# FROM TEXT TO MEANING: INFORMATIONAL SEMANTICS OF SHORT SCIENTIFIC TEXTS 

Thesis submitted for the degree of<br>Doctor of Philosophy at the University of Leicester

by

Neslihan Süzen

School of Mathematics and Actuarial Science
University of Leicester

September 2020

# Abstract <br> From Text to Meaning: Informational Semantics of Short Scientific Texts 

by Neslihan Suzen

The problems of automatic analysis and representation of human language have been clear since the inception of Natural Language Processing (NLP). Machines can be easily fooled when it comes to interpreting sentences and extracting meanings from texts. Semantically-driven processing needs deep understanding of natural languages by machines, and algorithms relying on word co-occurrence and frequencies can not activate semantically-related concepts/experiences as human brain does.

This thesis presents computational methods for semantic analysis and quantifying the meaning of short scientific texts in a new light. Methods of this research attempt to extract semantic features that are not explicitly expressed in the text, and provide predictions about human cognition. Rather than psychological properties, we describe the situation of use of words for scientific texts by scientifically specific description - subject categories of the text.

First, this thesis investigates Bag of Words model on a corpus of students' answers. Automated scoring systems were created for marking of short answer questions and for providing feedback to students on their answers. Students' marks were predicted by a mathematical model through words selected to transmit information.

Second, we introduced novel techniques for quantifying the meaning for words and then texts. Leicester Scientific Corpus (LSC) and Leicester Scientific Thesaurus (LScT) were built for empirical studies. LSC is a corpus of 1,673,350 scientific texts and LScT is a thesaurus of 5,000 words extracted from the LSC. Methodologies for semantic analysis were developed based on informational representation of the meaning extracted from the occurrence of the word in texts across the scientific categories. Vector representation of words was created in the newly constructed Meaning Space (MS), and utilised in representing text meaning. Feature Vector of Text (FVT) were introduced and created for LSC texts as a vector representation of meaning. This approach obtains superior performance to standard frequency representation in identifying scientific-specific meanings.

Finally, this thesis presents a research in evaluating the impact of scientific articles through their informational semantics. Newly developed approach to meaning have offered a way to predict the scientific impact of papers, and the study details examples of text classification going from $80 \%$ success to distinguish highly-cited and less-cited papers.


Undertaking this PhD has been a truly life-changing experience for me and it would not have been possible to do without the support and guidance that I received from the University of Leicester. I greatly appreciate to the University authorities for their help, and each of very generous offers and decisions made over the four years. I hope someday I will repay some of it by becoming a successful scientist.

## Acknowledgement

I would like to express the deepest appreciation to my supervisor, Professor Alexander Nikolaevich Gorban. He has continually and convincingly conveyed a spirit of adventure in regard to research, and an invaluable support, advice and motivation throughout my doctoral research. Indeed, without his guidance and persistent help this thesis wouldn't have been possible. He has been an inspiration to me, and I am sure to many others. His advice, help and life lessons are priceless.

I am extremely grateful to my second supervisor, Dr Evgeny Moiseevich Mirkes. I would like to thank to him for his constant encouragement, patient guidance and advice. His support and constructive critical feedback have been inestimable value throughout my study.

I wish to express my sincere gratitude to Professor Jeremy Levesley for his wonderful collaboration, advice and for always being so supportive. This thesis has been enriched significantly through helpful discussions with him.

A very special thank you to Dr Akinduko Ayodeji Akinwumi for his invaluable advice, especially earlier in my study. I have learnt a lot from him and have become much more confident about my machine learning skills.

I would like to express my eternal appreciation towards my parents, sisters and relatives who have always been there for me. Thank you for your unconditional supports, patience and inspiration throughout my life.

Finally, I am very much indebted to my friends for their invaluable support during my PhD study. Thank you to all of my friends and colleagues in the School of Mathematics and Actuarial Science. It has been great to know all of you during my time here in the school.

## Contents

List of Tables ..... vii
List of Figures ..... xxix
Chapter 1. Introduction ..... 1
1.1. Setting the Stage: Preliminaries and Problem Statement ..... 1
1.2. On the Stage: Approaches and Contributions in Brief ..... 4
1.3. Organisation of the Thesis ..... 8
1.4. Dissemination of Findings ..... 11
Chapter 2. Automatic Short Answer Grading and Feedback Using Text Mining Methods ..... 12
2.1. Introduction ..... 12
2.2. Related Work ..... 15
2.3. The Data and Features ..... 17
2.4. Data Representation and $k$-means Clustering ..... 18
2.5. The Marking and Feedback System ..... 20
2.6. Supervised Learning - A Model to Predict the Mark ..... 24
2.7. Conclusion and Discussion ..... 28
Chapter 3. LScDC - New Large Scientific Dictionary ..... 31
3.1. Introduction ..... 31
3.2. Methodology ..... 38
3.3. Related Works ..... 41
3.4. Leicester Scientific Corpus (LSC) ..... 44
3.5. Leicester Scientific Dictionary (LScD) ..... 48
3.6. Leicester Scientific Dictionary-Core (LScDC) ..... 60
3.7. A Comparison of LScDC and NAWL ..... 63
3.8. Conclusion and Discussion ..... 77
Chapter 4. Informational Space of Meaning for Scientific Texts ..... 80
4.1. Introduction ..... 80
4.2. Representation of Words by Vectors in the Meaning Space ..... 94
4.3. Experimental Results ..... 102
4.4. Thesaurus for Science: Leicester Scientific Thesaurus (LScT) ..... 122
4.5. Conclusion and Discussion ..... 127
Chapter 5. Principal Components of the Meaning ..... 131
5.1. Introduction ..... 131
5.2. Basic Statistics in the LScT ..... 136
5.3. Dimension of the Meaning Space ..... 139
5.4. Conclusion and Discussion ..... 163
Chapter 6. Semantic Analysis for Automated Evaluation of the Potential Impact of Research Articles ..... 164
6.1. Introduction ..... 164
6.2. Classical Text Representation Models ..... 166
6.3. An Informational Text Representation Method ..... 168
6.4. Evaluation of the Potential Impact of Research Articles through Semantics ..... 171
6.5. Descriptive Statistics of Citations in the LSC ..... 175
6.6. Citation Classification ..... 182
6.7. Conclusion and Discussion ..... 194
Chapter 7. Conclusion and Discussion ..... 196
Appendix A. Appendix of Chapter 2: Additional Questions and Feedback Processes of the System ..... 201
A.1. Questions from the University of North Texas Study ..... 201
A.2. Feedback Processes of the System ..... 204
Appendix B. Appendix of Chapter 3: Lists of Headings and Stop Words in Pre-processing Steps, and Lists of Categories and Research Areas in the Data ..... 206
B.1. Table of Headings of Sections in Medical Abstracts ..... 206
B.2. An Example of Document Structure in the LSC ..... 207
B.3. List of Prefixes ..... 208
B.4. List of Substitutes ..... 208
B.5. List of Stop Words in "tm" Package (R package) ..... 209
Appendix C. Appendix of Chapter 4: Additional Examples of Notices, Lists of Categories and Research Areas, Some Examples of Word Clouds and Histograms ..... 210
C.1. Some Additional Examples of Notices ..... 210
C.2. List of Categories ..... 211
C.3. List of Research Areas ..... 218
C.4. Some Word Clouds and Histograms for Categories ..... 223
Appendix D. Appendix of Chapter 5: Tables for Principal Component Analysis ..... 226
D.1. The Most Informative 100 Words of the LScT in Categories with Their RIGs ..... 226
D.2. Number of Words for Each Category ..... 479
D.3. List of Original Attributes (Categories) in Groups of Positive, Negative and Zero on the Principal Components ..... 486
D.4. List of Categories on the Left Wing, Right Wing and the Body of the Bird Shape, Obtained in the First Three PCs, with Projection onto the First Principal Component ..... 553
D.5. List of Original Attributes (Categories) in Positive, Negative and Zero Groups Identified by Vector Approximation on the Principal Components ..... 560
Appendix E. Appendix of Chapter 6: Descriptive Statistics for Citation Counts ..... 591
E.1. List of Categories with the Descriptive Statistics Obtained for the Number of Citation for Each of Categories. Categories are Sorted by the Average Citation Count Assigned to the Category. ..... 591
Bibliography ..... 597

## List of Tables

2.1 Examples of questions and model answers with different lengths in the data. ..... 18
2.2 Examples of model vocabulary and student answers. ..... 18
2.3 Estimation of parameters and the MSE for MM, $i=1,2,3,4$, for the corresponding questions (see A.1); MSE is the mean square deviation of predicted marks from the average of two markers' grades. ..... 25
3.1 Number of documents before and after cleaning documents with empty abstracts or without category, and after removing too short and too long abstracts. ..... 47
3.2 The most frequent 20 words in the LScD ..... 48
3.3 The number of documents and the number of words contained in the corresponding number of documents only for those words appearing in at most 20 documents ..... 51
3.4 Some of rare words in LScD with the number of documents containing them. The last column shows the description of the word provided by checking the papers containing the word in WoS database, and possible reason why it is rare. ..... 56
3.5 Estimated parameters of Pareto distribution and the Mean Squared Error (MSE) for LScD ..... 58
3.6 Number of words before and after removing words appearing in no more than 10 documents in the LSC ..... 60
3.7 Estimated parameters of Pareto distribution and the Mean Squared Error (MSE) for LScDC ..... 62
3.8 Corpus structure of the AWL ..... 64
3.9 Corpus Structure of the NAWL ..... 65
3.10 Sample words with highest SFIs from NAWL ..... 65
3.11 Headwords and inflected forms in the NAWL, and stems of the headwords in the LScDC ..... 67
3.12 Coverage of the NAWL by the LScDC ..... 68
3.13 Coverage of the NAWL by the fragments of LScDC. The last column presents words of NAWL which are found between two fragments in LScDC. ..... 69
3.14 Last position of the words of a specific fragment of the NAWL in LScDC. Both dictionaries are sorted by their frequencies defined. ..... 70
3.15 The top 10 words in stemmed form with corresponding statistics in lists. Blue coloured words are matches in the top 10 of two dictionaries. ..... 71
3.16 Words in the same order in both dictionaries. The LScDC is restricted by NAWL words, we ignore other words to compare raking of words in dictionaries. ..... 71
3.17 The percentage of the overlapping of words in intervals with number of intervals and width of intervals ..... 73
3.18 Correlation coefficients that measure the relationship between ranks of words in NAWL and LScDC: Pearson's Correlation Coefficient (PCC), Spearman's Rank Correlation (SRC) and PCC for logarithmic scaled frequencies. ..... 75
4.1 The structure of dictionary representation by frequencies $w_{j k}$ ..... 95
4.2 Representation of the word by a pair of frequencies: the number of texts containing the word $w_{j}$ that belong and does not belong to the category $c_{k}$ ..... 98
4.3 Contingency table for the category $c_{k}$ and the word $w_{j}$ ..... 99
4.4 The structure of the Word-Category RIG Matrix ..... 101
4.5 An example of abstract with a copyright notice ..... 107
4.6 Some examples of notices attached to the abstract ..... 108
4.7 The number of abstracts containing some attached notices before cleaning (These notices were completely removed after cleaning) ..... 109
4.8 The number of occurrence of some words appearing in copyright notices before and after cleaning ..... 110
4.9 The most frequent 10 words for categories Astronomy \& Astrophysics, Mathematics and Asian Studies ..... 114
4.10 Comparison of words ordered by the maximum $M_{j}$ RIG and sum $S_{j}$ of RIGs in categories ..... 1194.11 The least informative 10 words that are arranged in ascending orderbased on the sum $S_{j}$ and the maximum $M_{j}$ of RIGs in 252 categories.Words are in stemmed form.
4.12 Top 10 most informative words that are arranged in descending order based on the sum $S_{j}$ and the maximum $M_{j}$ of RIGs in 252 categories. These words are in the stemmed form. ..... 122
4.13 Five categories with the highest RIGs of the word 'danc' ..... 123
4.14 The minimal sum of RIGs in the list of the top $m$ words $\left(T_{m}\right)$ ..... 125
4.15 The number of words in the list $X_{n}$ and the minimal RIGs for $X_{n}$ ..... 126
4.16 Number of matched words of the list $T_{m}$ and words of $X_{n} . n$ is the number of words taken from each category to create $X_{n}$. ..... 127
5.1 Uncommon words from the most informative 100 words from the LScT and LScDC for the category 'Mathematics' ..... 137
5.2 Intervals of word numbers and the number of categories for each interval. The number of words for each category is calculated by counting the number of words appearing in the texts of the category at least once. ..... 138
5.3 The top and the bottom five categories where categories are sorted in descending order by the number of words ..... 138
5.4 Some words of the LScT with the number of categories where each word appears in ..... 139
5.5 Number of categories in the groups of positive, zero and negative for the first five principal components ..... 143
5.6 Categories (initial attributes) appearing in zero interval in the first five components with the number of texts assigned to the category ..... 144
5.7 Categories at opposite ends of the PC3 ..... 153
5.8 Words labelled in Fig. 5.12 and Fig. 5.13. ..... 155
5.9 Words when the scores on PC2 are greater than 20 and less than -10, words when the scores on PC3 are greater than 20 and less than -20 in Fig. 5.12 and Fig. 5.13. ..... 156
5.10 Number of categories in the positive, zero and negative groups identified by vector approximation based approach for the first five principal components ..... 160
5.11 Number of PCs to be retained, found by Kaiser rule, Broken Stick rule and PCA-CN ..... 162
6.1 Confusion Matrix used to calculate sensitivity and specificity for binary classification ..... 173
6.2 The highest and the lowest five citations in the corpus with the number of documents for the corresponding citations ..... 177
6.3 An example of corpus sampling: Sample structure ..... 178
6.4 Descriptive statistics for times cited in the corpus and samples ..... 179
6.5 Categories with the maximum citation counts in the corpus ..... 180
6.6 Categories with low citation counts in the corpus ..... 181
6.7 Top ranked five categories (by the number of documents) ..... 182
6.8 Categories with the highest average citation counts ..... 182
6.9 Number of texts assigned to categories selected in each class ..... 184
6.10 Dimensions of FVT vectors in the original space and the constructed space after applying Supervised PCA for the category Mathematics, Applied ..... 185
6.11 Dimensions of FVT vectors in the original space and the constructed space after applying Supervised PCA for the category Biology ..... 186
6.12 Dimensions of FVT vectors in the original space and the constructed space after applying Supervised PCA for the category Management ..... 186
6.13 Results of the citation classifier LDA according to H/L for the category Mathematics, Applied ..... 187
6.14 Results of the citation classifier LDA according to EH/EL for the category Mathematics, Applied ..... 188
6.15 Results of the citation classifier LDA with LOOCV in according to H/L for the category Mathematics, Applied (for the Original Space only) ..... 188
6.16 The best results of the citation classifier kNN for each vector according to H/L for the category Mathematics, Applied ..... 188
6.17 The best results of the citation classifier kNN for each vector according to EH/EL for the category Mathematics, Applied ..... 189
6.18 Results of the citation classifier LDA according to H/L for the category Biology ..... 189
6.19 Results of the citation classifier LDA according to EH/EL for the category Biology ..... 190
6.20 The best results of the citation classifier kNN for each vector according to $\mathrm{H} / \mathrm{L}$ for the category Biology ..... 190
6.21 The best results of the citation classifier kNN for each vector according to EH/EL for the category Biology ..... 190
6.22 Results of the citation classifier LDA according to H/L for the category Management ..... 191
6.23 Results of the citation classifier LDA according to EH/EL for the category Management ..... 191
6.24 The best results of the citation classifier kNN for each vector according to $\mathrm{H} / \mathrm{L}$ for the category Management ..... 192
6.25 The best results of the citation classifier kNN for each vector according to EH/EL for the category Management ..... 192
6.26 LOOCV results for the best classification performance among all categories: LDA with LOOCV in according to EH/EL for the category Management. The results correspond to the vector $\left(\mu, P C_{1}\right)$ in the Original Space. ..... 193
A. 1 Example of a question for which we could reliably automate marking (Question 1) ..... 201
A. 2 Teacher marks for the answers to Question 1. ..... 201
A. 3 Example of a question for which we could reliably automate marking (Question 2) ..... 202
A. 4 Teacher marks for the answers to Question 2 ..... 202
A. 5 Question which is harder to assess (Question 3) ..... 202
A. 6 Teacher marks for the answers to Question 3 ..... 202
A. 7 Question which is harder to assess (Question 4) ..... 203
A. 8 Teacher marks for the answers to Question 4 ..... 203
B. 1 Headings of sections identified in structured abstracts (Headings can be either singular or plural) ..... 206
B. 2 Structure of a document in the LSC ..... 207
B. 3 The List of Prefixes ..... 208
B. 4 List of Substitution ..... 208
B. 5 The List of Stop Words ..... 209
C. 1 Some additional examples of notices attached to the abstract ..... 210
C. 2 The list of 252 WoS categories with the number of LSC documents assigned to the corresponding category ..... 211
C. 3 The list of 151 WoS research areas with the number of LSC documents assigned to the corresponding research area ..... 218
D. 1 The list of the top 100 words in the category Acoustics with RIGs ..... 227
D. 2 The list of the top 100 words in the category Agricultural Economics and Policy with RIGs ..... 228
D. 3 The list of the top 100 words in the category Agricultural Engineering with RIGs ..... 229
D. 4 The list of the top 100 words in the category Agriculture, Dairy and Animal Science with RIGs ..... 230
D. 5 The list of the top 100 words in the category Agriculture, Multidisciplinary with RIGs ..... 231
D. 6 The list of the top 100 words in the category Agronomy with RIGs ..... 232
D. 7 The list of the top 100 words in the category Allergy with RIGs ..... 233
D. 8 The list of the top 100 words in the category Anatomy and Morphology with RIGs ..... 234
D. 9 The list of the top 100 words in the category Andrology with RIGs ..... 235
D. 10 The list of the top 100 words in the category Anesthesiology with RIGs ..... 236
D. 11 The list of the top 100 words in the category Anthropology with RIGs ..... 237
D. 12 The list of the top 100 words in the category Archaeology with RIGs ..... 238
D. 13 The list of the top 100 words in the category Architecture with RIGs ..... 239
D. 14 The list of the top 100 words in the category Area Studies with RIGs ..... 240
D. 15 The list of the top 100 words in the category Art with RIGs ..... 241
D. 16 The list of the top 100 words in the category Asian Studies with RIGs ..... 242
D. 17 The list of the top 100 words in the category Astronomy and Astrophysics with RIGs ..... 243
D. 18 The list of the top 100 words in the category Audiology and Speech-Language Pathology with RIGs ..... 244
D. 19 The list of the top 100 words in the category Automation and Control Systems with RIGs ..... 245
D. 20 The list of the top 100 words in the category Behavioral Sciences with RIGs ..... 246
D. 21 The list of the top 100 words in the category Biochemical Research Methods with RIGs ..... 247
D. 22 The list of the top 100 words in the category Biochemistry and Molecular Biology with RIGs ..... 248
D. 23 The list of the top 100 words in the category Biodiversity Conservation with RIGs ..... 249
D. 24 The list of the top 100 words in the category Biology with RIGs ..... 250
D. 25 The list of the top 100 words in the category Biophysics with RIGs ..... 251
D. 26 The list of the top 100 words in the category Biotechnology and Applied Microbiology with RIGs ..... 252
D. 27 The list of the top 100 words in the category Business with RIGs ..... 253
D. 28 The list of the top 100 words in the category Business, Finance with RIGs ..... 254
D. 29 The list of the top 100 words in the category Cardiac and Cardiovascular Systems with RIGs ..... 255
D. 30 The list of the top 100 words in the category Cell and Tissue Engineering with RIGs ..... 256
D. 31 The list of the top 100 words in the category Cell Biology with RIGs ..... 257
D. 32 The list of the top 100 words in the category Chemistry, Analytical with RIGs ..... 258
D. 33 The list of the top 100 words in the category Chemistry, Applied with RIGs ..... 259
D. 34 The list of the top 100 words in the category Chemistry, Inorganic and Nuclear with RIGs ..... 260
D. 35 The list of the top 100 words in the category Chemistry, Medicinal with RIGs ..... 261
D. 36 The list of the top 100 words in the category Chemistry, Multidisciplinary with RIGs ..... 262
D. 37 The list of the top 100 words in the category Chemistry, Organic with RIGs ..... 263
D. 38 The list of the top 100 words in the category Chemistry, Physical with RIGs ..... 264
D. 39 The list of the top 100 words in the category Classics with RIGs ..... 265
D. 40 The list of the top 100 words in the category Clinical Neurology with RIGs ..... 266
D. 41 The list of the top 100 words in the category Communication with RIGs 267
D. 42 The list of the top 100 words in the category Computer Science, ArtificialIntelligence with RIGs268
D. 43 The list of the top 100 words in the category Computer Science, Cybernetics with RIGs ..... 269
D. 44 The list of the top 100 words in the category Computer Science, Hardware and Architecture with RIGs ..... 270
D. 45 The list of the top 100 words in the category Computer Science, Information Systems with RIGs ..... 271
D. 46 The list of the top 100 words in the category Computer Science, Interdisciplinary Applications with RIGs ..... 272
D. 47 The list of the top 100 words in the category Computer Science, Software Engineering with RIGs ..... 273
D. 48 The list of the top 100 words in the category Computer Science, Theory and Methods with RIGs ..... 274
D. 49 The list of the top 100 words in the category Construction and Building Technology with RIGs ..... 275
D. 50 The list of the top 100 words in the category Criminology and Penology with RIGs ..... 276
D. 51 The list of the top 100 words in the category Critical Care Medicine with RIGs ..... 277
D. 52 The list of the top 100 words in the category Crystallography with RIGs 278
D. 53 The list of the top 100 words in the category Cultural Studies with RIGs 279
D. 54 The list of the top 100 words in the category Dance with RIGs ..... 280
D. 55 The list of the top 100 words in the category Demography with RIGs ..... 281
D. 56 The list of the top 100 words in the category Dentistry, Oral Surgery and Medicine with RIGs ..... 282
D. 57 The list of the top 100 words in the category Dermatology with RIGs ..... 283
D. 58 The list of the top 100 words in the category Developmental Biology with RIGs ..... 284
D. 59 The list of the top 100 words in the category Ecology with RIGs ..... 285
D. 60 The list of the top 100 words in the category Economics with RIGs ..... 286
D. 61 The list of the top 100 words in the category Education and Educational Research with RIGs ..... 287
D. 62 The list of the top 100 words in the category Education, Scientific Disciplines with RIGs ..... 288
D. 63 The list of the top 100 words in the category Education, Special with RIGs ..... 289
D. 64 The list of the top 100 words in the category Electrochemistry with RIGs ..... 290
D. 65 The list of the top 100 words in the category Emergency Medicine with RIGs ..... 291
D. 66 The list of the top 100 words in the category Endocrinology and Metabolism with RIGs ..... 292
D. 67 The list of the top 100 words in the category Energy and Fuels with RIGs ..... 293
D. 68 The list of the top 100 words in the category Engineering, Aerospace with RIGs ..... 294
D. 69 The list of the top 100 words in the category Engineering, Biomedical with RIGs ..... 295
D. 70 The list of the top 100 words in the category Engineering, Chemical with RIGs ..... 296
D. 71 The list of the top 100 words in the category Engineering, Civil with RIGs ..... 297
D. 72 The list of the top 100 words in the category Engineering, Electrical and Electronic with RIGs ..... 298
D. 73 The list of the top 100 words in the category Engineering, Environmental with RIGs ..... 299
D. 74 The list of the top 100 words in the category Engineering, Geological with RIGs ..... 300
D. 75 The list of the top 100 words in the category Engineering, Industrial with RIGs ..... 301
D. 76 The list of the top 100 words in the category Engineering, Manufacturing with RIGs ..... 302
D. 77 The list of the top 100 words in the category Engineering, Marine with RIGs ..... 303
D. 78 The list of the top 100 words in the category Engineering, Mechanical with RIGs ..... 304
D. 79 The list of the top 100 words in the category Engineering, Multidisciplinary with RIGs ..... 305
D. 80 The list of the top 100 words in the category Engineering, Ocean with RIGs ..... 306
D. 81 The list of the top 100 words in the category Engineering, Petroleum with RIGs ..... 307
D. 82 The list of the top 100 words in the category Entomology with RIGs ..... 308
D. 83 The list of the top 100 words in the category Environmental Sciences with RIGs ..... 309
D. 84 The list of the top 100 words in the category Environmental Studies with RIGs ..... 310
D. 85 The list of the top 100 words in the category Ergonomics with RIGs ..... 311
D. 86 The list of the top 100 words in the category Ethics with RIGs ..... 312
D. 87 The list of the top 100 words in the category Ethnic Studies with RIGs 313
D. 88 The list of the top 100 words in the category Evolutionary Biology with RIGs ..... 314
D. 89 The list of the top 100 words in the category Family Studies with RIGs 315
D. 90 The list of the top 100 words in the category Film, Radio, Television with RIGs ..... 316
D. 91 The list of the top 100 words in the category Fisheries with RIGs ..... 317
D. 92 The list of the top 100 words in the category Folklore with RIGs ..... 318
D. 93 The list of the top 100 words in the category Food Science and Technology with RIGs ..... 319
D. 94 The list of the top 100 words in the category Forestry with RIGs ..... 320
D. 95 The list of the top 100 words in the category Gastroenterology and Hepatology with RIGs ..... 321
D. 96 The list of the top 100 words in the category Genetics and Heredity with RIGs ..... 322
D. 97 The list of the top 100 words in the category Geochemistry and Geophysics with RIGs ..... 323
D. 98 The list of the top 100 words in the category Geography with RIGs ..... 324
D. 99 The list of the top 100 words in the category Geography, Physical with RIGs ..... 325
D. 100 The list of the top 100 words in the category Geology with RIGs ..... 326
D. 101 The list of the top 100 words in the category Geosciences, Multidisciplinary with RIGs ..... 327
D. 102 The list of the top 100 words in the category Geriatrics and Gerontology with RIGs ..... 328
D. 103 The list of the top 100 words in the category Gerontology with RIGs ..... 329
D. 104 The list of the top 100 words in the category Green and Sustainable Science and Technology with RIGs ..... 330
D. 105 The list of the top 100 words in the category Health Care Sciences and Services with RIGs ..... 331
D. 106 The list of the top 100 words in the category Health Policy and Services with RIGs ..... 332
D. 107 The list of the top 100 words in the category Hematology with RIGs ..... 333
D. 108 The list of the top 100 words in the category History with RIGs ..... 334
D. 109 The list of the top 100 words in the category History and Philosophy Of Science with RIGs ..... 335
D. 110 The list of the top 100 words in the category History Of Social Sciences with RIGs ..... 336
D. 111 The list of the top 100 words in the category Horticulture with RIGs ..... 337
D. 112 The list of the top 100 words in the category Hospitality, Leisure, Sport and Tourism with RIGs ..... 338
D. 113 The list of the top 100 words in the category Humanities, Multidisciplinary with RIGs ..... 339
D. 114 The list of the top 100 words in the category Imaging Science and Photographic Technology with RIGs ..... 340
D. 115 The list of the top 100 words in the category Immunology with RIGs ..... 341
D. 116 The list of the top 100 words in the category Industrial Relations and Labor with RIGs ..... 342
D. 117 The list of the top 100 words in the category Infectious Diseases with RIGs ..... 343
D. 118 The list of the top 100 words in the category Information Science and Library Science with RIGs ..... 344
D. 119 The list of the top 100 words in the category Instruments and Instrumentation with RIGs ..... 345
D. 120 The list of the top 100 words in the category Integrative and Complementary Medicine with RIGs ..... 346
D. 121 The list of the top 100 words in the category International Relations with RIGs ..... 347
D. 122 The list of the top 100 words in the category Language and Linguistics with RIGs ..... 348
D. 123 The list of the top 100 words in the category Law with RIGs ..... 349
D. 124 The list of the top 100 words in the category Limnology with RIGs ..... 350
D. 125 The list of the top 100 words in the category Linguistics with RIGs ..... 351
D. 126 The list of the top 100 words in the category Literary Reviews with RIGs ..... 352
D. 127 The list of the top 100 words in the category Literary Theory and Criticism with RIGs ..... 353
D. 128 The list of the top 100 words in the category Literature with RIGs ..... 354
D. 129 The list of the top 100 words in the category Literature, African, Australian, Canadian with RIGs ..... 355
D. 130 The list of the top 100 words in the category Literature, American with RIGs ..... 356
D. 131 The list of the top 100 words in the category Literature, British Isles with RIGs ..... 357
D. 132 The list of the top 100 words in the category Literature, German, Dutch, Scandinavian with RIGs ..... 358
D. 133 The list of the top 100 words in the category Literature, Romance with RIGs ..... 359
D. 134 The list of the top 100 words in the category Literature, Slavic with RIGs ..... 360
D. 135 The list of the top 100 words in the category Logic with RIGs ..... 361
D. 136 The list of the top 100 words in the category Management with RIGs ..... 362
D. 137 The list of the top 100 words in the category Marine and Freshwater Biology with RIGs ..... 363
D. 138 The list of the top 100 words in the category Materials Science, Biomaterials with RIGs ..... 364
D. 139 The list of the top 100 words in the category Materials Science, Ceramics with RIGs ..... 365
D. 140 The list of the top 100 words in the category Materials Science, Characterization and Testing with RIGs ..... 366
D. 141 The list of the top 100 words in the category Materials Science, Coatings and Films with RIGs ..... 367
D. 142 The list of the top 100 words in the category Materials Science, Composites with RIGs ..... 368
D. 143 The list of the top 100 words in the category Materials Science, Multidisciplinary with RIGs ..... 369
D. 144 The list of the top 100 words in the category Materials Science, Paper and Wood with RIGs ..... 370
D. 145 The list of the top 100 words in the category Materials Science, Textiles with RIGs ..... 371
D. 146 The list of the top 100 words in the category Mathematical and Computational Biology with RIGs ..... 372
D. 147 The list of the top 100 words in the category Mathematics with RIGs ..... 373
D. 148 The list of the top 100 words in the category Mathematics, Applied with RIGs ..... 374
D. 149 The list of the top 100 words in the category Mathematics, Interdisciplinary Applications with RIGs ..... 375
D. 150 The list of the top 100 words in the category Mechanics with RIGs ..... 376
D. 151 The list of the top 100 words in the category Medical Ethics with RIGs 37
D. 152 The list of the top 100 words in the category Medical Informatics with RIGs ..... 378
D. 153 The list of the top 100 words in the category Medical Laboratory Technology with RIGs ..... 379
D. 154 The list of the top 100 words in the category Medicine, General and Internal with RIGs ..... 380
D. 155 The list of the top 100 words in the category Medicine, Legal with RIGs381D. 156 The list of the top 100 words in the category Medicine, Research andExperimental with RIGs382
D. 157 The list of the top 100 words in the category Medieval and Renaissance Studies with RIGs ..... 383
D. 158 The list of the top 100 words in the category Metallurgy and Metallurgical Engineering with RIGs ..... 384
D. 159 The list of the top 100 words in the category Meteorology and Atmospheric Sciences with RIGs ..... 385
D. 160 The list of the top 100 words in the category Microbiology with RIGs ..... 386
D. 161 The list of the top 100 words in the category Microscopy with RIGs ..... 387
D. 162 The list of the top 100 words in the category Mineralogy with RIGs ..... 388
D. 163 The list of the top 100 words in the category Mining and Mineral Processing with RIGs ..... 389
D. 164 The list of the top 100 words in the category Multidisciplinary Sciences with RIGs ..... 390
D. 165 The list of the top 100 words in the category Music with RIGs ..... 391
D. 166 The list of the top 100 words in the category Mycology with RIGs ..... 392
D. 167 The list of the top 100 words in the category Nanoscience and Nanotechnology with RIGs ..... 393
D. 168 The list of the top 100 words in the category Neuroimaging with RIGs ..... 394
D. 169 The list of the top 100 words in the category Neurosciences with RIGs ..... 395
D. 170 The list of the top 100 words in the category Nuclear Science and Technology with RIGs ..... 396
D. 171 The list of the top 100 words in the category Nursing with RIGs ..... 397
D. 172 The list of the top 100 words in the category Nutrition and Dietetics with RIGs ..... 398
D. 173 The list of the top 100 words in the category Obstetrics and Gynecology with RIGs ..... 399
D. 174 The list of the top 100 words in the category Oceanography with RIGs ..... 400
D. 175 The list of the top 100 words in the category Oncology with RIGs ..... 401
D. 176 The list of the top 100 words in the category Operations Research and Management Science with RIGs ..... 402
D. 177 The list of the top 100 words in the category Ophthalmology with RIGs 403
D. 178 The list of the top 100 words in the category Optics with RIGs ..... 404
D. 179 The list of the top 100 words in the category Ornithology with RIGs ..... 405
D. 180 The list of the top 100 words in the category Orthopedics with RIGs ..... 406
D. 181 The list of the top 100 words in the category Otorhinolaryngology with RIGs ..... 407
D. 182 The list of the top 100 words in the category Paleontology with RIGs ..... 408
D. 183 The list of the top 100 words in the category Parasitology with RIGs ..... 409
D. 184 The list of the top 100 words in the category Pathology with RIGs ..... 410
D. 185 The list of the top 100 words in the category Pediatrics with RIGs ..... 411
D. 186 The list of the top 100 words in the category Peripheral Vascular Disease with RIGs ..... 412
D. 187 The list of the top 100 words in the category Pharmacology and Pharmacy with RIGs ..... 413
D. 188 The list of the top 100 words in the category Philosophy with RIGs ..... 414
D. 189 The list of the top 100 words in the category Physics, Applied with RIGs 415
D. 190 The list of the top 100 words in the category Physics, Atomic, Molecular and Chemical with RIGs ..... 416
D. 191 The list of the top 100 words in the category Physics, Condensed Matter with RIGs ..... 417
D. 192 The list of the top 100 words in the category Physics, Fluids and Plasmas with RIGs ..... 418
D. 193 The list of the top 100 words in the category Physics, Mathematical with RIGs ..... 419
D. 194 The list of the top 100 words in the category Physics, Multidisciplinary with RIGs ..... 420
D. 195 The list of the top 100 words in the category Physics, Nuclear with RIGs 421
D. 196 The list of the top 100 words in the category Physics, Particles and Fields with RIGs ..... 422
D. 197 The list of the top 100 words in the category Physiology with RIGs ..... 423
D. 198 The list of the top 100 words in the category Planning and Development with RIGs ..... 424
D. 199 The list of the top 100 words in the category Plant Sciences with RIGs ..... 425
D. 200 The list of the top 100 words in the category Poetry with RIGs ..... 426
D. 201 The list of the top 100 words in the category Political Science with RIGs 427
D. 202 The list of the top 100 words in the category Polymer Science with RIGs 428
D. 203 The list of the top 100 words in the category Primary Health Care with RIGs ..... 429
D. 204 The list of the top 100 words in the category Psychiatry with RIGs ..... 430
D. 205 The list of the top 100 words in the category Psychology with RIGs ..... 431
D. 206 The list of the top 100 words in the category Psychology, Applied with RIGs ..... 432

$$
\begin{aligned}
& \text { D. } 207 \text { The list of the top } 100 \text { words in the category Psychology, Biological with } \\
& \text { RIGs }
\end{aligned}
$$

D. 208 The list of the top 100 words in the category Psychology, Clinical with RIGs
D. 209 The list of the top 100 words in the category Psychology, Developmental with RIGs
D. 210 The list of the top 100 words in the category Psychology, Educational with RIGs
D. 211 The list of the top 100 words in the category Psychology, Experimental with RIGs
D. 212 The list of the top 100 words in the category Psychology, Mathematical with RIGs
D. 213 The list of the top 100 words in the category Psychology, Multidisciplinary
with RIGs
D. 214 The list of the top 100 words in the category Psychology, Psychoanalysis with RIGs ..... 440
D. 215 The list of the top 100 words in the category Psychology, Social with RIGs ..... 441
D. 216 The list of the top 100 words in the category Public Administration with RIGs ..... 442
D. 217 The list of the top 100 words in the category Public, Environmental and Occupational Health with RIGs ..... 443
D. 218 The list of the top 100 words in the category Radiology, Nuclear Medicine and Medical Imaging with RIGs ..... 444
D. 219 The list of the top 100 words in the category Rehabilitation with RIGs ..... 445
D. 220 The list of the top 100 words in the category Religion with RIGs ..... 446
D. 221 The list of the top 100 words in the category Remote Sensing with RIGs 447
D. 222 The list of the top 100 words in the category Reproductive Biology withRIGs448
D. 223 The list of the top 100 words in the category Respiratory System with RIGs ..... 449
D. 224 The list of the top 100 words in the category Rheumatology with RIGs ..... 450
D. 225 The list of the top 100 words in the category Robotics with RIGs ..... 451
D. 226 The list of the top 100 words in the category Social Issues with RIGs ..... 452
D. 227 The list of the top 100 words in the category Social Sciences, Biomedical with RIGs ..... 453
D. 228 The list of the top 100 words in the category Social Sciences, Interdisciplinary with RIGs ..... 454
D. 229 The list of the top 100 words in the category Social Sciences, Mathematical Methods with RIGs ..... 455
D. 230 The list of the top 100 words in the category Social Work with RIGs ..... 456
D. 231 The list of the top 100 words in the category Sociology with RIGs ..... 457
D. 232 The list of the top 100 words in the category Soil Science with RIGs ..... 458
D. 233 The list of the top 100 words in the category Spectroscopy with RIGs ..... 459
D. 234 The list of the top 100 words in the category Sport Sciences with RIGs ..... 460
D. 235 The list of the top 100 words in the category Statistics and Probability with RIGs ..... 461
D. 236 The list of the top 100 words in the category Substance Abuse with RIGs ..... 462
D. 237 The list of the top 100 words in the category Surgery with RIGs ..... 463
D. 238 The list of the top 100 words in the category Telecommunications with RIGs ..... 464
D. 239 The list of the top 100 words in the category Theater with RIGs ..... 465
D. 240 The list of the top 100 words in the category Thermodynamics with RIGs ..... 466
D. 241 The list of the top 100 words in the category Toxicology with RIGs ..... 467
D. 242 The list of the top 100 words in the category Transplantation with RIGs 468
D. 243 The list of the top 100 words in the category Transportation with RIGs ..... 469
D. 244 The list of the top 100 words in the category Transportation Science and Technology with RIGs ..... 470
D. 245 The list of the top 100 words in the category Tropical Medicine with RIGs ..... 471
D. 246 The list of the top 100 words in the category Urban Studies with RIGs ..... 472
D. 247 The list of the top 100 words in the category Urology and Nephrology with RIGs ..... 473
D. 248 The list of the top 100 words in the category Veterinary Sciences with RIGs ..... 474
D. 249 The list of the top 100 words in the category Virology with RIGs ..... 475
D. 250 The list of the top 100 words in the category Water Resources with RIGs 476
D. 251 The list of the top 100 words in the category Women's Studies with RIGs ..... 477
D. 252 The list of the top 100 words in the category Zoology with RIGs ..... 478
D. 253 Number of words for each category
D. 254 List of original attributes (categories) in group of positive on the $1^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 255 List of original attributes (categories) in group of zero on the $1^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 256 List of original attributes (categories) in group of positive on the $2^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 257 List of original attributes (categories) in group of zero on the $2^{\text {th }}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.
D. 258 List of original attributes (categories) in group of negative on the $2^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 259 List of original attributes (categories) in group of positive on the $3^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 260 List of original attributes (categories) in group of zero on the $3^{\text {th }}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.
D. 261 List of original attributes (categories) in group of negative on the $3^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 262 List of original attributes (categories) in group of positive on the $4^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 263 List of original attributes (categories) in group of zero on the $4^{\text {th }}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.
D. 264 List of original attributes (categories) in group of negative on the $4^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 265 List of original attributes (categories) in group of positive on the $5^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 266 List of original attributes (categories) in group of zero on the $5^{\text {th }}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.
D. 267 List of original attributes (categories) in group of negative on the $5^{t h}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 268 List of original attributes (categories) in group of positive on the $6^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 269 List of original attributes (categories) in group of negative on the $6^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 270 List of original attributes (categories) in group of positive on the $7^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 271 List of original attributes (categories) in group of negative on the $7^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 272 List of original attributes (categories) in group of positive on the $8^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 273 List of original attributes (categories) in group of negative on the $8^{t h}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 274 List of original attributes (categories) in group of positive on the $9^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 275 List of original attributes (categories) in group of negative on the $9^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 276 List of original attributes (categories) in group of positive on the $10^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 277 List of original attributes (categories) in group of negative on the $10^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 278 List of original attributes (categories) in group of positive on the $11^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 279 List of original attributes (categories) in group of negative on the $11^{\text {th }}$ principal component. Categories are sorted by absolute values of their
component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 280 List of original attributes (categories) in group of positive on the $12^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 281 List of original attributes (categories) in group of negative on the $12^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 282 List of original attributes (categories) in group of positive on the $13^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 283 List of original attributes (categories) in group of negative on the $13^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 284 List of categories on the left wing (green) with projection onto the first principal component. Categories are sorted by absolute values of their component score in descending order.
D. 285 List of categories on the body (blue) with projection onto the first principal component. Categories are sorted by absolute values of their component score in descending order.
D. 286 List of categories on the right wing (red) with projection onto the first principal component. Categories are sorted by absolute values of their component score in descending order.
D. 287 List of original attributes (categories) in positive group identified by vector approximation on the $2^{\text {nd }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 288 List of original attributes (categories) in zero group identified by vector approximation on the $2^{\text {nd }}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.
D. 289 List of original attributes (categories) in negative group identified by vector approximation o the $2^{\text {nd }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 290 List of original attributes (categories) in positive group identified by vector approximation o the $3^{\text {rd }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 291 List of original attributes (categories) in zero group identified by vector approximation o the $3^{r d}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.
D. 292 List of original attributes (categories) in negative group identified by vector approximation o the $3^{r d}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 293 List of original attributes (categories) in positive group identified by vector approximation o the $4^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 294 List of original attributes (categories) in zero group identified by vector approximation o the $4^{\text {th }}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.
D. 295 List of original attributes (categories) in negative group identified by vector approximation o the $4^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 296 List of original attributes (categories) in positive group identified by vector approximation o the $5^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
D. 297 List of original attributes (categories) in zero group identified by vector approximation o the $5^{\text {th }}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.
D. 298 List of original attributes (categories) in negative group identified by vector approximation o the $5^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.
E. 1 List of categories with the descriptive statistics obtained for the number of citation

## List of Figures

### 2.1 Steps and challenges in manual assessment

14
2.2 The distribution of scores awarded by two teachers. Size of points is proportional to number of cases, i.e, the proportion of pairs (teacher 1 grade, teacher 2 grade) in the dataset.
2.3 All words in the collection of student answers. The font and color of words indicate different frequencies of words.22
2.4 The structure of clusters with original marks awarded by two teachers. 22
2.5 Frequent words in each cluster. Colors in the bottom right hand corner show clusters (in the Fig. 2.4) that the words belong to.
2.6 Distances between the model answer and student answers, and original marks for each student. Different colors indicate groups of students with different distances.
2.7 (a) Distribution of actual marks of two teachers (Grade 1 and Grade 2) with distances from the model answer, the average marks of two teachers (TM) and the predicted marks by the mathematical model (MM); (b) The mean squared errors for each distance from the model answer for MM and TM.
2.8 (a) Distribution of actual marks of two teachers (Grade 1 and Grade 2) with distances from the model answer, the average marks of two teachers (TM) and the predicted marks by the mathematical model (MM) for the second question; (b) The mean squared errors for each distance from the model answer for MM and TM for the second question.
2.9 (a) Distribution of actual marks of two teachers (Grade 1 and Grade 2) with distances from the model answer, the average marks of two teachers (TM) and the predicted marks by the mathematical model (MM) for the third question; (b) The mean squared errors for each distance from the model answer for MM and TM for the third question.
2.10 (a) Distribution of actual marks of two teachers (Grade 1 and Grade 2) with distances from the model answer, the average marks of two teachers (TM) and the predicted marks by the mathematical model (MM) for the fourth question; (b) The mean squared errors for each distance from the model answer for MM and TM for the fourth question.
3.1 Length distribution of documents (a) before and (b) after removing documents containing less than 30 and more than 500 words (maximum length was 3,805 before removing). The vertical line shows the average length.
3.2 The number of documents ( n ) versus the number of words contained in n documents only
3.3 The number of documents (n) versus the number of LScD words contained in n or less documents in the LSC
3.4 The number of documents ( n ) versus the number of LScD words contained in n or less documents in the LSC for those words appearing in at most 20 documents. The horizontal line indicates the number of words in the dictionary $(974,238)$.
3.5 The number of documents ( $n$ ) versus the number of LScD words appearing in more than $n$ documents in the LSC for (a) $n<10,000$ and (b) $n \geq 10,000$. The y -axis is calculated by normalising $g(n)$ to the maximum (maximum- $g(n)$ ), where $g(n)$ is the number of words contained in n or less documents. The black points are the data; the red points are the fitted Pareto distribution.
3.6 (a) The number of documents ( $n$ ) versus the number of LScD words appearing in more than $n$ documents in the LSC for whole data (b) The same plot on logarithmic scales. The y-axis is calculated by normalising $g(n)$ to the maximum (maximum- $g(n)$ ), where $g(n)$ is the number of words contained in n or less documents. The black points are the data; the red points are the fitted Pareto distribution. In (b), the slope of the line is -0.5752 .
3.7 The number of documents (n) versus the number of LScDC words contained in n documents only after cleaning words appearing in no more than $10(\leq 10)$ documents
3.8 The number of documents ( n ) versus the number of LScDC words contained in n or less documents in the LSC after cleaning words appearing in no more than $10(\leq 10)$ documents
3.9 The number of documents ( n ) versus the number of LScDC words contained in n or less documents in the LSC (for those words appearing in at most 30 documents) after cleaning words appearing in no more than $10(\leq 10)$ documents. The horizontal line indicates the total number of words in the dictionary $(104,223)$.
3.10 (a) The number of documents ( $n$ ) versus the number of LScDC words appearing in more than $n$ documents in the LSC for whole data (b) The same plot on logarithmic scales. The y-axis is calculated by normalising
$g(n)$ to the maximum (maximum- $g(n)$ ), where $g(n)$ is the number of words contained in n or less documents. The black points are the data; the red points are the fitted Pareto distribution. In (b), the slope of the line is -0.5797 .
3.11 Coverage of the NAWL by the fragments of LScDC
3.12 The fraction of the intersection of words in intervals with specified width
3.13 The fraction of the intersection of words in intervals with number of intervals and specified width. Figures present only those number of intervals and widths where partitions have almost equal widths (e.g. 2 intervals with approximately 450 words in each, 450 in one of intervals and 441 in the other interval).
3.14 Relationship between the number of documents containing the word in LScD and SFIs in NAWL. The figure on the right hand side is on logarithmic scale.
3.15 Relationship between ranks of words in lists (LScDC and NAWL)
3.16 The number of overlapping of words in the top n words of the lists (width of interval) where $n=5,10,15, \ldots, 890,891$. Lists are in descending order by their statistics provided (the number of documents containing the word and SFI). The figure on right hand side presents widths until $n=100$.
3.17 The number of overlapping of words in the bottom n words of the lists (width of interval) where $n=5,10,15, \ldots, 890,891$. Lists are in ascending order by their statistics provided (the number of documents containing the word and SFI). The figure on right hand side presents widths until $n=100$.
4.1 The idealised scheme of the act of communication. There is a representation of a situation on the sender's 'blackboard of the consciousness' (a representation 1 of a situation 1). A text related to this situation is generated by the sender (translation 1). This text is transmitted to the receiver and transformed by him into a representation of a situation (representation 2 of a situation 2). The situation can be the situation in a real world, the imaginary situation in a possible world, an impossible situation in an impossible world, a chimeric situation combined from several possible or imaginary situation, and so on. We do not study the relations of representation to reality, but only consider the chain: Representation $1 \rightarrow$ Text $\rightarrow$ Representation 2.
4.2 Parallel (sender's) generation of the learning set for computational analysis and quantification of meaning. One of the main problems is the
relationship between the content of texts and the evaluated attributes of the situation.
4.3 Antiparallel (receiver's) generation of the learning set for computational analysis and quantification of meaning. One of the main problems is the relationship between the content of texts and the evaluated attributes of the situation.
4.4 The most informative 100 words in the category 'Acoustics'. The font size and colour of words indicate different RIGs of the words. The histogram shows RIGs for the top 10 most informative words in the category.
4.5 The most informative 100 words in the category 'Chemistry, Applied' before additional cleaning. The font size and colour of words indicate different RIGs of words. The histogram shows RIGs for the top 10 most informative words in the category.
4.6 Top 20 categories that words 'Elsevier', 'Reserve' and 'Right' appear in 105
4.7 Fractions of texts containing the words 'Elsevier', 'Right' and 'Reserve' in four categories before additional cleaning.
4.8 The most informative 100 words in the category 'Computer Science, Theory \& Methods'. The font size and colour of words indicate different RIGs of words. The histogram shows RIGs for the top 10 most informative words in the category. (Before additional cleaning. However, the additional cleaning does not change noticeably the diagrams for this category.
4.10 The number of abstracts with specified length against lengths of abstracts in the latest version of the LSC. The minimum length is 30 and the maximum length is 500 with an average of 176 words.
4.12 Two examples of intersection of categories in the LSC. The maximal number of categories that a document belongs to is 6 in the LSC.
4.13 Category 'Biochemistry \& Molecular Biology': word cloud of the top 100 most informative words and the histogram of the the top 10 most informative words. The informativeness is defined by (a) RIG (b) frequency.
4.14 Category 'Economics': word cloud of the top 100 most informative words and the histogram of the top 10 most informative words. The informativeness is defined by (a) RIG (b) frequency.
4.15 Category 'Mathematics': word cloud of the top 100 most informative words and the histogram of the top 10 most informative words. The informativeness is defined by (a) RIG (b) frequency.
4.16 Histograms of the most informative 10 words in categories (a) Chemistry, Medicinal and (b) Engineering, Chemical ..... 117
4.17 The most informative 100 words in the LSC. Words are arranged and selected by the sum of their RIGs in 252 categories. The font size and colour of words indicate different sum of RIGs. The histogram shows the sum of RIGs for the top 10 informative words. ..... 118
4.18 The most informative 100 words in the LSC. Words are arranged and selected by the maximal RIG over 252 categories. The font size and colour of words indicate different maximal RIG. The histogram shows the maximal RIG for the top 10 informative words. ..... 119
4.19 Histogram of the sum of RIGs for words of the LScDC (logarithmic scale for the $y$-axis) ..... 120
4.20 Histogram of the maximum of RIGs for words of the LScDC (logarithmic scale for the $y$-axis) ..... 1204.21 Histograms of the sums of RIGs for words of the LScDC (logarithmicscale for the y-axis): (a) The top 50,000 words (b) The top 10,000 words(c) The top 5,000 words (d) The top 2,000 words (e) The top 1,500words (f) The top 1,000 words124
4.22 Number of words in the list of union of the top ( $n$ ) words in categories $\left(X_{n}\right)$ ..... 126
5.1 The number of words ( $n$ ) from the LScT against the number of documents from the LSC containing $n$ words. The minimum and maximum numbers of words contained in a text are 1 and 194 respectively, with an average of 62 . The red line shows the average number of words.
5.2 The number of categories ( $n$ ) against the number of words appearing in $n$ category. The minimum and maximum numbers of categories where a word appears in are 6 and 252 .
5.3 (a) Fraction of variance explained as a function of PCs retained for categories; (b) Cumulative fraction of variance explained as a function of PCs retained for categories ( 61 PCs )
5.4 (Left) The average, maximum, and minimum values (coefficients of the linear combination of the original attributes) in five principal components for the groups of positive, negative and zero. (Top right) The average values in the groups of positive, negative and zero. (Bottom right) The sum of values in the groups of positive, negative and zero. ..... 143
5.5 The first principal component of the LScT. The plot shows the contributions of original attributes (categories) on the first principal component. ..... 145
5.6 The second principal component of the LScT. The plot shows the contributions of original attributes (categories) on the second principal component. ..... 146
5.7 The third principal component of the LScT. The plot shows the contributions of original attributes (categories) on the third principal component. ..... 147
5.8 The fourth principal component of the LScT. The plot shows the contributions of original attributes (categories) on the fourth principal component. ..... 148
5.9 The fifth principal component of the LScT. The plot shows the contributions of original attributes (categories) on the fifth principal component. ..... 149
5.10 (a) The first principal component versus the second principal component of the original attributes (categories) (b) The first principal component versus the third principal component of the original attributes. ..... 151
5.11 (a) The second principal component versus the third principal component of the original attributes (categories) (b) The first three principal components of the original attributes. ..... 151
5.12 The PCA score plot of words. (a) First and second PC axes with principal component scores (b) First and third PC axes with principal component scores. ..... 154
5.13 The PCA score plot of words. (a) Second and third PC axes with principal component scores (b) The first three PC axes with principal component scores. ..... 154
5.14 Visualisation of categories in the first two and three PCs ..... 157
5.15 Visualisation of the annotate version of categories and colouring of the bird-like shape ..... 157
5.16 The number of principal components determined based on the Kaiser rule and the Broken Stick rule ..... 161
6.1 Graph of the number of documents cited n times in the corpus LSC. The figure on the right hand side shows the number of documents cited up to 10 . The average citation in the corpus is approximately 9 (9.38). ..... 176
6.2 Graph of the number of documents cited $n$ times in the sample selected. The figure on the right hand side shows the number of documents cited up to 40 . The average citation in the sample is approximately 9 (9.43). ..... 178
6.3 Frequency of categories versus average citation counts ..... 180
6.4 Number of documents per category versus the average citation counts in the category ..... 181
6.5 Average citation per categories versus category rank according to the number of documents. Colours indicate the categories in the sample: red is for life science categories, cyan is for social science categories, yellow is for physical science categories, pink is for earth science categories and green is for formal science category. ..... 182
6.6 (Left) Data projection on the first LDA axis (Right) ROC curve for LDA. Both figures correspond to the best performance of classifiers: LDA for classes extremely less-cited (EL) and extremely highly-cited (EH) with the vector ( $\mu, P C_{1}$ ) in the original space of the category Management. ..... 193
A. 1 Feedback process by similarity between the model answer and students' answer ..... 204
A. 2 Feedback process to group of students' answers by clustering approach ..... 205
A. 3 Supervised process for feedback and marking in the case of existing train data ..... 205
C. 1 Health Care Sciences \& Services ..... 223
C. 2 Material Science, Ceramics ..... 223
C. 3 Computer Science, Theory \& Methods ..... 223
C. 4 Computer Science, Information Systems ..... 224
C. 5 Computer Science, Artificial Intelligence ..... 224
C. 6 Computer Science, Interdisciplinary Applications ..... 224
C. 7 Computer Science, Hardware \& Architecture ..... 225
C. 8 Computer Science, Software Engineering ..... 225
C. 9 Computer Science, Cybernetics ..... 225

## CHAPTER 1

## Introduction

### 1.1. Setting the Stage: Preliminaries and Problem Statement

The motivations for this thesis were our awareness of four main problems (and necessities) as a result of our scientific curiosity towards automated text mining for academic publications. The first was that, the existing computational schemes to represent the meanings were not efficient to extract scientific-specific meanings for academic texts in English. To the best of our knowledge, we did not know any semantic-driven representation methodology developed for scientific text. The second was that, when we went deeper in investigation of the 'meaning of meaning', we realised that general-purpose word representation methods did not take the relativeness of the importance of a word across scientific categories into account. The third was that although we knew that several academic dictionaries exist, we did not know any category-specified thesaurus for science, created according to the importance of words within individual categories. Finally, our findings trigged our curiosity to take a step further: investigation the link between the knowledge of semantics of scientific texts and their impact in scientific community. Therefore, our curiosity turns into a comprehensive research on analysing the semantics for a large family of scientific texts.

Understanding the human language and expression in natural languages is one of the ultimate goals of the fields ranging from linguistics, philosophy, psycholinguists to neuroscience, while automatic analysis of texts and understanding natural languages by machines are what Artificial Intelligence and Machine Learning dream about. Human language is ambiguous and system specifically constructed for communication; therefore, there is high level of complexity in representing the speaker's/writer's meaning. Unlike machines, human do not have limitations in interpreting the sentences and semantic binding, where machines can fail when it comes to representation of concepts. Computational methods attempt to predict human behaviours in processing natural languages as human brain does. Therefore, deeper understanding of semantics and creating human-to-machine interaction have required a combined effort from psychology, neuroscientists, philosophers, linguistics and computer scientists in describing the human cognition, creating the schemes for act of communication, and building common-sense knowledge bases for the 'meaning' in texts. Let us now have a quick look at ideas about this deeply discussed topic: meaning of meaning.

First of all, we start from the Wittgenstein formulation: "Meaning is use" or, in more detail, "For a large class of cases - though not for all - in which we employ the word 'meaning' it can be defined thus: the meaning of a word is its use in the language" $[\mathbf{1}, \S 43]$. For our world of scientific abstracts, there is a well-defied dominant communicative function: a representative function. In the idealised scheme of the act of communication, two representations of the situation on the blackboards of consciousness exist: the sender's representation (representation 1) of the situation (situation 1) and the receiver's representation (representation 2) of the situation (situation 2). A text related to the first situation is generated by the sender (translation 1). This text is transmitted to the receiver and transformed by receiver into a representation of a situation (translation 2). The sender's and the receiver's representations never coincide, and situations can be real in a real world, impossible in an impossible world and chimeric combined from several possible or imaginary situation. We do not consider any controversy of the reality of the situation. Instead, we consider the chain Representation $1 \rightarrow$ Text $\rightarrow$ Representation 2 and translations between them. Translations depend on much wider context of the communication including experience of the sender and receiver. It is noteworthy that there may be many receivers and senders. One-to-many or even many-to-many communication adds more situations and representations and may also add some less trivial multi-agent structures with additional communication channels.

For our analysis, the language is used to transmit the information about the represented situations, so many other usages of the language, from military orders to psychological manipulations, are disregarded. The act of communication includes just very basic elements and can be elaborated in much more detail.

A very basic scheme is sufficient for our analysis of meaning. Meaning, for our analysis, is hidden in the relationship between the representation of situations on the 'blackboard of the consciousness' and the texts of the messages. The meaning of meaning can be understood if and only if the translation operations are created in the scheme of a communication act. Moreover, understanding can be represented as a reflexive game [2] with different levels (The sender prepares a message taking into account the experience of the receiver, his goals and tools, and guesses that the receiver takes into account the experience of the sender, his goals and tools, and... Analogously, the receiver tries to understand the message taking into account..., etc.)

The relation between the text and the representation of the situation is many-tomany correspondence: each text corresponds to many situations and each situation can have many representing texts. Mel'čuk $[3,4,5,6]$ describes the natural language as "the meaning to text and text to meaning transformer". According to this we are able to describe meaning in a special semantic language. At this stage, we characterise a situation "behind the text" by a set of attributes. The method of
this characterisation can be changed and does not give a unique and exhaustive presentation of it.

Despite the challenges in creating and describing the plausible translation, with remarkable progress of machine translation, applying the modern machine learning tools seems to be attractive idea to analysis and simulation the translation operations. However, there is no generally accepted tools for working directly with representations of situations, and we cannot propose a general solution to this problem. Such a solution, perhaps, is impossible in a finite closed form despite many efforts over decades.

Our goal is more modest. We will provide computational analysis of relations between texts of messages and representations of situations for a large collection of brief scientific texts. Such representations must be standardised, at least in part, and expressed in the form of diagrams, specially organized texts or other means. The simplest and universal approach is to replace the situation representations with the values of some attributes. Many forms of more specific descriptions of situations can be transformed into vectors of attributes. In sentiment analysis, classical examples are provided. We aim to provide another basic example that is specific to scientific texts: a list of scientific subject categories that the text belongs to.

The scheme of simple communication does not contain the representation of situation by a set of attributes and so does not introduce the attributes. This is an additional operation that must be performed: evaluating the values of selected attributes. This operation can be done either on the sender's side, the receiver's side, or by combinations of these approaches. For example, categorisation of a brief scientific text is a result of combined efforts: the authors select the categories by their choice of the journal, of the keywords, or by the pointing the categories directly, then the editors can have their own choice, then databases can finalise the list of subject categories for this text.

The subject categories can be chosen with an understanding of the text by many agents - can be both human or computer system - , and conflicts of understanding are possible. Even famous preprint servers (such as arXiv), moderators can sometimes change the category selected by the authors. This is because the content of the text may differ from its meaning [7], which are often confused (just as understanding the situation behind the text is often confused with recognising the content of the text).

In our analysis of meaning, the starting point is the combination of the text with the list of the subject categories the text belongs to - definition of the attributes of the situation behind the text. The key idea of this approach goes back to the lexical approach of Sir Francis Galton, who selected the personality-descriptive terms and stated the problem of their interrelations for real persons. Following his idea, Thurstone [8] selected sixty adjectives (attributes of a person that are in common use), and asked to the respondents ( 1300 persons) to select the adjectives that can
best describe a person they know well. A person was described by a 60 -dimensional Boolean vector. Factor analysis gave five factors. After many years of development and discussions, the modern five-factor personality model became one of the common tools in psychodiagnosis $[9,10]$.

In classical psycholinguistic studies, similar approach was used. Osgood with coworkers hypothesised 3 -dimensional semantic space to quantify connotative meanings in the theory of Semantic Differential concerning psychological and behavioural aspects $[11,12]$. They used an approach for extraction of three 'coordinates of meaning' from the evaluation of the 'affective meaning' of words (objects) by people. The semantic space was built by, in his words, 'three orthogonal bipolar dimensions': Evaluation (E), Potency (P) and Activity (A). Of course, the researches started from many different scales and these three were extracted by factor analysis.

We can guess that these evaluations of a single object or person were related to some situations with this single object or person, not just to an isolated abstract object. The people evaluated not the abstract 'terms' but the psychologically meaningful situations behind these terms. These situations were the sources of the 'affective meaning' or the personality evaluations.

### 1.2. On the Stage: Approaches and Contributions in Brief

When it comes to scientific-specific meanings, the 'affective meaning' or psychological properties are not rational to describe the situations behind scientific texts. For our world of scientific texts, we characterise the situation of use by scientifically specific description - the research subject categories of the text. Quantifying the meaning in our research follows the road: Corpus of texts + categories $\rightarrow$ Meaning Space (MS) for words $\rightarrow$ Geometric representation of the meaning of texts.

In our analysis of meanings, the starting point is to combine the text with the list of the subject categories the text belongs to. These categories can intersect: a text can belong to several categories as texts can be assigned to more than one category. The categories evaluate the situation (the research area) related to the text as a whole, not as a results of the combination of words' meaning. This holistic approach defines the general meaning of a word in short scientific texts as the information that the use of this word in texts carries about the categories to which these texts belong. More explicitly, we quantify the meaning by the Relative Information Gain (RIG) about the subject categories that the text belongs to, which can be obtained from presence of the the word in the text. This is done via characterisation of the research situations behind the text by binary attributes. Two attributes of text $d$ for a given word $w_{j}$ and a given category $c_{k}$ is defined as:

$$
\begin{aligned}
& c_{k}(d) \text { : The text } d \text { is in the category } c_{k} \text { : Attribute values are Yes }\left(c_{k}(d)=1\right) \\
& \text { or No }\left(c_{k}(d)=0\right) ;
\end{aligned}
$$

$w_{j}(d)$ : The word is in the text: Attribute values are Yes $\left(w_{j}(d)=1\right)$ or No $\left(w_{j}(d)=0\right)$.

In this approach, the corpus of scientific texts is a probabilistic sample space (the space of equally probable elementary results, each of which is a random selection of text from the corpus). $R I G\left(c_{k}, w_{j}\right)$ measures the (normalized) information about the value of $c_{k}(d)$, which can be extracted from the value $w_{j}(d)$ (i.e. from observing or not observing the word $w_{j}$ in the text $d$ ) for a text $d$ from the corpus. By this, we identify the importance of the word for the corresponding category in terms of information gained when separating the corresponding category from its complement.

To follow our road, a triad is needed: texts, dictionary and multidimensional evaluation of the situation of use presented by the categories. In this research, short scientific texts are abstracts of research articles or proceeding papers. For the first element of the triad, the whole world of abstracts is narrowed to a sample: 1,673,350 texts from the Leicester Scientific Corpus (LSC) [13]. The meaning of a word extracted from the corpus is represented by a 252 -dimensional vector of RIGs, in which each of texts in LSC is assigned to at least one of these 252 Web of Science (WoS) categories [14]. Thus, we use these simple 252 binary attributes for multidimensional evaluation of the text usage situation, where the second element of the triad is Leicester Scientific Dictionary-Core (LScDC) [15].

Next, a vector space to represent word's meanings has been introduced: Meaning Space. In Meaning Space, coordinates correspond to the subject categories. Each word $w_{j}$ in the dictionary is represented by a vector of $\overrightarrow{R I G_{j}}$ about the subject categories. These vectors are estimations of the meaning of words as their importance in the research fields. Following to the distributional semantic hypothesis, the hypotheses here are: if words have similar vectors, they tend to have similar meanings, and if texts have a similar distributions of word meanings - similar clouds of word vectors - then they tend to have similar meanings.

Having represented each word in the Meaning Space, they can be used in many text analysis problems including creation of thesaurus. One of techniques to build scientific thesaurus has been introduced and used to construct Leicester Scientific Thesaurus (LScT) [16]. The LScT contains of the most informative 5,000 words in science, in which the informativeness is measured as the average RIGs of a word across categories.

In this thesis, proposed representation scheme for text meaning is based on the LSC with LScT. The starting point of computational analysis of the meaning is a combination of simple Bag of Words (BoW) model with holistic approach to the text meaning: the text is considered as a collection of words, the meaning of the text is hidden in a situation of use, which is evaluated as a whole.

After having the words represented in MS, we return to our starting point, the question of how the meaning can be represented. This scheme creates the Feature Vector of Text (FVT) for each text that is created by a set of parameters and analysis in each cloud of words. Different vector representations for text meaning can be created in this framework. For example, in our study, vector representations as a combination of the mean vector, the vector of the first principal component for each text and two centroid vectors obtained by $k$-means (2-means) clustering of words in the text are introduced and analysed for informational representations of semantics.

Informational semantic representations are designed to be pertinent to encompass many text mining applications. In this research, we analyse one of the hardest mathematical challenging tasks: predicting the citation counts of articles.

We then turn to issue of automated evaluation the potential impact of scientific articles through their semantics. On the basis of many researches, citation analyses yield that citation counts are strong indicator of the impact of research [17, 18]. Citation behaviour is, indeed, a very complex and multidimensional phenomenon discussed by many researchers $[19,20]$. The findings confirm that not only the content of scientific work, but also other, in part non-scientific, factors play a role in citing behaviour [21]. Results in researches suggest that authors have been motivated to cite publications depends on many other factors including time-dependent factors, field-dependent factors, journal dependent factors, author dependent factors and availability of publications. In our research, we did not consider any controversy between these factors; instead, we approach to the problem from another intellectual link to citing.

There is, however, sufficient evidence that the intellectual content of article is an important factor in citing. Here, we study links between citation to a particular work and semantic analysis of the citation context rather than the content concept. This analysis seeks to obtain a better insights into relationships between citing and cited works. The approaches described in this thesis analyse the semantics of texts for the purpose of characterising the cited works. The goal of empirical analysis of citation behaviour has been not only to reveal authors motivations for citing but also to improve the use of citation counts in research evaluation. We aim to understand inter-texts relationship in the selected sample by devising classification models based on an analysis of texts surrounding the citation groups.

To build a model that automatically evaluate the impact of articles, we adopt a work-flow of supervised machine learning with our approaches to informational semantic. We suggest a methodology in classifying highly-cited and less-cited papers in the certain categories selected. This analysis first requires criterion to distinguish between citation counts - definition of binary classifiers. Human has to decide this categorisation of papers. Having labelled classes, our interest is in proposing
and performing classifiers and predictive models to discover how much information semantics of texts have in predicting the citation.

Last but not least, it is very important to understand that scientific corpus or thesaurus are not necessarily to appear in the same form. For example, the collection essay texts and students' answers in academic examinations are two other types of such corpus. Specifically, the collection of words in model answers can be considered as thesaurus of teaching. Each module, just like category, has its own keywords and academic success in these cases are measured by grades given by teachers.

Before introducing our methodologies, it seems very reasonable to analyse a small corpus of texts to get better insights into semantics of academic texts. Thus, in our research we initially analyse a corpus of student answers for the purpose of measuring keyword-similarity between the student answers and the model answer, and then evaluate the academic success of students through these similarities in short textual responses. The hypothesis is that, parallel to the idea in evaluation of impact of articles, vocabulary that students used to transmit information about the module in their answers are strong indicator for the performance of students. Computational methods are applied by standard BoW model where words are used with their module-specific description, and a new mathematical model is created for prediction of grades. Without getting into the details of complex semantic analysis, this shows a methodology to quantifying category-based (module-specific vocabulary in this case) meaning in short academic texts by keywords. This study draws on ability of computational methods in quantifying the scientific-specific meanings, even without complex semantic models and in-depth knowledge of semantics of answers.

The results are encouraging given the extremely small corpus size of documents for proposed approach of informational semantics. This pilot study solidified our understanding of how to analyse scientific texts, the importance of a large corpus, and how to approach further research to scientific-specific meanings improve and increase the applicability of the results of this pilot study.

Finally, let us wrap everything up. In short, this thesis develops computational techniques, English scientific corpus and dictionaries for one of the most difficult Natural Language Processing(NLP) tasks: quantifying the lexical semantics of scientific texts.

The contributions of this thesis are both methodological and practical. Several previous lines of work in semantic analysis, computational linguistics, NLP as well as machine learning and statistical models are woven together into our novel approach to meaning in scientific texts. Throughout this research, we have analysed a corpus of students' answer and developed a mathematical model to predict grades. We have developed an informational representation of semantics that can be used for quantifying of meaning in scientific texts, and shown that this model obtains superior
performance to standard raw-frequency representation in identifying the scientificspecific meanings. We then have used informational semantics in evaluation of scientific impact of articles.

The main application areas of introduced methods in this thesis include but are not limited to NLP, corpus studies, computational linguistics and machine learning. Datasets and software produced in this research are accessible publicly for the benefit of further research on corpus studies, NLP and other related tasks.

### 1.3. Organisation of the Thesis

This thesis is structured as follows:
Chapter 1. In this chapter, we have already introduced some preliminaries and central problems that we will address to in the thesis.

Chapter 2. Chapter 2 presents an experimental study for automatic grading of short answer questions, and providing useful feedback on their answers to students. Using the corpus of students' answers, we apply standard data mining techniques to evaluate the students' marks through their answers' similarity to the model answer. We measure the similarity between a student answer and the model answer by counting the common words in two Bags of Words. We also study feedback mechanisms constructed based on groups of students who are awarded the same or similar grades. Students' answers are grouped into natural clusters by $k$-means clustering and words in each cluster are compared to show that these clusters are constructed based on how many and which words of the model answer have been used. This approach is determined to be used in automated feedback and grading mechanisms as follows: select one or more prototype mark (feedback) for each group, and assign it to the whole group at once. Finally, a mathematical model is developed to predict marks using the distance (or similarity) between the model answer and the student answer. We discuss the model and approaches with cases in which approaches can be effectively used, cases where grading and providing feedback can be fully automated and cases where human input is required.

Chapter 3. Chapter 3 begins with a review of the principals in corpus and dictionary design as well as standard text and word representation techniques in NLP. We then describe some of widely used and well-known analogue corpora and dictionaries for English to show major differences between them and our newly-created scientific corpus and dictionaries. In this chapter, the LSC, Leicester Scientific Dictionary ( $L S c D$ ) and LScDC are created and introduced to be used as the basis of the research in informational semantics and for further use in other tasks. All the pre-processing steps in the creation of the corpus and dictionaries are explained in detail as well as basic statistics, and the organisation of the LSC, LScD and LScDC.

Finally, in order to evaluate the core dictionary LScDC, we compare it with a classical academic word list New Academic Word List (NAWL) [22] containing words sampled also from an academic corpus. We analyse two dictionaries to measure the differences in terms of the common words and ranking of words. The comparison of the LScDC and the NAWL is performed with several approaches presented in the chapter.

Chapter 4. Chapter 4 contains a description and analysis of our novel vector space model developed for quantifying the meaning of words and texts. We deeply discuss 'meaning of meaning' from the antiquity definition till modern time in the act of communication. We also discuss the core ideas of the approaches in 'meaning' from different perspectives in fields ranging from psychology to linguistics, philosophy to computer science, with an examination of the areas of application and the different implementations presented previously in literature. We propose an approach to computational analysis of meaning for a large family of texts. This approach is applied to construct the Meaning Space based on the LSC and LScDC. We introduce the Meaning Space, in which the meaning of a word is represented by a vector of RIGs about the subject categories that the text belongs to. 252 subject categories of WoS are used in construction of vectors of information gains. This representation technique is evaluated by analysing the top-ranked words in each category. For individual categories, RIG-based word ranking is compared with ranking based on raw word frequency in determining the science-specific meaning and importance of a word. The Word-Category RIG Matrix for LSC with LScDC is created and described in this chapter, and be prepared to explore quantifying the meaning of a text in the next chapters. We finally create a scientific thesaurus, LScT, in which the most informative words are selected from the LScDC by their average RIGs in categories. LScT contains the most informative 5,000 words in the corpus LSC. These words are considered as the most meaningful words in science. We use the Word-Category RIG Matrix with the LScT in the study of the representation of the meaning of texts.

Chapter 5. In Chapter 5, we hypothesize and test that lexical meaning in science can be represented in a lower dimensional space rather than 252-dimensional space that we described in Chapter 4. We apply Principal Component Analysis ( $P C A$ ) to reduce the dimensionality of the Meaning Space, in which points are 5,000 words of LScT and dimensions are categories. This chapter is meant to serve as an analysis of dimension of the Meaning Space and visualisation of words and categories in the space of PCs. In order to avoid redundant attributes in the data and identify the actual dimension of the space, we explore the Meaning Space by PCA. We begin the study with applying Double Kaiser Rule for the selection of important attributes, that is a subset of original set of attributes (categories). We show that none of the attributes is dropped after the first iteration of the Double

Kaiser selection, so all 252 categories will be retained. We then apply PCA and interpret the first five PCs by their coordinates. For each component, categories are divided into three groups defined as the main coordinates of the dimension and being unrelated attributes to the PC: categories that positively and negatively correlated with the corresponding component, and categories having near zero values in the component. We analyse the topics in these groups and visualise both categories and words in PC axes. We also analyse the extreme topic groups at opposite ends of the PCs in order to describe the PCs based on extremely influential categories at both ends ( 10 categories at both ends). We also introduce another approach based on approximation of vectors for determining the groups of categories which are influential for PCs, and analyse PCs based on this division. Finally, by using three different selection criteria (Double Kaiser, Broken Stick, an empirical method based on multicollinearity control - PCA-CN -), we reduce the dimensionality of the category space to 61,16 and 13 respectively. Both the 252-dimensional original space and the space of reduced basis will be used in further research.

Chapter 6. Chapter 6 introduces a novel model for quantifying the meaning in texts; that is, extracting informational semantics of texts. The second part of the chapter focuses on showing how much information the semantics of scientific articles have in predicting of citation and developing a quantitative evaluation for scientific impact of articles. We describe the experimental framework used to evaluate the impact of scientific articles through their informational semantics. We begin this chapter with developing a methodology for representation of text meaning. From the holistic point of view as a combination of simple BoW model, we construct text representation using cloud of text's words - that are represented in MS - and the distribution of words' RIGs in each category (dimension). Feature Vector of Text is introduced and created for each text as a vector representation of the text meaning. We create FVTs in five different ways by combining the mean vector, the vector of the first principal component for each text and two centroid vectors obtained by k-means clustering of words in the text. Each of FVTs is defined as informational semantics representation and then analysed for evaluating the impact of papers as a binary classification problem: classifying highly-cited (H) papers and less-cited (L) papers in individual categories. Labels in two classes are assigned based on the average citation count in the category. We also differentiate between extremely highly-cited (EH) and extremely less-cited (EL) papers labelled according to lower and upper quartiles of citation counts in the category. The empirical analysis in predicting the citation is done on the basis of the LSC abstracts with citation counts extracted from the WoS website for approximately four years range from 2014. For experiments, we select three categories from three main branches of science: Applied Mathematics, Biology and Management. For both classification problems, we
applied classifiers for five FVTs in three different spaces and compared performance of the classification.

Chapter 7. The closing chapter, Chapter 7, contains a summary of the study, discussion of results and suggestions for future work.

### 1.4. Dissemination of Findings

The dissemination of findings to research community is done via:
(1) Learning Analytics \& Knowledge Conference (LAK20), March 23-27, 2020: Frankfurt, GERMANY - Fully virtually. A note on Automatic Grading of Short Answers and Providing Feedback.
(2) Süzen, N., Gorban, A. N., Levesley, J., \& Mirkes, E. M. (2020). Automatic short answer grading and feedback using text mining methods. Procedia Computer Science, 169, 726-743.
(3) Suzen, N., Mirkes, E. M., \& Gorban, A. N. (2019). LScDC-new large scientific dictionary. arXiv preprint arXiv:1912.06858.
(4) Suzen, N., Mirkes, E. M., \& Gorban, A. N. (2020). Informational Space of Meaning for Scientific Texts. arXiv preprint arXiv:2004.13717.
(5) Suzen, N., Gorban, A. N., Levesley, J., \& Mirkes, E. M. (2020). Principal Components of the Meaning. arXiv preprint arXiv:2009.08859.

Datasets. The datasets used in this research are available in the University of Leicester Figshare repository and can be accessed by:
(1) Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). University of Leicester.Dataset.https://doi.org/10.25392/leicester.data.9449639.v2
(2) Suzen, Neslihan (2019): LScD (Leicester Scientific Dictionary). University of Leicester. Dataset.https://doi.org/10.25392/leicester.data. $9746900 . v 3$
(3) Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). University of Leicester. Dataset.https://doi.org/10.25392/leicester.data. 9896579.v3
(4) Suzen, Neslihan (2020): LScDC Word Clouds and Tables to Visually Present the Most Informative Words in Subject Categories. University of Leicester. Figure.https://doi.org/10.25392/leicester.data.12191604.v1
(5) Suzen, Neslihan (2020): LScDC Word-Category RIG Matrix. University of Leicester. Dataset. https://doi.org/10.25392/leicester.data. 12133431. v2

Codes. The codes produced in this research are published in https://github. com/neslihansuzen.

## CHAPTER 2

## Automatic Short Answer Grading and Feedback Using Text Mining Methods

Automatic grading is not a new approach but the need to adapt the latest technology to automatic grading has become very important. As the technology has rapidly became more powerful on scoring exams and essays, especially from the 1990s onwards, partially or wholly automated grading systems using computational methods have evolved and have become a major area of research. In particular, the demand of scoring of natural language responses has created a need for tools that can be applied to automatically grade these responses.

In this chapter, we focus on the concept of automatic grading of short answer questions such as are typical in the UK GCSE system, and providing useful feedback on their answers to students. We present experimental results on a dataset provided from the introductory computer science class in the University of North Texas. We first apply standard data mining techniques to the corpus of student answers for the purpose of measuring similarity between the student answers and the model answer. This is based on the number of common words. We then evaluate the relation between these similarities and marks awarded by scorers. We consider an approach that groups student answers into clusters. Each cluster would be awarded the same mark, and the same feedback given to each answer in a cluster. In this manner, we demonstrate that clusters indicate the groups of students who are awarded the same or the similar scores. Words in each cluster are compared to show that clusters are constructed based on how many and which words of the model answer have been used. The main novelty in this study is that we design a model to predict marks based on the similarities between the student answers and the model answer.

We argue that computational methods be used to enhance the reliability of human scoring, and not replace it. Humans are required to calibrate the system, and to deal with situations that are challenging. Computational methods can provide insight into which student answers will be found challenging and thus be a place human judgement is required [23].

### 2.1. Introduction

In the learning process, the assessment of knowledge plays a key role for effective teaching [24]. With the range of assessment methods available, examinations have dominated the assessment of student learning. In particular, knowledge and understanding in academic courses are assessed by end of course examinations combined
with coursework. Academic examinations can be performed using many question types from multiple choice questions to free responses. Manual assessment is much more difficult for question types such as short answer and essay questions [25]. Students are required to give free text responses for these question types, so each response requires textual understanding and analysis as opposed to grading answers with a single correct answer such as multiple choice tests. Hence, manual scoring takes a considerable amount of time, and provision of meaningful feedback even more so.

Manual scoring of those answers can suffer from inconsistency since the marker must infer meaning from the candidates' own words. Scores on the same answer may vary from marker to marker. However, free text questions are a widely preferred assessment tool, used throughout the learning process, due to their effectiveness on developing cognitive skills of students and also demonstrating knowledge in short texts [26]. Therefore, there is a need to develop tools for mitigating these challenges in assessment. One approach is to create automatic scoring tools and feedback mechanisms that supports markers. This methodology was discussed by several researchers, especially from the 1990s onwards, as computational techniques became applicable in this field. A number of studies have been made to automate short answer grading [27, 28, 29].

Assessment of natural language responses is a challenging task since we can not expect a machine to understand free text answers. However, developments in NLP have made partially or wholly automated scoring of exams possible. Automatic grading has become a popular field among researchers due to its benefits on reducing human mistakes and time spent (see Fig. 2.1).

Automatic assessment can also be considered for pre-assessment of student works by giving them support to improve their work. A student could submit their work to a feedback system and be given information such as: "Answers like this scored this mark. In order to improve this you might ...". By tracking student use of such a system and we also have the possibility of tutor understanding of what is being misunderstood in class, with the opportunity for face to face mitigation.

This research presents both supervised and unsupervised approaches that deal with the automatic marking and feedback for short answers. The proposed models are based on the concept of similarity between the model answer and student answers, and the discovery of the structure in the corpus of student responses. Our initial assumption is that given a set of student answers, marks awarded by scorers are highly dependent on words that the student used which also occur in the model answer. This is because in practice, grades are often awarded based on how similar a student response is to the expected answer (model answer). Using these similarities, we intend to build our model to mark student work.

We will see that this approach is more appropriate for some questions than others, but that questions that the algorithm finds hard to mark are also difficult for humans; the variation of marks of two human markers is higher.

The model calculates the distance between the model answer and the student answer using words in the model answer to generate scoring rules. This has the additional benefit of identifying the misconceptions and weaknesses of students for a topic under the assumption that those students who have a lack of knowledge are not able to use all of the words (or synonyms) in the model answer. Depending on the similarities between answers, automatic feedback can be given to make students aware of their level of understanding. Such a system can be also used as a supervised learning process to predict an answer's score and automate marking by using a training set (see A. 2 for details about such approaches).

In the learning process, providing feedback to student also plays a key role, as it helps students understand the subjects and improve their learnings and selfawareness. Our second approach focuses on an automatic feedback mechanism. We cluster student answers into groups to explore whether or not responses given by students share similar characteristics. This approach can uncover natural groups of answers having similar structures that students frequently use. We find clusters of similar answers, and then to evaluate elements of these cluster using both human and computational means. Thus we will provide teachers with information about the common answers that students give, since students generally answer questions in similar ways.


Figure 2.1. Steps and challenges in manual assessment

The main advantage of this approach is that a new system can be built that teachers can give a common feedback to students belonging to the same cluster [30]. This can be done by selecting a prototype answer(s) from each cluster. Grouping allows teacher to provide feedback for the prototype answer, and this feedback can be assigned to the entire cluster at once. It could be also used in a feedback system in which students submit answers with historical feedback, and use this feedback to improve their answers for final submission of assignments. Further feedback on student behaviour could be garnered from student use of such a system.

Grouping similar answers together can be implemented in the automatic marking of groups. This approach can significantly cut down on the time for manual marking, and improve consistency in marking and feedback. In particular, once groups of answers are identified, the system assigns a common score to whole group by using human marking. This grouping process will not be $100 \%$ reliable and there may be answers which are more difficult to classify. In this case human intervention is necessary. It is not our desire to remove the human from the marking process, just to improve consistency and allow humans to apply judgement in the difficult cases.

Finally, we develop a model to predict marks by using distances between the model answer and the student answers. We hypothesise that marks can be predicted by this distance between student answers and the model answer as marks are highly correlated with this distance. The objective of this approach is to show how distances from model answer can be used to mark student answers. In the results section we will see that the model lies close to the average of the scores of the two markers.

In the following section, we start with a detailed historical analysis on the automatic assessment of short answers. We describe the data set used, and then report an experimental study using supervised and unsupervised learning. We conclude by describing our methodology and results, and future work.

### 2.2. Related Work

The earliest study of automated grading dates back to the work of Page [31]. In this article, Page introduced his ideas on computational methods for grading student essays, and also on prospective roles of computers for grading. He experimented with automatic evaluation of student essays with 276 essays written by high school students. His idea is based on correlation between basic characteristics of the essays and grades assigned by four teachers [32]. For each essay, overall quality is evaluated by the adding of the ratings by these teachers. To calculate approximated values of these actual ratings by computer, accessible variables to a computer are identified by teachers.

The results show that the computer grades are not distinguishable from human grades. Page states that, in the future, the computer-based judge will be better correlated with each human judge than the other human judges are. He also observes
that such successful results from computerized grading may lead to the possibility of automated grading systems for the evaluation of essays. Finally, it is important to stress here that he also outlined the idea of 'giving feedback', suggesting that a computer print-out could suggest that the student correct identified misspellings, syntax mistakes, and the overuse of certain words.

Since his study, automated grading of free text responses has become a popular area with the focus on marking essays rather than short answer questions. However, more significant studies have been done since the start of the 1990s, as computational techniques and software technology have become more powerful [33]. The most well-known essay assessment systems are Project Essay Grade (PEG), e-rater, and Intelligent Essay Assessor [34]. In this study we are concerned with automatically marking of short answer questions, and therefore we present some similar systems for short answer grading in detail, rather than essay marking.

C-rater is a scoring engine designed to grade short content-based answers [27, 35]. The goal of c-rater is to match teacher with students answers in terms of their concepts. It is modelled to identify paraphrases of model answers as correct answers. These paraphrases are built by normalising a variety of responses related to four primary sources of variation among sentences: syntactic variation, pronoun reference, morphological variation and synonyms, and also variation caused by spelling error. Once c-rater matches the concepts found in the student answer with those found in the model answer(s), it assigns scores based on the number of matched concepts. It is reported that c-rater reached $84 \%$ agreement with human graders for the scoring of reading comprehension responses. In their own words, it is stated that "if the teacher uses the same question for several classes or over several semesters, then the advantages of the initial effort are worthwhile".

Similar work to ours has been carried out on the grading of short answers in $[28,36,37,38,39,40]$. These grade answers by based on the similarity between the model answer and the student answer. Related studies can be found in $[\mathbf{2 4}, \mathbf{4 1}]$.

