =
∫ vu

vl

ejπ(m1−m2)vdv (17)

Suppose that all the transmit power is concentrated in the mainlobe regions, and we have:

J

∑
j=1

∫ vj+W j
Nv

vj−W j
Nv

P(v) dv = 2M (18)

∫ vj+W j
Nv

vj−W j
Nv

P(v) dv = 2Mβ j (19)

where W j
Nv

= 2
/

M cos θj, vj = sin θj, and β j denote the proportion of the power in the j-th

mainlobe region to the total transmit power. It is natural that
J

∑
j=1

β j = 1.

Let Pθj(θ) represent the transmit beampattern of the following waveform:

Xθj =
[

a∗t
(
θj
)

a∗t
(
θj
)
· · · a∗t

(
θj
) ]/√

L (20)

and it can be calculated:

ηj =
∫ vj+W j

Nv

vj−W j
Nv

Pvj(v) dv

/
2M. (21)

Therefore, ∫ vj+W j
Nv

vj−W j
Nv

P(v) dv =
β j

ηj

∫ vj+W j
Nv

vj−W j
Nv

Pvj(v) dv = 2Mβ j. (22)

It can be observed that Pθj

(
θj
)
= M2 is the maximum transmit power gain. Hence, it

is desired that:

P
(
θj
)
=

β j

ηj
Pθj

(
θj
)
=

β j M2

ηj
, (23)

which will guarantee the transmit gain and concentrate the transmit power in the mainlobe
regions as much as possible.

Finally, according to (14) and (23), there are three key points,
(

θj −W j
N , 0

)
,
(

θj + W j
N , 0

)
,

and
(
θj, β j M2/ηj

)
, to approach for each beam in P(θ), where the first two points control

the beamwidth and the last point guarantees the beam direction and gain. β j is a parameter
to adjust the power of each beam in P(θ), and ηj ensures that the transmit power is con-
centrated in the mainlobe regions. In Figure 3, we intuitively show Pθj(θ) and the points
that need to be approached in designing the transmit beampattern. In this example, a ULA
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with half-wavelength-spaced antennas is selected and M = 10. It is assumed that there are
two beams at −30◦ and 0◦ and P−30◦(θ) and P0◦(θ), respectively obtained by (20). β1 = 0.3
and β2 = 0.7, which means the power ratio of the two beams is 3/7. According to (21),
η1 = 0.908, η2 = 0.906 and all the approaching points are obtained.

-80 -60 -40 -20 0 20 40 60 80
Angle (°)

0

20

40

60

80

100
P

ow
er

P
-30°

( )

P
0°

( )

Approaching point

Figure 3. The representation of approaching points.

3.2. The Joint Design of the Transmit Beampattern and the PSDs of AWs

Let:
pj = β j M2

/
ηj, j = 1, 2, · · · , J (24)

and it is assumed that:
P
(
θj
)
= pj − β jε, j = 1, 2, · · · , J (25)

P
(

θj −W j
N

)
= P

(
θj + W j

N

)
= αbP

(
θj
)
, j = 1, 2, · · · , J (26)

where β jε denotes the difference between P
(
θj
)

and pj and αb � 1 denotes the gain of

P
(

θj ±W j
N

)
relative to P

(
θj
)
. According to the analysis in the previous subsection, it is

easy to deduce that pj ≥ P
(
θj
)
, so ε ≥ 0.

Let F ∈ CL×L denote the discrete Fourier transform (DFT) matrix. According to (1),
the spectrum of the AW is:

s f (θ) = F
(

IL ⊗ aT
t (θ)

)
x̄ (27)

and the PSD of the AW is:

s f (θ, l) = sH
f (θ)Els f (θ)

= x̄H(IL ⊗ aT
t (θ)

)HFHElF
(
IL ⊗ aT

t (θ)
)
x̄

= x̄HB(θ, l)x̄ , l = 1, 2, · · · , L

(28)

where B(θ, l) =
(
IL ⊗ aT

t (θ)
)HFHElF

(
IL ⊗ aT

t (θ)
)

and El is an L× L matrix whose (l, l)-th
element is 1, and 0 otherwise. If FHF = IL, it is easy to deduce that:

P(θ) = sH
f (θ)s f (θ) =

L

∑
l=1

s f (θ, l) (29)

Let d
(
θj, l
)
, l = 1, 2, · · · L denote the desired PSD for s

(
θj
)
. According to (29), we have:

P
(
θj
)
=

L

∑
l=1

s f
(
θj, l
)
, j = 1, 2, · · · , J (30)
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pj =
L

∑
l=1

d
(
θj, l
)
, j = 1, 2, · · · , J. (31)

If:

s̄ f
(
θj, l
)
= P

(
θj
)/

L , l = 1, 2, · · · , L, j = 1, 2, · · · , J (32)

d̄
(
θj, l
)
= pj

/
L , l = 1, 2, · · · , L, j = 1, 2, · · · , J (33)

then we have:

L
(

d̄
(
θj, l
)
− s̄ f

(
θj, l
))

= β jε, l = 1, 2, · · · , L, j = 1, 2, · · · , J (34)

Therefore, in order to approach the desired PSD, we let:

L
∣∣∣s f
(
θj, l
)
− d
(
θj, l
)∣∣∣ ≤ β jε, l = 1, 2, · · · , L, j = 1, 2, · · · , J. (35)

and the above constraint can be equivalently converted to:

L
(

s f
(
θj, l
)
− d
(
θj, l
))
≤ β jε, l = 1, 2, · · · , L, j = 1, 2, · · · , J

L
(

d
(
θj, l
)
− s f

(
θj, l
))
≤ β jε, l = 1, 2, · · · , L, j = 1, 2, · · · , J

. (36)

Let:

wl j =
∣∣∣s f
(
θj, l
)
− d
(
θj, l
)∣∣∣ , l = 1, 2, · · · , L, j = 1, 2, · · · , J. (37)

The constraint (35) means more attention is paid to the large wl j, and otherwise, less
attention is paid. This behavior is similar to the least squares method [40].

Summarizing, the joint design of the transmit beampattern and the PSDs of AWs can
be formulated as the following constrained optimization problem:

min
x̄,ε

ε

s.t. pj − P
(
θj
)
≤ β jε, j = 1, 2, · · · , J

P
(

θj −W j
N

)
≤ αb

(
pj − β jε

)
, j = 1, 2, · · · , J

P
(

θj + W j
N

)
≤ αb

(
pj − β jε

)
, j = 1, 2, · · · , J

L
(

s f
(
θj, l
)
− d
(
θj, l
))
≤ β jε,

l = 1, 2, · · · , L, j = 1, 2, · · · , J

L
(

d
(
θj, l
)
− s f

(
θj, l
))
≤ β jε,

l = 1, 2, · · · , L, j = 1, 2, · · · , J

ε ≥ 0, |x̄| = 1ML√
L

(38)

where the first three constraints are to approximate the key points in the beampattern and
the last constraint enforces the waveform to be the CM.
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3.3. Joint Design of the Transmit Beampattern and the Spectral Compatibility and Similarity
of AWs

For the transmit beampattern, the setting in (24)∼(26) is still used in this subsec-
tion. Let Ωj denote the occupied frequency band at θj. According to (30), the spectral
compatibility constraint can be represented as:

∑
l∈Ωj

s f
(
θj, l
)
≤ α f P

(
θj
)
, j = 1, 2, · · · , J (39)

where α f < 1 denotes the ratio of the unavailable band power to the total power at θj.
Let r

(
θj
)

denote the spectrum of the reference waveform for s
(
θj
)
. Here, considering

the spectral compatibility constraint, in order to guarantee the feasibility of the problem,
the similarity is expressed in the frequency domain as follows:∥∥∥s f

(
θj
)
− r
(
θj
)∥∥∥2

2
, j = 1, 2, · · · , J. (40)

According to (29), we have:∥∥∥s f
(
θj
)∥∥∥2

2
= P

(
θj
)
, j = 1, 2, · · · , J (41)

∥∥r
(
θj
)∥∥2

2 = pj, j = 1, 2, · · · , J. (42)

Therefore, ∥∥∥s f
(
θj
)
− r
(
θj
)∥∥∥2

2
≤ 4pj, j = 1, 2, · · · , J (43)

∥∥∥s f
(
θj
)
− r
(
θj
)∥∥∥2

2
≥
(√

pj − β jε−
√

pj

)2
, j = 1, 2, · · · , J. (44)

According to the Cauchy inequality,

0 ≤
(√

pj − β jε−
√

pj

)2
≤ β jε. (45)

Hence, the similarity constraint is set as:∥∥∥s f
(
θj
)
− r
(
θj
)∥∥∥2

2
≤ αsβ jε, j = 1, 2, · · · , J (46)

where αs ≥ 1 is a parameter ruling the extent of the similarity.
Summarizing, the following cost function is proposed to jointly design the transmit

beampattern and the AWs with spectral compatibility and similarity:

min
x̄,ε

ε

s.t. pj − P
(
θj
)
≤ β jε, j = 1, 2, · · · , J

P
(

θj −W j
N

)
≤ αb

(
pj − β jε

)
, j = 1, 2, · · · , J

P
(

θj + W j
N

)
≤ αb

(
pj − β jε

)
, j = 1, 2, · · · , J∥∥∥s f

(
θj
)
− r
(
θj
)∥∥∥2

2
≤ αsβ jε, j = 1, 2, · · · , J

∑
l∈Ωj

s f
(
θj, l
)
≤ α f

(
pj − β jε

)
, j = 1, 2, · · · , J

ε ≥ 0, |x̄| = 1ML√
L

(47)
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4. Waveform Optimization Algorithm for the Joint Design

In this section, the proposed problems (38) and (47) are unified into the same framework,
and an algorithm based on the ADMM and modified L-BFGS is proposed to solve the problem.