The idea of grouping similar responses has been introduced, in parallel to our approach, in [30]. In this work the approach is referred as Powergrading due to its amplification of human effort for scoring. It is designed to group (and subgroup) responses by clustering techniques in order to make scoring partially automated. The proposed approach is based on the idea of using both human and the machine ability to score, under the assumption that groups of similar answers can be quickly marked by a human by considering the whole group at once. They also aim to discover patterns of misunderstanding among students, then to give comprehensive feedback to student answers in the same cluster.

Similar work is described by [42], where the approach relies on the parallel assumption that similar grades can be assigned to groups of similar answers. They use a clustering algorithm to create groups of answers and then assign a single grade
to the whole cluster. Specifically, they used 1,668 short answers to 21 questions, with sample solutions and grades assigned by teachers, from a listening comprehension task for German language learners.

In their study, the extraction of features has been done by word $n$-grams, character $n$-grams and keywords [43]. The cosine similarity between feature vectors and the centroid of each cluster is calculated, and those items which are the most similar to the centroid (with highest similarity value) are grouped into the cluster. For labelling of items in clusters, three different methods are evaluated for selecting the optimum response to be labelled: random item selection from each cluster, selecting the closest item to the centroid of the cluster, and selection of one item belonging to the majority label of the cluster. When item selection methods are compared, the results show that selection of the closest item to the centroid leads to higher accuracy than random selection methods in general.

### 2.3. The Data and Features

The data set we use is from the introductory computer science class in the University of North Texas ${ }^{1}$. It consists of 29 student answers from ten assignments and two exams. For each question, there is one model answer in the data. The model answers are mostly one sentence, but some of them contain a single word sentence (see example in Table 2.1). In this section we will give these questions our own numbers, which differ from those in the original study. We give further examples of questions from this study in A.1. We show examples of two questions, 1 and 2 , for which our scoring model is reliable, and two questions, 3 and 4 , for which it is less reliable. This correlates with teacher difficulty in marking. Further study is needed into what sort of questions teachers can reliably score, and which are more challenging.

We define the model vocabulary (or vocabulary) for a question as the collection of words in the model answer. Table 2.2 shows an example of model vocabulary and student answers containing words from the vocabulary. The student answers are manually scored by two teachers. Grades are given between 0 and 5,0 for incorrect answers, 5 for correct answers, and from 1 to 4 for partially correct answers. We consider each grade as an individual label. For our intended approach, we used these labels to evaluate how words and marks are correlated and to see which marks occur in each cluster. There are discrepancies in the grades from the two teachers, and we use both grades for creating our model.

Before starting the analysis of the responses, we initially applied preprocessing steps to remove irrelevant characters (e.g. numbers, punctuation). We also remove

[^0]Table 2.1. Examples of questions and model answers with different lengths in the data.

| Question 1 | What is the role of a prototype program in problem solving? <br> To simulate the behaviour of portions of the desired |
| :--- | :--- |
| Model Answer 1 | software product. <br> Quat is the stack operation corresponding to the enqueue |
| Question 2 | operation in queues? <br> Model Answer 2 <br> Push |

Table 2.2. Examples of model vocabulary and student answers.

| Model Answer 1 | To simulate the behaviour of portions of the desired <br> software product. <br> Model Vocabulary 1 |
| :--- | :--- |
| simulate, behaviour, portion, desire, software, product. |  |
| High risk problems are address in the prototype program to |  |
| make sure that the program is feasible. A prototype may |  |
| also be used to show a company that the software can be |  |
| possibly programmed. |  |
| it simulates the behavior of portions of the desired |  |
| software product |  |

so-called stop words such as the, and, it from both model answer and the student answers in order to improve computational efficiency. Additionally, stemming is performed to combine different versions of words into a root. For instance, eat, eating, eaten are all the same word as far as our method is concerned. This preprocessing step significantly reduces the number of words we deal with.

Finally, when applying our clustering algorithm, we performed some user defined pre-processing steps to reduce the high dimension of 163 (163 individual words). As almost all students used words appeared in the question sentence, we treat these words as stop words, and removed them from student answers. In addition, we observed that some words appear in only one or two answers. These words have no discriminative power for clustering and leads to sparse vectors in the algorithm. Sparsity refers to vectors with 0 frequencies in most of their inputs. We also removed those words appears in less than $10 \%$ of answers in the corpus. After all preprocessing steps, there are 20 individual words in the collection of student answers, that is, the dimension of the vector space has become 20 .

To show the results here, we choose the first question as it represents the average answer length, with one sentence, and also unique answers from each student. Throughout the study, all analyses have been done by using this question, the model answer of the question, and 29 student answers.

### 2.4. Data Representation and $k$-means Clustering

A starting point for applying data mining tools to unstructured text data is to transform the text into an appropriate set of data [44, 45]. In other words, text
representations of a collection should be converted into numeric vectors (feature vector form) to be able to apply statistical methods on the data.

In our study, we used the BoW model for representation of texts. In this model, each document (answer in our case) is a collection (bag) of words. The idea of the BoW model is to extract unique words from the collection of documents, and to treat these words as individual features. Each document is represented as a vector of word frequencies. Since the frequency of a word increases as the number of appearances of a term increases, this shows us how important a word is for a document. This representation is called term frequency (TF), which represents the relevance of a term to the corresponding document.

In the vector space method, documents are points of a high dimensional space, where each dimension (each feature) corresponds to one word. Each element of a vector indicates the position of a document in a particular dimension. So, distance measures tell us how far two points are in the vector space, i.e., the distance between two documents. In our work on clustering, we perform one of widely applicable distance measure: Euclidean distance (the sum of squares distance).

Suppose we have $N$ features in our vector space and $\mathbf{r}_{1}=\left(r_{11}, r_{12}, \cdots, r_{1 N}\right)$ and $\mathbf{r}_{\mathbf{2}}=\left(r_{21}, r_{22}, \cdots, r_{2 N}\right)$ are the representations of two documents in our vector space. Then the distance between these documents is

$$
d\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\sqrt{\left(r_{11}-r_{21}\right)^{2}+\left(r_{12}-r_{22}\right)^{2}+\cdots+\left(r_{1 N}-r_{2 N}\right)^{2}} .
$$

Note that as longer answers have more words than short answers, the number of non-zero entitles of features and also frequencies may be more compared with shorter answers in the vector representation. This does not mean the longer answer is more relevant. To adjust the effect of length, term frequencies should be normalized. Note that before implementing the clustering algorithm, the data is normalized in order to convert the frequency of terms to a common scale which allows for comparison. Given an answer $\mathbf{r}$, the $L_{2}$-normalization is defined as

$$
\hat{\mathbf{r}}=\frac{\mathbf{r}}{d(\mathbf{r}, \mathbf{0})},
$$

since the length of a vector is its distance from the origin. Given these normalised vectors, we run a classical clustering algorithm, $k$-means, in order to cluster student answers.

The $k$-means algorithm is one of the most popular clustering methods. The theoretical and algorithmic aspects have been studied by many researchers [46, $47,48,49]$. The idea behind this method is that all points in a vector space are separated into $k$ clusters, and each cluster is represented by its centroid vector (the sum of the vectors divided by their number). After defining $k$ centroids, each document is assigned to a cluster by using the distance $d$ (for us the Euclidean
distance). Then, the centroids are recalculated until we find an optimal set of clusters based on some criterion function [50].

Suppose that we have, after the $i$ th iteration a set of $k$ clusters, and the $j$ th cluster has $N_{j}$ points in it $\mathbf{r}_{j, \ell}^{i} \ell \ell=1,2, \cdots, N_{j}^{i}$. The distortion function is defined as

$$
E_{i}=\sum_{j=1}^{k} \sum_{\ell=1}^{N_{j}^{i}} d\left(\mathbf{r}_{j \ell}, c_{j}\right)^{2},
$$

where

$$
\mathbf{c}_{j}=\frac{1}{N_{j}^{i}} \sum_{\ell=1}^{N_{j}^{i}} \mathbf{r}_{j \ell},
$$

is the centroid of the $j$ th cluster $[51,52]$.
The algorithm seeks a partition of data set by optimizing the error criterion. The steps of $k$-means are as follows [53]:

- Begin with randomly $k$-partition and calculate centroids for each cluster (initial centroids).
- Assign each data point to nearest cluster (nearest-neighbour rule) by calculating the distance to the nearest centroid.
- Re-calculate the centroids based on the current partition.
- Repeat the second and the third steps until there is no change between two iterations, that is, until the algorithm has converged.
We expect that $E_{i}$ will decrease as the algorithm proceeds ( $i$ increases) until it converges to some minimum value.


### 2.5. The Marking and Feedback System

Our aim for this research is to design a model of automatic short answer marking and feedback. In this section, we will present an experimental study to demonstrate the processes behind the model creation. We begin with evaluating the dependency of scores and the similarity between the model answer and the student answer. Then, we will present our approach based on the clustering algorithm.

In the data used, not all of students are scored the same grades by the two graders. There are some cases where we observed inconsistency of grading. Fig. 2.2 shows the distribution of scores awarded by the two teachers. The size of points indicates the proportion of grades for the corresponding pairs (Teacher 1 grade, Teacher 2 grade). As can be seen from the figure, there are 2 locations where the points are concentrated. The biggest proportion of scores comes from the pair $(5,5)$ from both teachers, followed by the pair $(2,2)$. This means that the teachers tended to agree with each other in grading for the most part ( 17 out of 29 students), especially when the answer is very good or very poor. Otherwise, there is inconsistency in scoring for some student answers. The correlation (Pearson correlation) between the two teachers' marks is 0.82 with an error of 0.1 (Mean Squared Error).


Figure 2.2. The distribution of scores awarded by two teachers. Size of points is proportional to number of cases, i.e, the proportion of pairs (teacher 1 grade, teacher 2 grade) in the dataset.

Note that the lowest and the highest grades given by teachers are 2 and 5 for this question, respectively. We suspect that those students graded at the lowest score did not use appropriate terminology for the subject. Similarly, those student graded highest answered used appropriate words. In between, they may use some of words required but the answer is not totally appropriate. We will now investigate why and how scores change depending on the words used.

### 2.5.1. Unsupervised Learning for Clustering of Student Answers

We now turn to looking at natural clusters of student answers to discover if there are some patterns of answers that students frequently use. If there are some groups in student answers, we can group them to give the same feedback or marks. Recall that we have treated words that appear in the question as stop words, and have removed these words from student answers (most of students include these words in their answers).

In Fig. 2.3, all words that the students used in their answers can be seen with their frequencies. The more a word appears in the collection, the larger the font that is used in the word cloud; these are emphasised by the use of different colors. For instance, the most frequently used word is "program". This is an expected result since this word is contained in the question sentence; most of students started their answer with this word.

To group answers, we use $k$-means clustering as described in Section 2.4. The optimal number of clusters is determined as three using the Elbow method [54]. In Fig. 2.4, we show these three clusters with the associated grades awarded by the teachers. As can be seen from the tables, two clusters are well separated in terms of


Figure 2.3. All words in the collection of student answers. The font and color of words indicate different frequencies of words.

| Excellent |  |  |
| ---: | ---: | ---: |
| Student <br> No | Teacher 1 <br> Grade | Teacher 2 <br> Grade |
| 2 | 5 | 5 |
| 3 | 5 | 3 |
| 4 | 5 | 5 |
| 10 | 5 | 5 |
| 11 | 5 | 5 |
| 12 | 5 | 5 |
| 17 | 5 | 5 |
| 21 | 5 | 5 |
| 22 | 5 | 5 |
| 25 | 5 | 5 |


| Mixed |  |  |
| ---: | ---: | ---: |
| Student <br> No | Teacher 1 <br> Grade | Teacher 2 <br> Grade |
| 1 | 4 | 3 |
| 5 | 3 | 3 |
| 7 | 3 | 2 |
| 8 | 5 | 5 |
| 14 | 4 | 5 |
| 16 | 4 | 5 |
| 19 | 2 | 2 |
| 20 | 3 | 2 |
| 23 | 1 | 2 |
| 24 | 2 | 3 |
| 27 | 4 | 2 |
| 28 | 4 | 2 |


| Weak |  |  |
| ---: | ---: | ---: |
| Student <br> No | Teacher 1 <br> Grade | Teacher 2 <br> Grade |
| 6 | 2 | 2 |
| 9 | 5 | 2 |
| 13 | 2 | 2 |
| 15 | 2 | 2 |
| 18 | 2 | 2 |
| 26 | 2 | 2 |
| 29 | 3 | 2 |

Figure 2.4. The structure of clusters with original marks awarded by two teachers.
scores contained. We introduce clusters: Excellent, Mixed and Weak depending on the marks in the cluster. Student marks in the cluster Excellent (shown as green) are 5 , so we expect that these student answers are similar in terms of usage of the appropriate terminology. Similarly, answers in cluster Weak (yellow) are expected to have inappropriate terminology since the marks are 2. However, we cannot identify a scoring rule for the cluster Mixed (blue), and further study based on keywords is required for this case. Note that there is also discrepancy in scores graded by two teachers in this cluster, so they are finding it challenging to score responses in this cluster.

We now wish to examine what words are used by students in each group to understand the structure of groups. The frequently used words are displayed by word clouds; see Fig. 2.5. As expected, students in cluster Excellent used all of words from the model answer, while there does not exist any words from the model answer in the cluster Weak. When considering marks in these clusters, there are


Figure 2.5. Frequent words in each cluster. Colors in the bottom right hand corner show clusters (in the Fig. 2.4) that the words belong to.
two marks: 5 and 2, respectively. This means that when students use all or none of the vocabulary words we are able to easily separate clusters for these students.

In addition, there are a few words from the vocabulary in the cluster mixed (software, simulate). We also see that some words such as 'part' and 'final' are synonymous with 'portion' and 'desired' respectively. In this cluster, marks are spread with the highest value 5 and the lowest value 1 producing a range of 4 . So, this shows that marks change depending words used in the cluster. We also note that a student has scored 5 from both teachers, but is not in our Excellent cluster. This shows that a better knowledge of acceptable vocabulary (synonyms) is needed in order to cluster more effectively.

### 2.5.2. Similarity between the Model Answer and the Student Answer

Given that we can cluster responses and that the clusters correlate well with marks given, we wish to show how marks depend on the words used by students. We consider this problem as a basic calculation, where each answer is based on one model answer and two labels from two teachers. When we extract the significant words from the model answer we see that they number six (see Table 2.2).

We use the Hamming distance [55] $h(\mathbf{r}, \mathbf{m})$ to measure the distance between student answer $\mathbf{r}$ and model answer $\mathbf{m}$. We count the number of words $n$ that the students use which appear in the model answer. Then $h(\mathbf{r}, \mathbf{m})=6-n$, so that if all the words are used the distance is 0 , and if none of the words are used, the distance is 6 .

In a more sophisticated implementation we might need to look for synonyms of the words in the model answer, but for this study we are interested only in demonstrating the idea. The results are shown in the Fig. 2.6. We see that scores decrease for both graders in the main, in a regular way as the Hamming distance increases. It is also important to note that the scores are 5 when the distance is 0 , and the majority of marks are 2 when the distance is 6 . For other cases, we observe that the mark changes depending on the subset of words the student uses in their answer. Therefore, the level of importance of model words varies differently. Some

| Student <br> No | Teacher 1 <br> Grade | Teacher 2 <br> Grade | Distance |
| ---: | ---: | ---: | ---: |
| 3 | 5 | 3 | 0 |
| 4 | 5 | 5 | 0 |
| 10 | 5 | 5 | 0 |
| 11 | 5 | 5 | 0 |
| 12 | 5 | 5 | 0 |
| 17 | 5 | 5 | 0 |
| 21 | 5 | 5 | 0 |
| 22 | 5 | 5 | 0 |
| 25 | 5 | 5 | 0 |
| 2 | 5 | 5 | 2 |
| 8 | 5 | 5 | 4 |
| 14 | 4 | 5 | 4 |
| 16 | 4 | 5 | 4 |


| Student <br> No | Teacher 1 <br> Grade | Teacher 2 <br> Grade | Distance |
| ---: | ---: | ---: | ---: |
| 1 | 4 | 3 | 5 |
| 5 | 3 | 3 | 5 |
| 27 | 4 | 2 | 5 |
| 28 | 4 | 2 | 5 |
| 7 | 3 | 2 | 6 |
| 19 | 2 | 2 | 6 |
| 20 | 3 | 2 | 6 |
| 23 | 1 | 2 | 6 |
| 24 | 2 | 3 | 6 |
| 6 | 2 | 2 | 6 |
| 9 | 5 | 2 | 6 |
| 13 | 2 | 2 | 6 |
| 15 | 2 | 2 | 6 |
| 18 | 2 | 2 | 6 |
| 26 | 2 | 2 | 6 |
| 29 | 3 | 2 | 6 |

Figure 2.6. Distances between the model answer and student answers, and original marks for each student. Different colors indicate groups of students with different distances.
of words may contribute more for marking. Teachers need to be able to set the importance of words for scoring for any automated system.

We also computed the Pearson correlation coefficient to check the correlation between the distance and mark given, and found the correlation (Pearson correlation) -0.81 and -0.83 for two teachers with error 0.09 and 0.1 , respectively. As expected, there is high correlation between marks given and the distances. In other words, we found that teacher assessment depends highly on how many of the vocabulary words students used in their answers.

### 2.6. Supervised Learning - A Model to Predict the Mark

In the previous sections we have demonstrated that the vocabulary used by students can be used to cluster their responses, and that the scores given by teachers are strongly related to the particular cluster that the student answer is assigned to. In this section we create and evaluate a model to predict student marks, based on the Hamming distance between the model answer and the student answer. We hypothesise that this distance is a strong indicator of the mark of a student, which suggests the possibility of automated scoring of responses.

The relationship between the distance and the mark is modelled using the following predictor function

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} h^{\beta_{2}} \tag{1}
\end{equation*}
$$

where $\beta_{0}, \beta_{1}, \beta_{2}$ are parameters, and $h$ is the distance between the model answer and the student answer. As shown in the Section 2.5.2, the distance can be 0, 2, 4, 5 or 6 for the question.

TABLE 2.3. Estimation of parameters and the MSE for MM, $i=$ $1,2,3,4$, for the corresponding questions (see A.1); MSE is the mean square deviation of predicted marks from the average of two markers' grades.

| Model | $\beta_{0}$ | $\beta_{1}$ | $\beta_{2}$ | MSE (MM) | MSE (TM) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| MM (1) | 4.91085 | -0.0058 | 3.42359 | 0.17440 | 0.25000 |
| MM (2) | 5.00100 | -0.00074 | 4.08469 | 0.37616 | 0.36290 |
| MM (3) | 5.03413 | -0.18210 | 1.92500 | 0.88490 | 0.96667 |
| MM (4) | 4.54003 | -0.77408 | 0.40847 | 1.12573 | 0.43103 |

We fitted our model (1) to the data by minimising the Mean Square Error of prediction (MSE) to find the optimal values of parameters [56, 57]. As there are inconsistencies in grading by the two teachers, we decided to use the average of their two grades as the actual value of the dependent variable. We call this teacher mark TM. Let us call this mathematical model MM to distinguish it from TM.

The estimates of parameters $\beta_{0}, \beta_{1}, \beta_{2}$ and the $\operatorname{MSE}(\mathrm{MM})$ are presented in the Table 2.3. The value of $\beta_{0}$ represents the overall position of the curve on the $y$-axis; that is, the maximum mark which can be predicted by the model MM (when the distance is 0 ). We found a maximum mark of 4.91. The negative sign of $\beta_{1}$ tells us that scores decrease with distance. The value of $\beta_{2}$ indicates how quickly the score decreases with distance from the the base line $\beta_{0}$.

To compare the accuracy of our model with human marking, we calculate the deviation of teacher grades from the average mark of two teachers. This approach is shown as TM (teacher marks) in the Table 2.3. We see that the the teacher marks diverge from their average more than does the mathematical model for this question. This is unsurprising as it suggests the average is more predictable than the individual scores.

Fig. 2.7 shows the observed data, the average marks of two teachers and the mathematical model versus distances from the model answer. In the figure, we see that for this question we have a line that mirrors the average of the teacher scores well. As expected, the mark is decreasing function of distance in general. Both models demonstrate qualitatively the same behaviour. To compare MM with TM model we graph the errors as a function of distance. These are depicted in Fig. 2.7 (b). We see that the accuracy of human marking depends on distance from the model answer. The disagreement between teachers increases significantly with the distance, until we regain agreement and accuracy for poor answers. In this graph, we also look at the difference between these two predictions, and see it is small.

When the distance from the model answer is relatively small the MM performs well, with similar errors to the TM. On the other hand, MM outperforms TM model for big differences between the model answer and student answer (with distance 5 and 6).


Figure 2.7. (a) Distribution of actual marks of two teachers (Grade 1 and Grade 2) with distances from the model answer, the average marks of two teachers (TM) and the predicted marks by the mathematical model (MM); (b) The mean squared errors for each distance from the model answer for MM and TM.


Figure 2.8. (a) Distribution of actual marks of two teachers (Grade 1 and Grade 2) with distances from the model answer, the average marks of two teachers (TM) and the predicted marks by the mathematical model (MM) for the second question; (b) The mean squared errors for each distance from the model answer for MM and TM for the second question.

Table 2.3 shows that the accuracy of the prediction of marks by MM is 0.17 , and the estimation accuracy of TM is 0.25 . This together with the Fig. 2.7 suggests that MM is no worse than human marking.

We have performed a similar analysis on three other questions to demonstrate that some questions are harder to mark than others.


Figure 2.9. (a) Distribution of actual marks of two teachers (Grade 1 and Grade 2) with distances from the model answer, the average marks of two teachers (TM) and the predicted marks by the mathematical model (MM) for the third question; (b) The mean squared errors for each distance from the model answer for MM and TM for the third question.

We measure this by the extent to which the model mark deviates from the average of the teacher mark, and the extent to which teacher marks are a function of the distance of the answer from a standard word set. For Question 2, the corresponding results are shown in Fig. 2.8, and show that for this question automated scoring agrees well with teacher scoring.

Question 3 is an example which is harder to assess. In Fig. 2.9 we can see that our prediction is close to TM with a slightly bigger error (MSE) for TM. However, the figure shows that marks vary from 1 to 5 for distances 2,3 and 4 . This contradicts to our assumption that score is a function of distance. Therefore, disagreement of teachers on marking leads to inefficient scoring by the model MM.

Another example is shown in Fig. 2.10. We clearly see the absence of trend in original marks for this question (Question 4). The mark is not a decreasing function of distance. This contradicts to the assumption that as distance from the model answer increases, the mark given decreases. In this case, the model MM does not give reliable results. Another sign that MM cannot be effectively used for such examples is the value of $\beta_{2}$. In MM, we expect $\beta_{2}>1$ and small $\left|\beta_{1}\right|$. With $\beta_{2}<1$ we have a change in the shape of the curve.


Figure 2.10. (a) Distribution of actual marks of two teachers (Grade 1 and Grade 2) with distances from the model answer, the average marks of two teachers (TM) and the predicted marks by the mathematical model (MM) for the fourth question; (b) The mean squared errors for each distance from the model answer for MM and TM for the fourth question.

### 2.7. Conclusion and Discussion

This study sets out with the aim of developing a model for the automatic grading of short answer questions, and providing useful feedback to students. Experimental studies are presented to show how our approach succeeds with the automatic scoring of short natural language responses. Our methodology works well where a vocabulary for the model answer can be clearly identified. This can be automated in some cases, but may require human input.

Strong correlation of grades and Hamming distance from the model answer are found. We demonstrate correlation of 0.81 and 0.83 between this distance and grades of two human markers. The MSE of linear regression for human marks are 0.09 and 0.1 for the two markers. This suggests that teacher marks can be predicted by distance with high accuracy. We conclude that the number of correctly used words has more influence on marks than semantics or order of words. In particular, if a large number of responses are being graded, it is not unreasonable that a human would move towards pattern recognition via key words rather than "reading for meaning". Note that our system mirrors human scoring, and knows nothing about correct scoring. Hence, identifying words gives an idea about grades and students misunderstanding to teachers. Such an approach allows time saving for scoring, and to provide rapid feedback to students by checking the words used from model vocabulary.

We developed a model to predict marks using the distance between the model answer and the student answer. The proposed model has the form (MM), where parameters were estimated by minimising the mean squared error between the actual
mark and the predicted mark. The average marks of two teachers are used as observed marks since there is discrepancy of grades from the two teachers. The error of the prediction by the mathematical model (MM) is 0.17 . The estimated accuracy of human grading (TM) is calculated as the mean deviation of actual marks from the average of the marks of the two graders, found as 0.25 . MM has a lower deviation from the actual marks than TM.

We also consider a different approach for the automatic grading of short answer questions. This approach searches for natural groups of student answers. For each group, we can select one or more prototype mark (feedback), and assign it to the whole group at once. Clusters are found using $k$-means clustering. We note that we created clusters using word frequencies, without the use of teacher marks.

The grades inside clusters indicate that our approach effectively identified groups containing the highest (5) and the lowest (1) grades. Analysis of the clusters shows that the first cluster contains only correct answers, the second contains only incorrect answers, and the cluster with mixed grades contains all of the other answers.

Finally, we tested our approach to see whether clusters are characterised by the frequency of words in the cluster and if this has any relation to the scoring rule. We show that there is a strong relationship between the clusters and the model vocabulary in students answers as well as grades. Those students who used all of the model words and those who used none of the model words, belong to different clusters. Grades inside clusters are similar. Such an approach provides teachers an opportunity to give common feedback and also grades to groups of students. The proposed approach also gives us the opportunity to look for common misconceptions in the answers given by students.

In order to improve our results, we need more input from the teachers, and more detailed analysis. In our experiment, we observed spelling mistakes that should be corrected during the feedback process. We can detect again in the scoring process and adapt scores (if the teacher so wishes) related to spelling. We also observed that students used synonyms of the words in the model answer. A technical dictionary of synonyms could be developed (a standard thesaurus would contain too many unrelated words due to context), or teachers could provide acceptable alternative terminology.

Such an automatic scoring system can provide a clear baseline where conversations about assessment and feedback can develop. It is crucial that in this age of improving artificial intelligence, that we use machines to reduce the amount of repetitive straightforward scoring, which the human is poor at performing, and have people engaged in higher level, more valuable assessment and feedback.

The study in this chapter shows a methodology to quantifying module-specific meaning in short academic texts by keywords. This solidified our understanding of
how to analyse scientific texts and how to approach further research to scientificspecific meanings.

## CHAPTER 3

## LScDC - New Large Scientific Dictionary

In this chapter, we present a scientific corpus of abstracts of academic papers in English - Leicester Scientific Corpus (LSC). The LSC contains 1,673,824 abstracts of research articles and proceeding papers indexed by WoS in which publication year is 2014. Each abstract is assigned to at least one of 252 subject categories. Paper metadata include these categories and the number of citations. We then develop scientific dictionaries named Leicester Scientific Dictionary (LScD) and Leicester Scientific Dictionary-Core (LScDC), where words are extracted from the LSC. The LScD is a list of 974,238 unique words (lemmas). The LScDC is a core list (sub-list) of the LScD with 104,223 lemmas. It was created by removing LScD words appearing in no more than 10 texts in the LSC. LScD and LScDC are available online. Both the corpus and dictionaries are developed to be later used for quantification of meaning in academic texts.

Finally, the core list LScDC was analysed by comparing its words and word frequencies with a classic academic word list 'New Academic Word List (NAWL)' containing 963 word families, which is also sampled from an academic corpus. The major sources of the corpus where NAWL is extracted are Cambridge English Corpus (CEC), oral sources and textbooks. We investigate whether two dictionaries are similar in terms of common words and ranking of words. Our comparison leads us to main conclusion: most of words of NAWL (99.6\%) are present in the LScDC but two lists differ in word ranking. This difference is measured.

### 3.1. Introduction

### 3.1.1. Quantification of Meaning in Academic Texts

The interest of adaptation the modern technologies to text mining is growing fast, along with the awareness of the importance of textual data in almost all industries. The increase in the number of users of the internet and social media platforms makes a huge amount of textual data available that play a crucial role on research and marketing strategies.

The storage of almost all types of data in electronic platforms and the spread of the social networking sites for scientists open up opportunities for researchers to share scientific researches and to access a wide range of publication repositories freely and effectively. According to [58, 59], the largest academic social network

ResearchGate has $15+$ million researchers registered, with a huge number of publications in multidisciplinary journals. The problem of searching for relevant papers out of an enormous number of publications and extraction the information from texts gradually becomes crucial. Therefore, automated procedure of text processing and extracting the meaning of a text have become important issues.

In NLP and computational linguistics, formal identifying 'which meaning a text includes' is still an open problem. Although in standard text mining applications one may relate the problem to 'topic identification' or 'determining the class of text', we consider this problem more widely. Our goal is not only determining 'which class (classes) a text belongs to' or 'the topic (content) of a text', but also numerical representing the meaning of the text.

This task is different from quantification in classification applications. Quantification (or text quantification) in classification is defined as the activity of estimating the prevalence (relative frequency) of each class in a set of unlabelled items [60]. The aim here is, given a training set with class labels, to induce a quantifier that takes unlabelled test set, and then accurately estimate the number of cases in each class. Rather than estimating the prevalence of classes (or different meanings) in the corpus or determining the topic of the paper, we intend to represent the meaning in a research text numerically - so-called quantification of meaning in research texts. Our assumption is that words and texts have meaning priors and meaning of a text can be extracted, at least, partially, from the information of words for subject categories distributed over the corpus. Given such information, these prior can be exploited firstly for each word and then each research text which is a collection of words. In other words, meaning of a research text is generated when different bits of information are associated with subject categories [61].

This approach follows the classical psycholinguistic ideas of measurement of meaning [62] but instead of psychologically important sentiments the research categories are used. Each word is represented as a vector of information scores for various categories, and the meaning of the whole text is formalised as a cloud of these vectors for words from the text. For larger texts this approach can take into account correlations between words (co-occurrence of words and combinations of words).

Quantities of meanings of texts can be later used in a number of applications involving categorisation of texts to pre-existing categories, creation of 'natural' categories or more precisely, clustering of similar texts in such a way that texts in the same group have same/similar meanings. The solution to the problem of 'quantification of meanings in text' also impacts on other issues such as prediction of impact of a scientific paper.

Let us consider, for instance, grouping texts based on their contents. Bringing related research texts together gives the community a convenient and easily accessible location where a deep digging becomes possible inside. This provides users many benefits such as learning the hottest topics, the most significant researches and the latest developments in a specific field. Such automated mechanisms have also benefit for editors to help them in associating researches, for instance in the step of evaluating a new submission to determine whether it fits to the journal and standards in the field in terms of content, and more importantly to initiate the peer review process by selecting experts in the field.

In practice, searching and preliminary express understanding of a paper's content is generally done by reading title and abstract rather than reading full-text of the paper. Therefore, it is reasonable to search for relevant papers by searching of relevant abstracts. Natural questions needed to be answered here are: how to automatically process the abstracts, extract the meaning from such relatively short texts and represent the meaning in a text numerically to make them usable for text mining algorithms. These questions are some of our focuses to be answered through our research.

This work is the first stage in the project outlined. In this chapter, we consider the creation of an academic corpus and scientific dictionaries where words are extracted from the corpus. All steps in the creation process will be presented in details. The corpus and dictionaries will be used for quantification of meaning in academic texts in later stages of our research.

### 3.1.2. Building a Scientific Corpus: Leicester Scientific Corpus (LSC)

One of the key issues in the analysis of meaning of texts is to use a corpus that is built in accordance with the scope of the study. Quantification of meaning of research texts, extracting information of words for subject categories and later prediction of impact of the paper using quantity of texts naturally require well-organised, up-todate and annotated corpus by subject categories and the information of citations along with the abstracts. For this purpose, we developed a scientific corpus where texts are abstracts of research papers or proceeding papers, followed by creation of scientific dictionaries where words are extracted from the corpus. In this chapter, we focus on building of a scientific corpus and dictionary to be used in future work on the quantification of the meaning of research texts. All steps of creation the corpus and the dictionary are presented in the later sections of the chapter.

The LSC is a collection of $1,673,824$ English written abstracts of research articles and proceeding papers indexed by WoS [63], selected so as to represent the largest variety of abstracts of scientific works published in 2014 [64]. Texts within the corpus are distributed across 252 subject categories - with over 298 million words including stop words. No consideration is given to the selection of categories, we extracted
all texts regardless of how many texts are included in an individual category. Each document in the corpus includes the text of abstract and the following metadata: title, list of subject categories, list of research areas, and times cited $[14,65,66]$. Documents also have the list of authors with the exception of 119 documents, we did not exclude these documents. We collected documents in July 2018; therefore, the number of citations is from the publication date to July 2018.

Given the LSC, we also intend to create scientific dictionary where words are extracted from the texts of abstracts in LSC to be used on measuring the information of words for subject categories in the process of quantification of meaning of texts. To better represent scientific fields, the variety of disciplines and corpus size are very important criteria in dictionary creation. The more disciplines where texts are collected from, the bigger and comprehensive dictionary can be created. Similarly, the more articles are collected, the more representative set of words for specific fields can be gathered. As we did not exclude any category from the corpus of $1,673,824$ texts distributed over 252 categories, we expect a reasonable representativeness of words. In addition, the dynamic nature of languages and changes of words with new discoveries - due to fast changes in science and technology - lead to a need for an up-to-date scientific dictionary. Thus, we created two scientific dictionaries based on a large, multidisciplinary corpus of academic English: LScD and LScDC [67, 68].

### 3.1.3. Building Scientific Dictionaries: Leicester Scientific Dictionary (LScD) and Leicester Scientific Dictionary-Core (LScDC)

LScD is a list of words extracted from the texts of abstracts in the LSC. The words in the LScD is sorted by the number of documents containing the word in descending order. There are 974,238 unique words (lemmas) in the dictionary. All words in the LScD are in stemmed form and stop words are excluded. The dictionary also contains the number of documents containing each word and the number of appearance of the word in entire corpus. All steps to process the LSC, build LScD and the basic statistics with characteristics of words in the LScD are presented in the later sections of this chapter.

LScDC is a core list (sub-list) of the LScD. The dictionary contains of 104,223 unique words (lemmas). The following decision is taken in the creation of the LScDC: words (in LScD) that appearing in no more than 10 documents $(\leq 10)$ are removed under the assumption that too rare words are not informative for text categorisation and gives almost zero scores in the calculation of information score as they appear in less than $0.01 \%$ of documents. $60 \%$ of words in LScD appear in only one document. Our casual observation of words indicates that many of such words are non-words or not in an appropriate format to use (e.g. misspelling); therefore, they are likely to be non-informative signals (noise) for algorithms. More information and examples can
be found in Section 3.5 and Section 3.6. Removal of such words results in reducing the number of words in applications of text mining algorithms. When the threshold 10 is decided, we consider a cut which is not too small or high to be able to keep a reasonable number of words for analysis, but we paid attention to have a noticeable impact on size of dictionary and results. We did not remove any frequent words in this stage as stop words are already removed in pre-processing steps. The core dictionary is also ordered by the number of documents containing the words and includes the information of the number of appearance of the word in entire corpus.

### 3.1.4. A Comparison of the LScDC and the New Academic Word List (NAWL)

This study also compares the LScDC and the New Academic Word List (NAWL) [22]. The procedure used to compare involves looking at a classic academic list of words NAWL and investigating whether two lists contain the same words, the number of common words, possible reason of mismatches and whether ratings of matched words are actually the same/similar in two dictionaries. Overall, we intend to see whether there is similarity between two lists.

The reason why we consider the NAWL for comparison lies in two facts. The major reason lies in the way the sampling of the vocabulary, which is similar to ours in terms of being from a general and academic corpus. The second reason is that the AWL and NAWL are classics and landmarks as academic lists in vocabulary and corpus-based lexical studies. Our aim is not to replace the AWL and NAWL, but create a large corpus and scientific dictionary representing research papers from various subject fields without any limitation in disciplines for our goal of discovering and quantifying the meaning of research texts.

The NAWL consists of 963 word families based on a academic corpus of 288 million running words (all words in text without tables' captions, titles and references) [22]. The major categories of the corpus where words are extracted are: the Cambridge English Corpus (CEC), oral sources and textbooks. The largest proportion of tokens came from the CEC, about $86 \%$ (over 248 million words). The oral part was taken from the Michigan Corpus of Academic Spoken (MICASE) and the British Academic Spoken English (BASE) corpus. The oral corpora and the corpus of textbooks are divided into four categories: Arts and Humanities, Life and Medical Sciences, Physical Sciences, and Social Sciences. The NAWL covers $92 \%$ of its corpus when combined with the New General Service List (NGSL) [69]. In the list, words are listed by headwords of word families where various inflected forms are contained in. However, we observed that some of headwords in the NAWL indicate the same stemmed word in the LScDC. For instance, two distinct headwords 'accumulate' and 'accumulation' in the NAWL matched with 'accumul' in the LScDC. To avoid the effect of this difference on our analysis, we applied stemming on words

### 3.1. INTRODUCTION

of the NAWL. We used average statistics of different forms as the final statistics for stemmed word. After stemming, the number unique words (lemmas) decreased to 895 in the NAWL, we take these words into account in the comparison study.

The NAWL however does not contain much specialised technical terms such as chemical terms and species in biology. To illustrate this, let us explain more details. The Coxhead's Academic Word List (AWL) created in 2000 - inspired to create NAWL -, includes 570 word families (from a corpus of 3.5 million words) [70]. According to Coxhead, academic words are supportive of academic text but not central to the topics of the text. The list of AWL contains words that account for approximately $10 \%$ of the total words in the collection of academic texts. The AWL and GSL (General Service List) covers approximately $86 \%$ of total words in academic corpus. Coverage refers to the number of words (tokens, i.e. all forms of words) in texts which are covered by the list of words. By updating this list with an expended and carefully selected corpus of 288 million words (corpus where NAWL is designed), the coverage was improved to $92 \%$ of new corpus when combined with NGSL, with approximately $5 \%$ improvement $[\mathbf{2 2}, \mathbf{6 9}]$. Not all words extracted from the corpus is included in the list. In the creation of list, a measure considering the distribution of words over disciplines (Dispersion) was taken into account as well as the frequency (Standard Frequency Index). In LScDC, we include all of words appearing in not less than 10 texts in the corpus - distributed over 252 subject categories -, we did not apply any procedure to exclude any other words. This explains the difference between the number of lemmas in two lists - with 895 lemmas of NAWL and 104,223 lemmas in the LScDC.

The NAWL and the LScDC were actually developed from different corpora and the number of words are quite different, but overall the LScDC contains the much lemmas of NAWL (except only 4 words). In this stage, we did not include the New General Service List (NGSL) as our aim is to evaluate only academic words. In comparison, it must be stressed that there is 103,328 more lemmas in LScDC than the NAWL. Adding the NGSL could result in an increase in the number of the same words in the LScDC and NAWL plus NGSL.

In the comparison study, we initially investigate dictionaries to see the coverage of NAWL words by LScDC. We will see that there are 891 words that occur in both the LScDC and the NAWL, which means that the overlap between the LScDC and the NAWL is $99.6 \%$. Four words appearing only in the NAWL are: "ex", "pi", "pardon" and "applaus". This seems to be the result of differences in types and processing of texts in corpora. It is worth to note that corpus of NAWL includes full texts from academic domain, while the LSC includes abstracts of academic texts. This, for instance, may be the reason why "pi" does not appear in LSC as it is commonly used by the symbol $\pi$ (pi) in math world and not many articles include formulas in abstract. The other two words "pardon" and "applaus" are contained

### 3.1. INTRODUCTION

in LScD with low frequencies ( 5 and 9 respectively); therefore, they are removed in the step of LScDC creation. However, these two words have low rank in the NAWL as well: rank 924 and 956 in the list). Finally, the word "ex" does not occur in the LScDC due to pre-processing steps applied in the creation of the dictionary. We united some prefixes including "ex" with the following words (e.g. ex-president is converted to expresident).

We also present different approaches for comparison to understand what fragment of LScDC contains the NAWL. This is performed by repeatedly searching NAWL words in various subsets of LScDC. Our second focus in dictionary comparison will be the comparison of ranks of words in two dictionaries. In this study, only common words ( 891 words) are taken into account. Several different methods to compare ranks are considered such as direct comparison of ranks, pairwise comparison of partitions in dictionaries (lists are divided into sub-lists and overlapping words are count in each sub-list), comparison of the top $n$ words, and the comparison of the bottom $n$ words. We will also test similarity of ranks by statistical tests. It is expected to observe that words in two lists are not distributed in the same way as the statistics to order lists are not calculated in the same way. The NAWL considers the dispersion of words over categories, while we simple take the number of documents containing words in the LScDC. All approaches and results are presented in the section of comparison in detail.

In this study, we also consider the reproducibility of dictionaries from the LSC and list of texts from other sources to be used by researchers in many other text mining applications. For this purpose, we made R codes for producing the LScD and the LScDC, and instructions for usage of the code available in [71].

### 3.1.5. The Structure of This Chapter

The chapter is organised as follows. Section 3.2 contains the principles in corpus and dictionary design as well as the text and word representation approaches. In Section 3.3, we describe some of widely used and well-known analogue corpora and dictionaries. Section 3.4 sets out all pre-processing steps in creation process and the structure of LSC. Similarly, Section 3.5 and Section 3.6 present pre-processing steps to build the LScD and the LScDC respectively, and the organisation of dictionaries. In Section 3.7, a study of comparison of the LScDC and the NAWL with several approaches is contained. Finally, Section 3.8 concludes the chapter.

### 3.2. Methodology

### 3.2.1. Fundamentals of Corpus Design

In linguistics, a text corpus is defined as a large collection of text and they are used by linguists, lexicographers, experts in NLP and in many other disciplines in order to generate language databases, study general linguistic features, do statistical analysis or learn linguistic rules.

Types of corpora vary depending on how they are sampled and designed for specific research goals. Texts in a corpus are assembled to ensure maximum representativeness of a particular language or language variety. Representativeness refers a sample that includes the complete range of texts in a target population [72]. Target population is closely related to the scope of the research and respectively sampling. Any selection of text is described as a sample; however, representativeness for a sample depends on the definition of the population that sample is intended to represent and methods of selection of the sample from that population. To define the population, the most important two considerations are: boundary of the population (what texts are included) and the range of genres (what text categories are included) within the population. For instance, Lancaster-Oslo/Bergen Corpus (LOB) is defined as the collection of British English texts that all are published in 1961 in the British National Bibliography Cumulated Subject Index 1960-1964 for books and all 1961 publications in Willing's Press Guide 1961 for periodicals and newspapers; distributed across 15 text categories (such as general fiction, romance-love story etc.) $[73,74]$. The target population for the LOB was written British English texts that all are published in 1961 in United Kingdom (boundary)-distributed across 15 text categories (genres).

The goal of corpus construction is very important for corpus design as it determines the target population. For instance, if the goal of the research is to investigate learners' English, it is reasonable to collect essay of students learning English. However, one who wants to capture the complete range of varieties of English will attempt to collect contemporary British English written texts from a wide variety of different domains. With a given research purpose, a simple broad distinction on corpus types can be done: general corpus and specialised corpus. The criteria for representativeness for these corpora differ from each other by sampling principles. A general corpus contains a broad range of genres with a balance of texts from a wide variety of the language in different domains, while a specialised corpus contains texts from a particular genre or a specific time. For instance, a corpus can be representative for general English language which is an example for general corpus; fiction books or researches in medicine which are examples for specialised corpus.

Some other considerations in sampling decision are the kinds of texts, the number of texts and the length of text samples as well as sampling techniques. Sampling
techniques rely on random selection. Basically, selection can be done by a simple random sampling or stratified random sampling. In basic random sampling, texts having equal chance to be selected in a population are randomly selected. In stratified random sampling, the whole population is divided into smaller groups (e.g. genres) and then each subset is sampled using random selection techniques (with proportionality to the subgroups)[75]. In the LOB corpus, for example, the population was first divided into 15 categories; and samples were drawn from each category.

### 3.2.2. Representation of Texts and Words

In order for an effective text processing to be accomplished, one of the most fundamental tasks is to select the most appropriate text representation technique for a particular application of NLP. The quality of any text mining and NLP techniques is strongly dependent on the text representation. It aims to represent texts to enable them to be used in mathematical computations by the machine.

In general, the most common text representation model in text mining is the Vector Space Model (VSM) [76, 77]. In this model, each text is represented by a numerical vector where its components are taken from the content of the text. Components of the vector denote the features that characterise the text such as words, phrases, paragraphs or a single character etc (tokens). Therefore, each text is represented by a collection of words (or words' combinations) and the corpus can be represented by the union of such collections. The most common and simplest way to transform a text into a vector is to represent them by words from the vocabulary of the text collection. Each text in the collection is thus a feature vector in the vector space. In that case, the dimensions of the vector space is equal to the vocabulary size, and the order of the words in each text is ignored.

Having the texts represented by vector of words, list of words can be extracted with various statistics such as weight of words for a given text. This representation of the text by a bunch of words is BoW [44]. In BoW, different word weighting schemes can be used. One simple count for each feature's value (word weight) might be Boolean model. In Boolean model, 1 indicates that the word appears in the text and 0 indicates the word does not appear in the text. This scheme holds only the information about presence or absence of a given word in texts. As an extension of the Boolean model, TF (term frequency) shows how many times a word appears in the text [78]. In this scheme, the distribution of the word across the collection is not taken into account. However, some words can be more significance than others in the corpus. In that case, $T F$ can be multiplied by IDF (inverse document frequency), which is defined as the logarithm of the division of the corpus size by the number of documents containing the word. This scheme is called TFIDF [79]. In addition,
another scheme is to count the number of appearance of a word in the entire corpus when the corpus is considered as one large document.

Designing the texts by words can be performed in different ways depending on the query. One may want to represent text by all inflected forms of words or stop words. For instance, in the creation of the list of the most widely used conjunctions in a language, removing stop words leads to unreliable results. Therefore, the objection in text representation should be to turn each text into a set of words that supply the task with necessary inputs.

### 3.2.3. Building a Dictionary from Text Collection

In this study, a dictionary is defined as the set of unique words (lemmas) extracted from texts in a corpus. In other words, a dictionary is produced based on corpus data. In corpus linguistics, every dictionary is compiled from a particular corpus and the way to establish of a word list must be defined individually for a given purpose.

Dictionaries differ from one another by the words selected. Several distinctions can be done based on their scopes and purposes. From the overview, the simplest distinction can be observed between general and specialised dictionaries (also refereed as technical dictionaries). In specialised dictionaries, words are extracted from a corpus in a single (or multi) specific field(s) and indicate the concepts of the field(s) while general dictionaries contain a complete range of words. Words in specialised dictionaries are called terms or topic-specific words. In contrast to terms, a word that has a little lexical meaning is called function word in linguistics. Some examples of function words are prepositions, pronouns, determiners etc. In English semantic, non-function words (content words) are words that indicate the content or the meaning of the texts such as nouns, verbs and adjectives. In addition, Coxhead used the notion supportive for academic words in AWL [70]. She stated that academic words in AWL are supportive of the academic texts. As supportive, she meant words which are not central to the topic of the text. One would consider words that do not indicate any terminology or specialised technical terms in the subject field. 'establish' and 'inherent', for example, are two of supportive words according to Coxhead. These are words which authors from most or all academic disciplines tend to use them; the majority of them are also used in general English. She excluded all terminologies such as marine species in Oceanography and function names in Mathematics (e.g. Gaussian).

To define words and dictionaries, several other distinctions are applied by lexicographers and experts such as prescriptive or descriptive, dictionaries by language, dictionaries by size, Language-for-Specific-Purposes dictionary (LSP such as medical dictionaries) etc [80]. In this study, rather than consider such distinctions, we focus on building a corpus-based dictionary from scientific abstracts written in English.

### 3.3. RELATED WORKS

Such dictionary may be considered as scientific dictionary giving the guidance to scientific writers on such matters as up-to-date, topic-specific and supportive words of academic texts.

In the creation of a scientific dictionary from academic texts, two important criteria are: corpus size and the variety of disciplines where texts are categorised into. The more texts are collected, the more representative set of words for specific fields can be gathered. Similarly, the more disciplines where collected texts belong to, the bigger and more comprehensive dictionary can be created. A large and multidisciplinary dictionary with all supportive and topic-specific words of academic texts can also cover to other corpora and be used for any text analysis tasks on them.

### 3.3. Related Works

### 3.3.1. Corpora of English

There are several freely available corpora for NLP tasks. In this section, we begin by listing some of those well-known corpora developed for English. The earliest corpus in electronic form was developed in 1964 at Brown University, which contains written American English published in 1961 [81, 82]. Brown corpus includes 500 samples of American English text of published works in the United States in 1961. Each text consists of over 2,000 words sampled from 15 text categories, with totally over one million running words. Although today the size of corpus is considered small when comparing recent corpora, it is still widely seen as a landmark publication as a computer readable and general corpus among linguistic researchers. The corpus is similarly designed as LOB which followed the design and sampling practice of the Brown corpus in order to match the Brown corpus for British English [73, 74]. These two corpus became a model for other national corpora, so-called 'Brown Family' [83]. In selecting texts for inclusion in the Brown corpus and the LSC, different considerations applied based on the aim of the design of corpora as well as the differences in size of corpora. Brown corpus is sampled from a wide variety of different types of sources such as novels, news, editorials, reviews and many more; while the LSC is sampled from scientific abstracts and proceeding papers.

British National Corpus (BNC) is a monolingual, general corpus of over 4,000 samples of modern spoken and written British English covering English of the later part of 20th century (from 1960 onwards) [84, 85, 86]. The latest edition of the BNC is published in 2007. In general, it covers many different styles and varieties of text from various subject fields and genres. The written part of the corpus contains samples from a wide source of text such as: regional and national newspapers, journals, academic books, fiction, letters, school and university essays, other literary text. The spoken component of the corpus is made up of informal conversations recorded by volunteers who were selected from different age, social class and gender,
and task-oriented spoken language ranging from formal meetings to radio shows and lectures. The corpus was designed to identify social and generic uses of contemporary British English with 100 million words [82]. The major differences between the BNC and the LSC lie in the size of the corpus, in the aim of design (being to capture the full range of varieties of contemporary language use versus to extract scientific ones), in the definition of the populations and in the sampling of corpora in terms of being mixed corpus (spoken and written English) versus written English.

One other well-known corpus is Oxford English Corpus (OEC) which is also used by Oxford lexicographers to construct Oxford English Dictionary (OED), supplied by Oxford University Press [87]. The corpus contains of over 10 billion words of 20th and 21st century English from English-speaking countries: the UK, USA, Ireland, Australia, New Zealand, the Caribbean, Canada, India, Singapore and South Africa. It is one of the largest corpus in the world [87]. The corpus is mainly drawn from the web with all types of English such as academic journals, literary novels, newspapers, magazines, language of blogs, emails and social media [88]. Another Oxford University Press corpus is Oxford Corpus of Academic English (OCAE) contains academic journals and textbooks from four main disciplines: physical sciences, life sciences, social sciences, and humanities with 85 million words included [89].

The SciCorp is a corpus of 14 English scientific articles sampled from two disciplines: genetics and computational linguistic, released in 2016 [ 90 ]. The corpus includes 61,045 tokens. The population of the corpus being compiled from scientific text is similar to the LSC. However, sampling of SciCorp differs from the LSC as being restricted to two disciplines. Apart from sampling principals and the size of corpus, one other difference of SciCorp from the LSC lies in the type of texts: full-text in SciCorp and abstracts of scientific papers in LSC.

The Reuters-21578 corpus (Reuters-21578 Text Categorization Collection) is a collection of 21,578 news documents used for text categorisation [91]. It contains news appeared in 1987 with categories. The main differences between the Reuters corpus and the LSC is genre of texts: Reuters corpus contains texts of news while LSC contains abstracts of scientific publications. The LSC is more than 70 times as large as the Reuters corpus.

The GENIA corpus is similar to the LSC in terms of the content of texts, both contain the abstracts of scientific papers [92]. The GENIA corpus is built by annotating abstracts with keywords '(MeSH terms) Human', 'Blood Cells' and 'Transcription Factors'. 2,000 abstracts are selected for a research objective in Biological and Clinical domains. LSC was created without research area restriction and contains 700 times more abstracts from different research areas.

The DBpedia abstract corpus contains 4,415,993 texts of the introductory section of Wikipedia articles, these sections may not necessarily be scientific writing [93]. As introductory section of Wikipedia articles are not actual abstracts of papers,
the average length of documents are different than average length of abstracts: 178 words for the LSC and approximately 524 words for the DBpedia.

### 3.3.2. English Dictionaries

One question that can not be easily answered in dictionary design is whether there is an exact count of the number of English words. The major reason for this issue lies in the dynamic nature of languages. It is commonly accepted that languages change rapidly with cultural and technological evaluation, and adoption from other languages [94]. For instance, the Oxford English Dictionary has recently added 'satoshi' (the smallest unit of a bitcoin), 'yeesh' (expressing exasperation, annoyance, disapproval) and 'simit' (a type of ring-shaped bread roll originating in Turkey) to its database in 2019 [95, 96, 97]. Another consideration on counting the number of words is that what words a dictionary includes. For example, a dictionary would include all technical terms, scientific entries or slang; all of the inflected form of a word (e.g. listen, listening etc.); plurals of words as separate word; or compounds which is made up two words. Therefore, the simple question 'what exactly is a word?' turns out to be surprisingly complicated. Some dictionarymakers agree that different versions of words should be counted only once, while some others consider each form as a separate word [98]. This means that there may be unlimited number of words in writing and spoken English, which do not appear in any dictionary.

Although it is not possible to know exact number of words in English, the estimate has been given roughly one million words (ranging from half a million to over two million) - including names of chemicals and scientific terms- in vocabulary $[99,100]$. Many of these words are too rarely used, so it is expected that they do not appear in any English dictionary. One of the most well-known and commonly used dictionary Oxford English Dictionary (OED) includes over 600,000 words recorded in 20 -volumes [101]. The dictionary provides both present days meaning of the words and the history of words from the across of English speaking countries. In addition to the print edition, the dictionary is available online [102]. Similar to the OED, the Webster's Third New International Dictionary contains over 470,000 entries [99, 103]. Another Oxford dictionary so-called New Oxford Dictionary for Writers and Editors is built to guide writers, editors, journalists and everyone who works with words [104]. It includes 25,000 words and phrases with providing advice on spelling, capitalisation, specialist words and cultural context such as names, mathematical symbols, chemical elements. The Oxford Learner's Dictionary of Academic English (OLDAE) is also supplied by Oxford University Press with over 22,000 words based on the OCAE [105]. The aim of the dictionary
is to help students particularly in academic English writing. As an example of specialised dictionary, Stedman's Medical Dictionary contains more than 107,000 terms with images (including abbreviations and measurements) in medical references in its 28th edition $[\mathbf{1 0 6}, \mathbf{1 0 7}]$. It is designed to provide language of medicine, nursing and health profession to medical students, researchers, physicians and many more medical language users. Finally, we paid attention to the work of AWL and NAWL as they are classics as academic word list [69, 70]. The AWL includes 570 word families from the collection of written academic texts distributed across the four main disciplines: arts, commerce, law and science. It covers $86 \%$ of the total words in the corpus when combining with GSL. Similarly, NAWL contains 963 word families based on an up-to-date corpus of academic texts. NAWL-NGSL covers $87 \%$ of new corpus. The more detailed explanation is given in the Section 3.7.

Although the estimation of number of words in a language is not a easy task and numbers of words in dictionaries vary differently depending on the content of the dictionary, a corpus-based analysis may give a sight to understand the average number of words for a vocabulary. Let us consider Oxford English Corpus and Oxford English Dictionary with base forms of words (lemmas). It is stated in [108] that $25 \%$ of all words used in OED is one of lemmas: the, be, to, of, and, a, in, that, have and I. These are the most common 10 lemmas in English. In similar way, the most common 100 and 1,000 lemmas account for $50 \%$ and respectively $75 \%$ of all words used in OEC. To cover $90 \%$ of the corpus, one needs 7,000 lemmas. $95 \%$ of the corpus includes approximately 50,000 lemmas which words in between occur very rarely (e.g. only once every several million words). To cover $99 \%$ of the corpus, we need a vocabulary of over 1 million lemmas. In that case, many words may appear only once or twice in entire corpus (e.g. specialised technical terms), but lemmas will be representative of the whole corpus. To represent notable part of English, $90-95 \%$ of the corpus may be taken as a reasonable number.

### 3.4. Leicester Scientific Corpus (LSC)

LSC is a collection of abstracts of articles and proceeding papers published in 2014 and indexed by the WoS database [63]. Each document contains the text of abstract and the following metadata: title, list of authors, list of categories, list of research areas, and times cited $[14,65,66]$. The corpus comprises only documents in English. The LSC was collected in July 2018 and contains the number of citations from publication date to July 2018.

We describe a document as the text of abstract with metadata listed above. The total number of documents in LSC is $\mathbf{1 , 6 7 3 , 8 2 4}$ [64]. All documents in LSC have non-empty abstract, title, categories, research areas and times cited in WoS databases. There are 119 documents with empty authors list, we did not exclude these documents.

### 3.4.1. Corpus Construction

This section describes all steps in order for the LSC to be collected, cleaned and made available to researchers. Data processing consists of four main steps:
3.4.1.1. Step 1: Collecting the Data. The dataset is downloaded online by exporting documents as tab-delimited files, so all documents are available online. The data are extracted from WoS [63]. You may not copy or distribute the data in whole or in part without the written consent of Clarivate Analytics ${ }^{1}$
3.4.1.2. Step 2: Cleaning the Data from Documents with Empty Abstract or without Category. Not all papers have abstract and categories in the collection. As our research is based on the analysis of abstracts and categories, preliminary detecting and removing inaccurate documents were performed. All documents with empty abstracts and documents without categories are removed.
3.4.1.3. Step 3: Identification and Correction of Concatenated Words in Abstracts. Traditionally, abstracts are written in a format of executive summary with one paragraph of continuous writing, which is known as unstructured abstract. However, especially medicine-related publications use structured abstracts. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc.

Used tool for extracting documents leads to concatenated words of section headings with the first word of the section in abstracts. As a result, some of structured abstracts in the LSC require additional process of correction to split such concatenated words. For instance, we observe words such as "ConclusionHigher" and "ConclusionsRT" etc. in the corpus. The detection and identification of concatenated words cannot be totally automated. Human intervention is needed in the identification of possible headings of sections. We note that we only consider concatenated words captured in headings of sections in medicine-related papers as it is not possible to detect all concatenated words without deep knowledge of research areas. Identification of such words is done by sampling of medicine-related publications. The section headings in such abstracts are listed in Table B.1.

In headings of a section, the words usually start with a capital letter and end with a colon, unless there is typographical error in an electronic material. The words following a heading word (or a colon) also start with a capital letter in structured abstracts. We take these properties into consideration while detecting concatenated words.

All words including headings in the Table B. 1 are detected in the entire corpus, and then words are split into two words. For instance, the word "ConclusionHigher" is split into "Conclusion" and "Higher".

[^1]
### 3.4.1.4. Step 4: Extracting (Sub-setting) the Data Based on Lengths

 of Abstracts. After correction of concatenate words is completed, the lengths of abstracts are calculated. "Length" refers the total number of words in the text, calculated by the same rule as for Microsoft Word "word count" [109]. An abstract is a short text that is written to capture the interest of a reader of the paper. Thus, abstracts briefly describe and summarise the work and the findings usually in one paragraph of words, but very rarely more than a page.According to APA style manual [110], an abstract should contain between 150 to 250 words. However, word limits vary from journal to journal. For instance, Journal of Vascular Surgery recommends that "Clinical and basic research studies" must include a structured abstract of 400 words or less" [111].

In LSC, the length of abstracts varies from 1 to 3,805 . We decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis. Documents containing less than 30 and more than 500 words in abstracts are removed. Fig. 3.1 shows the distribution of lengths over documents of LSC before and after removing documents containing less than 30 and more than 500 words.


Figure 3.1. Length distribution of documents (a) before and (b) after removing documents containing less than 30 and more than 500 words (maximum length was 3,805 before removing). The vertical line shows the average length.

Four main peaks observed on the length graph: at 100 words, 150 words, 200 words and 250 words. The second peak shows the maximum number of documents, where those observed when the number of words in an abstract is 150 . This result is expected as typically word limits range from 150 to 250 words for an abstract.

After the process of correction and cleaning, the database contains of raw texts of abstracts with title, list of authors, list of categories, list of research areas, and times cited. The total number of documents is $1,673,824$ in LSC (see Table 3.1).

Table 3.1. Number of documents before and after cleaning documents with empty abstracts or without category, and after removing too short and too long abstracts.

## \# of Documents

Original data
1,727,464
After cleaning documents with empty abstracts or without category $1,681,469$
After removing too short and too long abstracts $\quad 1,673,824$

### 3.4.2. Organisation of the LSC

In LSC, the information is organised with one record on each line and parts of "List of Authors', "Title", "Abstract", "Categories", "Research Areas", "Total Times cited", and "Times cited in Core Collection" is recorded in separated fields [64]. Table B. 2 demonstrates the structure of a document in LSC.

The "Categories" field contains the list of the subject categories where the document is assigned to [14]. Each document in LSC is assigned to at least 1 and at most 6 categories. There are totally 252 categories in the corpus. The full list of categories are presented in $[\mathbf{6 4}]$ (v1) and [112]. It is noteworthy that the study through this chapter is done based on this version ( v 1 ) of the LSC; however, another version will be created in the next chapter and the list of categories for the new version are presented in Appendix C.2. The subject categories are the same in both version, only the numbers of texts assigned to categories have been changed.

The "Research Areas" field consists of the list of research areas described as "a subject categorisation scheme" in WoS database [65]. Each category is mapped to one research area in the WoS collection. There are totally 151 research areas in the corpus. The full list of research areas is presented in [64] and [112]. Similar to subject categories, the study through this chapter is done based on this version (v1) of the LSC; however, another version will be created in the next chapter and the list of research areas for the new version are presented in Appendix C.3. The research areas are the same in both version, only the numbers of texts assigned to areas have been changed.
"Total Times Cited" consists the number of times the paper was cited by other items from all databases within WoS platform. A paper can appear in multiple databases indexed in WoS collection. The citation indexes in WoS are: WoS Core Collection, BIOSIS Citation index, Chinese Science Citation Database, Data Citation Index, Russian Science Citation Index and SciELO Citation Index. Duplicate documents across multiple databases is counted only once [66].
"Times Cited in Core Collection" is the total number of times the paper cited by other papers within the WoS Core Collection. The citation indexes in Core Collection are: Science Citation Index Expanded, Social Sciences Citation Index, Arts

### 3.5. LEICESTER SCIENTIFIC DICTIONARY (LSCD)

and Humanities Citation Index, Conference Proceedings Citation Index-Science, Conference Proceedings Citation Index-Social Sciences and Humanities, Book Citation Index-Science, Book Citation Index-Social Sciences and Humanities, Emerging Sources Citation Index [66].

### 3.5. Leicester Scientific Dictionary (LScD)

This section presents the pre-processing steps for creating an ordered list of words from the LSC [64] and the description of LScD.

LScD is an ordered list of words from texts of abstracts in LSC [67]. The dictionary is sorted by the number of documents containing the word in descending order. The dictionary stores 974,238 unique words, where abbreviations of terminologies and words with number are contained in. All words in the dictionary are in stemmed form of words. The LScD contains the following information: unique words in abstracts in the LSC, number of documents containing each word and number of appearance of each word in the entire corpus.
"The number of documents containing a word" is the number of the documents with the corresponding word. A word that appears multiple times in a document is counted once (binary representation for existence). "Number of appearance of a word in the entire corpus" is defined to be the total number of occurrences of a word in the LSC when the corpus is considered as one large document.

All words obtained after pre-processing steps are included in the LScD. The most frequent 20 words (frequency is calculated by the number of documents containing a word) are presented in Table 3.2 .

Table 3.2. The most frequent 20 words in the LScD

| Word | Number of documents <br> containing the word | Word | Number of documents <br> containing the word |
| :--- | ---: | :--- | ---: |
| use | 902,033 | also | 400,642 |
| result | 812,154 | present | 389,735 |
| studi | 723,827 | increas | 383,676 |
| show | 498,705 | two | 375,586 |
| method | 491,586 | model | 372,911 |
| effect | 476,757 | signific | 370,435 |
| base | 446,436 | compar | 355,381 |
| differ | 445,739 | paper | 346,514 |
| can | 441,512 | time | 344,817 |
| high | 402,737 | perform | 341,547 |

3.5.1. Processing the LSC and Building the LScD

### 3.5. LEICESTER SCIENTIFIC DICTIONARY (LSCD)

The main challenge of using text data is that it is mess and not concretely structured. This means that a number of steps is needed to be taken to form the LScD . The initial step of building the dictionary is to convert unstructured text (raw corpus) into structured data. Structured data means highly organised and formatted in a way so the information contained can be easily used by data mining algorithms, mostly numerical data in relational databases [113]. There are different ways to pre-process text data and pre-processing steps should be described for each corpus individually. Decision taken and steps of processing for creation of LScD are described below. All steps can be applied for arbitrary list of texts from any source with changes of parameters and also to LSC to reproduce the dictionary.
3.5.1.1. Step 1: Text Pre-processing Steps on the Collection of Abstracts. Text pre-processing means to bring the text into a form of analysable for the task. This step is highly important for transferring text from human language to machine analysable format by data mining algorithms. As each task requires different procedures to process the text based on aim of the study, ideal pre-processing procedure of each task should be developed individually. We used standard pre-processing methods in text processing studies such as tokenization, stop word removal, removal of punctuations and special characters, lowercasing, removal of numbers and stemming as well as two non-standard pre-processing steps: uniting prefixes of words and substitution of words. In this section, we present our approaches to pre-process abstracts of the LSC.
(1) Removing punctuations and special characters: This is the process of substitution of all non-alphanumeric characters by space. We did not substitute the character "-" in this step, because we need to keep words like "z-score", "non-payment" and "pre-processing" in order not to lose the actual meaning of such words. A processing of uniting prefixes with words are performed later.
(2) Lowercasing the text data: Lowercasing is one of the most effective pre-processing step in text mining problems to avoid considering the same words like "Corpus", "corpus" and "CORPUS" differently. Entire collection of texts are converted to lowercase.
(3) Uniting prefixes of words: Prefixes are letters placed before a word to create a new word with different meaning. Words containing prefixes joined with character "-" are united as a word. The list of prefixes united for this research are listed in Table B.3. The most of prefixes are extracted from [114]. We also added commonly used prefixes: "e", "extra", "per", "self" and "ultra".
(4) Substitution of words: Some of words joined with "-" in the abstracts of the LSC require an additional process of substitution to avoid losing the meaning of the word before removing the character "-". Some examples of
such words are " z -test", "well-known" and "chi-square". These words have been substituted to "ztest", "wellknown" and "chisquare". Identification of such words is done by sampling of abstracts from LSC. The full list of such words and decision taken for substitution are presented in Table B.4.
(5) Removing the character "-": All remaining character "-" are replaced by space.
(6) Removing numbers: All digits which are not included in a word are replaced by space. All words that contain digits and letters are kept for this study because alphanumeric characters such as chemical formula might be important for our analysis. Some examples of words with digits are "co2", "h2o", "1990s", "zn2" and "21st".
(7) Stemming: Stemming is the process of converting inflected words into their word stem. In this process, multiple forms of a specific word are eliminated and words that have the same base in different grammatical forms are mapped to the same stem. As stemming removes suffixes and reduces the number of words in corpus, this step results in uniting several forms of words with similar meaning into one form and also saving memory space and time [115]. For instance, the word "listen" is the word stem for "listens", "listened", and "listening". All words in the LScD are stemmed to their word stem by R package [116].
(8) Stop words removal: In NLP, stop words (including function words) are defined as words that are extreme common but provide little value in a language. Some common stop words in English are "I", "the", "a" etc. Such words appear to be of little informative in documents matching as all documents are likely to include them. There is no universal list of stop words. Stop words must be chosen for a given purpose. In our research, we used "tm" package in R to remove stop words [117]. There are 174 English stop words listed in the package. Full list of stop words in tm package can be found in Table B.5.
3.5.1.2. Step 2: Extracting Words from Abstracts. After pre-processing the abstracts of LSC, there are 1,673,824 processed plain texts for further analysis. All unique words in the processed texts are extracted and listed in the LScD.

### 3.5.2. Organisation of the LScD

The total number of words in LScD is 974,238 . Unique words, the number of documents containing the word and the number of appearance of the word in the entire corpus are recorded on each line in separated fields.

The "Word" field contains unique words from the corpus. All words are in lowercase and their stem form. The list of words is sorted by the number of documents that contain words in descending order.

### 3.5. LEICESTER SCIENTIFIC DICTIONARY (LSCD)

"Number of documents containing the word" is the number of documents containing the corresponding word in "Word" field. In this content, binary calculation is used: if a word exists in an abstract then there is a count of 1 . If the word appears more than once in a document, the count is still 1 . Total number of document containing the word is counted as the sum of 1 s in the entire corpus.

A word can appear many times in the same document. "Number of appearance of a word in the entire corpus" is computed as the sum of appearance of the word in each document. The field contains how many times a word occurs in the corpus when the corpus is considered as one large document.

### 3.5.3. Basic Statistics in the LScD

Before moving on creation of a core dictionary LScDC from LScD, we investigated basic statistics of LScD . The Table 3.3 shows the number of the rarest words over documents, where words appear in at most 20 documents. For instance, there are 592,161 words contained in only 1 document in the corpus. This distribution is also presented for all words in the Fig. 3.2. As expected, very few words occur very often, there is a larger number of mid-frequency words and very many words occur very rare in the collection. This is a typical property of text data and the distribution of words in texts [118].

Table 3.3. The number of documents and the number of words contained in the corresponding number of documents only for those words appearing in at most 20 documents

| Number <br> of Docu- <br> ments | Number of Words <br> Contained in the <br> Corresponding <br> Number of Documents <br> Only | Number <br> of Docu- <br> ments | Number of Words <br> Contained in the <br> Corresponding <br> Number of Documents <br> Only |
| :--- | ---: | :--- | :--- |
| 1 | 592,161 | 11 | 5,605 |
| 2 | 118,989 | 12 | 4,912 |
| 3 | 54,193 | 13 | 4,268 |
| 4 | 32,032 | 14 | 3,689 |
| 5 | 21,624 | 15 | 3,385 |
| 6 | 15,554 | 16 | 2,971 |
| 7 | 11,877 | 17 | 2,752 |
| 8 | 9,384 | 18 | 2,522 |
| 9 | 7,709 | 19 | 2,253 |
| 10 | 6,492 | 20 | 2,161 |

### 3.5.4. Decision Taken for Rare and Frequent Words



Figure 3.2. The number of documents (n) versus the number of words contained in n documents only

### 3.5.4.1. Traditional Approaches to Rare and Frequent Words

In most studies on text classification and information extraction, it is common to discard rare words in order to improve the performance of methods. The idea of the usability of rare and frequent words for discriminating texts dates back to Luhn's idea [119]. He proposed a model to automatically generate the abstract by extracting the most representative sentences among all the sentences in an article. To select those sentences, a measure of information based on an analysis of words in sentences is used. It is assumed that the word occurrence in an article can be used to compile a set of significant word, and the frequency of such significant words within sentence reflects the "significance of sentence" in the text. According to Luhn, rare and frequent words in a text do not contribute much to the content of the text. Luhn stated that only words between two cut-offs, middle frequency words, can be determined as significant words for the text.

Besides extraction of significant words in an article, such an analysis can be also applied to the collection of documents to extract the most significant words to discriminate articles across the collection. In other words, significant words can be extracted on a corpus basis rather than a per-document basis. Luhn's original idea of counting frequencies can be used to provide weighting to words in order to discriminate documents in a collection. Following to this, it is showed that words appearing in low number of documents and words appearing in high number of documents are not good discriminators across the collection in [120]. They verified

### 3.5. LEICESTER SCIENTIFIC DICTIONARY (LSCD)

Luhn's conclusion that words with middle frequency are the best discriminator, and words occurring in between $1 \%$ and $90 \%$ of texts have the highest discriminatory power across the collection. Pruning rare and frequent words is followed by many researchers in text categorisation tasks as it is a common belief that they are not good discriminators of classes [121].

However, as noted in [122] common words (or frequent words) contribute to the text categorisation contrary to a common belief that the removal of frequent words improves the performance of information retrieval methods. In their study, stop words are discarded before evaluation of the performances. They also examined another common assumption that rare words are informative and should not be removed; and concluded that words appearing in less than some pre-determined number of documents (up to $90 \%$ or more unique words) can be removed with either an improvement or no loss in the accuracy of text categorisation models. Similar conclusion is obtained for clustering in [123]. They investigate the side effect of vocabulary size to clustering algorithms. The results show that keeping frequent words leads to an improvement on the performance of models in general, while rare words can be removed without loss on the performance. It is also worth to mention that the score that is used to evaluate mutual information is almost 0 when using only words with 1 occurrences in the corpus. Similar results are observed in [124] for their scoring measure where rare words skew the distribution of score defined. A minimum threshold of 10 is used in our study to mitigate this issue.

In information retrieval systems, a common belief among researchers is that both frequent and rare words can be important for a specific field. However, the extraction of words from these two classes should be done by using two criteria not one as their distributions are different in specific areas [125]. Rare words can be topic-specific words and extracted by analysing their co-occurrence in the academic domain. It is stated that a rare word will be a topic-specific word if it is related to a huge number of other possible topic-specific words or words that are considered as informative with a large weight defined [126]. In [127], it is reported that most of rare words that are generally discarded in standard information extraction tasks can be topic-specific words in medical abstracts. They stated that even the frequency of 5 is too high for extraction of informative words in medical abstracts but words appearing only once is needed to be removed in information based statistical models [125, 126, 127].

### 3.5.4.2. Characteristics of Words in the LScD and the Decision Taken

In practice, word selection strategy is fundamentally important for different text processing tasks since it determines the space of words that can be obtained from the texts and be effectively used for a specific task. Differences in types of corpora

### 3.5. LEICESTER SCIENTIFIC DICTIONARY (LSCD)

must also be considered as a complementary effect in the selection of words. In order for the differences between rare/frequent words' importance in two corpora to be explainable, corpora should be comparable by sampling in the same way. For example, it is natural to expect that frequent words of a topic-specialised corpus are different from frequent words appearing in a general corpus where its texts are from a wide variety of different domains. For information extraction problems, frequent words in a topic-specialised corpus are likely to be extracted as content words while such words can be assessed as non-informative in a general corpus. As mentioned before, 5 occurrences of a word in a topic specific corpus (e.g. medical abstracts) may be too high when compared with a general corpus of the same size. However, one can find that words with 5 occurrences are useless for text categorisation tasks due to its score in probabilistic models (e.g. entropy).

Essentially, rare words fall into two classes: those which are rarely used in the corpus and those which are misspelling. There are several reasons for the first class. It may be because it is used very uniquely like names referring people, places, brands or products. Rare words may also refer infrequent usage or synonyms of words. Similarly, shorten version and abbreviations of words can cause a huge number of rare words. Particularly, those who use corpus containing texts from medical or chemistry domains will tend to see huge number of shorten words, abbreviations and also chemical formulas. The second class of rare words involves words that are misspelled in the writing. Especially, such words is one of the main factor contributing the number of words occurring once in large corpora. As one would expect, a list with all correctly spelled words would not be realistic, especially for a large corpus. In [128], it is predicted that $38 \%$ of 42,340 words, from a collection of life science abstracts, are misspellings. For both classes of rare words, one needs to be careful about removing them. The decision of cut-off for rare words should be determined individually for each corpus depending on the characteristic of the corpus such as type and size.

Therefore, a natural question arises: what is the optimal cut for rare words in LSC? A simple initial characterisation is taken into account. As mentioned before, LSC is a collection which texts are from 252 different categories. Two expected consequences of this fact are: the identification of informative rare words for text categorisation by using their co-occurrences with other words of the corpus is not reasonable for our case; and it is very likely to observe words occurring only once in the corpus. The first consequence is caused by the fact that two rare words that used in texts from two well-separated categories will tend to be associated with each other due to co-occurrence of these words with the same subset of other words. In the case that the subset of related words has a large weight in terms of containing informative words but one of rare words is actually not informative, the selection of this rare word will be biased on the other one. When considering the large size of

### 3.5. LEICESTER SCIENTIFIC DICTIONARY (LSCD)

LSC, having a large number of categories has also a side effect: many misspellings and unique names. In fact, approximately $60 \%$ of words appear in only 1 document in LSC (Table 3.3). Casual observation of words showed that many of them are non-words or not in an appropriate format to use (e.g. misspellings); therefore, they are likely to be non-informative signals (or noise) for algorithms. Some examples of such cases in LSC for randomly selected rare words are presented in Table 3.4. Our basic assumption is that too rare words are not informative for text categorisation, or not effective in the performance of methods.

In order to mitigate this issue, we set a minimum cut (10) so that words appearing in less than the cut-off will not be included in further analysis. There is no trivial way to decide the optimal cut. We took decision that the threshold which is not too low or high to be able to keep a reasonable number of words for analysis under the assumption that rare words can be relatively informative and they should not be removed aggressively [122]. The criteria, removing rare words to improve the performance of information-based text categorisation methods, is taken into account with an attention to have a noticeable impact on size of dictionary and results.

The Fig. 3.3 shows the number of words contained in the corresponding or less number of documents. To explore the fragment where words are very rare, we generate an enlarged view on a fragment in the Fig. 3.4. For instance, there are 592,161 words containing in only 1 document and 711,150 words containing in 2 or 1 documents. We can conclude from the figures and Table 3.3 that 870,015 words out of 974,238 words in LScD are contained in 10 or less than 10 documents, thus, it is reasonable to consider such words as non-informative signals in the corpus of $1,673,824$ documents and can be removed from the dictionary for further analysis. If such words are removed from the dictionary, the number of words becomes significantly reduced from 974,238 to 104,223 . Note that we did not exclude any frequent words in this stage as stop words are already removed in pre-processing steps.

Fig. 3.5 and 3.6 present the normalised number of words contained in the corresponding $(n)$ or less number of documents. The data are normalised using (maximum-number of words) on y-axis. This means that the plot shows the number of words appearing in more than $n$ documents against these numbers of documents. We observe more or less a negative relationship on a logarithmic scale. However, a remarkable pattern emerges: the plot does not follow a single straight line which fits the data. Instead, the plot starts with a linear behaviour, and a curve is observable in the right tail of the distribution, which follows a Pareto distribution behaviour. Pareto originally purposed that the number of people with incomes higher than a certain limit follows a power law $[129,130,131,132,133]$. The Pareto principle is also known as $80-20$ rule. The rule states that $80 \%$ of people's income is held by the top $20 \%$ of income recipients in the society. Such characteristic of the distribution is also very typical property for the distribution of words over documents in text data.

Table 3.4. Some of rare words in LScD with the number of documents containing them. The last column shows the description of the word provided by checking the papers containing the word in WoS database, and possible reason why it is rare.

| Word | Number of <br> documents <br> containing <br> the word | Description of the word and possible <br> reason why it is rare |
| :--- | ---: | :--- |
| luhman | 4 | An author name |
| lazerian | 5 | An author name |
| goodluck | 2 | A name (President Goodluck Jonathan) |
| hansel | 5 | A name (a name in fairy tale Hansel and <br> Gretel and an author's name) |
| masculina | 8 | A marine specie: Appendix Masculina <br> (Latin name) |
| heterocop | 1 | A freshwater specie: Heterocope Borealis <br> (Latin name) |
| lunac18(2) | 1 | A term in Chemistry |
| wr3 | 3 | A term in Agriculture (a water regime) |
| gausian | 3 | Misspelling- Gaussian |
| antilmog | 1 | Misspelling in the database: AntiLMOG <br> (correct writing in the paper is anti-MOG. |
| acetosa | 10 | A plant specie Rumex Acetosa (another us- <br> age is 'sorreal' appearing in 13 documents) |
| ansdic | 1 | An abbreviation for Ammonium Nitrate <br> and Sodium Salt of Dichloroisocyanuric |
| 18 cm | 10 | Non-word <br> 000009 sl |
| limite | Non-word (from the expression <br> 'DW=0.00009SL(3.047)') |  |
| resultan | 8 | French word |
| resultadoscon | 1 | French word |
|  | 1 | Spanish word with error: ResultadosCon <br> ('resultado' means result in English and ap- <br> pears 90 times in the LSC) |

Under Pareto principle, the number of words appearing in more than $n$ documents can be modelled as a power law:

$$
\begin{equation*}
N_{x}=\frac{\beta}{x^{\alpha}} \tag{2}
\end{equation*}
$$

where $N_{x}$ is the number of words, $x$ is a certain documents limit and $\alpha$ and $\beta$ are constants.


Figure 3.3. The number of documents ( n ) versus the number of LScD words contained in n or less documents in the LSC

A more general description of the Pareto principle is stated by Pareto distribution. Pareto distribution is a two parameter distribution to fit the trend that a large portion of data is held by a small fraction in the tails of distribution (heavy-tailed distribution) [134]. The distribution is characterised by a shape parameter $\alpha$ and a location (scale) parameter $x_{m}$. The tail function and the cumulative distribution function of a Pareto random variable $X$ are given by $[135,136]$ :

$$
P(X>x)= \begin{cases}\left(\frac{x_{m}}{x}\right)^{\alpha} & x \geq x_{m} \\ 1 & x<x_{m}\end{cases}
$$

and

$$
F(X)= \begin{cases}1-\left(\frac{x_{m}}{x}\right)^{\alpha} & x \geq x_{m} \\ 0 & x<x_{m}\end{cases}
$$

where $x_{m}$ is the (necessarily positive) minimum value of $X$ (the lower bound of the data). The density function is defined as

$$
f_{X}(x)= \begin{cases}\frac{\alpha x_{m}^{\alpha}}{x^{\alpha+1}} & x \geq x_{m} \\ 0 & x<x_{m}\end{cases}
$$

For $0<\alpha \leq 1$, the distribution is heavy-tailed and the right tail becomes heavier as $\alpha$ decreases.


Figure 3.4. The number of documents (n) versus the number of LScD words contained in n or less documents in the LSC for those words appearing in at most 20 documents. The horizontal line indicates the number of words in the dictionary $(974,238)$.

In Fig. 3.6, power-law behaviour in the upper tail is well documented. The Pareto distribution (Equation 2) is fitted to the data and resulting graphs are also shown in Fig. 3.5. Table 3.5 presents the estimated parameters and the mean squared error (MSE).

Table 3.5. Estimated parameters of Pareto distribution and the Mean Squared Error (MSE) for LScD

| $\alpha$ | $\beta$ | MSE |
| :---: | :---: | :---: |
| 0.5752 | 388,756 | 25188 |

If the logarithm of the number of words appearing in more than a certain number of documents is plotted against the logarithm of these numbers of documents, a straight line (see Fig. 3.6 (b)), where the slope is $\alpha$, is obtained. $\alpha$ is also known as Pareto index.

Due to the characteristic of the data, the log-log plot presents a noisy and diffused behaviour in the upper tail. This is actually because 81 observations fall in the interval 1-100 on y-axis, while there are 5,453 observations lying in the interval $10,000-1,000,000$. However, on the logarithmic scale, the size of intervals $1-100$ and $10,000-1,000,000$ are the same, this leads to a diffusion in the tail. From a heuristic point of view, the plot suggests that there are three subset of words in the collection:


Figure 3.5. The number of documents ( $n$ ) versus the number of LScD words appearing in more than $n$ documents in the LSC for (a) $n<10,000$ and (b) $n \geq 10,000$. The $y$-axis is calculated by normalising $g(n)$ to the maximum (maximum- $g(n)$ ), where $g(n)$ is the number of words contained in n or less documents. The black points are the data; the red points are the fitted Pareto distribution.


Figure 3.6. (a) The number of documents ( $n$ ) versus the number of LScD words appearing in more than $n$ documents in the LSC for whole data (b) The same plot on logarithmic scales. The y-axis is calculated by normalising $g(n)$ to the maximum (maximum- $g(n)$ ), where $g(n)$ is the number of words contained in n or less documents. The black points are the data; the red points are the fitted Pareto distribution. In (b), the slope of the line is -0.5752 .
too rare words, mid-frequent words and frequent words. A straight down-sloping line covers words the largest part of the list, in which words are not too rare and
frequent. It is not actually surprising as words occurring in a few or almost all documents tend to be more evenly diffused across the corpus.

### 3.6. Leicester Scientific Dictionary-Core (LScDC)

LScDC is an ordered sub-list from existing LScD [68]. There are 104,223 unique words (lemmas) in the LScDC. To build the LScDC, we decided the following process on LScD : removing words that appear in no more than 10 documents $(\leq 10)$. As mentioned before, such words do not contribute much to discrimination of texts as they appear in less than $0.01 \%$ of documents. Ignoring these words has the advantages on the reducing the size of words for applications of text mining algorithms. The core dictionary is also sorted by the number of documents as in LScD.

Table 3.6 summarizes the number of words before and after removal. 870,015 words are removed from the LScD, that is, around $89 \%$ of words are removed. After removing such words, we also re-check the number of words in each document to affirm that all abstracts have at least 3 words. We note that in this stage "the number of words in an abstract" does not indicate the length of the abstract but the number of unique content words from the LScDC. After removing 870,015 words from the pre-processed abstracts, all documents have at least 3 unique words. None of documents are removed in this stage.

### 3.6.1. Organisation of the LScDC

In the LScDC , unique stemmed words, the number of documents containing the word and the number of appearance of the word in the entire corpus are recorded on each line in separated fields in the same way as for the $\mathrm{LScD}[67,68]$.

### 3.6.2. Characteristics of Words in the LScDC

After cleaning words appearing in no more than 10 documents, the distribution of words over documents is presented in Fig. 3.7. As one can expect, we observe the same behaviour here that very few words occur very often, very many words occur very rare in the collection.

The Fig. 3.8 and Fig. 3.9 show the number of words contained in the corresponding or less number of documents with and without rescaling the x -axis. We can conclude that approximately half of words occur in less than 30 documents.

Table 3.6. Number of words before and after removing words appearing in no more than 10 documents in the LSC

|  | Number of Words |
| :--- | ---: |
| LScD | 974,238 |
| LScDC | 104,223 |



Figure 3.7. The number of documents ( n ) versus the number of LScDC words contained in n documents only after cleaning words appearing in no more than $10(\leq 10)$ documents


Figure 3.8. The number of documents (n) versus the number of LScDC words contained in n or less documents in the LSC after cleaning words appearing in no more than $10(\leq 10)$ documents

Fig. 3.10 demonstrates the normalised number of words contained in the corresponding or less number of documents after removing words appearing in no more than 10 documents. The data are normalised using (maximum-number of words) on y-axis as in Fig. 3.6. As expected, noisy behaviour in the lower tail is avoided.