4.1. Proposed Algorithm

Problems (38) and (47) can be recast as:

min
ϕ,z

λTz

s.t. η+ Kz = 0
z ≥ 0

(48)

where x̄ = exp(jϕ)
/√

L, the exp(·) operation is imposed in an elementwise way, and:

λ =
[

0, 0, · · · , 1
]T (49)

K =
[

I, −κ
]

(50)

Let:

η1 =
[

p1 − P(θ1), p2 − P(θ2), · · · , pJ − P
(
θJ
) ]

(51)

η2 =
[

P
(
θ1 −W1

N
)
− αb p1, P

(
θ2 −W2

N
)
− αb p2, · · · , P

(
θJ −W J

N

)
− αb pJ

]
(52)

η3 =
[

P
(
θ1 + W1

N
)
− αb p1, P

(
θ2 + W2

N
)
− αb p2, · · · , P

(
θJ + W J

N

)
− αb pJ

]
(53)

η4 =
[

L
(

s f (θ1, 1)− d(θ1, 1)
)

, L
(

s f (θ1, 2)− d(θ1, 2)
)

, · · · , L
(

s f
(
θJ , L

)
− d
(
θJ , L

)) ]
(54)

η5 =
[

L
(

d(θ1, 1)− s f (θ1, 1)
)

, L
(

d(θ1, 2)− s f (θ1, 2)
)

, · · · , L
(

d
(
θJ , L

)
− s f

(
θJ , L

)) ]
(55)

η6 =

[ ∥∥∥s f (θ1)− r(θ1)
∥∥∥2

2
,
∥∥∥s f (θ2)− r(θ2)

∥∥∥2

2
, · · · ,

∥∥∥s f
(
θJ
)
− r
(
θJ
)∥∥∥2

2

]
(56)

η7 =

[
∑

l∈Ω1

s f (θ1, l)− α f p1, ∑
l∈Ω2

s f (θ2, l)− α f p2, · · · , ∑
l∈ΩJ

s f
(
θJ , l

)
− α f pJ

]
(57)

κ1 =
[

β1, β2, · · · , β J
]

(58)

κ2 =
[

β111×L, β211×L, · · · , β J11×L
]
. (59)

For Problem (38),
η = [η1, η2, η3, η4, η5]

T (60)

κ = [κ1, − αbκ1, − αbκ1, κ2, κ2]
T (61)

K ∈ R(3J+2JL)×(3J+2JL+1) (62)

For Problem (47),
η = [η1, η2, η3, η6, η7]

T (63)

κ =
[
κ1, − αbκ1, − αbκ1, αsκ1, − α f κ1

]T
(64)

K ∈ R5J×(5J+1) (65)
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The augmented Lagrangian function of Problem (48) can be written as:

L(ϕ, z, u) = λTz + uT(η+ Kz) +
ρ

2
‖η+ Kz‖2 (66)

where u is the Lagrange multiplier associated with the equality constraint and ρ > 0 is a
penalty parameter.

Under the ADMM framework, the proposed algorithm can be described as:

ϕ(`+1) = arg min
ϕ
L
(

ϕ, z(`), u(`)
)

(67)

z(`+1) = arg min
z≥0

L
(

ϕ(`+1), z, u(`)
)

(68)

u(`+1) = u(`) + ρ
(

η(`+1) + Kz(`+1)
)

(69)

where ` is the iteration number.
In what follows, the solutions to the alternating minimization problems from (67) to

(68) are presented:

(1) Update ϕ:

It is noted that L
(

ϕ, z(`), u(`)
)

is a nonconvex quartic function with respect to ϕ.

Therefore, it is difficult to obtain the minimizers of L
(

ϕ, z(`), u(`)
)

directly. However,
the unconstrained formulation renders the problem amenable to the use of L-BFGS-type
iterative procedures, which can be efficiently implemented. Moreover, the work [38]
showed that the modified L-BFGS possesses global convergence for the nonconvex problem.
The gradient of L

(
ϕ, z(`), u(`)

)
is:

∇ϕL
(

ϕ, z(`), u(`)
)
= ΠTu(`) + ρΠT

(
η+ Kz(`)

)
(70)

where Π = ∂η
/

∂ϕ
T. See Appendix A for the detailed calculation of Π. With the gradient,

the modified L-BFGS can be implemented;

(2) Update z:

It can be noticed that L
(

ϕ(`+1), z, u(`)
)

is a convex quadratic function with respect to

z. Then, by setting the gradient of L
(

ϕ(`+1), z, u(`)
)

to be zero, the global minimizer of

L
(

ϕ(`+1), z, u(`)
)

can be obtained:

zopt = −

(
KTK

)†
(

λ + KTu(`) + ρKTη(`+1)
)

ρ
(71)

where (·)† denotes the Moore–Penrose pseudoinverse matrix.
By projecting zopt onto the feasible region, we have:

z(`+1) = P
[0,+∞)

(
zopt

)
(72)

where P(·) is imposed in an elementwise way.
According to the above analysis, we summarize the proposed algorithm in Algorithm 1.
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Algorithm 1 Waveform optimization algorithm for the joint design.

Require: The initial variables ϕ(1), z(1), u(1), ` = 1 and the penalty parameter ρ > 0.
Ensure: x̄ = exp

(
jϕ(`+1)

)/√
L

1: repeat
2: Compute ϕ(`+1) using the modified L-BFGS method.
3: Compute z(`+1) via (72).
4: Update u(`+1) via (69).
5: Set ` = `+ 1.
6: until some termination conditions are satisfied.

4.2. Algorithm Convergence

In this subsection, the convergence of the proposed algorithm is analyzed. The follow-
ing assumptions [37,38] are needed for this purpose.

Assumption 1. The functionL
(

ϕ, z(`), u(`)
)

satisfies the Lipschitz continuous condition, i.e., there
exists a constant K > 0 such that:∥∥∥∇ϕL

(
ϕ, z(`), u(`)

)
−∇ϕL

(
ϕ̃, z(`), u(`)

)∥∥∥
2
≤ K‖ϕ− ϕ̃‖2 (73)

Assumption 2. The augmented Lagrangian function L0(ϕ, z, u), where:

L0(ϕ, z, u) = λTz + uT(η+ Kz) (74)

has a saddle point (ϕs, zs, us).

Theorem 1. Under Assumptions 1 and 2, the proposed algorithm iterates satisfy the following:

(1) c(`) → 0 as `→ ∞, where c = η+ Kz. This means that the iterates approach feasibility;

(2) ε(`) → εs as `→ ∞, where ε = λTz.

Proof. See Appendix B.

4.3. Reduce the Computational Complexity

As seen from Algorithm 1, the main computational cost of the proposed algorithm
is dominated by η and ∇ϕL

(
ϕ, z(`), u(`)

)
. For η, the calculation mainly includes P(θ)

and s f (θ, l). If P(θ) is calculated by (3) directly, the matrix R(θ) occupies a large memory
space, and the computational complexity is high. Therefore, a more efficient way is to
calculate s(θ) first and then calculate P(θ). In this way, the memory consumption is
small, and the computational complexity is about O(2ML + L). For the calculation of
s f (θ, l), we can calculate s(θ) first and obtain s f (θ, l) by fast Fourier transform (FFT).
Summarizing, the computational complexity of obtaining s f (θ, l), l = 1, 2, · · · , L is about
O(ML + L log L).

According to (70), the calculation of ∇ϕL
(

ϕ, z(`), u(`)
)

mainly includes η and Π.
From Appendix A, the common items for calculating η and Π are R(θ)x̄ and B(θ, l)x̄. R(θ)x̄
can then be rewritten as:

R(θ)x̄ = vec
(

a∗t (θ)s
T(θ)

)
. (75)

Therefore, the calculation cost of R(θ)x̄ is about O(2ML). For B(θ, l)x̄, l = 1, 2, · · · , L,
it can be obtained by:

A f (θ)diag
(

s f (θ)
)

(76)

where A f (θ) =
(
F
(
IL ⊗ aT

t (θ)
))H. Therefore, the computational complexity of obtaining

B(θ, l)x̄, l = 1, 2, · · · , L is about O
(

ML2 + L log L
)
.
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5. Simulation Results

In this section, we show the simulation results of the proposed problems (38) and (47)
successively. In addition, the application of Problem (47) in AWs’ orthogonality design is
also shown. Unless otherwise specified, in all the simulations, we considered a ULA with
M = 10 transmit antennas separated by a half-wavelength.

For Problem (38), the residuals of the proposed algorithm in the `-th iteration are defined
as
∥∥∥c(`)

∥∥∥
2

/
(3J + 2JL) and

∣∣∣ε(`) − ε(`−1)
∣∣∣. For Problem (47), the residuals of the proposed

algorithm in the `-th iteration are defined as
∥∥∥c(`)

∥∥∥
2

/
5J and

∣∣∣ε(`) − ε(`−1)
∣∣∣. The termination

condition is set as both of the residuals are less than 10−4. Unless otherwise specified, in all
the simulations, the penalty parameter ρ = 10. All the simulations were performed in the
MATLAB 2017b/Windows 7 environment on a computer with a 3.2 GHz CPU and 8 GB RAM.

5.1. The Joint Design of the Transmit Beampattern and the PSDs of AWs

In this subsection, we conduct numerical simulations to evaluate the proposed algorithm
for the PSD design of AWs. The optimal PSD template was taken from [30], which was used
for ECCM. It was assumed that there were two targets located at θ1 = −30◦ and θ2 = 20◦,
and according to the power allocation algorithm [17,18], radar sets β1 = β2 = 0.5. In the
following simulations, we set the discrete time samples L = 64 and set αb = 10−2. In Figure 4,
the transmit beampattern of the optimized waveform was shown. As seen from Figure 4,
when the beams approach the key points, the sidelobe was also low. Figure 5 shows
the PSD template and the PSDs of optimized AWs, where the PSDs were normalized
by the maximum value. As we see, the PSDs designed by the proposed algorithm were
close to the template. Figure 6a plots the performance curve of the objective function
value in (38) versus the iteration number for the proposed algorithm, and Figure 6b is the
corresponding performance curve of the objective function value in (38) versus the CPU
time. In Figure 6, the curves are normalized by the initial objective function value. It is
observed from Figure 6 that the proposed algorithm can converge as the iterations increase
and the convergence speed is fast.
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Figure 4. The transmit beampattern.
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Figure 5. The PSDs of AWs.
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Figure 6. The convergence performance of the proposed algorithm. (a) Objective function value vs.
iteration number. (b) Objective function value vs. CPU time.