Figure 3.9. The number of documents ( n ) versus the number of LScDC words contained in n or less documents in the LSC (for those words appearing in at most 30 documents) after cleaning words appearing in no more than $10(\leq 10)$ documents. The horizontal line indicates the total number of words in the dictionary $(104,223)$.

A downward linear trend is observable at the beginning and a curve is present in the upper tail. From a heuristic point of view, words can be group into two subsets: mid-frequent words and frequent words.

The plots in Fig. 3.10 reveal power-law behaviour (Pareto distribution) in upper tail of documents distribution, but apparently not for the lower tail as expected. The estimated parameters by fitting the power-law (Equation 2) to the data is presented in Table 3.7.

Table 3.7. Estimated parameters of Pareto distribution and the Mean Squared Error (MSE) for LScDC

| $\alpha$ | $\beta$ | MSE |
| :---: | :---: | :---: |
| 0.5796 | 397,707 | 10737 |



Figure 3.10. (a) The number of documents ( $n$ ) versus the number of LScDC words appearing in more than $n$ documents in the LSC for whole data (b) The same plot on logarithmic scales. The y-axis is calculated by normalising $g(n)$ to the maximum (maximum- $g(n)$ ), where $g(n)$ is the number of words contained in n or less documents. The black points are the data; the red points are the fitted Pareto distribution. In (b), the slope of the line is -0.5797 .

### 3.7. A Comparison of LScDC and NAWL

This section provides a comprehensive study of comparison of the NAWL and the LScDC. Several different approaches are taken into account based on direct comparison of words and comparison of ranks of words in two dictionaries.

### 3.7.1. Academic Word List (AWL) and New Academic Word List (NAWL)

Academic word list (AWL) is developed from a written academic corpus with 3.5 million running words [70]. The corpus is gathered from four discipline specific subcorpora: arts, commerce, law and science with a seven sub-disciplines for each (see Table 3.8). Each sub-corpora has approximately 875,000 running words. The list of words is collected from a total of 414 academic texts in the form of textbooks, articles, book chapters, and laboratory manuals.

A word family is defined as the collection of words that appears in various form of the same word (e.g. indicate and indication are in the same family). To select words, three rules are taken into account:

- Specialised occurrence: Academic list does not contain the General Service List (GSL) published by West [137], defined as the first 2,000 frequent words of English.
- Range: The number of appearance of a family member has to be at least 10 in each of main discipline, and 15 or more in 28 sub-disciplines.

Table 3.8. Corpus structure of the AWL

| Discipline |  |  |  |
| :--- | :--- | :--- | :--- |
| Arts | Commerce | Law | Science |
| Education | Accounting | Constitutional | Biology |
| History | Economics | Criminal | Chemistry |
| Linguistics | Finance | Family and medicolegal | Computer science |
| Philosophy | Industrial relations | International | Geography |
| Politics | Management | Pure commercial | Geology |
| Psychology | Marketing | Quasi-commercial | Mathematics |
| Sociology | Public policy | Rights and remedies | Physics |
| 122 texts | 107 texts | 72 texts | 113 texts |
| 883,214 words | 879,547 words | 874,723 words | 875,846 words |

- Frequency: The number of appearance of a family member has to be at least 100 in the academic corpus. Frequency is the secondary criteria for range.

AWL includes 570 word families. It covers $10 \%$ of the total words in academic texts. In addition, words in West's GSL and words in AWL together (GSL/AWL) cover approximately $86 \%$ of total words in academic corpus. In Coxhead words, "Academic words (e.g. substitute, underline, establish, inherent) are not highly salient in academic texts, as they are supportive of but not central to the topics of the texts in which they occur."

The New Academic Word List (NAWL) is then created by [69] based on an updated and expanded academic corpus of 288 million words with modified lexemes. The corpus, which NAWL is created from, includes Cambridge English Corpus (CEC), oral academic discourse (Michigan Corpus of Academic Spoken MICASE and British Academic Spoken English BASE), and textbooks (Corpus of 100s topselling academic textbooks). From CEC, the frequency generated word list is used as one group. This made up the largest proportion of total tokens, about $86 \%$ (over 248 million words). The oral corpora and the corpus of textbooks are divided into four main categories: Arts and Humanities (AH), Life and Medical Sciences (LS), Physical Sciences (PS), and Social Sciences (SS). The number of tokens for each group in the corpus is presented in Table 3.9. The list is developed by the conjunction with New General Service List (NGSL) as in Coxhead's GSL-AWL. NGSL is also created by [69], which is based on 273 million words from CEC academic.

NAWL contains of 963 word families. While combined GSL/AWL covers approximately $87 \%$ of the new corpus, the NAWL covers $92 \%$ of the corpus when combined with NGSL. Therefore, NAWL gives an improvement in coverage, with about $5 \%$ more coverage [22].

Table 3.9. Corpus Structure of the NAWL

| Source |  | \# of tokens |
| :--- | :--- | ---: |
| Cambridge English Corpus (CEC) |  | $248,666,554$ |
| Oral Discourse | Arts and Humanities | 803,113 |
|  | Life and Medical Sciences | 749,610 |
|  | Physical Sciences | 686,926 |
|  | Social Sciences | 852,990 |
| Textbooks | Arts and Humanities | $6,082,267$ |
|  | Life and Medical Sciences | $16,822,357$ |
|  | Physical Sciences | $4,467,629$ |
|  | Social Sciences | $9,044,779$ |

In the published list of academic words (NAWL), the authors computed the statistics SFI (Standard Frequency Index), U (Estimated Word Frequency per Million) and D (Dispersion) to describe the number of occurrence of the words and the distribution of words in their corpus. To illustrate the information given in the list, we present Table 3.10 that shows 10 words with statistics in the NAWL, ordered by SFI values [138, 139, 140].

Table 3.10. Sample words with highest SFIs from NAWL

| Word | SFI | U | D |
| :--- | :---: | ---: | :---: |
| repertoire | 72.452 | 1759 | 0.5923 |
| obtain | 66.519 | 449 | 0.7531 |
| distribution | 65.665 | 369 | 0.6863 |
| parameter | 64.369 | 273 | 0.6943 |
| aspect | 64.190 | 262 | 0.9385 |
| dynamic | 63.506 | 224 | 0.8548 |
| impact | 63.491 | 223 | 0.9426 |
| domain | 63.467 | 222 | 0.8276 |
| publish | 62.897 | 195 | 0.9039 |
| denote | 62.571 | 181 | 0.7035 |

D shows the uniformity of frequency of the word in subject categories of NAWL in a $0-1$ scale: 0 means that the a word (all forms) appears in a single category, 1 means that frequencies are distributed over all categories proportionally to the total number of words (all inflected forms of words) in a category. U is the estimated frequency per million. It is derived from the frequency of the word in the corpus with an adjustment for D. SFI indicates frequency derived from U in a 0-100 scale. Higher scores of SFI show greater frequency [141]. A word family with $\mathrm{SFI}=90$ occurs once in every 10 tokens (all words with different inflected forms in the corpus); a word with SFI=80 occurs once in every 100 tokens [138, 139].

### 3.7.2. Difference Between the Principles in Preparation of the LScDC and the NAWL

Both the NAWL and the LScDC are actually made up of academic texts distributed over multiple categories for building academic lists of words. In this manner, two lists seem similar. However, more detailed analysis shows that they differ one another in many respects such as types of texts where words are extracted (e.g. full-text or a part of the text), kind of words included, dictionary size and the statistics used to extract words.

Let us begin with corpora where two dictionaries are created. An obvious difference of corpora lies in the types of texts. As types of texts, we meant the NAWL having extracted from full-texts from academic domains and the LScDC having extracted from abstracts of articles. This is actually an important difference as there is side effect of word limit for an abstract such as the frequency of a word and the vocabulary used. In this case, it is likely to observe changes in the statistics calculated for each word and respectively the ranks of words. The change in statistics may lead to select different words as word selection in NAWL is based on frequency and range. One other difference between two corpora is that NAWL contains oral academic discourse as well as written texts while LSC includes only written academic English. This may have influence on the words listed as spoken and written English are often different in terms of vocabulary used.

It is worth to stress that the calculation of statistics for words in the NAWL and the LScDC are different. In the NAWL, words are selected based on SFI derived from frequency. The dispersion (D) of words over categories is calculated to adjust frequency in SFI calculation. However, in LScDC words are simply sorted by the number of documents containing words. The dispersion of words and SFI are both taken into account to select words in NAWL, not all words appearing in the corpus are included in the NAWL. This difference leads to firstly difference in ranking of common words in both dictionaries, secondly kinds of words and words selected and respectively the size of the dictionaries.

One of the major differences lies in the kind of words. According to the Coxhead, words in AWL are supportive of the academic text but not central to the topics of the text [70]. Words in AWL account for approximately $10 \%$ of the total words in the collection of academic texts. The AWL and GSL (general service list) together cover approximately $86 \%$ of total words in academic corpus. By updating this list with an expended corpus of 288 million words (NAWL), the coverage was improved to $92 \%$ of new corpus when combined with NGSL (New General Service Words), with approximately $5 \%$ improvement. By a casual observation of the NAWL, one can see the same property for words in the NAWL. Words in NAWL are not much specialised technical terms such as names of chemicals or names. In
contrary, LScDC contains both supportive and topic-specific words such as mathematical terms, chemical elements, names, biological species and many more. As or aim is to quantifying meaning of research texts, we kept such words in LScDC .

Such differences in word selection also effected the size of dictionaries. As expected, the LScDC is much more larger than the NAWL, namely 963 word families in the NAWL and 104,223 lemmas in the LScDC.

### 3.7.3. Comparison of the LScDC and the NAWL

This section describes a study of comparison of the LScDC [68] and the NAWL. Our primary focus is on obtaining the coverage of NAWL by LScDC, and on analysing how the rank of words in both dictionary are related.

### 3.7.3.1. Coverage of the NAWL by the LScDC

One feature of NAWL is that words are listed by headwords of word families from combination of their derived forms. When comparing with LScDC, headwords with different inflected forms indicate the same stemmed word in LScDC (see Table 3.11). In order to examine the agreement between NAWL and LScDC, we processed stemming to headwords in NAWL. This process returns various forms of each headword into a common root as in LScDC. After stemming, words in NAWL are eliminated, with a decrease number from 963 to 895 . Note that as SFIs of two headwords, having actually the same root, are different, we used the average of SFIs for unique stemmed words.

Table 3.11. Headwords and inflected forms in the NAWL, and stems of the headwords in the LScDC

| Headword in <br> NAWL | Inflected Forms in NAWL | Stemmed <br> Headword in <br> LScDC |
| :--- | :--- | :--- |
| accumulate | accumulates, accumulated, accumulating, <br> accumulatings | accumul |
| accumulation | accumulations | accumul |
| acid | acids | acid |
| acidic | acidics | acid |

For purpose of comparison of dictionaries, stemmed words are used. Table 3.12 illustrates the comparison of dictionaries by showing the coverage of the NAWL words by the LScDC. The overlap between the LScDC and the NAWL is $99.6 \%$, with 891 word occurring in both. This means 4 words occurring only in NAWL: "ex", "pi", "pardon" and "applaus". The lower coverage of the dictionary seems to be the result of differences in types and processing of texts in corpora. The corpus
of NAWL includes full texts from academic domain [70], while LSC is made up abstracts of texts in LSC.

Table 3.12. Coverage of the NAWL by the LScDC

| Number of <br> Words in NAWL | Number of <br> Words in NAWL <br> (after stemming) | Coverage of <br> NAWL by <br> LScDC (\#) | Coverage of <br> NAWL by <br> LScDC (\%) |
| :---: | :---: | :---: | :---: |
| 963 | 895 | 891 | $99.6 \%$ |

The reason why "pi" does not occur in LScDC lies in the nature of abstracts and also in the usage of this word in articles. It is commonly used by the symbol $\pi$ (pi) in the math world, and not many articles include formulas in abstracts. Uniting prefixes with the following words is the reason that the word "ex" does not occur in LScDC. For instance, words such as ex-president and ex-wife are converted to expresident and exwife in pre-processing step. The other two words "pardon" and "applaus" are not included in LScDC. However, they occurred in LScD before removing words that appear in no more than 10 documents, with very low occurrences in documents ( 5 and 9 respectively). Similarly, these two words have low ranks on the NAWL: rank 924 and rank 956 in the list.

We also evaluated different comparison scheme that is focused on a subtly different goal: to give an understanding about what fragment of LScDC contains the NAWL. This analysis performs a search of NAWL words over a specific subset of our rank ordered dictionary, repeatedly searching NAWL words in various subsets of the dictionary. Table 3.13 and Fig. 3.11 show the coverage of NAWL in particular fragments of LScDC. From this perspective, we see that NAWL is covered in the first 89,351 ( $85.7 \%$ of all words) words of LScDC, where the frequency of 89,351 th word is 14 . Observe that when doubling the number of words from 40,000 to 80,000 there are only 8 more words found in LScDC . This means the majority of NAWL is contained in the first $38.4 \%$ of LScDC . The number of documents containing 40,000 th and 80,000 th words are 16 and 53 in the LSC. It is remarkable that in 10,000 words, the coverage of the NAWL is $90.9 \%$, with a frequency of 572 in LSC. This may be considered that the NAWL is representative of our 10,000 words ( $9.6 \%$ of LScDC ). This partly supports that wide range of LScDC is constructed by more specific terminologies of academic disciplines. This is explainable given the variety of texts' categories in corpus, differences in selection methods of words and the fact that abstracts have slightly different writing structure and words.

An alternative view of fragment comparison is to evaluate the last position of the words of a specific fragment of the NAWL in LScDC . Table 3.14 shows the fragment of NAWL and positions in LScDC. Both dictionaries are ranked by their frequencies: SFI for NAWL and the number of documents containing the word for the LScDC. We see that the first half of NAWL words is in approximately the first

Table 3.13. Coverage of the NAWL by the fragments of LScDC. The last column presents words of NAWL which are found between two fragments in LScDC.

| Fragment of <br> LScDC |  | Coverage of <br> NAWL by <br> LScDC |  | Words added between two <br> fragment |
| ---: | ---: | ---: | ---: | :--- |
| $\#$ | $\%$ | $\#$ | $\%$ |  |
| 1,000 | $1.0 \%$ | 231 | $25.8 \%$ |  |
| 5,000 | $4.8 \%$ | 678 | $75.8 \%$ |  |
| 10,000 | $9.6 \%$ | 814 | $90.9 \%$ |  |
| 15,000 | $14.4 \%$ | 845 | $94.4 \%$ |  |
| 20,000 | $19.2 \%$ | 860 | $96.1 \%$ |  |
| 25,000 | $24.0 \%$ | 877 | $98.0 \%$ |  |
| 30,000 | $28.8 \%$ | 879 | $98.2 \%$ | bizarr, terribl |
| 35,000 | $33.6 \%$ | 882 | $98.5 \%$ | comma,sneez,jazz |
| 40,000 | $38.4 \%$ | 882 | $98.5 \%$ |  |
| 45,000 | $43.2 \%$ | 884 | $98.8 \%$ | sniff, handout |
| 50,000 | $48.0 \%$ | 888 | $99.2 \%$ | unintellig, cheer, footnot, ridicul |
| 55,000 | $52.8 \%$ | 888 | $99.2 \%$ |  |
| 60,000 | $57.6 \%$ | 888 | $99.2 \%$ |  |
| 75,000 | $72.0 \%$ | 889 | $99.3 \%$ | nasti |
| 80,000 | $76.8 \%$ | 890 | $99.4 \%$ | parenthesi |
| 89,351 | $85.7 \%$ | 891 | $99.6 \%$ | whoever |

$14 \%$ of LScDC. When the fragment of words in NAWL doubles, the position became around 5 times far from the first word in LScDC . We see that there are 300 words lies between 10,967 th and 14,017 th words in LScDC ( $100-400$ ), with an interval of approximately 4,000 words. This interval is around 9,000 for the next 200 words, and followed by an interval of 55,000 for the third 200 words. Thus, we conclude that there are dense regions of LScDC in terms of the coverage of NAWL.

### 3.7.3.2. Comparison of Ranks of Words in Two Dictionaries

Our second approach to compare two lists is based on the order of words. The goal is to examine whether the ranking of words (frequency-based sorting) in dictionaries are actually similar. Note that only common words in both dictionaries (891 words) are taken into account. Words in both lists are descending ordered by their ranks in corpora, which are the number of documents containing the word in


Figure 3.11. Coverage of the NAWL by the fragments of LScDC
TABLE 3.14. Last position of the words of a specific fragment of the NAWL in LScDC. Both dictionaries are sorted by their frequencies defined.

| Fragment of <br> NAWL | Last position of words <br> of NAWL in LScDC | Fragment of <br> LScD (\%) |
| ---: | ---: | ---: |
| 100 | 10,967 | $10.5 \%$ |
| 200 | 10,967 | $10.5 \%$ |
| 300 | 10,967 | $10.5 \%$ |
| 400 | 14,017 | $13.4 \%$ |
| 500 | 17,212 | $16.5 \%$ |
| 600 | 23,188 | $22.2 \%$ |
| 700 | 78,492 | $75.3 \%$ |
| 800 | 78,492 | $75.3 \%$ |
| 891 | 89,351 | $85.7 \%$ |

LScDC and SFI in NAWL. Table 3.15 shows stemmed versions of top 10 words with corresponding statistics in two lists.

From an inspection of order of words, 7 words in the lists is in the same order in both dictionaries when LScDC is restricted by NAWL words. Such words are listed in the Table 3.16. Thus, the direct comparison of order cannot be used.

A new evaluation method is offered that focuses on pairwise comparison of partitions in dictionaries. The word lists are divided into smaller sub-lists, with the same number of intervals. We introduce an analysis that is focused on the overlapping words in intervals by counting the number of words in common. Within intervals,

Table 3.15. The top 10 words in stemmed form with corresponding statistics in lists. Blue coloured words are matches in the top 10 of two dictionaries.

| Word in <br> NAWL | SFI in <br> NAWL | Word in <br> LScDC | The number of <br> documents <br> containing the word <br> in LScDC |
| :--- | ---: | :--- | ---: |
| repertoir | 72.45 | effect | 476,757 |
| obtain | 66.52 | compar | 355,381 |
| distribut | 65.67 | activ | 255,630 |
| paramet | 64.37 | observ | 249,965 |
| aspect | 64.19 | found | 234,720 |
| dynam | 63.51 | import | 233,138 |
| impact | 63.49 | indic | 229,775 |
| domain | 63.47 | demonstr | 218,861 |
| publish | 62.89 | obtain | 218,578 |
| denot | 62.57 | condit | 205,643 |

Table 3.16. Words in the same order in both dictionaries. The LScDC is restricted by NAWL words, we ignore other words to compare raking of words in dictionaries.

| Word | Order of <br> word in the <br> lists | Number of documents <br> containing the word in <br> LScDC | SFI in NAWL |
| :--- | ---: | ---: | ---: |
| acut | 182 | 30,876 | 57.72 |
| decay | 368 | 12,761 | 55.66 |
| horizon | 543 | 4,897 | 53.83 |
| portfolio | 656 | 2,299 | 52.13 |
| kilomet | 778 | 872 | 49.14 |
| cheat | 844 | 310 | 46.02 |
| handout | 883 | 51 | 42.85 |

the common words are counted, and then the percentage of pairwise intersection of parts (total overlap) are considered to be the agreement of rating between LScDC and NAWL. As would expected, the larger width of intervals (small number of splits) yields the highest agreement of rating. The highest possible width is 891 (only 1 split) as there are 891 words in lists. To find the percentage of total overlap within intervals, the following statistical computation is done:

$$
\frac{\sum_{i} n_{i}}{N_{t}}
$$

where $n_{i}$ is the size of intersection in $i^{\text {th }}$ interval, and $N_{t}$ is the total number of words (891). We repeated the same calculation for different widths of intervals, with an increasing sequence $5,10,15, \ldots, 890,891$. For instance, when the width is 5 the lists are divided into 179 intervals: 178 complete interval with 5 words, 1 shorter interval with 1 word. Fig. 3.12 shows the fraction of the intersection in intervals with specified width. Observe that not in all cases lists are divided into equal intervals. For instance, the width 890 of interval means that there are two partitions with 890 and 1 words and so the comparison is not much meaningful in these cases. To avoid unbalanced classes, we consider only those number of intervals where partitions have almost equal widths. Fig. 3.13 and Table 3.17 show the number of intervals selected and the width of intervals for these intervals. When the lists are divided into two intervals, the fraction of overlap is 0.73 . Hence, $27 \%$ of words of a list do not lie within the same half of the other list. In addition, almost half of words are in different intervals when splitting the lists into 3 intervals, with approximately 300 words in each interval ( 300 words in two intervals and 291 words in one interval). Our findings raise the possibility that two lists are slightly different in terms of ranking words within lists.


Figure 3.12. The fraction of the intersection of words in intervals with specified width
3.7.3.3. Testing Similarity of Ranks in Two Dictionaries

The scatter plot suggests a positive correlation between frequencies in the LScDC and SFI values in the NAWL (see Fig. 3.14). In order to test whether there is any or


Figure 3.13. The fraction of the intersection of words in intervals with number of intervals and specified width. Figures present only those number of intervals and widths where partitions have almost equal widths (e.g. 2 intervals with approximately 450 words in each, 450 in one of intervals and 441 in the other interval).

Table 3.17. The percentage of the overlapping of words in intervals with number of intervals and width of intervals

| Number <br> of <br> interval | Width <br> of in- <br> terval | Percentage of <br> overlapping | Number <br> of <br> interval | Width <br> of in- <br> terval | Percentage of <br> overlapping |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 179 | 5 | $1.8 \%$ | 13 | 70 | $16.2 \%$ |
| 90 | 10 | $2.9 \%$ | 12 | 75 | $18.5 \%$ |
| 60 | 15 | $4.5 \%$ | 11 | 85 | $20.0 \%$ |
| 45 | 20 | $5.1 \%$ | 10 | 90 | $21.9 \%$ |
| 36 | 25 | $6.2 \%$ | 9 | 100 | $22.9 \%$ |
| 30 | 30 | $8.0 \%$ | 8 | 115 | $25.5 \%$ |
| 26 | 35 | $8.6 \%$ | 7 | 130 | $27.9 \%$ |
| 23 | 40 | $9.3 \%$ | 6 | 150 | $33.2 \%$ |
| 20 | 45 | $12.6 \%$ | 5 | 180 | $37.9 \%$ |
| 18 | 50 | $12.2 \%$ | 4 | 225 | $46.4 \%$ |
| 17 | 55 | $13.2 \%$ | 3 | 300 | $55.7 \%$ |
| 15 | 60 | $14.1 \%$ | 2 | 450 | $72.8 \%$ |
| 14 | 65 | $15.8 \%$ | 1 | 891 | $100.0 \%$ |

no evidence to suggest that linear correlation of ranks is present in two dictionaries, the Spearman's Rank Correlation (SRC) is used. Spearman's correlation coefficient


Figure 3.14. Relationship between the number of documents containing the word in LScD and SFIs in NAWL. The figure on the right hand side is on logarithmic scale.
is a statistical measure of the strength and direction of a monotonic association between two ranked variables. It is actually equal to Pearson's Correlation Coefficient (PCC) between two variables with ranked-values [142].

For a sample size $n$, the Spearman's coefficient $R_{s}$ is computed as:

$$
R_{s}=\frac{1-6\left(\sum d_{i}^{2}\right)}{n^{3}-n}
$$

where $d_{i}$ is the difference in the ranks of each variable pair [143].
In this study, the Spearman's correlation is calculated by assigning a rank of 1 to the highest value within each list, 2 to the next highest and so on. Fig. 3.15 presents the relationship between ranks of words in lists. The correlation between words in two lists will be high when words have a similar rank within lists. The calculation of Spearman correlation for this study gives a value of 0.58 which confirms what was found in the comparison of ranks and what was apparent from the graph. There is indeed a moderate positive correlation between two lists, which are monotonically related. We also calculated the Pearson's correlation coefficient with frequencies and logarithmic scaled-frequencies, found 0.30 and 0.61 respectively (see Table 3.18). This is expected results because we did not observe a linear relationship of frequencies, but monotonic in Fig. 3.14. However, the logarithmic scaled-frequencies show a linear relation.

### 3.7.3.4. An Alternative Comparison of Ranks of Words in Two Dictionaries



Figure 3.15. Relationship between ranks of words in lists (LScDC and NAWL)

Table 3.18. Correlation coefficients that measure the relationship between ranks of words in NAWL and LScDC: Pearson's Correlation Coefficient (PCC), Spearman's Rank Correlation (SRC) and PCC for logarithmic scaled frequencies.

| Test | Test Statistics |
| :--- | ---: |
| PCC | 0.30 |
| SRC | 0.58 |
| PCC-log | 0.61 |

Finally, we perform another analysis that is focused on ranks of words, similar to the comparison of ranks by partitioning intervals. Here, common words in both dictionaries ( 891 words) are used for analysis as in the previous comparison of ranks. The difference in this approach is the creation of intervals. Rather than dividing the whole lists into intervals, we consider the top n words by frequencies presented in dictionaries, where $n=5,10,15, \ldots, 890,891$. For instance, if $n=5$ we compare the first 5 words in dictionaries, where words are ordered by the number of documents containing the word for LScDC and SFI for NAWL. Fig. 3.16 shows the number of overlapping of words in top words for specified top n words. Note that in the figures, words are in descending order by their frequencies in both dictionary. We see that there are only 2 common words in the first frequent 20 words of lists. In the top 100 words, this number is 25 , which means $25 \%$ of words are common. This shows that the widely used words in corpora are slightly different. This may be result of the differences in calculations of statistics for words (the number of documents containing the word and SFI).


Figure 3.16. The number of overlapping of words in the top n words of the lists (width of interval) where $n=5,10,15, \ldots, 890,891$. Lists are in descending order by their statistics provided (the number of documents containing the word and SFI). The figure on right hand side presents widths until $n=100$.

We repeated this analysis for ascending order of frequencies. In this case, we consider the bottom n words, where $n=5,10,15, \ldots, 890,891$. Fig. 3.17 shows the number of overlapping of words for specified bottom $n$ words. We can see that the number of overlapped words for bottom is much more when comparing top words. There are 7 common words in the least frequent 20 words of lists and 50 common words in the bottom 100 words ( $50 \%$ of words). This means that there is an improvement in common words for the least frequent words. Dictionaries are more similar for bottom words.


Figure 3.17. The number of overlapping of words in the bottom n words of the lists (width of interval) where $n=5,10,15, \ldots, 890,891$. Lists are in ascending order by their statistics provided (the number of documents containing the word and SFI). The figure on right hand side presents widths until $n=100$.

### 3.8. Conclusion and Discussion

In this work, we presented LSC, LScD and LScDC with a description of the methodology and all steps in construction processes. Both the corpus and the dictionaries set out with the aim of quantifying the meaning in research texts in our future work.

LSC is a corpus of abstracts of academic articles and proceeding papers, where all papers are indexed by WoS and published in 2014 in English. It consists of 1,673,824 abstracts with the metadata: title, list of authors, list of subject categories, list of research areas, times cited. In 119 documents, list of authors are not present; however, we did not exclude them. The average length of abstract is 178 words (all words including stop words and different forms of words) with a minimum 30 and a maximum 500 words. Each paper in WoS is assigned to at least one of subject categories and research areas. The number of subject categories that a paper is assigned to vary from 1 to 6 in the LSC.

We then developed the LScD by extracting unique words (excluding stop words and various inflected forms of words) from the LSC. LScD is a scientific dictionary where all words are in stemmed form. It consists of 974,238 words; the number of documents containing each word and the number of appearance of each word in entire corpus are presented with the dictionary. Approximately $60 \%$ of words appear in only one document, followed by $72 \%$ for one or two documents. We observed that very few words occur very often, large number of mid-frequency words and very many words occur very rare (see Fig. 3.2). This indicates the Pareto's distribution

### 3.8. CONCLUSION AND DISCUSSION

behaviour. Pareto's law originally stated that 'number of people with incomes higher than a certain limit follows a power law'. We can reword the law as 'number of words appearing in more than a certain limit of document ( $n$ ) follows a power law' (heavytailed distribution). The Pareto distribution is fitted the data with the Pareto index 0.5752 (see Fig. 3.5).

LScDC is a core dictionary built by sub-setting the LScD. We decided to remove too rare words under the assumption that they do not contribute to the text categorisation and are likely to have noisy behaviour in the algorithms. Such words also have impact on measuring of meaning in texts by using the probabilistic approaches such as information gain. They are given almost zero score in such approaches. Therefore, we set a cut-off (10) to remove all words (in LScD ) appearing in no more than 10 documents in LSC. After removal of words, we obtained the LScDC containing 104,223 unique words. Words in LScDC , similar to the LScD, are associated with the number of documents containing the word and appearance of the word in entire corpus.

Finally, we present a comprehensive analysis of LScDC by comparing with the NAWL. The NAWL is a list of academic words containing 973 word families. Our aim is to investigate how similar two lists are in terms of mainly matched words and the ranking of words. We applied many approaches based on both direct comparison of words and pairwise comparison of partitions of dictionaries in smaller subsets.

Identification of the NAWL words in LScDC shows that out of the 895 word families (after applying stemming to the NAWL words) in NAWL, 891 were found to be included in LScDC, indicating that the LScDC represents almost complete NAWL words. Four words which appear in only NAWL are "pi", "ex", "applaus" and "pardon". These words did not appear in LScDC but in NAWL due to differences in pre-processing and types of texts in corpora.

The ranking positions of many words of NAWL words found in LScDC are slightly different from those in the NAWL itself. We hypothesize that this is due to the difference in calculation of statistics used to order words in lists. In NAWL, the ordering of words is based on both the frequency and the dispersion of words over categories (SFI), while LScDC words are ordered by the number of documents containing the word only. From the plot of frequencies of matched words (SFI against the number of documents containing the word), we observed a monotonic relationship of frequencies (see Fig. 3.14). However, the log-log plot of matched words' statistics suggests a positive correlation between statistics (linear relationship). We tested this similarity of rankings by Spearsman's Rank Correlation (SRC), Pearson's Correlation Coefficient (PCC) with statistics given and PCC with logarithmic scaled-statistics. We found correlation coefficients of $0.58,0.30$ and 0.61 respectively. This was indeed an expected result as it is the same what we observed from plots.

We then perform an analysis on ranking positions of words by checking the overlap the top $n$ words in the LScDC and the NAWL successively where $n=$ $5,10,15, \ldots, 890,891$. We report that there are only 2 common words in the top 20 words of dictionaries, followed by 25 in the top 100 words. The same analysis was repeated for the bottom $n$ words and found that there are 7 common words in the least frequent 20 words, followed by 50 common words in the bottom 100 words. From these findings, we conclude that the LScDC and the NAWL are more similar for least frequent words.

LSC is a multidisciplinary academic corpus of abstracts where the subject categories and citations are known. The dictionaries LScD and LScDC are scientific dictionaries where words are extracted from the LSC. This corpus and dictionaries will be used in a comprehensive research in quantification of meaning of research texts. The meaning of each word will be represented by an analysis of information on categories and areas of research that can be extracted from the appearance of this word in the text. Therefore, the next step will be measuring meaning in LSC texts and then using such measures in several data mining applications including prediction of impact of the paper, categorisation of texts to pre-existing categories and clustering of texts into 'natural categories'.
$\mathrm{LSC}, \mathrm{LScD}$ and LScDC are available online in $[64,67,68]$.

## CHAPTER 4

## Informational Space of Meaning for Scientific Texts

In NLP, automatic extracting the meaning of texts constitutes an important problem. Our focus is the computational analysis of meaning of short scientific texts (abstracts or brief reports). In this chapter, a vector space model is developed for quantifying the meaning of words and texts. We introduce the Meaning Space, in which the meaning of a word is represented by a vector of Relative Information Gain (RIG) about the subject categories that the text belongs to, which can be obtained from observing the word in the text.

This new approach is applied to construct the Meaning Space based on LSC and LScDC . The LSC is a scientific corpus of $1,673,350$ abstracts and the LScDC is a scientific dictionary which words are extracted from the LSC. Each text in the LSC belongs to at least one of 252 subject categories of WoS. These categories are used in construction of vectors of information gains.

The Meaning Space is described and statistically analysed for the LSC with the LSc DC . The usefulness of the proposed representation technique is evaluated through top-ranked words in each category. The most informative $n$ words are ordered. We demonstrated that RIG-based word ranking is much more useful than ranking based on raw word frequency in determining the science-specific meaning and importance of a word. The proposed model based on RIG is shown to have ability to stand out topic-specific words in subject categories. The most informative words are presented for 252 subject categories. The new scientific dictionary and the $103,998 \times 252$ Word-Category RIG Matrix are available online.

Analysis of the Meaning Space provides us with a tool to further explore quantifying the meaning of a text using more complex and context-dependent meaning models that use co-occurrence of words and their combinations.

### 4.1. Introduction

### 4.1.1. The Problem and Preliminaries

Automatic analysis of text meaning is one of the main problems in NLP. This work is focused on the computational analysis of the meaning of short scientific texts (abstracts or brief reports). The starting point is a combination of a simple BoW model with the holistic approach to the text meaning: the text is considered as a collection of words, the meaning of the text is hidden in a situation of use, which is evaluated as a whole. A space of meaning for words is created from the analysis

### 4.1. INTRODUCTION

of situations of their use and then, after detailed analysis of this space (including dimensionality reduction and clustering) we will return to the texts and introduce more complex models including words co-occurrence analysis, combination of word's meaning etc.

First of all, we have to consider the "meaning of meaning". This is an extremely deeply discussed topic, since antiquity till modern time (see, for example, [144, 145, $146,147]$ ), but the consensus is still on the way. We start from the Wittgenstein formulation: "Meaning is use" or, in more detail, "For a large class of cases though not for all - in which we employ the word 'meaning' it can be defined thus: the meaning of a word is its use in the language" $[1, \S 43]$.

This idea was widely discussed. This chapter aims to propose an approach to computational analysis of meaning for a large family of texts. The texts we work with (abstracts or brief reports) have well defined dominant communicative function: this is the representative function. An elementary basic scheme of the correspondent act of communication is presented in Fig. 4.1. In this scheme, we see two representations of the situation on the blackboard of consciousness: the sender's representation of the situation and the receiver's representation of the situation. Moreover, the represented situations can be different. In fact, they are always different, and special tools are invented and used to make them as close as possible when necessary. The situations are not compulsory real. They can be real, possibly real or imaginary, and even impossible.

It is necessary to stress that the sender's and the receiver's representations never coincide and:

- Do not represent any situation 'in detail' and, therefore, can represent parts (or projections, let us recall the Plato's Cave allegory) of many different situations at the same time;
- Can include internal contradictions and, therefore, can represent nothing possible in reality;
- Can partially represent different situations, that is, can be 'chimeric' combinations of different possible real or imaginary situations.

There are two 'translation' operations in the scheme Fig. 4.1: (i) from the sender's representation of the situation to the text of the message and (ii) from the text of the message to the the receiver's representation. Both these operations depend on much wider context of the communication including experience of the sender and receiver. Of course, the standard scientific communication assumes that there may be many receivers and the sender can be not a single person. This one-to-many or even many-to-many communication adds more situations and representations and may also add some less trivial multi-agent structures with additional communication channels.



#### Abstract

Figure 4.1. The idealised scheme of the act of communication. There is a representation of a situation on the sender's 'blackboard of the consciousness' (a representation 1 of a situation 1). A text related to this situation is generated by the sender (translation 1). This text is transmitted to the receiver and transformed by him into a representation of a situation (representation 2 of a situation 2 ). The situation can be the situation in a real world, the imaginary situation in a possible world, an impossible situation in an impossible world, a chimeric situation combined from several possible or imaginary situation, and so on. We do not study the relations of representation to reality, but only consider the chain: Representation $1 \rightarrow$ Text $\rightarrow$ Representation 2.


We consider using the language to transmit information about the represented situations (Fig. 4.1) and neglect many other uses of the language, from military orders to psychological manipulations. The scheme of the act of communication (Fig. 4.1) includes just very basic elements and can be elaborated in much more detail. Here we should refer to the classical works of G.P. Shchedrovitsky [7, 148] and J. Habermas $[\mathbf{1 4 9}, 150]$. For our purposes in this work, the basic scheme (Fig. 4.1) is sufficient.

According to Shchedrovitsky [7], at the level of 'simple communication' there is no 'meaning' different from the processes of understanding themselves, which correlate and connect the elements of the text message with each other and with the elements of the situation being restored.

Meaning, for our analysis, is hidden in the relationship between the representation of situations on the 'blackboard of the consciousness' and the texts of the messages. That is, a formal analysis of meaning requires the formalisation of translation operations presented in the scheme of a communication act (Fig. 4.1). Moreover, we can state that we understand the meaning of meaning if and only if we can produce such a translation. This translation is context-dependent, the unique experience of the sender and the receiver is involved in this context, so the task of "reproducing

### 4.1. INTRODUCTION

the translation" is not fully feasible. Moreover, understanding can be represented as a reflexive game [2] with different levels (The sender prepares a message taking into account the experience of the receiver, his goals and tools, and guesses that the receiver takes into account the experience of the sender, his goals and tools, and... Analogously, the receiver tries to understand the message taking into account..., etc.)

The relation between the text and the representation of the situation cannot be considered as a bijection (both for sender's and receiver's representation). It is many-to-many correspondence: each text corresponds to many situations and each situation can have many representing texts. Moreover, the further consistent formalisation requires the notion of fuzzy many-to-many correspondence elaborated for relational databases [151].

According to Mel'čuk $[3,4,5,6]$, the natural language is "the meaning to text and text to meaning transformer". He accepted a very strong hypothesis that we are able to describe meaning in a special semantic language.

We prefer to be more flexible at this point and characterise a situation "behind the text" by a set of attributes, the method of this characterisation can be changed and does not give a unique and exhaustive presentation of it.

Despite the multiplicity of possible translations, creating of a plausible translation (one of many possible versions) and description of the cloud of such versions of translation can be challenging. This problem resembles the translation problem for natural languages. Now, after impressive progress of machine translation, it seems to be a very attractive idea to apply the modern machine learning tools and encoder-decoder approach [152] to analysis and simulation the translation operations Representation $1 \rightarrow$ Text $\rightarrow$ Representation 2 (Fig. 4.1).

Huge digitized collections of texts exist and are available online. On the contrary, unfortunately, there is no generally accepted common tools for working directly with representations of situations. Various philosophical and logical aspects of this problem were discussed previously by many authors (see, for example, the book 'Representation and reality' [153]).

We do not have a universal toolbox for work with all representations of situations and cannot propose a general solution to this problem. Such a solution, perhaps, is impossible in a finite closed form despite many efforts over decades. Our goal is more modest. We will provide computational analysis of relations between texts of messages and representations of situations for a large collection of brief scientific texts. To do this, these representations must be standardised, at least in part, and expressed in the form of diagrams, specially organized texts or other means.

The simplest approach is to replace the situation representations with the values of some attributes. This approach is not only the simplest, but also quite universal. Many forms of more specific descriptions of situations can be transformed into

### 4.1. INTRODUCTION

vectors of attributes. The choice of attributes can be very broad. A classical collection of examples is provided by various version of sentiment analysis. We aim to provide another basic example specific to scientific texts: a list of scientific subject categories that the text belongs to. The list of 252 possible categories is generally accepted and standardised by WoS. Of course, the variety of possible extensions and modifications of the set of attributes characterising the situation is virtually infinite.

Initially, in the act of communication, the situation is not represented by a universally conventional set of attributes. The introduction of attributes is an additional operation external to the communication and is not included in the scheme of simple communication (Fig. 4.1). Moreover, an additional operation must be performed for the selected set of attributes: evaluating their values. This operation can be done either on the sender's side (Fig. 4.2), the receiver's side (Fig. 4.3), or by combinations of these approaches. For example, categorisation of a brief scientific texts is a result of combined efforts: the authors select the categories by their choice of the journal, of the keywords, or by the pointing the categories directly, then the editors can have their own choice, then WoS can finalise the list of subject categories for this text.

For most information services, the choice of subject categories is the result of an understanding of the text by many agents and conflicts of understanding are possible. Even on a famous and very 'liberal' preprint server, arXiv, moderators can sometimes change the category selected by the authors. For example, an author may decide that his paper belong to the category 'condensed matter', whereas the moderator may look through the paper and understand that the main category is not 'condensed matter' research but rather 'nonlinear science' (this was a real life example). This simple example is important because it demonstrates that the content of the text may differ from its meaning: the text contained an explicit reference to 'condensed matter', but this content was questioned by the moderator, since in his understanding the research refers mainly to nonlinear science, and not to condensed matter. There are important differences between the concepts of 'meaning' and 'content' $[\mathbf{7}]$, which are often confused (just as understanding the situation behind the text is often confused with recognising the content of the text).

In the general case, agents who are looking for the meaning of the text can be both humans or computer systems. The latter understand the text in the sense that they define the attributes of the situation behind the text. In our analysis below, the starting point is the combination of the text with the list of the subject categories the text belongs to ( $1,673,350$ abstracts and 252 categories).

The core idea of this approach goes back to the lexical approach of Sir Francis Galton. He selected the personality-descriptive terms and stated the problem of their interrelations for real persons. This work was continued by Thurstone [8]. He selected sixty adjectives (attributes of a person that are in common use). The


Figure 4.2. Parallel (sender's) generation of the learning set for computational analysis and quantification of meaning. One of the main problems is the relationship between the content of texts and the evaluated attributes of the situation.


Figure 4.3. Antiparallel (receiver's) generation of the learning set for computational analysis and quantification of meaning. One of the main problems is the relationship between the content of texts and the evaluated attributes of the situation.
respondents ( 1300 persons) were asked to imagine a person they knew well and to select the adjectives that can best describe this person. That is, a person was described by a 60 -dimensional Boolean vector. The coordinates correspond to the attributes, the value is 1 , if the attribute was selected to characterise the person, and 0 otherwise. Factor analysis gave five factors. After many years of development and discussions, the modern five-factor personality model became one of the common tools in psycho-diagnosis [9, 10].

In psycholinguistics, Osgood with co-workers [11] used a similar approach for creation of the 3D space of meaning by extraction of three 'coordinates of meaning' from the evaluation of the 'affective meaning' of words (objects) by people. These three coordinates are three extracted factors: Evaluation, Potency, and Activity. Of course, the researches started from many different scales and these three were extracted by factor analysis.

Galton, Thurstone, Osgood and their followers asked respondents to evaluate a single object or person. Nevertheless, we can guess that these evaluations were related to some situations with this single object or person, not just to an isolated abstract object. The people evaluated not the abstract 'terms' but the psychologically meaningful situations behind these terms. These situations were the sources of the 'affective meaning' or the personality evaluations. For example, if we evaluate a person as accurate, reliable, and friendly then we have in mind some situations where these properties were demonstrated. The same, if we evaluate a 'dog' as strong, good, and active (or, say, weak, bad and active), we have in mind a dominant situation which we associate with a dog.

The 'affective meaning' or psychological properties do not seem reasonable tools for description of the situations behind scientific texts. In our world of abstracts and brief scientific texts, there is another, scientifically specific description of the situation of use - the categories of the text. There are 252 WoS categories for the LSC, to which the text could belong (see Table C.2). These categories can intersect: a text can belong to several categories. We will use these 252 binary attributes (the text belongs to a given category, or does not belong to it) as a basic description of the situation.

The categories evaluate the situation (the research area) related to the text as a whole, not as a results of the combination of words' meaning. In this holistic approach, we define the general meaning of a word in short scientific texts as the information that the use of this word in texts carries about the categories to which these texts belong. More specifically, that is the RIG about the subject categories that the text belongs to, which can be obtained from observing the word in the text. This RIG is defined for each word and each category. Thus, a meaning of a word is represented by a 252 -dimensional vector of RIGs. We create and study this space of meanings.
(1) We intend to analyse the meaning of scientific texts.
(2) We considered the specific world of the texts - the abstracts of research papers.
(3) We narrowed the whole world of abstracts to a sample: 1,673,350 texts from the Leicester Scientific Corpus [13].
(4) We characterize the research situations behind the text by 252 binary attributes - the scientific WoS categories.
Thus, to follow this way, we need a triad: dictionary, texts, and multidimensional evaluation of the situation of use presented by the categories. We prepared the first two elements in the previous chapters and the results are available online $[112,64$, 68]. Now, we start to create the space of meaning.

In our case study, we employed very simple attributes for description of the text usage situation, the research subject categories of the text. This list of attributes can be modified and extended. The level of detail of the Meaning Space can vary greatly within the framework of the proposed approach.

### 4.1.2. Approaches to Meaning of Words

Let us take a quick look at some relevant ideas about quantifying the meaning of words. Quantifying the meanings of words in a metric space might be used to measure the meanings of texts in the same metric as a BoW. A key issue in understanding the meaning of texts is to use a precise metric based on words' meanings. In classical psycholinguistic studies it is common to allocate words in a metric space based on their semantic connotations $[\mathbf{1 5 4}, \mathbf{1 5 5}]$. Semantic space model is a representation technique where each word is assigned to a point in high dimensional vector space. VSM is one of the most attractive models for researchers since it makes semantics computable [156]. Osgood hypothesised 3-dimensional semantic space to quantify connotative meanings in his theory of Semantic Differential concerning psychological and behavioural aspects [11, 12, 157]. The semantic space in his work was built by, in his words, 'three orthogonal bipolar dimensions': Evaluation (E), Potency (P) and Activity (A) where each word is uniquely located on. Following this method of semantic differential, many studies have been attempted by both psychologists and linguists to identify new dimensions of semantic space and to measure the meaning $[11,155,158,159]$. The structures of semantic spaces are constructed differently by various researchers.

From the perspective of distributional linguistics, a semantic space model is a representation technique for contextual similarity of words by their co-occurrence counts. Distributional hypothesis was introduced by Harris [160] and Distributional Semantic Models (DSM) were then proposed to represent word semantic by distributional vectors $[156,161,162,163]$. This idea claims that words' similarity can be characterised by their distribution of contexts $[164,165]$. The model offers
that each word is represented by distribution of its contexts and the distribution of contexts can be learnt from the co-occurrence. The axes in the space are determined by local word co-occurrences and the similarity of a word is measured by its position found by counting co-occurrences to other words in this semantic space [166]. This means that a word's distributional context is represented by a vector of co-occurrences with other context words in a window, where a window can be a certain number of words or lemmas (e.g. words, phrases, sentence, paragraph or document).

Researchers in cognitive studies and information retrieval noted that usage of raw co-occurrence counts is problematic as semantic similarity will have frequency bias [159]. It is proposed that degrees of similarity between word occurrences can be assigned. Different approaches are used to avoid this problem by weighting of elements of the vector. Latent Semantic Analysis (LSA) is one of vector space models in NLP, in particular DSM, for estimating and representing the meaning of word based on statistical computations $[167,168]$. In LSA, word senses (or meanings) are approximated in high dimensional space by its effect on the meaning of contexts in which it occurs [169]. Relationship between texts based on their words and relationship between words based on their appearances in texts are analysed simultaneously in order to extract relations of words in terms of their contexts.

LSA has been used for an adequate theory of word meaning by researchers from a wide range of research areas including psychology, philosophy, linguistics, information retrieval and cognitive science $[170,171,172]$. In cognitive science, the focus is to model human memory by activating the meaning potentials by other words in the context under the assumption that cognitive components of meaning of word are linked in a semantic-based network and changes dynamically [173]. It is assumed that human knowledge acquisition actually follows the same process that LSA does: checking events in their internal and external environments and deriving the knowledge from a high dimensional semantic space by a procedure like dimension reduction $[\mathbf{1 7 4}, \mathbf{1 7 5}]$. Here, the semantic space is used as a basis for all cognitive processing. Although LSA supplies a useful simulation of human cognitive processes, it is argued that LSA knowledge base does not provide a complete modelling of cognition [174]. There are limitations in modification of context and updating the model of semantic dimensions - in this knowledge base - which are characteristic of analytic thinking and dynamic structure of the human cognitive processes [176]. Even if this problem is solved, there are other fundamental semantic problems for LSA such as polysemous words. In LSA, when each word is represented as a single context-free vector in the semantic space, different meanings or senses of a word is not taken into account [167].

This problem matches the task of characterisation of word meaning by its dictionary senses in Word Sense Disambiguation (WSD). WSD is defined as a task to

### 4.1. INTRODUCTION

determine the word sense (meaning) by the use of the word in a context in NLP and Machine Learning. In traditional word sense studies, meaning of a word is characterised by mutually disjoint senses covered in dictionaries as the best fit to the its dictionary senses [177]. By both linguistics and psychologists, it has been argued that clear distinctions of senses can be difficult in certain contexts due to fluctuations of meaning in context $[\mathbf{1 7 1}, \mathbf{1 7 3}, \mathbf{1 7 8}]$, especially for polysemous words. Hanks (lexicographer) pointed this problem in his paper where he questioned 'Do word meaning exist?' [173] as:

> "...words have meaning potentials, rather than just meaning. The meaning potential of each word is made up of a number of components, which may be activated cognitively by other words in the context in which it is used. These cognitive components are linked in a network which provides the whole semantic base of the language, with enormous dynamic potential for saying new things and relating the unknown to the known."

The problem of 'fluctuation of meaning in context' is also important in theories of mental representation of word senses in Psychology. This was very well discussed by Kintsch $[167,174,179,180]$ who stressed the complexity of representation of polygamous words into a single vector in the semantic space in LSA. He questioned 'How is the meaning of words represented in the mind?' and discussed the problem in the aspects of 'mental lexicon' and 'generative lexicon' approaches to the representation of meaning [178]. He came up with the result that both mental lexicon and generative lexicon approaches have limitations in representation of the meanings when word meanings are constructed by their explicit definitions due to multiple senses of words and the flexibility of word meanings. He then discussed the implicit way to define word meaning: relations of the word to other words in the context. According to his research, LSA allows us to modify word meaning by situating the meaning as a vector in high-dimensional semantic space. In this case, the full meaning of the word is not defined, but it is explained in a relational system by only its semantic relationships with other words. He argued that standard composition rule for vectors in LSA does not distinguish the different meanings of a word; therefore, word meanings should be modified according to the different context where it appears in - by context-sensitive composition algorithms.

Polysemy is one of the characteristics of words in all natural languages. Psycholinguistic studies approach this phenomenon to answer questions of how to represent multiple senses in mental lexicon and how to activate senses during language comprehension [172]. The mental lexicon here can be considered as a mental repertoire containing the list of meanings or senses in the mind. Linguistics proposed several approaches for sense representation in mental lexicon, basically classified as separate sense representation and single core representation. Even though
some polysemy studies argue the discreteness of sense storage in mental lexicon [171, 181, 182], the majority of studies suggests that polysemous senses can overlap in their mental representations [177, 183, 184, 185, 186].

Moreover, polysemy of words is one of major focuses in distributional semantics and it is yet to be studied $[187,188,189]$. Some researches in distributional semantics have made modelling the differences of meanings in two occurrences of a word in different contexts possible by developing specialized models for word meaning [190, 191, 192, 193]. Such methods do not approach to word meaning by considering disjoint senses. Alternative models were purposed in which word meaning is not just extracted by pre-defined senses, but from the links between words and their window-based context words. To extract 'contextualised meaning' of a word or a set of words, co-occurrence vectors are constructed and vector operations are used [191, 192, 194, 195]. A probabilistic method that word meaning is modelled as a probability distribution over latent dimensions (senses) was applied by [192, 194]. Contextualized meaning was build as a change in original sense distribution. Cruys, Poibeau and Korhonen then purposed a model in which latent space is used to identify important dimensions for a context and adapt to vector of words constructed by the dependency relations with window-based context words [196].

### 4.1.3. Quantification of Meaning and Space of Meaning for Scientific Texts

In academic disciplines, the notion of meaning of a word was analysed in many works ranging from psychology to linguistics, philosophy to pedagogy and computer science [197, 198]. Technical innovations in computerised methods and extensive psycholinguistic and neurolinguistic experiments have made investigating word meanings in different perspectives and linking between the language and cognition, and the language in people's mind possible.

There is no unique way to represent meanings that can be used in all theories of lexical semantics from different perspectives. Semantics studies require different semantic representations on the formalism for meaning of word [199]. According to Kintsch, philosophers work with meaning of concepts instead of words, psychologists mostly study concept formation than vocabulary acquisition and linguistics work on meaning of word [174]. But, at this point precise representing and approximating the meaning of concept or specially a text such as sentences, passages or documents are still active problems in NLP and all other disciplines concerning with 'meaning'.

In this research, we specifically focus on meanings in scientific texts. We concern with how meaning can be extracted by analysing the large scientific corpus. Our fundamental assumption is that the meaning of a text can be extracted from the occurrence of its words in texts across the scientific categories. We hypothesize that there is a great connection between the meaning in a text and the vocabulary used

### 4.1. INTRODUCTION

in the text; however, we cannot say that each word has the same importance in all research disciplines. In fact, words have scientifically specific meaning in texts based on differences of use in subject categories and these meanings can be estimated from their occurrences in texts within categories. Difference in word meanings for categories correlates with the difference in distribution of words across categories. As they are scientific texts, we consider that occurrence of these words in texts of categories can be used in characterisation of word meaning for science.

Our approach to quantifying the meaning of a word differs from measuring its meaning on the basis of human sensations and feelings, as in psycholinguistic studies. Although measuring the meaning of a word in context by characterization through its dictionary meanings has many important implications in computational linguistics and psycholinguistic research, we do not focus here on dictionary meanings. Rather, we create a model for word representation that allows us to extract the meaning of a word through its importance in various scientific fields without distinguishing its dictionary meanings. We approach the meaning of a word through the predictive power of a corpus analytical procedure under the assumption that the meaning of a word is determined by its use in scientific disciplines. This actually matches the statistical semantics hypothesis that 'statistical patterns of human word usage can be utilised to figure out what people mean' [156]. We can also reword this as 'statistical patterns of word usage in scientific fields can be used to figure out what a text means'.

In these relations, the meaning of a word is defined as a vector of RIGs from the word to a category. Given such information, meaning can be defined for each word and then for research text [112]. A natural way to formalise this is to represent words as vectors and texts as sets of vectors in a specially constructed space. Differences in the distributions of vectors reflect differences in meaning of texts. This technique allowed us to represent each word by a distribution of numerical values over categories and meaning in text through a vector space model, that is, quantifying of meaning.

In many semantic studies, the vector space is obtained by co-occurrence of words as discussed before. There are currently two broad VSMs based on co-occurrence: word-word and word-document where vectors are (normalised) frequency counts and dimensions are contexts (words or documents)[200]. Vectors are called context vectors in this case, and words are represented by the context vectors. In distributional hypothesis, these vectors are used to compute vector similarity. However, co-occurrence models are plagued with efficiency in real-word applications [200]. There are two main problems in the usage of such approaches: first is the dimensionality in contexts vectors and the second is sparse data problem. In the first problem, the dimension of co-occurrence matrix will tend to be extremely big for large data. In the second problem, as the vast majority of words occurs in a very

### 4.1. INTRODUCTION

small fraction of set of contexts [118], the majority of the entities of vectors will be zero. Therefore, the co-occurrence matrix will not give reliable results for large data and brief texts. Additional to these two problems, specifically, usage of co-occurrence is not appropriate for the representation of scientific texts due to multidisciplinary researches in the collection [112]. Therefore, we introduce a new vector space to represent word meaning based on words' informational importance in the subject categories.

We begin by creating a space to represent words meaning. The Meaning Space is defined as a vector space, in which coordinates correspond to the subject categories. A word is represented by a vector of RIG about the subject categories that the text belongs to, which can be obtained from observing the word in the text. This approach allows us to identify the importance of the word for the corresponding category in terms of information gained when separating the corresponding category from its complement (like, for example, separating texts in category 'algebra' from the text that do not belong to this category).

To define RIGs, we consider the following two attributes of text $d$ for a given word $w_{j}$ and a given category $c_{k}$ :

```
\(c_{k}(d)\) : The text \(d\) is in the category \(c_{k}\) : Attribute values are Yes \(\left(c_{k}(d)=1\right)\)
    or No ( \(c_{k}(d)=0\) );
\(w_{j}(d)\) : The word is in the text: Attribute values are Yes \(\left(w_{j}(d)=1\right)\) or No
    \(\left(w_{j}(d)=0\right)\).
```

The corpus is considered as a probabilistic sample space (the space of equally probable elementary results, each of which is a random selection of text from the corpus). RIG measures the (normalized) information about the value of $c_{k}(d)$, which can be extracted from the value $w_{j}(d)$ (i.e. from observing the word $w_{j}$ in the text $d)$ for a text $d$ from the corpus.

As we have a number of word vectors, it is convenient to organise the vectors into a matrix. These vectors are used to construct Word-Category RIG Matrix, in which rows correspond to words and columns correspond to categories. Each entry in the matrix corresponds to a pair (category,word). Its value for the pair $\left(c_{k}, w_{j}\right)$ shows the RIG on the belonging of a text from the corpus to the category $c_{k}$ from observing the word $w_{j}$ in this text. Word-Category RIG vectors estimate the meaning of words as their importance in the research fields. Thus, row vectors in the Word-Category RIG Matrix indicate words' scientific meanings.

This approach computes a distributional representation (RIGs) for a word across all research subjects (RIGs in categories). Following to the distributional semantic hypothesis, if words have similar row vectors in the Word-Category RIG Matrix, they tend to have similar meanings. The hypothesis is that if texts have a similar distributions of word meanings - similar clouds of word meanings vectors - then they tend to have similar meanings.

### 4.1. INTRODUCTION

We note that proposed hypothesis does not require an explicit distinguishing between homonymy and polysemy for words; it only requires linking the meaning of words to their importance in categories. With this approach, vocabulary meanings do not directly affect the representation of the meaning of the word. Rather, the meaning of a word is characterized through its measured information content in various scientific subject categories.

In this research, we present the first stage of 'quantifying of meaning': construction of the Meaning Space and representing word meaning as a vector of RIGs for categories in this space. Such an understanding of meaning of words can help analyse the meaning of the texts. Having quantified meaning of words, one can represent all words in a corpus and then texts in the Meaning Space. Specifically, each text in the corpus is a cloud of RIG vectors and the text meaning can be later estimated and constructed by these distributions. Analysis of texts will be focused in the next stage of the research. Text analysis will be the next stage of the research. The earliest (preparatory) stage of the project was presented in $[64,112]$.

The empirical analysis of this research is based on the LSC which includes $1,673,350$ texts [13] and LScDC of 103,998 words [15]. The main hypothesis for construction of the Meaning Space is: meaning is the vector of information gains from the word to the categories assigned to the text. We used 252 categories of WoS.

We evaluated the Meaning Space and representation of word meaning in this space through top-ranked words in each category. We constructed the Word-Category RIG Matrix for the LSC [16]. The most informative words in each category are presented. It is shown that the proposed representation technique stands out topicspecific words in categories. We compared this approach with the representation technique where words are represented by vectors of their raw frequencies in categories. Words are ranked by both frequencies and RIGs in categories. We demonstrated that frequencies are not much useful for identifying the most informative words in categories. We concluded that frequency is not much important in this sense.

For each word in the LScDC, the sum and maximum of RIGs in categories are calculated and added at the end of the Word-Category RIG Matrix. Words can be ordered by their informativeness in scientific texts by these two criteria. The most informative $n$ words for scientific texts can be extracted by ordering/sorting words in column of the sum or maximum of RIGs. We compared these two ordering criteria by counting the number of matches in the top $n$ words, where $n$ ranges from 100 to 50,000 . We concluded that the majority of the first 100 words do not match, with $28 \%$ matched words. The intersection of words reaches to approximately $50 \%$ for the top 1,000 words, and then $99 \%$ for the top 50,000 words.

### 4.2. REPRESENTATION OF WORDS BY VECTORS IN THE MEANING SPACE

Finally, we created a scientific thesaurus in which the most informative words were selected from the LScDC by their average RIGs in categories. The thesaurus was called Leicester Scientific Thesaurus. LScT contains the most informative 5,000 words in the corpus LSC. These words are considered as the most meaningful words in science. The full list of words in LScT is available online [16].

### 4.1.4. The Structure of This Chapter

This chapter is organised as follows. In Section 4.2, the Meaning Space is constructed and the representation of words by vectors in the Meaning Space is discussed. Given the representation of words by vectors of RIGs, we look at words ordered by their RIGs in each category. In Section 4.3, we present the first findings of the new representation technique and the anomalies detected in the data by this model. To avoid a possible abnormal appearances of the words in the categories, we apply a further cleaning procedure of the LSC. The latest versions of the LSC, dictionaries LScD and the LScDC are described $[\mathbf{1 3}, \mathbf{1 5}, 201]$. Finally, we construct the Word-Category RIG Matrix for the LSC [16] and discuss the experimental results in this section. In section 4.4, we introduce the LScT, in which there are 5,000 of the LScDC words selected by their average RIGs in categories. In Section 4.5, the conclusion and outlook are summarised.

### 4.2. Representation of Words by Vectors in the Meaning Space

In this section, we discuss the architecture of our approach to estimating the word meaning in a collection of documents. We assume that the dataset is a large corpus of natural language scientific texts and each text in the corpus belongs to at least one subject category. We hypothesize that words have scientifically specific meaning in categories and the meaning can be estimated by information gains from the word to the category. Before inquiring into the measurement of the meaning, we will mention how to represent each word as a vector of frequencies in categories. We then introduce a new approach to word meaning, in which each word is represented by a vector of RIGs in the Meaning Space.

### 4.2.1. Representation of Words by Vectors of Frequencies in Categories

In this section, we review how to represent a word in a vector space model by using appearances this word in texts belonging to subject categories. A word representation method is defined in order to indicate term absence/presence in texts of categories. Each word is represented by a vector of frequencies in categories. That is, the number of presence of a word is calculated by how frequently this word is observed in texts belonging to the category. Each entry of the vector consists of the number of texts containing the word in the corresponding category.

### 4.2. REPRESENTATION OF WORDS BY VECTORS IN THE MEANING SPACE

It is noteworthy that texts in a corpus do not necessarily belong to a single category as they are likely to correspond to multidisciplinary studies, specifically in a corpus of scientific researches. In other words, categories may not be mutually exclusive.

For every word $w_{j}$ from the dictionary $(j=1, \ldots, N)$ and every text $d_{i}$ from the corpus $(i=1, \ldots, M)$ the indicator $w_{j}\left(d_{i}\right)$ is defined. If the word $w_{j}$ occurs in the text $d_{i}$ (once or more), then $w_{j}\left(d_{i}\right)=1$. Otherwise, $w_{j}\left(d_{i}\right)=0$.

Let $D_{k}$ be a set of texts in the category $c_{k}$. The frequency of the word $w_{j}$ in the category $c_{k}$ is

$$
w_{j k}=\sum_{d_{i} \in D_{k}} w_{j}\left(d_{i}\right),
$$

This $w_{j k}$ is the number of texts containing the word $w_{j}$ in the category $c_{k}$.
The vector of frequencies is defined for each word $w_{j}$ from the dictionary. Let us use the notation $\overrightarrow{w_{j}}$ for it. Coordinates of these vectors are $w_{j k}$, where index $k=1, \ldots, K$ corresponds to the subject categories.

Thus, each word $w_{j}$ in the corpus is represented by a vector of frequencies $w_{j k}$ denoted by

$$
\overrightarrow{w_{j}}=\left(w_{j 1}, w_{j 2}, \ldots, w_{j K}\right),
$$

where $K$ is the number of categories in the corpus. The collection of vectors, with all words and categories in the entire corpus, can be shown in a table. Each entry $w_{j k}$ of the Table 4.1 corresponds to a word and a category.

Table 4.1. The structure of dictionary representation by frequencies $w_{j k}$

| Word | Category | $c_{1}$ | $c_{2}$ | $\cdots$ | $c_{K}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w_{1}$ | $w_{11}$ | $w_{12}$ | $\cdots$ | $w_{1 K}$ |
|  | $w_{2}$ | $w_{21}$ | $w_{22}$ | $\cdots$ | $w_{2 K}$ |
|  | $\vdots$ | $\vdots$ | $\vdots$ |  | $\vdots$ |
|  | $w_{N}$ | $w_{N 1}$ | $w_{N 2}$ | $\cdots$ | $w_{N K}$ |

The number of documents in the category $c_{k}$ is $\left|D_{k}\right|$. Importantly,

$$
\left|D_{k}\right| \leq \sum_{j} w_{j k}
$$

as each text usually has more than one word, and several different words can belong to the same text. To simplify the notation for further calculations, we now define the set of texts containing the word $w_{j}$ as $D^{j}$. We note that

$$
\left|D^{j}\right| \leq \sum_{k} w_{j k}
$$

and equality holds in the case when categories are mutually exclusive.

### 4.2. REPRESENTATION OF WORDS BY VECTORS IN THE MEANING SPACE

The number of texts in the categories varies widely, so $w_{j k}$ is expected to increase as the number of texts in a category increases. This does not necessarily mean that a word rarely appearing in a category is less important for this category than for other categories in which the word appears more frequently (see the definition of information gain in the next section). Therefore, direct usage of frequencies may result inappropriate findings in quantification of words' meanings.

Given the collection of vectors, various schemes for normalisation can be performed to adjust the vectors $\overrightarrow{w_{j}}$ to a common scale. The simplest and the most popular approach for normalisation is transformation to a vector where the sum of the elements is 1 , that is normalisation to unite $l_{1}$ norm. For the mutually exclusive categories, this normalisation is related to the law of total probability. The objective of this normalisation scheme is to make vectors comparable by rescaling them to the same length in the $l_{1}$ norm. For a given vector $\overrightarrow{w_{j}}$, the normalisation can be performed as

$$
P_{j k}=\frac{w_{j k}}{\sum_{i} w_{j i}}
$$

where $\sum_{k} P_{j k}=1$. It should be stressed that when categories are not exclusive, $\sum_{k} w_{j k}$ is not the total number of texts containing the word $w_{j}$. In other words, texts containing the word could be counted more than once in the sum.

In similar way, the column vectors can be normalised as

$$
Q_{j k}=\frac{w_{j k}}{\sum_{i} w_{i k}} .
$$

However, this representation does not indicate the proportion of exact number of texts in the category.

A reasonable normalisation can also be obtained in two-steps:
(1) Normalize each frequency:

$$
w_{j k} \mapsto \frac{w_{j k}}{\left|D_{k}\right|} ;
$$

(2) Normalize the matrix to the unite sum in rows.

As a result, $w_{j k}$ will be transformed into

$$
\frac{w_{j k}}{\left|D_{k}\right| \sum_{i} \frac{w_{j i}}{\left|D_{i}\right|}} .
$$

In calculation of RIGs below, the estimation of probabilities are used based on the table of frequencies. For ranking of words in categories, the raw frequencies were also used and compared to RIG-based ranking.

### 4.2.2. Word Meaning as a Vector of RIGs Extracted for Categories

Having a collection of frequency vectors, it is easy to calculate the vectors of information gains (from observing the word in the text to categories which the text

### 4.2. REPRESENTATION OF WORDS BY VECTORS IN THE MEANING SPACE

belongs to). These vectors will quantify the meaning the words. The hypothesis here is that the informational content of a word about each category can be measured by comparing the appearance of a word in texts of a given category and its appearance in texts not related to this category (i.e, how the presence/absence of the word in texts can help to separate the category from its set-theoretical complement).

A general concept for computing information is the "Shannon entropy" introduced by Shannon [202]. Information Gain (IG) is a common feature selection criterion in machine learning used, in particular, for evaluation of word goodness $[122,203]$. The information gain is the measure of the information extracted about one random variable if the value of another random variable is known. It is closely related to the mutual information, that measures the statistical dependence between two random variables. The larger value of the gain means the stronger relationship between the variables. The information gain of random variable $A$ with values (or states) $a_{1}, \ldots, a_{n}$ from the random variable $B$ with values (or states) $b_{1}, \ldots, b_{m}$ is defined as:

$$
\begin{align*}
I G(A, B)= & -\sum_{i=1}^{n} P\left(A=a_{i}\right) \log _{2} P\left(A=a_{i}\right) \\
& +\sum_{j=1}^{m} P\left(B=b_{j}\right) \sum_{i=1}^{n} P\left(A=a_{i} \mid B=b_{j}\right) \log _{2} P\left(A=a_{i} \mid B=b_{j}\right) \tag{3}
\end{align*}
$$

where $P\left(A=a_{i}\right)$ is probability of observing the value $a_{i}$ of the random variable $A, P\left(B=b_{j}\right)$ is probability of observing the value $b_{j}$ of the random variable $B$, $P\left(A=a_{i} \mid B=b_{j}\right)$ is conditional probability of observing the value $a_{i}$ of the random variable $A$ given the value $b_{j}$ of the random variable $B . I G(A, B)$ measures the number of bits of information obtained for prediction of a value of the variable $A$ by knowing the value of the variable $B$.

In the concept of text categorisation, the information gain measures how important a given word is for category prediction. A larger gain indicates that the probability to find the word in the texts inside the category differs considerably from the probability to find it in the text outside this category. If the categories are mutually exclusive then we can consider them as values of a categoric feature $C$ of the text with values $c_{i}$ and define the information gain $\operatorname{IG}(C, w)$ from observing a word $w$ in the text about the value of $C[\mathbf{1 2 2}]$ by the textbook formula:

$$
\begin{align*}
I G(C, w)=-\sum_{i=1}^{m} P\left(c_{i}\right) \log _{2} P\left(c_{i}\right) & +P(w) \sum_{i=1}^{m} P\left(c_{i} \mid w\right) \log _{2} P\left(c_{i} \mid w\right)  \tag{4}\\
& +P(\bar{w}) \sum_{i=1}^{m} P\left(c_{i} \mid \bar{w}\right) \log _{2} P\left(c_{i} \mid \bar{w}\right)
\end{align*}
$$

### 4.2. REPRESENTATION OF WORDS BY VECTORS IN THE MEANING SPACE

where $\left\{c_{i}\right\}$ is the set of classes in the target space, $P\left(c_{i}\right)$ is the probability of observing the $i^{\text {th }}$ class, $P(w)$ is the probability that the term $w$ appears, $P(\bar{w})$ is the probability that $w$ does not appear, $P\left(c_{i} \mid w\right)$ is the conditional probability of observing the $i^{\text {th }}$ class given that the term $w$ appears, and $P\left(c_{i} \mid \bar{w}\right)$ is the conditional probability of observing the $i^{\text {th }}$ class given that the term $w$ does not appear.
$I G(C, w)$ measures the number of bits of information obtained for prediction of classes $c_{i}$ by knowing the presence and absence of a term $w$ in documents of classes.

The quantity $\operatorname{IG}(C, w)$ measures the amount of information provided by a word when splitting the documents into classes but only in the case of mutually exclusive classes, that is, each text is assigned to a single class only. On the contrary, the scientific texts belong very often to several categories. The research subject categories are not mutually exclusive and this approach cannot be used directly.

Unlike this approach, we start from measuring how a word is informative for a category in terms of its ability to separate the corresponding category from its settheoretical complement. We hypothesize that the topic-specific words in categories have larger information gain than other words and such words are expected to have less gain in most other categories. Therefore, we approach to this problem by defining for each subject category $c_{k}$ a random Boolean variable, or a classification with two states: the text belongs to the category $c_{k}$ and the text does not belong to the category $c_{k}$ (this class is denoted as $\overline{c_{k}}$ ). The frequencies of words in classes of texts $c_{k}$ and $\overline{c_{k}}$ is demonstrated in Table 4.2.

Table 4.2. Representation of the word by a pair of frequencies: the number of texts containing the word $w_{j}$ that belong and does not belong to the category $c_{k}$

| Word | Category | $c_{k}$ | $\overline{c_{k}}$ |
| :---: | :---: | :---: | :---: |
|  | $w_{1}$ | $w_{1 k}$ | $\left\|D^{1}\right\|-w_{1 k}$ |
|  | $w_{2}$ | $w_{2 k}$ | $\left\|D^{2}\right\|-w_{2 k}$ |
| $\vdots$ | $\vdots$ | $\vdots$ |  |
|  | $w_{N}$ | $w_{N k}$ | $\left\|D^{N}\right\|-w_{N k}$ |

Since words are obviously not mutually exclusive (one text usually contains several different words) we cannot consider the occurrence of different words as values of a random variable to use (3) directly. To evaluate the information gain of the category $c_{k}$ from the word $w_{j}$ it is necessary to introduce for each word $w_{j}$ a random Boolean variable with two states: $w_{j}$ denotes the presence of the word in texts of the category $c_{k}$ and $\overline{w_{j}}$ denotes the absence of the word $w_{j}$ in texts of the category $c_{k}$. Contingency $2 \times 2$ table to calculate information gain of the category $c_{k}$ from the word $w_{j}$ is presented in Table 4.3. It used the raw frequencies $w_{j k}$ introduced in previous Subsection.

TABLE 4.3. Contingency table for the category $c_{k}$ and the word $w_{j}$

| Word Category | $c_{k}$ | $\overline{c_{k}}$ | Total |
| :---: | :---: | :---: | :---: |
| $w_{j}$ | $w_{j k}$ | $\left\|D^{j}\right\|-w_{j k}$ | $\left\|D^{j}\right\|$ |
| $\overline{w_{j}}$ | $\left\|D_{k}\right\|-w_{j k}$ | $M-\left\|D_{k}\right\|-\left(\left\|D^{j}\right\|-w_{j k}\right)$ | $M-\left\|D^{j}\right\|$ |
| Total | $\left\|D_{k}\right\|$ | $M-\left\|D_{k}\right\|$ | $M$ |

Table 4.3 can be used to calculate two information gains: the word $w_{j}$ from the category $c_{k}$ and the category $c_{k}$ from the word $w_{j}$. Both information gains have a meaning for different problems. The goal of this research is to evaluate informativeness of words for category identification and use this informativeness for word ranking and text representations. Therefore, we will consider information gain of the category $c_{k}$ from the word $w_{j}: I G\left(c_{k}, w_{j}\right)$. This information gain evaluates the number of bits extracted from presence/absence of the word $w_{j}$ in the text for prediction of belonging of this text to the category $c_{k}$. One may expect that if a word is a very topic-specific for a category, it appears in texts belonging to this category more frequently than in texts which do not belong to this category; and the major part of texts belonging to this category contains the word.

For each category, $c_{k}$, a function is defined on texts that takes the value 1 , if the text belongs to the category $c_{k}$, and 0 otherwise. For each word, $w_{j}$, a function is defined on texts that takes the value 1 if the word $w_{j}$ belongs to the text, and 0 otherwise. We use for these functions the same notations $c_{k}$ and $w_{j}$. Consider the corpus as a probabilistic sample space (the space of equally probable elementary outcomes). For the Boolean random variables, $c_{k}$ and $w_{j}$, the joint probability distribution is defined according to Table 4.3, the entropy and information gains can be defined as follows.

The information gain about the category $c_{k}$ from the word $w_{j}, \operatorname{IG}\left(c_{k}, w_{j}\right)$, is the amount of information on belonging of a text from the corpus to the category $c_{k}$ from observing the word $w_{j}$ in the text. It can be calculated as [202]:

$$
\begin{equation*}
I G\left(c_{k}, w_{j}\right)=H\left(c_{k}\right)-H\left(c_{k} \mid w_{j}\right) \tag{5}
\end{equation*}
$$

where $H\left(c_{k}\right)$ is the Shannon entropy of $c_{k}$ and $H\left(c_{k} \mid w_{j}\right)$ is the conditional entropy of $c_{k}$ given the observing the word $w_{j}$. Entropies $H\left(c_{k}\right)$ and $H\left(c_{k} \mid w_{j}\right)$ are

$$
\begin{equation*}
H\left(c_{k}\right)=-P\left(c_{k}\right) \log _{2} P\left(c_{k}\right)-P\left(\overline{c_{k}}\right) \log _{2} P\left(\overline{c_{k}}\right), \tag{6}
\end{equation*}
$$

where $P\left(c_{k}\right)$ is the probability that the text belongs to the category $c_{k}, P\left(\overline{c_{k}}\right)$ is the probability that the text does not belong to the category $c_{k}$ and

$$
\begin{align*}
H\left(c_{k} \mid w_{j}\right)= & P\left(w_{j}\right)\left(-P\left(c_{k} \mid w_{j}\right) \log _{2} P\left(c_{k} \mid w_{j}\right)-P\left(\overline{c_{k}} \mid w_{j}\right) \log _{2} P\left(\overline{c_{k}} \mid w_{j}\right)\right) \\
& +P\left(\overline{w_{j}}\right)\left(-P\left(c_{k} \mid \overline{w_{j}}\right) \log _{2} P\left(c_{k} \mid \overline{w_{j}}\right)-P\left(\overline{c_{k}} \mid \overline{w_{j}}\right) \log _{2} P\left(\overline{c_{k}} \mid \overline{w_{j}}\right)\right) \tag{7}
\end{align*}
$$

where

- $P\left(w_{j}\right)$ is the probability that the word $w_{j}$ appears in a text from the corpus;
- $P\left(\overline{w_{j}}\right)$ is the probability that the word $w_{j}$ does not appear in a text from the corpus;
- $P\left(c_{k} \mid w_{j}\right)$ is the probability that a text belongs to the category $c_{k}$ under the condition that it contains the word $w_{j}$;
- $P\left(\overline{c_{k}} \mid w_{j}\right)$ is the probability that a text does not belong to the category $c_{k}$ under the condition that it contains the word $w_{j}$;
- $P\left(c_{k} \mid \bar{w}_{j}\right)$ is the probability that a text belongs to the category $c_{k}$ under the condition that it does not contain the word $w_{j}$;
- $P\left(\overline{c_{k}} \mid \overline{w_{j}}\right)$ is the probability that a text does not belong to the category $c_{k}$ under the condition that it does not contain the word $w_{j}$.

All the required probabilities, entropies and relative entropies are evaluated using the contingency table 4.3 as:

$$
\begin{equation*}
H\left(c_{k}\right)=-\frac{\left|D_{k}\right|}{M} \log _{2} \frac{\left|D_{k}\right|}{M}-\frac{M-\left|D_{k}\right|}{M} \log _{2} \frac{M-\left|D_{k}\right|}{M}, \tag{8}
\end{equation*}
$$

and

$$
\begin{array}{r}
H\left(c_{k} \mid w_{j}\right)=\frac{\left|D^{j}\right|}{M}\left(-\frac{w_{j k}}{\left|D^{j}\right|} \log _{2} \frac{w_{j k}}{\left|D^{j}\right|}-\frac{\left|D^{j}\right|-w_{j k}}{\left|D^{j}\right|} \log _{2} \frac{\left|D^{j}\right|-w_{j k}}{\left|D^{j}\right|}\right) \\
+\frac{M-\left|D^{j}\right|}{M}\left(-\frac{\left|D_{k}\right|-w_{j k}}{M-\left|D^{j}\right|} \log _{2} \frac{\left|D_{k}\right|-w_{j k}}{M-\mid D^{j \mid}}\right.  \tag{9}\\
\left.-\frac{M-\left|D_{k}\right|-\left(\left|D^{j}\right|-w_{j k}\right)}{M-\left|D^{j}\right|} \log _{2} \frac{M-\left|D_{k}\right|-\left(\left|D^{j}\right|-w_{j k}\right)}{M-\left|D^{j}\right|}\right) .
\end{array}
$$

High value of the informational gain $I G\left(c_{k}, w_{j}\right)(5)$ does not mean, in general, that the large proportion of information about whether a text belongs to the category $c_{k}$ can be extracted from observing the word $w_{j}$ in this text. This proportion depends on the value of the entropy $H\left(c_{k}\right)$ (8). The RIG measures this proportion directly. It provides a normalised measure of the Information Gain with regard to the entropy of $c_{k}$. RIG is defined as

$$
\begin{equation*}
R I G\left(c_{k} \mid w_{j}\right)=\frac{I G\left(c_{k}, w_{j}\right)}{H\left(c_{k}\right)} . \tag{10}
\end{equation*}
$$

### 4.2. REPRESENTATION OF WORDS BY VECTORS IN THE MEANING SPACE

The value of $\operatorname{RIG}\left(c_{k} \mid w_{j}\right)$ will be 0 when $H\left(c_{k}\right)=H\left(c_{k} \mid w_{j}\right)$ and 1 when $H\left(c_{k} \mid w_{j}\right)=$ 0 . In the first case, the presence/absence of the given word $w_{j}$ does not contain information for the category $c_{k}$. So, this word is uninformative. In the second case, using the word in the category provides exactly $H\left(c_{k}\right)$ bits of information. That is, presence or absence of a word resolves exactly the question of belonging the text to the category. $\operatorname{RIG}\left(c_{k} \mid w_{j}\right)$ can be equal to 1 in two cases:

- All texts with the word $w_{j}$ belong to the category $c_{k}$ and all texts without the word $w_{j}$ do not belong to the category $c_{k}$;
- All texts with the word $w_{j}$ do not belong to the category $c_{k}$ and all texts without the word $w_{j}$ belong to the category $c_{k}$;
We expect higher $R I G\left(c_{k} \mid w_{j}\right)$ for the topic-specific words of the category $c_{k}$.
For simplicity, we denote $R I G\left(c_{k} \mid w_{j}\right)$ by $R I G_{j k}$. Given the word $w_{j}, R I G_{j k}$ is used to form vector $\overrightarrow{R I G_{j}}$, where each component of the vector corresponds to a category. Therefore, each word is represented by a vector of RIGs. It is obvious that the dimension of vector for each word is the number of categories $K$ (for the WoS subject categories $K=252$ ). For the word $w_{j}$, this vector is

$$
\overrightarrow{R I G_{j}}=\left(R I G_{j 1}, R I G_{j 2}, \ldots, R I G_{j K}\right)
$$

The set of vectors $\overrightarrow{R I G_{j}}$ can be used to form the Word-Category RIG Matrix, in which each column corresponds to a category $c_{k}$ and each row corresponds to a word $w_{j}$. Each component $R I G_{j k}$ corresponds to a pair $\left(c_{k}, w_{j}\right)$ and its value is the RIG from the word $w_{j}$ to the category $c_{k}$. The structure of the Word-Category RIG Matrix is demonstrated in Table 4.4.

Table 4.4. The structure of the Word-Category RIG Matrix

| Word | Category | $c_{1}$ | $c_{2}$ | $\cdots$ | $c_{k}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $w_{1}$ | $R I G_{11}$ | $R I G_{12}$ | $\cdots$ | $R I G_{1 K}$ |  |
| $w_{2}$ | $R I G_{21}$ | $R I G_{22}$ | $\cdots$ | $R I G_{2 K}$ |  |
| $\vdots$ | $\vdots$ | $\vdots$ |  | $\vdots$ |  |
|  |  |  |  |  |  |
| $w_{N}$ | $R I G_{N 1}$ | $R I G_{N 2}$ | $\cdots$ | $R I G_{N K}$ |  |

In the Word-Category RIG Matrix, a row vector represents the corresponding word as a vector of RIGs for categories. We defined the Meaning Space as the vector space of such vectors $\overrightarrow{R I G_{j}}$. The dimension of this space is the number of categories and each coordinate is the RIG from a word to this category.

Note that in the Word-Category RIG Matrix, a column vector represents RIGs of all words in an individual category. If we choose an arbitrary category, the words can be ordered by their RIGs from the most informative word to the least informative one. We expect that the topic-specific words will appear at the top of the list.

### 4.3. EXPERIMENTAL RESULTS

The words can be ordered by their informativeness in the whole corpus of scientific texts as well as they are ordered in each category. A norm or a more general proximity measure in the Meaning Space is needed to compare the meaningfulness of words across all categories. Two criteria were tested for measuring informativeness of words in the corpus of scientific texts: the sum ( $l_{1}$ norm) and the maximum ( $l_{\infty}$ norm) of RIGs in categories. For a given word $w_{j}$, the sum $S_{j}$ and the maximum $M_{j}$ of RIGs are calculated from the Word-Category RIG Matrix as:

$$
\begin{equation*}
S_{j}=\sum_{k=1}^{K} R I G_{j k} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{j}=\max _{k=1, \ldots, K}\left(R I G_{j k}\right) . \tag{12}
\end{equation*}
$$

The sum $S_{j}$ is a measure of the average informativeness of a word (this word has the informativeness $S_{j} / K$ on average), whereas the maximum $M_{j}$ is a measure of the maximal informativeness of the word across the categories (this word is not more informative than $M_{j}$ in any category).

Now, the words in the dictionary can be ordered by their $S_{j}$ or $M_{j}$. For each of these ordered lists of words, the most informative (meaningful) $n$ words for scientific texts can be selected based on one of these two criteria. The higher the value of the criterion ( $S_{j}$ or $M_{j}$ ), the more informative the word is.

### 4.3. Experimental Results

This section describes the experimental details and the analysis done to show the performance of the vector representation method described in Section 4.2. The dataset used in this study is the LSC version 2 [13]. The LSC contains a collection of abstracts of research articles and proceeding papers with metadata such as authors, title, categories, research areas and times cited. Each record (text) in the dataset is assigned to at least one of the WoS categories. The LScDC is the collection of unique words appearing in 10 or more documents in the LSC [15].

For each word $w_{j}$ and category $c_{k}, R I G_{j k}$ is calculated and the Word-Category RIG Matrix for the LSC was formed as described in Section 4.2. In each category, a list of words where words are sorted in descending order by their RIGs can be created. The higher the relative information a word gained in a category, the more important the word is in terms of being topic-specific for the category. Therefore, one could look at the top $n$ words in categories in order to get a good grasp of the representation method. The visualisation of the top words in each category is carried out with the word clouds. Having calculated the frequencies of words in the categories (Table 4.1), we compare the purposed method with the commonly-used approach based on raw frequency.

### 4.3.1. Discovering Anomalies in the Data by Information Gain-Based Representation Technique

At first, the procedure of word representation was applied to the LSC version 1 [64] with the dictionary [68]. To visualise top words in each categories in a convenient way, we looked at word clouds. The font size of each word in a word cloud is proportional to its RIG in the category. Intuitively, the more informative the word is, the bigger size the word appears in word clouds. For example, from Fig. 4.4 , it can be seen that the most informative 6 words for the category 'Acoustics' are 'acoust', 'ultrasound', 'speech', 'nois', 'sound' and 'frequenc'. The majority of papers in Acoustics is expected to include these words which are absent or at least less frequent in many other categories. These words are inferred to be informative for the category 'Acoustics'.


Figure 4.4. The most informative 100 words in the category 'Acoustics'. The font size and colour of words indicate different RIGs of the words. The histogram shows RIGs for the top 10 most informative words in the category.