5.2. Joint Design of the Transmit Beampattern and AWs with Spectral Compatibility and Similarity

In this subsection, numerical simulations are conducted to evaluate the proposed
algorithm for the spectral compatibility and similarity optimization of AWs. It was assumed
that there were two targets located at θ1 = −30◦ and θ2 = 20◦ and radar sets β1 = 0.6 and
β2 = 0.4. In the following simulations, we set L = 160, αb = 10−2, α f = 10−4, and αs = 2.
The normalized occupied frequency band Ω1 = [0.1195, 0.1824] and Ω2 = [0.5597, 0.6226].
The spectrums of the reference waveforms for AWs were obtained using an LFM spectrum
in which the corresponding occupied frequency band was set to zero, and the original
reference LFM had a pulse width Tp = 20 µs and chirp rate Kr = 7.5× 106

/
Tp.

For comparison, the method QA-ADMM in [20] was also considered here. The work [20]
considered a similar problem to us. However, there are some differences between the
model in [20] and that in this paper. For the transmit beampattern, the work [20] was
aimed at concentrating transmit power on the mainlobe regions and ignored the transmit
gain and the power control for each beam. For the similarity constraint, the work [20]
focused on each waveform out of each transmit antenna. Therefore, it may not exactly be
an equal comparison. In the simulations of QA-ADMM, the mainlobe regions were set
as
[
θ1 −W1

N , θ1 + W1
N
]
∪
[
θ2 −W2

N , θ2 + W2
N
]
, and the reference waveforms adopted the

orthogonal frequency division multiplexing (OFDM) version of the above LFM waveform.
The parameter to control similarity was set to one. The parameter to control peak-to-
average was set to one, i.e., the CM constraint. The weight for beampattern was one,
and the weights for suppressing the space-frequency bands were ten.

The transmit beampatterns produced by the proposed method and QA-ADMM are
shown in Figure 7. The differences in the two beampatterns observed from Figure 7a are
in the transmit gain and the power control for each beam. It should be noted that the
QA-ADMM cannot control the power in each mainlobe region. In Figure 7b, the normalized
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transmit beampatterns are shown in dB, and we can see that the proposed method can
accurately control the beamwidth and the power ratio of beams.
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Figure 7. The transmit beampattern. (a) The original transmit beampattern. (b) The normalized transmit beampattern in dB.

In Figure 8, we show the PSDs of the reference waveforms and the AWs produced
by the proposed method and the QA-ADMM. It can be seen that notches at the occupied
frequency bands can be formed using both methods. It should be noted that the QA-ADMM
directly suppresses the space–frequency band. Therefore, the power distributions in the
space–frequency domain of the optimized waveforms are shown in Figure 9. From Figure
9, we can see that even though only the AWs were optimized, the proposed method can
obtain similar space–frequency band suppression as the QA-ADMM, and the power in
the mainlobe region was more even. Moreover, we can observe from Figure 2 that the
receive beamforming would narrow the mainlobe width, and the suppression of AWs on
the occupied space–frequency bands would be enhanced.
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Figure 8. The PSDs of reference waveforms and the AWs. (a) The PSDs of reference waveforms and the AWs at −30◦.
(b) The PSDs of reference waveforms and the AWs at 20◦.

To evaluate the effect of the similarity constraint, the AFs of the AWs at −30◦ are
shown in Figure 10. It can be seen that because the proposed method directly enforces
the similarity constraint on the AWs, the AF of the proposed method was closer to the
reference LFM. The modulus property of the designed waveform out of the first transmit
antenna is given in Figure 11. Because the proposed method directly optimizes the phase,
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the CM property was naturally satisfied. However, for the QA-ADMM, the CM constraint
may not be precisely satisfied.

(a) (b)

Figure 9. The power distributions in the space–frequency domain. (a) The result of the proposed method. (b) The result of
the QA-ADMM.

(a)

(b) (c)

Figure 10. The AFs of the optimized AWs at −30◦. (a) The reference LFM. (b) The result from the proposed method. (c) The
result from the QA-ADMM.



Remote Sens. 2021, 13, 3392 18 of 26

20 40 60 80 100 120 140 160
Time sample index

0.0790566

0.0790568

0.079057

0.0790572

0.0790574

0.0790576

A
m

p
lit

u
d

e

Proposed
QA-ADMM

Figure 11. The modulus property of the designed waveform.

Finally, we evaluated the efficiency of each method and show the result in Figure 12.
In Figure 12, the integral power ratio is defined as:

Ij = ∑
l∈Ωj

s f
(
θj, l
)/

P
(
θj
)
, j = 1, 2, · · · , J (77)

and we plot the curve of the integral power ratio versus the iteration number and the
corresponding curve of the integral power ratio versus the CPU time. It can be seen that the
proposed method was more efficient than the QA-ADMM. It should be noted that although
the integral power ratio of proposed method did not reach α f , the proposed algorithm

reached the termination conditions and
∣∣∣Ij − α f

∣∣∣� α f , j = 1, 2, · · · J.
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Figure 12. The comparison of algorithm efficiency. (a) Integral power ratio vs. iteration number.
(b) Integral power ratio vs. CPU time.

5.3. The Application of Problem (47) for AWs’ Orthogonality Design

The correlation function and the frequency spectrum of waveforms compose a Fourier
transform pair. Therefore, the low cross-correlation level (CCL) between AWs can be obtained
by designing the spectrum distribution between different AWs. For the auto-correlation side
level (ASL), the AWs can share the low ASL property of the reference waveform due to the
similarity constraint. Hence, the model (47) can also be used to design AWs with orthogonality.

According to (12), the ASL and CCL of the AW at θ j̃ are, respectively, defined as
follows:

A
(

τ, θ j̃

)
=

∣∣∣∣∣∣
sH
(

θ j̃

)
Jτs
(

θ j̃

)
P
(

θ j̃

)
∣∣∣∣∣∣
2

,
τ = −L + 1, · · · , L− 1

τ 6= 0
(78)
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C
(

τ, θ j̃, θj

)
=

∣∣∣∣∣∣
sH
(

θ j̃

)
Jτs
(
θj
)

P
(

θ j̃

)
∣∣∣∣∣∣
2

,
τ = −L + 1, · · · , L− 1

j̃ 6= j
(79)

Further, considering the gain of receive beamforming, the CCL after receive beam-
forming can be given as:

Cr

(
τ, θ j̃, θj

)
=

∣∣∣α j̃j

∣∣∣2∣∣∣α j̃ j̃

∣∣∣2
∣∣∣∣∣∣
sH
(

θ j̃

)
Jτs
(
θj
)

P
(

θ j̃

)
∣∣∣∣∣∣
2

,
τ = −L + 1, · · · , L− 1

j̃ 6= j
(80)

In this subsection, it is assumed that there are two targets located at θ1 = −30◦ and
θ2 = 20◦ and radar sets β1 = β2 = 0.5. We set L = 320, αb = 10−2, α f = 10−3, and αs = 1.
The normalized occupied frequency band Ω1 = [0.5, 1] and Ω2 = [0, 0.5]. Considering the
tradeoff between Doppler tolerance and a low ASL, the nonlinear LFM (NLFM) waveform
was chosen as the reference waveform. We obtained the phase of the NLFM as follows:

ϕ(t) =
πβLt2

Tp
−

πβCTp

√
1− 4t2

/
T2

p

2
,

and in the simulations below, we set Tp = 1.6 µs, βL = 45
/

Tp, and βC = 13
/

Tp. The L-
BFGS method in [24] was chosen for comparison, where the CCL and ASL were directly
optimized and the transmit beampattern was designed to match a template. The beampat-
tern template for the L-BFGS was set as:{

1, θ ∈
[
θ1 −W1

N , θ1 + W1
N
]
∪
[
θ2 −W2

N , θ2 + W2
N
]

0, otherwise
(81)

In Figure 13, we show the transmit beampattern, the ASL of AWs, and the CCL of
the AW produced by the proposed method and the L-BFGS. From Figure 13a, it can be
seen that the proposed method paid attention to the transmit gain and the beamwidth,
while the L-BFGS focused on the template match. Figure 13b shows the ASL of AWs. It
is reasonable that the ASL of the proposed method was higher than that of the L-BFGS
because the L-BFGS directly optimizes the CCL and ASL. Nevertheless, the peak ASL of
the proposed method was about−20 dB, and it was acceptable in most cases. In Figure 13c,
because P(−30◦) ≈ P(20◦), only the CCL of AW at −30◦ is given. It can be seen that the
CCL performance of the proposed method was even better than that of the L-BFGS.

In Figure 14a, the power distribution in the space–frequency domain of optimized
waveforms is shown. It can be found that the optimized AWs did not utilize the full
bandwidth, which would reduce the range resolution. In fact, the CCL can be suppressed
by receive beamforming [12,15], and the spectral compatibility constraint in (47) can
be ignored. In the next simulation, only the ASL of AWs was optimized, i.e., only the
similarity constraint was concerned, and it was assumed that the receive array with
M̃ = 10 and the minimum variance distortionless response (MVDR) beamformer was
adopted [15]. Besides, the reference NLFM was changed as βL = 100

/
Tp and βC =

25
/

Tp. The power distribution in the space–frequency domain of the optimized waveforms
without considering the CCL is shown in Figure 14b. It can be seen that each AW can utilize
the full bandwidth. In Figure 15, we show the ASL of AWs and the CCL of AW at −30◦

after receive beamforming. It can be noticed that after ignoring the spectral compatibility
constraint, the ASL of AWs produced by the proposed method was close to that of the
L-BFGS, and the peak ASL was lower than −20 dB. From Figure 15b, it can be seen that
the CCL after receive beamforming is tiny and can be ignored.
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Figure 13. The results for the proposed method and the L-BFGS. (a) The transmit beampattern. (b) The ASL of AWs. (c) The
CCL of AWs at −30◦.
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Figure 14. The power distributions in the space–frequency domain of waveforms optimized by the proposed method. (a)
Considering the CCL. (b) Without considering the CCL.
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Figure 15. The result of the proposed method and the L-BFGS after receive beamforming. (a) The ASL of AWs. (b) The CCL
of AW at −30◦ after receive beamforming.

6. Discussion: Quantitative Comparisons with Existing Algorithms

In this section, the performance of the proposed algorithm is quantitatively demon-
strated. All the algorithms, including the comparison algorithms, were terminated when
the iteration number of 1000 was reached, and the results of each algorithm were the
average of 500 trials with different random initial points. In all the tables below, θ1 = −30◦,
θ2 = 20◦, and ETPI stands for the execution time per iteration.