However, this method detected anomalies in some categories. Anomalies here refers to words that do not conform to the expected set of words to be appearing in a subject category. Such words can appear in any category frequently regardless of being a topic-specific word. These words are likely to be potential anomalies generated by inappropriate joints of words, phrases or sentences to the texts of abstracts. As shown in Fig. 4.5, for the category 'Chemistry, Applied', words 'elsevi', 'ltd', 'acid', 'reserv' and 'right' stand out in the word cloud. We see that trends in majority of words in the word cloud agree with each other as being related to the subject. However, 'elsevi', 'ltd', 'reserv' and 'right' seem like more prominent
and unusual (non-specific) for Chemistry. In fact, the experiments were preliminary, but we discovered alarms indicating anomalies by our representation technique.


Figure 4.5. The most informative 100 words in the category 'Chemistry, Applied' before additional cleaning. The font size and colour of words indicate different RIGs of words. The histogram shows RIGs for the top 10 most informative words in the category.

To understand why these words arose and how they can be avoided, we checked the abstracts containing such words. Our review showed that these words appeared in copyright notices such as "Published by Elsevier ltd." or 'All rights reserved', and they were added at the footer of abstracts. In order to have a comprehensive understanding of their appearance as being informative for only some categories, for instance in Chemistry, we compared distributions of 'elsevier', 'right' and 'reserve' in categories. For each word, categories are ordered by the number of documents containing the word, and the first 20 categories are presented in Fig. 4.6. When we consider the list of categories ordered by the number of documents in the entire corpus, we conclude that not all categories in the list of top categories appear in the charts. This is because usage of copyright notices is much more noticeable in some categories such as Chemistry. For instance, the rank of the category 'Engineering, Electrical \& Electronic' is 1 in the corpus; however, one can see that this category has rank 15 for the word 'Elsevier'.


Figure 4.6. Top 20 categories that words 'Elsevier', 'Reserve' and 'Right' appear in

To show that not all categories have the same/similar distribution of use of copyright notices, we presented Fig. 4.7 where fractions of documents containing words 'elsevier', 'right' and 'reserve' in four of categories are demonstrated. We can see from the figure that about $40 \%$ of texts in 'Chemistry, Physical' (rank is 4 in the corpus) contain these three words, while only small fragments of 'Engineering, Electrical \& Electronic' and 'Computer Science, Theory \& Methods' collections (rank is 6 in the corpus) include these words. 'Economics' (rank is 34 in the corpus) papers include these words in considerable portion. As expected, these words did not appear as the most important words (10 words) for 'Computer Science, Theory \& Methods' (see Fig. 4.8).


Figure 4.7. Fractions of texts containing the words 'Elsevier', 'Right' and 'Reserve' in four categories before additional cleaning.


Figure 4.8. The most informative 100 words in the category 'Computer Science, Theory \& Methods'. The font size and colour of words indicate different RIGs of words. The histogram shows RIGs for the top 10 most informative words in the category. (Before additional cleaning. However, the additional cleaning does not change noticeably the diagrams for this category.

### 4.3.2. The Data

This subsection provides the description of procedure of additional cleaning and correction for the LSC and LScDC.

### 4.3.2.1. Further Cleaning of the Leicester Scientific Corpus (LSC)

Many conferences and journals put copyright notices, permission policies or conference names below abstract of papers. Such footers were added to abstracts in many records in WoS database and so in the LSC during processing and storage of the original data (see Table 4.5).

It is really a huge and practically impossible task to find out with the help of human inspection which notifications were added in the texts of $1,673,824$ abstracts in [64]. Once a sample of abstracts containing publishing houses names was browsed, we found that there are much more scenarios to consider. Some examples of these scenarios are presented in Table 4.6. As such expressions are more frequent in some categories than in others, a cleaning procedure is needed to avoid possible abnormal appearances of words in categories. A quick look at the scenarios is sufficient to conclude that clearing such sentences or phrases cannot be fully automated. Human intervention is needed to identify and list them to avoid deleting useful information from the data.

Table 4.5. An example of abstract with a copyright notice

| Title | Neonicotinoid concentrations in arable soils after seed treatment <br> applications in preceding years |
| :--- | :--- |
| Authors | Jones, A; Harrington, P; Turnbull, G |
| Abstract | Concentrations of the neonicotinoid insecticides clothianidin, <br> thiamethoxam and imidacloprid were determined in arable soils <br> from a variety of locations in England. ...[Truncated]. As <br> clothianidin and thiamethoxam have largely superseded <br> imidacloprid in the United Kingdom, neonicotinoid levels were <br> lower than suggested by predictions based on imidacloprid alone. <br> (c) 2014 Crown copyright. Pest Management Science (c) 2014 <br> Society of Chemical Industry |

Individual notices with different appearances were identified by sampling of abstracts based on keyword search. A keyword search refers to browsing words, phrases or sentences to list different appearances of them in order to delete all identified appearances from abstracts. The position of notices was also taken into account since they appeared either at the beginning (by mistake) or at the end of the text. We used several specially developed procedures successively to clean them. For instance, when removing notices in the form of '(c) Published by Elsevier', we first checked the appearance of 'Crown Copyright (c) Published by Elsevier'. It can also appear

TABLE 4.6. Some examples of notices attached to the abstract

| Copyright Notice, Name of Conference, Journal or Publishing |
| :--- |
| House |$|$| (c) 2014 Elsevier ltd. All rights reserved. |
| :--- |
| (c) 2014 Published by Elsevier B.V. |
| (c) The Authors. Published by Elsevier Inc. All rights reserved. |
| Crown Copyright (c) 2014 Published by Elsevier B.V. All rights reserved. |
| (c) 2014 The British Infection Association. Published by Elsevier Ltd. All <br> rights reserved. |
| (c) Wolters Kluwer Health - Lippincott Williams \& Wilkins |
| (c) 2014 Wiley Periodicals Inc. |
| (c) Springer-verlag Berlin Heidelberg 2014 |
| (c) The Authors. Published by SPIE under a Creative Commons Attribution <br> 3.0 Unported License. <br> (c) RSNA. <br> 2014 American Cancer Society. <br> Pediatr Blood Cancer. <br> J. med. virol |

in the form of 'Published by Elsevier', thus we consider all cases based on empirical study. During cleaning, we removed copyright notices, names of conferences, names of journals, authors' rights, licenses and permission policies identified. To give an insight, Table 4.7 presents the number of document containing some notices before cleaning. These notices were completely removed after cleaning. We note that names of publishing houses could appear inside the text, in this case we did not remove them. More examples of notices that were removed from abstracts can be found in Appendix C.1.

To display the initial result of the cleaning, we present the word cloud and histogram of RIGs for the category 'Chemistry, Applied' in Fig. 4.9. One can see that words 'elsevi', 'ltd', 'acid', 'reserv' and 'right' do not appear in the list of top words as was in the word cloud before cleaning (see Fig. 4.5). Instead, the cloud gives greater prominence to words that are related to specific topics and likely to be more informative for the category. The word 'acid' has been preserved in the list of the most informative words.

### 4.3.2.2. The Latest Version of LSC and Dictionaries

After detecting and cleaning copyright notices, permission policies and conference names from abstracts, a new version of the LSC was created and made accessible in

Table 4.7. The number of abstracts containing some attached notices before cleaning (These notices were completely removed after cleaning)

| Notice | Number of Notices <br> Before Cleaning |
| :--- | ---: |
| Elsevier ltd. All rights reserved | 101,994 |
| (c) The Authors | 561 |
| All rights reserved | 283,041 |
| (c) Springer-verlag Berlin Heidelberg 2014 | 20 |

Top 10 words in the Category



Figure 4.9. The most informative 100 words in the category 'Chemistry, Applied' after cleaning. The font size and colour of words indicate different RIGs of words. The histogram shows RIGs for the top 10 most informative words in the category.
[13]. The cleaning procedure described in previous section leaded to some abstracts having less than our minimum length criteria ( 30 words). Such abstracts were not contained in the new version; therefore, the remaining 1,673,350 texts were used in this study ( 474 texts were removed). As was the case for the LSC before cleaning, the latest version of the LSC involved text of abstracts, list of authors, title, list of research areas, list of categories and times cited.

It is noteworthy that, in both versions of the LSC, the number of subject categories is 252 . All categories and the number of documents assigned to the corresponding category are presented in Table C.2. Same information for research areas was provided in Table C.3. The distribution of length of abstracts is displayed in Fig. 4.10. There is no noticeable difference between distributions for two versions and the average length of texts is 176 words.

The latest version of the LScD was developed by extracting words from the new version of the LSC [201]. The procedure applied to process the LSC in creation the


Figure 4.10. The number of abstracts with specified length against lengths of abstracts in the latest version of the LSC. The minimum length is 30 and the maximum length is 500 with an average of 176 words.

LScD was the same as described in [112]. The new version of the LScD contains 972,060 unique words with the number of texts that a word appears in. A new version of the core list, LScDC, was created from the LScD by removing words appearing in no more than 10 texts of the LSC [15]. All steps applied were the same as for the previous version of the LScDC and can be found in [112].

Based on the decision to clean copyright notices, we expect that words such as 'Elsevier', 'Reserved', 'Ltd', 'Right' and 'Springer' will not appear frequently in the LSC as they did before. In fact, the number of appearance of these words decreased after cleaning (see Table 4.8).

Table 4.8. The number of occurrence of some words appearing in copyright notices before and after cleaning

| Word | Number of Documents <br> Containing the Word Before <br> Cleaning | Number of Documents <br> Containing the Word After <br> Cleaning |
| :--- | ---: | ---: |
| Elsevi | 314,204 | 80 |
| Right | 306,075 | 27,279 |
| Reserv | 288,193 | 5,761 |
| Ltd | 147,466 | 830 |
| Springer | 296 | 187 |
| Copyright | 21,160 | 396 |

The results indicated that some words, for instance 'Right' and 'Reserve', are still relatively frequent in the corpus. This is because these words are specific for

### 4.3. EXPERIMENTAL RESULTS

some categories. To give an insight, we compared top categories for three words 'Elsevi', 'Reserv' and 'Right' (see Fig. 4.11). The results for the word 'Right' indicate that it is frequently used in medicine related categories such as 'Neuroscience' and 'Surgery', and in social science categories such as 'Law' and 'Political Science'. This is an expected result as it can appear to determine the side of organs such as 'right hippocampus' or 'right hemisphere' in medicine; and the normative rules in such disciplines as law and ethics. 'Elsevier' and 'Reserv' are much more uniformly distributed to the categories when the rank of categories is taken into account. For 'Reserv', one can identify categories related to Biosciences such as 'Ecology', 'Zoology' and 'Environmental Studies'. Specifically, this word occurs to indicate 'nature reserves'.

### 4.3.3. Words Represented by Vectors of Frequencies in Categories for the LSC

Recall that a representation technique for words was introduced in Section 4.2. The vectors of frequencies in subject categories were obtained for each word. The frequency associated to a category was computed by counting texts containing the word in this category.

Subject categories are used to categorise papers in the WoS collection; however, documents do not necessarily belong to a unique category due to interdisciplinary studies. In other words, categories are not exclusive in WoS and so in the LSC. In the LSC, texts belong to at least 1 and a maximum of 6 categories out of a total of 252 subject categories (see Fig. 4.12). It is noteworthy that our consideration is to count the number of times a word appears in texts of a category rather than analysing exclusivity of categories. Therefore, in this stage, we just looked at the frequency of texts with these words in categories.

Figure 4.11. Top 20 categories that words 'Elsevier', 'Reserve' and 'Right' appear in (after cleaning)


Figure 4.12. Two examples of intersection of categories in the LSC. The maximal number of categories that a document belongs to is 6 in the LSC.

The vectors of frequencies in categories are built for $103,998 \mathrm{LScDC}$ words and 252 subject categories. Each row represents a word of the LScDC in 252-dimensional space, that is, each word is represented by a vector of frequencies in 252 categories. For each category, a frequency distribution can be obtained for the set of words. The distribution indicates words used in texts of each category and the most frequently used words can be sorted in categories. To illustrate this, the most frequent 10 words for categories 'Astronomy \& Astrophysics', 'Mathematics' and 'Asian Studies' with frequencies are displayed in Table 4.9. A table containing all words and categories are included in [16]. One can expect that not all words in the table indicate a topic in the related subject. As an example, words 'use', 'also', 'studi' and 'paper' are frequent words in the LScDC and so in categories. These non-topic specific words occur many times in abstracts without indicating subject specificity. Therefore, using the frequencies of words in categories may not reflect how specific a word is to a category.

### 4.3.4. Word-Category RIG Matrix for the LSC

On the basis of exploratory work by the frequency table, we concluded that the use of word frequencies in categories does not provide much information about the category. To be specific, we expected that 'use' is not a topic-specific word as it appears in all 252 categories and it is likely to be used in almost all texts. This means that the meaning of a word in the text cannot be directly extracted from the frequency.

Aiming at this result, we must now apply a different perspective to measure the importance of words for categories, with a special attention given to the hypothesis that each word in the LScDC has scientifically specific meaning in categories and the meaning can be extracted from the information of words for 252 subject categories

Table 4.9. The most frequent 10 words for categories Astronomy \& Astrophysics, Mathematics and Asian Studies

| 2 <br>  <br> Astrophysics | Mathematics |  | Asian Studies |  |  |
| :--- | ---: | :--- | ---: | :--- | ---: |
| use | 11,100 | paper | 9,408 | articl | 415 |
| observ | 10,237 | result | 9,074 | examin | 236 |
| model | 9,295 | prove | 7,743 | studi | 230 |
| result | 9,213 | show | 6,705 | one | 226 |
| present | 7,810 | space | 6,224 | argu | 226 |
| can | 7,598 | also | 6,194 | also | 216 |
| studi | 7,350 | studi | 6,187 | paper | 211 |
| also | 7,314 | use | 6,062 | polit | 196 |
| show | 7,191 | function | 5,904 | use | 195 |
| similar | 6,622 | general | 5,766 | two | 192 |

in the LSC. Thus, as described in Section 4.2, words were represented in a 252 dimensional Meaning Space. RIGs for each word in 252 categories were calculated and vectors of words were formed. We then represented these vectors in the WordCategory RIG Matrix.

For each word in the Word-Category RIG Matrix, the sum $S_{j}$ and maximum $M_{j}$ of RIGs in categories were calculated and added at the end of the matrix. The WordCategory RIG Matrix can be found in [16]. One can extract the most informative $n$ words for scientific texts by ordering/sorting the column of words based on their $S_{j}$ or $M_{j}$.

### 4.3.5. Results

The experimental results presented in this section were obtained using abstracts of academic research papers in the LSC [13]. We used words from the core dictionary LScDC [15].

Having calculated RIGs for each word and created the Word-Category RIG Matrix, we evaluate the representation model by checking words in each category. That is, we consider the list of words with their RIGs in the corresponding category. Those words that have larger RIG are more informative in the category. Being 'more informative' here allows for the interpretation of being 'more specific' to the category's topic.

For each category, words are sorted by their RIGs and the top 100 words are shown in the word clouds. The bigger font size the word in word clouds, the more informative it is. Word clouds for the top 100 most informative words and histograms of RIGs for the top 10 most informative words for each of 252 categories can be found

### 4.3. EXPERIMENTAL RESULTS

in [204]. The most informative 100 words with their RIGs for each of categories are presented in [204] and [205].

In general, the RIG based method proves to be more sensitive than the frequency based method in identifying topic-specific words of a category. This means that representing words in Meaning Space has the advantage of transforming words to efficient vectors with a benefit of considerably lower dimension than the standard word representation schemes. To illustrate this result, we choose categories 'Biochemistry \& Molecular Biology', 'Economics' and 'Mathematics' and compare two word clouds that are formed by using raw frequencies and RIGs in categories (see Figures 4.13, 4.14 and 4.15). It can be seen from the figures that the majority of the most frequent words in all three categories are frequent words in the entire corpus. These words are not topic-specific for categories as they appear in almost all abstracts. The frequent but non-informative words can be considered as generalised service words of Science and deserve special analysis.


Figure 4.13. Category 'Biochemistry \& Molecular Biology': word cloud of the top 100 most informative words and the histogram of the the top 10 most informative words. The informativeness is defined by (a) RIG (b) frequency.

This proves that raw frequency is not much important to identify scientifically specific meanings of words. Therefore, by representing words as vector of RIGs, we can avoid such frequency bias. The most informative words in categories for RIG


Figure 4.14. Category 'Economics': word cloud of the top 100 most informative words and the histogram of the top 10 most informative words. The informativeness is defined by (a) RIG (b) frequency.
representation are topic-related in the corresponding category. We interpret these results as evidence for the usefulness of the RIG based representation.

Words that are expected to be used together have very close values of RIGs. In 'Health Care Sciences \& Services', 'health' and 'care' are top words and RIGs for these words are so close (see Fig. C.1). Another example is 'xrd' and 'difract' in 'Material Science, Ceramics'. 'XRD' is actually abbreviation of 'X-ray diffraction'; therefore, they appear together as 'X-ray diffraction (XRD)' for most of cases in the category (see Fig. C.2).

We can extract some stylistic properties in texts of categories. For instance, in computer science related categories the word 'paper' has the highest RIGs (see Figures C.3, C.4, C.5, C.6, C.7, C. 8 and C.9). This may be result of the stylistic features in papers for such categories.

A casual observation indicates that while the most informative words in some categories have similar RIGs, differences in values of RIGs are much more noticeable for the most informative words in some other categories. To give an insight, we present the categories 'Chemistry, Medicinal' and 'Engineering, Chemical' in Fig. 4.16. In 'Chemistry, Medicinal', the word 'compound' can be easily separated from the other words, while in 'Engineering, Chemical', there is a slight decrease in RIGs


Figure 4.15. Category 'Mathematics': word cloud of the top 100 most informative words and the histogram of the top 10 most informative words. The informativeness is defined by (a) RIG (b) frequency.
for the top 10 most informative words. However, in general we did not observe any explicit rule for this property.


Figure 4.16. Histograms of the most informative 10 words in categories (a) Chemistry, Medicinal and (b) Engineering, Chemical

Finally, we formed two lists of words that arranged in descending order based on the sum and maximum of their RIGs in 252 categories. The top 100 words in two lists are displayed by word clouds in Fig. 4.17 and Fig. 4.18. Histograms in the figures show the most informative 10 words in the lists. We found that the most

### 4.3. EXPERIMENTAL RESULTS

informative 10 words in two lists are completely different, as shown in the figures. From words clouds, one can see that the majority of the first 100 words do not match. We then compared two lists by counting the number of matches in the top $n$ words, where $n$ ranges from 100 to 50,000 . The numbers of matched words for different $n$ are presented in Table 4.10. As can be seen, $18 \%$ of words match for the top 50 most informative words. This proportion increases to approximately $50 \%$ for the top 1,000 words and to $58 \%$ for the top 2,000 words. The intersection of lists reaches to approximately $99 \%$ for the top 50,000 words. From these results, one can conclude that two lists are different in the top words. When higher number of words is taken into account, lists become more similar in terms of words included. However, the rank of words are not similar. Any of these criteria for selecting the most informative words can be used depending on the task and the information required.


Figure 4.17. The most informative 100 words in the LSC. Words are arranged and selected by the sum of their RIGs in 252 categories. The font size and colour of words indicate different sum of RIGs. The histogram shows the sum of RIGs for the top 10 informative words.

The numbers $S_{j}$ and $M_{j}$ are differently distributed for words. We observed from the lists that many words have low $S_{j}$ and $M_{j}$. Fig. 4.19 and Fig. 4.20 show the distribution of $S_{j}$ and $M_{j}$ for words in the logarithmic scale. Supper-exponential picks near zero RIGs are noticeable for both criteria. We can see that the trend is going down almost linearly beyond the picks. The bottom 10 least informative words in two lists are presented in Table 4.11. One may consider words having almost zero $S_{j}$ or $M_{j}$ as less meaningful words for scientific texts.



Figure 4.18. The most informative 100 words in the LSC. Words are arranged and selected by the maximal RIG over 252 categories. The font size and colour of words indicate different maximal RIG. The histogram shows the maximal RIG for the top 10 informative words.

Table 4.10. Comparison of words ordered by the maximum $M_{j}$ RIG and sum $S_{j}$ of RIGs in categories

| Top (n) Words <br> in Two Lists | Number of <br> Matches | Fraction of <br> Matches |
| ---: | ---: | :---: |
| 10 | 0 | 0.000 |
| 50 | 9 | 0.180 |
| 100 | 28 | 0.280 |
| 500 | 189 | 0.378 |
| 1,000 | 498 | 0.498 |
| 2,000 | 1,168 | 0.584 |
| 5,000 | 3,412 | 0.682 |
| 10,000 | 7,492 | 0.749 |
| 50,000 | 49,542 | 0.991 |
| 103,998 | 103,998 | 1.000 |



Figure 4.19. Histogram of the sum of RIGs for words of the LScDC (logarithmic scale for the $y$-axis)


Figure 4.20. Histogram of the maximum of RIGs for words of the LScDC (logarithmic scale for the $y$-axis)

Table 4.11. The least informative 10 words that are arranged in ascending order based on the sum $S_{j}$ and the maximum $M_{j}$ of RIGs in 252 categories. Words are in stemmed form.

| Words in the list where the <br> sum of RIGs is calculated |  | Words in the list where the <br> maximum of RIGs is <br> calculated |  |
| :--- | :---: | :--- | :---: |
| Word | $S_{j}$ | Word |  |
| tgvs | 0.000301 | vhp | $M_{j}$ |
| nonisland | 0.000302 | msmc | 0.0000149 |
| antipad | 0.000308 | scandat | 0.0000154 |
| aigan | 0.000323 | metaloxid | 0.0000179 |
| ultrabook | 0.000324 | ntfs | 0.0000195 |
| inzno | 0.000324 | interg | 0.0000195 |
| semiparallel | 0.000328 | nonfeas | 0.0000196 |
| 22 dbm | 0.000328 | biperiod | 0.0000196 |
| biperiod | 0.000329 | microl | 0.0000206 |
| 150 mhz | 0.000330 | multiparallel | 0.0000206 |

### 4.4. Thesaurus for Science: Leicester Scientific Thesaurus (LScT)

In this section, we introduce a scientific thesaurus of English: LScT. LScT is a list of 5,000 words which are created by arranging words of LScDC in their informativeness in the scientific corpus. The procedure for creation of the thesaurus is described in detail.

Under the assumption that not all words having very low RIGs are informative in categories, we search a cut-off point for RIG to create a list of words that can be considered as relatively meaningful in scientific texts. In other words, we extract meaningful words for science from the LScDC to build a scientific thesaurus. Before moving on the decision taken to determine the number of words for the thesaurus, we recall the notion 'informativeness' and investigate further the criteria of $S_{j}$ and $M_{j}$ to arrange words of LScDC in their informativeness.

Having the top 100 words in two lists where words are descending ordered by their $S_{j}$ and $M_{j}$, we see that the criteria of maximum is more likely to stand out some words that are frequently used in specific categories such as categories 'Dance', 'Music', 'Soil Science' and 'Theatre' (see Table 4.12) and are relatively rarely used outside them. Indeed, we expect drastic differences in RIGs of such words for these categories. For instance, one of the most informative word 'dance' is used in 154 categories, but the RIG from this word to the category 'Dance' is very distinguishable from all others (see Table 4.13). This is actually an expected result, since the word 'danc' is likely to be informative for categories related to the performing arts.

Table 4.12. Top 10 most informative words that are arranged in descending order based on the sum $S_{j}$ and the maximum $M_{j}$ of RIGs in 252 categories. These words are in the stemmed form.

| List ordered by the sum $S_{j}$ <br> of RIGs |  | List ordered by the <br> maximum $M_{j}$ of RIGs |  |
| :--- | ---: | :--- | ---: |
| Word | $S_{j}$ | Word |  |
| patient | 6.382 | danc | $M_{j}$ |
| conclus | 5.766 | music | 0.657 |
| paper | 4.345 | transplant | 0.508 |
| cell | 3.394 | soil | 0.435 |
| articl | 3.336 | virus | 0.413 |
| clinic | 3.003 | theatr | 0.362 |
| method | 2.797 | nurs | 0.358 |
| speci | 2.686 | eye | 0.348 |
| argu | 2.581 | cancer | 0.329 |
| background | 2.562 | student | 0.324 |

Table 4.13. Five categories with the highest RIGs of the word 'danc'

| Category | RIG |
| :--- | ---: |
| Dance | 0.657 |
| Theatre | 0.042 |
| Music | 0.024 |
| Folklore | 0.009 |
| Literary Reviews | 0.008 |

To compare the meaningfulness of words across all categories, we tested two norms in the Meaning Space, $l_{1}$ ( $S_{j}$ or the sum of RIGs) and $l_{\infty}$ ( $M_{j}$ or the maximal RIG). After a series of trials, we decided to use $l_{1}$. This choice cannot be proven formally but the ordering words by $M_{j}$ leads to some words that are very specific in only one category but stand out in the list of the most informative words on average. The sum can be considered as more appropriate measure for general scientific thesaurus. When creating an LScT, we consider ordering the LScDC words by the sum of their RIGs in categories. The meaningfulness of words was evaluated by the average informativeness of words in the categories. Given the dictionary LScDC, the procedure to create the LScT is:

- Sort the words of the LScDC by their $S_{j}$ in descending order.
- Take the top 5,000 words.

To find the number of words to be contained in the thesaurus, we initially follow an empirical procedure:
(1) Having arranged list of words in descending order by $S_{j}$, take a sub-list of the top $m$ words, denoted by $T_{m}$
(2) Create the histogram of $S_{j}$ for the words in this sub-list
(3) Check the trend in the histogram
(4) Take words when the exponential pick is avoided and the histogram follows roughly linear trend.

We begin with investigating the top 50,000 words in arranged list as it is almost the half of the 103,998 words of the LScDC. As the trend in the histogram for 50,000 words was showing the same behaviour with the histogram of 103,998 words (see Fig. 4.19 and Fig. 4.21 (a)), there was no point to check a number between 50,000 and 103,998 . We then decreased the number $m$ to $10,000,5,000,2,000,1,500$ and finally 1,000 . All histograms are presented in Fig. 4.21. We see a substantial change in the trend of the histogram when we take the subset of 5,000 words. The trend at that point is almost linear. After that, the first bin in the histogram is slightly becoming smaller and finally it disappears for 1,000 words.

In this step, we also checked the minimum of the sum of RIGs in the lists $T_{m}$ to make sure that the minimal average informativeness in the list (to be selected)


Figure 4.21. Histograms of the sums of RIGs for words of the LScDC (logarithmic scale for the y-axis): (a) The top 50,000 words (b) The top 10,000 words (c) The top 5,000 words (d) The top 2,000 words (e) The top 1,500 words (f) The top 1,000 words
is not so close to zero. These values are displayed in the Table 4.14. We can see from the table that the minimal RIG is decreased less than half from 1,000 to 2,000 , while it decreased faster (more than halved) from 5,000 to 10,000.

Table 4.14. The minimal sum of RIGs in the list of the top $m$ words $\left(T_{m}\right)$

| List | Minimal $S_{j}$ |
| :--- | ---: |
| $T_{1,000}$ | 0.3208 |
| $T_{1,500}$ | 0.2329 |
| $T_{2,000}$ | 0.1797 |
| $T_{5,000}$ | 0.0658 |
| $T_{10,000}$ | 0.0268 |
| $T_{50,000}$ | 0.0027 |
| $T_{103,998}$ | 0.0003 |

Finally, to support our selection of the number of words for the LScT and for evaluation of the result, we consider the following heuristic suggestion: the majority of words in the LScT appears in the list of top informative words in the categories. This does not mean that all informative words in categories should appear in the LScT, but we expect that most of top $n$ words in categories will be included in the LScT. This is a natural result of the statistics (average) used for selection of the LScT. If a word in a specific category is informative with high RIG for only this category, this word may not appear in the LScT as we considered the average informativeness over categories.

We consider the matches of the list $T_{m}$ with the most informative words in categories defined by the sum of RIGs. For collection $C_{k, n}$ of $n$ most informative words in the category $k$, we define $X_{n}=\bigcup_{k=1}^{K} C_{k, n}$. Then we test the coverage of the list $T_{m}$ by $X_{n}$. For each category in the Word-Category RIG matrix (a column in Table 4.4), order in descending by their RIGs. This gives a list of words sorted from the most informative to the least informative for this specific category. Then, individual collections $C_{k, n}$ are formed for each category.

The set $\bigcup C_{k, n}$ was formed with different numbers of words $(n)$. We built the collections containing the most informative 100, 200, 300, 400 and 500 words in each category, and $X_{n}$ is created by uniting them for each $n$. The numbers of words and the minimal RIGs of words in $X_{n}$ are presented in Table 4.15. The minimal RIGs are checked to avoid zero/near-zero RIG in lists. One can see from the table that words in categories are not completely different. For instance, if all $C_{k, 100}$ do not intersect then there should be 25,200 words in the list $X_{100}$, but there are just 6,254 words in this union, which is almost four times less. For other $n$, the result is similar, and the values of $X_{n}$ follow almost a linear trend (see Fig. 4.22). That is, the intersection $\bigcap_{k=1}^{K} C_{k, n}$ is not empty. The intersection may be pairwise or $q$-wise for different $q$.

The coverage is calculated by counting the number of matches words of the list $T_{m}$ and words of $X_{n}$. Table 4.16 illustrates the numbers of matches when $n$ is 100,

Table 4.15. The number of words in the list $X_{n}$ and the minimal RIGs for $X_{n}$

| $n$ | Number of words <br> in the list $X_{n}$ | Minimal <br> RIG |
| :---: | ---: | :---: |
| 100 | 6,254 | 0.0025 |
| 200 | 10,435 | 0.0016 |
| 300 | 13,850 | 0.0012 |
| 400 | 16,910 | 0.0009 |
| 500 | 19,790 | 0.0008 |



Figure 4.22. Number of words in the list of union of the top ( $n$ ) words in categories $\left(X_{n}\right)$

200 and 500 . Up to top 2,000 words, the words are concordant in the lists $T_{m}$ and $X_{n}$, suggesting that the most informative words are highly consistent. In fact, words in the lists are in agreement for the case where 500 words in each category are considered as informative for categories. Given the list $X_{100}$, the majority of the words ( 3,992 words) in the $T_{5,000}$ can be covered by words of $X_{100}$. This trend changes and goes down when we consider the percentage of words found in 10,000 and 50,000 words. However, in this stage we have to consider the total number of words in $X_{n}$. For instance, the number of words in $X_{100}$ is 6,254 . In this case, the matches cannot be more than this number for the list $T_{10,000}$. Similar conclusions were obtained by comparing the number of matches for $5,000,10,000$ and 50,000 words for $n=200$.

We examined various heuristic criteria to evaluate how many words are suitable for inclusion in a thesaurus. Since we want to keep the size of thesaurus reasonable,

Table 4.16. Number of matched words of the list $T_{m}$ and words of $X_{n} . n$ is the number of words taken from each category to create $X_{n}$.

| $T_{m}$ | $X_{100}$ | $X_{200}$ | $X_{500}$ |
| :---: | :---: | :---: | :---: |
| $T_{1,000}$ | 995 | 1,000 | 1,000 |
| $T_{1,500}$ | 1,469 | 1,499 | 1,500 |
| $T_{2,000}$ | 1,908 | 1,992 | 2,000 |
| $T_{5,000}$ | 3,992 | 4,674 | 4,987 |
| $T_{10,000}$ | 5,631 | 7,745 | 9,588 |
| $T_{50,000}$ | 6,254 | 10,435 | 19,754 |
| $T_{103,998}$ | 6,254 | 10,435 | 19,790 |

and pay attention not to loose many words in case there might be informative words having not very high RIGs, we decided to include these 5,000 words ( $T_{5,000}$ ) in the scientific thesaurus. This thesaurus is called Leicester Scientific Thesaurus. It is published online [16].

### 4.5. Conclusion and Discussion

In this work, we have studied the first stage of 'quantifying of meaning' for scientific texts: constructing the space of meaning. We have introduced the Meaning Space for scientific texts based on computational analysis of situations of words' use. The situation of use of the word is described by the absence/presence of the word in the text in scientific subject categories. The meaning of the text is hidden in the situations of usage and should be extracted by evaluating the situation related to the text as a whole.

This research is done based on 1,673,350 texts from the LSC and its 103,998 words listed in the LScDC $[\mathbf{1 3}, \mathbf{1 5}]$. A text in the LSC belongs to at least one and at most six of 252 WoS categories presented in Table C.2. That is, categories can intersect. The situation of use is described by these 252 binary attributes of the text. These attributes have the form: a text is present (or not present) in a category. The meaning of a word is determined by categorising texts that contain the word and texts that do not. It is represented by the 252-dimensional vector of RIG about the categories that the text belongs to, which can be obtained from observing the word in the text. This representation is demonstrated in Table 4.4. Each text in the LSC can be considered as a cloud of these RIG vectors.

We begin with representing each word as a vector of frequencies in categories (Table 4.1). Components of a vector are the number of texts containing the word and belonging to the corresponding category. Then we moved on to representing the meaning of a word as a RIGs vector about categories.

### 4.5. CONCLUSION AND DISCUSSION

We consider the corpus (LSC) as a probabilistic sample space (the space of equal probable elementary outcomes). The function is defined on texts that takes the value 1 , if the text belongs to the category $c_{k}$, and 0 otherwise. Similarly, for each word $w_{j}$, a function is defined on texts that takes the value 1 if the word $w_{j}$ belongs to the text, and 0 otherwise. Both functions can be considered as the random Boolean variables. The information gain $\operatorname{IG}\left(c_{k}, w_{j}\right)$ about the category $c_{k}$ from the word $w_{j}$ is calculated by (5), (6) and (7). $I G\left(c_{k}, w_{j}\right)$ measures the amount of information extracted from observing the word $w_{j}$ in the text on prediction of belonging of this text to the category $c_{k}$. The $\operatorname{RIG}\left(c_{k}, w_{j}\right)$ is calculated by (10) that provides us a normalised measure of Information Gain giving the ability of comparing information gains for different categories.

Vectors of RIGs are denoted by $\overrightarrow{R I G_{j}}$ for a word $w_{j} . \quad \overrightarrow{R I G_{j}}$ vectors for all words are presented in a Word-Category RIG Matrix (see the structure in Table 4.4) (available online [16]). A column vector of the matrix contains RIGs for all words in an individual category and a row vector represents the corresponding word's meaning as a vector of RIGs for categories. The Meaning Space has been described as a 252dimensional vector space, where vectors are $\overrightarrow{R I G_{j}}$. Beyond the representation of words, the Word-Category RIG Matrix can be also used for the ordering words in a category from the most informative to the least informative as well as identifying the most informative words in the science for different subjects and their combinations. Ranking of words in a scientific corpus are performed based on two criteria: sum of RIGs $\left(S_{j}\right)$ and maximum of RIGs $\left(M_{j}\right)$ in a row vector. Calculations are done by (11) and (12). Given an ordered list of words, the top $n$ words are considered as the most informative $n$ words in the scientific corpus.

The LSC and LScDC were created and available online [64, 68, 112]. The proposed word representation technique was applied to this version of the corpus. The evaluation of the model is done based on checking the most informative words in each category. Word clouds are generated using words in lists for each category (For example, see Fig. 4.4 and Fig. 4.5). The higher RIG a word has, the bigger font size of the word is in the cloud. The clouds demonstrated that our methodology is able to identify topic specific words for categories, and most of the top words are related to the category subjects.

We note, however, that some words that were not expected to be appearing as the most informative words were prominent for some categories (Fig. 4.5). We concluded that words occurring in copyright notices, permission policies and the names of journals and organisations are added at the footer of abstracts in WoS database (see Table 4.5, Table 4.6 and Table C.1). Such joints result in anomalies in the word clouds and our representation technique was able to detect them. A further cleaning on identified phrases, sentences and paragraphs was performed to avoid possible abnormal appearances of words in the lists. This is done by sampling

### 4.5. CONCLUSION AND DISCUSSION

of texts based on keywords search and then deleting them from the texts. After cleaning procedure, new versions of the LSC and the LScDC are created by the same pre-processing steps as for the previous versions and can be found in $[\mathbf{1 3}, \mathbf{1 5}]$.

Words of LScDC were represented by vectors of RIGs in 252-dimensional Meaning Space as described before. The Word-Category Matrix for the LSC was formed with the collection of all words of the LScDC [16]. The sum $S_{j}$ and the maximum $M_{j}$ of RIGs in categories are calculated and added at the end of the matrix. Word clouds with the top 100 words and histograms of the most informative 10 words for each category are presented in [204]. The most informative 100 words for each category with their RIGs can be found in [204] and [205]. The proposed model of RIG-based word representation is analysed through these top ranked words in each category.

We have evaluated the Meaning Space by comparing our approach to traditional frequency-based model. Words in each category were also ranked and ordered by their raw frequencies in categories. It is proven that frequencies is not much important and efficient to represent scientifically specific meanings of words as the most frequent words are not topic related words such as 'use', 'studi' and 'result'. Fig. 4.13, Fig. 4.14 and Fig. 4.15 compare two approaches using word clouds for three categories. The word clouds demonstrated that the information gain-based method is capable of standing topic-specific words out. This proves that the frequency is not much important in identifying such words. By representing words in the Meaning Space, we have shown by the human inspection that the top words in categories are topic-related in the corresponding category. It can therefore be viewed as an evidence of the usefulness of the Meaning Space and the representing words in this space.
$S_{j}$ and $M_{j}$ have been calculated for the LScDC words and two lists of words are created with words that are in descending orders by their $S_{j}$ and $M_{j}$. The lists enable sorting the most important $n$ words in science. We have compared these lists. The number of matches in the top $n$ words in two lists are counted, where $n$ is ranges from 100 to 50,000 (Table 4.10). The top 10 words in two lists are completely different and only $28 \%$ of words match in the first 100 words. This follows approximately $50 \%$ for the first 1,000 and $58 \%$ for the first 2,000 words. This concludes that two lists are not the same for the top words (Fig. 4.17 and Fig. 4.18), however, both criteria can be used for selection of top $n$ words regarding to task and the information required. Many words in the lists have low $S_{j}$ and $M_{j}$ values. The plot of the number of words for $S_{j}$ and $M_{j}$ indicate a super exponential picks near zero $S_{j}$ and $M_{j}$ (see Fig. 4.19 and Fig. 4.20). The trend beyond the pick is going down almost linearly. Those words with near zero values can be considered as less meaningful words for scientific texts.

### 4.5. CONCLUSION AND DISCUSSION

Finally, a scientific thesaurus of English, LScT, has been introduced. The thesaurus contains of the most informative 5,000 words from the LScDC. Words in the LScT are selected by their average RIGs in categories. That is, the top 5,000 most informative words in the LScDC, where words are arranged by their $S_{j}$ are considered as the most meaningful 5,000 words in scientific texts. The full list of words in the LScT with their $S_{j}$ can be found in [16].

The next focus of the research in 'quantifying of meaning' will be extraction of the meaning of text in scientific corpus from the clouds of words in the Meaning Space and study of more complex models in which co-occurrence of words and combination of word's meaning will be used. This, we follow the road: Corpus of texts + categories $\rightarrow$ Meaning Space for words $\rightarrow$ Geometric representation of the meaning of texts. The first two technical steps were done: the Corpus of texts was collected and cleaned, and the meaning of words was represented and analysed in the Meaning Space. The next step will be analysis of the meaning of texts.

The analysis of dictionaries is not finalised yet. This work was focused on the most informative words. They are the main scientific content words. But, for example, the frequent but non-informative words (like 'use') can be considered as generalised service words of Science and deserve special analysis.

It is also very desirable to extend the set of attributes for representation of the situation behind the text (Figures 4.2, 4.3). The first choice, the research subject categories, is simple and natural, but it may be useful to enrich this list of attributes.

## CHAPTER 5

## Principal Components of the Meaning

In this chapter we argue that (lexical) meaning in science can be represented in a 13 dimension Meaning Space. This space is constructed using principal component analysis (singular decomposition) on the matrix of word-category relative information gains, where the categories are those used by the WoS, and the words are taken from a reduced word set from texts in the WoS. We show that this reduced word set plausibly represents all texts in the corpus, so that the principal component analysis has some objective meaning with respect to the corpus. We argue that 13 dimensions is adequate to describe the meaning of scientific texts, and hypothesise about the qualitative meaning of the principal components.

### 5.1. Introduction

The purpose of this chapter is to extract the meaning (lexical meaning) of scientific texts by careful analysis of how the words used in documents specify the category the document belongs to [205]. The scientific category that a text belongs to is used to evaluate the meaning of the text. Stated differently, the research areas behind the text are characterised by these scientific categories.

In Chapter 4, the meaning space is created for the LSC with $1,673,350$ texts and the LScDC of 103,998 words with 252 WoS categories [13, 15, 112, 205]. Each word in the LScDC is represented by 252 -dimensional vector of RIGs. We have constructed the Word-Category RIG Matrix, where each entry corresponds to a pair (word,category) and its value shows the RIG for a text to belong to a category by observing this word in this text [16]. We introduced the LScT where the most informative 5,000 words from the LScDC were included in [16]. Later we will use the LScT in the study of the representation of the meaning of texts.

The characterisation of word meaning in a metric space was the first stage in the quantification of meaning in texts. We have built a metric system to allocate meaning to words based on their importance in scientific categories, i.e, to represent each word as a vector in the MS.

Given 252 subject categories, it is unreasonable to expect that every one of these categories is uncorrelated to all others (or distinct from each other). For instance we might expect the categories Literature and Literary Theory \& Criticism to represent words in a very similar way in the Meaning Space. Indeed, subcategories are likely to occur in the data and they are expected to have close values of RIGs for words. Such attributes will measure related information, and so the original 252 dimensional

### 5.1. INTRODUCTION

data contain measurements for redundant categories. Although the MS underlying the representation of word meaning has 252 dimensions, we expect that we will be able to represent words with significantly fewer dimensions of the Meaning Space.

An efficient way to represent words would be to map vectors onto a space that is constructed based on combination of original features. Mathematically speaking, we look at a linear transformation from the original set of categories to a new space composed by new components. These new components are called Components of the Meaning. Two precise questions to be asked are: how many components of meaning are there and how are these components constructed? Thus, analysis of components (new attributes) based on the original attributes is crucial in understanding the MS. For instance, it is very important to understand which categories contribute the most and which the least to the new dimensions. Also, it is instructive to see if the new dimensions have some real semantic meaning, for instance, in distinguishing between natural and social sciences or experimental and theoretical research.

We narrowed the Word-Category RIG Matrix to words from the LScT; therefore, there are 5,000 rows and 252 columns in the matrix. Here we hypothesize that 252 is not the actual dimension of the Meaning Space. In order to identify the most significant dimensions and construct a new space, we perform Principal Component Analysis (PCA) [206]. PCA ensures that words which are represented by similar sets of categories will be nearby points in the lower dimensional space. Through PCA on vectors of RIGs, we map each vector onto a vector with a reduced number of entries.

The PCA of word vectors provides a series of 252 principal components (PC), called as Principal Components of the Meaning. Of the 252 PCs produced by PCA, only the first $m$ will resemble the true underlying MS, while the remainder will be mainly represent noise in the data. The most significant $m$ principal components are used to construct new orthogonal axes that span an $m$-dimensional vector space. Using these $m$ components, every word with 252 dimensions can be mapped onto a word vector with $m$ components. The optimal value of the $m$ can be estimated using several methods [207, 208, 209].

It is noteworthy that this analysis can be performed under the following assumptions: (1) the thesaurus is representative of the corpus LSC; (2) each category is represented by reasonable number of words of the LScT, and (3) each word can be represented by the WoS categories. To understand the relationships between the thesaurus and the corpus, and categories and words, we evaluated the LScT in three different ways.

Firstly, we focused on showing how well the LScT represents the texts of the LSC. If there is a text including none of words from the LScT, then this text can not be represented by the LScT. We counted the number of the LScT words in each text and came to the conclusion that all texts of the LSC contains at least 1 word

### 5.1. INTRODUCTION

of the LScT , at most 194 words, with an average of 62 words. Indeed, one may think that representing a text with only one word is not the best in quantification of text meaning. However, we will deal with this problem in later research on text representation. We now focus on showing that the LScT is a reasonable selection as a scientific thesaurus.

Secondly, we used a procedure to test the existence of the LScT words which are informative for categories. As we restrict words in the Word-Category Frequency Matrix to the LScT words, it is possible to have column vectors with 0 in all entries. This means that none of words from the LScT is present in the texts of a particular category. For such a category, the LScT would not be an appropriate set of words to represent texts of this category. We can further infer that these words are not a representative set of words for the LSC. This is because we assume that the texts of the LSC selected from the range of 252 subject categories are representative of the population of scientific texts as a whole. Thus none of these categories can be ignored and texts in all categories have to be represented by the selected words. The analysis of each category shows that the LScT is a reasonable selection of words, as the minimum number of words that a category includes in its texts is 733 . This means that each category is presented by at least around $15 \%$ of the LScT.

Thirdly, we examined how many categories determine a word in the LScT. We expect that some words appear in all or the majority of categories, while some words are present in only a few categories. Even if we do not take the values of RIGs into account, we can still gain an insight into different types of vocabulary: scientific content words and generalised service words of science [205]. One might expect that words appearing in text(s) of all categories are not topic-specific words and words appearing in text(s) of a few categories are likely to be specific for the subjects. Therefore, we looked at the distribution of the number of words that are informative for categories, and found that more than 4,500 words appear in text (s) of at least 100 categories. Approximately 200 words appear in text(s) of all categories and only 4 words appear in text(s) of only 10 categories with a minimum number of 6 categories for a word.

Previous results confirm that the selection of words for the LScT was reasonable and further study of quantification of the meaning of text can be done with the LScT. Thus we can use the RIG matrix based on $5,000 \mathrm{LScT}$ words to create a Meaning Space based on PCA. Firstly, we applied the Double Kaiser rule to attempt to select a subset of the original attributes by ranking them in their importance determined based on some criteria (to be explained later). Using this rule, we aim only to retain attributes which explain the data in some significant way, and to discard 'trivial' attributes. Having discarded some attributes we can repeat the process, and perhaps discard some more. As it turned out, all attributes (categories) were found to be informative by our selection criterion at the first iteration. Therefore,
all 252 categories are retained for further use. This means that there is no trivial attribute.

We applied PCA to the data in the 252 -dimensional MS and produced 252 PCs. To understand the structure of the space, we visualised the space in two ways.

Firstly, to describe each PC in terms of categories we created charts in which category contributions to the PC (252 coordinates of PC) are shown. These charts are used to evaluate the contributions and identify which categories have the largest influence on each PC. Using this approach we can see the main attributes for a PC and the attributes that do not contribute to that PC. Categories contributing greatly (either positively or negatively) to a PC are used to interpret that dimension. By 'an attribute that is contributed greatly' we mean those attributes having coefficients larger than $1 / 2 \sqrt{252}$ in size (positive or negative). Categories with little influence get scores near zero. Such categories can be interpreted as being unrelated attributes to the PC and this information might be useful. Therefore, all attributes are meaningful in some sense and should be interpreted appropriately.

Secondly, we have projected words onto the space defined by the PCs. This allows us to see a map of how words relate to each other with respect to the principal axes. The words used for similar topics are expected to be located near each other in these plots.

The first PC explains $12.58 \%$ of all variation in the data. Coordinates of the vector of the first PC appear to measure the extent to which a category is well-defined by the words in texts in the category. Categories with more precise language have relatively higher entries in this PC, and categories with more nebulous language score lower. We did not observe any explicit distinguishing between the branches of categories. Every word is represented by the vector of RIGs. Projection of this vector on the first PC can be considered as a general informational value of the word. This informational value is the first coordinate of the word in the PC basis.

The second PC (PC2) appears to primarily distinguish between categories of two main branches of science. Categories that are related to natural science and engineering have negative associations with the PC 2 , while those that are related to social/human science have positive associations.

The third, fourth and fifth PCs reflect some of sub-branches of science with the greatest influence on the PCs. Biological sciences, computer science and engineering related categories have a strong positive correlation with PC 3 , while categories that are related to psychology, medicine-health and applied physics have large negative correlations. Branches of social science, economics, managements, psychology, ethics, education and multidisciplinary social sciences, appear to have strong positive correlations PC4. Literature, medicine-health science have large negative scores. For the fifth PC, categories related to ecological, environmental sciences and geosciences have large correlation.

### 5.1. INTRODUCTION

Next, the words are plotted in the PCA space. PCA scores for words are calculated to determine their location on each PC and the data are shown on plots on planes defined by the first three PCs (PC1-PC2, PC1-PC3, PC2-PC3) and also the volume spanned by the first three PCs together (PC1-PC2-PC3). Words that are represented by similar sets of categories will be located as nearby points in the space. In other words, PCA ensures that words that are close together in PCA space have similarity of meaning. From these plots, we have concluded that some more closely grouped words are similar in that they are used in related academic disciplines. For instance, the words 'argu' and 'polit' are close in the PC1-PC2 plot and they both are expected to be predominantly used in texts assigned to social science categories. Similarly, the words 'health', 'care', and 'particip' are close together in the PC1-PC3 plot, and they are all likely to be used in medicine related texts. Thus, we conclude that in the PC space we are able to cluster words based on their meaning. However, more meaningful clusters can be obtained by using more PCs, as this will allow more separation as of groups of other meaning. With the dimension of the PC space appropriately selected, we expect that vectors of words with similar meanings will form clusters.

Finally, we pick up the first $m \mathrm{PCs}$, which are in descending order of amount of information content in the PC. Three approaches to determining the appropriate number of components to retain were performed; the Kaiser rule, the Broken stick rule and an empirical method based on multicollinearity control (called PCA-CN) were applied to the data $[\mathbf{2 1 0}, \mathbf{2 1 1}, \mathbf{2 1 2}, \mathbf{2 1 3}]$. We estimated the optimal number of PCs at $m=61, m=16$ and $m=13$ by these methods respectively. Too large an $m$ might lead to the isolation of each word vector in the PC space, leading to the possibility of over-fitting related to the curse of dimensionality, especially for a small number of words. Therefore, we can use the 13 -dimensional Meaning Space delivered by PCA-CN as the actual dimensions of meaning in future research. Full lists of categories receiving large positive and negative scores on the first 13 PCs are presented in Appendix D.3.

This chapter is organised as follows. In Section 5.2, we test the LScT in a variety of ways to demonstrate that the selection of LScT words is appropriate for the representation of texts. In Section 5.3 we perform a principal component analysis on the Meaning Space. To determine the optimal number of PCs, three methods are applied and the results are discussed. The principal components of meaning are explicitly presented and analysed in some details. Finally, in Section 5.4 we summarise the results of the chapter, discuss their significance, and outline future research directions.


Figure 5.1. The number of words ( $n$ ) from the LScT against the number of documents from the LSC containing $n$ words. The minimum and maximum numbers of words contained in a text are 1 and 194 respectively, with an average of 62 . The red line shows the average number of words.

### 5.2. Basic Statistics in the LScT

In this section we investigate the word-text and word-category relations for the LScT. We ask how many texts in the corpus LSC contain a certain number of words from the LScT (is the LScT representative of the LSC), what proportion of the thesaurus each category is present in, and how many categories each word appears in.

The LScT was created using the LSC with the aim of using a significantly reduced set of words to be representative of scientific texts in the LSC. Representativeness here refers to the extent to which words of the LScT are included in texts of the corpus LSC. Our criterion is that each text from the LSC must contain at least one word from the LScT to make the contents of the thesaurus a reasonable selection. If there is a text that contains no word from the thesaurus, the LScT is not representative for this text. Fig. 5.1 shows the number of texts containing a specified number of words from the LScT. All texts of the LSC include at least 1 word from the LScT, and no text contains more than 194 words, with an average of 62 words. The numbers of texts containing a small number of words are located near to 0 on the $x$-axis and the graph indicates that very few texts contain a small number of words from the LScT.

In [205], we discussed the relationship between the 252 WoS categories and words from the LScDC, and the subsequent word-category RIG matrix [16]. For
each of the 252 categories, the most informative 100 words from the LScDC were listed in descending order of their RIGs. The lists of the most informative words in each category were given in $[\mathbf{2 0 5}, 204]$. Clearly, the LScT is a sub-list of the LScDC ; however, the two lists the most informative words from the LScDC and LScT from a category may differ from each. Table 5.1 gives such an example for the category 'Mathematics'. We see that some very topic specific words (e.g. isomorph, cohomolog) in the LScDC are not present in the LScT. This is not surprising, as the LScT is representative of the average meaning of words (lexical meaning) in categories. More specific words are not needed if all we wish to do is distinguish categories. For each category, the list of the most informative 100 words from the LScT are given in Appendix D.1.

Table 5.1. Uncommon words from the most informative 100 words from the LScT and LScDC for the category 'Mathematics'

| Extra Words in the LScT | Extra Words in the LScDC |
| :---: | :---: |
| affect | isomorph |
| higher | denot |
| cause | cohomolog |
| research | automorph |
| examine | semigroup |
| protein | abelian |

For the word-category relation task, our first focus is to see how well each category is represented by the LScT. Table D. 2 gives the number of words from the LScT for each category. The number given is the number of words appearing in the texts assigned to the given category. To gain a better insight, we provide Table 5.2 where we list the number of categories containing numbers words from the LScT in a particular range. As we see from the table, 219 categories contains at least 3,000 words of the LScT in their texts. The maximum and the minimum numbers of words that a category includes in its texts are 4,956 and 733 respectively. The top and the bottom five categories, when categories are sorted in descending order by the number of words, are presented in Table 5.3. The bottom five categories are also the five categories with the fewest number of texts. The top five categories in the Table 5.3 appear in the list of top 30 categories containing the most texts [205].

Another aspect of evaluating word-category relations is to understand the number of categories with texts containing a particular word. If the number of categories is small then this indicates the word is more specific for these categories and maybe interpreted as a scientific content word. We suggest that words appearing in all categories are not topic-specific and may be interpreted as generalised service words of science [205]. However, further research is necessary to identify these two groups of words.

Table 5.2. Intervals of word numbers and the number of categories for each interval. The number of words for each category is calculated by counting the number of words appearing in the texts of the category at least once.

| Number of Words <br> from the LScT | Number of Categories <br> Containing $n$ Words in <br> Their Texts |
| :--- | ---: |
| $4,000<n \leq 5,000$ | 113 |
| $3,000<n \leq 4,000$ | 106 |
| $2,000<n \leq 3,000$ | 24 |
| $1,000<n \leq 2,000$ | 6 |
| $n \leq 1,000$ | 3 |

Table 5.3. The top and the bottom five categories where categories are sorted in descending order by the number of words

| Top 5 categories | Number <br> of Words | Bottom 5 categories | Number <br> of Words |
| :--- | ---: | :--- | ---: |
| Multidisciplinary Sciences | 4956 | Literature, Slavic | 733 |
| Environmental Sciences | 4865 | Literary Reviews | 953 |
|  <br> Electronic | 4864 | Poetry | 982 |
| Computer Science, <br> Interdisciplinary <br> Applications | 4834 | Literature, African, <br> Australian, Canadian | 1240 |
|  <br> Occupational Health | 4805 | Dance | 1295 |

Fig. 5.2 displays the number of categories $(n)$ for which texts in that category contains a word a certain number of times. So a value of 1 against $n=6$ indicates that there is one word that appears in only 6 categories. Hence, each word from the LScT appears in at least 6 and at most 252 categories. From the figure, we can see that there are approximately 200 words appearing in all categories. 2,570 words appear in more than 200 categories and approximately 2,000 words appear in between 100 and 200 categories. Very few words are located at the very beginning of the graph, and only 4 words appear less than 10 categories. Scores for the numbers of categories that some of the words appear in can be found in Table 5.4. One can see that words appearing in all categories are also the most frequent words in the LSC. Rare words have to be specific to a small number of categories.


Figure 5.2. The number of categories $(n)$ against the number of words appearing in $n$ category. The minimum and maximum numbers of categories where a word appears in are 6 and 252 .

Table 5.4. Some words of the LScT with the number of categories where each word appears in

| Word | Category <br> Number | Word | Category <br> Number | Word | Category <br> Number |
| :--- | ---: | :--- | ---: | :--- | ---: |
| use | 252 | august | 234 | antebellum | 12 |
| result | 252 | photographi | 200 | folklorist | 10 |
| studi | 252 | gravit | 166 | chaucer | 9 |
| show | 252 | paraffin | 145 | epigram | 8 |
| effect | 252 | ionospher | 56 | panegyr | 6 |

### 5.3. Dimension of the Meaning Space

In this section, our focus is on answering the question: is 252 the actual number of dimensions in the Meaning Space for words of the LScT? We explore the Meaning Space by using Principal Component Analysis (PCA). We discuss the Double Kaiser Rule for the selection of important attributes, that is a subset of original attributes (categories).

The importance of words in each category was organised in the Word-Category RIG Matrix. With 5,000 words and 252 categories, it is difficult to see what information is present in the data. A way to understand the Meaning Space and visualise words' meaning (lexical meaning) in this space is to plot the words in individual categories. We expect that trends in some of plots will be very similar for a certain word, a group of words or all words. This may suggest that groups

### 5.3. DIMENSION OF THE MEANING SPACE

of words appear to be very close in specific categories. For instance, subcategories are very likely to occur in the corpus and related information will be measured by such attributes. This leads to some redundant attributes that measure the same information in multiple locations in the data.

Words can be similarly represented in two or more categories. If two categories are correlated in the MS, it is possible to represent words in a reduced dimension by using a suitable linear combination of these original attributes. More specifically, if two categories are completely correlated, we would use the sum of two categories as one new attribute. The new attribute can be considered as a representative of the two original attributes. PCA provides a solution to this problem. Linear combination weights (coefficients) are provided by PCA to create the new attribute, which we term a principal component (PC), with the aim of preserving as much variability as possible (the maximum variation in the data). The level of the effectiveness of PCA in explaining the data varies differently with the different sets of PCs. Therefore, in this we investigate the effectiveness of PCA as a technique for determining the actual dimension of the data. Our goal is also to empirically investigate the effectiveness of the RIG based word representation technique using PCs instead of the original attributes.

PCA is a statistical technique that transforms the data into a reduced-dimension represented by linearly uncorrelated attributes (PCs), where PCs are a linear combination of the original attributes $[\mathbf{2 1 4}, \mathbf{2 1 5}]$. The Kaiser Rule is one of the methods developed to select the optimal number of components [216, 217]. Eigenvalues of the covariance matrix are used to determine the appropriate number by taking components with eigenvalues greater than 1 ; only components explaining greater data variance than the original attributes should be kept [218].

The Double Kaiser Rule is a method for selecting a subset of the original attributes based on their importance in representing the data. It evaluates PCs and the original attributes can be ranked in importance to the PC by the size (be it positive or negative) of their coordinate. The aim is to retain only a subset of the original attributes for further use. The advantage of employing the Double Kaiser Rule is that any remaining, so-called 'trivial', attributes can be discarded iteratively. The iterative algorithm for the Double Kaiser Rule is shown in Algorithm 1 (the trace of a square matrix is the sum of its diagonal elements, and also the sum of its eigenvalues).

PCs were assessed sequentially from the largest eigenvalue to the smallest. All PCs having eigenvalue less than 1 were considered to be trivial (non-significant) by the Kaiser rule. Hence 61 PCs are included as non-trivial, that is, 61 axes summarize the meaningful variation in the entire dataset. These non-trivial PCs are retained as informative at the first stage. The cumulative percentage of variance explained is displayed in Fig. 5.3. The cumulative percentage is approximately $73 \%$, indicating

```
Algorithm 1 Double Kaiser Rule
Input: The Word-Category RIG Matrix and n (number of categories)
Output: Set of informative categories
    repeat
        Calculate the covariance Matrix M (standardised).
        Calculate the Kaiser threshold ( \(\alpha\) ) using \(\frac{\operatorname{trace}(M)}{n}\).
        \(\alpha\) is 1 for correlation matrix.
        Select informative PCs by the Kaiser rule: Components with eigenvalues
    above \(\alpha\) are informative.
        Determine the importance of an attribute \((\beta)\) as the maximum of the absolute
    values of coordinates in informative PCs for the attribute.
        Select the informative attributes: (a) Calculate the threshold of importance
    for an attribute as the root mean squared of values in the coordinate. The
    threshold of importance for an attribute is \(\frac{1}{\sqrt{n}}\) for unit vectors. (b) Select
    attributes which hold \(\beta \geq \frac{1}{\sqrt{n}}\).
        Otherwise, the attribute is trivial.
        Drop the most trivial attribute from the Word-Category RIG Matrix if any.
        \(n=n-1\)
    until There is no trivial attribute.
    return The set of informative attributes (categories).
```

the variance accounted for by the first 61 components. They explain nearly $73 \%$ of the variability in the original 252 attributes, so we can reduce the complexity of the data four times approximately, with only a $27 \%$ loss of information.


Figure 5.3. (a) Fraction of variance explained as a function of PCs retained for categories; (b) Cumulative fraction of variance explained as a function of PCs retained for categories ( 61 PCs )

Following the data reduction via PCA we then restricted the analysis of the informative categories to the non-trivial PCs; these are used to list informative attributes (categories). The importance of an attribute is determined as the maximum of the absolute values in coordinates of informative PCs for this attribute. The threshold

### 5.3. DIMENSION OF THE MEANING SPACE

$1 / \sqrt{252}$ (threshold of importance) is used in the selection of informative attributes. None of the attributes was dropped after the first iteration of the Double Kaiser selection, so all 252 categories were retained.

To interpret each component, the coefficients (influence) of the linear combination of the original attributes for the first five principal components are examined (see Figures 5.5, 5.6, 5.7, 5.8, 5.9). The coordinates of the attribute divided by the square root of the eigenvalue gives the unit eigenvector, whose components give the cosine of the angle of rotation of the category to the PC. Furthermore, positive values indicate a positive correlation between an attribute and a PC and negative values indicate a negative correlation. Both the magnitude and direction of coefficients for the original attributes are taken into account. The larger the absolute value of the coefficient, the more important the corresponding attribute is in calculating the PC. Positive and negative scores in PCs push the overall score of a word in the Meaning Space to the right or left on the PC axis.

To examine the original attributes in the PCs, we introduce a threshold for categories having near zero values. The threshold used was $1 / 2 \sqrt{252}$, which is half of the threshold of importance in selection of informative attributes. All values between $-1 / 2 \sqrt{252}$ and $1 / 2 \sqrt{252}$ are considered to be negligible so are in the zero interval. Hence, the initial attributes are considered as belonging to three groups: (1) positive, (2) negative, and (3) zero. We interpret the categories belonging to positive and negative groups as the main coordinates of the dimension as these categories contribute significantly to that direction. Categories belonging to the 'zero' group are seemed to be unrelated attributes to the PC. However, this information could be also useful. Hence, all categories in the three groups are meaningful and should be interpreted.

Categories in the three groups for each PC can be seen in Figures 5.5, 5.6, 5.7, 5.8, 5.9. The zero interval is shown by a line in the figures. To understand the trend in the first five PCs, the average, maximum, and minimum values for positive, zero, and negative groups are displayed in Fig. 5.4. Similarly, the sum of values in each group is plotted (see Fig. 5.4). The number of categories in each group is presented in Table 5.5.

Mean values in positive and negative groups are close in all PCs with a slight change for maximum and minimum values. We can see that for the second principal component, the difference between means of positive and zero groups is higher than all others. For the sum of values, the highest value belongs to the first PC as there is no negative value for this component. The full list of categories in positive, negative and zero groups for each of five PCs can be found in Appendix D.3.

The list of categories appearing in the zero interval in the first five PCs are presented in Table 5.6. One may expect that as these categories contribute very small positive or negative values to the overall component score, they will not have


Figure 5.4. (Left) The average, maximum, and minimum values (coefficients of the linear combination of the original attributes) in five principal components for the groups of positive, negative and zero. (Top right) The average values in the groups of positive, negative and zero. (Bottom right) The sum of values in the groups of positive, negative and zero.

TABLE 5.5. Number of categories in the groups of positive, zero and negative for the first five principal components

|  | PC1 | PC2 | PC3 | PC4 | PC5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Positive | 221 | 63 | 60 | 67 | 55 |
| Zero | 31 | 131 | 131 | 129 | 142 |
| Negative | 0 | 58 | 61 | 56 | 55 |

a big effect in moving words with high RIG for that category, plotted in the Meaning Space, towards the associated end of the principal axis.

We can see that there are no negative values for the first principal component. The first component primarily measures the magnitude of the contribution of categories to the PC. It is a weighted average of all initial attributes. The most prominent categories are 'Engineering, Multidisciplinary' and 'Engineering, Electrical\& Electronic', that is, they strongly influence the component. This component explains 12.58 \% of all the variation in the data (see Fig. 5.3 (a) and Fig. 5.5). This means that more than $85 \%$ of of the variation still retained in the other PCs.

Table 5.6. Categories (initial attributes) appearing in zero interval in the first five components with the number of texts assigned to the category

| Categories | Number of Texts |
| :--- | ---: |
| Agriculture, Dairy \& Animal Science | 6,163 |
| Andrology | 391 |
| Astronomy \& Astrophysics | 22,825 |
| Materials Science, Paper \& Wood | 1,963 |
| Medicine, Legal | 1,711 |

The second component has positive associations with categories related to social sciences and humanities, and negative associations with categories related to engineering and natural sciences (see Fig. 5.6). The plot shows that they are completely oppositely correlated. Hence, this component primarily measures the separation of two main branches of science. The most prominent category in the component is 'Cultural Studies'. This contributes a large positive value to overall component score, that is, it pushes the scores of words with high RIG for 'Cultural Studies' to the right on the axis. The largest negative contribution to the component score is from the category 'Engineering, Multidisciplinary', which is approximately 2.5 times smaller than the contribution of 'Cultural Studies'. In the zero interval, extremely low values are present for attributes such as 'Psychology, Developmental', 'Ergonomics' and 'Medicine, Legal'. Such attributes do not influence the movement of words to the extreme ends of this PC.

The largest positive values on the third component can be interpreted as contrasting the biological science, computer science and engineering related areas with medicine, social care and some other disciplines (Fig. 5.7). We may expect words that are used in biological science, computer science and engineering will go toward the positive side of the axis on the third principal coordinate. The largest negative values suggest a strong effect of psychology, medicine-health and physics related areas.

The other two principal components can be interpreted in the same manner (See Fig. 5.8 and Fig. 5.9). In the fourth component, the most prominent categories with positive values are some of social science branches such as economics, managements, psychology, ethics, education and multidisciplinary social science. It can be seen large negative values for categories related to literature and medicine-health science. The fifth component has large positive associations with ecological, environmental sciences and geosciences.


Figure 5．5．The first principal component of the LScT．The plot shows the contributions of original attributes（categories） on the first principal component．


Figure 5.6. The second principal component of the LScT. The plot shows the contributions of original attributes (categories) on the second principal component.


147


Figure 5.7. The third principal component of the LScT. The plot shows the contributions of original attributes (categories) on the third principal component.


Figure 5.8. The fourth principal component of the LScT. The plot shows the contributions of original attributes (categories) on the fourth principal component.


Figure 5.9. The fifth principal component of the LScT. The plot shows the contributions of original attributes (categories) on the fifth principal component.

We have seen that individual components are not fully explanatory of variations in the data. For instance, the first component explains only $12.58 \%$ of the variation, and it is much less for subsequent PCs. The first two components explain about $18.3 \%$ of the variation in the data. To gain insight about correlated attributes in a certain portion of the variation, it is reasonable to plot two PC axes. The Fig. 5.10 (a) shows the results for the first two components. The influence on the variance of the PC axis is low for those categories near to the intercept of zero interval.

The category 'Engineering, Multidisciplinary' has a large positive value to the extreme right on PC1. As we mentioned before, this component measures the magnitude of contribution of the original attributes to the component. For PC2, categories in positive, negative and zero groups are shown in different colors. This indicates that some attributes are correlated in approximately $18 \%$ of the variation represented by the first two PCs.

It can be seen that categories in the positive group on PC 2 are not at the extreme right on the PC 1 axis. Also, it is apparent that attributes in the positive area are not as well correlated (dense) as attributes in the negative and zero areas. The attribute 'Medicine, Legal' appears close to zero in both components, which indicates that these components are not indicative of variations for this attribute.

Fig. 5.10 (b) is a comparison of PC1 with PC3. We note particularly that the density of categories in the positive and negative areas are similar, having almost equal distribution for negative and positive values in the zero interval. Attributes in the zero interval seem to be much more dense denser so more correlated than attributes in the other two groups. However, these two components do not reflect the variation for the zero interval.

The second and the third principal components, which account for $9.1 \%$ of the variance in the data, are plotted in Fig. 5.11 (a). If attributes are inversely correlated, they are positioned on opposite sides of the origin in this plot. These two components seem to have correlated attributes (high density) mainly in the zerozero area. It is noticeable in the plot that the majority of categories have negative and positive values in one of components when they are in zero interval for the other component. This implies that certain attributes are at the extremes of a spread in one PC, and not in the other. Also, there are attributes in the area of negativepositive, negative-negative and positive-negative, but not in positive-positive. This indicates that in a qualitative sense, categories are associated with PCS in very different ways. This result is consistent with the observations from the Fig. 5.11 (b), a three dimensional picture in which we can observe categories stretching out along the PC axes, like the tail and wings of a bird.

### 5.3.1. Analysis of Extreme Topic Groups at Opposite Ends of the PCs

As mentioned above, we applied the Double Kaiser rule to evaluate PCs and select a


Figure 5.10. (a) The first principal component versus the second principal component of the original attributes (categories) (b) The first principal component versus the third principal component of the original attributes.


Figure 5.11. (a) The second principal component versus the third principal component of the original attributes (categories) (b) The first three principal components of the original attributes.
subset of original attributes based on their importance for the PCs. The importance of attributes was defined by a 'threshold of importance', which was $1 / \sqrt{252}$. All attributes appeared as non-trivial, so we retained all 252 categories. Then, we used the half of the value $1 / \sqrt{252}$ to define a threshold for categories having near zero values under the assumption that as those categories having very low contribution

### 5.3. DIMENSION OF THE MEANING SPACE

to the PC do not have a strong influence on the PC, they are not correlated to the corresponding PC and so not the main coordinates of the dimension. All values of component between $-1 / 2 \sqrt{252}$ and $1 / 2 \sqrt{252}$ were considered into zero interval. So, three groups of categories were defined based on this threshold: (1) positive (2) negative (3) zero. We then analysed PCs based on categories in each groups.

In this section, we analyse the topic groups at opposite ends of the PCs (positive and negative ends) in order to describe the PCs based on extremely influential categories at both ends. As such categories have high contributions in the PC, they are the parts of the trends in PCs and so explain the general trends of PCs. This implies that we consider positive and negative groups introduced before, select the top $n$ categories with the highest component coefficients in each group and describe the grouping of categories in a way that categories at extreme ends can be distinguished from each other somehow and meaningfully described by a classification of research fields in science.

A simple way to explain a PC by groups of categories at the both ends of the PC is by looking at the scientific categorisation of the categories and words used in the texts of grouped categories. In particular, as there exist two sets of categories that are located at opposite ends of the PC, it would be interesting to extract the most influential common words used in each of this extreme topic groups. It is important to note that as common words appear in all selected categories as informative words, they help to describe categories and then PCs.

We implemented a heuristic technique. This approach starts with a search for a set of 10 categories with maximum coefficients at the two ends of the PC. The most informative 150 words are extracted in each of 10 categories, and the common words are listed. Words are analysed by human inspection to understand the meaning behind the opposite ends of the PC . The procedure is repeated for the $\mathrm{PC} 2, \mathrm{PC} 3$, PC 4 and PC5. For the first PC1, the sign of coefficients are positive for all categories. High numbers for categories in this PC indicate that that category is well-described by words in the LScT.

Both the top 10 categories and the most influential words in the set of categories are used to extract information for describing the PCs. The description is now more focussed on the big picture of science rather than description based on branches/subbranches.

The second PC seems to correspond a separation between discourse studies and experimental studies when we consider both the categories and words. For example, it is seen that three of the most informative common words are 'argu', 'polit' and 'discours' for the groups of categories in the positive side and three of the most informative common words are 'clinic', 'treatment' and 'therapi' for the groups of categories in the negative side in the PC. This is the Nature of Science dimension.

The third PC reflects two opposite types of research in terms of the requirement of microscopic and macroscopic instruments (see Table 5.7). At the positive end, scientific research mostly required detailed tools to work with the objects. Such tools can be instruments such as the microscope as well as programming tools used in coding. On the negative end, we are talking about human and population scale objects, but still related to humans. So this is the Human Scale dimension.

Table 5.7. Categories at opposite ends of the PC3

| Categories in the positive side of <br> the PC3 | Categories in the negative side <br> of the PC3 |
| :--- | :--- |
| Multidisciplinary Sciences | Medicine, General \& Internal |
| Biochemistry \& Molecular Biology | Health Care Sciences \& Services |
| Cell Biology | Primary Health Care |
| Biology |  <br> Occupational Health |
| Computer Science, Information Systems | Health Policy \& Services |
| Computer Science, Theory \& Methods | Critical Care Medicine |
| Computer Science, Interdisciplinary <br> Applications | Clinical Neurology |
| Computer Science, Artificial Intelligence | Rehabilitation |
| Biotechnology \& Applied Microbiology | Gerontology |
| Biophysics | Emergency Medicine |

The fourth component appears as to describe two classes of science: science of understanding the human condition through experiments and science of understanding the human condition through critical discourse studies. For instance, literary studies in the negative side are prominent and many texts from the literature are literary criticism of works. This is the Human Condition dimension.

Finally, the fifth component can be interpreted as contrasting the natural science and the intelligence. Categories related to natural science researches are grouped in the positive extreme side and categories of understanding intelligence are located in the negative extreme side in this PC. 'Intelligence' can be both human intelligence and machine intelligence. For example, the categories 'Computer Science, Artificial Intelligence' and 'Psychology' are two of the top 10 categories. This is the Inner World/Outer World dimension.

### 5.3.2. Visualisation of Words in the Space of PCs

We now move onto visualizing words on the principal axes. Fig. 5.12 and 5.13 are visualisations of words in the space of any of the first three components and the first three PCs. PC scores are calculated for each word to determine its location
on the PCs. Those words that have negative scores when projected onto a PC will represent categories at that end of the PC. The majority of words are located around the origin in the figures, showing that relatively few words are strong indicators for any category. However, some words seem to be distinctly different from others and grouped together in the plots. This suggests that even a small variation in the data (such as $12.58 \%$ and $5.65 \%$ ) helps to distinguish certain groupings of words.


Figure 5.12. The PCA score plot of words. (a) First and second PC axes with principal component scores (b) First and third PC axes with principal component scores.


Figure 5.13. The PCA score plot of words. (a) Second and third PC axes with principal component scores (b) The first three PC axes with principal component scores.

Words further apart on the PC map are more different from each other than words grouped together. Labelled words in are presented in the Table 5.8. We can see that the words 'patient', 'paper', 'conclus', 'articl' and are located far from other words. It is worth mentioning that these words were the most informative words in the LScT. There are other interesting features of these plots. Words grouped closer together and far from the origin have similarity with respect to the academic disciplines they appear in. For example, the two words 'argu' and 'polit' are far from the origin and close together in Fig. 5.12 (a). They both are expected to be included in texts for social science. Similarly, the words 'essay' and 'centuri' are close in the plot.

Table 5.8. Words labelled in Fig. 5.12 and Fig. 5.13.

| Label | PC1-PC2 | PC1-PC3 | PC2-PC3 |
| :---: | :---: | :---: | :---: |
| 1 | patient | patient | articl |
| 2 | conclus | paper | argu |
| 3 | paper | conclus | social |
| 4 | cell | cell | polit |
| 5 | clinic | propos | essay |
| 6 | propos | clinic | centuri |
| 7 | articl | protein | paper |
| 8 | argu | background | cell |
| 9 | social | care | propos |
| 10 | result | health | protein |
| 11 | polit | particip | patient |
| 12 | essay |  | conclus |
| 13 | centuri |  | particip |
| 14 |  |  | health |
| 15 |  |  | care |

In Fig. 5.12 (b), the words 'cell' and 'protein' are near to each other. A group of words 'health', 'care' and 'particip' are also co-located, which is to be expected as they are likely to be used together in medical texts. The same behaviour can be observed in Fig. 5.13 (a). Words that are likely to be used in social science related articles go towards the positive end of the PC 2 axis, and words that are likely to be used in medical texts go towards negative end. Words that are likely to be used in biological science related articles are towards the positive end of the PC3 axis. Words in these three regions are given in Table 5.9. We list words where the scores on

- PC2 are greater than 20 and less than -10;
- PC3 are greater than 20 and less than -20 .


### 5.3. DIMENSION OF THE MEANING SPACE

We observe a difference of topic-specific words in medicine, social science and biological science related articles. As we expected, words that are used in biological, computer and engineering science related areas are towards the positive end of PC3; see Fig. 5.7.

Table 5.9. Words when the scores on PC2 are greater than 20 and less than -10 , words when the scores on PC3 are greater than 20 and less than -20 in Fig. 5.12 and Fig. 5.13.

| $\mathbf{P C 2}>\mathbf{2 0}$ | $\mathbf{P C} \mathbf{2}<\mathbf{- 1 0}$ | PC3 $>\mathbf{2 0}$ | PC3 $<\mathbf{- 2 0}$ |
| :---: | :---: | :---: | :---: |
| article | patient | speci | patient |
| argu | conclus | paper | conclus |
| social | paper | cell | age |
| result | background | protein | background |
| polit | clinic | propos | particip |
| essay | propos | gene | health |
| cultur | age | algorithm | object |
| centuri | diseas | express | care |
| polici | associ | problem |  |
| text | year |  |  |
| public | object |  |  |
| literari | outcome |  |  |
| discours | problem |  |  |
| histori |  |  |  |
| contemporari |  |  |  |
| govern |  |  |  |
| draw |  |  |  |
| scholar |  |  |  |
| war |  |  |  |
| narrat |  |  |  |

### 5.3.3. Visualisation of Categories into the Word Space

The data can be represented as a set of points in two different spaces: category space and word space. In the category space every point (vector of dimension 252) is a word, represented by its RIGs in 252 categories. In the word space every point (vector of dimension 5,000 ) is a category, represented by RIGs of 5,000 words. Results on the visualisations in the category space were provided in the previous section. Here we provide results on the visualisation of the data in the word space.

### 5.3. DIMENSION OF THE MEANING SPACE

The analysis in this section answers the question of how successfully categories are distinguished into PC space constructed in the word space.

Categories are initially visualised in the PC axes (see Fig. 5.14). The figure demonstrates the data in the first two and three PCs and the obtained bird-like shape. Annotated version of categories in the space of the first three PCs is presented in Fig. 5.15. One can see the bird-like shape of the graphs has a meaningful separation of categories on two wings in terms of the branches of science. The left wing carries medicine related categories, while the right wing carries the literature and social science categories. At the right figure, the bird is coloured: red and green wings, and blue body. Lists of categories for each part of the bird with the projection on the first PC are presented in Table D.4. Colouring indicates the categories of social science (green), categories of medicine (red) and all other categories (blue). They all support the general findings.


Figure 5.14. Visualisation of categories in the first two and three PCs


Figure 5.15. Visualisation of the annotate version of categories and colouring of the bird-like shape

### 5.3.4. Identifying Groups of Categories in PCs by Approximation of Vectors

We now introduce another approach for determining the groups of categories which are influential for PCs. We start with introducing the method for determining two such groups of categories in a specific PC.

Suppose we have a given $n$-dimensional vector of component coefficients in an arbitrary PC, defined as

$$
\mathbf{u}=\left(u_{1}, u_{2}, \cdots, u_{n}\right),
$$

with categories ordered so that $u_{1}>u_{2}>\cdots>u_{n}$ (the chance of two being equal is negligible). Our assumption is that two classes of categories can be separated at some point $u_{k}$, where categories are correlated to each other within each class. That is, we aim at finding the optimal $k$ in

$$
\mathbf{u}=\left(u_{1}, u_{2}, \cdots, u_{k}, \cdots, u_{n}\right),
$$

where those categories with coefficients $u_{1}, u_{2}, \cdots, u_{k}$ will belong to the first class and those categories with coefficients $u_{k+1}, u_{k+2}, \cdots, u_{n}$ will belong to the second class. To find the optimal $k$, we use a method based on the approximation of vectors.

Let us consider the binarized vector of two classes

$$
\mathbf{e}=(1,1, \cdots, 1,0, \cdots, 0)
$$

in which elements of the first class are transformed to 1 and elements of the second class are transformed to 0 . We assume that the best approximate to the given vector $\mathbf{u}$ is a vector aligned in the direction of the vector $\mathbf{e}$, that is, the approximate vector

$$
\alpha \mathbf{e}=(\alpha, \alpha, \cdots, \alpha, 0, \cdots, 0)
$$

for some $\alpha \in \mathbb{R}$, where the number of elements with the value $\alpha$ is $k$. The vector $\mathbf{e}$ is a basis vector in the space. The approximation of the vector implies that the Euclidean distance between vectors $\mathbf{u}$ and $\alpha \mathbf{e}$ should be minimum. Therefore, there is an $\alpha$ that minimizes the length of the difference between the approximation $\alpha \mathbf{e}$ and the given $\mathbf{u}$. Our aim is now to find the constant $\alpha$ such that minimizes

$$
W_{1}=\|\mathbf{u}-\alpha \mathbf{e}\|
$$

is minimised.
We can simplify the algebra by minimizing the square of the norm

$$
W_{1}^{2}=\|\mathbf{u}-\alpha \mathbf{e}\|^{2} .
$$

Minimizing $W_{1}^{2}$ implies finding $\alpha$ such that

$$
\begin{aligned}
\frac{\partial W_{1}^{2}}{\partial \alpha} & =\frac{\partial}{\partial \alpha}\left(\sum_{i=1}^{k}\left(u_{i}-\alpha\right)^{2}+\sum_{i=1+k}^{n} u_{i}^{2}\right)=\frac{\partial}{\partial \alpha} \sum_{i=1}^{k}\left(u_{i}-\alpha\right)^{2} \\
& =-2 \sum_{i=1}^{k}\left(u_{i}-\alpha\right)=0 .
\end{aligned}
$$

Solving this for $\alpha$ gives

$$
\alpha=\frac{1}{k} \sum_{i=1}^{k} u_{i} .
$$

This means that $\alpha$ is the average of values in the first class and the approximate vector is

$$
\alpha \mathbf{e}=(\underbrace{\alpha, \cdots, \alpha}_{\mathrm{k} \text { times }}, \underbrace{0, \cdots, 0}_{\mathrm{n}-\mathrm{k} \text { times }}) .
$$

To determine the optimal $k$, we search for the best approximation to the vector of component coefficients among those created for $k=1, \cdots, n-1$. Once the optimal $k$ is found, we will be able to classify categories into two classes.

To identify three groupings of categories in a PC, we first consider the approximate vector

$$
\mathbf{v}(\alpha, \beta, k, r)=(\alpha, \cdots, \alpha, 0, \cdots 0, \beta, \cdots \beta)
$$

where the number of elements with the value $\alpha$ is $k$, the number of elements with the value $\beta$ is $r$ and $k+r<n$. Our aim to find the optimal $k$ and $r$ that minimize $W_{2}=\|\mathbf{u}-\mathbf{v}(\alpha, \beta, k, r)\|$. This implies

$$
\begin{array}{r}
\frac{\partial W_{2}^{2}}{\partial \alpha}=\frac{\partial}{\partial \alpha}\left(\sum_{i=1}^{k}\left(u_{i}-\alpha\right)^{2}+\sum_{i=1+k}^{n}-r u_{i}^{2}+\sum_{i=n-r+1}^{n}\left(u_{i}-\beta\right)^{2}\right)  \tag{13}\\
=\frac{\partial}{\partial \alpha} \sum_{i=1}^{k}\left(u_{i}-\alpha\right)^{2}=-2 \sum_{i=1}^{k}\left(u_{i}-\alpha\right)=0
\end{array}
$$

and

$$
\begin{array}{r}
\frac{\partial W_{2}^{2}}{\partial \beta}=\frac{\partial}{\partial \beta}\left(\sum_{i=1}^{k}\left(u_{i}-\alpha\right)^{2}+\sum_{i=1+k}^{n}-r u_{i}^{2}+\sum_{i=n-r+1}^{n}\left(u_{i}-\beta\right)^{2}\right)  \tag{14}\\
=\frac{\partial}{\partial \beta} \sum_{i=n-r+1}^{n}\left(u_{i}-\beta\right)^{2}=-2 \sum_{i=n-r+1}^{n}\left(u_{i}-\beta\right)=0 .
\end{array}
$$

We note that finding $\alpha$ and $\beta$ are independent of each other. Thus we have

$$
\alpha=\frac{1}{k} \sum_{i=1}^{k} u_{i}, \text { and } \beta=\frac{1}{r} \sum_{i=n-r+1}^{n} u_{i} .
$$

If we want to identify three groupings of categories as above, we will search for the optimal $k$ and $r$ independently. We apply the procedure for two classes to the vector $\mathbf{u}$ in two steps: 1) finding the optimal $k$ in the vector $\mathbf{u}$ where elements $u_{i}$ are sorted in descending order; 2) finding the optimal $r$ in the vector $\mathbf{u}$ where elements $u_{i}$ are sorted in ascending order.

### 5.3.4.1. Results

The grouping of categories into PCs is done by using the vector approximation described in the previous section. The numbers of categories in the positive, negative and zero groups are given in Table 5.10. The full lists of categories in each group for PC2, PC3, PC4 and PC5 can be found in Table D.5.

Table 5.10. Number of categories in the positive, zero and negative groups identified by vector approximation based approach for the first five principal components

|  | PC1 | PC2 | PC3 | PC4 | PC5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Positive | 221 | 46 | 41 | 44 | 37 |
| Zero | 31 | 91 | 159 | 160 | 158 |
| Negative | 0 | 115 | 52 | 48 | 57 |

The results using the vector approximation based grouping method turn out to show similar patterns to those using the threshold $1 / 2 \sqrt{252}$. In general, there is no clear change of trends in PCs excluding PC2, where psychology related areas were split between the positive and zero group previously. The vector approximation method reduces their importance, placing them in the zero group. This does not conflict with our hypothesis that this PC is related to the difference between discourse and experiment in what we suggest is the Nature of Science dimension. It is certainly not unreasonable to exclude psychology from the group of discourse studies. More categories, where experimental methods of research are used, now appear in the negative category. For instance, the categories 'Developmental Biology' and 'Biochemistry \& Molecular Biology' are now included in negative category.

Another interesting finding is that the positive group for PC5 contains only environmental science related areas, and excludes economics and public administration which appear in the tail of the list. Some social science categories such as 'International Relations', 'Business', 'Finance' and 'Political Science' were in the positive group, but are categorised into the zero group by the vector approximation based grouping method. Again, this does not conflict with the idea that PC5 is the Inner World/Outer World dimension.