In Table 1, we show the quantitative results corresponding to Section 5.1 to inspect the
performance of the proposed algorithm for the joint design of the transmit beampattern
and the PSDs of AWs. Except for the transmit antennas M and the discrete time samples L,
all the other settings were the same as those in Section 5.1. To the best of our knowledge,
the joint design of the transmit beampattern and the PSDs of AWs has scarcely been
addressed in the literature. Therefore, only the results of the proposed algorithm are
given here.

Table 1. The performance of the proposed algorithm for the joint design of the transmit beampattern
and the PSDs of AWs.

M L P(θ1) P(θ2) OFV ETPI (s)

10 64 48.57 48.66 0.34 0.026
20 128 193.37 193.46 0.35 0.15
30 192 437.22 437.45 0.35 0.57

In Table 1, OFV stands for the objective function value of (48), which is normalized by
the objective function value of the initial point. From Table 1, we can see that, for the joint
design of the transmit beampattern and the PSDs of AWs, the performance of the proposed
algorithm was stable and the computational complexity was low.

In Table 2, we show the quantitative results corresponding to Section 5.2 to inspect
the performance of each algorithm in jointly designing the transmit beampattern and AWs
with spectral compatibility and similarity. Except for the transmit antennas M and the
discrete time samples L, all other settings were the same as those in Section 5.2. The QA-
ADMM algorithm was used for comparison. The integral power ratio in (77) was used
to quantitatively display the suppression of AWs to the unavailable frequency band. I1
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and I2 denote the integral power ratio of AWs at −30◦ and 20◦, respectively. In order to
quantitatively show the similarity of AWs, we define the following parameter:

S(θ) =

∥∥∥∥∥∥ s f (θ)∥∥∥s f (θ)
∥∥∥

2

− r(θ)
‖r(θ)‖2

∥∥∥∥∥∥
2

2

(82)

which represents the difference between the AW at θ and the reference signal, and the
greater S(θ) is, the worse the similarity.

Table 2. The performance of each algorithm in jointly designing the transmit beampattern and AWs
with spectral compatibility and similarity.

Algorithm M L P(θ1) P(θ2) I1× 104 I2× 104 S(θ1) S(θ2) ETPI (s)

Proposed
10 64 58.22 39.04 2.16 5.79 0.15 0.24 0.012
20 128 233.43 153.44 2.34 4.69 0.19 0.27 0.14
30 192 522.31 340.98 2.47 5.52 0.24 0.29 0.72

QA-ADMM
10 64 37.28 38.06 11.8 92.6 1.52 1.78 0.11
20 128 128.31 127.73 22.3 30.7 1.64 1.98 3.13
30 192 297.33 287.01 49.0 107 1.66 1.84 24.28

It should be noted that in Section 5.2, the power ratio of the beams was set as β1
/

β2 =
1.5. Therefore, in Table 2, we can see that P(θ1)

/
P(θ2) ≈ 1.5 for the proposed algorithm.

However, the algorithm QA-ADMM does not have this capability because it only focuses
on the integral transmit power on specific regions. Moreover, the transmit gain of the
QA-ADMM is lower than in the proposed algorithm.

In the proposed algorithm, the suppression to the occupied band is directly con-
strained by α f . However, this suppression in the QA-ADMM is concerned with a weighting
coefficient, which is a qualitative optimization method. Therefore, in Table 2, I1 and I2 of
the QA-ADMM are greater than those of the proposed algorithm. Moreover, regarding the
similarity, the QA-ADMM focuses on each waveform out of each transmit antenna rather
than AWs. Therefore, S(θ1) and S(θ2) of the QA-ADMM were also greater than that of
proposed algorithm. According to the ETPI, it can be seen that the proposed algorithm is
much faster than QA-ADMM.

In Table 3, we show the quantitative results corresponding to Figure 15a to inspect the
performance of each algorithm in the AW orthogonality design. Except for the transmit
antennas M and the discrete time samples L, all other settings were the same as those in
Figure 15a. Because the CCL can be suppressed by receive beamforming, only the ASL
performance was considered here. To measure the ASL performance quantitatively, we
define the peak ASL (PASL) as follows:

PASL = max
τ=−L+1,··· ,L−1

τ 6=0

{A(τ, θ1), A(τ, θ2)} (83)

where the definition of A(τ, θ) can be found in (78).

Table 3. The performance of each algorithm in the orthogonality design of AWs.

Algorithm M L P(θ1) P(θ2) PASL (dB) ETPI (s)

Proposed
10 192 46.62 47.17 −21.2 0.11
20 256 187.49 187.94 −24.31 0.64
30 320 410.08 414.24 −24.63 2.12

L-BFGS
10 192 13.82 12.02 −20.6 0.076
20 256 68.15 67.38 −23.96 0.41
30 320 70.92 69.14 −24.15 1.36
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Comparing the transmit gain of the two algorithms, we can see that the L-BFGS
in [24] paid too much attention to the matching of the desired template and resulted in
a great loss of transmit gain. In addition, the L-BFGS realized a tradeoff between the
transmit beampattern and the ASL using multiple weighting coefficients, which caused
a large distortion of the transmit beampattern when the weighting coefficients were not
appropriate. It can be seen that the PASL of the proposed algorithm was even lower than
that of the L-BFGS. There are two reasons for this phenomenon. First, from Figure 13b
and Figure 15a, we can see that the reference waveform of the proposed algorithm had
a wider mainlobe than the AWs generated by the L-BFGS; that is, we obtained a lower
ASL at the expense of the range resolution [7]. Second, the L-BFGS optimized the integral
ASL rather than the PASL [41]. The L-BFGS had less execution time than the proposed
algorithm, which is reasonable because each iteration of the proposed algorithm involved
multiple iterations of the modified L-BFGS.

7. Conclusions

In this paper, the problem of the joint design of a transmit beampattern and the AW for
colocated MIMO radars under the CM constraint was addressed. Two cost functions were
proposed to jointly design the transmit beampattern and the AW. The first cost function
considered the PSD design of the AW, and the other considered the spectral compatibility
and AF of the AW. An efficient algorithm was proposed to solve the problems. Our
algorithm exhibited significantly reduced computational complexity compared to the
existing algorithms. Moreover, the performance of the proposed method in terms of the
beampattern behavior, PSD, spectral distribution, and pulse compression property was
examined through numerical simulations. A possible future direction of research might
concern the extension of the proposed algorithm to deal with wideband MIMO radars.
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Appendix A. The Calculation of

It is known that Π = ∂η
/

∂ϕ
T. According to the expression of η, for Problem (38), we need

∂P(θ)
/

∂ϕT and ∂s f (θ, l)
/

∂ϕT, and for Problem (47), we need ∂P(θ)
/

∂ϕT, ∂
∥∥∥s f (θ)− r(θ)

∥∥∥2

2/
∂ϕT and ∂s f (θ, l)

/
∂ϕT. Then, the expressions of the above terms are as follows:

∂P(θ)
∂ϕT = 2Im(x̄∗ �R(θ)x̄)T (A1)

∂s f (θ, l)
∂ϕT = 2Im(x̄∗ � B(θ, l)x̄)T (A2)

∂
∥∥∥s f (θ)− r(θ)

∥∥∥2

2
∂ϕT = 2Re

((
s f (θ)− r(θ)

)H ∂s f (θ)

∂ϕT

)
(A3)
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and:

∂s f (θ)

∂ϕT = jAH
f (θ)diag(x̄). (A4)

Finally, Π can be obtained by substituting the above formulas into the corresponding row.

Appendix B

Proof of Theorem 1. According to Assumption 1, we have:

L0(ϕs, zs, us) ≤ L0

(
ϕ(`+1), z(`+1), us

)
(A5)

Substituting ηs + Kzs = 0, we have:

εs ≤ ε(`+1) + uT
s c(`+1). (A6)

Under Assumption 2, from the results of [38], we have:

0 = ∇ϕL
(

ϕ(`+1), z(`), u(`)
)
=(

Π(`+1)
)T(

u(`) + ρ
(

η(`+1) + Kz(`)
))

.
(A7)

where 0 denotes a column vector of zeros.
Since u(`+1) = u(`) + ρc(`+1), we can plug in u(`) = u(`+1) − ρc(`+1) and rearrange

to obtain:

0 =
(

Π(`+1)
)T(

u(`+1) − ρK
(

z(`+1) − z(`)
))

. (A8)

This implies that ϕ(`+1) minimizes:(
u(`+1) − ρK

(
z(`+1) − z(`)

))T
η (A9)

and we have: (
u(`+1) − ρK

(
z(`+1) − z(`)

))T
η(`+1)

≤
(

u(`+1) − ρK
(

z(`+1) − z(`)
))T

ηs.
(A10)

A similar argument shows that:
0 = λ + KTu(`+1) (A11)

and: (
λ + KTu(`+1)

)T
z(`+1) ≤

(
λ + KTu(`+1)

)T
zs (A12)

Adding (A10) and (A12), using ηs + Kzs = 0, we obtain:

ε(`+1) − εs ≤ −
(

u(`+1)
)T

c(`+1)

− ρ
(

z(`+1) − z(`)
)T

KT
(
−c(`+1) + K

(
z(`+1) − zs

)) (A13)

The inequalities (A6) and (A13) have the same formation as the corresponding in-
equalities in [37]. According to the derivation in [37], we have:

V(`+1) ≤ V(`) − ρ
∥∥∥c(`+1)

∥∥∥2

2
− ρ
∥∥∥K
(

z(`+1) − z(`)
)∥∥∥2

2
(A14)
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where:

V(`) =
1
ρ

∥∥∥u(`) − us

∥∥∥2

2
+ ρ
∥∥∥K
(

z(`) − zs

)∥∥∥2

2
(A15)

is the Lyapunov function for the proposed algorithm. Iterating the inequality above gives:

ρ
∞

∑
`=0

∥∥∥c(`+1)
∥∥∥2

2
+
∥∥∥K
(

z(`+1) − z(`)
)∥∥∥2

2
≤ V0, (A16)

which implies that c(`) → 0 and K
(

z(`+1) − z(`)
)
→ 0 as ` → ∞. Applying this result to

Inequalities (A6) and (A13), we have ε(`) → εs as `→ ∞.
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