### 5.3.5. Deciding the Dimension of the Meaning Space

The number of principal components determined by the Kaiser rule was 61. However, the Kaiser rule can underestimate or overestimate the number of PCs to be
retained [210]. So, we also tested the Broken-Stick rule to determine the number of PCs [207, 208, 209, 219]. Fig. 5.16 demonstrates the optimal number of components determined by the Broken Stick and the Kaiser rules. The Broken Stick rule suggests that the reduction to only 16 PCs is reasonable.


Figure 5.16. The number of principal components determined based on the Kaiser rule and the Broken Stick rule

Finally, we compared these two criteria of PC selection with the criterion: the ratio of the maximal and minimal retained eigenvalues $\left(\lambda_{\text {max }} / \lambda_{\text {min }}\right)$ should not exceed the selected number (the condition number) [211, 212, 213]. It is described as the multicollinearity control. In order to avoid the effects of multicollinearity, the conditional number of the covariance matrix after deleting the minor components should not be too large. That is, $k$ is the number of components to be retained if $k$ is the largest number for which $\lambda_{1} / \lambda_{k}<C$, where $C$ is the conditional number. This method is called PCA-CN [213]. In our work, modest collinearity is defined using collinearity with $C<10$ as in [212]. Therefore, the number of PCs to be retained is 13 by PCA-CN. Table 5.11 shows the number of PCs to be retained (informative PCs) found by three approaches: Kaiser rule, Broken Stick rule and PCA-CN.

Increasing the number of dimensions could lead to even the closest neighbours being too far away in the Meaning Space, especially for a small number of words. This notion is closely related to the problem of curse of dimensionality. To avoid this isolation of word vectors in the space because of over-fitting, we have decided to use this new 13-dimensional Meaning Space in the future study of the quantification

Table 5.11. Number of PCs to be retained, found by Kaiser rule, Broken Stick rule and PCA-CN

| Method | Number of PCs |
| :---: | :---: |
| Kaiser | 61 |
| Broken Stick | 16 |
| PCA-CN | 13 |

of meaning of text. The full list of categories in positive and negative groups for each of the first 13 PCs can be found in Appendix D.3.

### 5.4. Conclusion and Discussion

In this chapter we compute the dimension of meaning; our answer is 13 . We also suggest qualitative meanings for the first five of these dimensions:

- PC1 describes how well 252 categories from the WoS are described by the words in texts classified as being in these categories. The first PC coordinate of a word is its general informational value for separating of categories;
- PC2 is the Nature of Science dimension, which categorises topics as either discourse or experiment; The corresponding PC coordinate reflects the difference in the use of the word in these two groups of topics;
- PC3 is the Human Scale dimension, which distinguishes biological science (with some attached disciplines) and medicine (also with some attached disciplines);
- PC4 is the Human Condition dimension, where the distinction is between understanding the human through psychology, social and behavioral sciences, or art (with some admixture of medicine);
- PC5 is the Inner World/Outer World dimension where the human experience of itself (a combination of psychology and computers) is contrasted with the experience of the external world (environment, ecology and related topics).
We welcome fierce debate over the meaning of these dimensions, but giving a qualitative meaning to these is a crucial step to understanding the meaning of meaning.

We arrived at these conclusions by first of all arguing that the reduced word set of 5,000 words in LScT reasonably represent the texts from our corpus; see Section 5.2. Having done this it reasonable to perform a principal component analysis of the word-category matrix, whose entries are the relative information gains for the category with the given word; see Section 5.3. By exploring three different selection criteria (Double Kaiser, Broken Stick, PCA-CN, Section 5.3.5) we reduced the dimensionality of the category space to 61,16 and 13 respectively. Meaning cannot be so complicated - so we choose the lowest dimensionality. If it turns out that we cannot explain some component of meaning at some time in the future with only 13 dimensions, we can increase the dimension. It remains a challenge to describe all 13 such dimensions in a way that makes some philosophical sense, but we hope that we have opened up this debate in this chapter.

In the future we hope to explore a new categorisation of texts using the positive, negative and zero correlation of each subject category with the influential PCs. Even if we use the first five PCs (with some ternary division on PC1) this would give $3^{5}=243$ categories (eerily close to the 252 categories in WoS).

## CHAPTER 6

## Semantic Analysis for Automated Evaluation of the Potential Impact of Research Articles

### 6.1. Introduction

A space of meaning for words was created from the analysis of situations of their use and this space was analysed in Chapter 5 [220]. We now return to texts and introduce a novel, informational text representation model.

In this chapter, we introduce a text representation model based on informational semantics of texts. In this approach, each text is a cloud of words represented in the Meaning Space [205]. In MS, words were represented by their RIGs for categories. We construct text representation using the distribution of words' RIGs in each category (dimension). The information in each text is summarised by a set of parameters such as mean point of a cloud's points (vector of mean). Feature Vector of Text is introduced and created for each text as a vector representation of the text. FVTs can be constructed in various ways depending on the task. We create FVTs in five different ways by combining the mean vector, the vector of the first principal component for each text and two centroid vectors obtained by k-means clustering of words in the text. Each of FVTs is defined as informational semantics representation and analysed for binary classification problem.

Given the informational representations of texts, we evaluate the scientific impact of articles through their semantics. Citation count is widely-used measure of impact in scientific world. As well as many other important factors that contribute to the citation counts such as the number of scientific collaboration and high-impact journals [221], one important factor is the context of the paper - usually the most important -. We investigate this fact under the assumption that the informational semantics of texts is an important indicator in research assessment for individual categories.

We hypothesize that research trends and the impact of articles can be portrayed using semantic relations between contexts in texts. Predictive models for citation are employed and tested for assessing scientific impact of articles based on informational representations of texts. The focus of this study lies on showing how much information the semantics of scientific articles have in predicting of citation. Here we also claim that such a linking of semantics of texts and the scientific impact in fact provides the basis for a solution of the problem of analysing and decision-making for scientific articles to be published by journals.

### 6.1. INTRODUCTION

The empirical analysis of the research in predicting the citation is done on the basis of the LSC abstracts with citation counts extracted from the Web of Science website for approximately 4 years range from 2014 [13, 15, 16, 112, 222]. We perform the k-Nearest Neighbour (kNN) and Linear Discriminant Analysis (LDA) classifiers to evaluate the impact and test different FVTs in predicting citation. In classification, we make a very broad separation of citations: highly-cited papers and less-cited papers. Therefore, we deal with binary classification throughout this research. For experiments, three categories are selected from three main branches of science: Applied Mathematics, Biology and Management and the results are discussed for these categories.

Distinguishing between the highly-cited and less-cited papers could be done by several ways. In order to avoid the predominance of highly-cited categories, we use relative thresholds for each category rather than an absolute threshold defined from the whole corpus. Two rules for defining thresholds are used and two classification problems are solved. In the first task, we made a very broad separation between papers based on the average citation in the category. The classification of papers labelled as highly-cited (H) and less-cited (L) is performed. We also differentiate between extremely highly-cited (EH) and extremely less-cited (EL) papers labelled according to lower and upper quartiles of citation counts in the category.

For both classification problems, we applied classifiers for five FVTs in three different spaces and compared performance of the classification. The best classification result is achieved when combining the vectors of the mean and the first principal component for the category Management by LDA, with sensitivity and specificity being greater than $80 \%$. The semantics represented by this vector allowed the identification of extremely highly-cited (EH class) papers with $83.22 \%$ accuracy (sensitivity) and the identification of extremely less-cited papers (EL class) with $81.81 \%$ accuracy (specificity).

In this study we found that the informational semantics of a paper has important information about the scientific impact of the paper. This fact is sometimes much more clear for some scientific categories than others. Results indicate that development of a quantitative evaluation and predictive model of citation count is possible by the proposed informational semantics based approach.

The rest of the chapter is organised as follows. In Section 6.2, we review standard and widely-used text representation models in the literature. In section a novel text representation method is introduced and the vectors of text for LSC abstracts are constructed. The fundamentals of evaluation of the potential impact of research articles with classification and evaluation methods are discussed in Section 6.4. In Section 6.5, the characteristics of citations in categories for the corpus LSC are analysed. Given constructed FVTs for the LSC, the methods and applications in classification of citation are described and results of classification experiments are

### 6.2. CLASSICAL TEXT REPRESENTATION MODELS

discussed in Section 6.6. Finally, the Section 6.7 concludes the chapter and further possible analysis is suggested.

### 6.2. Classical Text Representation Models

This section reviews commonly used text representation models. The underlying goal of these models is to represent texts in a way that best preserves the original text set in its space. Most of data mining algorithms work based on features extracted from the text, and different representation methods create different set of features. The first thing to be addressed is how to represent a text as an input for data mining algorithms.

One of the simplest and the most commonly used text representation models is BoW. In this model, unique words in a text are extracted and the text is represented by a bunch of words, and syntax, semantics, orders and positions of words are ignored [44]. One of the standard ways in representing texts with words is to represent texts as word-based vectors, VSM, originated by $[\mathbf{1 2 0}, \mathbf{2 2 3}]$. All words in the corpus define the text space where each dimension is a word. In VSM, given the bag of words extracted from the corpus, the text is represented as a vector, where each dimension corresponds to a word and each entry is the weight of the word in the text. Words are weighted to indicate how important this word is to the text in the corpus.

In the VSM, the most basic weighting scheme is to represent a text as a Boolean vector; the weight is 1 when the word $w$ is present in the text and 0 if it is absent. Using the word count (frequency) is another common type of word weighting. This shows how many times the word occurs in the text $d$, and is the called Term Frequency ( TF ) representation $\mathrm{TF}(w, d)$. The more a word appears in the text, the more it is considered to be relevant for the text. Each text in the corpus becomes a vector of TFs. In addition to TF, one may take into account the distribution of the word over the corpus. A word that appears in every text is not considered to be useful for distinguishing between texts. This is measured by Inverse Document Frequency (IDF). The IDF is a global measure indicating the importance of the word within the entire corpus. The IDF score for a word $w$ is defined as:

$$
\begin{equation*}
\operatorname{IDF}(w)=1+\log \left(\frac{\text { Number of documents in the corpus }}{\text { Number of documents containing } w}\right) \tag{15}
\end{equation*}
$$

The less frequent a word is the corpus, the higher the IDF is. Term FrequencyInverse Document Frequency (TFIDF) is a common refinement of TF and IDF. It reflects the importance of a word to the text by its frequency distribution over the corpus. The TFIDF score for a word $w$ in the text $d$ is calculated as follows:

$$
\begin{equation*}
T F I D F(w, d)=T F(w, d) \times I D F(w) \tag{16}
\end{equation*}
$$

### 6.2. CLASSICAL TEXT REPRESENTATION MODELS

The importance increases proportionally to TF but is offset by IDF. Words that are common in every text, such as stop words (and, the, an, it for instance) have low TFIDF even though they appear many times in texts. For each text, the TFIDF is calculated for individual words in the corpus. Then, each text is represented as a vector of TFIDFs. Vectors are usually normalised to unit length. The calculation of TFIDF can be done in several different ways, some are described in [44, 224, 225].

In BoW model, every word in the text is an independent potential keyword of the text, and weights are assigned based on the frequency of words in the text and their rarity across the corpus. Words in texts are assumed that independent from each other. The weights of words can be binary, TF or TFIDF, but one of these weighting schemes is not necessarily optimal. They should be experimented to see the best results for a given problem.

As well as single words, features of vectors can be a string, phrases or any concepts characterising the text. In the phrase-based models, a number of phrases are identified and phrases are treated as individual features for texts. The phrases can be formed by several relations between words. Two of the most popular ways to form phrases are: co-occurrence information and linguistic information of words.

With the co-occurrence, two words that occur together are identified by statistical measures and this is used to form the phrases. The lexical co-occurrence of words is also used to construct semantic spaces $[156,226]$. In co-occurrence approaches, the construction process is automated and no human judgement of the meaning of words is necessary. This addresses problems with the traditional semantic space approach established by Osgood. The first problem was that human intervention is needed to determine a set of axes that sufficiently represent the meaning of texts. The second problem was a practical problem of gathering information from human judges to determine where words are placed along these axes. This means that human input of size the number of axes multiplied by the number of words is needed. This is a huge problem with large numbers of words.

When using the linguistic information of words, we aim to capture precise syntactic word relations and phrases of two or more words can be formed [227, 228, 229]. Such phrases can be noun phrases or clusters of words such as adjective-noun or adverb-noun. Some alternative models including combination of statistical and syntactic phrases have been proposed in the VSM [230]. Salton analysed syntactic constructions in texts and assigned importance weights to the term phrases identified in order to choose phrases to use in the index for his books[231]. However, both approaches to forming phrases result in long vectors representing the meaning of texts.

In [230], it is suggested that more semantic information can be gathered from phrases as they give an idea about the contexts of the texts. However, Lewis [232]

### 6.3. AN INFORMATIONAL TEXT REPRESENTATION METHOD

argued that single word representation carries a better statistical quality as frequencies of words in a phrase could be misleading. Even if a word appears several times, the phrase containing the word is likely to appear only once.

### 6.2.1. Limitations of Traditional Text Representation Schemes for Big Corpora

One inherent limitation of traditional BoW text representation is the sparsity of high dimensional vectors. VSM representation can result in hundreds of thousands of dimension [233, 234]. We usually have a huge number of features (words) with many entries of the vector for a given text being zero. For instance, even if an abstract has 200 unique words, which is approximately the average length of an abstract, it is only a small fraction of the vocabulary from the dictionary for a large text collection as a whole. In a low dimensional space, two points (texts) can seem very close to each other but are far apart separate in high dimension. Increasing the dimensionally degrades the performance of the text processing applications because of the curse of dimensionality [235].

It is hard to apply NLP tasks like text categorization and clustering to sparse vectors due to computational complexity and space limitation. In such a highdimensional space, distance metrics are usually ineffective as not all features have equal importance for the text data. An appropriate number of dimensions, in other words relevant features, are required to be chosen to gain meaningful results. Global features may result in loss of information; therefore, feature relevance is needed to define locally. To extract local relevance of features, further operations are required for construction of the vector space.

Another consequence of sparsity for BoW is that IDF gives inconsistent results for rare words within a large word set [236]. For high dimensional spaces, the information from TFIDF is not enough to obtain accurate weighting of words. This leads a need to propose and implement a new method of representation of words and texts, the outcome being an improvement in the performance of text mining algorithms.

### 6.3. An Informational Text Representation Method

This section presents an overview and a formalization of a novel text representation method for the study of extracting 'meaning of text' in scientific corpus. The aim is to introduce the method of text representation, and its applicability to text categorisation and other NLP tasks.

Consider a text space consisting of all texts in a corpus, each contains words that are represented according to their importance extracted from their usage in subject categories. Recall that a word in the Meaning Space is represented as a vector of RIG from word to category, where dimensions are subject categories. A text is a

### 6.3. AN INFORMATIONAL TEXT REPRESENTATION METHOD

collection of words that are points in the MS. Each text is actually a cloud of these points and each cloud has a distribution of different words in the MS. It then follows that a text is a collection of vectors corresponding to words in the text.

For a text, we expect that RIGs of words in any two categories (two dimensions) are not the same and not equally distributed. The distribution of words' RIGs in each category is unique and characteristic for each text. In a more precise sense, if words of two texts have different degrees of importance for a particular category, distributions of their RIGs in the category will be statistically different. We hypothesize that the central tendency and the statistical dispersion of any two clouds of such words will not be the same in the category given. In other words, for different texts the means and the variances of the distributions of RIGs in the category are statistically different. We expect that two texts with similar words are represented by points that are closely located in the MS, which also means two texts having similar 'meaning'. This formally establishes a new model to represent texts' meanings. For each text, we set vectors summarising the distributions and the information in clouds obtained from RIGs in each category.

Now, each text has a distribution of words' RIGs in each dimension of the MS, defined by sets of parameters such as the mean vector and the vector of standard deviations. To represent a text, we introduce the FVT summarising the information that we maintain about a text by features included. FVT is defined as

$$
\begin{equation*}
F V T_{i}=\left(\vec{\mu}, \vec{\sigma}, \overrightarrow{P C_{1}}, \ldots, \overrightarrow{P C_{n}}, \overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right) \tag{17}
\end{equation*}
$$

where $i$ is the index of the text in the corpus, $\vec{\mu}$ is the vector of mean values of a cloud's points, $\vec{\sigma}$ is the vector of standard deviations of a cloud's points, $\overrightarrow{P C_{n}}$ is the $n^{\text {th }}$ principal component, and $\overrightarrow{c_{1}}$ and $\overrightarrow{c_{2}}$ are centroids of two clusters (centroid vectors) obtained by k -means clustering of words in the text [237]. It is obvious that the length of each vector in the FVT is equal to the number of categories.

We note that the centroids $\overrightarrow{c_{1}}$ and $\overrightarrow{c_{2}}$ in 2-means clustering are initialised as the most distant two points in the cloud under the assumption that two distant words should belong to different clusters (Algorithm 2). It is important that we do not make a random initialisation, as this would lead to different representations each time the algorithm is run.

Depending on the task, the FVT can be constructed with a reduced set of features, for instance:

$$
\begin{array}{r}
F V T_{i}=(\vec{\mu}) \\
F V T_{i}=\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)  \tag{18}\\
F V T_{i}=\left(\vec{\mu}, \overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right) .
\end{array}
$$

```
Algorithm 2 Extracting the centroids of two clusters of words for each text by
k -means clustering
Input: Text and clouds of words for each text represented in the Meaning Space;
    the number of clusters \(\mathrm{k}=2\)
Output: Centroids of two clusters of words for each text
    Initialize centroids of two clusters as two distant words in the clouds of words
    Calculate the distance between data points and centroids
    Form two clusters with data points assigned to nearest centroids
    Re-calculate centroids based on the current partition
    Assign each data point to the nearest cluster
    repeat
        Step 2 to Step 5.
    until there is no change between two iterations, that is, the algorithm is con-
    verged.
    return Two clusters and their centroid vectors.
```

Since each of the vectors in the FVT is of length $n$, the number of categories in the corpus, if we use all $n$ principle components, plus the four extra categories, we use $n(n+4)$ pieces of information to represent the documents in the corpus. Of course, by choosing fewer vectors in FVT we can significantly reduce this number.

Given the FVT vectors for two texts, it is also possible to compute the similarity between them in a lower dimensional space, which is one of the main problems in typical text mining and NLP tasks, including text categorization, text clustering, concept/entity extraction, sentiment analysis, entity relation modelling and many more.

### 6.3.1. Representation of LSC Abstracts as Feature Vector of Text (FVT)

In this subsection, we represent the texts of the LSC in the Meaning Space. For a given set of texts $d_{i}, i=1,2, \ldots, M$, where $M$ is the number of texts $(1,673,350)$ in the LSC and each $d_{i}$ stands for a text. The problem of text representation is to represent each $d_{i}$ as a FVT obtained from its words that are points in MS, where dimensions are 252 Web of Science categories.

Words can be represented by two ways in the Meaning Space: their RIGs and the reduced dimension by PCA. In the second case, the dimension is determined as 61 by Kaiser rule, 16 by Broken Stick or 13 by PCA-CN [220]. Therefore, texts will have distribution of words represented in 13,16 or 61 dimensional space. Besides the original dimension, we will also use this extracted features.

With the words represented in any of these vector spaces, we construct the FVT for each text as described below:

$$
\begin{array}{r}
F V T_{1 i}=(\vec{\mu}) \\
F V T_{2 i}=\left(\overrightarrow{P C_{1}}\right) \\
F V T_{3 i}=\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)  \tag{19}\\
F V T_{4 i}=\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right) \\
F V T_{5 i}=\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right) .
\end{array}
$$

If words are represented by RIGs vectors in the MS, the dimensions of $F V T$ are 252,504 or 756 . If the space of words is 13 -Dimensional reduced basis, the dimensions of $F V T$ can be 13,26 or 39.

### 6.4. Evaluation of the Potential Impact of Research Articles through Semantics

The corpus of scientific texts is a dynamic resource is which has changed and improved as new topics in science are introduced. A rapid evolution of research and new priorities among the world's scientists requires the continuous analysis of the corpora of research literature in order to understand the impact of research articles for understanding the development of science. Citation count is a widely used indicator for how much interest an article or topic has attracted interest in the scientific world. The context of an article is often the most important factor in deciding the citation count. It is, indeed, not easy to track the context of texts (or meaning of text) and so quickly monitor and generate trends in a growing volume of publications.

With the construction of the triad - dictionary, texts and representation of texts in the Meaning Space as described in the previous section, we now evaluate the scientific impact of articles via their informational semantics. Predictive models for citation based on this representation will be assessed for articles published in WoS database in 2014 with citation counts in the subsequent (approximately) 4 years. Our focus is to explore how efficiently the semantics of scientific articles can be used to predict the impact of articles as measured by citation.

In this context, we employ two classification algorithms to analyse the predictability of citation: Linear Discriminant Analysis and k-nearest neighbours. In classification of impact, various criteria for distinguishing classes of papers can be used to define citation ranks. We consider this problem as a very broad separation of papers: highly-cited papers and less-cited papers, that is, binary classification of impacts.

An important element in selection of groups of papers is the definition of citation counts for a highly-cited paper. This is controversial in research assessments. Ordinary citation counts for certain fields can be high citation in other fields. Utilising an absolute threshold to distinguish the classes of papers in a corpus might lead to

### 6.4. EVALUATION OF THE POTENTIAL IMPACT OF RESEARCH ARTICLES THROUGH SEMANTICS

predominance of papers in highly-cited scientific categories [221]. To avoid this disciplinary differences in average citation within categories, one way is to use relative thresholds for each category. In this research, category-based relative thresholds will be defined.

The focus on computational methods for text representation and the impact analysis for such a comprehensive corpus will also provide an important critical trends analysis for communities that dealing with different aspects of corpus studies. Indeed, this analysis of two-classes problem can also be extended to multi-classes of citation counts and prediction of exact citation counts further.

We begin this research by a review of classification tasks and the descriptive analysis of the citations for the corpus LSC.

### 6.4.1. Methods of Classification

This subsection provides the methodology for classification algorithms used in the evaluation of scientific impacts of articles.

### 6.4.1.1. Criterion for evaluating the performance of classification methods

Data imbalance is encountered in many classification applications. It refers to the unevenly distribution of sample size in the data classes. Particularly, citation distributions are usually unequal to the classes of highly-cited and less-cited papers. The majority of papers are less-cited whereas some papers are extremely highly-cited in certain scientific disciplines such as medicine [221, 238]. This leads to classifiers to be inherently biased toward the class with larger size. Therefore, maximising the measure of performance such as accuracy might be misleading for imbalanced data. In such case, we need to use adequate metrics that take the class distribution into account.

In this work, we use standard metrics to measure the performance of classifiers: sensitivity and specificity [239]. $2 \times 2$ confusion matrix showing correct predictions and types of incorrect predictions for binary classification is used to calculate sensitivity and specificity (Table 6.1). The confusion matrix presents the decision made by the classifier in four categories: True positives (TP) referring to correctly labelled as positive, False positives (FP) referring to negative samples incorrectly labelled as positive, True negatives (TN) referring to negatives correctly labelled as negative and False Negatives (FN) referring to positive examples incorrectly labelled as negative [240].

Sensitivity (True Positive Rate) refers to the probability that a highly-cited paper is classified as highly-cited, calculated as:

### 6.4. EVALUATION OF THE POTENTIAL IMPACT OF RESEARCH ARTICLES THROUGH SEMANTICS

Table 6.1. Confusion Matrix used to calculate sensitivity and specificity for binary classification

|  | True Condition |  |  |
| :--- | ---: | ---: | :---: |
|  | Positive | Negative | Total |
| Positive | True Positive | False Positive | TP+FP |
|  | (TP) | (FP) |  |
|  |  |  |  |
| Negative | False Negative | True Negative |  |
| Total | (FN) | (TN) | FN+TN |
|  | TP + FN | FP+TN |  |

$$
\text { Sensitivity }=\frac{T P}{T P+F N}
$$

Specificity (True Negative Rate) refers to the probability that a less-cited paper is classified as less-cited, calculated as:

$$
\text { Specificity }=\frac{T N}{T N+F P}
$$

In other words, the sensitivity is the proportion of correctly identified positives and the specificity is the proportion of correctly identified negatives. To evaluate the performance of classifiers, we use the criterion: maximising the sum of sensitivity and specificity. The higher the sum means the better performance of the classifier.

The ROC (receiver operating characteristic) curves are also used to present results for binary classification problems [241]. We plot the ROC curve showing the sensitivity and the corresponding specificity points for every possible cut-off for the set in classification. The x -axis shows the 1 -specificity (false positive rate) and the $y$-axis shows sensitivity (true positive rate) for a chosen cut-off. The diagonal line means that the model predicts at chance.

The area under curve (AUC) is used as a criterion to measure the performance of a binary classifier: how good is the classifier in identifying the correct classes of articles. For a diagonal line, the AUC is 0.5 . The higher the AUC, the better the model is at distinguishing between classes. The maximum value of AUC is 1 which indicates a perfect classifier.

### 6.4.1.2. $k$-Nearest Neighbour (kNN)

kNN is a simple and easy-to-implement classification method. For a test sample to be classified, the set of the closest k-nearest neighbours are found from all the training data according to a distance metric (proximity). Every data point in training set belongs to one class and class labels of this set are known. For the given test point where the class label is unknown, kNN searches for the closest k nearest neighbour based on the distance metric and decides the classification by the majority

### 6.4. EVALUATION OF THE POTENTIAL IMPACT OF RESEARCH ARTICLES THROUGH SEMANTICS

voting among data points in the neighbourhood [242]. We use Euclidean distance as proximity measure.

The value of $k$ should be defined before applying kNN and the efficacy of the classification is usually dependent on this value chosen. One of the simplest ways to determine the value of k is to run the algorithm several times with different k values and chose the optimal value of $k[\mathbf{2 4 3}, \mathbf{2 4 4}]$. The optimal value refers to $k$ with the best classification performance.
kNN suffers from imbalance of the data among classes as for many other classification tasks [245]. In the kNN rule, the majority is very likely to have more samples in the set of k -nearest neighbours for a test sample, and so the test sample tends to be classified as the majority class. This results in the higher accuracy for the majority class and the low accuracy for the minority class. An intrinsic method which mitigates against the effect of sample size in classes is to assign weights (inversely proportional to class frequency) to the neighbours.

To improve the classification performance by kNN, we implement weighting described as follows. For a given test point, we form the set of k-nearest neighbours from training texts where the class A has $N_{A}$ samples and the class B has $N_{B}$ samples out of $N$ papers. Suppose we have $\mathrm{k}=\mathrm{t}$ and we obtain s papers from the class A and t-s papers from the class B in the decision set by kNN. By class distribution, each data point in class A has weight $1 / P_{A}$ where $P_{A}=N_{A} / N$ and each data point in class B has weight $1 / P_{B}$ where $P_{B}=N_{B} / N$. If there are s cases from class A and t-s cases from class B in the decision set, we give class A a score of $s / P_{A}$ and class B a score of $(t-s) / P_{A}$. We assign the test point to the class that has a higher score.

### 6.4.1.3. Linear Discriminant Analysis (LDA)

In this research, Fisher's linear discriminant is used for binary classification problem for distinguishing between highly-cited papers and less-cited papers [246]. The means $\mu_{1}$ and $\mu_{2}$ of each class for the training set are computed. Then, covariance matrices $\Sigma_{1}$ and $\Sigma_{2}$ for each class are calculated. The direction of the discriminating line is defined as:

$$
\omega=\left(\Sigma_{1}+\Sigma_{2}\right)^{-1}\left(\mu_{1}-\mu_{2}\right) .
$$

Projections of each point $x_{i}$ on the discrimination direction are found by dot product $\left(\omega, x_{i}\right)$ [247]. As defined before, the optimal threshold for the LDA is described as the sum of specificity and sensitivity maximisation. This means that the decision criterion of a point being in one of the class becomes a threshold on $\left(\omega, x_{i}\right)$ that maximises the sum of sensitivity and specificity. We first apply the LDA to the whole set with two classes and calculate the sensitivity and specificity based on the threshold found.

### 6.5. DESCRIPTIVE STATISTICS OF CITATIONS IN THE LSC

In order to test the statistical power and the quality of the classifiers, we also test LDA with Leave-One-Out Cross Validation (LOOCV) [248]. LOOCV is performed as follows: (1) Select a single-item as a test point (2) Use all other points as a training set (3) Apply the learning algorithm to training set once for each test point. The performance of the classifier with LOOCV is also evaluated by the sum of sensitivity and specificity.

### 6.4.1.4. Supervised PCA

For a classification problem, supervised PCA searches for a low dimensional linear manifold where the distances between projection points of different sets are maximum and the distances between projection points of the same set are minimum $[\mathbf{2 4 9}, \mathbf{2 5 0}]$. Given set of points $X=\left(x^{1}, \ldots, x^{n}\right), x^{i}=\left(x_{1}^{i}, \ldots, x_{m}^{i}\right), x_{k}=\left(x_{k}^{1}, \ldots, x_{k}^{n}\right)$ where each row $x^{i}$ in the matrix $X$ corresponds to one text. Points are centred where $\sum_{i=1}^{n} x_{k}^{i}=0$ for all $k=1, \ldots, m . L 1$ and $L_{2}$ are two sets of points where those with label 1 belong to $L_{1}$ and those with label label 2 belong to $L_{2}$.

We consider the column vectors $V=\left(v^{1}, \ldots, v^{p}\right)$ with $\left(v^{i}, v^{j}\right)=\delta_{i j}$ where $\delta_{i j}=0$ if $i \neq j$ and $\delta_{i i}=1$ (Kronecker delta). Projection of points onto p-dimensional subspace is defined as $P_{v}(x)=x V$. The squared distance between projections of two points $x^{i}$ and $x^{j}$ are calculated as

$$
\left\|P_{v}\left(x_{i}\right)-P_{v}\left(x_{j}\right)\right\|^{2}=\left\|x^{i} V-x^{j} V\right\|^{2} .
$$

For two sets of points with different labels, the averaged squared distance between projections is

$$
D_{B}=\frac{1}{\left|L_{1} L_{2}\right|} \sum_{i \in L_{1}} \sum_{j \in L_{2}}\left\|P_{v}\left(x_{i}\right)-P_{v}\left(x_{j}\right)\right\|^{2}
$$

The averaged squared distance within a set of points with a class label is computed by

$$
D_{w_{k}}=\frac{2}{\left|L_{k}\right|\left|\left(L_{k}-1\right)\right|} \sum_{i, j \in L_{k}, i>j}\left\|P_{v}\left(x_{i}\right)-P_{v}\left(x_{j}\right)\right\|^{2} .
$$

Therefore, the function of interest to be maximised is

$$
D_{C}=D_{B}-\frac{\alpha}{2}\left(D_{w_{1}}+D_{w_{2}}\right)
$$

where $\alpha$ is a parameter that indicates the relative importance of $D_{B}$ and $D_{w_{1}}+D_{w_{2}}$.

### 6.5. Descriptive Statistics of Citations in the LSC

In this section, descriptive statistics are used to describe the corpus of interest with respect to citation counts in the Web of Science database. They summarise

### 6.5. DESCRIPTIVE STATISTICS OF CITATIONS IN THE LSC

various aspects about the times cited count in the data, providing information about the corpus and details about samples used in further studies.

In WoS, two types of citation are accessible: Times Cited in WoS Core Collection and Total Times Cited. In the first case, the count shows the total number of times a paper was cited by other papers in WoS Core Collection [251]. The total times cited displays the number of times the paper was cited by other items in the WoS products including WoS Core Collection. The counts of total times cited are used in this study. Recall that the dataset consists of $1,673,350$ abstracts or proceeding papers that were published in Web of Science database in 2014 with citation counts in approximately 4 years following publication (2014-2018).

Frequency statistics is the first descriptive statistic used to determine the distribution of citations in the corpus. Raw counts of documents for each citation count (times cited) is presented in Fig. 6.1. It should be stressed that as categories are not exclusive, a citation record of a document can appear in multiple categories. However, documents across categories are counted only once in Fig. 6.1 and in all other calculations of descriptive statistics for the corpus. Note that few documents are cited more than 1000: only 64 documents. Another 243 documents are cited from 500 to 1000 times. However, 929,361 documents are cited no more than 5 . In the Table 6.2 , one sees the highest 5 and the lowest 5 cited counts, supporting the fact that more than $50 \%$ of documents cited less than 4 times. The average of citation counts is approximately 9 .


Figure 6.1. Graph of the number of documents cited $n$ times in the corpus LSC. The figure on the right hand side shows the number of documents cited up to 10 . The average citation in the corpus is approximately 9 (9.38).

It should be mentioned that citation counts may vary differently across scientific categories and so descriptive statistics of citations in individual categories may be characteristic for different branches of science. Also, the number of papers per category may be a factor that correlates with citations. This fact also was suggested

Table 6.2. The highest and the lowest five citations in the corpus with the number of documents for the corresponding citations

| The highest <br> citations | Number of <br> Documents | The lowest <br> citations | Number of <br> Documents |
| ---: | ---: | ---: | ---: |
| 8,234 | 1 | 0 | 332,610 |
| 6,756 | 1 | 1 | 163,907 |
| 4,744 | 1 | 2 | 133,280 |
| 4,102 | 1 | 3 | 114,309 |
| 3,908 | 1 | 4 | 98,843 |

and analysed in [252]. In the study, the most cited 500 papers of each category (236 WoS categories) with citation counts from 2010 to 2014 are compiled. It was stated that the citation counts are the highest in multidisciplinary sciences, general internal medicine, and biochemistry and the lowest in literature, poetry and dance. It was also discussed that the number of papers assigned to a category correlates with the citation counts for the selected top papers in a category. Therefore, a detailed analysis in each category will give a better insight into understanding the factors contributing to the citation and help in the selection of sample as to be representative of the corpus.

A sample of the corpus should be selected in such a way as to be representative of the corpus. An example of corpus sampling is presented as follows. Before sampling, we consider the corpus divided into groups of main branches of the science - by social science (e.g. sociology, law and psychology), physical science (e.g. physics and chemistry), life science (e.g. biology, medicine and physiology), earth science (e.g. geoscience, astronomy) and formal science (e.g. mathematics, computer science and logic). Then the corpus is sampled within each branch (or stratum). A sample of categories from each stratum is collected by ensuring the presence of key categories within the sample. We pay attention that the sample will reflect the characteristic of the corpus, assuring that the all branches will be included and evenly represented in the sample.

Taking into account the considerations above, we can select a sample with the categories presented in Table 6.3. One can see that the sample size of each stratum is similar, containing approximately 30,000 documents. The total number of documents in the sample is 147,901 . The counts of documents for each citation number (times cited) for the sample is presented in Fig. 6.2. The figures shows similar trend as for the corpus with a very close value of average citation: 9.43. Detailed explanation and statistics of each stratum and its sub-branches are provided later in this section.

For both the corpus and the sample, two classes of descriptive statistics are further calculated: location statistics (mean, median and quantiles) and dispersion statistics (standard deviation and standard error). Statistics calculated are:

Table 6.3. An example of corpus sampling: Sample structure

|  | Branches and categories | \# of <br> documents |
| :--- | :--- | ---: |
| Life Science | Biology | 9,917 |
|  | Medicine, Research \& Experimental | 19,744 |
|  | Psychology | 6,989 |
|  | Political Science | 5,106 |
|  | Management | 14,339 |
|  | Sociology | 4,725 |
| Earth Science | Physics, Particles \& Fields | 13,203 |
|  | Physics, Atomic, Molecular \& | 17,010 |
|  | Geography | 3,908 |
|  | Geology | 2,153 |
|  | Astronomy \& Astrophysics | 22,825 |
|  | Mathematics, Applied | 27,982 |



Figure 6.2. Graph of the number of documents cited $n$ times in the sample selected. The figure on the right hand side shows the number of documents cited up to 40 . The average citation in the sample is approximately 9 (9.43).

- $N$ : Number of documents in the corresponding set.
- Max: Maximum citation counts in the corresponding set.
- Min: Minimum citation counts in the corresponding set.
- Mean $(\mu)$ : The arithmetic average of citation counts in the corresponding set. We note that as the mean is not a robust measure of central tendency, it will be very sensitive to even one aberrant value (very high citation) out of $N$ documents.
- $Q_{1}$ : The first quartile. It indicates the median of the lower half of the data. This means that $25 \%$ of documents cited less than $Q_{1}$.
- $Q_{2}$ (median): The middle number in the data. The median is a robust statistic against an outlier and can resist up to $50 \%$ of outliers.
- $Q_{3}$ : The third quartile. It indicates the median of the upper half of the data, which means that $75 \%$ of documents cited less than $Q_{3}$.
- $\sigma$ : Standard deviation. It is the dispersion of the data. It shows how accurately the mean represents the sample.
- SE: Estimated standard error of the mean. It measures how far the sample mean is likely to be from the population mean. That is, it is a measure of how precise is our estimate of the mean.
Descriptive statistics for the corpus are presented in Table 6.4. The average citation in the corpus is approximately 9 and $29 \%$ of the documents are cited more than 9 times. Although the maximum number of citation is 8,234 , from the upper and lower quartile we can conclude that approximately $49 \%$ of the documents are cited 1-9 times in the corpus. The statistics for the sample can be also found in the table. The mean value and the quartiles are very similar to the corpus with a lower maximum citation count.

Table 6.4. Descriptive statistics for times cited in the corpus and samples

| Set | $N$ | Max | Min | $\mu$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ | $\sigma$ | SE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Corpus | 1,673,350 | 8,234 | 0 | 9.38 | 1 | 4 | 11 | 23.33 | 0.018 |
| Sample | 147,901 | 1,508 | 0 | 9.43 | 1 | 5 | 11 | 18.30 | 0.047 |
| Sample $_{1}$ (Life Science) | 29,661 | 978 | 0 | 10.95 | 2 | 6 | 13 | 19.96 | 0.116 |
| $\mathrm{Sample}_{2}$ (Social Science) | 31,159 | 304 | 0 | 7.70 | 1 | 4 | 10 | 12.83 | 0.073 |
| Sample $_{3}$ (Physical Science) | 30,213 | 1,508 | 0 | 11.57 | 2 | 7 | 14 | 21.86 | 0.126 |
| Sample $_{4}$ (Earth Science) | 28,886 | 1,243 | 0 | 12.44 | 2 | 7 | 15 | 22.81 | 0.134 |
| Sample $_{5}$ (Formal Science) | 27,982 | 253 | 0 | 4.33 | 0 | 2 | 5 | 8.03 | 0.048 |
| Biology | 9,917 | 517 | 0 | 10.36 | 2 | 6 | 13 | 16.09 | 0.162 |
| Medicine, Research \& Experimental | 19,744 | 978 | 0 | 11.24 | 2 | 6 | 13 | 21.63 | 0.154 |
| Psychology | 6,989 | 300 | 0 | 10.56 | 3 | 7 | 14 | 14.75 | 0.176 |
| Political Science | 5,106 | 293 | 0 | 7.04 | 1 | 4 | 9 | 10.89 | 0.152 |
| Management | 14,339 | 304 | 0 | 6.92 | 0 | 2 | 8 | 13.30 | 0.111 |
| Sociology | 4,725 | 192 | 0 | 6.54 | 1 | 4 | 8 | 9.17 | 0.133 |
| Physics, Particles \& Fields | 13,203 | 1,508 | 0 | 11.72 | 2 | 6 | 14 | 22.81 | 0.199 |
| Physics, Atomic, Molecular \& Chemical | 17,010 | 1,143 | 0 | 11.46 | 3 | 7 | 14 | 21.09 | 0.162 |
| Geography | 3,908 | 775 | 0 | 10.27 | 2 | 6 | 13 | 18.95 | 0.303 |
| Geology | 2,153 | 108 | 0 | 7.86 | 2 | 5 | 10 | 9.18 | 0.198 |
| Astronomy \& Astrophysics | 22,825 | 1,243 | 0 | 13.24 | 2 | 7 | 16 | 24.20 | 0.160 |
| Mathematics, Applied | 27,982 | 253 | 0 | 4.33 | 0 | 2 | 5 | 8.03 | 0.048 |

In the LSC, the average citation counts in categories vary differently. Descriptive statistics for each categories are presented in Table E. 1 and the Fig. 6.3. As can be seen from the histogram, for more than the half of categories the average citation lies between 5 to 10. Almost 20 categories have documents cited 2 times on average. We suspected that research fields and the number of documents assigned to categories may be two factors for low citation counts. The scope of the category may be a factor that affects the citation counts. Documents of multidisciplinary categories may be cited by researchers from different fields. For instance, the maximum citation in the
category 'Multidisciplinary Sciences' is 3,004 with a relatively high mean 18.32 , first quartile 4 and third quartile 18. This indicated that $50 \%$ of documents are cited 4-18 times, which is relatively higher than the corpus.


Figure 6.3. Frequency of categories versus average citation counts

Ten categories with the maximum citation counts in the corpus are presented with the first, second and third quartile in Table 6.5. We can see categories involving several academic disciplines appear in the list. It should be mentioned that category 'Computer Science, Interdisciplinary Applications' has relative small quartiles than other categories. This means that citation counts for this category are low in general even if there exist highly cited documents. This suggests that this fact may be characteristic for some categories. Therefore, it is also important to look at categories low almost 0 citation. We look at categories with very low third quartile value. We presented selected categories in Table 6.6. It can be clearly seen that papers of discourse studies and fine arts are cited a few times in general. This fact is also noticeable for computer science and engineering categories with very high number of documents.

Table 6.5. Categories with the maximum citation counts in the corpus

| Category | Max | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ |
| :--- | ---: | ---: | ---: | ---: |
| Oncology | 8,234 | 4 | 9 | 17 |
| Genetics \& Heredity | 6,756 | 4 | 8 | 17 |
| Computer Science, Interdisciplinary Applications | 4,744 | 0 | 1 | 6 |
| Biotechnology \& Applied Microbiology | 4,744 | 3 | 7 | 14 |
| Biochemical Research Methods | 4,744 | 3 | 8 | 14.75 |
| Statistics \& Probability | 4,744 | 1 | 3 | 7 |
| Mathematical \& Computational Biology | 4,744 | 1 | 4 | 9 |
| Medicine, General \& Internal | 3,908 | 2 | 4 | 10 |
| Multidisciplinary Sciences | 3,004 | 4 | 9 | 18 |
| Materials Science, Multidisciplinary | 2,464 | 0 | 4 | 12 |
| Nanoscience \& Nanotechnology | 2,464 | 2 | 8 | 20 |

In general, coverage of the natural sciences and the medicine are much more richer than other branches in the LSC. However, we did not observe any explicit correlation between the average citation count and the number of documents. Fig.

Table 6.6. Categories with low citation counts in the corpus

| Category | $N$ | Max | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Literary Theory \& Criticism | 498 | 45 | 0 | 0 | 0 |
| Dance | 74 | 8 | 0 | 0 | 0 |
| Literature, Slavic | 35 | 3 | 0 | 0 | 0 |
| Literary Reviews | 35 | 2 | 0 | 0 | 0 |
| Architecture | 1,376 | 145 | 0 | 0 | 1 |
| Humanities, Multidisciplinary | 2,559 | 53 | 0 | 0 | 1 |
| Asian Studies | 877 | 32 | 0 | 0 | 1 |
| Literature | 1,608 | 18 | 0 | 0 | 1 |
| Medieval \& Renaissance Studies | 485 | 11 | 0 | 0 | 1 |
| Classics | 325 | 9 | 0 | 0 | 1 |
| Engineering, Electrical \& Electronic | 174,272 | 2,028 | 0 | 0 | 3 |
| Telecommunications | 40,550 | 2,028 | 0 | 1 | 3 |
| Computer Science, Information Systems | 45,865 | 715 | 0 | 1 | 3 |
| Computer Science, Hardware \& Architecture | 18,489 | 532 | 0 | 1 | 3 |
| Language \& Linguistics | 5,174 | 112 | 0 | 1 | 3 |

6.4 shows the number of documents per category versus the average citation counts in the category with the linear regression line. We can see a slight increasing trend with a wide spread of points around the line. The figure also indicates that two categories with a high documents assigned, can have very different citation counts with different means. For instance, the number of documents of 'Engineering, Electrical \& Electronic' is 174,272 and 'Materials Science, Multidisciplinary' is 112,912 ; however, the average citation for 'Materials Science, Multidisciplinary' is 3 times more than the average citation for 'Engineering, Electrical \& Electronic' (Table 6.7). We can also see the same fact for quartiles. This fact is also confirmed in the Fig. 6.5 and Table 6.8. A slight decreasing trend of average citation with the rank of categories is observable in the figure, but we can also see the spread of points. Two closely ranked categories can have very different statistic and two categories with very similar statistics can have very different rank in the corpus. therefore, there may be other factors that contributes to citation counts such as research fields.


Figure 6.4. Number of documents per category versus the average citation counts in the category

Table 6.7. Top ranked five categories (by the number of documents)

| Category | $N$ | Max | Min | $\mu$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Engineering, Electrical \& Electronic | 174,272 | 2,028 | 0 | 3.8 | 0 | 0 | 3 |
| Materials Science, Multidisciplinary | 112,912 | 2,464 | 0 | 10.99 | 0 | 4 | 12 |
| Physics, Applied | 78,796 | 2,288 | 0 | 8.73 | 0 | 3 | 9 |
| Chemistry, Physical | 58,065 | 2,288 | 0 | 18.11 | 5 | 10 | 20 |
| Chemistry, Multidisciplinary | 55,907 | 2,210 | 0 | 18.9 | 3 | 9 | 21 |



Figure 6.5. Average citation per categories versus category rank according to the number of documents. Colours indicate the categories in the sample: red is for life science categories, cyan is for social science categories, yellow is for physical science categories, pink is for earth science categories and green is for formal science category.

Table 6.8. Categories with the highest average citation counts

| Category | $N$ | Max | Min | $\mu$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Cell Biology | 23,108 | 978 | 0 | 20.67 | 6 | 12 | 24 |
| Chemistry, Multidisciplinary | 55,907 | 2,210 | 0 | 18.9 | 3 | 9 | 21 |
| Multidisciplinary Sciences | 53,140 | 3,004 | 0 | 18.32 | 4 | 9 | 18 |
| Chemistry, Physical | 58,065 | 2,288 | 0 | 18.11 | 5 | 10 | 20 |
| Nanoscience \& Nanotechnology | 35,050 | 2,464 | 0 | 18.11 | 2 | 8 | 20 |
| Critical Care Medicine | 3,982 | 320 | 0 | 17.53 | 5 | 11 | 21 |
| Allergy | 1,765 | 488 | 0 | 17.41 | 4 | 10 | 20 |
| Neuroimaging | 2,702 | 527 | 0 | 17.24 | 6 | 12 | 22 |
| Cell \& Tissue Engineering | 2,455 | 261 | 0 | 16.81 | 4 | 10 | 20 |
| Medicine, General \& Internal | 16,179 | 3,908 | 0 | 16.01 | 2 | 4 | 10 |

### 6.6. Citation Classification

In this section, we explore the efficacy of semantic meaning of scientific articles represented in the MS in predicting the impact of articles on basis of the LSC. We employed classification algorithms in order to analyse the predictability of high/less citation of scientific papers.

We apply the methods for binary classification and investigate the binary classification problem for differentiating between two types of impacts of scientific papers:

### 6.6. CITATION CLASSIFICATION

less-cited (L) and highly-cited (H) papers. Our initial hypothesis is that if the semantic meaning of texts indicate the impact of papers, a classifier should perform significantly better than chance ( $50 \%$ ).

Distinguishing between highly-cited and less-cited papers can be done by various definitions. Two basic approaches to identify classes are to use absolute and relative thresholds [221]. Using an absolute number of citations for the entire corpus could lead to the predominance of papers from highly-cited categories due to the differences in the average citation within disciplines. Instead, relative thresholds define the highly-cited and less-cited papers in each scientific category.

In this study, we begin with using relative thresholds for individual categories. Two rules to define thresholds for highly-cited and less-cited classes are used. In the first scheme, papers assigned to a category are divided into H/L classes according to the average citation in the category. A paper is labelled as highly-cited (H) if it has received more than the average citation, less-cited (L) otherwise.

We then conduct the experiment to classify papers according to extremely highlycited (EH) and less-cited (EL) papers. In this scheme, papers in a certain sample are divided into four partitions by its corresponding quartiles from citations, where papers belong to one of the four partitions, described as:

- $P_{1}$ : papers cited less than or equal to the lower quartile $Q_{1}$
- $P_{2}$ : papers cited more than $Q_{1}$ and less than or equal to the median $Q_{2}$
- $P_{3}$ : papers cited more than $Q_{2}$ and less than the upper quartile $Q_{3}$
- $P_{4}$ : papers cited more than or equal to $Q_{4}$.

In this experiment, we use articles from the set $P_{1} \cup P_{4}$. This implies that we performed binary classification on the subset of texts with citations more than $Q_{3}$ and less than $Q_{1}$. The partitions $P_{1}$ and $P_{4}$ are defied as groups of two extreme citations where papers in the partitions $P_{1}$ and $P_{4}$ are labelled as extremely lesscited (EL) and extremely highly-cited (EH).

Two classification methods are initially investigated for comparison: Linear Discriminant Analysis with Fisher's discriminant rule and k-nearest neighbour. We follow procedures:
(1) We apply Fisher's LDA in classifying scientific papers by considering the selected sample set of texts as a whole training set.
(2) We apply kNN in classifying scientific papers by considering the selected sample set of texts as a whole training set.
(3) We apply leave-one-out cross validation (LOOCV) in classifying scientific papers for the best LDA separation for demonstration of statistical power of the classifier.

Table 6.9. Number of texts assigned to categories selected in each class

|  | H/L classes |  |  |  | EH/EL classes |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Category | Class H | Class L | Total |  |  | Class EH | Class EL | Total |
| Mathematics, Applied | 7,975 | 20,007 | 27,982 |  |  | 7,975 |  | 7,925 |
| 15,900 |  |  |  |  |  |  |  |  |
| Biology | 3,055 | 6,862 | 9,917 |  |  | 2,553 | 2,772 | 5,325 |
| Management | 4,426 | 9,913 | 14,339 |  |  | 3,980 | 5,257 | 9,237 |

We finally extend the study to the supervised PCA defined for classification problem. By supervised PCA, the dimension of FVTs will be reduced and the procedures for classification of papers defined above will be repeated with the reduced dimensionality.

The evaluation of the potential impact of articles through the semantic analysis is made by using different representations of the meaning of texts. Vectors $F V T_{1 i}, F V T_{2 i}, F V T_{3 i}, F V T_{4 i}, F V T_{5 i}$ in the constructed space are created and compared in classification.

We selected three categories from three different branches of science in Table 6.4 for the experimental study: Mathematics, Applied, Biology and Management. The numbers of texts assigned to each class in categories are presented in Table 6.9.

In kNN , to avoid the impact of the unevenly distribution of sample size in classes, we tested kNN with weights as described in Section 6.4. This modification achieved better classification performance for this imbalance classes, therefore we present only results for weighted kNN . In this study, we applied kNN where the k is $1,3,5,7$, 11,13 and 17 for each vector. We presented only the results for value of k with the best classification performance in each case individually.

### 6.6.1. The spaces used in classification

In this research, classification methods are compared for different vector representations in 3 different vector spaces.
6.6.1.1. Original Space. The original space refers to the Meaning Space that is defined in Section 6.3. In this space, each text is represented by the FVTs in various ways such as by only 252 -dimensional mean vector or 504 -dimensional vector as a combination of the mean vector and PC1 vector. This means that each text has at least 252 dimension in the Meaning Space.
6.6.1.2. 13-Dimensional Reduced Basis. As described in [220], words can be represented in PC axes and the optimal number of PC was determined as 13 by the PCN-CN. In order to carry out additional investigations on the basis of 13dimensional word space, we represented words in 13-Dimensional PC space and then constructed the FVU based on these vectors as described in Section 5. In this case, each text is represented by at least 13 -dimensional vectors, for instance, the mean

Table 6.10. Dimensions of FVT vectors in the original space and the constructed space after applying Supervised PCA for the category Mathematics, Applied

| Vector | Original Space | H/L classes |  |  | EH/EL classes |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Kaiser <br> Rule | Broken Stick | Supervised <br> PCA | Kaiser Rule | Broken Stick | Supervised PCA |
| $(\vec{\mu})$ | 252 | 36 | 15 | 14 | 32 | 15 | 14 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 252 | 25 | 8 | 8 | 24 | 8 | 8 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right.$ ) | 504 | 59 | 22 | 16 | 59 | 22 | 22 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 504 | 41 | 20 | 19 | 41 | 20 | 14 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 756 | 62 | 24 | 23 | 63 | 24 | 24 |

of 13 dimensional coordinates. We compared the performance of the classifiers for each vector in the original space and space of reduced basis.
6.6.1.3. The space constructed after Supervised PCA. For binary classification, we followed the following procedure: for each vector representation of text,
(1) Apply PCA to the data in the original space.
(2) Find the number of components by Kaiser and Broken Stick rules to be used the initial number of components in supervised PCA.
(3) Initialise the number of components (ncomp) as the minimum number found in previous step (We used Broken Stick results).
(4) Apply Supervised PCA with the components from 1 to ncomp, represent all texts on this new spaces.
(5) Apply LDA with the data on constructed spaces and calculate the sum of sensitivity and specificity.
(6) Take the maximum of the sum of sensitivity and specificity, and identify the number of components for this number. Report the sum of sensitivity and specificity to evaluate the performance of LDA classifier.
(7) Apply kNN with the identified number of dimension by LDA. Calculate the sum of sensitivity and specificity to evaluate the performance of kNN classifier.

The number of components (dimensions of FVT vectors) in the original space and the constructed space after applying Supervised PCA for categories Mathematics, Applied, Biology and Management are presented in Tables 6.10-6.12.

### 6.6.2. Results

Two classification algorithms were performed to show how much information the semantics of texts have on impact of articles: LDA and kNN. We selected three categories to demonstrate the results of classification and the differences in efficiency of semantics on bibliometric characteristics of articles in different categories.

Table 6.11. Dimensions of FVT vectors in the original space and the constructed space after applying Supervised PCA for the category Biology

| Vector | Original Space | H/L classes |  |  | EH/EL classes |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Kaiser Rule | Broken Stick | Supervised PCA | Kaiser <br> Rule | Broken Stick | Supervised PCA |
| $(\vec{\mu})$ | 252 | 35 | 13 | 12 | 36 | 14 | 12 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 252 | 29 | 10 | 8 | 30 | 11 | 9 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 504 | 64 | 25 | 25 | 64 | 25 | 25 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 504 | 50 | 23 | 23 | 49 | 22 | 20 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 756 | 76 | 30 | 30 | 76 | 30 | 30 |

Table 6.12. Dimensions of FVT vectors in the original space and the constructed space after applying Supervised PCA for the category Management

| Vector | Original Space | H/L classes |  |  | EH/EL classes |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Kaiser Rule | Broken Stick | Supervised PCA | Kaiser <br> Rule | Broken Stick | Supervised PCA |
| $(\vec{\mu})$ | 252 | 36 | 13 | 11 | 36 | 13 | 13 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 252 | 23 | 9 | 9 | 24 | 9 | 9 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 504 | 62 | 23 | 23 | 61 | 22 | 22 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 504 | 39 | 16 | 11 | 40 | 16 | 11 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 756 | 61 | 25 | 25 | 62 | 25 | 25 |

### 6.6.2.1. Applied Mathematics

The citation is determined by the nature of the categories individually. There are many factors that contribute the citation counts in individual research fields. Factors like size of the field, annual scientific production and relevance of article for the research activities in a field are very influential on the number of citation.

The category Applied Mathematics is selected as being a sample from Formal Science - one of five main branches of science. It is noteworthy that articles assigned to the category Applied Mathematics usually address issues combining the mathematical methods and specialised knowledge in specific fields such as physics, biology and business. Such categories generally suggest that there is no recurrent common characteristics of articles and there are large differences in citation patterns of papers from different disciplines. In Applied Mathematics, the separation of papers into highly popular fields may not be easily done. Therefore, the prediction of citation by semantics of such papers may be difficult for categories of multidisciplinary publications.

For Applied Mathematics, classification results of two algorithms in different spaces are shown in Tables 6.13-6.17. The first column in the tables demonstrates the type of FVT to represent the text. The other columns present the sensitivity

Table 6.13. Results of the citation classifier LDA according to H/L for the category Mathematics, Applied

| Vector | Original Space |  |  | 13-Dimensional Reduced Basis |  |  | Supervised PCA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sens. (\%) | Spec. (\%) | Sum <br> (\%) | Sens. (\%) | Spec. <br> (\%) | Sum <br> (\%) | Sens. <br> (\%) | Spec. (\%) | Sum (\%) |
| $(\vec{\mu})$ | 67.91 | 49.61 | 117.52 | 77.02 | 29.14 | 106.16 | 68.28 | 44.55 | 112.83 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 61.66 | 57.02 | 118.68 | 63.42 | 44.68 | 108.10 | 63.49 | 47.24 | 110.73 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 58.83 | 63.73 | 122.56 | 62.91 | 46.47 | 109.38 | 59.12 | 54.37 | 113.49 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 67.40 | 49.53 | 116.93 | 49.54 | 58.89 | 108.43 | 57.93 | 50.82 | 108.75 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 64.15 | 58.85 | 123.00 | 55.37 | 54.96 | 110.33 | 54.13 | 59.47 | 113.61 |

(\%), specificity (\%) and the sum of sensitivity and specificity (\%) in each experiment. Sensitivity is the proportion of high-cited papers that are correctly identified as high-cited and specificity is the proportion of low-cited papers that are correctly identified as low-cited. The results of LDA and kNN are represented in separate tables. For kNN (weighted kNN), results are presented only for $k$ where classification performance is the best, that is, the sum of sensitivity and specificity is the maximum. In each table, we used red color to highlight the case where the algorithm achieved the highest classification performance according to the criterion used. Also, all procedures are repeated for $\mathrm{H} / \mathrm{L}$ and $\mathrm{EH} / \mathrm{EL}$ classes.

For H/L classification, results of the LDA on three spaces are shown in the Table 6.13. Looking at the results in the table, we can see that LDA outperforms in the Original Space for all the vector representations with sensitivity $64.15 \%$, specificity $58.85 \%$ and the sum $123 \%$. The best results are obtained in this space followed by the space constructed by supervised PCA and then the space constructed with 13dimensional reduced basis. We can also see that the vector $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ performs better than others. $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ has achieved the second best performance in all cases. In general, we can conclude that adding $\overrightarrow{P C_{1}}$ to vectors $\vec{\mu}$ and $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ improves the classification performances.

The binary classification with classes EH/EL achieves higher performance results for all experiments. This implies that the LDA performs better for distinguishing two extreme citation classes. These classes are also higher sensitivity and specificity values, a clue that proves that the semantics of papers with two extreme citation counts are clearly different. The best performance is still achieved when using the $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ in the original space, where sensitivity $67.25 \%$, specificity $62.97 \%$ and the sum $130.21 \%$. In general, the results show that performances of LDA have an almost identical trend of rise and decline in all spaces.

In order to carry out additional investigations on the basis of these findings obtained by LDA, we performed LOOCV in H/L classification by LDA in the Original Space only and compared the results (Table 6.15). As the performance in each experiment and general trends and values with and without LOOCV is very similar,

Table 6.14. Results of the citation classifier LDA according to EH/EL for the category Mathematics, Applied

| Vector | Original Space |  |  | 13-Dimensional Reduced Basis |  |  | Supervised PCA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | Sens. <br> (\%) | Spec. <br> (\%) | Sum (\%) |
| $(\vec{\mu})$ | 69.93 | 54.69 | 124.62 | 74.37 | 35.51 | 109.88 | 69.93 | 47.31 | 117.24 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 65.20 | 58.90 | 124.11 | 69.82 | 39.70 | 109.52 | 66.68 | 47.34 | 114.03 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 71.56 | 58.37 | 129.93 | 68.60 | 44.69 | 113.30 | 65.08 | 52.61 | 117.68 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 68.66 | 54.16 | 122.82 | 55.94 | 55.04 | 110.98 | 53.98 | 56.76 | 110.74 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 67.25 | 62.97 | 130.21 | 54.19 | 58.03 | 112.23 | 64.89 | 53.56 | 118.45 |

Table 6.15. Results of the citation classifier LDA with LOOCV in according to H/L for the category Mathematics, Applied (for the Original Space only)

| Vector | Sens. <br> $(\%)$ | Spec. <br> $(\%)$ | Sum <br> $(\%)$ |
| :--- | ---: | ---: | ---: |
| $(\vec{\mu})$ | 65.24 | 48.29 | 113.53 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 58.36 | 56.35 | 114.71 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 60.30 | 57.90 | 118.20 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 62.87 | 48.25 | 111.12 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 59 | 56 | 115.5 |

Table 6.16. The best results of the citation classifier kNN for each vector according to $\mathrm{H} / \mathrm{L}$ for the category Mathematics, Applied

| Vector | Original Space |  |  |  | 13-Dimensional Reduced Basis |  |  |  | Supervised PCA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $k$ | Sens <br> (\%) | Spec <br> (\%) | Sum <br> (\%) | $k$ | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | $k$ | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) |
| $(\vec{\mu})$ | 11 | 62.60 | 48.16 | 110.76 | 13 | 65.53 | 41.97 | 107.50 | 17 | 68.14 | 41.06 | 109.19 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 13 | 68.46 | 40.76 | 109.22 | 17 | 63.54 | 44.16 | 107.70 | 17 | 62.82 | 44.13 | 106.95 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 13 | 68.46 | 40.77 | 109.23 | 11 | 52.87 | 55.75 | 108.62 | 17 | 65.54 | 43.10 | 108.64 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 11 | 57.30 | 50.07 | 107.38 | 13 | 63.50 | 43.06 | 106.56 | 13 | 61.87 | 43.68 | 105.55 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 11 | 56.25 | 53.20 | 109.45 | 17 | 66.78 | 41.02 | 107.80 | 17 | 65.96 | 42.77 | 108.73 |

we did not present LDA with LOOCV for other spaces and extreme citation classification. In this case, the best performance is achieved for the vector ( $\vec{\mu}, \overrightarrow{P C_{1}}$ ) with a slight differences from the vector $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$. This demonstrates us the statistical similarity for two applications.

Tables 6.16 and 6.17 present results of kNN classifier for classes H/L and EH/EL, respectively. Similar to the LDA, we observed that the kNN achieved the highest sum corresponds to the extreme citation classification (EH/EL) with the vector ( $\vec{\mu}$ ) in the space constructed by supervised PCA. The sensitivity reaches to $70.53 \%$ and the specificity is 45.94 with a sum of $116.48 \%$ in this case. However, there is only a slight difference between values in this space and the Original Space.

Table 6.17. The best results of the citation classifier kNN for each vector according to EH/EL for the category Mathematics, Applied

| Vector | Original Space |  |  |  | 13-Dimensional Reduced Basis |  |  |  | Supervised PCA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $k$ | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | $k$ | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | $k$ | Sens <br> (\%) | Spec <br> (\%) | Sum <br> (\%) |
| $(\vec{\mu})$ | 11 | 77.83 | 37.99 | 115.82 | 11 | 68.41 | 44.57 | 112.98 | 17 | 70.53 | 45.94 | 116.48 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 17 | 73.52 | 41.22 | 114.74 | 17 | 61.69 | 49.09 | 110.78 | 17 | 61.87 | 49.55 | 111.42 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 17 | 73.52 | 41.22 | 114.74 | 11 | 66.55 | 45.88 | 112.43 | 17 | 67.74 | 46.97 | 114.70 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 13 | 72.21 | 39.80 | 112.01 | 17 | 65.92 | 44.40 | 110.32 | 17 | 60.13 | 47.77 | 107.90 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 17 | 73.63 | 40.93 | 114.56 | 17 | 66.22 | 45.31 | 111.53 | 17 | 67.81 | 46.37 | 114.18 |

Table 6.18. Results of the citation classifier LDA according to H/L for the category Biology

| Vector | Original Space |  |  | 13-Dimensional Reduced Basis |  |  | Supervised PCA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sens. (\%) | Spec. <br> (\%) | Sum <br> (\%) | Sens. (\%) | Spec. <br> (\%) | Sum <br> (\%) | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) |
| $(\vec{\mu})$ | 74.30 | 69.21 | 143.51 | 64.29 | 63.48 | 127.77 | 70.47 | 64.33 | 134.80 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 72.50 | 63.87 | 136.38 | 64.29 | 52.04 | 116.33 | 71.72 | 55.80 | 127.52 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 75.38 | 71.60 | 146.98 | 65.66 | 63.45 | 129.11 | 70.77 | 59.82 | 130.59 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 70.70 | 69.12 | 139.82 | 67.53 | 50.45 | 117.98 | 58.89 | 58.90 | 117.79 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 78.69 | 67.06 | 145.76 | 68.02 | 55.09 | 123.11 | 67.66 | 64.16 | 131.82 |

For Applied Mathematics, the best results with the sum of sensitivity and specificity being greater than $130 \%$ were achieved for the vector $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ in the original space by the classifier LDA. This result corresponds to the classification of extreme citations (EH/EL) with $67.25 \%$ sensitivity and $62.97 \%$ specificity. This means that LDA with selection of the threshold by the sum of sensitivity and specificity maximisation is better for classifying extreme citations.

### 6.6.2.2. Biology

We selected the category Biology as a sample from Life Science branch (see Table 6.3). The Tables 6.18-6.21 show very similar results obtained for Applied Mathematics. The classification performance is higher when using for both the separation of H/L and EH/EL classes as for Applied Mathematics.

In almost all experiments, results of both classifiers LDA and kNN show that classifiers outperform in the Original Space for all the vector representations, excluding the vector ( $\vec{\mu}, \overrightarrow{P C_{1}}$ ) when kNN is employed.

For LDA, one can see that the vector $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ has the highest sum of sensitivity and specificity for both H/L and EH/EL classification, with $146.98 \%$ and $163.05 \%$ respectively. The vector $(\vec{\mu})$ has achieved the best performance when using kNN,

Table 6.19. Results of the citation classifier LDA according to EH/EL for the category Biology

| Vector | Original Space |  |  | 13-Dimensional Reduced Basis |  |  | Supervised PCA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) |
| $(\vec{\mu})$ | 79.91 | 79.44 | 159.34 | 67.18 | 69.70 | 136.87 | 71.05 | 75.14 | 146.20 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 75.87 | 72.37 | 148.24 | 69.57 | 53.03 | 122.60 | 71.76 | 65.95 | 137.70 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 81.63 | 81.42 | 163.05 | 70.47 | 68.83 | 139.30 | 75.28 | 67.28 | 142.56 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 77.63 | 76.70 | 154.33 | 70.07 | 54.15 | 124.22 | 49.94 | 74.57 | 124.51 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P P_{1}}\right)$ | 81.12 | 80.66 | 161.78 | 67.53 | 63.28 | 130.80 | 71.80 | 72.04 | 143.84 |

Table 6.20. The best results of the citation classifier kNN for each vector according to $\mathrm{H} / \mathrm{L}$ for the category Biology

| Vector | Original Space |  |  |  | 13-Dimensional Reduced Basis |  |  |  | Supervised PCA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $k$ | Sens. <br> (\%) | Spec (\%) | Sum <br> (\%) | $k$ | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | $k$ | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) |
| $(\vec{\mu})$ | 17 | 70.64 | 59.72 | 130.36 | 17 | 64.39 | 61.02 | 125.40 | 13 | 60.88 | 67.04 | 127.92 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 17 | 63.37 | 59.59 | 122.96 | 15 | 28.84 | 82.18 | 111.02 | 17 | 58.92 | 60.65 | 119.57 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 17 | 63.34 | 59.59 | 122.93 | 17 | 64.91 | 61.99 | 126.90 | 17 | 62.03 | 60.01 | 122.04 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 11 | 65.60 | 58.36 | 123.96 | 17 | 62.19 | 59.49 | 121.68 | 17 | 61.11 | 58.95 | 120.06 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 17 | 63.99 | 59.56 | 123.55 | 17 | 61.73 | 59.46 | 121.19 | 17 | 60.72 | 60.71 | 121.43 |

Table 6.21. The best results of the citation classifier kNN for each vector according to $\mathrm{EH} / \mathrm{EL}$ for the category Biology

|  | Original Space |  |  |  | 13-Dimensional Reduced Basis |  |  |  | Supervised PCA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vector | $k$ | Sens. (\%) | Spec. (\%) | Sum <br> (\%) | $k$ | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | $k$ | Sens. (\%) | Spec. <br> (\%) | Sum <br> (\%) |
| $(\vec{\mu})$ | 17 | 82.33 | 60.61 | 142.94 | 17 | 73.21 | 64.83 | 138.03 | 17 | 74.19 | 66.31 | 140.49 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 17 | 72.42 | 61.00 | 133.43 | 17 | 66.51 | 61.69 | 128.20 | 17 | 66.98 | 64.54 | 131.52 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 17 | 72.42 | 61.00 | 133.43 | 17 | 72.78 | 64.25 | 137.03 | 17 | 69.72 | 61.18 | 130.91 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 17 | 71.84 | 59.63 | 131.47 | 17 | 67.06 | 63.56 | 130.62 | 17 | 66.94 | 62.55 | 129.49 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 13 | 72.39 | 61.94 | 134.33 | 17 | 66.98 | 63.74 | 130.72 | 17 | 70.07 | 62.16 | 132.23 |

where the sums of sensitivity and specificity are $130.36 \%$ and $142.94 \%$ for $\mathrm{H} / \mathrm{L}$ and EH/EL classes.

For the category Biology, binary classification results show the classifier giving the highest classification performance was LDA with the text represented by the vector $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ in the Original Space. This result was achieved for extreme citation classification.

### 6.6.2.3. Management

Table 6.22. Results of the citation classifier LDA according to H/L for the category Management

| Vector | Original Space |  |  | 13-Dimensional Reduced Basis |  |  | Supervised PCA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sens. (\%) | Spec. <br> (\%) | Sum <br> (\%) | Sens. (\%) | Spec. (\%) | Sum <br> (\%) | Sens. <br> (\%) | Spec. (\%) | Sum <br> (\%) |
| $(\vec{\mu})$ | 79.55 | 63.93 | 143.48 | 70.56 | 51.25 | 121.81 | 76.10 | 58.19 | 134.28 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 72.82 | 65.94 | 138.76 | 65.45 | 49.19 | 114.64 | 71.31 | 56.85 | 128.16 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 80.05 | 65.82 | 145.87 | 69.20 | 53.18 | 122.39 | 70.20 | 62.49 | 132.69 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 79.55 | 60.96 | 140.51 | 48.67 | 69.12 | 117.79 | 53.23 | 62.47 | 115.70 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 79.89 | 65.85 | 145.74 | 56.87 | 61.36 | 118.23 | 78.38 | 54.54 | 132.92 |

Table 6.23. Results of the citation classifier LDA according to EH/EL for the category Management

| Vector | Original Space |  |  | 13-Dimensional Reduced Basis |  |  | Supervised PCA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) |
| $(\vec{\mu})$ | 85.20 | 77.46 | 162.66 | 72.24 | 60.17 | 132.40 | 80.30 | 68.86 | 149.16 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 80.68 | 74.21 | 154.88 | 66.86 | 54.21 | 121.07 | 70.38 | 70.00 | 140.38 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right.$ ) | 83.22 | 81.81 | 165.03 | 67.24 | 66.56 | 133.80 | 78.97 | 69.13 | 148.10 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 81.96 | 75.82 | 157.78 | 51.88 | 72.00 | 123.88 | 64.27 | 61.50 | 125.77 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 82.21 | 82.54 | 164.75 | 74.62 | 52.92 | 127.54 | 75.95 | 73.77 | 149.72 |

Finally, we select the category Management from Social Science branch. We tested two classifiers for each vector in three spaces. The behavious of classifiers are very similar across the Management and Biology. In Tables 6.22-6.25, we present a comparison of LDA and kNN based on the maximum sum of sensitivity and specificity for each vector representation and space combination separately. Overall results follow a typical pattern of rise and decline, showing almost the same trend as the category Biology. In general, we observe a significant increase in sensitivity and specificity for extreme citation classification tasks for both LDA and kNN.

According to results in Tables 6.22-6.23, LDA reaches the best classification accuracies in Original Space. By combining the vector representations of $(\vec{\mu})$ and $\left(\overrightarrow{P C_{1}}\right)$, we were able to achieve results that LDA for combined vectors outperforms LDA for other FVTs. The best classification accuracy of LDA is $83.22 \%$ sensitivity and $81.81 \%$ specificity in binary classification of $\mathrm{EH} / \mathrm{EL}$ for the vector $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$. This is also the best accuracy achieved among the all experiences in categories. However, the differences of performance from the vector $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ is not very large, which also support our findings that combined vectors result in an improvement of performance in binary classification of citation.

Tables 6.24 and 6.25 show the performance of kNN on binary classification tasks for $\mathrm{H} / \mathrm{L}$ and $\mathrm{EH} / \mathrm{EL}$. Results in tables indicate that kNN is also sightly better in the Original Space than in other spaces. Papers according to extreme citations are found

Table 6.24. The best results of the citation classifier kNN for each vector according to $\mathrm{H} / \mathrm{L}$ for the category Management

| Vector | Original Space |  |  |  | 13-Dimensional Reduced Basis |  |  |  | Supervised PCA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $k$ | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | $k$ | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | $k$ | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) |
| $(\vec{\mu})$ | 17 | 74.40 | 52.10 | 126.50 | 17 | 65.09 | 52.89 | 117.98 | 17 | 67.67 | 57.80 | 125.47 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 17 | 71.83 | 49.12 | 120.94 | 17 | 61.59 | 55.39 | 116.98 | 17 | 62.34 | 57.62 | 119.96 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right.$ ) | 17 | 71.83 | 49.12 | 120.94 | 17 | 68.28 | 52.80 | 121.08 | 17 | 66.29 | 54.72 | 121.01 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 13 | 65.50 | 56.01 | 121.51 | 17 | 63.47 | 52.85 | 116.32 | 17 | 60.71 | 56.11 | 116.82 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 17 | 71.74 | 49.08 | 120.81 | 17 | 65.07 | 51.94 | 117.01 | 17 | 65.14 | 54.98 | 120.12 |

Table 6.25. The best results of the citation classifier kNN for each vector according to EH/EL for the category Management

| Vector | Original Space |  |  |  | 13-Dimensional Reduced Basis |  |  |  | Supervised PCA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $k$ | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) | $k$ | Sens. <br> (\%) | Spec (\%) | Sum <br> (\%) | $k$ | Sens. <br> (\%) | Spec. <br> (\%) | Sum <br> (\%) |
| $(\vec{\mu})$ | 17 | 82.01 | 60.09 | 142.10 | 17 | 74.62 | 57.49 | 132.11 | 17 | 78.19 | 63.31 | 141.50 |
| $\left(\overrightarrow{P C_{1}}\right)$ | 17 | 80.10 | 52.92 | 133.02 | 17 | 71.26 | 57.43 | 128.68 | 17 | 71.93 | 60.95 | 132.88 |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 17 | 80.10 | 52.94 | 133.04 | 17 | 76.23 | 57.07 | 133.30 | 17 | 76.26 | 57.39 | 133.65 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ | 7 | 69.62 | 63.72 | 133.35 | 17 | 73.39 | 56.25 | 129.64 | 11 | 72.89 | 55.79 | 128.68 |
| $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ | 7 | 69.55 | 62.74 | 132.28 | 17 | 74.25 | 55.26 | 129.51 | 11 | 65.55 | 68.02 | 133.58 |

to be classified more efficiently than for $\mathrm{H} / \mathrm{L}$ classification by kNN. kNN performed the best when using the vector ( $\vec{\mu}$ ) in Original Space, achieved the sensitivity $82.01 \%$ and specificity $60.09 \%$ and the sum $142.10 \%$ in EH/EL classification.

In order to illustrate the results of the best performance of classifiers, the histogram of data projection on the first LDA axis and ROC curve (see Figures 6.6 are used. We note that the best performance corresponds to LDA for classes extremely less-cited (EL) and extremely highly-cited (EH) with the vector ( $\mu, P C_{1}$ ) in the original space of the category Management. From the histogram, we can see the separation of papers in two classes (in proportion) by the optimal cut-off found by maximising the sum of sensitivity and specificity. In the ROC curve, the corresponding AUC achieved in the classification is $90 \%$.

For the vector that gives the best classification results, we applied the LDA with LOOCV to test the statistical power of the classifier LDA, presented in Table 6.26. From the table, the LDA predicted extremely highly-cited papers with $80.43 \%$ sensitivity and $78.90 \%$ specificity for extremely less-cited papers with slight difference ( $2.79 \%$ for sensitivity and $2.91 \%$ for specificity) from LDA without LOOCV.

### 6.6.2.4. Summary of findings from binary classification experiments

From experiments in three categories, the following overall results are obtained:


Figure 6.6. (Left) Data projection on the first LDA axis (Right) ROC curve for LDA. Both figures correspond to the best performance of classifiers: LDA for classes extremely less-cited (EL) and extremely highly-cited (EH) with the vector $\left(\mu, P C_{1}\right)$ in the original space of the category Management.

Table 6.26. LOOCV results for the best classification performance among all categories: LDA with LOOCV in according to EH/EL for the category Management. The results correspond to the vector ( $\mu, P C_{1}$ ) in the Original Space.

| Vector | Sens. <br> $(\%)$ | Spec. <br> $(\%)$ | Sum <br> $(\%)$ |
| :--- | ---: | ---: | ---: |
| $\left(\vec{\mu}, \overrightarrow{P C_{1}}\right)$ | 80.43 | 78.90 | 159.33 |

(1) In general, the highest sensitivity and specificity are reached by using the vectors $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}, \overrightarrow{P C_{1}}\right)$ (for Applied Mathematics) and ( $\vec{\mu}, \overrightarrow{P C_{1}}$ ) (for Biology and Management) for LDA; and the vector $(\vec{\mu})$ (for all categories experimented) for kNN in almost all spaces in experiments.
(2) We observed that large k values lead to relatively good performance in all classification experiments.
(3) LDA outperforms kNN in both classifications according to H/L and EH/EL classes in all spaces and vectors.
(4) Both classifiers perform better in EH/EL classification in all spaces and with all vectors.
(5) The best results are achieved when we employ LDA classifier for EH/EL classes. This implies that LDA with selection of the threshold by sensitivity + specificity maximisation is better for classifying extreme citations. The LDA reached to sensitivity and specificity greater than $80 \%$. This is a high accuracy for this type of problem.
(6) When comparing spaces, the best results are obtained for the Original Space in almost all experiments, followed by the space constructed by Supervised PCA and then the space constructed with 13-Dimensional reduced basis. We can conclude that representing words in 13-dimensional space leads to lose some information about the citation of papers.
(7) Semantics is more important indicator of citation for some categories than others. For categories Biology and Management the results show an improvement over Applied Mathematics. The poorest results were obtained for the category Applied Mathematics.
(8) Finally, combining $\left(\overrightarrow{P C_{1}}\right)$ vector with vectors $(\vec{\mu})$ and $\left(\overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$ results in an improvement of the classifier performance.

### 6.7. Conclusion and Discussion

In this chapter, two issues in NLP have been identified, solutions have been suggested and proposed approaches have been analysed. First, we introduced a new text representation method which is one of the main problems in all NLP applications. Secondly, we evaluated the impact of scientific articles using this new representation technique. Predictive models are studied for classifying the citation of papers based on their informational semantics and several representation models in different vector spaces are tested in classification experiments. The aim of this study is to assess the discrimination ability of scientific impact of papers through their semantics.

In this approach, each text is a cloud of words represented by RIGs from word to category in the MS. In order to construct text representation, we used the distribution of the corresponding words' RIGs in each dimension. The FVT are created by set of parameters (e.g. mean values of a cloud's points) summarising the information in texts. Five different vector representations as a combination of the mean vector, the vector of the first principal component for each text and two centroid vectors obtained by k-means clustering of words in the text are introduced as informational representations of semantics and analysed for binary classification problem.

With constructed FVTs, we have showed how much information the semantics of texts carry in citation of scientific articles. Classification is performed for two classes problem: classification of highly-cited papers and less-cited papers (classes $\mathrm{H} / \mathrm{L})$. We also conduct the experiments to classify papers with two extreme citation counts: extremely highly-cited (EH) and extremely less-cited (EL) papers. Distinguishing between two classes was done by relative thresholds defined for each scientific category individually. Two classification methods were investigated for comparison: LDA and kNN. Five different vector representations were tested with binary classifiers. All experiments were also repeated in three spaces constructed:
the Original Space, 13-Dimensional reduced basis and the space constructed after supervised PCA. Our experiments use three categories selected from three branches of science: Applied Mathematics, Biology and Management. The study underlines the importance of vector representations and the spaces to represent texts in prediction citation, and comparison of categories having different characteristics of citation.

We found that the informational semantics is a very promising approach to developing a quantitative evaluation and predictive model of citation count. Our experiments show that the LDA outperform kNN in all spaces constructed for all categories. The results of binary classification illustrate that the highest performance is achieved for extreme citation prediction by LDA in the Original Space: identification of extremely highly cited papers with $83.22 \%$ sensitivity and identification of extremely less-cited papers with $81.81 \%$ specificity. LDA outperforms kNN for categories, vectors and spaces experimented.

The prediction of citation in Applied Mathematics is inherently not so easy as Biology and Management since the category is heterogeneous, meaning that it contains of papers from different disciplines and citation patterns are different for these individual fields. That is, Applied Mathematics is not well-separated into popular scientific fields and this also means a mixture of category-based semantics. Categories of Biology and Management are more homogeneous inside in terms of papers assigned and have a clear separation into top popular areas. Therefore, these two categories are expected to reach higher classification scores than Applied Mathematics.

A very important finding of the binary classification experiments is that extreme classes are more discriminative than other, achieving higher sensitivity and specificity in all experiments. This can be explained by the fact that two extremes indicate the agreement among scientific community as 'containing information useful for many researchers' and 'being outside of the interest of the community' and the semantics of texts is an important indicator for scientific impact of a paper.

As a result, informational text representations proved to be efficient in the cases where binary classification was performed in distinguishing the impact of articles. We showed that clues - extracted from the importance of words in categories - about the context of a paper provide important information about citation differentiation in scientific articles. This fact is sometimes much more clear for some scientific categories than others.

Multi-class classification of citation through informational semantic has not yet been assessed. We recommend a further and more in-depth research to compare multi-class classification tasks with a combination of different vector representations. Beside the category-based predictors, we also encourage further research to compare mixture of categories.

## CHAPTER 7

## Conclusion and Discussion

In this thesis, several issues with NLP have been identified and solution have been proposed with regards to giving new insights in computational methods for quantifying the meanings in texts. We have provided a framework for extracting the lexical meaning from short scientific texts. The developed methods are also suitable for a wide range of corpora as the general framework is reproducible for new text domains.

The chapters 2-6 have detailed an empirical approach to automatic short answer grading and feedback systems, our novel approaches to computational modelling and quantifying the lexical meanings in short scientific texts and creation of the Meaning Space, and techniques for automated evaluation of the potential impact through semantics of short scientific (or academic) texts. The empirical studies on both short academic answers and a large corpus of short scientific texts allowed for each of these tasks to be understood and investigated qualitatively and quantitatively. This project has also built a large corpus and thesaurus for science, and created software for corpus analysis, producing dictionaries and semantic analysis of texts. Both datasets and software are published for investigation and application to further works.

In short, the main contributions of the thesis can be summarised as follows:
(1) A new direction in automated scoring and feedback systems based on words: a new mathematical model for predicting academic success of students through $B o W$ that students selected to transmit their knowledge of the module and detailed analysis of the methods using a corpus of short answers.
(2) A new perspective in representation of situation behind brief scientific texts: computational analysis of relations between texts massages and representations of situations for large collection of texts by replacing the situation representation with vectors of attributes - a list of scientific subject categories that the text belongs to.
(3) A new approach to quantify the meaning in short scientific texts: defining the meaning of a word by its scientific-specific meaning that is described by multidimensional evaluation of the situation of use presented by categories - vector of RIG about the subject categories that the text belongs to, which can be obtained from observing the word in the text.
(4) A newly introduced vector space, namely Meaning Space, in which coordinates correspond to the subject categories: representation of the meaning of words as a vector of RIGs, and an approach to representing text meaning, in a way that built upon the analysis of words (clouds of words) for each text - the information about the words in each cloud.
(5) A new, large collection of scientific texts LSC - 1,673,350 texts from 252 subject categories of WoS - , scientific dictionaries LScD and LScDC, and thesaurus LScT, that are also used for empirical studies presented in the thesis.
(6) A comprehensive statistical analysis of the Meaning Space for the LSC with LScT, exploring the dimensions of the Meaning Space by PCA - identifying the principal components of the meaning.
(7) An approach to evaluating the impact of scientific articles through their semantics - classification of papers according to their citation counts, as highly-cited and less-cited papers, in individual categories by several ways.

In the first part of this thesis, we presented methodologies for automated scoring and providing feedback to students in their answers. The focus was to develop automated systems for machines that can reduce the amount of repetitive straightforward scoring while the artificial intelligence is transforming the world. It is noteworthy that we aimed to use approaches to enhance the reliability of human scoring. Our aim was not replacing the human from marking. Instead, human intervention is needed to calibrate the system, and to deal with situations that are challenging.

Computational methods using the keyword-similarity were used in systems for evaluation of the short textual responses. Academic success of students for the module was predicted through the similarities between the student answers and the model answer. Our approaches with the standard BoW model performed well with the corpus of students answers for problems involving clustering of students answers and predicting the marks. We have shown the strong correlation of grades and vocabulary that students used in their answers. This constitutes an attempt to create a clear and easy-to-understand methodology to quantifying category-based (module-specific vocabulary in this case) meaning in short academic texts, even without complex semantic functions.

The viability of the methods was tested in several examples. Our methodology and mathematical model succeed with the automatic scoring of natural language responses where a vocabulary for the model answer is clearly identified. Modelling of marking was easier for some questions than others, but those that are hard to predict grades were also difficult to mark by human. To further improve computational efficiency of the approaches, more intervention (input) from graders is needed. In our experiment, we did not correct spelling mistakes and did not take synonyms into account. In more sophisticated implementation, spell-checking can be adapted
to the system and technical dictionary of synonyms can be created to be used as an acceptable alternative terminology.

In the second part of this thesis, we described approaches to quantifying lexical meaning in scientific texts. Our approach has been directed to meet some of main challenges in extracting meanings from texts. First, it solves the problem of extracting the scientific-specific meanings because proposed models of informational semantics characterise the situation of use by the subject categories of the text. Second, words has good representation for individual categories as well as the entire corpus because the relativeness of importance of a word across scientific categories is taken into account. Third, creation of the space to represent words and texts is automated and reproducible so that it does not require huge amount of intervention from human.

The thesis has introduced an informational space of meaning for short scientific texts. Novel techniques for quantifying the meaning were developed and implemented on the basis of LSC with LScT. For concreteness, we followed the road: Corpus of texts + categories $\rightarrow$ Meaning Space for words $\rightarrow$ Geometric representation of the meaning of texts. This involved the representation of words, representation of text in the constructed Meaning Space and detailed analysis of the Meaning Space. In our case study, we employed very simple attributes for description of the text usage situation, the research subject categories of the text. We conclude that the use of informational semantics provides sizeable improvements to represent meaning in scientific texts over classical text representation approaches based on raw frequencies, but how to make best use of it in different NLP tasks remains an open question that deserves further investigation. The list of attributes can be modified and extended. The level of detail of the Meaning Space can vary greatly within the framework of the proposed approach.

Several directions in this research hold promise for making the computational models better representing the meaning. As the next step, it is reasonable to use different combinations of FVTs schemes for improving the representativeness. This does not require any major modification of the approach. Another focus of the research could be the study of more complex models in which co-occurrence of words and combination of word's meaning will be used.

This thesis has also introduced and analysed scientific corpus, dictionaries and thesaurus. In the creation of the thesaurus, we have focused on the most informative words in science, which are main scientific content words. Of course, the analysis of dictionaries has not finalized. For example, the frequent but non-informative words (e.g. 'use') can be considered as generalised service words of Science and deserve special analysis. It is also very desirable to extend the set of attributes for representation of the situation behind the text. The first choice, the research
subject categories, is simple and natural, but it may be useful to enrich this list of attributes.

Of course, much of the journey in semantic analysis awaits. We hope that our approaches of informational semantics will be applied to other corpora, and the framework will be extended to other languages where improvements in meaning extraction can be done.

Finally, we used informational semantics extracted by our methodology to evaluate the potential impact of articles. To measure the impact of a paper, we used citation counts which is a very standard and universal metric in scientific community. Automatic prediction of citation counts could provide a powerful new method for evaluating articles to faster identification of promising articles and dissemination of new knowledge in science. Accurate models for predicting citation by semantics can also improve our understanding of the contents that influence citations. This task is however a very hard problem because of the nature and dynamics of citation. There are usually many other factors linked to citation such as authors and journals.

In this research, we build computer models that classify highly-cited and lesscited LSC texts with citation counts extracted from the WoS website for approximately 4 years range from 2014. Therefore, we deal with binary classification throughout this research. Our experiments show that it is indeed feasible to accurately predict the impact using machine learning methods when semantics information is known. The classification models have been tested for three individual categories selected from three main branches of science. The models pave the way for classification of the impact of publications, and the category-based analysis provides better insight into citation behaviour for different subject categories. Having promising results for classification, modelling the citation counts deserves further investigation for other categories and mixture of categories. In addition to this, the models can be tested and validated with new papers cited in the one year forward from the most recent year or the next 4 years from the most recent year of experienced time.

Another way to side step the problem of citation prediction would be multi-class classification of citation through informational semantic as this task has not yet been assessed. We recommend a further and more in-depth research to compare multiclass classification tasks with a combination of different vector representations. In addition to these investigations in classification, direct prediction of the citation is also known to be a very hard mathematical challenge and the classifiers established here can help further studies in this area of research.

The corpus of scientific texts is a dynamic resource due to changes and rapid evaluation of research through new topics and priorities in science. This leads to a continuous analysis of the corpus and impact of articles. In order to update the corpus and models and incorporate a new stream of the data with citation counts for
a certain $n$ year, we can shift the evaluation window one year (or $m$ year) forward. To do this, one can drop all articles published in the earliest (m) year and add newly published articles (in WoS ) in the next (m) year of the most recent year of time window. This procedure can be automated for any n-year period.

## APPENDIX A

## Appendix of Chapter 2: Additional Questions and Feedback Processes of the System

## A.1. Questions from the University of North Texas Study

The questions in this appendix are a sample of those from the introductory computer science class in the University of North Texas. In Questions 1 and 2 we see that the teachers scores are more consistent and this means machine scoring such questions is more reliable. Questions 3 and 4 have more diverse answers and these are harder to score automatically.

TABLE A.1. Example of a question for which we could reliably automate marking (Question 1)

| Question 1 | What is the role of a prototype program in problem solving? <br> To simulate the behaviour of portions of the desired <br> software product. <br> simulate, behaviour, portion, desire, software, product. <br> Model Vocabulary <br> High risk problems are address in the prototype program to <br> make sure that the program is feasible. A prototype may <br> also be used to show a company that the software can be <br> possibly programmed. <br> it simulates the behavior of portions of the desired <br> software product |
| :--- | :--- |
| Student Answer |  |

Table A.2. Teacher marks for the answers to Question 1.

|  | Teacher 1 grade | Teacher 2 grade | Average |
| :--- | :---: | :---: | :---: |
| 1st student | 4 | 3 | 3.5 |
| 2nd student | 5 | 5 | 5 |

Table A.3. Example of a question for which we could reliably automate marking (Question 2)

| Question 2 | How does the compiler handle inline functions? <br> It makes a copy of the function code in every place where a <br> function call is made. |
| :--- | :--- |
| Model Answer 2 | Make, copy, function, code, every, place, call, made. <br> For inline functions, the compiler creates a copy of the <br> function's code in place so it doesn't have to make a <br> function call and add to the function call stack |
| Student answer | It expands a small function out... making your code <br> longer, but also makes it run faster. <br> The compiler can ignore the inline qualifier and typically <br> does so for all but the smallest functions. |
| Student answer |  |

Table A.4. Teacher marks for the answers to Question 2

|  | Teacher 1 grade | Teacher 2 grade | Average |
| :--- | :---: | :---: | :---: |
| 1st student | 5 | 5 | 5 |
| 2nd student | 4 | 4 | 4 |
| 3rd student | 2 | 2 | 2 |

Table A.5. Question which is harder to assess (Question 3)

## Question 3

Model Answer 3 Model vocabulary

## Student answer

Student answer
Student answer
Student answer
Student answer

How many dimensions need to be specified when passing a multi-dimensional array as an argument to a function? All the dimensions, except the first one. Dimension, except, first, one.
All dimensions except for the first one need to be specified when passing an array to a function, the compiler needs to know how many memory addresses to skip to make it back to the 2 nd element in the first dimension. The size of the first dimension does not need to be specified.
All dimensions, excluding the first one.
None, just pass the array name.
All of the dimensions must be specified.
At least 2, depending on how many arrays are being used.

Table A.6. Teacher marks for the answers to Question 3

|  | Teacher 1 grade | Teacher 2 grade | Average |
| :--- | :---: | :---: | :---: |
| 1st student | 5 | 5 | 5 |
| 2nd student | 5 | 5 | 5 |
| 3rd student | 3 | 1 | 2 |
| 4th Student | 5 | 2 | 3.5 |
| 5th Student | 4 | 1 | 2.5 |

Table A.7. Question which is harder to assess (Question 4)

| Question 4 | What stages in the software life cycle are influenced by the <br> testing stage? |
| :--- | :--- |
| Model Answer 4 | The testing stage can influence both the coding stage (phase |
| 5) and the solution refinement stage (phase 7). |  |
| Model vocabulary | Test, stage, can, influence, code, phase, solute, refine. |
| The implementation phase and the maintenance phase are |  |
| effected. |  |
| Student answer | Elaboration, Construction, and Transition are all affected by <br> testing. <br> Coding and refining. |
| Student answer |  |
| Student answer | 1- specification 2- design 3- risk analysis 4- verification 5- <br> coding 6- testing 7- refining 8- production 9- <br> maintenance. |
| Student answer |  |

Table A.8. Teacher marks for the answers to Question 4

|  | Teacher 1 grade | Teacher 2 grade | Average |
| :--- | :---: | :---: | :---: |
| 1st student | 5 | 3 | 4 |
| 2nd student | 2 | 2 | 2 |
| 3rd student | 5 | 5 | 5 |
| 4th Student | 4 | 1 | 2.5 |

## A.2. Feedback Processes of the System

This section contains algorithms of feedback creation.


Figure A.1. Feedback process by similarity between the model answer and students' answer


Figure A.2. Feedback process to group of students' answers by clustering approach


Figure A.3. Supervised process for feedback and marking in the case of existing train data

## APPENDIX B

## Appendix of Chapter 3: Lists of Headings and Stop Words in Pre-processing Steps, and Lists of Categories and Research Areas in the Data

## B.1. Table of Headings of Sections in Medical Abstracts

Table B.1. Headings of sections identified in structured abstracts (Headings can be either singular or plural)

| Headings of Sections |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Abstract | Aim | Approach | Background | Conclusion | Design |  |
| Discussion | Finding | Hypothesis | Introduction | Limitation | Location |  |
| Material | Measure | Measurement | Method | Methodology | Objective |  |
| Patient | Population | Procedure | Process | Purpose | Rationale |  |
| Result | Setting | Subject | Theoretical |  |  |  |
| Implication(s) for health and nursing policy |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## B.2. An Example of Document Structure in the LSC

| Authors | Title | Abstract | Categories | Research <br> Areas | Total Times Cited | Times <br> Cited <br> in CC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cheng, JS; Craft, R; <br> Yu, GQ; Ho, K; <br> Wang, X; Mohan, G; <br> Mangnitsky, S; <br> Ponnusamy, R; <br> Mucke, L | Tau Reduction <br> Diminishes Spatial <br> Learning and Memory <br> Deficits after Mild <br> Repetitive Traumatic <br> Brain Injury in Mice | Objective: Because reduction of the microtubule-associated protein Tau has beneficial effects in mouse models of Alzheimer's disease and epilepsy, we wanted to determine whether this strategy can also improve the outcome of mild traumatic brain injury (TBI). ... (truncated) | Multidisci- <br> plinary <br> Sciences |  <br> Technol- <br> ogy - <br> Other <br> Topics | 24 | 24 |

## B.3. List of Prefixes

Table B.3. The List of Prefixes

| Prefixes |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| anti- | ante- | auto- | co- | de- | deca- | di- |  |
| dia- | dis- | e- | ex- | extra- | fore- | hemi- |  |
| hexa- | hepta- | homo- | hyper- | in- | inter- | im- |  |
| ir- | kilo- | micro- | mid- | milli- | mis- | mono- |  |
| multi- | non- | octo- | over- | para- | penta- | per- |  |
| poly- | post- | pre- | pro- | quadri- | re- | retro- |  |
| self- | semi- | sub- | super- | tele- | tetra- | therm- |  |
| trans- | tri- | ultra- | un- | under- | uni- |  |  |

## B.4. List of Substitutes

Table B.4. List of Substitution

| Word | Substitute |
| :--- | :--- |
| well-known | wellknown |
| z-test | ztest |
| z-testing | ztest |
| z-tests | ztest |
| z-score | zscore |
| z-scored | zscored |
| z-scores | zscore |
| p-value | pvalue |
| p-values | pvalue |
| p-valued | pvalue |
| p-valuesof | pvalue |
| chi-square | chisquare |
| chi-squares | chisquare |
| chi-squared | chisquared |
| chi2-test | chisquared |

## B.5. List of Stop Words in "tm" Package (R package)

Table B.5. The List of Stop Words

| Stop Words in 'tm' Package |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i | me | my | myself | we | our | ours | own |
| yours | a | here | he | him | his | himself | she |
| herself | it | its | itself | they | them | their | theirs |
| which | who | whom | this | that | these | those | am |
| was | were | be | been | being | have | has | had |
| does | did | doing | would | should | could | ought | i'm |
| she's | it's | we're | they're | i've | you've | we've | they've |
| he'd | she'd | we'd | they'd | i'll | you'll | he'll | she'll |
| isn't | aren't | wasn't | weren't | hasn't | haven't | hadn't | doesn't |
| won't | i'd | shan't | shouldn't | can't | cannot | couldn't | mustn't |
| who's | what's | here's | there's | when's | where's | why's | how's |
| the | and | but | if | or | because | as | until |
| at | by | for | with | about | against | between | into |
| before | after | above | below | to | from | up | down |
| on | off | over | under | again | further | then | once |
| when | where | why | how | all | any | both | each |
| most | other | some | such | no | nor | not | only |
| you | your | her | hers | themselves | what | is | are |
| having | do | you're | he's | wouldn't | you'd | we'll | they'll |
| don't | didn't | let's | that's | yourself | an | while | of |
| through | during | in | out | yourselves | there | few | more |
| so | than | too | very | ourselves | same |  |  |

## Appendix of Chapter 4: Additional Examples of Notices, Lists of Categories and Research Areas, Some Examples of Word Clouds and Histograms

## C.1. Some Additional Examples of Notices

Table C.1. Some additional examples of notices attached to the abstract
Copyright Notice; Name of Conference, Journal or Publishing House
(C) 2014 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/).
Copyright (C) 2014, Taiwan Association of Obstetrics \& Gynecology. Published by Elsevier Taiwan LLC. All rights reserved.
(c) 2014 AIP Publishing LLC.
(C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.
(C) 2014 Mosby, Inc. All rights reserved.
(C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) \& Wilkins
(C) 2014 Elsevier Inc. All rights reserved.

Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved
(C) 2014 Optical Society of America
(C) 2014 AACR.
(C) 2014 S. Karger AG, Basel
(C) 2014 American Society of Civil Engineers.
(C) 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
(C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
J. surg. oncol

Developmental Dynamics
Proteins 2014
Bioelectromagnetics
am. J. Hematol

## C.2. List of Categories

Table C.2. The list of 252 WoS categories with the number of LSC documents assigned to the corresponding category

| No. | Category | Number of <br> Documents |
| :--- | :--- | ---: |
| 1 | Engineering, Electrical \& Electronic | 174,272 |
| 2 | Materials Science, Multidisciplinary | 112,912 |
| 3 | Physics, Applied | 78,796 |
| 4 | Chemistry, Physical | 58,065 |
| 5 | Chemistry, Multidisciplinary | 55,907 |
| 6 | Computer Science, Theory \& Methods | 55,591 |
| 7 | Multidisciplinary Sciences | 53,140 |
| 8 | Engineering, Mechanical | 50,972 |
| 9 | Optics | 47,737 |
| 10 | Biochemistry \& Molecular Biology | 47,490 |
| 11 | Computer Science, Information Systems | 45,865 |
| 12 | Energy \& Fuels | 44,202 |
| 13 | Environmental Sciences | 42,082 |
| 14 | Computer Science, Artificial Intelligence | 41,210 |
| 15 | Telecommunications | 40,550 |
| 16 | Nanoscience \& Nanotechnology | 35,050 |
| 17 | Oncology | 34,339 |
| 18 | Mechanics | 33,545 |
| 19 | Neurosciences | 32,972 |
| 20 | Surgery | 30,805 |
| 21 | Pharmacology \& Pharmacy | 30,713 |
| 22 | Automation \& Control Systems | 29,427 |
| 23 | Engineering, Chemical | 29,171 |
| 24 | Computer Science, Interdisciplinary Applications | 29,153 |
| 25 | Mathematics, Applied | 27,982 |
| 26 | Physics, Condensed Matter | 27,316 |
| 27 | Biotechnology \& Applied Microbiology | 26,286 |
| 28 | Public, Environmental \& Occupational Health | 25,493 |
| 29 | Mathematics | 25,450 |
| 30 | Geosciences, Multidisciplinary | 24,644 |
| 31 | Cell Biology | 23,108 |
| 32 | Physics, Multidisciplinary | 22,930 |
| 33 | Astronomy \& Astrophysics | 22,825 |
|  |  |  |
| 1 |  |  |


| No. | Category | Number of Documents |
| :---: | :---: | :---: |
| 34 | Economics | 22,338 |
| 35 | Clinical Neurology | 22,127 |
| 36 | Engineering, Civil | 22,127 |
| 37 | Chemistry, Analytical | 21,490 |
| 38 | Plant Sciences | 21,321 |
| 39 | Engineering, Multidisciplinary | 21,144 |
| 40 | Radiology, Nuclear Medicine \& Medical Imaging | 21,014 |
| 41 | Food Science \& Technology | 20,414 |
| 42 | Education \& Educational Research | 20,087 |
| 43 | Medicine, Research \& Experimental | 19,744 |
| 44 | Genetics \& Heredity | 19,512 |
| 45 | Computer Science, Hardware \& Architecture | 18,489 |
| 46 | Immunology | 18,270 |
| 47 | Polymer Science | 18,017 |
| 48 | Chemistry, Organic | 17,941 |
| 49 | Engineering, Biomedical | 17,786 |
| 50 | Microbiology | 17,252 |
| 51 | Computer Science, Software Engineering | 17,104 |
| 52 | Instruments \& Instrumentation | 17,090 |
| 53 | Physics, Atomic, Molecular \& Chemical | 17,010 |
| 54 | Metallurgy \& Metallurgical Engineering | 16,898 |
| 55 | Ecology | 16,760 |
| 56 | Cardiac \& Cardiovascular Systems | 16,369 |
| 57 | Medicine, General \& Internal | 16,179 |
| 58 | Psychiatry | 16,055 |
| 59 | Electrochemistry | 15,663 |
| 60 | Biochemical Research Methods | 15,050 |
| 61 | Endocrinology \& Metabolism | 14,622 |
| 62 | Engineering, Environmental | 14,614 |
| 63 | Management | 14,339 |
| 64 | Chemistry, Applied | 14,058 |
| 65 | Water Resources | 13,997 |
| 66 | Thermodynamics | 13,852 |
| 67 | Pediatrics | 13,364 |
| 68 | Physics, Particles \& Fields | 13,203 |
| 69 | Engineering, Manufacturing | 13,102 |
| 70 | Biophysics | 12,630 |


| No. | Category | Number of <br> Documents |
| :--- | :--- | ---: |
| 71 | Chemistry, Inorganic \& Nuclear | 12,591 |
| 72 | Infectious Diseases | 12,521 |
| 73 | Chemistry, Medicinal | 12,456 |
| 74 | Meteorology \& Atmospheric Sciences | 12,318 |
| 75 | Construction \& Building Technology | 12,078 |
| 76 | Operations Research \& Management Science | 11,879 |
| 77 | Veterinary Sciences | 11,502 |
| 78 | Remote Sensing | 11,388 |
| 79 | Nuclear Science \& Technology | 11,359 |
| 80 | Zoology | 11,218 |
| 81 | Social Sciences, Interdisciplinary | 11,035 |
| 82 | Gastroenterology \& Hepatology | 10,943 |
| 83 | Orthopedics | 10,538 |
| 84 | Physics, Mathematical | 10,426 |
| 85 | Engineering, Industrial | 10,362 |
| 86 | Marine \& Freshwater Biology | 10,124 |
| 87 | Mathematics, Interdisciplinary Applications | 10,072 |
| 88 | Geochemistry \& Geophysics | 10,023 |
| 89 | Biology | 9,917 |
| 90 | Obstetrics \& Gynecology | 9,883 |
| 91 | Physics, Fluids \& Plasmas | 9,704 |
| 92 | Toxicology | 9,613 |
| 93 | Statistics \& Probability | 9,5324 |
| 94 | Nutrition \& Dietetics | 9,532 |
| 95 | Business | 9,416 |
| 96 | Imaging Science \& Photographic Technology | 9,394 |
| 97 | Hematology | 9,353 |
| 98 | Physiology | 9,096 |
| 99 | Peripheral Vascular Disease | 9,009 |
| 100 | Agronomy | 8,700 |
| 101 | Dentistry, Oral Surgery \& Medicine | 8,651 |
| 102 | Robotics | 8,502 |
| 103 | Transportation Science \& Technology | 8,491 |
| 104 | Sport Sciences | 8,411 |
| 105 | Psychology, Multidisciplinary | 8,368 |
| 106 | Urology \& Nephrology | 8 |
| 107 | Materials Science, Biomaterials | 8 |
|  |  | 8 |


| No. | Category | Number of <br> Documents |
| :--- | :--- | ---: |
| 108 | Mathematical \& Computational Biology | 8,015 |
| 109 | Health Care Sciences \& Services | 7,999 |
| 110 | Physics, Nuclear | 7,876 |
| 111 | Ophthalmology | 7,830 |
| 112 | Environmental Studies | 7,811 |
| 113 | Rehabilitation | 7,791 |
| 114 | Respiratory System | 7,666 |
| 115 | Oceanography | 7,417 |
| 116 | Spectroscopy | 7,388 |
| 117 | Materials Science, Coatings \& Films | 7,226 |
| 118 | Pathology | 7,217 |
| 119 | Business, Finance | 7,214 |
| 120 | Psychology | 6,989 |
| 121 | Acoustics | 6,935 |
| 122 | Crystallography | 6,932 |
| 123 | Psychology, Clinical | 6,860 |
| 124 | Geography, Physical | 6,806 |
| 125 | Psychology, Experimental | 6,784 |
| 126 | Nursing | 6,637 |
| 127 | Green \& Sustainable Science \& Technology | 6,412 |
| 128 | Agriculture, Multidisciplinary | 6,406 |
| 129 | Education, Scientific Disciplines | 6,308 |
| 130 | Virology | 6,270 |
| 131 | Materials Science, Ceramics | 6,797 |
| 132 | Agriculture, Dairy \& Animal Science | 6,222 |
| 133 | Behavioral Sciences | 6,163 |
| 134 | Linguistics | 5,922 |
| 135 | Dermatology | 5,921 |
| 136 | Evolutionary Biology | 5,793 |
| 137 | Entomology | 5,742 |
| 138 | Parasitology | 5,704 |
| 139 | Horticulture | 5,683 |
| 140 | Health Policy \& Services | 5,338 |
| 141 | Language \& Linguistics | 5,318 |
| 142 | Political Science | 5,174 |
| 143 | Soil Science | 5,106 |
| 144 | Otorhinolaryngology |  |
|  |  |  |


| No. | Category | Number of Documents |
| :---: | :---: | :---: |
| 145 | Geriatrics \& Gerontology | 4,742 |
| 146 | Sociology | 4,725 |
| 147 | Biodiversity Conservation | 4,705 |
| 148 | Fisheries | 4,702 |
| 149 | Engineering, Geological | 4,573 |
| 150 | Information Science \& Library Science | 4,565 |
| 151 | Forestry | 4,472 |
| 152 | Engineering, Aerospace | 4,435 |
| 153 | Psychology, Developmental | 4,390 |
| 154 | Materials Science, Composites | 4,277 |
| 155 | Planning \& Development | 4,115 |
| 156 | Transplantation | 4,105 |
| 157 | Transportation | 4,035 |
| 158 | Medical Informatics | 3,991 |
| 159 | Reproductive Biology | 3,984 |
| 160 | Critical Care Medicine | 3,982 |
| 161 | Rheumatology | 3,942 |
| 162 | Geography | 3,908 |
| 163 | Materials Science, Characterization \& Testing | 3,878 |
| 164 | Agricultural Engineering | 3,727 |
| 165 | Tropical Medicine | 3,696 |
| 166 | Philosophy | 3,657 |
| 167 | Computer Science, Cybernetics | 3,652 |
| 168 | Developmental Biology | 3,593 |
| 169 | Law | 3,574 |
| 170 | Psychology, Social | 3,548 |
| 171 | Psychology, Applied | 3,523 |
| 172 | Social Sciences, Mathematical Methods | 3,496 |
| 173 | History | 3,487 |
| 174 | Integrative \& Complementary Medicine | 3,453 |
| 175 | Substance Abuse | 3,433 |
| 176 | Communication | 3,200 |
| 177 | Anthropology | 3,149 |
| 178 | Social Sciences, Biomedical | 3,003 |
| 179 | Hospitality, Leisure, Sport \& Tourism | 2,998 |
| 180 | Anesthesiology | 2,943 |
| 181 | International Relations | 2,941 |


| No. | Category | Number of Documents |
| :---: | :---: | :---: |
| 182 | Neuroimaging | 2,702 |
| 183 | Mining \& Mineral Processing | 2,687 |
| 184 | Emergency Medicine | 2,627 |
| 185 | Medical Laboratory Technology | 2,598 |
| 186 | Humanities, Multidisciplinary | 2,559 |
| 187 | Mineralogy | 2,550 |
| 188 | Materials Science, Textiles | 2,548 |
| 189 | Gerontology | 2,531 |
| 190 | Paleontology | 2,503 |
| 191 | Cell \& Tissue Engineering | 2,455 |
| 192 | Engineering, Ocean | 2,352 |
| 193 | Religion | 2,335 |
| 194 | Urban Studies | 2,309 |
| 195 | Family Studies | 2,229 |
| 196 | Public Administration | 2,204 |
| 197 | History \& Philosophy Of Science | 2,199 |
| 198 | Geology | 2,153 |
| 199 | Archaeology | 2,118 |
| 200 | Social Work | 2,114 |
| 201 | Psychology, Educational | 2,112 |
| 202 | Engineering, Marine | 2,110 |
| 203 | Audiology \& Speech-Language Pathology | 2,052 |
| 204 | Area Studies | 2,046 |
| 205 | Criminology \& Penology | 2,015 |
| 206 | Materials Science, Paper \& Wood | 1,963 |
| 207 | Limnology | 1,941 |
| 208 | Engineering, Petroleum | 1,930 |
| 209 | Ethics | 1,928 |
| 210 | Anatomy \& Morphology | 1,889 |
| 211 | Mycology | 1,829 |
| 212 | Logic | 1,786 |
| 213 | Allergy | 1,765 |
| 214 | Medicine, Legal | 1,711 |
| 215 | Education, Special | 1,666 |
| 216 | Literature | 1,608 |
| 217 | Psychology, Biological | 1,527 |
| 218 | Ergonomics | 1,431 |


| No. | Category | Number of Documents |
| :---: | :---: | :---: |
| 219 | Architecture | 1,376 |
| 220 | Women's Studies | 1,341 |
| 221 | Microscopy | 1,319 |
| 222 | Social Issues | 1,296 |
| 223 | Primary Health Care | 1,269 |
| 224 | Ornithology | 1,008 |
| 225 | Demography | 948 |
| 226 | Cultural Studies | 945 |
| 227 | Music | 888 |
| 228 | Agricultural Economics \& Policy | 880 |
| 229 | History Of Social Sciences | 879 |
| 230 | Industrial Relations \& Labor | 879 |
| 231 | Asian Studies | 877 |
| 232 | Art | 725 |
| 233 | Ethnic Studies | 675 |
| 234 | Medical Ethics | 674 |
| 235 | Psychology, Mathematical | 538 |
| 236 | Literary Theory \& Criticism | 498 |
| 237 | Medieval \& Renaissance Studies | 485 |
| 238 | Film, Radio, Television | 398 |
| 239 | Andrology | 391 |
| 240 | Psychology, Psychoanalysis | 345 |
| 241 | Classics | 325 |
| 242 | Theater | 300 |
| 243 | Literature, Romance | 269 |
| 244 | Literature, British Isles | 220 |
| 245 | Folklore | 134 |
| 246 | Literature, German, Dutch, Scandinavian | 128 |
| 247 | Literature, American | 75 |
| 248 | Dance | 74 |
| 249 | Literature, African, Australian, Canadian | 59 |
| 250 | Poetry | 42 |
| 251 | Literary Reviews | 35 |
| 252 | Literature, Slavic | 35 |
|  |  |  |

## C.3. List of Research Areas

Table C.3. The list of 151 WoS research areas with the number of LSC documents assigned to the corresponding research area

| No. | Research Area | Number of <br> Documents |
| :--- | :--- | ---: |
| 1 | Engineering | 328,136 |
| 2 | Chemistry | 162,934 |
| 3 | Physics | 158,438 |
| 4 | Computer Science | 142,633 |
| 5 | Materials Science | 141,754 |
| 6 | Science \& Technology - Other Topics | 96,388 |
| 7 | Environmental Sciences \& Ecology | 60,657 |
| 8 | Biochemistry \& Molecular Biology | 60,027 |
| 9 | Mathematics | 59,525 |
| 10 | Neurosciences \& Neurology | 48,680 |
| 11 | Optics | 47,737 |
| 12 | Energy \& Fuels | 44,202 |
| 13 | Business \& Economics | 40,743 |
| 14 | Telecommunications | 40,550 |
| 15 | Pharmacology \& Pharmacy | 38,837 |
| 16 | Psychology | 36,282 |
| 17 | Oncology | 34,339 |
| 18 | Mechanics | 33,545 |
| 19 | Agriculture | 31,191 |
| 20 | Surgery | 30,805 |
| 21 | Automation \& Control Systems | 29,427 |
| 22 | Geology | 26,632 |
| 23 | Biotechnology \& Applied Microbiology | 26,286 |
| 24 | Education \& Educational Research | 25,924 |
| 25 | Public, Environmental \& Occupational Health | 25,493 |
| 26 | Cell Biology | 24,145 |
| 27 | Cardiovascular System \& Cardiology | 23,396 |
| 28 | Astronomy \& Astrophysics | 22,825 |
| 29 | Plant Sciences | 21,321 |
| 30 | Radiology, Nuclear Medicine \& Medical Imaging | 21,014 |
| 31 | Food Science \& Technology | 20,414 |
| 32 | General \& Internal Medicine | 20,409 |
| 33 | Research \& Experimental Medicine | 19,744 |
|  |  |  |


| No. | Research Area | Number of <br> Documents |
| :--- | :--- | ---: |
| 34 | Genetics \& Heredity | 19,512 |
| 35 | Immunology | 18,270 |
| 36 | Polymer Science | 18,017 |
| 37 | Microbiology | 17,252 |
| 38 | Instruments \& Instrumentation | 17,090 |
| 39 | Metallurgy \& Metallurgical Engineering | 16,898 |
| 40 | Social Sciences - Other Topics | 16,666 |
| 41 | Psychiatry | 16,055 |
| 42 | Electrochemistry | 15,663 |
| 43 | Endocrinology \& Metabolism | 15,013 |
| 44 | Water Resources | 13,997 |
| 45 | Thermodynamics | 13,852 |
| 46 | Pediatrics | 13,365 |
| 47 | Biophysics | 12,630 |
| 48 | Infectious Diseases | 12,521 |
| 49 | Meteorology \& Atmospheric Sciences | 12,318 |
| 50 | Zoology | 12,200 |
| 51 | Construction \& Building Technology | 12,078 |
| 52 | Operations Research \& Management Science | 11,879 |
| 53 | Marine \& Freshwater Biology | 11,562 |
| 54 | Veterinary Sciences | 9,502 |
| 55 | Remote Sensing | 11,502 |
| 56 | Nuclear Science \& Technology | 11,388 |
| 57 | Gastroenterology \& Hepatology | 11,359 |
| 58 | Orthopedics | 10,943 |
| 59 | Transportation | 10,538 |
| 60 | Health Care Sciences \& Services | 10,280 |
| 61 | Geochemistry \& Geophysics | 10,243 |
| 62 | Life Sciences \& Biomedicine - Other Topics | 10,023 |
| 63 | Obstetrics \& Gynecology | 9,917 |
| 64 | Toxicology | 9,883 |
| 65 | Nutrition \& Dietetics | 9,613 |
| 66 | Imaging Science \& Photographic Technology | 9,416 |
| 67 | Hematology | 9,093 |
| 68 | Physiology |  |


| No. | Research Area | Number of <br> Documents |
| :--- | :--- | ---: |
| 71 | Robotics | 8,491 |
| 72 | Sport Sciences | 8,368 |
| 73 | Urology \& Nephrology | 8,264 |
| 74 | Mathematical \& Computational Biology | 8,015 |
| 75 | Ophthalmology | 7,830 |
| 76 | Rehabilitation | 7,791 |
| 77 | Respiratory System | 7,666 |
| 78 | Oceanography | 7,417 |
| 79 | Spectroscopy | 7,388 |
| 80 | Pathology | 7,217 |
| 81 | Linguistics | 7,077 |
| 82 | Acoustics | 6,935 |
| 83 | Crystallography | 6,932 |
| 84 | Physical Geography | 6,806 |
| 85 | Nursing | 6,637 |
| 86 | Virology | 6,270 |
| 87 | Public Administration | 6,120 |
| 88 | Behavioral Sciences | 5,922 |
| 89 | Dermatology | 5,793 |
| 90 | Evolutionary Biology | 5,742 |
| 91 | Entomology | 3,657 |
| 92 | Parasitology | 3,593 |
| 93 | Geriatrics \& Gerontology | 3,683 |
| 94 | Otorhinolaryngology | 5,505 |
| 95 | Sociology | 4,797 |
| 96 | Biodiversity \& Conservation | 4,725 |
| 97 | Fisheries | 4,705 |
| 98 | Information Science \& Library Science | 4,702 |
| 99 | Forestry | 4,565 |
| 100 | Transplantation | 4,472 |
| 101 | Medical Informatics | 4,105 |
| 102 | Reproductive Biology | 3,991 |
| 103 | Rheumatology | 3,984 |
| 104 | Geography | 3 |
| 105 | Tropical Medicine | 3 |
| 106 | Philosophy |  |


| No. | Research Area | Number of Documents |
| :---: | :---: | :---: |
| 108 | Mathematical Methods In Social Sciences | 3,496 |
| 109 | History | 3,487 |
| 110 | Integrative \& Complementary Medicine | 3,453 |
| 111 | Substance Abuse | 3,433 |
| 112 | Communication | 3,200 |
| 113 | Arts \& Humanities - Other Topics | 3,178 |
| 114 | Anthropology | 3,149 |
| 115 | Biomedical Social Sciences | 3,003 |
| 116 | Anesthesiology | 2,943 |
| 117 | International Relations | 2,941 |
| 118 | Literature | 2,735 |
| 119 | Mining \& Mineral Processing | 2,687 |
| 120 | Emergency Medicine | 2,627 |
| 121 | Medical Laboratory Technology | 2,598 |
| 122 | Mineralogy | 2,550 |
| 123 | Paleontology | 2,503 |
| 124 | Religion | 2,335 |
| 125 | Urban Studies | 2,309 |
| 126 | Family Studies | 2,229 |
| 127 | History \& Philosophy Of Science | 2,199 |
| 128 | Archaeology | 2,118 |
| 129 | Social Work | 2,114 |
| 130 | Audiology \& Speech-Language Pathology | 2,052 |
| 131 | Area Studies | 2,046 |
| 132 | Criminology \& Penology | 2,015 |
| 133 | Anatomy \& Morphology | 1,889 |
| 134 | Mycology | 1,829 |
| 135 | Allergy | 1,765 |
| 136 | Legal Medicine | 1,711 |
| 137 | Architecture | 1,376 |
| 138 | Women's Studies | 1,341 |
| 139 | Microscopy | 1,319 |
| 140 | Social Issues | 1,296 |
| 141 | Demography | 948 |
| 142 | Cultural Studies | 945 |
| 143 | Music | 888 |
| 144 | Asian Studies | 877 |


| No. | Research Area | Number of <br> Documents |
| :--- | :--- | ---: |
| 145 | Art | 725 |
| 146 | Ethnic Studies | 675 |
| 147 | Medical Ethics | 674 |
| 148 | Film, Radio, Television | 398 |
| 149 | Classics | 325 |
| 150 | Theater | 300 |
| 151 | Dance | 74 |

## C.4. Some Word Clouds and Histograms for Categories

Word clouds presenting the top 100 words ordered by their RIGs and histograms of RIGs for the first 10 words in the word clouds for 252 categories in LSC.


Figure C.1. Health Care Sciences \& Services


Figure C.2. Material Science, Ceramics


Figure C.3. Computer Science, Theory \& Methods


Figure C.4. Computer Science, Information Systems


Figure C.5. Computer Science, Artificial Intelligence


Figure C.6. Computer Science, Interdisciplinary Applications


Figure C.7. Computer Science, Hardware \& Architecture


Figure C.8. Computer Science, Software Engineering


Figure C.9. Computer Science, Cybernetics

## APPENDIX D

## Appendix of Chapter 5: Tables for Principal Component Analysis

D.1. The Most Informative 100 Words of the LScT in Categories with Their RIGs

Table D.1. The list of the top 100 words in the category Acoustics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | acoust | $9.4 \times 10^{-2}$ |
| 2 | ultrasound | $6.2 \times 10^{-2}$ |
| 3 | sound | $4.1 \times 10^{-2}$ |
| 4 | speech | $4.1 \times 10^{-2}$ |
| 5 | frequenc | $4 \times 10^{-2}$ |
| 6 | nois | $3.3 \times 10^{-2}$ |
| 7 | ultrason | $2.7 \times 10^{-2}$ |
| 8 | wave | $2.4 \times 10^{-2}$ |
| 9 | transduc | $2.3 \times 10^{-2}$ |
| 10 | vibrat | $2.2 \times 10^{-2}$ |
| 11 | signal | $2 \times 10^{-2}$ |
| 12 | propos | $1.8 \times 10^{-2}$ |
| 13 | audio | $1.3 \times 10^{-2}$ |
| 14 | speaker | $1.3 \times 10^{-2}$ |
| 15 | listen | $1.2 \times 10^{-2}$ |
| 16 | paper | $1.2 \times 10^{-2}$ |
| 17 | propag | $1.2 \times 10^{-2}$ |
| 18 | mhz | $1.2 \times 10^{-2}$ |
| 19 | algorithm | $1.1 \times 10^{-2}$ |
| 20 | filter | $1.1 \times 10^{-2}$ |
| 21 | amplitud | $1 \times 10^{-2}$ |
| 22 | khz | $1 \times 10^{-2}$ |
| 23 | estim | $9.9 \times 10^{-3}$ |
| 24 | imag | $9.8 \times 10^{-3}$ |
| 25 | numer | $8.8 \times 10^{-3}$ |
| 26 | method | $8.7 \times 10^{-3}$ |
| 27 | phantom | $8.5 \times 10^{-3}$ |
| 28 | echo | $7.9 \times 10^{-3}$ |
| 29 | mode | $7.9 \times 10^{-3}$ |
| 30 | piezoelectr | $7.8 \times 10^{-3}$ |
| 31 | elast | $7.6 \times 10^{-3}$ |
| 32 | perform | $7.4 \times 10^{-3}$ |
| 33 | array | $7.2 \times 10^{-3}$ |
| 34 | damp | $7.2 \times 10^{-3}$ |
| 35 | error | $7 \times 10^{-3}$ |
| 36 | harmon | $6.9 \times 10^{-3}$ |
| 37 | excit | $6.9 \times 10^{-3}$ |
| 38 | protein | $6.9 \times 10^{-3}$ |
| 39 | doppler | $6.8 \times 10^{-3}$ |
| 40 | cell | $6.7 \times 10^{-3}$ |
| 41 | nonlinear | $6.6 \times 10^{-3}$ |
| 42 | finit | $6.6 \times 10^{-3}$ |
| 43 | veloc | $6.5 \times 10^{-3}$ |
| 44 | spars | $6.5 \times 10^{-3}$ |
| 45 | music | $6.1 \times 10^{-3}$ |
| 46 | gene | $6.1 \times 10^{-3}$ |
| 47 | linear | $6.1 \times 10^{-3}$ |
| 48 | spectral | $6.1 \times 10^{-3}$ |
| 49 | noisi | $6 \times 10^{-3}$ |
| 50 | stiff | $6 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | recognit | $5.9 \times 10^{-3}$ |
| 52 | activ | $5.7 \times 10^{-3}$ |
| 53 | modal | $5.6 \times 10^{-3}$ |
| 54 | gaussian | $5.5 \times 10^{-3}$ |
| 55 | simul | $5.4 \times 10^{-3}$ |
| 56 | accuraci | $5.3 \times 10^{-3}$ |
| 57 | model | $5.2 \times 10^{-3}$ |
| 58 | experiment | $5 \times 10^{-3}$ |
| 59 | acid | $5 \times 10^{-3}$ |
| 60 | impuls | $5 \times 10^{-3}$ |
| 61 | techniqu | $5 \times 10^{-3}$ |
| 62 | puls | $4.9 \times 10^{-3}$ |
| 63 | approach | $4.9 \times 10^{-3}$ |
| 64 | perceptu | $4.9 \times 10^{-3}$ |
| 65 | voic | $4.9 \times 10^{-3}$ |
| 66 | year | $4.8 \times 10^{-3}$ |
| 67 | outperform | $4.8 \times 10^{-3}$ |
| 68 | beam | $4.7 \times 10^{-3}$ |
| 69 | displac | $4.6 \times 10^{-3}$ |
| 70 | regul | $4.4 \times 10^{-3}$ |
| 71 | speci | $4.4 \times 10^{-3}$ |
| 72 | paramet | $4.4 \times 10^{-3}$ |
| 73 | reson | $4.4 \times 10^{-3}$ |
| 74 | transmit | $4.3 \times 10^{-3}$ |
| 75 | shear | $4.3 \times 10^{-3}$ |
| 76 | utter | $4.3 \times 10^{-3}$ |
| 77 | vocal | $4.3 \times 10^{-3}$ |
| 78 | hear | $4.3 \times 10^{-3}$ |
| 79 | snr | $4.2 \times 10^{-3}$ |
| 80 | fetal | $4.2 \times 10^{-3}$ |
| 81 | problem | $4.2 \times 10^{-3}$ |
| 82 | associ | $4.1 \times 10^{-3}$ |
| 83 | measur | $4.1 \times 10^{-3}$ |
| 84 | automat | $4.1 \times 10^{-3}$ |
| 85 | fetus | $4.1 \times 10^{-3}$ |
| 86 | inhibit | $4.1 \times 10^{-3}$ |
| 87 | role | $4 \times 10^{-3}$ |
| 88 | auditori | $4 \times 10^{-3}$ |
| 89 | sourc | $4 \times 10^{-3}$ |
| 90 | motion | $4 \times 10^{-3}$ |
| 91 | molecular | $3.9 \times 10^{-3}$ |
| 92 | comput | $3.9 \times 10^{-3}$ |
| 93 | pitch | $3.8 \times 10^{-3}$ |
| 94 | treatment | $3.8 \times 10^{-3}$ |
| 95 | element | $3.8 \times 10^{-3}$ |
| 96 | vector | $3.8 \times 10^{-3}$ |
| 97 | coeffici | $3.7 \times 10^{-3}$ |
| 98 | use | $3.7 \times 10^{-3}$ |
| 99 | base | $3.7 \times 10^{-3}$ |
| 100 | equat | $3.7 \times 10^{-3}$ |

Table D.2. The list of the top 100 words in the category Agricultural Economics and Policy with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | agricultur | $1.1 \times 10^{-1}$ |
| 2 | farmer | $8.7 \times 10^{-2}$ |
| 3 | market | $8.6 \times 10^{-2}$ |
| 4 | farm | $8.3 \times 10^{-2}$ |
| 5 | price | $8.1 \times 10^{-2}$ |
| 6 | food | $7.2 \times 10^{-2}$ |
| 7 | polici | $6 \times 10^{-2}$ |
| 8 | product | $4.8 \times 10^{-2}$ |
| 9 | econom | $3.6 \times 10^{-2}$ |
| 10 | household | $3.5 \times 10^{-2}$ |
| 11 | consum | $3.3 \times 10^{-2}$ |
| 12 | incom | $3.3 \times 10^{-2}$ |
| 13 | countri | $3.2 \times 10^{-2}$ |
| 14 | sector | $3.1 \times 10^{-2}$ |
| 15 | crop | $2.6 \times 10^{-2}$ |
| 16 | trade | $2.4 \times 10^{-2}$ |
| 17 | rural | $2.3 \times 10^{-2}$ |
| 18 | commod | $2 \times 10^{-2}$ |
| 19 | export | $2 \times 10^{-2}$ |
| 20 | land | $2 \times 10^{-2}$ |
| 21 | demand | $1.8 \times 10^{-2}$ |
| 22 | suppli | $1.7 \times 10^{-2}$ |
| 23 | wine | $1.6 \times 10^{-2}$ |
| 24 | impact | $1.6 \times 10^{-2}$ |
| 25 | find | $1.6 \times 10^{-2}$ |
| 26 | welfar | $1.6 \times 10^{-2}$ |
| 27 | empir | $1.5 \times 10^{-2}$ |
| 28 | patient | $1.4 \times 10^{-2}$ |
| 29 | estim | $1.4 \times 10^{-2}$ |
| 30 | poverti | $1.4 \times 10^{-2}$ |
| 31 | survey | $1.3 \times 10^{-2}$ |
| 32 | purchas | $1.3 \times 10^{-2}$ |
| 33 | africa | $1.3 \times 10^{-2}$ |
| 34 | invest | $1.3 \times 10^{-2}$ |
| 35 | cost | $1.2 \times 10^{-2}$ |
| 36 | cell | $1.1 \times 10^{-2}$ |
| 37 | econometr | $1.1 \times 10^{-2}$ |
| 38 | livestock | $1.1 \times 10^{-2}$ |
| 39 | willing | $1.1 \times 10^{-2}$ |
| 40 | dairi | $1.1 \times 10^{-2}$ |
| 41 | panel | $1.1 \times 10^{-2}$ |
| 42 | retail | $1.1 \times 10^{-2}$ |
| 43 | pay | $1.1 \times 10^{-2}$ |
| 44 | premium | $1.1 \times 10^{-2}$ |
| 45 | articl | $1 \times 10^{-2}$ |
| 46 | profit | $1 \times 10^{-2}$ |
| 47 | consumpt | $9.9 \times 10^{-3}$ |
| 48 | payment | $9.9 \times 10^{-3}$ |
| 49 | economi | $9.6 \times 10^{-3}$ |
| 50 | method | $9.4 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | choic | $9.3 \times 10^{-3}$ |
| 52 | competit | $9.3 \times 10^{-3}$ |
| 53 | domest | $9.1 \times 10^{-3}$ |
| 54 | conclus | $8.8 \times 10^{-3}$ |
| 55 | clinic | $8.8 \times 10^{-3}$ |
| 56 | nutrit | $8.6 \times 10^{-3}$ |
| 57 | veget | $8.6 \times 10^{-3}$ |
| 58 | african | $8.5 \times 10^{-3}$ |
| 59 | grower | $8.3 \times 10^{-3}$ |
| 60 | industri | $8.3 \times 10^{-3}$ |
| 61 | govern | $8.2 \times 10^{-3}$ |
| 62 | fertil | $8 \times 10^{-3}$ |
| 63 | urban | $8 \times 10^{-3}$ |
| 64 | irrig | $8 \times 10^{-3}$ |
| 65 | firm | $7.8 \times 10^{-3}$ |
| 66 | busi | $7.8 \times 10^{-3}$ |
| 67 | produc | $7.5 \times 10^{-3}$ |
| 68 | privat | $7.2 \times 10^{-3}$ |
| 69 | milk | $7.2 \times 10^{-3}$ |
| 70 | meat | $7 \times 10^{-3}$ |
| 71 | beef | $6.9 \times 10^{-3}$ |
| 72 | secur | $6.9 \times 10^{-3}$ |
| 73 | prefer | $6.7 \times 10^{-3}$ |
| 74 | grape | $6.5 \times 10^{-3}$ |
| 75 | sale | $6.5 \times 10^{-3}$ |
| 76 | decis | $6.5 \times 10^{-3}$ |
| 77 | adopt | $6.4 \times 10^{-3}$ |
| 78 | benefit | $6.4 \times 10^{-3}$ |
| 79 | china | $6.3 \times 10^{-3}$ |
| 80 | research | $6.2 \times 10^{-3}$ |
| 81 | sell | $6.2 \times 10^{-3}$ |
| 82 | valuat | $6.1 \times 10^{-3}$ |
| 83 | wheat | $6.1 \times 10^{-3}$ |
| 84 | public | $6.1 \times 10^{-3}$ |
| 85 | detect | $6.1 \times 10^{-3}$ |
| 86 | perform | $6.1 \times 10^{-3}$ |
| 87 | import | $6 \times 10^{-3}$ |
| 88 | implic | $6 \times 10^{-3}$ |
| 89 | background | $6 \times 10^{-3}$ |
| 90 | cereal | $5.9 \times 10^{-3}$ |
| 91 | revenu | $5.7 \times 10^{-3}$ |
| 92 | financi | $5.7 \times 10^{-3}$ |
| 93 | electron | $5.7 \times 10^{-3}$ |
| 94 | climat | $5.6 \times 10^{-3}$ |
| 95 | maiz | $5.6 \times 10^{-3}$ |
| 96 | program | $5.6 \times 10^{-3}$ |
| 97 | nation | $5.5 \times 10^{-3}$ |
| 98 | livelihood | $5.4 \times 10^{-3}$ |
| 99 | algorithm | $5.4 \times 10^{-3}$ |
| 100 | volatil | $5.4 \times 10^{-3}$ |

Table D.3. The list of the top 100 words in the category Agricultural Engineering with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | biomass | $6.8 \times 10^{-2}$ |
| 2 | product | $6 \times 10^{-2}$ |
| 3 | yield | $4.1 \times 10^{-2}$ |
| 4 | anaerob | $3.1 \times 10^{-2}$ |
| 5 | content | $2.9 \times 10^{-2}$ |
| 6 | ferment | $2.9 \times 10^{-2}$ |
| 7 | crop | $2.9 \times 10^{-2}$ |
| 8 | sludg | $2.6 \times 10^{-2}$ |
| 9 | feedstock | $2.6 \times 10^{-2}$ |
| 10 | dri | $2.5 \times 10^{-2}$ |
| 11 | oil | $2.4 \times 10^{-2}$ |
| 12 | pretreat | $2.3 \times 10^{-2}$ |
| 13 | irrig | $2.3 \times 10^{-2}$ |
| 14 | remov | $2.1 \times 10^{-2}$ |
| 15 | lignin | $2 \times 10^{-2}$ |
| 16 | wastewat | $2 \times 10^{-2}$ |
| 17 | plant | $2 \times 10^{-2}$ |
| 18 | water | $2 \times 10^{-2}$ |
| 19 | biodiesel | $2 \times 10^{-2}$ |
| 20 | reactor | $1.9 \times 10^{-2}$ |
| 21 | cultiv | $1.9 \times 10^{-2}$ |
| 22 | digest | $1.8 \times 10^{-2}$ |
| 23 | lignocellulos | $1.8 \times 10^{-2}$ |
| 24 | biofuel | $1.8 \times 10^{-2}$ |
| 25 | produc | $1.8 \times 10^{-2}$ |
| 26 | agricultur | $1.8 \times 10^{-2}$ |
| 27 | hydrolysi | $1.8 \times 10^{-2}$ |
| 28 | batch | $1.7 \times 10^{-2}$ |
| 29 | patient | $1.7 \times 10^{-2}$ |
| 30 | acid | $1.7 \times 10^{-2}$ |
| 31 | cellulos | $1.7 \times 10^{-2}$ |
| 32 | straw | $1.6 \times 10^{-2}$ |
| 33 | ethanol | $1.6 \times 10^{-2}$ |
| 34 | cod | $1.5 \times 10^{-2}$ |
| 35 | sugar | $1.5 \times 10^{-2}$ |
| 36 | wast | $1.5 \times 10^{-2}$ |
| 37 | hemicellulos | $1.5 \times 10^{-2}$ |
| 38 | highest | $1.5 \times 10^{-2}$ |
| 39 | nitrogen | $1.4 \times 10^{-2}$ |
| 40 | methan | $1.4 \times 10^{-2}$ |
| 41 | harvest | $1.4 \times 10^{-2}$ |
| 42 | microbi | $1.4 \times 10^{-2}$ |
| 43 | bioreactor | $1.3 \times 10^{-2}$ |
| 44 | conclus | $1.3 \times 10^{-2}$ |
| 45 | concentr | $1.3 \times 10^{-2}$ |
| 46 | moistur | $1.3 \times 10^{-2}$ |
| 47 | effluent | $1.2 \times 10^{-2}$ |
| 48 | soil | $1.2 \times 10^{-2}$ |
| 49 | fatti | $1.1 \times 10^{-2}$ |
| 50 | solid | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | corn | $1.1 \times 10^{-2}$ |
| 52 | fuel | $1.1 \times 10^{-2}$ |
| 53 | enzymat | $1.1 \times 10^{-2}$ |
| 54 | manur | $1 \times 10^{-2}$ |
| 55 | wood | $1 \times 10^{-2}$ |
| 56 | extract | $9.8 \times 10^{-3}$ |
| 57 | respect | $9.8 \times 10^{-3}$ |
| 58 | degre | $9.7 \times 10^{-3}$ |
| 59 | clinic | $9.5 \times 10^{-3}$ |
| 60 | pyrolysi | $9.3 \times 10^{-3}$ |
| 61 | volatil | $9.2 \times 10^{-3}$ |
| 62 | nutrient | $9.1 \times 10^{-3}$ |
| 63 | bio | $8.8 \times 10^{-3}$ |
| 64 | algal | $8.4 \times 10^{-3}$ |
| 65 | phenol | $8.4 \times 10^{-3}$ |
| 66 | wheat | $8.3 \times 10^{-3}$ |
| 67 | chemic | $8.3 \times 10^{-3}$ |
| 68 | effici | $8.1 \times 10^{-3}$ |
| 69 | fruit | $8 \times 10^{-3}$ |
| 70 | total | $7.9 \times 10^{-3}$ |
| 71 | condit | $7.8 \times 10^{-3}$ |
| 72 | background | $7.8 \times 10^{-3}$ |
| 73 | maximum | $7.7 \times 10^{-3}$ |
| 74 | higher | $7.7 \times 10^{-3}$ |
| 75 | lipid | $7.7 \times 10^{-3}$ |
| 76 | acet | $7.5 \times 10^{-3}$ |
| 77 | paper | $7.4 \times 10^{-3}$ |
| 78 | seed | $7.2 \times 10^{-3}$ |
| 79 | carbon | $6.8 \times 10^{-3}$ |
| 80 | ammonia | $6.8 \times 10^{-3}$ |
| 81 | temperatur | $6.8 \times 10^{-3}$ |
| 82 | rice | $6.7 \times 10^{-3}$ |
| 83 | farm | $6.4 \times 10^{-3}$ |
| 84 | amount | $6.3 \times 10^{-3}$ |
| 85 | evapotranspir | $6.3 \times 10^{-3}$ |
| 86 | industri | $6.3 \times 10^{-3}$ |
| 87 | composit | $6 \times 10^{-3}$ |
| 88 | pulp | $6 \times 10^{-3}$ |
| 89 | glucos | $5.8 \times 10^{-3}$ |
| 90 | residu | $5.7 \times 10^{-3}$ |
| 91 | process | $5.6 \times 10^{-3}$ |
| 92 | raw | $5.5 \times 10^{-3}$ |
| 93 | greenhous | $5.5 \times 10^{-3}$ |
| 94 | age | $5.5 \times 10^{-3}$ |
| 95 | outcom | $5.4 \times 10^{-3}$ |
| 96 | min | $5.4 \times 10^{-3}$ |
| 97 | propos | $5.4 \times 10^{-3}$ |
| 98 | potenti | $5.3 \times 10^{-3}$ |
| 99 | obtain | $5.2 \times 10^{-3}$ |
| 100 | hydraul | $5.2 \times 10^{-3}$ |

Table D.4. The list of the top 100 words in the category Agriculture, Dairy and Animal Science with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | feed | $1.1 \times 10^{-1}$ |
| 2 | diet | $1.1 \times 10^{-1}$ |
| 3 | cow | $1 \times 10^{-1}$ |
| 4 | milk | $9.4 \times 10^{-2}$ |
| 5 | fed | $9.1 \times 10^{-2}$ |
| 6 | dairi | $8.9 \times 10^{-2}$ |
| 7 | anim | $7.1 \times 10^{-2}$ |
| 8 | intak | $6.9 \times 10^{-2}$ |
| 9 | breed | $6.7 \times 10^{-2}$ |
| 10 | holstein | $6.4 \times 10^{-2}$ |
| 11 | cattl | $6 \times 10^{-2}$ |
| 12 | broiler | $5.8 \times 10^{-2}$ |
| 13 | supplement | $5.5 \times 10^{-2}$ |
| 14 | dietari | $5.5 \times 10^{-2}$ |
| 15 | lactat | $5.1 \times 10^{-2}$ |
| 16 | digest | $4.9 \times 10^{-2}$ |
| 17 | fat | $4.7 \times 10^{-2}$ |
| 18 | carcass | $4.6 \times 10^{-2}$ |
| 19 | calv | $4.6 \times 10^{-2}$ |
| 20 | weight | $4.4 \times 10^{-2}$ |
| 21 | day | $4.3 \times 10^{-2}$ |
| 22 | meat | $4.3 \times 10^{-2}$ |
| 23 | rumin | $4.2 \times 10^{-2}$ |
| 24 | total | $4.2 \times 10^{-2}$ |
| 25 | pig | $4 \times 10^{-2}$ |
| 26 | slaughter | $3.7 \times 10^{-2}$ |
| 27 | dri | $3.7 \times 10^{-2}$ |
| 28 | trait | $3.7 \times 10^{-2}$ |
| 29 | chicken | $3.6 \times 10^{-2}$ |
| 30 | herd | $3.5 \times 10^{-2}$ |
| 31 | pen | $3.4 \times 10^{-2}$ |
| 32 | bird | $3.4 \times 10^{-2}$ |
| 33 | farm | $3.3 \times 10^{-2}$ |
| 34 | concentr | $3.1 \times 10^{-2}$ |
| 35 | wean | $3.1 \times 10^{-2}$ |
| 36 | product | $2.9 \times 10^{-2}$ |
| 37 | meal | $2.9 \times 10^{-2}$ |
| 38 | corn | $2.8 \times 10^{-2}$ |
| 39 | goat | $2.8 \times 10^{-2}$ |
| 40 | treatment | $2.7 \times 10^{-2}$ |
| 41 | sheep | $2.7 \times 10^{-2}$ |
| 42 | beef | $2.6 \times 10^{-2}$ |
| 43 | fatti | $2.6 \times 10^{-2}$ |
| 44 | per | $2.6 \times 10^{-2}$ |
| 45 | random | $2.6 \times 10^{-2}$ |
| 46 | daili | $2.5 \times 10^{-2}$ |
| 47 | protein | $2.5 \times 10^{-2}$ |
| 48 | chick | $2.3 \times 10^{-2}$ |
| 49 | matter | $2.3 \times 10^{-2}$ |
| 50 | paper | $2.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | period | $2.2 \times 10^{-2}$ |
| 52 | affect | $2.2 \times 10^{-2}$ |
| 53 | effect | $2.1 \times 10^{-2}$ |
| 54 | bodi | $2 \times 10^{-2}$ |
| 55 | acid | $2 \times 10^{-2}$ |
| 56 | crude | $2 \times 10^{-2}$ |
| 57 | studi | $2 \times 10^{-2}$ |
| 58 | content | $1.9 \times 10^{-2}$ |
| 59 | higher | $1.9 \times 10^{-2}$ |
| 60 | reproduct | $1.9 \times 10^{-2}$ |
| 61 | soybean | $1.9 \times 10^{-2}$ |
| 62 | nutrient | $1.9 \times 10^{-2}$ |
| 63 | insemin | $1.9 \times 10^{-2}$ |
| 64 | replic | $1.8 \times 10^{-2}$ |
| 65 | gain | $1.8 \times 10^{-2}$ |
| 66 | increas | $1.8 \times 10^{-2}$ |
| 67 | egg | $1.8 \times 10^{-2}$ |
| 68 | respect | $1.8 \times 10^{-2}$ |
| 69 | group | $1.8 \times 10^{-2}$ |
| 70 | percentag | $1.7 \times 10^{-2}$ |
| 71 | patient | $1.7 \times 10^{-2}$ |
| 72 | greater | $1.7 \times 10^{-2}$ |
| 73 | factori | $1.7 \times 10^{-2}$ |
| 74 | differ | $1.7 \times 10^{-2}$ |
| 75 | assign | $1.7 \times 10^{-2}$ |
| 76 | growth | $1.7 \times 10^{-2}$ |
| 77 | forag | $1.7 \times 10^{-2}$ |
| 78 | hous | $1.7 \times 10^{-2}$ |
| 79 | lower | $1.7 \times 10^{-2}$ |
| 80 | averag | $1.7 \times 10^{-2}$ |
| 81 | propos | $1.6 \times 10^{-2}$ |
| 82 | collect | $1.6 \times 10^{-2}$ |
| 83 | genet | $1.6 \times 10^{-2}$ |
| 84 | pastur | $1.6 \times 10^{-2}$ |
| 85 | bovin | $1.5 \times 10^{-2}$ |
| 86 | decreas | $1.5 \times 10^{-2}$ |
| 87 | ferment | $1.5 \times 10^{-2}$ |
| 88 | nutrit | $1.5 \times 10^{-2}$ |
| 89 | semen | $1.5 \times 10^{-2}$ |
| 90 | litter | $1.4 \times 10^{-2}$ |
| 91 | rear | $1.4 \times 10^{-2}$ |
| 92 | herit | $1.4 \times 10^{-2}$ |
| 93 | dure | $1.4 \times 10^{-2}$ |
| 94 | blood | $1.3 \times 10^{-2}$ |
| 95 | genotyp | $1.3 \times 10^{-2}$ |
| 96 | sampl | $1.3 \times 10^{-2}$ |
| 97 | evalu | $1.3 \times 10^{-2}$ |
| 98 | graze | $1.3 \times 10^{-2}$ |
| 99 | latin | $1.3 \times 10^{-2}$ |
| 100 | week | $1.2 \times 10^{-2}$ |

Table D.5. The list of the top 100 words in the category Agriculture, Multidisciplinary with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | crop | $6 \times 10^{-2}$ |
| 2 | plant | $4.4 \times 10^{-2}$ |
| 3 | agricultur | $4 \times 10^{-2}$ |
| 4 | soil | $3.5 \times 10^{-2}$ |
| 5 | product | $3.1 \times 10^{-2}$ |
| 6 | farm | $2.9 \times 10^{-2}$ |
| 7 | wheat | $2.4 \times 10^{-2}$ |
| 8 | cultivar | $2.3 \times 10^{-2}$ |
| 9 | farmer | $2.3 \times 10^{-2}$ |
| 10 | yield | $2.3 \times 10^{-2}$ |
| 11 | food | $2.2 \times 10^{-2}$ |
| 12 | dri | $2.1 \times 10^{-2}$ |
| 13 | content | $2 \times 10^{-2}$ |
| 14 | seed | $1.8 \times 10^{-2}$ |
| 15 | fruit | $1.8 \times 10^{-2}$ |
| 16 | patient | $1.7 \times 10^{-2}$ |
| 17 | fertil | $1.7 \times 10^{-2}$ |
| 18 | maiz | $1.6 \times 10^{-2}$ |
| 19 | breed | $1.6 \times 10^{-2}$ |
| 20 | leaf | $1.5 \times 10^{-2}$ |
| 21 | acid | $1.4 \times 10^{-2}$ |
| 22 | highest | $1.4 \times 10^{-2}$ |
| 23 | nutrient | $1.3 \times 10^{-2}$ |
| 24 | cultiv | $1.3 \times 10^{-2}$ |
| 25 | pastur | $1.3 \times 10^{-2}$ |
| 26 | total | $1.3 \times 10^{-2}$ |
| 27 | feed | $1.2 \times 10^{-2}$ |
| 28 | rice | $1.2 \times 10^{-2}$ |
| 29 | season | $1.2 \times 10^{-2}$ |
| 30 | irrig | $1.2 \times 10^{-2}$ |
| 31 | veget | $1.2 \times 10^{-2}$ |
| 32 | nitrogen | $1.2 \times 10^{-2}$ |
| 33 | livestock | $1.1 \times 10^{-2}$ |
| 34 | phenol | $1.1 \times 10^{-2}$ |
| 35 | growth | $1.1 \times 10^{-2}$ |
| 36 | harvest | $1 \times 10^{-2}$ |
| 37 | concentr | $1 \times 10^{-2}$ |
| 38 | milk | $1 \times 10^{-2}$ |
| 39 | grass | $9.9 \times 10^{-3}$ |
| 40 | weight | $9.9 \times 10^{-3}$ |
| 41 | grain | $9.9 \times 10^{-3}$ |
| 42 | antioxid | $9.8 \times 10^{-3}$ |
| 43 | nutrit | $9.7 \times 10^{-3}$ |
| 44 | dairi | $9.6 \times 10^{-3}$ |
| 45 | soybean | $9.5 \times 10^{-3}$ |
| 46 | graze | $9.5 \times 10^{-3}$ |
| 47 | biomass | $9.3 \times 10^{-3}$ |
| 48 | cattl | $9.2 \times 10^{-3}$ |
| 49 | manur | $9.1 \times 10^{-3}$ |
| 50 | trait | $8.5 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | chromatographi | $8.4 \times 10^{-3}$ |
| 52 | agronom | $8.4 \times 10^{-3}$ |
| 53 | paper | $8.3 \times 10^{-3}$ |
| 54 | day | $8.3 \times 10^{-3}$ |
| 55 | weed | $8.3 \times 10^{-3}$ |
| 56 | matter | $8.2 \times 10^{-3}$ |
| 57 | diet | $8.2 \times 10^{-3}$ |
| 58 | digest | $8.2 \times 10^{-3}$ |
| 59 | cow | $8.1 \times 10^{-3}$ |
| 60 | respect | $8 \times 10^{-3}$ |
| 61 | extract | $8 \times 10^{-3}$ |
| 62 | pest | $8 \times 10^{-3}$ |
| 63 | higher | $7.9 \times 10^{-3}$ |
| 64 | leav | $7.5 \times 10^{-3}$ |
| 65 | seedl | $7.5 \times 10^{-3}$ |
| 66 | clinic | $7.4 \times 10^{-3}$ |
| 67 | differ | $7.3 \times 10^{-3}$ |
| 68 | root | $7.3 \times 10^{-3}$ |
| 69 | qualiti | $7.2 \times 10^{-3}$ |
| 70 | forag | $7.1 \times 10^{-3}$ |
| 71 | water | $7.1 \times 10^{-3}$ |
| 72 | land | $7 \times 10^{-3}$ |
| 73 | fed | $7 \times 10^{-3}$ |
| 74 | propos | $7 \times 10^{-3}$ |
| 75 | polyphenol | $6.9 \times 10^{-3}$ |
| 76 | genotyp | $6.9 \times 10^{-3}$ |
| 77 | grown | $6.9 \times 10^{-3}$ |
| 78 | greenhous | $6.8 \times 10^{-3}$ |
| 79 | anim | $6.8 \times 10^{-3}$ |
| 80 | intak | $6.7 \times 10^{-3}$ |
| 81 | studi | $6.7 \times 10^{-3}$ |
| 82 | ferment | $6.6 \times 10^{-3}$ |
| 83 | corn | $6.4 \times 10^{-3}$ |
| 84 | meat | $6.4 \times 10^{-3}$ |
| 85 | grow | $6.4 \times 10^{-3}$ |
| 86 | fresh | $6.4 \times 10^{-3}$ |
| 87 | plot | $6.3 \times 10^{-3}$ |
| 88 | dietari | $6.2 \times 10^{-3}$ |
| 89 | per | $6.2 \times 10^{-3}$ |
| 90 | anthocyanin | $6.1 \times 10^{-3}$ |
| 91 | tillag | $6 \times 10^{-3}$ |
| 92 | rumin | $6 \times 10^{-3}$ |
| 93 | winter | $5.9 \times 10^{-3}$ |
| 94 | potato | $5.8 \times 10^{-3}$ |
| 95 | compound | $5.8 \times 10^{-3}$ |
| 96 | grassland | $5.8 \times 10^{-3}$ |
| 97 | sheep | $5.8 \times 10^{-3}$ |
| 98 | fatti | $5.7 \times 10^{-3}$ |
| 99 | flower | $5.7 \times 10^{-3}$ |
| 100 | evalu | $5.7 \times 10^{-3}$ |

Table D.6. The list of the top 100 words in the category Agronomy with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | plant | $1.3 \times 10^{-1}$ |
| 2 | crop | $1.2 \times 10^{-1}$ |
| 3 | cultivar | $9.3 \times 10^{-2}$ |
| 4 | soil | $7.9 \times 10^{-2}$ |
| 5 | yield | $6 \times 10^{-2}$ |
| 6 | seed | $4.5 \times 10^{-2}$ |
| 7 | leaf | $4.4 \times 10^{-2}$ |
| 8 | breed | $4.2 \times 10^{-2}$ |
| 9 | wheat | $4.2 \times 10^{-2}$ |
| 10 | fruit | $3.8 \times 10^{-2}$ |
| 11 | trait | $3.8 \times 10^{-2}$ |
| 12 | irrig | $3.7 \times 10^{-2}$ |
| 13 | fertil | $3.7 \times 10^{-2}$ |
| 14 | season | $3.2 \times 10^{-2}$ |
| 15 | product | $3.1 \times 10^{-2}$ |
| 16 | harvest | $2.8 \times 10^{-2}$ |
| 17 | root | $2.8 \times 10^{-2}$ |
| 18 | dri | $2.7 \times 10^{-2}$ |
| 19 | agricultur | $2.7 \times 10^{-2}$ |
| 20 | cultiv | $2.7 \times 10^{-2}$ |
| 21 | genotyp | $2.7 \times 10^{-2}$ |
| 22 | agronom | $2.5 \times 10^{-2}$ |
| 23 | content | $2.5 \times 10^{-2}$ |
| 24 | grown | $2.5 \times 10^{-2}$ |
| 25 | maiz | $2.4 \times 10^{-2}$ |
| 26 | seedl | $2.4 \times 10^{-2}$ |
| 27 | weed | $2.4 \times 10^{-2}$ |
| 28 | biomass | $2.4 \times 10^{-2}$ |
| 29 | grain | $2.3 \times 10^{-2}$ |
| 30 | rice | $2.2 \times 10^{-2}$ |
| 31 | germplasm | $2.2 \times 10^{-2}$ |
| 32 | flower | $2.2 \times 10^{-2}$ |
| 33 | greenhous | $2.2 \times 10^{-2}$ |
| 34 | growth | $2 \times 10^{-2}$ |
| 35 | genet | $1.9 \times 10^{-2}$ |
| 36 | shoot | $1.9 \times 10^{-2}$ |
| 37 | patient | $1.9 \times 10^{-2}$ |
| 38 | field | $1.8 \times 10^{-2}$ |
| 39 | qtl | $1.8 \times 10^{-2}$ |
| 40 | veget | $1.8 \times 10^{-2}$ |
| 41 | grow | $1.8 \times 10^{-2}$ |
| 42 | nutrient | $1.8 \times 10^{-2}$ |
| 43 | speci | $1.8 \times 10^{-2}$ |
| 44 | leav | $1.7 \times 10^{-2}$ |
| 45 | water | $1.7 \times 10^{-2}$ |
| 46 | inocul | $1.5 \times 10^{-2}$ |
| 47 | paper | $1.5 \times 10^{-2}$ |
| 48 | nitrogen | $1.5 \times 10^{-2}$ |
| 49 | orchard | $1.5 \times 10^{-2}$ |
| 50 | highest | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | winter | $1.4 \times 10^{-2}$ |
| 52 | plot | $1.4 \times 10^{-2}$ |
| 53 | total | $1.4 \times 10^{-2}$ |
| 54 | farmer | $1.4 \times 10^{-2}$ |
| 55 | pest | $1.4 \times 10^{-2}$ |
| 56 | potato | $1.3 \times 10^{-2}$ |
| 57 | tree | $1.3 \times 10^{-2}$ |
| 58 | germin | $1.3 \times 10^{-2}$ |
| 59 | drought | $1.3 \times 10^{-2}$ |
| 60 | farm | $1.3 \times 10^{-2}$ |
| 61 | propos | $1.3 \times 10^{-2}$ |
| 62 | sativa | $1.3 \times 10^{-2}$ |
| 63 | postharvest | $1.3 \times 10^{-2}$ |
| 64 | loci | $1.2 \times 10^{-2}$ |
| 65 | ssr | $1.2 \times 10^{-2}$ |
| 66 | marker | $1.2 \times 10^{-2}$ |
| 67 | soybean | $1.1 \times 10^{-2}$ |
| 68 | grass | $1.1 \times 10^{-2}$ |
| 69 | canopi | $1.1 \times 10^{-2}$ |
| 70 | conduct | $1.1 \times 10^{-2}$ |
| 71 | resist | $1 \times 10^{-2}$ |
| 72 | clinic | $1 \times 10^{-2}$ |
| 73 | climat | $1 \times 10^{-2}$ |
| 74 | matur | $1 \times 10^{-2}$ |
| 75 | tillag | $1 \times 10^{-2}$ |
| 76 | differ | $9.9 \times 10^{-3}$ |
| 77 | manag | $9.9 \times 10^{-3}$ |
| 78 | three | $9.7 \times 10^{-3}$ |
| 79 | four | $9.7 \times 10^{-3}$ |
| 80 | manur | $9.6 \times 10^{-3}$ |
| 81 | grower | $9.6 \times 10^{-3}$ |
| 82 | qualiti | $9.5 \times 10^{-3}$ |
| 83 | tomato | $9.4 \times 10^{-3}$ |
| 84 | chromosom | $9.2 \times 10^{-3}$ |
| 85 | method | $9.1 \times 10^{-3}$ |
| 86 | popul | $9 \times 10^{-3}$ |
| 87 | treatment | $8.9 \times 10^{-3}$ |
| 88 | spring | $8.9 \times 10^{-3}$ |
| 89 | suscept | $8.8 \times 10^{-3}$ |
| 90 | fresh | $8.7 \times 10^{-3}$ |
| 91 | progeni | $8.7 \times 10^{-3}$ |
| 92 | pathogen | $8.4 \times 10^{-3}$ |
| 93 | evalu | $8.3 \times 10^{-3}$ |
| 94 | evapotranspir | $8.2 \times 10^{-3}$ |
| 95 | experi | $8.1 \times 10^{-3}$ |
| 96 | increas | $8.1 \times 10^{-3}$ |
| 97 | higher | $8 \times 10^{-3}$ |
| 98 | matter | $8 \times 10^{-3}$ |
| 99 | per | $8 \times 10^{-3}$ |
| 100 | sugar | $7.8 \times 10^{-3}$ |

Table D.7. The list of the top 100 words in the category Allergy with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | asthma | $2.6 \times 10^{-1}$ |
| 2 | allerg | $2.2 \times 10^{-1}$ |
| 3 | allergi | $1.7 \times 10^{-1}$ |
| 4 | allergen | $1.4 \times 10^{-1}$ |
| 5 | conclus | $1.3 \times 10^{-1}$ |
| 6 | background | $1.3 \times 10^{-1}$ |
| 7 | ige | $1.3 \times 10^{-1}$ |
| 8 | patient | $8 \times 10^{-2}$ |
| 9 | atop | $8 \times 10^{-2}$ |
| 10 | rhiniti | $7.3 \times 10^{-2}$ |
| 11 | object | $7.2 \times 10^{-2}$ |
| 12 | asthmat | $6.8 \times 10^{-2}$ |
| 13 | method | $6.4 \times 10^{-2}$ |
| 14 | airway | $5.8 \times 10^{-2}$ |
| 15 | children | $5.7 \times 10^{-2}$ |
| 16 | symptom | $5.1 \times 10^{-2}$ |
| 17 | dermat | $5 \times 10^{-2}$ |
| 18 | prick | $4.9 \times 10^{-2}$ |
| 19 | clinic | $4.9 \times 10^{-2}$ |
| 20 | eosinophil | $4.8 \times 10^{-2}$ |
| 21 | skin | $4.8 \times 10^{-2}$ |
| 22 | diseas | $4.2 \times 10^{-2}$ |
| 23 | inhal | $4.1 \times 10^{-2}$ |
| 24 | corticosteroid | $3.1 \times 10^{-2}$ |
| 25 | inflamm | $3.1 \times 10^{-2}$ |
| 26 | result | $3.1 \times 10^{-2}$ |
| 27 | immunotherapi | $3 \times 10^{-2}$ |
| 28 | exacerb | $2.9 \times 10^{-2}$ |
| 29 | age | $2.6 \times 10^{-2}$ |
| 30 | associ | $2.6 \times 10^{-2}$ |
| 31 | serum | $2.4 \times 10^{-2}$ |
| 32 | cytokin | $2.4 \times 10^{-2}$ |
| 33 | immun | $2.3 \times 10^{-2}$ |
| 34 | fev1 | $2.3 \times 10^{-2}$ |
| 35 | pollen | $2.2 \times 10^{-2}$ |
| 36 | paper | $2.2 \times 10^{-2}$ |
| 37 | bronchial | $2.2 \times 10^{-2}$ |
| 38 | chronic | $2.1 \times 10^{-2}$ |
| 39 | questionnair | $2.1 \times 10^{-2}$ |
| 40 | respiratori | $2.1 \times 10^{-2}$ |
| 41 | sought | $2.1 \times 10^{-2}$ |
| 42 | year | $2.1 \times 10^{-2}$ |
| 43 | childhood | $2.1 \times 10^{-2}$ |
| 44 | mite | $2 \times 10^{-2}$ |
| 45 | lung | $2 \times 10^{-2}$ |
| 46 | nasal | $1.9 \times 10^{-2}$ |
| 47 | immunolog | $1.9 \times 10^{-2}$ |
| 48 | food | $1.9 \times 10^{-2}$ |
| 49 | sever | $1.9 \times 10^{-2}$ |
| 50 | diagnosi | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | medic | $1.7 \times 10^{-2}$ |
| 52 | sensit | $1.7 \times 10^{-2}$ |
| 53 | assess | $1.6 \times 10^{-2}$ |
| 54 | control | $1.6 \times 10^{-2}$ |
| 55 | signific | $1.6 \times 10^{-2}$ |
| 56 | treatment | $1.6 \times 10^{-2}$ |
| 57 | subject | $1.6 \times 10^{-2}$ |
| 58 | histori | $1.5 \times 10^{-2}$ |
| 59 | preval | $1.5 \times 10^{-2}$ |
| 60 | antibodi | $1.5 \times 10^{-2}$ |
| 61 | inflammatori | $1.5 \times 10^{-2}$ |
| 62 | risk | $1.4 \times 10^{-2}$ |
| 63 | placebo | $1.4 \times 10^{-2}$ |
| 64 | diagnos | $1.4 \times 10^{-2}$ |
| 65 | healthi | $1.4 \times 10^{-2}$ |
| 66 | exposur | $1.3 \times 10^{-2}$ |
| 67 | test | $1.3 \times 10^{-2}$ |
| 68 | reaction | $1.3 \times 10^{-2}$ |
| 69 | adult | $1.3 \times 10^{-2}$ |
| 70 | life | $1.2 \times 10^{-2}$ |
| 71 | level | $1.2 \times 10^{-2}$ |
| 72 | dust | $1.2 \times 10^{-2}$ |
| 73 | score | $1.2 \times 10^{-2}$ |
| 74 | respons | $1.2 \times 10^{-2}$ |
| 75 | specif | $1.2 \times 10^{-2}$ |
| 76 | induc | $1.2 \times 10^{-2}$ |
| 77 | simul | $1.2 \times 10^{-2}$ |
| 78 | studi | $1.1 \times 10^{-2}$ |
| 79 | expiratori | $1.1 \times 10^{-2}$ |
| 80 | elisa | $1.1 \times 10^{-2}$ |
| 81 | propos | $1.1 \times 10^{-2}$ |
| 82 | cohort | $1.1 \times 10^{-2}$ |
| 83 | immunoglobulin | $1.1 \times 10^{-2}$ |
| 84 | cell | $1.1 \times 10^{-2}$ |
| 85 | phenotyp | $1.1 \times 10^{-2}$ |
| 86 | oral | $1.1 \times 10^{-2}$ |
| 87 | igg | $1.1 \times 10^{-2}$ |
| 88 | mediat | $1 \times 10^{-2}$ |
| 89 | baselin | $1 \times 10^{-2}$ |
| 90 | odd | $1 \times 10^{-2}$ |
| 91 | persist | $1 \times 10^{-2}$ |
| 92 | visit | $1 \times 10^{-2}$ |
| 93 | group | $9.7 \times 10^{-3}$ |
| 94 | toler | $9.6 \times 10^{-3}$ |
| 95 | common | $9.4 \times 10^{-3}$ |
| 96 | blood | $9.3 \times 10^{-3}$ |
| 97 | pulmonari | $9 \times 10^{-3}$ |
| 98 | pathogenesi | $8.9 \times 10^{-3}$ |
| 99 | frequent | $8.9 \times 10^{-3}$ |
| 100 | pediatr | $8.9 \times 10^{-3}$ |

Table D.8. The list of the top 100 words in the category Anatomy and Morphology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | anatom | $5.8 \times 10^{-2}$ |
| 2 | anatomi | $4.8 \times 10^{-2}$ |
| 3 | morpholog | $4 \times 10^{-2}$ |
| 4 | cadav | $3.8 \times 10^{-2}$ |
| 5 | dissect | $3.2 \times 10^{-2}$ |
| 6 | posterior | $2.6 \times 10^{-2}$ |
| 7 | neuron | $2.5 \times 10^{-2}$ |
| 8 | anterior | $2.5 \times 10^{-2}$ |
| 9 | dorsal | $2.4 \times 10^{-2}$ |
| 10 | ventral | $2.3 \times 10^{-2}$ |
| 11 | medial | $2.3 \times 10^{-2}$ |
| 12 | stain | $2.3 \times 10^{-2}$ |
| 13 | muscl | $2.3 \times 10^{-2}$ |
| 14 | nerv | $2.3 \times 10^{-2}$ |
| 15 | tissu | $2.2 \times 10^{-2}$ |
| 16 | paper | $2.2 \times 10^{-2}$ |
| 17 | cell | $2.1 \times 10^{-2}$ |
| 18 | histolog | $2.1 \times 10^{-2}$ |
| 19 | adult | $1.8 \times 10^{-2}$ |
| 20 | morphometr | $1.7 \times 10^{-2}$ |
| 21 | bone | $1.7 \times 10^{-2}$ |
| 22 | cranial | $1.7 \times 10^{-2}$ |
| 23 | left | $1.7 \times 10^{-2}$ |
| 24 | caudal | $1.7 \times 10^{-2}$ |
| 25 | later | $1.7 \times 10^{-2}$ |
| 26 | immunohistochem | $1.6 \times 10^{-2}$ |
| 27 | vertebr | $1.5 \times 10^{-2}$ |
| 28 | specimen | $1.4 \times 10^{-2}$ |
| 29 | cortex | $1.3 \times 10^{-2}$ |
| 30 | male | $1.3 \times 10^{-2}$ |
| 31 | express | $1.3 \times 10^{-2}$ |
| 32 | development | $1.3 \times 10^{-2}$ |
| 33 | epithelium | $1.2 \times 10^{-2}$ |
| 34 | right | $1.2 \times 10^{-2}$ |
| 35 | ultrastructur | $1.2 \times 10^{-2}$ |
| 36 | studi | $1.2 \times 10^{-2}$ |
| 37 | skull | $1.2 \times 10^{-2}$ |
| 38 | branch | $1.2 \times 10^{-2}$ |
| 39 | pattern | $1.2 \times 10^{-2}$ |
| 40 | brain | $1.1 \times 10^{-2}$ |
| 41 | distal | $1.1 \times 10^{-2}$ |
| 42 | inferior | $1.1 \times 10^{-2}$ |
| 43 | canal | $1.1 \times 10^{-2}$ |
| 44 | boni | $1 \times 10^{-2}$ |
| 45 | immunoreact | $1 \times 10^{-2}$ |
| 46 | mammal | $1 \times 10^{-2}$ |
| 47 | arteri | $1 \times 10^{-2}$ |
| 48 | region | $9.9 \times 10^{-3}$ |
| 49 | rat | $9.9 \times 10^{-3}$ |
| 50 | microscopi | $9.9 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | section | $9.8 \times 10^{-3}$ |
| 52 | bilater | $9.6 \times 10^{-3}$ |
| 53 | cartilag | $9.3 \times 10^{-3}$ |
| 54 | trunk | $9.2 \times 10^{-3}$ |
| 55 | human | $8.7 \times 10^{-3}$ |
| 56 | cadaver | $8.5 \times 10^{-3}$ |
| 57 | axon | $8.5 \times 10^{-3}$ |
| 58 | embryon | $8.5 \times 10^{-3}$ |
| 59 | cortic | $8.4 \times 10^{-3}$ |
| 60 | ligament | $8.4 \times 10^{-3}$ |
| 61 | limb | $7.9 \times 10^{-3}$ |
| 62 | femal | $7.9 \times 10^{-3}$ |
| 63 | gland | $7.8 \times 10^{-3}$ |
| 64 | observ | $7.8 \times 10^{-3}$ |
| 65 | nucleus | $7.7 \times 10^{-3}$ |
| 66 | anim | $7.7 \times 10^{-3}$ |
| 67 | bodi | $7.6 \times 10^{-3}$ |
| 68 | basal | $7.5 \times 10^{-3}$ |
| 69 | embryo | $7.5 \times 10^{-3}$ |
| 70 | temperatur | $7.4 \times 10^{-3}$ |
| 71 | mandibular | $7.4 \times 10^{-3}$ |
| 72 | postnat | $7.3 \times 10^{-3}$ |
| 73 | head | $7.3 \times 10^{-3}$ |
| 74 | simul | $7.2 \times 10^{-3}$ |
| 75 | immunohistochemistri | $7.2 \times 10^{-3}$ |
| 76 | shape | $7.2 \times 10^{-3}$ |
| 77 | apic | $7 \times 10^{-3}$ |
| 78 | dure | $6.9 \times 10^{-3}$ |
| 79 | cytoplasm | $6.8 \times 10^{-3}$ |
| 80 | propos | $6.8 \times 10^{-3}$ |
| 81 | vessel | $6.5 \times 10^{-3}$ |
| 82 | appear | $6.5 \times 10^{-3}$ |
| 83 | sensori | $6.5 \times 10^{-3}$ |
| 84 | scan | $6.5 \times 10^{-3}$ |
| 85 | proxim | $6.4 \times 10^{-3}$ |
| 86 | tomographi | $6.4 \times 10^{-3}$ |
| 87 | effect | $6.3 \times 10^{-3}$ |
| 88 | function | $6.3 \times 10^{-3}$ |
| 89 | energi | $6.3 \times 10^{-3}$ |
| 90 | design | $6.3 \times 10^{-3}$ |
| 91 | variat | $6.2 \times 10^{-3}$ |
| 92 | rate | $6.2 \times 10^{-3}$ |
| 93 | articular | $6.2 \times 10^{-3}$ |
| 94 | found | $6.1 \times 10^{-3}$ |
| 95 | speci | $6.1 \times 10^{-3}$ |
| 96 | sinus | $6.1 \times 10^{-3}$ |
| 97 | side | $6 \times 10^{-3}$ |
| 98 | sagitt | $6 \times 10^{-3}$ |
| 99 | imag | $5.9 \times 10^{-3}$ |
| 100 | aim | $5.8 \times 10^{-3}$ |

Table D.9. The list of the top 100 words in the category Andrology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | sperm | $2.2 \times 10^{-1}$ |
| 2 | infertil | $1.2 \times 10^{-1}$ |
| 3 | testicular | $1.2 \times 10^{-1}$ |
| 4 | semen | $1.1 \times 10^{-1}$ |
| 5 | spermatozoa | $1.1 \times 10^{-1}$ |
| 6 | male | $9.9 \times 10^{-2}$ |
| 7 | testi | $9.7 \times 10^{-2}$ |
| 8 | motil | $8 \times 10^{-2}$ |
| 9 | testosteron | $7.9 \times 10^{-2}$ |
| 10 | men | $7.6 \times 10^{-2}$ |
| 11 | spermatogenesi | $6.2 \times 10^{-2}$ |
| 12 | fertil | $6 \times 10^{-2}$ |
| 13 | ejacul | $5.4 \times 10^{-2}$ |
| 14 | erectil | $4.9 \times 10^{-2}$ |
| 15 | semin | $4.7 \times 10^{-2}$ |
| 16 | hormon | $4.1 \times 10^{-2}$ |
| 17 | reproduct | $3.9 \times 10^{-2}$ |
| 18 | group | $3.7 \times 10^{-2}$ |
| 19 | acrosom | $3.6 \times 10^{-2}$ |
| 20 | signific | $3.4 \times 10^{-2}$ |
| 21 | androgen | $3.2 \times 10^{-2}$ |
| 22 | rat | $3.1 \times 10^{-2}$ |
| 23 | prostat | $2.9 \times 10^{-2}$ |
| 24 | tubul | $2.8 \times 10^{-2}$ |
| 25 | studi | $2.5 \times 10^{-2}$ |
| 26 | dysfunct | $2.4 \times 10^{-2}$ |
| 27 | patient | $2.3 \times 10^{-2}$ |
| 28 | paper | $2.3 \times 10^{-2}$ |
| 29 | germ | $2.2 \times 10^{-2}$ |
| 30 | pregnanc | $2.2 \times 10^{-2}$ |
| 31 | normal | $1.9 \times 10^{-2}$ |
| 32 | divid | $1.9 \times 10^{-2}$ |
| 33 | level | $1.9 \times 10^{-2}$ |
| 34 | decreas | $1.7 \times 10^{-2}$ |
| 35 | serum | $1.6 \times 10^{-2}$ |
| 36 | antioxid | $1.6 \times 10^{-2}$ |
| 37 | treatment | $1.6 \times 10^{-2}$ |
| 38 | follicl | $1.5 \times 10^{-2}$ |
| 39 | count | $1.5 \times 10^{-2}$ |
| 40 | cell | $1.5 \times 10^{-2}$ |
| 41 | treat | $1.5 \times 10^{-2}$ |
| 42 | dna | $1.5 \times 10^{-2}$ |
| 43 | abnorm | $1.4 \times 10^{-2}$ |
| 44 | sexual | $1.4 \times 10^{-2}$ |
| 45 | total | $1.4 \times 10^{-2}$ |
| 46 | chromatin | $1.3 \times 10^{-2}$ |
| 47 | ivf | $1.3 \times 10^{-2}$ |
| 48 | epithelium | $1.3 \times 10^{-2}$ |
| 49 | aim | $1.3 \times 10^{-2}$ |
| 50 | damag | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | cryopreserv | $1.2 \times 10^{-2}$ |
| 52 | evalu | $1.2 \times 10^{-2}$ |
| 53 | associ | $1.2 \times 10^{-2}$ |
| 54 | inject | $1.2 \times 10^{-2}$ |
| 55 | malondialdehyd | $1.1 \times 10^{-2}$ |
| 56 | control | $1.1 \times 10^{-2}$ |
| 57 | wistar | $1 \times 10^{-2}$ |
| 58 | glutathion | $1 \times 10^{-2}$ |
| 59 | superoxid | $9.8 \times 10^{-3}$ |
| 60 | assay | $9.8 \times 10^{-3}$ |
| 61 | express | $9.7 \times 10^{-3}$ |
| 62 | fragment | $9.6 \times 10^{-3}$ |
| 63 | simul | $9.5 \times 10^{-3}$ |
| 64 | stimul | $9.5 \times 10^{-3}$ |
| 65 | method | $9.5 \times 10^{-3}$ |
| 66 | peroxid | $9.5 \times 10^{-3}$ |
| 67 | week | $9.4 \times 10^{-3}$ |
| 68 | paramet | $9.4 \times 10^{-3}$ |
| 69 | administr | $9.3 \times 10^{-3}$ |
| 70 | thaw | $9.3 \times 10^{-3}$ |
| 71 | compar | $9.3 \times 10^{-3}$ |
| 72 | oocyt | $9.2 \times 10^{-3}$ |
| 73 | morpholog | $9.1 \times 10^{-3}$ |
| 74 | concentr | $9.1 \times 10^{-3}$ |
| 75 | percentag | $9 \times 10^{-3}$ |
| 76 | histopatholog | $8.9 \times 10^{-3}$ |
| 77 | analys | $8.9 \times 10^{-3}$ |
| 78 | apoptot | $8.8 \times 10^{-3}$ |
| 79 | histolog | $8.8 \times 10^{-3}$ |
| 80 | catalas | $8.8 \times 10^{-3}$ |
| 81 | intraperiton | $8.7 \times 10^{-3}$ |
| 82 | embryo | $8.6 \times 10^{-3}$ |
| 83 | tissu | $8.5 \times 10^{-3}$ |
| 84 | receptor | $8.5 \times 10^{-3}$ |
| 85 | day | $8.5 \times 10^{-3}$ |
| 86 | increas | $8.3 \times 10^{-3}$ |
| 87 | base | $8.3 \times 10^{-3}$ |
| 88 | stain | $8.3 \times 10^{-3}$ |
| 89 | insemin | $8 \times 10^{-3}$ |
| 90 | dismutas | $7.9 \times 10^{-3}$ |
| 91 | induc | $7.8 \times 10^{-3}$ |
| 92 | vitro | $7.8 \times 10^{-3}$ |
| 93 | conclud | $7.8 \times 10^{-3}$ |
| 94 | receiv | $7.8 \times 10^{-3}$ |
| 95 | assess | $7.7 \times 10^{-3}$ |
| 96 | order | $7.6 \times 10^{-3}$ |
| 97 | viabil | $7.5 \times 10^{-3}$ |
| 98 | gene | $7.5 \times 10^{-3}$ |
| 99 | dose | $7.5 \times 10^{-3}$ |
| 100 | propos | $7.4 \times 10^{-3}$ |

Table D.10. The list of the top 100 words in the category Anesthesiology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | pain | $1.4 \times 10^{-1}$ |
| 2 | patient | $1.2 \times 10^{-1}$ |
| 3 | anesthesia | $9.7 \times 10^{-2}$ |
| 4 | conclus | $9 \times 10^{-2}$ |
| 5 | surgeri | $8.4 \times 10^{-2}$ |
| 6 | background | $8 \times 10^{-2}$ |
| 7 | anesthet | $6 \times 10^{-2}$ |
| 8 | postop | $5.6 \times 10^{-2}$ |
| 9 | analgesia | $5.2 \times 10^{-2}$ |
| 10 | undergo | $5.1 \times 10^{-2}$ |
| 11 | analges | $4.2 \times 10^{-2}$ |
| 12 | anaesthesia | $4 \times 10^{-2}$ |
| 13 | opioid | $3.8 \times 10^{-2}$ |
| 14 | random | $3.3 \times 10^{-2}$ |
| 15 | receiv | $3.2 \times 10^{-2}$ |
| 16 | prospect | $3.2 \times 10^{-2}$ |
| 17 | ventil | $3.1 \times 10^{-2}$ |
| 18 | hospit | $3 \times 10^{-2}$ |
| 19 | spinal | $3 \times 10^{-2}$ |
| 20 | care | $2.9 \times 10^{-2}$ |
| 21 | periop | $2.9 \times 10^{-2}$ |
| 22 | score | $2.8 \times 10^{-2}$ |
| 23 | nerv | $2.8 \times 10^{-2}$ |
| 24 | outcom | $2.7 \times 10^{-2}$ |
| 25 | chronic | $2.6 \times 10^{-2}$ |
| 26 | clinic | $2.6 \times 10^{-2}$ |
| 27 | elect | $2.6 \times 10^{-2}$ |
| 28 | group | $2.5 \times 10^{-2}$ |
| 29 | method | $2.5 \times 10^{-2}$ |
| 30 | cardiac | $2.4 \times 10^{-2}$ |
| 31 | infus | $2.4 \times 10^{-2}$ |
| 32 | object | $2.4 \times 10^{-2}$ |
| 33 | intub | $2.4 \times 10^{-2}$ |
| 34 | paper | $2.4 \times 10^{-2}$ |
| 35 | intraop | $2.3 \times 10^{-2}$ |
| 36 | assess | $2.3 \times 10^{-2}$ |
| 37 | signific | $2.2 \times 10^{-2}$ |
| 38 | arteri | $2.2 \times 10^{-2}$ |
| 39 | blind | $2.2 \times 10^{-2}$ |
| 40 | result | $2.1 \times 10^{-2}$ |
| 41 | preoper | $2.1 \times 10^{-2}$ |
| 42 | administr | $2.1 \times 10^{-2}$ |
| 43 | surgic | $2 \times 10^{-2}$ |
| 44 | sedat | $2 \times 10^{-2}$ |
| 45 | befor | $2 \times 10^{-2}$ |
| 46 | intervent | $1.9 \times 10^{-2}$ |
| 47 | dure | $1.9 \times 10^{-2}$ |
| 48 | airway | $1.9 \times 10^{-2}$ |
| 49 | confid | $1.8 \times 10^{-2}$ |
| 50 | interv | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | hour | $1.8 \times 10^{-2}$ |
| 52 | trial | $1.7 \times 10^{-2}$ |
| 53 | intraven | $1.7 \times 10^{-2}$ |
| 54 | incid | $1.7 \times 10^{-2}$ |
| 55 | median | $1.7 \times 10^{-2}$ |
| 56 | blood | $1.7 \times 10^{-2}$ |
| 57 | dose | $1.7 \times 10^{-2}$ |
| 58 | complic | $1.7 \times 10^{-2}$ |
| 59 | medic | $1.7 \times 10^{-2}$ |
| 60 | minut | $1.6 \times 10^{-2}$ |
| 61 | injuri | $1.6 \times 10^{-2}$ |
| 62 | studi | $1.6 \times 10^{-2}$ |
| 63 | min | $1.6 \times 10^{-2}$ |
| 64 | record | $1.6 \times 10^{-2}$ |
| 65 | administ | $1.5 \times 10^{-2}$ |
| 66 | day | $1.5 \times 10^{-2}$ |
| 67 | sensori | $1.4 \times 10^{-2}$ |
| 68 | associ | $1.4 \times 10^{-2}$ |
| 69 | cardiopulmonari | $1.4 \times 10^{-2}$ |
| 70 | placebo | $1.4 \times 10^{-2}$ |
| 71 | baselin | $1.4 \times 10^{-2}$ |
| 72 | compar | $1.3 \times 10^{-2}$ |
| 73 | cathet | $1.3 \times 10^{-2}$ |
| 74 | acut | $1.3 \times 10^{-2}$ |
| 75 | intens | $1.3 \times 10^{-2}$ |
| 76 | inject | $1.3 \times 10^{-2}$ |
| 77 | hemodynam | $1.3 \times 10^{-2}$ |
| 78 | measur | $1.3 \times 10^{-2}$ |
| 79 | block | $1.3 \times 10^{-2}$ |
| 80 | relief | $1.2 \times 10^{-2}$ |
| 81 | durat | $1.2 \times 10^{-2}$ |
| 82 | procedur | $1.2 \times 10^{-2}$ |
| 83 | propos | $1.2 \times 10^{-2}$ |
| 84 | primari | $1.2 \times 10^{-2}$ |
| 85 | may | $1.1 \times 10^{-2}$ |
| 86 | mean | $1.1 \times 10^{-2}$ |
| 87 | particip | $1.1 \times 10^{-2}$ |
| 88 | risk | $1.1 \times 10^{-2}$ |
| 89 | advers | $1.1 \times 10^{-2}$ |
| 90 | pressur | $1.1 \times 10^{-2}$ |
| 91 | peripher | $1.1 \times 10^{-2}$ |
| 92 | hundr | $1.1 \times 10^{-2}$ |
| 93 | bypass | $1.1 \times 10^{-2}$ |
| 94 | adult | $1.1 \times 10^{-2}$ |
| 95 | respiratori | $1 \times 10^{-2}$ |
| 96 | schedul | $1 \times 10^{-2}$ |
| 97 | cord | $1 \times 10^{-2}$ |
| 98 | whether | $1 \times 10^{-2}$ |
| 99 | retrospect | $1 \times 10^{-2}$ |
| 100 | salin | $1 \times 10^{-2}$ |

Table D.11. The list of the top 100 words in the category Anthropology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | archaeolog | $8.7 \times 10^{-2}$ |
| 2 | anthropolog | $4.7 \times 10^{-2}$ |
| 3 | ethnograph | $4.5 \times 10^{-2}$ |
| 4 | social | $4.3 \times 10^{-2}$ |
| 5 | polit | $3.1 \times 10^{-2}$ |
| 6 | cultur | $3.1 \times 10^{-2}$ |
| 7 | argu | $2.7 \times 10^{-2}$ |
| 8 | articl | $2.4 \times 10^{-2}$ |
| 9 | peopl | $2.3 \times 10^{-2}$ |
| 10 | centuri | $2.1 \times 10^{-2}$ |
| 11 | histor | $2.1 \times 10^{-2}$ |
| 12 | neolith | $2 \times 10^{-2}$ |
| 13 | site | $2 \times 10^{-2}$ |
| 14 | excav | $1.9 \times 10^{-2}$ |
| 15 | societi | $1.9 \times 10^{-2}$ |
| 16 | fieldwork | $1.8 \times 10^{-2}$ |
| 17 | prehistor | $1.8 \times 10^{-2}$ |
| 18 | indigen | $1.8 \times 10^{-2}$ |
| 19 | assemblag | $1.7 \times 10^{-2}$ |
| 20 | context | $1.6 \times 10^{-2}$ |
| 21 | modern | $1.6 \times 10^{-2}$ |
| 22 | communiti | $1.6 \times 10^{-2}$ |
| 23 | subsist | $1.6 \times 10^{-2}$ |
| 24 | settlement | $1.5 \times 10^{-2}$ |
| 25 | ritual | $1.4 \times 10^{-2}$ |
| 26 | contemporari | $1.4 \times 10^{-2}$ |
| 27 | draw | $1.4 \times 10^{-2}$ |
| 28 | date | $1.3 \times 10^{-2}$ |
| 29 | human | $1.3 \times 10^{-2}$ |
| 30 | cell | $1.3 \times 10^{-2}$ |
| 31 | histori | $1.3 \times 10^{-2}$ |
| 32 | explor | $1.3 \times 10^{-2}$ |
| 33 | ancient | $1.2 \times 10^{-2}$ |
| 34 | discours | $1.2 \times 10^{-2}$ |
| 35 | south | $1.2 \times 10^{-2}$ |
| 36 | africa | $1.2 \times 10^{-2}$ |
| 37 | late | $1.2 \times 10^{-2}$ |
| 38 | african | $1.1 \times 10^{-2}$ |
| 39 | practic | $1.1 \times 10^{-2}$ |
| 40 | bronz | $1.1 \times 10^{-2}$ |
| 41 | way | $1.1 \times 10^{-2}$ |
| 42 | perform | $1.1 \times 10^{-2}$ |
| 43 | ethnographi | $1.1 \times 10^{-2}$ |
| 44 | patient | $1 \times 10^{-2}$ |
| 45 | burial | $1 \times 10^{-2}$ |
| 46 | archaeologist | $1 \times 10^{-2}$ |
| 47 | landscap | $1 \times 10^{-2}$ |
| 48 | radiocarbon | $9.8 \times 10^{-3}$ |
| 49 | stone | $9.8 \times 10^{-3}$ |
| 50 | live | $9.7 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | chronolog | $9.6 \times 10^{-3}$ |
| 52 | individu | $9.5 \times 10^{-3}$ |
| 53 | world | $9.1 \times 10^{-3}$ |
| 54 | earli | $9.1 \times 10^{-3}$ |
| 55 | debat | $9 \times 10^{-3}$ |
| 56 | effect | $9 \times 10^{-3}$ |
| 57 | interpret | $9 \times 10^{-3}$ |
| 58 | pleistocen | $9 \times 10^{-3}$ |
| 59 | understand | $8.7 \times 10^{-3}$ |
| 60 | middl | $8.7 \times 10^{-3}$ |
| 61 | moral | $8.6 \times 10^{-3}$ |
| 62 | simul | $8.5 \times 10^{-3}$ |
| 63 | econom | $8.4 \times 10^{-3}$ |
| 64 | christian | $8.4 \times 10^{-3}$ |
| 65 | examin | $8.4 \times 10^{-3}$ |
| 66 | popul | $8.3 \times 10^{-3}$ |
| 67 | cal | $8.3 \times 10^{-3}$ |
| 68 | research | $8.2 \times 10^{-3}$ |
| 69 | narrat | $8.1 \times 10^{-3}$ |
| 70 | northern | $8.1 \times 10^{-3}$ |
| 71 | religi | $8 \times 10^{-3}$ |
| 72 | holocen | $8 \times 10^{-3}$ |
| 73 | scholar | $7.9 \times 10^{-3}$ |
| 74 | roman | $7.8 \times 10^{-3}$ |
| 75 | engag | $7.8 \times 10^{-3}$ |
| 76 | ideolog | $7.8 \times 10^{-3}$ |
| 77 | evid | $7.5 \times 10^{-3}$ |
| 78 | southern | $7.4 \times 10^{-3}$ |
| 79 | effici | $7.4 \times 10^{-3}$ |
| 80 | question | $7.3 \times 10^{-3}$ |
| 81 | villag | $7.3 \times 10^{-3}$ |
| 82 | central | $7.3 \times 10^{-3}$ |
| 83 | temperatur | $7.2 \times 10^{-3}$ |
| 84 | artefact | $7.1 \times 10^{-3}$ |
| 85 | gather | $7.1 \times 10^{-3}$ |
| 86 | algorithm | $7 \times 10^{-3}$ |
| 87 | hunt | $7 \times 10^{-3}$ |
| 88 | past | $7 \times 10^{-3}$ |
| 89 | faunal | $6.9 \times 10^{-3}$ |
| 90 | north | $6.9 \times 10^{-3}$ |
| 91 | primat | $6.9 \times 10^{-3}$ |
| 92 | focus | $6.8 \times 10^{-3}$ |
| 93 | bone | $6.8 \times 10^{-3}$ |
| 94 | document | $6.8 \times 10^{-3}$ |
| 95 | isotop | $6.6 \times 10^{-3}$ |
| 96 | suggest | $6.5 \times 10^{-3}$ |
| 97 | place | $6.5 \times 10^{-3}$ |
| 98 | optim | $6.5 \times 10^{-3}$ |
| 99 | mediev | $6.4 \times 10^{-3}$ |
| 100 | induc | $6.3 \times 10^{-3}$ |

Table D.12. The list of the top 100 words in the category Archaeology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | archaeolog | $2.9 \times 10^{-1}$ |
| 2 | excav | $8.9 \times 10^{-2}$ |
| 3 | site | $7.6 \times 10^{-2}$ |
| 4 | centuri | $7.2 \times 10^{-2}$ |
| 5 | neolith | $5.1 \times 10^{-2}$ |
| 6 | archaeologist | $4.9 \times 10^{-2}$ |
| 7 | date | $4.9 \times 10^{-2}$ |
| 8 | bronz | $4.8 \times 10^{-2}$ |
| 9 | ancient | $4.6 \times 10^{-2}$ |
| 10 | prehistor | $4.2 \times 10^{-2}$ |
| 11 | roman | $4.1 \times 10^{-2}$ |
| 12 | settlement | $4.1 \times 10^{-2}$ |
| 13 | assemblag | $3.7 \times 10^{-2}$ |
| 14 | late | $3.7 \times 10^{-2}$ |
| 15 | monument | $3.3 \times 10^{-2}$ |
| 16 | cultur | $3.2 \times 10^{-2}$ |
| 17 | stone | $3.1 \times 10^{-2}$ |
| 18 | histor | $2.9 \times 10^{-2}$ |
| 19 | chronolog | $2.7 \times 10^{-2}$ |
| 20 | burial | $2.6 \times 10^{-2}$ |
| 21 | earli | $2.6 \times 10^{-2}$ |
| 22 | artefact | $2.6 \times 10^{-2}$ |
| 23 | landscap | $2.4 \times 10^{-2}$ |
| 24 | ritual | $2.3 \times 10^{-2}$ |
| 25 | heritag | $2.2 \times 10^{-2}$ |
| 26 | radiocarbon | $2.2 \times 10^{-2}$ |
| 27 | subsist | $2 \times 10^{-2}$ |
| 28 | period | $1.9 \times 10^{-2}$ |
| 29 | southern | $1.9 \times 10^{-2}$ |
| 30 | interpret | $1.9 \times 10^{-2}$ |
| 31 | evid | $1.8 \times 10^{-2}$ |
| 32 | cal | $1.8 \times 10^{-2}$ |
| 33 | effect | $1.8 \times 10^{-2}$ |
| 34 | context | $1.7 \times 10^{-2}$ |
| 35 | remain | $1.6 \times 10^{-2}$ |
| 36 | mediev | $1.6 \times 10^{-2}$ |
| 37 | artifact | $1.6 \times 10^{-2}$ |
| 38 | middl | $1.6 \times 10^{-2}$ |
| 39 | occup | $1.6 \times 10^{-2}$ |
| 40 | patient | $1.5 \times 10^{-2}$ |
| 41 | northern | $1.5 \times 10^{-2}$ |
| 42 | social | $1.5 \times 10^{-2}$ |
| 43 | north | $1.4 \times 10^{-2}$ |
| 44 | holocen | $1.4 \times 10^{-2}$ |
| 45 | cell | $1.4 \times 10^{-2}$ |
| 46 | region | $1.3 \times 10^{-2}$ |
| 47 | museum | $1.3 \times 10^{-2}$ |
| 48 | antiqu | $1.3 \times 10^{-2}$ |
| 49 | faunal | $1.3 \times 10^{-2}$ |
| 50 | south | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | eastern | $1.3 \times 10^{-2}$ |
| 52 | cave | $1.3 \times 10^{-2}$ |
| 53 | paint | $1.3 \times 10^{-2}$ |
| 54 | materi | $1.2 \times 10^{-2}$ |
| 55 | past | $1.2 \times 10^{-2}$ |
| 56 | argu | $1.2 \times 10^{-2}$ |
| 57 | domest | $1.2 \times 10^{-2}$ |
| 58 | ceram | $1.2 \times 10^{-2}$ |
| 59 | valley | $1.2 \times 10^{-2}$ |
| 60 | societi | $1.2 \times 10^{-2}$ |
| 61 | modern | $1.1 \times 10^{-2}$ |
| 62 | articl | $1.1 \times 10^{-2}$ |
| 63 | perform | $1.1 \times 10^{-2}$ |
| 64 | document | $1.1 \times 10^{-2}$ |
| 65 | preserv | $1.1 \times 10^{-2}$ |
| 66 | inscript | $1.1 \times 10^{-2}$ |
| 67 | place | $1 \times 10^{-2}$ |
| 68 | polit | $1 \times 10^{-2}$ |
| 69 | iron | $1 \times 10^{-2}$ |
| 70 | town | $1 \times 10^{-2}$ |
| 71 | decor | $1 \times 10^{-2}$ |
| 72 | record | $1 \times 10^{-2}$ |
| 73 | conclus | $9.8 \times 10^{-3}$ |
| 74 | east | $9.7 \times 10^{-3}$ |
| 75 | europ | $9.7 \times 10^{-3}$ |
| 76 | reduc | $9.7 \times 10^{-3}$ |
| 77 | isotop | $9.6 \times 10^{-3}$ |
| 78 | histori | $9.5 \times 10^{-3}$ |
| 79 | templ | $9.5 \times 10^{-3}$ |
| 80 | citi | $9.5 \times 10^{-3}$ |
| 81 | earliest | $9.4 \times 10^{-3}$ |
| 82 | bone | $9.4 \times 10^{-3}$ |
| 83 | central | $9.4 \times 10^{-3}$ |
| 84 | pleistocen | $9.2 \times 10^{-3}$ |
| 85 | gather | $9.2 \times 10^{-3}$ |
| 86 | age | $9.1 \times 10^{-3}$ |
| 87 | locat | $9 \times 10^{-3}$ |
| 88 | west | $9 \times 10^{-3}$ |
| 89 | island | $9 \times 10^{-3}$ |
| 90 | 19th | $8.8 \times 10^{-3}$ |
| 91 | hunt | $8.7 \times 10^{-3}$ |
| 92 | rock | $8.5 \times 10^{-3}$ |
| 93 | method | $8.4 \times 10^{-3}$ |
| 94 | clinic | $8.4 \times 10^{-3}$ |
| 95 | origin | $8.4 \times 10^{-3}$ |
| 96 | ethnograph | $8.3 \times 10^{-3}$ |
| 97 | area | $8.3 \times 10^{-3}$ |
| 98 | control | $8.2 \times 10^{-3}$ |
| 99 | typolog | $8.1 \times 10^{-3}$ |
| 100 | reconstruct | $8.1 \times 10^{-3}$ |

Table D.13. The list of the top 100 words in the category Architecture with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | architectur | $1.3 \times 10^{-1}$ |
| 2 | build | $9.6 \times 10^{-2}$ |
| 3 | architect | $6.5 \times 10^{-2}$ |
| 4 | heritag | $6.2 \times 10^{-2}$ |
| 5 | urban | $4.8 \times 10^{-2}$ |
| 6 | vernacular | $4.5 \times 10^{-2}$ |
| 7 | hous | $4.4 \times 10^{-2}$ |
| 8 | centuri | $4.2 \times 10^{-2}$ |
| 9 | design | $3.9 \times 10^{-2}$ |
| 10 | histor | $3.8 \times 10^{-2}$ |
| 11 | citi | $3.7 \times 10^{-2}$ |
| 12 | project | $3.5 \times 10^{-2}$ |
| 13 | construct | $3.4 \times 10^{-2}$ |
| 14 | built | $2.3 \times 10^{-2}$ |
| 15 | plan | $2.3 \times 10^{-2}$ |
| 16 | landscap | $2.1 \times 10^{-2}$ |
| 17 | cultur | $2.1 \times 10^{-2}$ |
| 18 | research | $1.9 \times 10^{-2}$ |
| 19 | monument | $1.9 \times 10^{-2}$ |
| 20 | paper | $1.8 \times 10^{-2}$ |
| 21 | space | $1.8 \times 10^{-2}$ |
| 22 | town | $1.7 \times 10^{-2}$ |
| 23 | contemporari | $1.7 \times 10^{-2}$ |
| 24 | result | $1.6 \times 10^{-2}$ |
| 25 | territori | $1.4 \times 10^{-2}$ |
| 26 | patient | $1.4 \times 10^{-2}$ |
| 27 | ancient | $1.3 \times 10^{-2}$ |
| 28 | modern | $1.3 \times 10^{-2}$ |
| 29 | aesthet | $1.3 \times 10^{-2}$ |
| 30 | settlement | $1.3 \times 10^{-2}$ |
| 31 | cell | $1.2 \times 10^{-2}$ |
| 32 | tradit | $1.2 \times 10^{-2}$ |
| 33 | typolog | $1.2 \times 10^{-2}$ |
| 34 | sustain | $1.1 \times 10^{-2}$ |
| 35 | twentieth | $1 \times 10^{-2}$ |
| 36 | conserv | $9.7 \times 10^{-3}$ |
| 37 | digit | $9.6 \times 10^{-3}$ |
| 38 | preserv | $9.5 \times 10^{-3}$ |
| 39 | conclus | $9.4 \times 10^{-3}$ |
| 40 | show | $9.3 \times 10^{-3}$ |
| 41 | residenti | $9.2 \times 10^{-3}$ |
| 42 | villag | $9.1 \times 10^{-3}$ |
| 43 | environ | $9 \times 10^{-3}$ |
| 44 | today | $8.9 \times 10^{-3}$ |
| 45 | clinic | $8.8 \times 10^{-3}$ |
| 46 | artist | $8.7 \times 10^{-3}$ |
| 47 | materi | $8.7 \times 10^{-3}$ |
| 48 | rate | $8.6 \times 10^{-3}$ |
| 49 | timber | $8.6 \times 10^{-3}$ |
| 50 | explor | $8.6 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | church | $8.5 \times 10^{-3}$ |
| 52 | studio | $8.3 \times 10^{-3}$ |
| 53 | protein | $8.3 \times 10^{-3}$ |
| 54 | context | $8.2 \times 10^{-3}$ |
| 55 | place | $8.2 \times 10^{-3}$ |
| 56 | draw | $8.2 \times 10^{-3}$ |
| 57 | focus | $8 \times 10^{-3}$ |
| 58 | develop | $8 \times 10^{-3}$ |
| 59 | rural | $7.9 \times 10^{-3}$ |
| 60 | practic | $7.7 \times 10^{-3}$ |
| 61 | creat | $7.6 \times 10^{-3}$ |
| 62 | treatment | $7.6 \times 10^{-3}$ |
| 63 | archaeolog | $7.3 \times 10^{-3}$ |
| 64 | world | $7.3 \times 10^{-3}$ |
| 65 | stone | $7.3 \times 10^{-3}$ |
| 66 | effect | $7 \times 10^{-3}$ |
| 67 | restor | $7 \times 10^{-3}$ |
| 68 | diseas | $7 \times 10^{-3}$ |
| 69 | tool | $7 \times 10^{-3}$ |
| 70 | environment | $7 \times 10^{-3}$ |
| 71 | floor | $7 \times 10^{-3}$ |
| 72 | sampl | $6.9 \times 10^{-3}$ |
| 73 | histori | $6.9 \times 10^{-3}$ |
| 74 | detect | $6.8 \times 10^{-3}$ |
| 75 | decreas | $6.7 \times 10^{-3}$ |
| 76 | idea | $6.7 \times 10^{-3}$ |
| 77 | new | $6.7 \times 10^{-3}$ |
| 78 | nineteenth | $6.6 \times 10^{-3}$ |
| 79 | technolog | $6.6 \times 10^{-3}$ |
| 80 | induc | $6.6 \times 10^{-3}$ |
| 81 | creation | $6.6 \times 10^{-3}$ |
| 82 | acid | $6.6 \times 10^{-3}$ |
| 83 | higher | $6.5 \times 10^{-3}$ |
| 84 | survey | $6.5 \times 10^{-3}$ |
| 85 | dwell | $6.4 \times 10^{-3}$ |
| 86 | way | $6.3 \times 10^{-3}$ |
| 87 | social | $6.3 \times 10^{-3}$ |
| 88 | obtain | $6.3 \times 10^{-3}$ |
| 89 | high | $6.1 \times 10^{-3}$ |
| 90 | gene | $6.1 \times 10^{-3}$ |
| 91 | wall | $6.1 \times 10^{-3}$ |
| 92 | interior | $6 \times 10^{-3}$ |
| 93 | itali | $5.9 \times 10^{-3}$ |
| 94 | museum | $5.9 \times 10^{-3}$ |
| 95 | methodolog | $5.9 \times 10^{-3}$ |
| 96 | street | $5.8 \times 10^{-3}$ |
| 97 | area | $5.8 \times 10^{-3}$ |
| 98 | visual | $5.8 \times 10^{-3}$ |
| 99 | concept | $5.7 \times 10^{-3}$ |
| 100 | geometr | $5.7 \times 10^{-3}$ |

Table D.14. The list of the top 100 words in the category Area Studies with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | polit | $1.5 \times 10^{-1}$ |
| 2 | articl | $1.1 \times 10^{-1}$ |
| 3 | argu | $6.5 \times 10^{-2}$ |
| 4 | govern | $5.1 \times 10^{-2}$ |
| 5 | polici | $4.4 \times 10^{-2}$ |
| 6 | result | $3.7 \times 10^{-2}$ |
| 7 | social | $3.7 \times 10^{-2}$ |
| 8 | nation | $3.5 \times 10^{-2}$ |
| 9 | econom | $3.3 \times 10^{-2}$ |
| 10 | china | $3.2 \times 10^{-2}$ |
| 11 | democrat | $3.1 \times 10^{-2}$ |
| 12 | parti | $2.9 \times 10^{-2}$ |
| 13 | method | $2.9 \times 10^{-2}$ |
| 14 | war | $2.8 \times 10^{-2}$ |
| 15 | societi | $2.7 \times 10^{-2}$ |
| 16 | countri | $2.7 \times 10^{-2}$ |
| 17 | democraci | $2.7 \times 10^{-2}$ |
| 18 | reform | $2.5 \times 10^{-2}$ |
| 19 | discours | $2.5 \times 10^{-2}$ |
| 20 | use | $2.4 \times 10^{-2}$ |
| 21 | africa | $2.3 \times 10^{-2}$ |
| 22 | institut | $2.2 \times 10^{-2}$ |
| 23 | state | $2.1 \times 10^{-2}$ |
| 24 | centuri | $2.1 \times 10^{-2}$ |
| 25 | foreign | $2 \times 10^{-2}$ |
| 26 | debat | $2 \times 10^{-2}$ |
| 27 | civil | $2 \times 10^{-2}$ |
| 28 | elit | $2 \times 10^{-2}$ |
| 29 | contemporari | $1.9 \times 10^{-2}$ |
| 30 | draw | $1.9 \times 10^{-2}$ |
| 31 | actor | $1.9 \times 10^{-2}$ |
| 32 | chines | $1.9 \times 10^{-2}$ |
| 33 | communist | $1.8 \times 10^{-2}$ |
| 34 | histor | $1.8 \times 10^{-2}$ |
| 35 | public | $1.8 \times 10^{-2}$ |
| 36 | struggl | $1.8 \times 10^{-2}$ |
| 37 | ideolog | $1.7 \times 10^{-2}$ |
| 38 | conflict | $1.7 \times 10^{-2}$ |
| 39 | offici | $1.7 \times 10^{-2}$ |
| 40 | scholar | $1.7 \times 10^{-2}$ |
| 41 | presid | $1.6 \times 10^{-2}$ |
| 42 | economi | $1.6 \times 10^{-2}$ |
| 43 | leader | $1.6 \times 10^{-2}$ |
| 44 | liber | $1.6 \times 10^{-2}$ |
| 45 | african | $1.6 \times 10^{-2}$ |
| 46 | narrat | $1.5 \times 10^{-2}$ |
| 47 | cultur | $1.5 \times 10^{-2}$ |
| 48 | perform | $1.5 \times 10^{-2}$ |
| 49 | cell | $1.5 \times 10^{-2}$ |
| 50 | nationalist | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | elect | $1.5 \times 10^{-2}$ |
| 52 | peopl | $1.5 \times 10^{-2}$ |
| 53 | patient | $1.4 \times 10^{-2}$ |
| 54 | militari | $1.4 \times 10^{-2}$ |
| 55 | south | $1.4 \times 10^{-2}$ |
| 56 | protest | $1.4 \times 10^{-2}$ |
| 57 | religi | $1.4 \times 10^{-2}$ |
| 58 | union | $1.4 \times 10^{-2}$ |
| 59 | soviet | $1.4 \times 10^{-2}$ |
| 60 | islam | $1.3 \times 10^{-2}$ |
| 61 | histori | $1.3 \times 10^{-2}$ |
| 62 | peac | $1.3 \times 10^{-2}$ |
| 63 | engag | $1.3 \times 10^{-2}$ |
| 64 | simul | $1.3 \times 10^{-2}$ |
| 65 | asia | $1.3 \times 10^{-2}$ |
| 66 | question | $1.3 \times 10^{-2}$ |
| 67 | world | $1.3 \times 10^{-2}$ |
| 68 | transnat | $1.3 \times 10^{-2}$ |
| 69 | authoritarian | $1.3 \times 10^{-2}$ |
| 70 | context | $1.2 \times 10^{-2}$ |
| 71 | seek | $1.2 \times 10^{-2}$ |
| 72 | arab | $1.2 \times 10^{-2}$ |
| 73 | crisi | $1.2 \times 10^{-2}$ |
| 74 | intern | $1.2 \times 10^{-2}$ |
| 75 | citizen | $1.2 \times 10^{-2}$ |
| 76 | contest | $1.2 \times 10^{-2}$ |
| 77 | focus | $1.2 \times 10^{-2}$ |
| 78 | author | $1.2 \times 10^{-2}$ |
| 79 | obtain | $1.2 \times 10^{-2}$ |
| 80 | violenc | $1.2 \times 10^{-2}$ |
| 81 | domest | $1.2 \times 10^{-2}$ |
| 82 | temperatur | $1.2 \times 10^{-2}$ |
| 83 | examin | $1.1 \times 10^{-2}$ |
| 84 | attempt | $1.1 \times 10^{-2}$ |
| 85 | russia | $1.1 \times 10^{-2}$ |
| 86 | high | $1.1 \times 10^{-2}$ |
| 87 | elector | $1.1 \times 10^{-2}$ |
| 88 | twentieth | $1.1 \times 10^{-2}$ |
| 89 | russian | $1.1 \times 10^{-2}$ |
| 90 | measur | $1.1 \times 10^{-2}$ |
| 91 | conclus | $1.1 \times 10^{-2}$ |
| 92 | secur | $1.1 \times 10^{-2}$ |
| 93 | turkish | $1.1 \times 10^{-2}$ |
| 94 | migrant | $1.1 \times 10^{-2}$ |
| 95 | way | $1.1 \times 10^{-2}$ |
| 96 | issu | $1 \times 10^{-2}$ |
| 97 | studi | $1 \times 10^{-2}$ |
| 98 | ident | $1 \times 10^{-2}$ |
| 99 | rural | $1 \times 10^{-2}$ |
| 100 | ethnic | $1 \times 10^{-2}$ |

Table D.15. The list of the top 100 words in the category Art with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | artist | $1.2 \times 10^{-1}$ |
| 2 | art | $1.1 \times 10^{-1}$ |
| 3 | centuri | $6.1 \times 10^{-2}$ |
| 4 | paint | $6 \times 10^{-2}$ |
| 5 | articl | $5.4 \times 10^{-2}$ |
| 6 | aesthet | $4.4 \times 10^{-2}$ |
| 7 | artwork | $4.3 \times 10^{-2}$ |
| 8 | cultur | $3.4 \times 10^{-2}$ |
| , | histor | $3.2 \times 10^{-2}$ |
| 10 | argu | $3 \times 10^{-2}$ |
| 11 | museum | $2.7 \times 10^{-2}$ |
| 12 | essay | $2.6 \times 10^{-2}$ |
| 13 | contemporari | $2.6 \times 10^{-2}$ |
| 14 | photograph | $2.4 \times 10^{-2}$ |
| 15 | creativ | $2.4 \times 10^{-2}$ |
| 16 | result | $2.4 \times 10^{-2}$ |
| 17 | work | $2.2 \times 10^{-2}$ |
| 18 | heritag | $2.1 \times 10^{-2}$ |
| 19 | visual | $1.9 \times 10^{-2}$ |
| 20 | monument | $1.8 \times 10^{-2}$ |
| 21 | painter | $1.8 \times 10^{-2}$ |
| 22 | author | $1.7 \times 10^{-2}$ |
| 23 | photographi | $1.6 \times 10^{-2}$ |
| 24 | histori | $1.6 \times 10^{-2}$ |
| 25 | philosoph | $1.6 \times 10^{-2}$ |
| 26 | draw | $1.6 \times 10^{-2}$ |
| 27 | way | $1.5 \times 10^{-2}$ |
| 28 | polit | $1.5 \times 10^{-2}$ |
| 29 | patient | $1.4 \times 10^{-2}$ |
| 30 | nineteenth | $1.4 \times 10^{-2}$ |
| 31 | church | $1.4 \times 10^{-2}$ |
| 32 | practic | $1.4 \times 10^{-2}$ |
| 33 | engag | $1.3 \times 10^{-2}$ |
| 34 | concept | $1.3 \times 10^{-2}$ |
| 35 | modern | $1.3 \times 10^{-2}$ |
| 36 | cell | $1.2 \times 10^{-2}$ |
| 37 | decor | $1.2 \times 10^{-2}$ |
| 38 | increas | $1.2 \times 10^{-2}$ |
| 39 | project | $1.2 \times 10^{-2}$ |
| 40 | depict | $1.2 \times 10^{-2}$ |
| 41 | explor | $1.2 \times 10^{-2}$ |
| 42 | high | $1.1 \times 10^{-2}$ |
| 43 | method | $1.1 \times 10^{-2}$ |
| 44 | twentieth | $1.1 \times 10^{-2}$ |
| 45 | narrat | $1.1 \times 10^{-2}$ |
| 46 | social | $1.1 \times 10^{-2}$ |
| 47 | effect | $1 \times 10^{-2}$ |
| 48 | conclus | $1 \times 10^{-2}$ |
| 49 | music | $1 \times 10^{-2}$ |
| 50 | compar | $1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | creat | $1 \times 10^{-2}$ |
| 52 | interpret | $9.4 \times 10^{-3}$ |
| 53 | question | $9.4 \times 10^{-3}$ |
| 54 | control | $9.3 \times 10^{-3}$ |
| 55 | rate | $9.3 \times 10^{-3}$ |
| 56 | decreas | $8.8 \times 10^{-3}$ |
| 57 | embodi | $8.5 \times 10^{-3}$ |
| 58 | modernist | $8.4 \times 10^{-3}$ |
| 59 | imag | $8.4 \times 10^{-3}$ |
| 60 | idea | $8.4 \times 10^{-3}$ |
| 61 | reduc | $8.4 \times 10^{-3}$ |
| 62 | context | $8.3 \times 10^{-3}$ |
| 63 | viewer | $8.3 \times 10^{-3}$ |
| 64 | simul | $8.2 \times 10^{-3}$ |
| 65 | world | $8 \times 10^{-3}$ |
| 66 | audienc | $7.9 \times 10^{-3}$ |
| 67 | genr | $7.9 \times 10^{-3}$ |
| 68 | artefact | $7.9 \times 10^{-3}$ |
| 69 | sixteenth | $7.8 \times 10^{-3}$ |
| 70 | craft | $7.8 \times 10^{-3}$ |
| 71 | creation | $7.8 \times 10^{-3}$ |
| 72 | show | $7.8 \times 10^{-3}$ |
| 73 | system | $7.8 \times 10^{-3}$ |
| 74 | focus | $7.6 \times 10^{-3}$ |
| 75 | argument | $7.6 \times 10^{-3}$ |
| 76 | design | $7.4 \times 10^{-3}$ |
| 77 | ancient | $7.4 \times 10^{-3}$ |
| 78 | figur | $7.2 \times 10^{-3}$ |
| 79 | imagin | $7.2 \times 10^{-3}$ |
| 80 | clinic | $7.2 \times 10^{-3}$ |
| 81 | think | $7.2 \times 10^{-3}$ |
| 82 | measur | $7.1 \times 10^{-3}$ |
| 83 | claim | $7.1 \times 10^{-3}$ |
| 84 | protein | $6.9 \times 10^{-3}$ |
| 85 | higher | $6.9 \times 10^{-3}$ |
| 86 | low | $6.9 \times 10^{-3}$ |
| 87 | mediev | $6.7 \times 10^{-3}$ |
| 88 | christ | $6.7 \times 10^{-3}$ |
| 89 | notion | $6.6 \times 10^{-3}$ |
| 90 | improv | $6.6 \times 10^{-3}$ |
| 91 | induc | $6.6 \times 10^{-3}$ |
| 92 | ratio | $6.5 \times 10^{-3}$ |
| 93 | style | $6.5 \times 10^{-3}$ |
| 94 | roman | $6.5 \times 10^{-3}$ |
| 95 | diseas | $6.3 \times 10^{-3}$ |
| 96 | build | $6.3 \times 10^{-3}$ |
| 97 | represent | $6.3 \times 10^{-3}$ |
| 98 | thing | $6.2 \times 10^{-3}$ |
| 99 | german | $6.2 \times 10^{-3}$ |
| 100 | conserv | $6.2 \times 10^{-3}$ |

Table D.16. The list of the top 100 words in the category Asian Studies with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | articl | $9.8 \times 10^{-2}$ |
| 2 | argu | $6.5 \times 10^{-2}$ |
| 3 | polit | $6.3 \times 10^{-2}$ |
| 4 | centuri | $6.2 \times 10^{-2}$ |
| 5 | buddhist | $5.2 \times 10^{-2}$ |
| 6 | result | $4.5 \times 10^{-2}$ |
| 7 | religi | $4 \times 10^{-2}$ |
| 8 | text | $3.7 \times 10^{-2}$ |
| 9 | islam | $3.6 \times 10^{-2}$ |
| 10 | scholar | $3.4 \times 10^{-2}$ |
| 11 | chines | $3.2 \times 10^{-2}$ |
| 12 | ritual | $3 \times 10^{-2}$ |
| 13 | essay | $3 \times 10^{-2}$ |
| 14 | korean | $2.9 \times 10^{-2}$ |
| 15 | literari | $2.8 \times 10^{-2}$ |
| 16 | method | $2.8 \times 10^{-2}$ |
| 17 | histor | $2.8 \times 10^{-2}$ |
| 18 | contemporari | $2.8 \times 10^{-2}$ |
| 19 | histori | $2.8 \times 10^{-2}$ |
| 20 | discours | $2.7 \times 10^{-2}$ |
| 21 | modern | $2.6 \times 10^{-2}$ |
| 22 | use | $2.5 \times 10^{-2}$ |
| 23 | societi | $2.4 \times 10^{-2}$ |
| 24 | cultur | $2.2 \times 10^{-2}$ |
| 25 | korea | $2.1 \times 10^{-2}$ |
| 26 | narrat | $2.1 \times 10^{-2}$ |
| 27 | effect | $2 \times 10^{-2}$ |
| 28 | tradit | $1.9 \times 10^{-2}$ |
| 29 | coloni | $1.8 \times 10^{-2}$ |
| 30 | japanes | $1.8 \times 10^{-2}$ |
| 31 | war | $1.8 \times 10^{-2}$ |
| 32 | moral | $1.8 \times 10^{-2}$ |
| 33 | author | $1.8 \times 10^{-2}$ |
| 34 | imperi | $1.8 \times 10^{-2}$ |
| 35 | ideolog | $1.8 \times 10^{-2}$ |
| 36 | high | $1.8 \times 10^{-2}$ |
| 37 | social | $1.7 \times 10^{-2}$ |
| 38 | philosoph | $1.7 \times 10^{-2}$ |
| 39 | nation | $1.7 \times 10^{-2}$ |
| 40 | late | $1.7 \times 10^{-2}$ |
| 41 | languag | $1.7 \times 10^{-2}$ |
| 42 | muslim | $1.6 \times 10^{-2}$ |
| 43 | philosophi | $1.6 \times 10^{-2}$ |
| 44 | twentieth | $1.5 \times 10^{-2}$ |
| 45 | increas | $1.5 \times 10^{-2}$ |
| 46 | measur | $1.5 \times 10^{-2}$ |
| 47 | ottoman | $1.5 \times 10^{-2}$ |
| 48 | inscript | $1.5 \times 10^{-2}$ |
| 49 | model | $1.4 \times 10^{-2}$ |
| 50 | religion | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | examin | $1.4 \times 10^{-2}$ |
| 52 | china | $1.4 \times 10^{-2}$ |
| 53 | india | $1.4 \times 10^{-2}$ |
| 54 | offici | $1.4 \times 10^{-2}$ |
| 55 | christian | $1.4 \times 10^{-2}$ |
| 56 | cell | $1.3 \times 10^{-2}$ |
| 57 | patient | $1.3 \times 10^{-2}$ |
| 58 | test | $1.3 \times 10^{-2}$ |
| 59 | nineteenth | $1.3 \times 10^{-2}$ |
| 60 | nationalist | $1.3 \times 10^{-2}$ |
| 61 | intellectu | $1.3 \times 10^{-2}$ |
| 62 | asian | $1.3 \times 10^{-2}$ |
| 63 | east | $1.3 \times 10^{-2}$ |
| 64 | rate | $1.2 \times 10^{-2}$ |
| 65 | obtain | $1.2 \times 10^{-2}$ |
| 66 | data | $1.2 \times 10^{-2}$ |
| 67 | attempt | $1.2 \times 10^{-2}$ |
| 68 | arab | $1.2 \times 10^{-2}$ |
| 69 | debat | $1.2 \times 10^{-2}$ |
| 70 | write | $1.2 \times 10^{-2}$ |
| 71 | draw | $1.2 \times 10^{-2}$ |
| 72 | question | $1.2 \times 10^{-2}$ |
| 73 | effici | $1.2 \times 10^{-2}$ |
| 74 | reduc | $1.2 \times 10^{-2}$ |
| 75 | genr | $1.2 \times 10^{-2}$ |
| 76 | way | $1.2 \times 10^{-2}$ |
| 77 | stori | $1.2 \times 10^{-2}$ |
| 78 | asia | $1.2 \times 10^{-2}$ |
| 79 | notion | $1.2 \times 10^{-2}$ |
| 80 | idea | $1.1 \times 10^{-2}$ |
| 81 | govern | $1.1 \times 10^{-2}$ |
| 82 | improv | $1.1 \times 10^{-2}$ |
| 83 | indian | $1.1 \times 10^{-2}$ |
| 84 | doctrin | $1.1 \times 10^{-2}$ |
| 85 | south | $1.1 \times 10^{-2}$ |
| 86 | evalu | $1.1 \times 10^{-2}$ |
| 87 | context | $1.1 \times 10^{-2}$ |
| 88 | british | $1.1 \times 10^{-2}$ |
| 89 | read | $1.1 \times 10^{-2}$ |
| 90 | world | $1.1 \times 10^{-2}$ |
| 91 | ident | $1.1 \times 10^{-2}$ |
| 92 | view | $1 \times 10^{-2}$ |
| 93 | temperatur | $1 \times 10^{-2}$ |
| 94 | templ | $1 \times 10^{-2}$ |
| 95 | elit | $1 \times 10^{-2}$ |
| 96 | court | $1 \times 10^{-2}$ |
| 97 | higher | $1 \times 10^{-2}$ |
| 98 | low | $1 \times 10^{-2}$ |
| 99 | royal | $1 \times 10^{-2}$ |
| 100 | simul | $1 \times 10^{-2}$ |

Table D.17. The list of the top 100 words in the category Astronomy and Astrophysics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | star | $1.5 \times 10^{-1}$ |
| 2 | galaxi | $1.1 \times 10^{-1}$ |
| 3 | telescop | $9.9 \times 10^{-2}$ |
| 4 | stellar | $9.8 \times 10^{-2}$ |
| 5 | galact | $6.6 \times 10^{-2}$ |
| 6 | mass | $5.9 \times 10^{-2}$ |
| 7 | cosmolog | $5.4 \times 10^{-2}$ |
| 8 | luminos | $5.1 \times 10^{-2}$ |
| 9 | redshift | $5 \times 10^{-2}$ |
| 10 | observ | $4.9 \times 10^{-2}$ |
| 11 | cosmic | $4.5 \times 10^{-2}$ |
| 12 | gravit | $4.5 \times 10^{-2}$ |
| 13 | accret | $3.9 \times 10^{-2}$ |
| 14 | observatori | $3.7 \times 10^{-2}$ |
| 15 | circl | $3.6 \times 10^{-2}$ |
| 16 | sky | $3.4 \times 10^{-2}$ |
| 17 | field | $3.3 \times 10^{-2}$ |
| 18 | solar | $3.3 \times 10^{-2}$ |
| 19 | dark | $3.2 \times 10^{-2}$ |
| 20 | dwarf | $3.1 \times 10^{-2}$ |
| 21 | orbit | $3 \times 10^{-2}$ |
| 22 | massiv | $2.8 \times 10^{-2}$ |
| 23 | similar | $2.7 \times 10^{-2}$ |
| 24 | scalar | $2.6 \times 10^{-2}$ |
| 25 | spectral | $2.6 \times 10^{-2}$ |
| 26 | astrophys | $2.5 \times 10^{-2}$ |
| 27 | graviti | $2.5 \times 10^{-2}$ |
| 28 | flux | $2.4 \times 10^{-2}$ |
| 29 | emiss | $2.4 \times 10^{-2}$ |
| 30 | evolut | $2.4 \times 10^{-2}$ |
| 31 | patient | $2.4 \times 10^{-2}$ |
| 32 | disk | $2.4 \times 10^{-2}$ |
| 33 | dust | $2.3 \times 10^{-2}$ |
| 34 | matter | $2.3 \times 10^{-2}$ |
| 35 | bright | $2.2 \times 10^{-2}$ |
| 36 | veloc | $2.2 \times 10^{-2}$ |
| 37 | neutrino | $1.9 \times 10^{-2}$ |
| 38 | hole | $1.9 \times 10^{-2}$ |
| 39 | quark | $1.8 \times 10^{-2}$ |
| 40 | cell | $1.8 \times 10^{-2}$ |
| 41 | black | $1.8 \times 10^{-2}$ |
| 42 | gev | $1.8 \times 10^{-2}$ |
| 43 | baryon | $1.8 \times 10^{-2}$ |
| 44 | spectra | $1.8 \times 10^{-2}$ |
| 45 | near | $1.7 \times 10^{-2}$ |
| 46 | relativist | $1.6 \times 10^{-2}$ |
| 47 | space | $1.6 \times 10^{-2}$ |
| 48 | model | $1.6 \times 10^{-2}$ |
| 49 | larg | $1.6 \times 10^{-2}$ |
| 50 | angular | $1.6 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | dot | $1.6 \times 10^{-2}$ |
| 52 | find | $1.6 \times 10^{-2}$ |
| 53 | perturb | $1.6 \times 10^{-2}$ |
| 54 | radiat | $1.6 \times 10^{-2}$ |
| 55 | spacetim | $1.6 \times 10^{-2}$ |
| 56 | magnet | $1.5 \times 10^{-2}$ |
| 57 | densiti | $1.5 \times 10^{-2}$ |
| 58 | radial | $1.5 \times 10^{-2}$ |
| 59 | radius | $1.5 \times 10^{-2}$ |
| 60 | energi | $1.5 \times 10^{-2}$ |
| 61 | binari | $1.5 \times 10^{-2}$ |
| 62 | tev | $1.5 \times 10^{-2}$ |
| 63 | radio | $1.5 \times 10^{-2}$ |
| 64 | rotat | $1.4 \times 10^{-2}$ |
| 65 | spectrum | $1.4 \times 10^{-2}$ |
| 66 | constrain | $1.4 \times 10^{-2}$ |
| 67 | planck | $1.4 \times 10^{-2}$ |
| 68 | clinic | $1.4 \times 10^{-2}$ |
| 69 | momentum | $1.4 \times 10^{-2}$ |
| 70 | line | $1.4 \times 10^{-2}$ |
| 71 | decay | $1.4 \times 10^{-2}$ |
| 72 | sigma | $1.4 \times 10^{-2}$ |
| 73 | ray | $1.4 \times 10^{-2}$ |
| 74 | scale | $1.4 \times 10^{-2}$ |
| 75 | evalu | $1.4 \times 10^{-2}$ |
| 76 | diseas | $1.4 \times 10^{-2}$ |
| 77 | mission | $1.3 \times 10^{-2}$ |
| 78 | higg | $1.3 \times 10^{-2}$ |
| 79 | infrar | $1.3 \times 10^{-2}$ |
| 80 | control | $1.3 \times 10^{-2}$ |
| 81 | optic | $1.3 \times 10^{-2}$ |
| 82 | kev | $1.2 \times 10^{-2}$ |
| 83 | spectroscop | $1.2 \times 10^{-2}$ |
| 84 | survey | $1.2 \times 10^{-2}$ |
| 85 | fit | $1.2 \times 10^{-2}$ |
| 86 | protein | $1.2 \times 10^{-2}$ |
| 87 | region | $1.2 \times 10^{-2}$ |
| 88 | qcd | $1.2 \times 10^{-2}$ |
| 89 | treatment | $1.2 \times 10^{-2}$ |
| 90 | spacecraft | $1.1 \times 10^{-2}$ |
| 91 | sourc | $1.1 \times 10^{-2}$ |
| 92 | ionospher | $1.1 \times 10^{-2}$ |
| 93 | wind | $1.1 \times 10^{-2}$ |
| 94 | physic | $1.1 \times 10^{-2}$ |
| 95 | hadron | $1.1 \times 10^{-2}$ |
| 96 | gaug | $1.1 \times 10^{-2}$ |
| 97 | atmospher | $1.1 \times 10^{-2}$ |
| 98 | instrument | $1.1 \times 10^{-2}$ |
| 99 | earth | $1.1 \times 10^{-2}$ |
| 100 | constraint | $1.1 \times 10^{-2}$ |

Table D.18. The list of the top 100 words in the category Audiology and Speech-Language Pathology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | speech | $1.4 \times 10^{-1}$ |
| 2 | hear | $1.3 \times 10^{-1}$ |
| 3 | acoust | $8.9 \times 10^{-2}$ |
| 4 | listen | $7.9 \times 10^{-2}$ |
| 5 | sound | $7.2 \times 10^{-2}$ |
| 6 | auditori | $6 \times 10^{-2}$ |
| 7 | languag | $5.8 \times 10^{-2}$ |
| 8 | cochlear | $5.2 \times 10^{-2}$ |
| 9 | word | $4.3 \times 10^{-2}$ |
| 10 | nois | $4 \times 10^{-2}$ |
| 11 | sentenc | $3.9 \times 10^{-2}$ |
| 12 | ear | $3.7 \times 10^{-2}$ |
| 13 | children | $3.3 \times 10^{-2}$ |
| 14 | tone | $3.1 \times 10^{-2}$ |
| 15 | particip | $3.1 \times 10^{-2}$ |
| 16 | vowel | $2.9 \times 10^{-2}$ |
| 17 | frequenc | $2.9 \times 10^{-2}$ |
| 18 | phonolog | $2.6 \times 10^{-2}$ |
| 19 | conson | $2.6 \times 10^{-2}$ |
| 20 | purpos | $2.5 \times 10^{-2}$ |
| 21 | speaker | $2.4 \times 10^{-2}$ |
| 22 | task | $2.2 \times 10^{-2}$ |
| 23 | stimuli | $2.2 \times 10^{-2}$ |
| 24 | vocal | $2.1 \times 10^{-2}$ |
| 25 | syllabl | $2 \times 10^{-2}$ |
| 26 | percept | $1.9 \times 10^{-2}$ |
| 27 | lexic | $1.8 \times 10^{-2}$ |
| 28 | conclus | $1.8 \times 10^{-2}$ |
| 29 | impair | $1.8 \times 10^{-2}$ |
| 30 | adult | $1.8 \times 10^{-2}$ |
| 31 | threshold | $1.8 \times 10^{-2}$ |
| 32 | perceptu | $1.7 \times 10^{-2}$ |
| 33 | cue | $1.7 \times 10^{-2}$ |
| 34 | khz | $1.6 \times 10^{-2}$ |
| 35 | measur | $1.6 \times 10^{-2}$ |
| 36 | linguist | $1.5 \times 10^{-2}$ |
| 37 | english | $1.5 \times 10^{-2}$ |
| 38 | phonet | $1.5 \times 10^{-2}$ |
| 39 | speak | $1.4 \times 10^{-2}$ |
| 40 | age | $1.4 \times 10^{-2}$ |
| 41 | normal | $1.4 \times 10^{-2}$ |
| 42 | voic | $1.3 \times 10^{-2}$ |
| 43 | spoken | $1.2 \times 10^{-2}$ |
| 44 | utter | $1.2 \times 10^{-2}$ |
| 45 | across | $1.2 \times 10^{-2}$ |
| 46 | pathologist | $1.2 \times 10^{-2}$ |
| 47 | implant | $1.2 \times 10^{-2}$ |
| 48 | amplitud | $1.1 \times 10^{-2}$ |
| 49 | recept | $1 \times 10^{-2}$ |
| 50 | aid | $1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | stimulus | $9.5 \times 10^{-3}$ |
| 52 | pitch | $9.2 \times 10^{-3}$ |
| 53 | intellig | $9.2 \times 10^{-3}$ |
| 54 | result | $9 \times 10^{-3}$ |
| 55 | skill | $8.9 \times 10^{-3}$ |
| 56 | record | $8.9 \times 10^{-3}$ |
| 57 | examin | $8.9 \times 10^{-3}$ |
| 58 | tempor | $8.8 \times 10^{-3}$ |
| 59 | recognit | $8.7 \times 10^{-3}$ |
| 60 | studi | $8.7 \times 10^{-3}$ |
| 61 | difficulti | $8.6 \times 10^{-3}$ |
| 62 | differ | $8.5 \times 10^{-3}$ |
| 63 | verb | $8.5 \times 10^{-3}$ |
| 64 | individu | $8.4 \times 10^{-3}$ |
| 65 | reader | $8.4 \times 10^{-3}$ |
| 66 | evok | $8.3 \times 10^{-3}$ |
| 67 | bilingu | $8.1 \times 10^{-3}$ |
| 68 | temperatur | $8 \times 10^{-3}$ |
| 69 | grammat | $7.9 \times 10^{-3}$ |
| 70 | whether | $7.7 \times 10^{-3}$ |
| 71 | vocabulari | $7.7 \times 10^{-3}$ |
| 72 | score | $7.7 \times 10^{-3}$ |
| 73 | preschool | $7.7 \times 10^{-3}$ |
| 74 | music | $7.7 \times 10^{-3}$ |
| 75 | mask | $7.6 \times 10^{-3}$ |
| 76 | test | $7.5 \times 10^{-3}$ |
| 77 | read | $7.5 \times 10^{-3}$ |
| 78 | typic | $7.5 \times 10^{-3}$ |
| 79 | noun | $7.2 \times 10^{-3}$ |
| 80 | loss | $7.1 \times 10^{-3}$ |
| 81 | subject | $7.1 \times 10^{-3}$ |
| 82 | autism | $6.9 \times 10^{-3}$ |
| 83 | cell | $6.7 \times 10^{-3}$ |
| 84 | group | $6.5 \times 10^{-3}$ |
| 85 | abil | $6.5 \times 10^{-3}$ |
| 86 | suggest | $6.4 \times 10^{-3}$ |
| 87 | disord | $6.2 \times 10^{-3}$ |
| 88 | assess | $6.2 \times 10^{-3}$ |
| 89 | elicit | $6.1 \times 10^{-3}$ |
| 90 | communic | $6.1 \times 10^{-3}$ |
| 91 | protein | $5.9 \times 10^{-3}$ |
| 92 | object | $5.9 \times 10^{-3}$ |
| 93 | wave | $5.9 \times 10^{-3}$ |
| 94 | match | $5.8 \times 10^{-3}$ |
| 95 | perceiv | $5.7 \times 10^{-3}$ |
| 96 | acid | $5.7 \times 10^{-3}$ |
| 97 | syntact | $5.7 \times 10^{-3}$ |
| 98 | poorer | $5.7 \times 10^{-3}$ |
| 99 | concentr | $5.6 \times 10^{-3}$ |
| 100 | retest | $5.6 \times 10^{-3}$ |

Table D.19. The list of the top 100 words in the category Automation and Control Systems with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | paper | $9.7 \times 10^{-2}$ |
| 2 | propos | $7 \times 10^{-2}$ |
| 3 | system | $5.7 \times 10^{-2}$ |
| 4 | control | $4.4 \times 10^{-2}$ |
| 5 | robot | $3.9 \times 10^{-2}$ |
| 6 | problem | $3.8 \times 10^{-2}$ |
| 7 | algorithm | $3.7 \times 10^{-2}$ |
| 8 | simul | $3.6 \times 10^{-2}$ |
| 9 | lyapunov | $2.6 \times 10^{-2}$ |
| 10 | nonlinear | $2.6 \times 10^{-2}$ |
| 11 | design | $2.4 \times 10^{-2}$ |
| 12 | conclus | $2.3 \times 10^{-2}$ |
| 13 | studi | $2.2 \times 10^{-2}$ |
| 14 | feedback | $2.2 \times 10^{-2}$ |
| 15 | loop | $1.9 \times 10^{-2}$ |
| 16 | base | $1.9 \times 10^{-2}$ |
| 17 | dynam | $1.8 \times 10^{-2}$ |
| 18 | patient | $1.7 \times 10^{-2}$ |
| 19 | track | $1.7 \times 10^{-2}$ |
| 20 | actuat | $1.7 \times 10^{-2}$ |
| 21 | optim | $1.7 \times 10^{-2}$ |
| 22 | guarante | $1.6 \times 10^{-2}$ |
| 23 | linear | $1.6 \times 10^{-2}$ |
| 24 | exampl | $1.6 \times 10^{-2}$ |
| 25 | suggest | $1.6 \times 10^{-2}$ |
| 26 | input | $1.6 \times 10^{-2}$ |
| 27 | output | $1.5 \times 10^{-2}$ |
| 28 | robust | $1.5 \times 10^{-2}$ |
| 29 | solv | $1.5 \times 10^{-2}$ |
| 30 | signific | $1.4 \times 10^{-2}$ |
| 31 | disturb | $1.4 \times 10^{-2}$ |
| 32 | illustr | $1.4 \times 10^{-2}$ |
| 33 | treatment | $1.4 \times 10^{-2}$ |
| 34 | stabil | $1.3 \times 10^{-2}$ |
| 35 | cell | $1.3 \times 10^{-2}$ |
| 36 | found | $1.3 \times 10^{-2}$ |
| 37 | model | $1.2 \times 10^{-2}$ |
| 38 | associ | $1.2 \times 10^{-2}$ |
| 39 | increas | $1.2 \times 10^{-2}$ |
| 40 | error | $1.2 \times 10^{-2}$ |
| 41 | report | $1.2 \times 10^{-2}$ |
| 42 | protein | $1.2 \times 10^{-2}$ |
| 43 | fuzzi | $1.1 \times 10^{-2}$ |
| 44 | age | $1.1 \times 10^{-2}$ |
| 45 | clinic | $1.1 \times 10^{-2}$ |
| 46 | group | $1.1 \times 10^{-2}$ |
| 47 | diseas | $1 \times 10^{-2}$ |
| 48 | approach | $1 \times 10^{-2}$ |
| 49 | sensor | $1 \times 10^{-2}$ |
| 50 | vehicl | $1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | scheme | $1 \times 10^{-2}$ |
| 52 | examin | $1 \times 10^{-2}$ |
| 53 | trajectori | $9.9 \times 10^{-3}$ |
| 54 | year | $9.9 \times 10^{-3}$ |
| 55 | constraint | $9.5 \times 10^{-3}$ |
| 56 | background | $9.4 \times 10^{-3}$ |
| 57 | converg | $9.3 \times 10^{-3}$ |
| 58 | motion | $9.2 \times 10^{-3}$ |
| 59 | acid | $9.2 \times 10^{-3}$ |
| 60 | inequ | $9.1 \times 10^{-3}$ |
| 61 | assess | $9.1 \times 10^{-3}$ |
| 62 | network | $9 \times 10^{-3}$ |
| 63 | uncertainti | $8.9 \times 10^{-3}$ |
| 64 | gene | $8.8 \times 10^{-3}$ |
| 65 | speci | $8.8 \times 10^{-3}$ |
| 66 | indic | $8.7 \times 10^{-3}$ |
| 67 | reveal | $8.6 \times 10^{-3}$ |
| 68 | verifi | $8.6 \times 10^{-3}$ |
| 69 | machin | $8.6 \times 10^{-3}$ |
| 70 | real | $8.4 \times 10^{-3}$ |
| 71 | discret | $8.4 \times 10^{-3}$ |
| 72 | fault | $8.3 \times 10^{-3}$ |
| 73 | filter | $8.2 \times 10^{-3}$ |
| 74 | may | $8.2 \times 10^{-3}$ |
| 75 | activ | $8.1 \times 10^{-3}$ |
| 76 | concentr | $7.8 \times 10^{-3}$ |
| 77 | implement | $7.8 \times 10^{-3}$ |
| 78 | higher | $7.7 \times 10^{-3}$ |
| 79 | switch | $7.5 \times 10^{-3}$ |
| 80 | decreas | $7.5 \times 10^{-3}$ |
| 81 | adapt | $7.3 \times 10^{-3}$ |
| 82 | state | $7.3 \times 10^{-3}$ |
| 83 | introduc | $7.3 \times 10^{-3}$ |
| 84 | kalman | $7.2 \times 10^{-3}$ |
| 85 | evid | $7.2 \times 10^{-3}$ |
| 86 | can | $7.1 \times 10^{-3}$ |
| 87 | asymptot | $7.1 \times 10^{-3}$ |
| 88 | potenti | $7.1 \times 10^{-3}$ |
| 89 | molecular | $7 \times 10^{-3}$ |
| 90 | speed | $7 \times 10^{-3}$ |
| 91 | numer | $7 \times 10^{-3}$ |
| 92 | comput | $7 \times 10^{-3}$ |
| 93 | final | $6.9 \times 10^{-3}$ |
| 94 | month | $6.9 \times 10^{-3}$ |
| 95 | induc | $6.8 \times 10^{-3}$ |
| 96 | role | $6.8 \times 10^{-3}$ |
| 97 | perform | $6.7 \times 10^{-3}$ |
| 98 | given | $6.6 \times 10^{-3}$ |
| 99 | outcom | $6.5 \times 10^{-3}$ |
| 100 | compens | $6.5 \times 10^{-3}$ |

Table D.20. The list of the top 100 words in the category Behavioral Sciences with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | behavior | $5.2 \times 10^{-2}$ |
| 2 | anim | $4.4 \times 10^{-2}$ |
| 3 | task | $4 \times 10^{-2}$ |
| 4 | male | $3.7 \times 10^{-2}$ |
| 5 | suggest | $3.7 \times 10^{-2}$ |
| 6 | cognit | $3.5 \times 10^{-2}$ |
| 7 | brain | $3.4 \times 10^{-2}$ |
| 8 | whether | $3.1 \times 10^{-2}$ |
| 9 | rat | $3 \times 10^{-2}$ |
| 10 | maze | $2.9 \times 10^{-2}$ |
| 11 | memori | $2.9 \times 10^{-2}$ |
| 12 | stimuli | $2.7 \times 10^{-2}$ |
| 13 | femal | $2.7 \times 10^{-2}$ |
| 14 | cue | $2.7 \times 10^{-2}$ |
| 15 | test | $2.7 \times 10^{-2}$ |
| 16 | cortex | $2.7 \times 10^{-2}$ |
| 17 | stimulus | $2.5 \times 10^{-2}$ |
| 18 | food | $2.4 \times 10^{-2}$ |
| 19 | individu | $2.4 \times 10^{-2}$ |
| 20 | behaviour | $2.4 \times 10^{-2}$ |
| 21 | paper | $2.3 \times 10^{-2}$ |
| 22 | may | $2.3 \times 10^{-2}$ |
| 23 | mate | $2.3 \times 10^{-2}$ |
| 24 | respons | $2.2 \times 10^{-2}$ |
| 25 | social | $2.2 \times 10^{-2}$ |
| 26 | reward | $2.1 \times 10^{-2}$ |
| 27 | learn | $2.1 \times 10^{-2}$ |
| 28 | hippocampus | $1.9 \times 10^{-2}$ |
| 29 | deficit | $1.9 \times 10^{-2}$ |
| 30 | impair | $1.9 \times 10^{-2}$ |
| 31 | anxieti | $1.9 \times 10^{-2}$ |
| 32 | prefront | $1.7 \times 10^{-2}$ |
| 33 | conspecif | $1.7 \times 10^{-2}$ |
| 34 | particip | $1.7 \times 10^{-2}$ |
| 35 | prefer | $1.6 \times 10^{-2}$ |
| 36 | emot | $1.6 \times 10^{-2}$ |
| 37 | relat | $1.5 \times 10^{-2}$ |
| 38 | disord | $1.5 \times 10^{-2}$ |
| 39 | adult | $1.5 \times 10^{-2}$ |
| 40 | paradigm | $1.5 \times 10^{-2}$ |
| 41 | fear | $1.4 \times 10^{-2}$ |
| 42 | associ | $1.4 \times 10^{-2}$ |
| 43 | studi | $1.4 \times 10^{-2}$ |
| 44 | epilepsi | $1.4 \times 10^{-2}$ |
| 45 | predat | $1.3 \times 10^{-2}$ |
| 46 | hypothesi | $1.3 \times 10^{-2}$ |
| 47 | dure | $1.3 \times 10^{-2}$ |
| 48 | neural | $1.3 \times 10^{-2}$ |
| 49 | evid | $1.2 \times 10^{-2}$ |
| 50 | howev | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | bird | $1.2 \times 10^{-2}$ |
| 52 | eat | $1.2 \times 10^{-2}$ |
| 53 | forag | $1.2 \times 10^{-2}$ |
| 54 | either | $1.2 \times 10^{-2}$ |
| 55 | amygdala | $1.2 \times 10^{-2}$ |
| 56 | examin | $1.2 \times 10^{-2}$ |
| 57 | affect | $1.1 \times 10^{-2}$ |
| 58 | locomotor | $1.1 \times 10^{-2}$ |
| 59 | find | $1.1 \times 10^{-2}$ |
| 60 | frontal | $1.1 \times 10^{-2}$ |
| 61 | aggress | $1.1 \times 10^{-2}$ |
| 62 | sex | $1.1 \times 10^{-2}$ |
| 63 | avers | $1.1 \times 10^{-2}$ |
| 64 | seizur | $1.1 \times 10^{-2}$ |
| 65 | offspr | $1.1 \times 10^{-2}$ |
| 66 | trait | $1.1 \times 10^{-2}$ |
| 67 | group | $1.1 \times 10^{-2}$ |
| 68 | intak | $1 \times 10^{-2}$ |
| 69 | hippocamp | $1 \times 10^{-2}$ |
| 70 | respond | $1 \times 10^{-2}$ |
| 71 | choic | $1 \times 10^{-2}$ |
| 72 | visual | $1 \times 10^{-2}$ |
| 73 | method | $1 \times 10^{-2}$ |
| 74 | alter | $1 \times 10^{-2}$ |
| 75 | depress | $1 \times 10^{-2}$ |
| 76 | train | $9.8 \times 10^{-3}$ |
| 77 | session | $9.7 \times 10^{-3}$ |
| 78 | sexual | $9.7 \times 10^{-3}$ |
| 79 | mice | $9.4 \times 10^{-3}$ |
| 80 | motor | $9.4 \times 10^{-3}$ |
| 81 | previous | $9.3 \times 10^{-3}$ |
| 82 | neuron | $9.3 \times 10^{-3}$ |
| 83 | discrimin | $9.3 \times 10^{-3}$ |
| 84 | effect | $9.2 \times 10^{-3}$ |
| 85 | differ | $9.2 \times 10^{-3}$ |
| 86 | manipul | $9.1 \times 10^{-3}$ |
| 87 | antagonist | $9.1 \times 10^{-3}$ |
| 88 | dopamin | $9 \times 10^{-3}$ |
| 89 | day | $9 \times 10^{-3}$ |
| 90 | healthi | $9 \times 10^{-3}$ |
| 91 | rodent | $8.9 \times 10^{-3}$ |
| 92 | spent | $8.9 \times 10^{-3}$ |
| 93 | receptor | $8.8 \times 10^{-3}$ |
| 94 | agonist | $8.6 \times 10^{-3}$ |
| 95 | gyrus | $8.6 \times 10^{-3}$ |
| 96 | surfac | $8.4 \times 10^{-3}$ |
| 97 | later | $8.3 \times 10^{-3}$ |
| 98 | like | $8.3 \times 10^{-3}$ |
| 99 | latenc | $8.2 \times 10^{-3}$ |
| 100 | fmri | $8.1 \times 10^{-3}$ |

Table D.21. The list of the top 100 words in the category Biochemical Research Methods with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | chromatographi | $5.9 \times 10^{-2}$ |
| 2 | spectrometri | $5.1 \times 10^{-2}$ |
| 3 | protein | $4.2 \times 10^{-2}$ |
| 4 | proteom | $3.4 \times 10^{-2}$ |
| 5 | mass | $2.8 \times 10^{-2}$ |
| 6 | detect | $2.8 \times 10^{-2}$ |
| 7 | biolog | $2.8 \times 10^{-2}$ |
| 8 | quantif | $2.7 \times 10^{-2}$ |
| 9 | liquid | $2.7 \times 10^{-2}$ |
| 10 | column | $2.3 \times 10^{-2}$ |
| 11 | chromatograph | $2.3 \times 10^{-2}$ |
| 12 | tandem | $2.2 \times 10^{-2}$ |
| 13 | sampl | $2 \times 10^{-2}$ |
| 14 | electrospray | $2 \times 10^{-2}$ |
| 15 | analyt | $1.7 \times 10^{-2}$ |
| 16 | assay | $1.7 \times 10^{-2}$ |
| 17 | separ | $1.7 \times 10^{-2}$ |
| 18 | ioniz | $1.7 \times 10^{-2}$ |
| 19 | elut | $1.7 \times 10^{-2}$ |
| 20 | extract | $1.5 \times 10^{-2}$ |
| 21 | quantit | $1.5 \times 10^{-2}$ |
| 22 | peptid | $1.4 \times 10^{-2}$ |
| 23 | acid | $1.4 \times 10^{-2}$ |
| 24 | genom | $1.4 \times 10^{-2}$ |
| 25 | resolut | $1.4 \times 10^{-2}$ |
| 26 | label | $1.4 \times 10^{-2}$ |
| 27 | throughput | $1.4 \times 10^{-2}$ |
| 28 | use | $1.4 \times 10^{-2}$ |
| 29 | acetonitril | $1.3 \times 10^{-2}$ |
| 30 | microfluid | $1.3 \times 10^{-2}$ |
| 31 | hplc | $1.3 \times 10^{-2}$ |
| 32 | sensit | $1.3 \times 10^{-2}$ |
| 33 | sequenc | $1.3 \times 10^{-2}$ |
| 34 | cell | $1.3 \times 10^{-2}$ |
| 35 | develop | $1.3 \times 10^{-2}$ |
| 36 | paper | $1.2 \times 10^{-2}$ |
| 37 | fluoresc | $1.2 \times 10^{-2}$ |
| 38 | identif | $1.2 \times 10^{-2}$ |
| 39 | precis | $1.2 \times 10^{-2}$ |
| 40 | method | $1.1 \times 10^{-2}$ |
| 41 | bind | $1.1 \times 10^{-2}$ |
| 42 | valid | $1.1 \times 10^{-2}$ |
| 43 | compound | $1.1 \times 10^{-2}$ |
| 44 | esi | $1.1 \times 10^{-2}$ |
| 45 | metabolit | $1.1 \times 10^{-2}$ |
| 46 | human | $1.1 \times 10^{-2}$ |
| 47 | recoveri | $1.1 \times 10^{-2}$ |
| 48 | purif | $9.7 \times 10^{-3}$ |
| 49 | purifi | $9.5 \times 10^{-3}$ |
| 50 | specif | $9.5 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | drug | $9.4 \times 10^{-3}$ |
| 52 | analysi | $9.4 \times 10^{-3}$ |
| 53 | quadrupol | $9.4 \times 10^{-3}$ |
| 54 | molecular | $9.2 \times 10^{-3}$ |
| 55 | molecul | $9 \times 10^{-3}$ |
| 56 | rapid | $8.7 \times 10^{-3}$ |
| 57 | limit | $8.7 \times 10^{-3}$ |
| 58 | appli | $8.5 \times 10^{-3}$ |
| 59 | allow | $8.3 \times 10^{-3}$ |
| 60 | tool | $8.2 \times 10^{-3}$ |
| 61 | dna | $8.1 \times 10^{-3}$ |
| 62 | ion | $8 \times 10^{-3}$ |
| 63 | high | $8 \times 10^{-3}$ |
| 64 | target | $7.9 \times 10^{-3}$ |
| 65 | gene | $7.9 \times 10^{-3}$ |
| 66 | screen | $7.7 \times 10^{-3}$ |
| 67 | rsd | $7.5 \times 10^{-3}$ |
| 68 | angstrom | $7.4 \times 10^{-3}$ |
| 69 | identifi | $7.4 \times 10^{-3}$ |
| 70 | capillari | $7.4 \times 10^{-3}$ |
| 71 | methanol | $7.3 \times 10^{-3}$ |
| 72 | spectromet | $7.3 \times 10^{-3}$ |
| 73 | standard | $7.2 \times 10^{-3}$ |
| 74 | affin | $7.1 \times 10^{-3}$ |
| 75 | amino | $6.8 \times 10^{-3}$ |
| 76 | phase | $6.8 \times 10^{-3}$ |
| 77 | year | $6.8 \times 10^{-3}$ |
| 78 | solvent | $6.7 \times 10^{-3}$ |
| 79 | novel | $6.7 \times 10^{-3}$ |
| 80 | age | $6.6 \times 10^{-3}$ |
| 81 | min | $6.6 \times 10^{-3}$ |
| 82 | enzym | $6.6 \times 10^{-3}$ |
| 83 | select | $6.5 \times 10^{-3}$ |
| 84 | bioinformat | $6.3 \times 10^{-3}$ |
| 85 | accuraci | $6.3 \times 10^{-3}$ |
| 86 | accur | $6.3 \times 10^{-3}$ |
| 87 | electrophoresi | $6.3 \times 10^{-3}$ |
| 88 | spike | $6.1 \times 10^{-3}$ |
| 89 | discoveri | $6 \times 10^{-3}$ |
| 90 | quantifi | $5.9 \times 10^{-3}$ |
| 91 | enabl | $5.8 \times 10^{-3}$ |
| 92 | lod | $5.8 \times 10^{-3}$ |
| 93 | fragment | $5.8 \times 10^{-3}$ |
| 94 | reproduc | $5.8 \times 10^{-3}$ |
| 95 | simultan | $5.8 \times 10^{-3}$ |
| 96 | enrich | $5.8 \times 10^{-3}$ |
| 97 | concentr | $5.7 \times 10^{-3}$ |
| 98 | linear | $5.7 \times 10^{-3}$ |
| 99 | metabol | $5.7 \times 10^{-3}$ |
| 100 | approach | $5.6 \times 10^{-3}$ |

Table D.22. The list of the top 100 words in the category Biochemistry and Molecular Biology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | protein | $1.1 \times 10^{-1}$ |
| 2 | cell | $7 \times 10^{-2}$ |
| 3 | bind | $6.3 \times 10^{-2}$ |
| 4 | express | $5.5 \times 10^{-2}$ |
| 5 | gene | $5.3 \times 10^{-2}$ |
| 6 | regul | $5.2 \times 10^{-2}$ |
| 7 | activ | $5.2 \times 10^{-2}$ |
| 8 | inhibit | $3.8 \times 10^{-2}$ |
| 9 | paper | $3.7 \times 10^{-2}$ |
| 10 | enzym | $3.3 \times 10^{-2}$ |
| 11 | transcript | $3.2 \times 10^{-2}$ |
| 12 | induc | $2.9 \times 10^{-2}$ |
| 13 | pathway | $2.9 \times 10^{-2}$ |
| 14 | mediat | $2.8 \times 10^{-2}$ |
| 15 | role | $2.8 \times 10^{-2}$ |
| 16 | molecular | $2.4 \times 10^{-2}$ |
| 17 | receptor | $2.4 \times 10^{-2}$ |
| 18 | dna | $2.2 \times 10^{-2}$ |
| 19 | acid | $2.2 \times 10^{-2}$ |
| 20 | mutant | $2.1 \times 10^{-2}$ |
| 21 | inhibitor | $2.1 \times 10^{-2}$ |
| 22 | human | $2.1 \times 10^{-2}$ |
| 23 | kinas | $2 \times 10^{-2}$ |
| 24 | target | $1.9 \times 10^{-2}$ |
| 25 | vitro | $1.9 \times 10^{-2}$ |
| 26 | mutat | $1.8 \times 10^{-2}$ |
| 27 | cellular | $1.8 \times 10^{-2}$ |
| 28 | suggest | $1.8 \times 10^{-2}$ |
| 29 | peptid | $1.7 \times 10^{-2}$ |
| 30 | assay | $1.7 \times 10^{-2}$ |
| 31 | sequenc | $1.7 \times 10^{-2}$ |
| 32 | phosphoryl | $1.7 \times 10^{-2}$ |
| 33 | membran | $1.6 \times 10^{-2}$ |
| 34 | amino | $1.6 \times 10^{-2}$ |
| 35 | beta | $1.6 \times 10^{-2}$ |
| 36 | rna | $1.6 \times 10^{-2}$ |
| 37 | genom | $1.6 \times 10^{-2}$ |
| 38 | overexpress | $1.5 \times 10^{-2}$ |
| 39 | vivo | $1.5 \times 10^{-2}$ |
| 40 | residu | $1.4 \times 10^{-2}$ |
| 41 | mrna | $1.4 \times 10^{-2}$ |
| 42 | promot | $1.4 \times 10^{-2}$ |
| 43 | mechan | $1.4 \times 10^{-2}$ |
| 44 | method | $1.4 \times 10^{-2}$ |
| 45 | function | $1.4 \times 10^{-2}$ |
| 46 | metabol | $1.4 \times 10^{-2}$ |
| 47 | interact | $1.3 \times 10^{-2}$ |
| 48 | mice | $1.3 \times 10^{-2}$ |
| 49 | alpha | $1.3 \times 10^{-2}$ |
| 50 | site | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | involv | $1.3 \times 10^{-2}$ |
| 52 | signal | $1.3 \times 10^{-2}$ |
| 53 | apoptosi | $1.2 \times 10^{-2}$ |
| 54 | molecul | $1.2 \times 10^{-2}$ |
| 55 | affin | $1.2 \times 10^{-2}$ |
| 56 | termin | $1.2 \times 10^{-2}$ |
| 57 | domain | $1.2 \times 10^{-2}$ |
| 58 | mitochondri | $1.1 \times 10^{-2}$ |
| 59 | cancer | $1.1 \times 10^{-2}$ |
| 60 | intracellular | $1.1 \times 10^{-2}$ |
| 61 | purifi | $1.1 \times 10^{-2}$ |
| 62 | reveal | $1.1 \times 10^{-2}$ |
| 63 | homolog | $1.1 \times 10^{-2}$ |
| 64 | wild | $1.1 \times 10^{-2}$ |
| 65 | subunit | $1.1 \times 10^{-2}$ |
| 66 | lipid | $1.1 \times 10^{-2}$ |
| 67 | fold | $1.1 \times 10^{-2}$ |
| 68 | motif | $1.1 \times 10^{-2}$ |
| 69 | mous | $1.1 \times 10^{-2}$ |
| 70 | conform | $1.1 \times 10^{-2}$ |
| 71 | play | $1.1 \times 10^{-2}$ |
| 72 | object | $1 \times 10^{-2}$ |
| 73 | prolifer | $1 \times 10^{-2}$ |
| 74 | biolog | $1 \times 10^{-2}$ |
| 75 | knockdown | $9.7 \times 10^{-3}$ |
| 76 | regulatori | $9.5 \times 10^{-3}$ |
| 77 | problem | $9.3 \times 10^{-3}$ |
| 78 | genet | $9.3 \times 10^{-3}$ |
| 79 | specif | $9.3 \times 10^{-3}$ |
| 80 | encod | $9.3 \times 10^{-3}$ |
| 81 | therapeut | $9.2 \times 10^{-3}$ |
| 82 | eukaryot | $9 \times 10^{-3}$ |
| 83 | tissu | $8.8 \times 10^{-3}$ |
| 84 | propos | $8.7 \times 10^{-3}$ |
| 85 | extracellular | $8.7 \times 10^{-3}$ |
| 86 | identifi | $8.6 \times 10^{-3}$ |
| 87 | famili | $8.5 \times 10^{-3}$ |
| 88 | mammalian | $8.4 \times 10^{-3}$ |
| 89 | nucleotid | $8.4 \times 10^{-3}$ |
| 90 | coli | $8.4 \times 10^{-3}$ |
| 91 | year | $8.3 \times 10^{-3}$ |
| 92 | recombin | $8.2 \times 10^{-3}$ |
| 93 | potent | $8.2 \times 10^{-3}$ |
| 94 | compound | $8.2 \times 10^{-3}$ |
| 95 | ligand | $8.1 \times 10^{-3}$ |
| 96 | antioxid | $7.9 \times 10^{-3}$ |
| 97 | nuclear | $7.9 \times 10^{-3}$ |
| 98 | escherichia | $7.9 \times 10^{-3}$ |
| 99 | algorithm | $7.8 \times 10^{-3}$ |
| 100 | tumor | $7.8 \times 10^{-3}$ |

Table D.23. The list of the top 100 words in the category Biodiversity Conservation with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | speci | $1.8 \times 10^{-1}$ |
| 2 | habitat | $1.1 \times 10^{-1}$ |
| 3 | conserv | $9.6 \times 10^{-2}$ |
| 4 | biodivers | $6.2 \times 10^{-2}$ |
| 5 | ecolog | $5.9 \times 10^{-2}$ |
| 6 | popul | $5.7 \times 10^{-2}$ |
| 7 | ecosystem | $5.5 \times 10^{-2}$ |
| 8 | forest | $5.1 \times 10^{-2}$ |
| 9 | landscap | $4.2 \times 10^{-2}$ |
| 10 | area | $3.9 \times 10^{-2}$ |
| 11 | manag | $3.9 \times 10^{-2}$ |
| 12 | divers | $3.8 \times 10^{-2}$ |
| 13 | abund | $3.6 \times 10^{-2}$ |
| 14 | microsatellit | $3.6 \times 10^{-2}$ |
| 15 | endang | $3.4 \times 10^{-2}$ |
| 16 | wildlif | $3.3 \times 10^{-2}$ |
| 17 | land | $2.8 \times 10^{-2}$ |
| 18 | climat | $2.7 \times 10^{-2}$ |
| 19 | environment | $2.7 \times 10^{-2}$ |
| 20 | threaten | $2.7 \times 10^{-2}$ |
| 21 | declin | $2.6 \times 10^{-2}$ |
| 22 | veget | $2.6 \times 10^{-2}$ |
| 23 | bird | $2.5 \times 10^{-2}$ |
| 24 | communiti | $2.4 \times 10^{-2}$ |
| 25 | site | $2.4 \times 10^{-2}$ |
| 26 | heterozygos | $2.3 \times 10^{-2}$ |
| 27 | rich | $2.2 \times 10^{-2}$ |
| 28 | nativ | $2.1 \times 10^{-2}$ |
| 29 | fish | $2 \times 10^{-2}$ |
| 30 | taxa | $1.9 \times 10^{-2}$ |
| 31 | across | $1.9 \times 10^{-2}$ |
| 32 | season | $1.8 \times 10^{-2}$ |
| 33 | patient | $1.8 \times 10^{-2}$ |
| 34 | endem | $1.8 \times 10^{-2}$ |
| 35 | north | $1.8 \times 10^{-2}$ |
| 36 | extinct | $1.8 \times 10^{-2}$ |
| 37 | assemblag | $1.8 \times 10^{-2}$ |
| 38 | plant | $1.7 \times 10^{-2}$ |
| 39 | spatial | $1.7 \times 10^{-2}$ |
| 40 | anthropogen | $1.7 \times 10^{-2}$ |
| 41 | predat | $1.7 \times 10^{-2}$ |
| 42 | loci | $1.7 \times 10^{-2}$ |
| 43 | tree | $1.6 \times 10^{-2}$ |
| 44 | northern | $1.6 \times 10^{-2}$ |
| 45 | river | $1.6 \times 10^{-2}$ |
| 46 | invas | $1.5 \times 10^{-2}$ |
| 47 | southern | $1.5 \times 10^{-2}$ |
| 48 | threat | $1.5 \times 10^{-2}$ |
| 49 | survey | $1.5 \times 10^{-2}$ |
| 50 | rang | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | geograph | $1.4 \times 10^{-2}$ |
| 52 | south | $1.4 \times 10^{-2}$ |
| 53 | distribut | $1.4 \times 10^{-2}$ |
| 54 | individu | $1.4 \times 10^{-2}$ |
| 55 | region | $1.4 \times 10^{-2}$ |
| 56 | cover | $1.4 \times 10^{-2}$ |
| 57 | eastern | $1.3 \times 10^{-2}$ |
| 58 | park | $1.3 \times 10^{-2}$ |
| 59 | coastal | $1.3 \times 10^{-2}$ |
| 60 | genet | $1.3 \times 10^{-2}$ |
| 61 | island | $1.3 \times 10^{-2}$ |
| 62 | fauna | $1.2 \times 10^{-2}$ |
| 63 | breed | $1.2 \times 10^{-2}$ |
| 64 | grassland | $1.2 \times 10^{-2}$ |
| 65 | allel | $1.2 \times 10^{-2}$ |
| 66 | protect | $1.1 \times 10^{-2}$ |
| 67 | impact | $1.1 \times 10^{-2}$ |
| 68 | pattern | $1.1 \times 10^{-2}$ |
| 69 | natur | $1.1 \times 10^{-2}$ |
| 70 | may | $1.1 \times 10^{-2}$ |
| 71 | marin | $1.1 \times 10^{-2}$ |
| 72 | agricultur | $1.1 \times 10^{-2}$ |
| 73 | import | $1.1 \times 10^{-2}$ |
| 74 | paper | $1.1 \times 10^{-2}$ |
| 75 | effort | $1.1 \times 10^{-2}$ |
| 76 | assess | $1.1 \times 10^{-2}$ |
| 77 | atlant | $1.1 \times 10^{-2}$ |
| 78 | invad | $1.1 \times 10^{-2}$ |
| 79 | tropic | $1.1 \times 10^{-2}$ |
| 80 | chang | $1.1 \times 10^{-2}$ |
| 81 | nest | $1 \times 10^{-2}$ |
| 82 | prey | $1 \times 10^{-2}$ |
| 83 | woodland | $9.9 \times 10^{-3}$ |
| 84 | mammal | $9.9 \times 10^{-3}$ |
| 85 | clinic | $9.9 \times 10^{-3}$ |
| 86 | suggest | $9.9 \times 10^{-3}$ |
| 87 | america | $9.8 \times 10^{-3}$ |
| 88 | invertebr | $9.8 \times 10^{-3}$ |
| 89 | within | $9.8 \times 10^{-3}$ |
| 90 | disturb | $9.7 \times 10^{-3}$ |
| 91 | cell | $9.7 \times 10^{-3}$ |
| 92 | taxonom | $9.7 \times 10^{-3}$ |
| 93 | mountain | $9.6 \times 10^{-3}$ |
| 94 | locat | $9.6 \times 10^{-3}$ |
| 95 | indic | $9.5 \times 10^{-3}$ |
| 96 | locus | $9.4 \times 10^{-3}$ |
| 97 | forag | $9.3 \times 10^{-3}$ |
| 98 | monitor | $9.3 \times 10^{-3}$ |
| 99 | freshwat | $9.3 \times 10^{-3}$ |
| 100 | annual | $9.2 \times 10^{-3}$ |

Table D.24. The list of the top 100 words in the category Biology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | speci | $2.3 \times 10^{-2}$ |
| 2 | paper | $1.4 \times 10^{-2}$ |
| 3 | anim | $1.2 \times 10^{-2}$ |
| 4 | cell | $1.1 \times 10^{-2}$ |
| 5 | biolog | $1.1 \times 10^{-2}$ |
| 6 | protein | $1.1 \times 10^{-2}$ |
| 7 | gene | $9.9 \times 10^{-3}$ |
| 8 | evolutionari | $9 \times 10^{-3}$ |
| 9 | regul | $8.2 \times 10^{-3}$ |
| 10 | reproduct | $8 \times 10^{-3}$ |
| 11 | physiolog | $7.8 \times 10^{-3}$ |
| 12 | insect | $7.6 \times 10^{-3}$ |
| 13 | popul | $7.6 \times 10^{-3}$ |
| 14 | method | $7.5 \times 10^{-3}$ |
| 15 | suggest | $7.2 \times 10^{-3}$ |
| 16 | ecolog | $7.1 \times 10^{-3}$ |
| 17 | genet | $6.5 \times 10^{-3}$ |
| 18 | predat | $5.9 \times 10^{-3}$ |
| 19 | express | $5.9 \times 10^{-3}$ |
| 20 | trait | $5.7 \times 10^{-3}$ |
| 21 | bodi | $5.7 \times 10^{-3}$ |
| 22 | bird | $5.6 \times 10^{-3}$ |
| 23 | mate | $5.5 \times 10^{-3}$ |
| 24 | human | $5.5 \times 10^{-3}$ |
| 25 | plant | $5 \times 10^{-3}$ |
| 26 | drosophila | $5 \times 10^{-3}$ |
| 27 | fish | $5 \times 10^{-3}$ |
| 28 | activ | $4.8 \times 10^{-3}$ |
| 29 | expos | $4.8 \times 10^{-3}$ |
| 30 | habitat | $4.7 \times 10^{-3}$ |
| 31 | divers | $4.7 \times 10^{-3}$ |
| 32 | cryopreserv | $4.6 \times 10^{-3}$ |
| 33 | dna | $4.6 \times 10^{-3}$ |
| 34 | metabol | $4.6 \times 10^{-3}$ |
| 35 | rhythm | $4.5 \times 10^{-3}$ |
| 36 | role | $4.4 \times 10^{-3}$ |
| 37 | male | $4.4 \times 10^{-3}$ |
| 38 | phenotyp | $4.4 \times 10^{-3}$ |
| 39 | tissu | $4.3 \times 10^{-3}$ |
| 40 | mammal | $4.3 \times 10^{-3}$ |
| 41 | respons | $4.3 \times 10^{-3}$ |
| 42 | genom | $4.2 \times 10^{-3}$ |
| 43 | oper | $4.2 \times 10^{-3}$ |
| 44 | design | $4.1 \times 10^{-3}$ |
| 45 | exposur | $4.1 \times 10^{-3}$ |
| 46 | may | $4 \times 10^{-3}$ |
| 47 | individu | $4 \times 10^{-3}$ |
| 48 | taxa | $3.9 \times 10^{-3}$ |
| 49 | cellular | $3.9 \times 10^{-3}$ |
| 50 | growth | $3.9 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | conserv | $3.8 \times 10^{-3}$ |
| 52 | pattern | $3.7 \times 10^{-3}$ |
| 53 | transcript | $3.7 \times 10^{-3}$ |
| 54 | patient | $3.6 \times 10^{-3}$ |
| 55 | vertebr | $3.6 \times 10^{-3}$ |
| 56 | prey | $3.6 \times 10^{-3}$ |
| 57 | mediat | $3.6 \times 10^{-3}$ |
| 58 | mice | $3.5 \times 10^{-3}$ |
| 59 | pathway | $3.5 \times 10^{-3}$ |
| 60 | induc | $3.5 \times 10^{-3}$ |
| 61 | evolut | $3.4 \times 10^{-3}$ |
| 62 | egg | $3.4 \times 10^{-3}$ |
| 63 | femal | $3.4 \times 10^{-3}$ |
| 64 | surviv | $3.3 \times 10^{-3}$ |
| 65 | neuron | $3.3 \times 10^{-3}$ |
| 66 | forag | $3.3 \times 10^{-3}$ |
| 67 | perform | $3.3 \times 10^{-3}$ |
| 68 | hypothesi | $3.3 \times 10^{-3}$ |
| 69 | organ | $3.2 \times 10^{-3}$ |
| 70 | sperm | $3.1 \times 10^{-3}$ |
| 71 | base | $3 \times 10^{-3}$ |
| 72 | fabric | $3 \times 10^{-3}$ |
| 73 | embryo | $3 \times 10^{-3}$ |
| 74 | offspr | $2.9 \times 10^{-3}$ |
| 75 | mammalian | $2.9 \times 10^{-3}$ |
| 76 | dose | $2.9 \times 10^{-3}$ |
| 77 | wild | $2.9 \times 10^{-3}$ |
| 78 | improv | $2.8 \times 10^{-3}$ |
| 79 | dure | $2.8 \times 10^{-3}$ |
| 80 | environment | $2.8 \times 10^{-3}$ |
| 81 | behaviour | $2.8 \times 10^{-3}$ |
| 82 | devic | $2.8 \times 10^{-3}$ |
| 83 | mous | $2.8 \times 10^{-3}$ |
| 84 | receptor | $2.8 \times 10^{-3}$ |
| 85 | level | $2.7 \times 10^{-3}$ |
| 86 | algorithm | $2.7 \times 10^{-3}$ |
| 87 | evolv | $2.7 \times 10^{-3}$ |
| 88 | howev | $2.7 \times 10^{-3}$ |
| 89 | found | $2.6 \times 10^{-3}$ |
| 90 | alter | $2.6 \times 10^{-3}$ |
| 91 | phylogenet | $2.6 \times 10^{-3}$ |
| 92 | day | $2.6 \times 10^{-3}$ |
| 93 | abund | $2.6 \times 10^{-3}$ |
| 94 | conspecif | $2.6 \times 10^{-3}$ |
| 95 | radiat | $2.6 \times 10^{-3}$ |
| 96 | studi | $2.5 \times 10^{-3}$ |
| 97 | problem | $2.5 \times 10^{-3}$ |
| 98 | mutat | $2.5 \times 10^{-3}$ |
| 99 | food | $2.5 \times 10^{-3}$ |
| 100 | lineag | $2.4 \times 10^{-3}$ |

Table D.25. The list of the top 100 words in the category Biophysics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | protein | $5.6 \times 10^{-2}$ |
| 2 | bind | $4.2 \times 10^{-2}$ |
| 3 | cell | $3.8 \times 10^{-2}$ |
| 4 | membran | $2 \times 10^{-2}$ |
| 5 | paper | $1.9 \times 10^{-2}$ |
| 6 | conform | $1.6 \times 10^{-2}$ |
| 7 | angstrom | $1.6 \times 10^{-2}$ |
| 8 | molecular | $1.6 \times 10^{-2}$ |
| 9 | molecul | $1.5 \times 10^{-2}$ |
| 10 | induc | $1.5 \times 10^{-2}$ |
| 11 | activ | $1.5 \times 10^{-2}$ |
| 12 | interact | $1.4 \times 10^{-2}$ |
| 13 | regul | $1.4 \times 10^{-2}$ |
| 14 | enzym | $1.4 \times 10^{-2}$ |
| 15 | residu | $1.3 \times 10^{-2}$ |
| 16 | fluoresc | $1.3 \times 10^{-2}$ |
| 17 | human | $1.3 \times 10^{-2}$ |
| 18 | inhibit | $1.2 \times 10^{-2}$ |
| 19 | express | $1.2 \times 10^{-2}$ |
| 20 | mechan | $1.1 \times 10^{-2}$ |
| 21 | role | $1 \times 10^{-2}$ |
| 22 | lipid | $1 \times 10^{-2}$ |
| 23 | domain | $9.3 \times 10^{-3}$ |
| 24 | structur | $9.2 \times 10^{-3}$ |
| 25 | beta | $9.1 \times 10^{-3}$ |
| 26 | affin | $8.7 \times 10^{-3}$ |
| 27 | cellular | $8.6 \times 10^{-3}$ |
| 28 | vitro | $8.6 \times 10^{-3}$ |
| 29 | crystal | $8.4 \times 10^{-3}$ |
| 30 | acid | $8.2 \times 10^{-3}$ |
| 31 | dna | $8.2 \times 10^{-3}$ |
| 32 | assay | $8.2 \times 10^{-3}$ |
| 33 | mediat | $8.1 \times 10^{-3}$ |
| 34 | termin | $8.1 \times 10^{-3}$ |
| 35 | vivo | $8 \times 10^{-3}$ |
| 36 | helic | $8 \times 10^{-3}$ |
| 37 | pathway | $7.8 \times 10^{-3}$ |
| 38 | tissu | $7.8 \times 10^{-3}$ |
| 39 | peptid | $7.8 \times 10^{-3}$ |
| 40 | biosensor | $7.6 \times 10^{-3}$ |
| 41 | alpha | $7.4 \times 10^{-3}$ |
| 42 | amino | $7.4 \times 10^{-3}$ |
| 43 | hydrophob | $7.2 \times 10^{-3}$ |
| 44 | inhibitor | $7.1 \times 10^{-3}$ |
| 45 | mutant | $7.1 \times 10^{-3}$ |
| 46 | site | $6.9 \times 10^{-3}$ |
| 47 | overexpress | $6.8 \times 10^{-3}$ |
| 48 | biolog | $6.7 \times 10^{-3}$ |
| 49 | function | $6.6 \times 10^{-3}$ |
| 50 | receptor | $6.6 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | signal | $6.5 \times 10^{-3}$ |
| 52 | phosphoryl | $6.4 \times 10^{-3}$ |
| 53 | target | $6.3 \times 10^{-3}$ |
| 54 | fold | $6.3 \times 10^{-3}$ |
| 55 | bilay | $6.2 \times 10^{-3}$ |
| 56 | suggest | $5.8 \times 10^{-3}$ |
| 57 | kinas | $5.8 \times 10^{-3}$ |
| 58 | play | $5.7 \times 10^{-3}$ |
| 59 | strand | $5.6 \times 10^{-3}$ |
| 60 | coli | $5.6 \times 10^{-3}$ |
| 61 | dimer | $5.6 \times 10^{-3}$ |
| 62 | intracellular | $5.5 \times 10^{-3}$ |
| 63 | escherichia | $5.4 \times 10^{-3}$ |
| 64 | physiolog | $5.4 \times 10^{-3}$ |
| 65 | extracellular | $5.2 \times 10^{-3}$ |
| 66 | problem | $5.2 \times 10^{-3}$ |
| 67 | complex | $5.1 \times 10^{-3}$ |
| 68 | resolut | $5.1 \times 10^{-3}$ |
| 69 | manag | $5.1 \times 10^{-3}$ |
| 70 | ligand | $5.1 \times 10^{-3}$ |
| 71 | purifi | $5 \times 10^{-3}$ |
| 72 | motif | $5 \times 10^{-3}$ |
| 73 | subunit | $5 \times 10^{-3}$ |
| 74 | atp | $5 \times 10^{-3}$ |
| 75 | transcript | $4.9 \times 10^{-3}$ |
| 76 | oper | $4.8 \times 10^{-3}$ |
| 77 | year | $4.8 \times 10^{-3}$ |
| 78 | cancer | $4.7 \times 10^{-3}$ |
| 79 | catalyz | $4.7 \times 10^{-3}$ |
| 80 | apoptosi | $4.7 \times 10^{-3}$ |
| 81 | immobil | $4.7 \times 10^{-3}$ |
| 82 | dock | $4.6 \times 10^{-3}$ |
| 83 | mutat | $4.5 \times 10^{-3}$ |
| 84 | biomechan | $4.5 \times 10^{-3}$ |
| 85 | homolog | $4.5 \times 10^{-3}$ |
| 86 | object | $4.5 \times 10^{-3}$ |
| 87 | drug | $4.4 \times 10^{-3}$ |
| 88 | social | $4.4 \times 10^{-3}$ |
| 89 | substrat | $4.4 \times 10^{-3}$ |
| 90 | gene | $4.4 \times 10^{-3}$ |
| 91 | catalyt | $4.2 \times 10^{-3}$ |
| 92 | involv | $4.2 \times 10^{-3}$ |
| 93 | depend | $4.1 \times 10^{-3}$ |
| 94 | transmembran | $4 \times 10^{-3}$ |
| 95 | label | $4 \times 10^{-3}$ |
| 96 | sensit | $3.9 \times 10^{-3}$ |
| 97 | reveal | $3.9 \times 10^{-3}$ |
| 98 | prolifer | $3.8 \times 10^{-3}$ |
| 99 | servic | $3.8 \times 10^{-3}$ |
| 100 | collagen | $3.7 \times 10^{-3}$ |

Table D.26. The list of the top 100 words in the category Biotechnology and Applied Microbiology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | gene | $5.4 \times 10^{-2}$ |
| 2 | strain | $3 \times 10^{-2}$ |
| 3 | genom | $3 \times 10^{-2}$ |
| 4 | product | $2.9 \times 10^{-2}$ |
| 5 | ferment | $2.9 \times 10^{-2}$ |
| 6 | cell | $2.9 \times 10^{-2}$ |
| 7 | protein | $2.8 \times 10^{-2}$ |
| 8 | sequenc | $2.7 \times 10^{-2}$ |
| 9 | enzym | $2.6 \times 10^{-2}$ |
| 10 | express | $2.3 \times 10^{-2}$ |
| 11 | paper | $2.2 \times 10^{-2}$ |
| 12 | cultur | $2 \times 10^{-2}$ |
| 13 | acid | $2 \times 10^{-2}$ |
| 14 | biomass | $2 \times 10^{-2}$ |
| 15 | coli | $2 \times 10^{-2}$ |
| 16 | bacteria | $1.8 \times 10^{-2}$ |
| 17 | escherichia | $1.8 \times 10^{-2}$ |
| 18 | microbi | $1.6 \times 10^{-2}$ |
| 19 | bacteri | $1.6 \times 10^{-2}$ |
| 20 | produc | $1.6 \times 10^{-2}$ |
| 21 | recombin | $1.5 \times 10^{-2}$ |
| 22 | isol | $1.5 \times 10^{-2}$ |
| 23 | dna | $1.4 \times 10^{-2}$ |
| 24 | yeast | $1.4 \times 10^{-2}$ |
| 25 | assay | $1.3 \times 10^{-2}$ |
| 26 | pcr | $1.2 \times 10^{-2}$ |
| 27 | purifi | $1.2 \times 10^{-2}$ |
| 28 | clone | $1.2 \times 10^{-2}$ |
| 29 | growth | $1.1 \times 10^{-2}$ |
| 30 | transcript | $1.1 \times 10^{-2}$ |
| 31 | biolog | $1.1 \times 10^{-2}$ |
| 32 | bioreactor | $1.1 \times 10^{-2}$ |
| 33 | activ | $1 \times 10^{-2}$ |
| 34 | cultiv | $1 \times 10^{-2}$ |
| 35 | plant | $1 \times 10^{-2}$ |
| 36 | yield | $1 \times 10^{-2}$ |
| 37 | batch | $1 \times 10^{-2}$ |
| 38 | bacillus | $9.7 \times 10^{-3}$ |
| 39 | enzymat | $9.4 \times 10^{-3}$ |
| 40 | microorgan | $9.3 \times 10^{-3}$ |
| 41 | anaerob | $9.3 \times 10^{-3}$ |
| 42 | lignocellulos | $9.2 \times 10^{-3}$ |
| 43 | encod | $9.1 \times 10^{-3}$ |
| 44 | pathogen | $9.1 \times 10^{-3}$ |
| 45 | metabol | $8.9 \times 10^{-3}$ |
| 46 | cerevisia | $8.8 \times 10^{-3}$ |
| 47 | saccharomyc | $8.6 \times 10^{-3}$ |
| 48 | glucos | $8.5 \times 10^{-3}$ |
| 49 | genet | $8.5 \times 10^{-3}$ |
| 50 | rna | $8.5 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | biofuel | $8.2 \times 10^{-3}$ |
| 52 | potenti | $8.1 \times 10^{-3}$ |
| 53 | concentr | $8 \times 10^{-3}$ |
| 54 | virus | $7.6 \times 10^{-3}$ |
| 55 | fold | $7.6 \times 10^{-3}$ |
| 56 | sugar | $7.5 \times 10^{-3}$ |
| 57 | 16s | $7.3 \times 10^{-3}$ |
| 58 | medium | $7.3 \times 10^{-3}$ |
| 59 | transcriptom | $7.2 \times 10^{-3}$ |
| 60 | hydrolysi | $7 \times 10^{-3}$ |
| 61 | bacterium | $6.9 \times 10^{-3}$ |
| 62 | specif | $6.9 \times 10^{-3}$ |
| 63 | mutant | $6.8 \times 10^{-3}$ |
| 64 | propos | $6.7 \times 10^{-3}$ |
| 65 | human | $6.6 \times 10^{-3}$ |
| 66 | rrna | $6.6 \times 10^{-3}$ |
| 67 | biosynthesi | $6.6 \times 10^{-3}$ |
| 68 | amino | $6.5 \times 10^{-3}$ |
| 69 | vitro | $6.3 \times 10^{-3}$ |
| 70 | inhibit | $6.3 \times 10^{-3}$ |
| 71 | feedstock | $6.3 \times 10^{-3}$ |
| 72 | theori | $6.2 \times 10^{-3}$ |
| 73 | pathway | $6 \times 10^{-3}$ |
| 74 | plasmid | $6 \times 10^{-3}$ |
| 75 | pseudomona | $6 \times 10^{-3}$ |
| 76 | sludg | $5.9 \times 10^{-3}$ |
| 77 | seq | $5.9 \times 10^{-3}$ |
| 78 | simul | $5.8 \times 10^{-3}$ |
| 79 | detect | $5.8 \times 10^{-3}$ |
| 80 | molecular | $5.8 \times 10^{-3}$ |
| 81 | kda | $5.7 \times 10^{-3}$ |
| 82 | fungal | $5.7 \times 10^{-3}$ |
| 83 | ethanol | $5.6 \times 10^{-3}$ |
| 84 | stem | $5.6 \times 10^{-3}$ |
| 85 | substrat | $5.5 \times 10^{-3}$ |
| 86 | identifi | $5.5 \times 10^{-3}$ |
| 87 | inocul | $5.5 \times 10^{-3}$ |
| 88 | biofilm | $5.4 \times 10^{-3}$ |
| 89 | immobil | $5.4 \times 10^{-3}$ |
| 90 | aspergillus | $5.3 \times 10^{-3}$ |
| 91 | extracellular | $5.3 \times 10^{-3}$ |
| 92 | contain | $5.2 \times 10^{-3}$ |
| 93 | phenotyp | $5.1 \times 10^{-3}$ |
| 94 | speci | $5 \times 10^{-3}$ |
| 95 | lactobacillus | $5 \times 10^{-3}$ |
| 96 | cellulos | $5 \times 10^{-3}$ |
| 97 | putat | $5 \times 10^{-3}$ |
| 98 | bind | $4.9 \times 10^{-3}$ |
| 99 | wild | $4.8 \times 10^{-3}$ |
| 100 | purif | $4.8 \times 10^{-3}$ |

Table D.27. The list of the top 100 words in the category Business with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | firm | $8.4 \times 10^{-2}$ |
| 2 | market | $8 \times 10^{-2}$ |
| 3 | busi | $7.8 \times 10^{-2}$ |
| 4 | research | $6.2 \times 10^{-2}$ |
| 5 | compani | $5.9 \times 10^{-2}$ |
| 6 | manag | $4.6 \times 10^{-2}$ |
| 7 | innov | $3.6 \times 10^{-2}$ |
| 8 | organiz | $3.6 \times 10^{-2}$ |
| 9 | financi | $3.5 \times 10^{-2}$ |
| 10 | corpor | $3.5 \times 10^{-2}$ |
| 11 | empir | $3.1 \times 10^{-2}$ |
| 12 | consum | $2.9 \times 10^{-2}$ |
| 13 | econom | $2.9 \times 10^{-2}$ |
| 14 | social | $2.8 \times 10^{-2}$ |
| 15 | employe | $2.7 \times 10^{-2}$ |
| 16 | strateg | $2.6 \times 10^{-2}$ |
| 17 | brand | $2.6 \times 10^{-2}$ |
| 18 | enterpris | $2.6 \times 10^{-2}$ |
| 19 | custom | $2.6 \times 10^{-2}$ |
| 20 | manageri | $2.5 \times 10^{-2}$ |
| 21 | find | $2.4 \times 10^{-2}$ |
| 22 | economi | $2.3 \times 10^{-2}$ |
| 23 | industri | $2.3 \times 10^{-2}$ |
| 24 | competit | $2.3 \times 10^{-2}$ |
| 25 | implic | $2.3 \times 10^{-2}$ |
| 26 | capit | $2.2 \times 10^{-2}$ |
| 27 | literatur | $2.1 \times 10^{-2}$ |
| 28 | countri | $2.1 \times 10^{-2}$ |
| 29 | invest | $2 \times 10^{-2}$ |
| 30 | entrepreneuri | $2 \times 10^{-2}$ |
| 31 | paper | $1.9 \times 10^{-2}$ |
| 32 | cell | $1.9 \times 10^{-2}$ |
| 33 | relationship | $1.8 \times 10^{-2}$ |
| 34 | practic | $1.8 \times 10^{-2}$ |
| 35 | sector | $1.7 \times 10^{-2}$ |
| 36 | entrepreneurship | $1.7 \times 10^{-2}$ |
| 37 | perspect | $1.7 \times 10^{-2}$ |
| 38 | patient | $1.7 \times 10^{-2}$ |
| 39 | entrepreneur | $1.5 \times 10^{-2}$ |
| 40 | theori | $1.5 \times 10^{-2}$ |
| 41 | knowledg | $1.5 \times 10^{-2}$ |
| 42 | servic | $1.5 \times 10^{-2}$ |
| 43 | context | $1.4 \times 10^{-2}$ |
| 44 | articl | $1.4 \times 10^{-2}$ |
| 45 | purchas | $1.4 \times 10^{-2}$ |
| 46 | decis | $1.3 \times 10^{-2}$ |
| 47 | author | $1.3 \times 10^{-2}$ |
| 48 | resourc | $1.3 \times 10^{-2}$ |
| 49 | temperatur | $1.3 \times 10^{-2}$ |
| 50 | conceptu | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | surfac | $1.2 \times 10^{-2}$ |
| 52 | advertis | $1.2 \times 10^{-2}$ |
| 53 | focus | $1.2 \times 10^{-2}$ |
| 54 | treatment | $1.2 \times 10^{-2}$ |
| 55 | influenc | $1.2 \times 10^{-2}$ |
| 56 | develop | $1.2 \times 10^{-2}$ |
| 57 | govern | $1.2 \times 10^{-2}$ |
| 58 | sale | $1.1 \times 10^{-2}$ |
| 59 | draw | $1.1 \times 10^{-2}$ |
| 60 | perceiv | $1.1 \times 10^{-2}$ |
| 61 | retail | $1.1 \times 10^{-2}$ |
| 62 | profit | $1.1 \times 10^{-2}$ |
| 63 | price | $1.1 \times 10^{-2}$ |
| 64 | method | $1.1 \times 10^{-2}$ |
| 65 | impact | $1.1 \times 10^{-2}$ |
| 66 | protein | $1.1 \times 10^{-2}$ |
| 67 | polici | $1.1 \times 10^{-2}$ |
| 68 | clinic | $1.1 \times 10^{-2}$ |
| 69 | foreign | $1 \times 10^{-2}$ |
| 70 | intern | $1 \times 10^{-2}$ |
| 71 | methodolog | $1 \times 10^{-2}$ |
| 72 | institut | $9.9 \times 10^{-3}$ |
| 73 | detect | $9.9 \times 10^{-3}$ |
| 74 | conclus | $9.8 \times 10^{-3}$ |
| 75 | anteced | $9.8 \times 10^{-3}$ |
| 76 | intent | $9.7 \times 10^{-3}$ |
| 77 | survey | $9.7 \times 10^{-3}$ |
| 78 | theoret | $9.5 \times 10^{-3}$ |
| 79 | diseas | $9.5 \times 10^{-3}$ |
| 80 | financ | $9.2 \times 10^{-3}$ |
| 81 | strategi | $9.2 \times 10^{-3}$ |
| 82 | stakehold | $9.1 \times 10^{-3}$ |
| 83 | product | $9 \times 10^{-3}$ |
| 84 | paramet | $9 \times 10^{-3}$ |
| 85 | technolog | $8.9 \times 10^{-3}$ |
| 86 | observ | $8.9 \times 10^{-3}$ |
| 87 | acid | $8.8 \times 10^{-3}$ |
| 88 | opportun | $8.8 \times 10^{-3}$ |
| 89 | investor | $8.8 \times 10^{-3}$ |
| 90 | public | $8.6 \times 10^{-3}$ |
| 91 | percept | $8.5 \times 10^{-3}$ |
| 92 | make | $8.5 \times 10^{-3}$ |
| 93 | asset | $8.4 \times 10^{-3}$ |
| 94 | crisi | $8.4 \times 10^{-3}$ |
| 95 | properti | $8.3 \times 10^{-3}$ |
| 96 | import | $8.2 \times 10^{-3}$ |
| 97 | gene | $8.2 \times 10^{-3}$ |
| 98 | issu | $8.1 \times 10^{-3}$ |
| 99 | creation | $8 \times 10^{-3}$ |
| 100 | examin | $8 \times 10^{-3}$ |

Table D.28. The list of the top 100 words in the category Business, Finance with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | market | $1.1 \times 10^{-1}$ |
| 2 | financi | $1.1 \times 10^{-1}$ |
| 3 | firm | $7 \times 10^{-2}$ |
| 4 | price | $6.1 \times 10^{-2}$ |
| 5 | investor | $5.9 \times 10^{-2}$ |
| 6 | stock | $5.4 \times 10^{-2}$ |
| 7 | bank | $4.6 \times 10^{-2}$ |
| 8 | asset | $4.5 \times 10^{-2}$ |
| 9 | crisi | $4.4 \times 10^{-2}$ |
| 10 | return | $3.8 \times 10^{-2}$ |
| 11 | capit | $3.7 \times 10^{-2}$ |
| 12 | compani | $3.5 \times 10^{-2}$ |
| 13 | econom | $3.5 \times 10^{-2}$ |
| 14 | invest | $3.5 \times 10^{-2}$ |
| 15 | trade | $3.3 \times 10^{-2}$ |
| 16 | equiti | $3.3 \times 10^{-2}$ |
| 17 | economi | $3.2 \times 10^{-2}$ |
| 18 | corpor | $3.2 \times 10^{-2}$ |
| 19 | credit | $3 \times 10^{-2}$ |
| 20 | financ | $3 \times 10^{-2}$ |
| 21 | countri | $3 \times 10^{-2}$ |
| 22 | portfolio | $3 \times 10^{-2}$ |
| 23 | find | $2.9 \times 10^{-2}$ |
| 24 | empir | $2.8 \times 10^{-2}$ |
| 25 | debt | $2.7 \times 10^{-2}$ |
| 26 | paper | $2.5 \times 10^{-2}$ |
| 27 | busi | $2.4 \times 10^{-2}$ |
| 28 | volatil | $2.4 \times 10^{-2}$ |
| 29 | polici | $2.1 \times 10^{-2}$ |
| 30 | earn | $2 \times 10^{-2}$ |
| 31 | risk | $2 \times 10^{-2}$ |
| 32 | loan | $1.9 \times 10^{-2}$ |
| 33 | cell | $1.8 \times 10^{-2}$ |
| 34 | fund | $1.8 \times 10^{-2}$ |
| 35 | manag | $1.8 \times 10^{-2}$ |
| 36 | govern | $1.7 \times 10^{-2}$ |
| 37 | patient | $1.7 \times 10^{-2}$ |
| 38 | enterpris | $1.6 \times 10^{-2}$ |
| 39 | macroeconom | $1.6 \times 10^{-2}$ |
| 40 | sector | $1.6 \times 10^{-2}$ |
| 41 | premium | $1.5 \times 10^{-2}$ |
| 42 | tax | $1.5 \times 10^{-2}$ |
| 43 | profit | $1.5 \times 10^{-2}$ |
| 44 | monetari | $1.4 \times 10^{-2}$ |
| 45 | temperatur | $1.3 \times 10^{-2}$ |
| 46 | foreign | $1.3 \times 10^{-2}$ |
| 47 | account | $1.2 \times 10^{-2}$ |
| 48 | surfac | $1.2 \times 10^{-2}$ |
| 49 | privat | $1.2 \times 10^{-2}$ |
| 50 | method | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | european | $1.1 \times 10^{-2}$ |
| 52 | treatment | $1.1 \times 10^{-2}$ |
| 53 | clinic | $1.1 \times 10^{-2}$ |
| 54 | institut | $1.1 \times 10^{-2}$ |
| 55 | incent | $1.1 \times 10^{-2}$ |
| 56 | protein | $1 \times 10^{-2}$ |
| 57 | conclus | $9.9 \times 10^{-3}$ |
| 58 | experiment | $9.9 \times 10^{-3}$ |
| 59 | czech | $9.9 \times 10^{-3}$ |
| 60 | industri | $9.9 \times 10^{-3}$ |
| 61 | impact | $9.8 \times 10^{-3}$ |
| 62 | evid | $9.5 \times 10^{-3}$ |
| 63 | audit | $9.5 \times 10^{-3}$ |
| 64 | public | $9.5 \times 10^{-3}$ |
| 65 | valuat | $9.1 \times 10^{-3}$ |
| 66 | disclosur | $9.1 \times 10^{-3}$ |
| 67 | romania | $9 \times 10^{-3}$ |
| 68 | transact | $9 \times 10^{-3}$ |
| 69 | diseas | $8.9 \times 10^{-3}$ |
| 70 | innov | $8.9 \times 10^{-3}$ |
| 71 | romanian | $8.9 \times 10^{-3}$ |
| 72 | ownership | $8.8 \times 10^{-3}$ |
| 73 | forecast | $8.6 \times 10^{-3}$ |
| 74 | research | $8.4 \times 10^{-3}$ |
| 75 | acid | $8.4 \times 10^{-3}$ |
| 76 | insur | $8.3 \times 10^{-3}$ |
| 77 | borrow | $8.2 \times 10^{-3}$ |
| 78 | period | $8 \times 10^{-3}$ |
| 79 | competit | $8 \times 10^{-3}$ |
| 80 | gene | $7.7 \times 10^{-3}$ |
| 81 | crise | $7.7 \times 10^{-3}$ |
| 82 | intern | $7.4 \times 10^{-3}$ |
| 83 | detect | $7.4 \times 10^{-3}$ |
| 84 | list | $7.4 \times 10^{-3}$ |
| 85 | republ | $7.4 \times 10^{-3}$ |
| 86 | speci | $7.3 \times 10^{-3}$ |
| 87 | rang | $7.3 \times 10^{-3}$ |
| 88 | electron | $7.3 \times 10^{-3}$ |
| 89 | sell | $7.3 \times 10^{-3}$ |
| 90 | incom | $7.1 \times 10^{-3}$ |
| 91 | oxid | $7 \times 10^{-3}$ |
| 92 | gdp | $6.9 \times 10^{-3}$ |
| 93 | decis | $6.8 \times 10^{-3}$ |
| 94 | exchang | $6.7 \times 10^{-3}$ |
| 95 | water | $6.7 \times 10^{-3}$ |
| 96 | molecular | $6.7 \times 10^{-3}$ |
| 97 | background | $6.5 \times 10^{-3}$ |
| 98 | materi | $6.5 \times 10^{-3}$ |
| 99 | energi | $6.5 \times 10^{-3}$ |
| 100 | cost | $6.4 \times 10^{-3}$ |

Table D.29. The list of the top 100 words in the category Cardiac and Cardiovascular Systems with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | patient | $1.8 \times 10^{-1}$ |
| 2 | cardiac | $1.6 \times 10^{-1}$ |
| 3 | conclus | $1.5 \times 10^{-1}$ |
| 4 | coronari | $1.4 \times 10^{-1}$ |
| 5 | heart | $1.4 \times 10^{-1}$ |
| 6 | ventricular | $1.4 \times 10^{-1}$ |
| 7 | myocardi | $1.1 \times 10^{-1}$ |
| 8 | arteri | $1.1 \times 10^{-1}$ |
| 9 | left | $9.3 \times 10^{-2}$ |
| 10 | background | $8.4 \times 10^{-2}$ |
| 11 | atrial | $7.7 \times 10^{-2}$ |
| 12 | infarct | $7 \times 10^{-2}$ |
| 13 | aortic | $6.9 \times 10^{-2}$ |
| 14 | cardiovascular | $6.8 \times 10^{-2}$ |
| 15 | mortal | $6.2 \times 10^{-2}$ |
| 16 | risk | $6 \times 10^{-2}$ |
| 17 | echocardiographi | $5.8 \times 10^{-2}$ |
| 18 | underw | $5.7 \times 10^{-2}$ |
| 19 | year | $5.5 \times 10^{-2}$ |
| 20 | valv | $5.4 \times 10^{-2}$ |
| 21 | method | $5.3 \times 10^{-2}$ |
| 22 | fibril | $4.8 \times 10^{-2}$ |
| 23 | eject | $4.7 \times 10^{-2}$ |
| 24 | clinic | $4.5 \times 10^{-2}$ |
| 25 | percutan | $4.5 \times 10^{-2}$ |
| 26 | diseas | $4.5 \times 10^{-2}$ |
| 27 | systol | $4.5 \times 10^{-2}$ |
| 28 | associ | $4.1 \times 10^{-2}$ |
| 29 | failur | $4.1 \times 10^{-2}$ |
| 30 | pulmonari | $4 \times 10^{-2}$ |
| 31 | age | $4 \times 10^{-2}$ |
| 32 | death | $4 \times 10^{-2}$ |
| 33 | outcom | $4 \times 10^{-2}$ |
| 34 | echocardiograph | $3.4 \times 10^{-2}$ |
| 35 | mitral | $3.3 \times 10^{-2}$ |
| 36 | follow | $3.3 \times 10^{-2}$ |
| 37 | stenosi | $3.3 \times 10^{-2}$ |
| 38 | implant | $3.3 \times 10^{-2}$ |
| 39 | stent | $3.2 \times 10^{-2}$ |
| 40 | paper | $3.2 \times 10^{-2}$ |
| 41 | diastol | $3.2 \times 10^{-2}$ |
| 42 | undergo | $3.1 \times 10^{-2}$ |
| 43 | acut | $3.1 \times 10^{-2}$ |
| 44 | regurgit | $3 \times 10^{-2}$ |
| 45 | consecut | $3 \times 10^{-2}$ |
| 46 | bypass | $3 \times 10^{-2}$ |
| 47 | surgeri | $3 \times 10^{-2}$ |
| 48 | interv | $2.9 \times 10^{-2}$ |
| 49 | predictor | $2.9 \times 10^{-2}$ |
| 50 | arrhythmia | $2.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | hospit | $2.8 \times 10^{-2}$ |
| 52 | median | $2.7 \times 10^{-2}$ |
| 53 | cardiomyopathi | $2.7 \times 10^{-2}$ |
| 54 | revascular | $2.7 \times 10^{-2}$ |
| 55 | multivari | $2.7 \times 10^{-2}$ |
| 56 | confid | $2.7 \times 10^{-2}$ |
| 57 | hypertens | $2.7 \times 10^{-2}$ |
| 58 | month | $2.6 \times 10^{-2}$ |
| 59 | dysfunct | $2.5 \times 10^{-2}$ |
| 60 | signific | $2.5 \times 10^{-2}$ |
| 61 | baselin | $2.5 \times 10^{-2}$ |
| 62 | angiographi | $2.4 \times 10^{-2}$ |
| 63 | intervent | $2.4 \times 10^{-2}$ |
| 64 | result | $2.3 \times 10^{-2}$ |
| 65 | hazard | $2.3 \times 10^{-2}$ |
| 66 | stroke | $2.3 \times 10^{-2}$ |
| 67 | complic | $2.2 \times 10^{-2}$ |
| 68 | vascular | $2.2 \times 10^{-2}$ |
| 69 | right | $2.2 \times 10^{-2}$ |
| 70 | event | $2.2 \times 10^{-2}$ |
| 71 | therapi | $2.2 \times 10^{-2}$ |
| 72 | object | $2.2 \times 10^{-2}$ |
| 73 | surgic | $2.1 \times 10^{-2}$ |
| 74 | prospect | $2.1 \times 10^{-2}$ |
| 75 | aim | $2.1 \times 10^{-2}$ |
| 76 | ventricl | $2 \times 10^{-2}$ |
| 77 | assess | $2 \times 10^{-2}$ |
| 78 | group | $2 \times 10^{-2}$ |
| 79 | postop | $1.9 \times 10^{-2}$ |
| 80 | cohort | $1.9 \times 10^{-2}$ |
| 81 | adjust | $1.9 \times 10^{-2}$ |
| 82 | independ | $1.9 \times 10^{-2}$ |
| 83 | cardiopulmonari | $1.9 \times 10^{-2}$ |
| 84 | ischem | $1.9 \times 10^{-2}$ |
| 85 | enrol | $1.9 \times 10^{-2}$ |
| 86 | mean | $1.8 \times 10^{-2}$ |
| 87 | ecg | $1.8 \times 10^{-2}$ |
| 88 | procedur | $1.8 \times 10^{-2}$ |
| 89 | inhospit | $1.8 \times 10^{-2}$ |
| 90 | atherosclerosi | $1.7 \times 10^{-2}$ |
| 91 | aorta | $1.7 \times 10^{-2}$ |
| 92 | blood | $1.7 \times 10^{-2}$ |
| 93 | advers | $1.7 \times 10^{-2}$ |
| 94 | cathet | $1.7 \times 10^{-2}$ |
| 95 | day | $1.7 \times 10^{-2}$ |
| 96 | ratio | $1.7 \times 10^{-2}$ |
| 97 | syndrom | $1.7 \times 10^{-2}$ |
| 98 | incid | $1.6 \times 10^{-2}$ |
| 99 | retrospect | $1.6 \times 10^{-2}$ |
| 100 | propos | $1.6 \times 10^{-2}$ |

Table D.30. The list of the top 100 words in the category Cell and Tissue Engineering with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | stem | $2.4 \times 10^{-1}$ |
| 2 | cell | $2 \times 10^{-1}$ |
| 3 | mesenchym | $1 \times 10^{-1}$ |
| 4 | pluripot | $9.3 \times 10^{-2}$ |
| 5 | differenti | $8 \times 10^{-2}$ |
| 6 | tissu | $7.5 \times 10^{-2}$ |
| 7 | progenitor | $7.2 \times 10^{-2}$ |
| 8 | bone | $6.9 \times 10^{-2}$ |
| 9 | embryon | $6.6 \times 10^{-2}$ |
| 10 | express | $6.3 \times 10^{-2}$ |
| 11 | mscs | $6.2 \times 10^{-2}$ |
| 12 | vitro | $6.1 \times 10^{-2}$ |
| 13 | cultur | $5.9 \times 10^{-2}$ |
| 14 | human | $5.3 \times 10^{-2}$ |
| 15 | transplant | $5.1 \times 10^{-2}$ |
| 16 | regener | $5.1 \times 10^{-2}$ |
| 17 | marrow | $5 \times 10^{-2}$ |
| 18 | regen | $5 \times 10^{-2}$ |
| 19 | vivo | $4.9 \times 10^{-2}$ |
| 20 | prolifer | $4.8 \times 10^{-2}$ |
| 21 | stromal | $4.8 \times 10^{-2}$ |
| 22 | scaffold | $4.7 \times 10^{-2}$ |
| 23 | msc | $4.1 \times 10^{-2}$ |
| 24 | lineag | $3.8 \times 10^{-2}$ |
| 25 | selfrenew | $3.7 \times 10^{-2}$ |
| 26 | induc | $3.7 \times 10^{-2}$ |
| 27 | osteogen | $3.5 \times 10^{-2}$ |
| 28 | deriv | $3.5 \times 10^{-2}$ |
| 29 | fibroblast | $3.3 \times 10^{-2}$ |
| 30 | collagen | $3.3 \times 10^{-2}$ |
| 31 | reprogram | $3.2 \times 10^{-2}$ |
| 32 | gene | $2.8 \times 10^{-2}$ |
| 33 | marker | $2.8 \times 10^{-2}$ |
| 34 | mous | $2.8 \times 10^{-2}$ |
| 35 | therapi | $2.8 \times 10^{-2}$ |
| 36 | hematopoiet | $2.7 \times 10^{-2}$ |
| 37 | engin | $2.4 \times 10^{-2}$ |
| 38 | autolog | $2.4 \times 10^{-2}$ |
| 39 | repair | $2.3 \times 10^{-2}$ |
| 40 | cartilag | $2.2 \times 10^{-2}$ |
| 41 | implant | $2.2 \times 10^{-2}$ |
| 42 | potenti | $2 \times 10^{-2}$ |
| 43 | mice | $2 \times 10^{-2}$ |
| 44 | therapeut | $2 \times 10^{-2}$ |
| 45 | growth | $1.9 \times 10^{-2}$ |
| 46 | transcript | $1.9 \times 10^{-2}$ |
| 47 | cocultur | $1.9 \times 10^{-2}$ |
| 48 | extracellular | $1.8 \times 10^{-2}$ |
| 49 | factor | $1.8 \times 10^{-2}$ |
| 50 | regul | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | protein | $1.8 \times 10^{-2}$ |
| 52 | chondrocyt | $1.8 \times 10^{-2}$ |
| 53 | endotheli | $1.8 \times 10^{-2}$ |
| 54 | paper | $1.7 \times 10^{-2}$ |
| 55 | adipos | $1.7 \times 10^{-2}$ |
| 56 | cellular | $1.7 \times 10^{-2}$ |
| 57 | promot | $1.7 \times 10^{-2}$ |
| 58 | phenotyp | $1.6 \times 10^{-2}$ |
| 59 | upregul | $1.6 \times 10^{-2}$ |
| 60 | fate | $1.5 \times 10^{-2}$ |
| 61 | graft | $1.5 \times 10^{-2}$ |
| 62 | engraft | $1.5 \times 10^{-2}$ |
| 63 | vascular | $1.5 \times 10^{-2}$ |
| 64 | osteoblast | $1.4 \times 10^{-2}$ |
| 65 | histolog | $1.4 \times 10^{-2}$ |
| 66 | neural | $1.4 \times 10^{-2}$ |
| 67 | matrix | $1.3 \times 10^{-2}$ |
| 68 | neuron | $1.3 \times 10^{-2}$ |
| 69 | demonstr | $1.3 \times 10^{-2}$ |
| 70 | somat | $1.3 \times 10^{-2}$ |
| 71 | cd34 | $1.2 \times 10^{-2}$ |
| 72 | medicin | $1.2 \times 10^{-2}$ |
| 73 | week | $1.2 \times 10^{-2}$ |
| 74 | rat | $1.2 \times 10^{-2}$ |
| 75 | defect | $1.2 \times 10^{-2}$ |
| 76 | cord | $1.2 \times 10^{-2}$ |
| 77 | matur | $1.2 \times 10^{-2}$ |
| 78 | microenviron | $1.2 \times 10^{-2}$ |
| 79 | seed | $1.2 \times 10^{-2}$ |
| 80 | clinic | $1.1 \times 10^{-2}$ |
| 81 | format | $1.1 \times 10^{-2}$ |
| 82 | function | $1.1 \times 10^{-2}$ |
| 83 | biomateri | $1.1 \times 10^{-2}$ |
| 84 | hydrogel | $1.1 \times 10^{-2}$ |
| 85 | heal | $1.1 \times 10^{-2}$ |
| 86 | stimul | $1.1 \times 10^{-2}$ |
| 87 | signal | $1.1 \times 10^{-2}$ |
| 88 | injuri | $1.1 \times 10^{-2}$ |
| 89 | donor | $1 \times 10^{-2}$ |
| 90 | secret | $1 \times 10^{-2}$ |
| 91 | isol | $1 \times 10^{-2}$ |
| 92 | prolif | $1 \times 10^{-2}$ |
| 93 | allogen | $9.9 \times 10^{-3}$ |
| 94 | pathway | $9.7 \times 10^{-3}$ |
| 95 | viabil | $9.6 \times 10^{-3}$ |
| 96 | abil | $9.6 \times 10^{-3}$ |
| 97 | mediat | $9.5 \times 10^{-3}$ |
| 98 | wnt | $9.4 \times 10^{-3}$ |
| 99 | induct | $9.4 \times 10^{-3}$ |
| 100 | activ | $9.4 \times 10^{-3}$ |

Table D.31. The list of the top 100 words in the category Cell Biology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | cell | $1.7 \times 10^{-1}$ |
| 2 | express | $1.1 \times 10^{-1}$ |
| 3 | protein | $1 \times 10^{-1}$ |
| 4 | regul | $9.5 \times 10^{-2}$ |
| 5 | induc | $6.2 \times 10^{-2}$ |
| 6 | inhibit | $5.6 \times 10^{-2}$ |
| 7 | pathway | $5.3 \times 10^{-2}$ |
| 8 | activ | $5.2 \times 10^{-2}$ |
| 9 | mediat | $5.2 \times 10^{-2}$ |
| 10 | gene | $5.1 \times 10^{-2}$ |
| 11 | transcript | $4.6 \times 10^{-2}$ |
| 12 | role | $4.4 \times 10^{-2}$ |
| 13 | kinas | $4.1 \times 10^{-2}$ |
| 14 | receptor | $3.8 \times 10^{-2}$ |
| 15 | prolifer | $3.7 \times 10^{-2}$ |
| 16 | signal | $3.7 \times 10^{-2}$ |
| 17 | paper | $3.6 \times 10^{-2}$ |
| 18 | human | $3.5 \times 10^{-2}$ |
| 19 | phosphoryl | $3.4 \times 10^{-2}$ |
| 20 | promot | $3.4 \times 10^{-2}$ |
| 21 | mice | $3.3 \times 10^{-2}$ |
| 22 | bind | $3.2 \times 10^{-2}$ |
| 23 | tissu | $3.2 \times 10^{-2}$ |
| 24 | apoptosi | $3.1 \times 10^{-2}$ |
| 25 | cellular | $3 \times 10^{-2}$ |
| 26 | overexpress | $3 \times 10^{-2}$ |
| 27 | vivo | $3 \times 10^{-2}$ |
| 28 | vitro | $2.9 \times 10^{-2}$ |
| 29 | tumor | $2.9 \times 10^{-2}$ |
| 30 | cancer | $2.9 \times 10^{-2}$ |
| 31 | stem | $2.9 \times 10^{-2}$ |
| 32 | target | $2.7 \times 10^{-2}$ |
| 33 | mous | $2.7 \times 10^{-2}$ |
| 34 | inhibitor | $2.6 \times 10^{-2}$ |
| 35 | knockdown | $2.4 \times 10^{-2}$ |
| 36 | mechan | $2.4 \times 10^{-2}$ |
| 37 | function | $2.2 \times 10^{-2}$ |
| 38 | mesenchym | $2.1 \times 10^{-2}$ |
| 39 | suggest | $2 \times 10^{-2}$ |
| 40 | differenti | $2 \times 10^{-2}$ |
| 41 | membran | $2 \times 10^{-2}$ |
| 42 | upregul | $1.9 \times 10^{-2}$ |
| 43 | method | $1.9 \times 10^{-2}$ |
| 44 | therapeut | $1.9 \times 10^{-2}$ |
| 45 | stimul | $1.9 \times 10^{-2}$ |
| 46 | mrna | $1.9 \times 10^{-2}$ |
| 47 | suppress | $1.8 \times 10^{-2}$ |
| 48 | mutant | $1.8 \times 10^{-2}$ |
| 49 | growth | $1.8 \times 10^{-2}$ |
| 50 | epitheli | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | beta | $1.7 \times 10^{-2}$ |
| 52 | factor | $1.6 \times 10^{-2}$ |
| 53 | extracellular | $1.6 \times 10^{-2}$ |
| 54 | downregul | $1.6 \times 10^{-2}$ |
| 55 | phenotyp | $1.6 \times 10^{-2}$ |
| 56 | mutat | $1.5 \times 10^{-2}$ |
| 57 | embryon | $1.5 \times 10^{-2}$ |
| 58 | involv | $1.5 \times 10^{-2}$ |
| 59 | rna | $1.5 \times 10^{-2}$ |
| 60 | dna | $1.4 \times 10^{-2}$ |
| 61 | respons | $1.4 \times 10^{-2}$ |
| 62 | intracellular | $1.4 \times 10^{-2}$ |
| 63 | base | $1.4 \times 10^{-2}$ |
| 64 | alpha | $1.4 \times 10^{-2}$ |
| 65 | chromatin | $1.4 \times 10^{-2}$ |
| 66 | mitochondri | $1.4 \times 10^{-2}$ |
| 67 | fibroblast | $1.4 \times 10^{-2}$ |
| 68 | akt | $1.3 \times 10^{-2}$ |
| 69 | nuclear | $1.3 \times 10^{-2}$ |
| 70 | simul | $1.3 \times 10^{-2}$ |
| 71 | depend | $1.3 \times 10^{-2}$ |
| 72 | play | $1.3 \times 10^{-2}$ |
| 73 | silenc | $1.3 \times 10^{-2}$ |
| 74 | regulatori | $1.3 \times 10^{-2}$ |
| 75 | migrat | $1.2 \times 10^{-2}$ |
| 76 | cytokin | $1.2 \times 10^{-2}$ |
| 77 | marker | $1.2 \times 10^{-2}$ |
| 78 | actin | $1.2 \times 10^{-2}$ |
| 79 | associ | $1.2 \times 10^{-2}$ |
| 80 | ubiquitin | $1.2 \times 10^{-2}$ |
| 81 | cultur | $1.2 \times 10^{-2}$ |
| 82 | repress | $1.2 \times 10^{-2}$ |
| 83 | progenitor | $1.2 \times 10^{-2}$ |
| 84 | neuron | $1.2 \times 10^{-2}$ |
| 85 | suppressor | $1.2 \times 10^{-2}$ |
| 86 | assay | $1.1 \times 10^{-2}$ |
| 87 | alter | $1.1 \times 10^{-2}$ |
| 88 | molecular | $1.1 \times 10^{-2}$ |
| 89 | secret | $1.1 \times 10^{-2}$ |
| 90 | cytoplasm | $1.1 \times 10^{-2}$ |
| 91 | inflammatori | $1.1 \times 10^{-2}$ |
| 92 | rat | $1.1 \times 10^{-2}$ |
| 93 | level | $1.1 \times 10^{-2}$ |
| 94 | homeostasi | $1.1 \times 10^{-2}$ |
| 95 | diseas | $1.1 \times 10^{-2}$ |
| 96 | perform | $1.1 \times 10^{-2}$ |
| 97 | endotheli | $1.1 \times 10^{-2}$ |
| 98 | demonstr | $1.1 \times 10^{-2}$ |
| 99 | temperatur | $1.1 \times 10^{-2}$ |
| 100 | oncogen | $1 \times 10^{-2}$ |

Table D.32. The list of the top 100 words in the category Chemistry, Analytical with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | detect | $8.4 \times 10^{-2}$ |
| 2 | chromatographi | $8 \times 10^{-2}$ |
| 3 | spectrometri | $6.9 \times 10^{-2}$ |
| 4 | sampl | $5.3 \times 10^{-2}$ |
| 5 | analyt | $4.9 \times 10^{-2}$ |
| 6 | liquid | $4.6 \times 10^{-2}$ |
| 7 | sensit | $4 \times 10^{-2}$ |
| 8 | limit | $3.9 \times 10^{-2}$ |
| 9 | chromatograph | $3.7 \times 10^{-2}$ |
| 10 | concentr | $3.7 \times 10^{-2}$ |
| 11 | mass | $3.6 \times 10^{-2}$ |
| 12 | quantif | $3.6 \times 10^{-2}$ |
| 13 | column | $3.5 \times 10^{-2}$ |
| 14 | linear | $3.2 \times 10^{-2}$ |
| 15 | recoveri | $3.1 \times 10^{-2}$ |
| 16 | rang | $3 \times 10^{-2}$ |
| 17 | separ | $2.8 \times 10^{-2}$ |
| 18 | extract | $2.8 \times 10^{-2}$ |
| 19 | acid | $2.7 \times 10^{-2}$ |
| 20 | ion | $2.6 \times 10^{-2}$ |
| 21 | elut | $2.5 \times 10^{-2}$ |
| 22 | lod | $2.5 \times 10^{-2}$ |
| 23 | electrospray | $2.5 \times 10^{-2}$ |
| 24 | electrod | $2.4 \times 10^{-2}$ |
| 25 | ioniz | $2.3 \times 10^{-2}$ |
| 26 | hplc | $2.3 \times 10^{-2}$ |
| 27 | determin | $2.2 \times 10^{-2}$ |
| 28 | acetonitril | $2.2 \times 10^{-2}$ |
| 29 | tandem | $2.2 \times 10^{-2}$ |
| 30 | sensor | $2.2 \times 10^{-2}$ |
| 31 | rsd | $2.1 \times 10^{-2}$ |
| 32 | compound | $2 \times 10^{-2}$ |
| 33 | electrochem | $1.9 \times 10^{-2}$ |
| 34 | fluoresc | $1.9 \times 10^{-2}$ |
| 35 | biosensor | $1.8 \times 10^{-2}$ |
| 36 | appli | $1.8 \times 10^{-2}$ |
| 37 | immobil | $1.8 \times 10^{-2}$ |
| 38 | method | $1.8 \times 10^{-2}$ |
| 39 | calibr | $1.7 \times 10^{-2}$ |
| 40 | prepar | $1.7 \times 10^{-2}$ |
| 41 | precis | $1.6 \times 10^{-2}$ |
| 42 | min | $1.6 \times 10^{-2}$ |
| 43 | select | $1.6 \times 10^{-2}$ |
| 44 | phase | $1.5 \times 10^{-2}$ |
| 45 | spike | $1.5 \times 10^{-2}$ |
| 46 | assay | $1.4 \times 10^{-2}$ |
| 47 | standard | $1.4 \times 10^{-2}$ |
| 48 | label | $1.4 \times 10^{-2}$ |
| 49 | simpl | $1.4 \times 10^{-2}$ |
| 50 | voltammetri | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | use | $1.3 \times 10^{-2}$ |
| 52 | microfluid | $1.3 \times 10^{-2}$ |
| 53 | solvent | $1.3 \times 10^{-2}$ |
| 54 | methanol | $1.3 \times 10^{-2}$ |
| 55 | esi | $1.3 \times 10^{-2}$ |
| 56 | gold | $1.2 \times 10^{-2}$ |
| 57 | monitor | $1.2 \times 10^{-2}$ |
| 58 | conclus | $1.2 \times 10^{-2}$ |
| 59 | success | $1.2 \times 10^{-2}$ |
| 60 | develop | $1.2 \times 10^{-2}$ |
| 61 | rapid | $1.2 \times 10^{-2}$ |
| 62 | quadrupol | $1.2 \times 10^{-2}$ |
| 63 | capillari | $1.2 \times 10^{-2}$ |
| 64 | buffer | $1.2 \times 10^{-2}$ |
| 65 | reproduc | $1.2 \times 10^{-2}$ |
| 66 | nanoparticl | $1.1 \times 10^{-2}$ |
| 67 | urin | $1.1 \times 10^{-2}$ |
| 68 | deviat | $1.1 \times 10^{-2}$ |
| 69 | aqueous | $1.1 \times 10^{-2}$ |
| 70 | quantit | $1.1 \times 10^{-2}$ |
| 71 | water | $1.1 \times 10^{-2}$ |
| 72 | metabolit | $1.1 \times 10^{-2}$ |
| 73 | probe | $1.1 \times 10^{-2}$ |
| 74 | simultan | $1 \times 10^{-2}$ |
| 75 | patient | $1 \times 10^{-2}$ |
| 76 | spectromet | $1 \times 10^{-2}$ |
| 77 | reaction | $1 \times 10^{-2}$ |
| 78 | chemic | $9.8 \times 10^{-3}$ |
| 79 | mixtur | $9.7 \times 10^{-3}$ |
| 80 | valid | $9.6 \times 10^{-3}$ |
| 81 | glassi | $9.1 \times 10^{-3}$ |
| 82 | good | $9 \times 10^{-3}$ |
| 83 | high | $8.9 \times 10^{-3}$ |
| 84 | solid | $8.8 \times 10^{-3}$ |
| 85 | associ | $8.7 \times 10^{-3}$ |
| 86 | solut | $8.7 \times 10^{-3}$ |
| 87 | gas | $8.5 \times 10^{-3}$ |
| 88 | year | $8.5 \times 10^{-3}$ |
| 89 | spectroscopi | $8.5 \times 10^{-3}$ |
| 90 | reagent | $8.5 \times 10^{-3}$ |
| 91 | coupl | $8.4 \times 10^{-3}$ |
| 92 | obtain | $8.4 \times 10^{-3}$ |
| 93 | analysi | $8.3 \times 10^{-3}$ |
| 94 | modifi | $8.3 \times 10^{-3}$ |
| 95 | carbon | $8.2 \times 10^{-3}$ |
| 96 | desorpt | $7.9 \times 10^{-3}$ |
| 97 | silica | $7.9 \times 10^{-3}$ |
| 98 | peak | $7.7 \times 10^{-3}$ |
| 99 | sens | $7.7 \times 10^{-3}$ |
| 100 | age | $7.5 \times 10^{-3}$ |

Table D.33. The list of the top 100 words in the category Chemistry, Applied with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | acid | $3.9 \times 10^{-2}$ |
| 2 | prepar | $2.3 \times 10^{-2}$ |
| 3 | compound | $2.3 \times 10^{-2}$ |
| 4 | patient | $1.9 \times 10^{-2}$ |
| 5 | catalyst | $1.8 \times 10^{-2}$ |
| 6 | content | $1.8 \times 10^{-2}$ |
| 7 | oil | $1.8 \times 10^{-2}$ |
| 8 | chromatographi | $1.8 \times 10^{-2}$ |
| 9 | antioxid | $1.8 \times 10^{-2}$ |
| 10 | reaction | $1.7 \times 10^{-2}$ |
| 11 | phenol | $1.6 \times 10^{-2}$ |
| 12 | nmr | $1.5 \times 10^{-2}$ |
| 13 | food | $1.5 \times 10^{-2}$ |
| 14 | polysaccharid | $1.5 \times 10^{-2}$ |
| 15 | co2 | $1.4 \times 10^{-2}$ |
| 16 | extract | $1.4 \times 10^{-2}$ |
| 17 | concentr | $1.4 \times 10^{-2}$ |
| 18 | paper | $1.3 \times 10^{-2}$ |
| 19 | starch | $1.2 \times 10^{-2}$ |
| 20 | product | $1.2 \times 10^{-2}$ |
| 21 | degre | $1.1 \times 10^{-2}$ |
| 22 | aqueous | $1.1 \times 10^{-2}$ |
| 23 | activ | $1.1 \times 10^{-2}$ |
| 24 | chemic | $1.1 \times 10^{-2}$ |
| 25 | adsorpt | $1.1 \times 10^{-2}$ |
| 26 | solvent | $1.1 \times 10^{-2}$ |
| 27 | properti | $1.1 \times 10^{-2}$ |
| 28 | water | $1 \times 10^{-2}$ |
| 29 | solubl | $9.9 \times 10^{-3}$ |
| 30 | spectroscopi | $9.8 \times 10^{-3}$ |
| 31 | catalyt | $9.5 \times 10^{-3}$ |
| 32 | synthes | $9.2 \times 10^{-3}$ |
| 33 | dpph | $8.8 \times 10^{-3}$ |
| 34 | cellulos | $8.8 \times 10^{-3}$ |
| 35 | hplc | $8.7 \times 10^{-3}$ |
| 36 | oxid | $8.7 \times 10^{-3}$ |
| 37 | clinic | $8.5 \times 10^{-3}$ |
| 38 | temperatur | $8.5 \times 10^{-3}$ |
| 39 | composit | $8.4 \times 10^{-3}$ |
| 40 | yield | $8.4 \times 10^{-3}$ |
| 41 | ftir | $8.3 \times 10^{-3}$ |
| 42 | conclus | $8.2 \times 10^{-3}$ |
| 43 | storag | $8.2 \times 10^{-3}$ |
| 44 | gel | $8.2 \times 10^{-3}$ |
| 45 | associ | $8.1 \times 10^{-3}$ |
| 46 | spectrometri | $8 \times 10^{-3}$ |
| 47 | scaveng | $8 \times 10^{-3}$ |
| 48 | year | $7.8 \times 10^{-3}$ |
| 49 | hydrolysi | $7.8 \times 10^{-3}$ |
| 50 | propos | $7.7 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | contain | $7.5 \times 10^{-3}$ |
| 52 | algorithm | $7.4 \times 10^{-3}$ |
| 53 | chitosan | $7.3 \times 10^{-3}$ |
| 54 | problem | $7.3 \times 10^{-3}$ |
| 55 | zeolit | $7.1 \times 10^{-3}$ |
| 56 | liquid | $7 \times 10^{-3}$ |
| 57 | fatti | $6.9 \times 10^{-3}$ |
| 58 | gas | $6.7 \times 10^{-3}$ |
| 59 | synthesi | $6.7 \times 10^{-3}$ |
| 60 | radic | $6.6 \times 10^{-3}$ |
| 61 | outcom | $6.5 \times 10^{-3}$ |
| 62 | polyphenol | $6.5 \times 10^{-3}$ |
| 63 | ethanol | $6.4 \times 10^{-3}$ |
| 64 | amin | $6.4 \times 10^{-3}$ |
| 65 | emuls | $6.4 \times 10^{-3}$ |
| 66 | ester | $6.3 \times 10^{-3}$ |
| 67 | amount | $6.3 \times 10^{-3}$ |
| 68 | fruit | $6.3 \times 10^{-3}$ |
| 69 | comput | $6.2 \times 10^{-3}$ |
| 70 | age | $5.9 \times 10^{-3}$ |
| 71 | acet | $5.8 \times 10^{-3}$ |
| 72 | carbon | $5.8 \times 10^{-3}$ |
| 73 | methyl | $5.7 \times 10^{-3}$ |
| 74 | sem | $5.7 \times 10^{-3}$ |
| 75 | dri | $5.6 \times 10^{-3}$ |
| 76 | flavonoid | $5.6 \times 10^{-3}$ |
| 77 | object | $5.6 \times 10^{-3}$ |
| 78 | infrar | $5.5 \times 10^{-3}$ |
| 79 | beta | $5.5 \times 10^{-3}$ |
| 80 | sugar | $5.4 \times 10^{-3}$ |
| 81 | anthocyanin | $5.4 \times 10^{-3}$ |
| 82 | find | $5.3 \times 10^{-3}$ |
| 83 | sodium | $5.3 \times 10^{-3}$ |
| 84 | particip | $5.2 \times 10^{-3}$ |
| 85 | mesopor | $5.2 \times 10^{-3}$ |
| 86 | data | $5.2 \times 10^{-3}$ |
| 87 | xrd | $5.1 \times 10^{-3}$ |
| 88 | bioactiv | $5.1 \times 10^{-3}$ |
| 89 | mixtur | $5.1 \times 10^{-3}$ |
| 90 | isol | $5.1 \times 10^{-3}$ |
| 91 | character | $5 \times 10^{-3}$ |
| 92 | physicochem | $5 \times 10^{-3}$ |
| 93 | stabil | $5 \times 10^{-3}$ |
| 94 | microscopi | $4.9 \times 10^{-3}$ |
| 95 | model | $4.9 \times 10^{-3}$ |
| 96 | set | $4.8 \times 10^{-3}$ |
| 97 | viscos | $4.8 \times 10^{-3}$ |
| 98 | surfact | $4.8 \times 10^{-3}$ |
| 99 | pore | $4.7 \times 10^{-3}$ |
| 100 | glycosid | $4.7 \times 10^{-3}$ |

Table D.34. The list of the top 100 words in the category Chemistry, Inorganic and Nuclear with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | ligand | $1.5 \times 10^{-1}$ |
| 2 | ray | $1.1 \times 10^{-1}$ |
| 3 | crystal | $9.7 \times 10^{-2}$ |
| 4 | complex | $9.5 \times 10^{-2}$ |
| 5 | coordin | $8.4 \times 10^{-2}$ |
| 6 | synthes | $8.2 \times 10^{-2}$ |
| 7 | diffract | $6.8 \times 10^{-2}$ |
| 8 | reaction | $6.6 \times 10^{-2}$ |
| 9 | compound | $6.1 \times 10^{-2}$ |
| 10 | dot | $5.8 \times 10^{-2}$ |
| 11 | bis | $5.6 \times 10^{-2}$ |
| 12 | h2o | $5.3 \times 10^{-2}$ |
| 13 | structur | $5.3 \times 10^{-2}$ |
| 14 | center | $5.1 \times 10^{-2}$ |
| 15 | nmr | $5.1 \times 10^{-2}$ |
| 16 | bond | $5 \times 10^{-2}$ |
| 17 | character | $4.9 \times 10^{-2}$ |
| 18 | metal | $4.6 \times 10^{-2}$ |
| 19 | spectroscopi | $3.6 \times 10^{-2}$ |
| 20 | ion | $3.4 \times 10^{-2}$ |
| 21 | atom | $3.3 \times 10^{-2}$ |
| 22 | anion | $3.2 \times 10^{-2}$ |
| 23 | bridg | $2.8 \times 10^{-2}$ |
| 24 | pyridin | $2.7 \times 10^{-2}$ |
| 25 | dft | $2.6 \times 10^{-2}$ |
| 26 | cation | $2.4 \times 10^{-2}$ |
| 27 | crystallographi | $2.4 \times 10^{-2}$ |
| 28 | prepar | $2.3 \times 10^{-2}$ |
| 29 | paper | $2.3 \times 10^{-2}$ |
| 30 | octahedr | $2.2 \times 10^{-2}$ |
| 31 | hydrogen | $2.1 \times 10^{-2}$ |
| 32 | singl | $2.1 \times 10^{-2}$ |
| 33 | conclus | $2 \times 10^{-2}$ |
| 34 | chelat | $2 \times 10^{-2}$ |
| 35 | angstrom | $2 \times 10^{-2}$ |
| 36 | vis | $2 \times 10^{-2}$ |
| 37 | afford | $1.9 \times 10^{-2}$ |
| 38 | iii | $1.9 \times 10^{-2}$ |
| 39 | patient | $1.8 \times 10^{-2}$ |
| 40 | solid | $1.8 \times 10^{-2}$ |
| 41 | spectroscop | $1.8 \times 10^{-2}$ |
| 42 | luminesc | $1.7 \times 10^{-2}$ |
| 43 | monoclin | $1.7 \times 10^{-2}$ |
| 44 | acid | $1.6 \times 10^{-2}$ |
| 45 | eta | $1.6 \times 10^{-2}$ |
| 46 | electron | $1.6 \times 10^{-2}$ |
| 47 | hydrotherm | $1.6 \times 10^{-2}$ |
| 48 | spectra | $1.6 \times 10^{-2}$ |
| 49 | synthesi | $1.6 \times 10^{-2}$ |
| 50 | catalyt | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | supramolecular | $1.5 \times 10^{-2}$ |
| 52 | antiferromagnet | $1.5 \times 10^{-2}$ |
| 53 | moieti | $1.5 \times 10^{-2}$ |
| 54 | substitut | $1.4 \times 10^{-2}$ |
| 55 | distort | $1.4 \times 10^{-2}$ |
| 56 | salt | $1.4 \times 10^{-2}$ |
| 57 | react | $1.4 \times 10^{-2}$ |
| 58 | result | $1.4 \times 10^{-2}$ |
| 59 | substitu | $1.4 \times 10^{-2}$ |
| 60 | element | $1.4 \times 10^{-2}$ |
| 61 | mononuclear | $1.4 \times 10^{-2}$ |
| 62 | model | $1.4 \times 10^{-2}$ |
| 63 | develop | $1.3 \times 10^{-2}$ |
| 64 | dimer | $1.3 \times 10^{-2}$ |
| 65 | object | $1.3 \times 10^{-2}$ |
| 66 | ring | $1.3 \times 10^{-2}$ |
| 67 | yield | $1.3 \times 10^{-2}$ |
| 68 | catalyst | $1.3 \times 10^{-2}$ |
| 69 | phenyl | $1.3 \times 10^{-2}$ |
| 70 | copper | $1.3 \times 10^{-2}$ |
| 71 | solvent | $1.3 \times 10^{-2}$ |
| 72 | year | $1.3 \times 10^{-2}$ |
| 73 | carboxyl | $1.2 \times 10^{-2}$ |
| 74 | oxid | $1.2 \times 10^{-2}$ |
| 75 | powder | $1.2 \times 10^{-2}$ |
| 76 | methyl | $1.2 \times 10^{-2}$ |
| 77 | associ | $1.2 \times 10^{-2}$ |
| 78 | molecul | $1.2 \times 10^{-2}$ |
| 79 | steric | $1.1 \times 10^{-2}$ |
| 80 | geometri | $1.1 \times 10^{-2}$ |
| 81 | format | $1.1 \times 10^{-2}$ |
| 82 | problem | $1.1 \times 10^{-2}$ |
| 83 | crystallograph | $1.1 \times 10^{-2}$ |
| 84 | no3 | $1.1 \times 10^{-2}$ |
| 85 | donor | $1.1 \times 10^{-2}$ |
| 86 | use | $1.1 \times 10^{-2}$ |
| 87 | form | $1.1 \times 10^{-2}$ |
| 88 | signific | $1.1 \times 10^{-2}$ |
| 89 | exhibit | $1.1 \times 10^{-2}$ |
| 90 | increas | $1.1 \times 10^{-2}$ |
| 91 | express | $1 \times 10^{-2}$ |
| 92 | assess | $1 \times 10^{-2}$ |
| 93 | heterocycl | $1 \times 10^{-2}$ |
| 94 | may | $1 \times 10^{-2}$ |
| 95 | background | $1 \times 10^{-2}$ |
| 96 | improv | $1 \times 10^{-2}$ |
| 97 | chlorid | $1 \times 10^{-2}$ |
| 98 | aim | $9.9 \times 10^{-3}$ |
| 99 | propos | $9.9 \times 10^{-3}$ |
| 100 | find | $9.9 \times 10^{-3}$ |

Table D.35. The list of the top 100 words in the category Chemistry, Medicinal with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | compound | $1.8 \times 10^{-1}$ |
| 2 | activ | $9.1 \times 10^{-2}$ |
| 3 | potent | $8 \times 10^{-2}$ |
| 4 | ic50 | $7.5 \times 10^{-2}$ |
| 5 | inhibit | $5.3 \times 10^{-2}$ |
| 6 | inhibitor | $5.2 \times 10^{-2}$ |
| 7 | drug | $5 \times 10^{-2}$ |
| 8 | cytotox | $4.7 \times 10^{-2}$ |
| 9 | inhibitori | $4.6 \times 10^{-2}$ |
| 10 | vitro | $4 \times 10^{-2}$ |
| 11 | synthes | $3.8 \times 10^{-2}$ |
| 12 | ethnopharmacolog | $3.7 \times 10^{-2}$ |
| 13 | cell | $3.4 \times 10^{-2}$ |
| 14 | dock | $3.2 \times 10^{-2}$ |
| 15 | nmr | $3.1 \times 10^{-2}$ |
| 16 | potenc | $3 \times 10^{-2}$ |
| 17 | isol | $3 \times 10^{-2}$ |
| 18 | assay | $2.9 \times 10^{-2}$ |
| 19 | paper | $2.7 \times 10^{-2}$ |
| 20 | bind | $2.6 \times 10^{-2}$ |
| 21 | seri | $2.6 \times 10^{-2}$ |
| 22 | deriv | $2.5 \times 10^{-2}$ |
| 23 | spectroscop | $2.5 \times 10^{-2}$ |
| 24 | medicin | $2.4 \times 10^{-2}$ |
| 25 | acid | $2.1 \times 10^{-2}$ |
| 26 | structur | $2 \times 10^{-2}$ |
| 27 | anticanc | $2 \times 10^{-2}$ |
| 28 | analogu | $2 \times 10^{-2}$ |
| 29 | cancer | $1.9 \times 10^{-2}$ |
| 30 | moieti | $1.8 \times 10^{-2}$ |
| 31 | antiprolif | $1.8 \times 10^{-2}$ |
| 32 | agent | $1.8 \times 10^{-2}$ |
| 33 | exhibit | $1.7 \times 10^{-2}$ |
| 34 | human | $1.6 \times 10^{-2}$ |
| 35 | screen | $1.5 \times 10^{-2}$ |
| 36 | elucid | $1.5 \times 10^{-2}$ |
| 37 | extract | $1.5 \times 10^{-2}$ |
| 38 | vivo | $1.4 \times 10^{-2}$ |
| 39 | novel | $1.4 \times 10^{-2}$ |
| 40 | antiinflammatori | $1.4 \times 10^{-2}$ |
| 41 | molecul | $1.3 \times 10^{-2}$ |
| 42 | beta | $1.3 \times 10^{-2}$ |
| 43 | antibacteri | $1.3 \times 10^{-2}$ |
| 44 | line | $1.3 \times 10^{-2}$ |
| 45 | enzym | $1.3 \times 10^{-2}$ |
| 46 | rat | $1.3 \times 10^{-2}$ |
| 47 | hydroxi | $1.3 \times 10^{-2}$ |
| 48 | substitut | $1.3 \times 10^{-2}$ |
| 49 | ligand | $1.3 \times 10^{-2}$ |
| 50 | new | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | bioactiv | $1.2 \times 10^{-2}$ |
| 52 | alkaloid | $1.2 \times 10^{-2}$ |
| 53 | receptor | $1.2 \times 10^{-2}$ |
| 54 | scaffold | $1.2 \times 10^{-2}$ |
| 55 | discoveri | $1.2 \times 10^{-2}$ |
| 56 | affin | $1.2 \times 10^{-2}$ |
| 57 | antioxid | $1.1 \times 10^{-2}$ |
| 58 | synthesi | $1.1 \times 10^{-2}$ |
| 59 | target | $1.1 \times 10^{-2}$ |
| 60 | pharmacokinet | $1.1 \times 10^{-2}$ |
| 61 | propos | $1.1 \times 10^{-2}$ |
| 62 | pharmacolog | $1.1 \times 10^{-2}$ |
| 63 | oral | $1.1 \times 10^{-2}$ |
| 64 | substitu | $1.1 \times 10^{-2}$ |
| 65 | therapeut | $1.1 \times 10^{-2}$ |
| 66 | methyl | $1.1 \times 10^{-2}$ |
| 67 | biolog | $1.1 \times 10^{-2}$ |
| 68 | induc | $1.1 \times 10^{-2}$ |
| 69 | evalu | $1 \times 10^{-2}$ |
| 70 | molecular | $1 \times 10^{-2}$ |
| 71 | sar | $1 \times 10^{-2}$ |
| 72 | antitumor | $1 \times 10^{-2}$ |
| 73 | alpha | $1 \times 10^{-2}$ |
| 74 | chemic | $1 \times 10^{-2}$ |
| 75 | protein | $9.8 \times 10^{-3}$ |
| 76 | dose | $9.7 \times 10^{-3}$ |
| 77 | known | $9.6 \times 10^{-3}$ |
| 78 | toxic | $9.3 \times 10^{-3}$ |
| 79 | metabolit | $9.2 \times 10^{-3}$ |
| 80 | phenyl | $9.1 \times 10^{-3}$ |
| 81 | glycosid | $9.1 \times 10^{-3}$ |
| 82 | select | $9.1 \times 10^{-3}$ |
| 83 | ring | $9 \times 10^{-3}$ |
| 84 | mic | $8.9 \times 10^{-3}$ |
| 85 | promis | $8.9 \times 10^{-3}$ |
| 86 | hplc | $8.7 \times 10^{-3}$ |
| 87 | oper | $8.6 \times 10^{-3}$ |
| 88 | phytochem | $8.5 \times 10^{-3}$ |
| 89 | flavonoid | $8.4 \times 10^{-3}$ |
| 90 | herbal | $8.4 \times 10^{-3}$ |
| 91 | amino | $8.3 \times 10^{-3}$ |
| 92 | antimicrobi | $7.8 \times 10^{-3}$ |
| 93 | measur | $7.6 \times 10^{-3}$ |
| 94 | can | $7.4 \times 10^{-3}$ |
| 95 | case | $7.4 \times 10^{-3}$ |
| 96 | antagonist | $7.3 \times 10^{-3}$ |
| 97 | apoptosi | $7.3 \times 10^{-3}$ |
| 98 | potenti | $7.1 \times 10^{-3}$ |
| 99 | display | $7 \times 10^{-3}$ |
| 100 | herb | $6.9 \times 10^{-3}$ |

Table D.36. The list of the top 100 words in the category Chemistry, Multidisciplinary with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | reaction | $4 \times 10^{-2}$ |
| 2 | synthes | $3.8 \times 10^{-2}$ |
| 3 | nanoparticl | $2.7 \times 10^{-2}$ |
| 4 | catalyst | $2.5 \times 10^{-2}$ |
| 5 | synthesi | $2.5 \times 10^{-2}$ |
| 6 | prepar | $2.4 \times 10^{-2}$ |
| 7 | paper | $2.4 \times 10^{-2}$ |
| 8 | patient | $2.2 \times 10^{-2}$ |
| 9 | conclus | $2.1 \times 10^{-2}$ |
| 10 | bond | $2 \times 10^{-2}$ |
| 11 | compound | $2 \times 10^{-2}$ |
| 12 | acid | $1.9 \times 10^{-2}$ |
| 13 | molecul | $1.9 \times 10^{-2}$ |
| 14 | electron | $1.8 \times 10^{-2}$ |
| 15 | solvent | $1.8 \times 10^{-2}$ |
| 16 | oxid | $1.7 \times 10^{-2}$ |
| 17 | spectroscopi | $1.7 \times 10^{-2}$ |
| 18 | ligand | $1.6 \times 10^{-2}$ |
| 19 | structur | $1.6 \times 10^{-2}$ |
| 20 | metal | $1.6 \times 10^{-2}$ |
| 21 | year | $1.5 \times 10^{-2}$ |
| 22 | catalyt | $1.5 \times 10^{-2}$ |
| 23 | crystal | $1.5 \times 10^{-2}$ |
| 24 | object | $1.5 \times 10^{-2}$ |
| 25 | aqueous | $1.5 \times 10^{-2}$ |
| 26 | nmr | $1.4 \times 10^{-2}$ |
| 27 | chemic | $1.4 \times 10^{-2}$ |
| 28 | ray | $1.4 \times 10^{-2}$ |
| 29 | hydrogen | $1.4 \times 10^{-2}$ |
| 30 | age | $1.3 \times 10^{-2}$ |
| 31 | polym | $1.3 \times 10^{-2}$ |
| 32 | atom | $1.3 \times 10^{-2}$ |
| 33 | ion | $1.2 \times 10^{-2}$ |
| 34 | selfassembl | $1.2 \times 10^{-2}$ |
| 35 | associ | $1.2 \times 10^{-2}$ |
| 36 | catalyz | $1.1 \times 10^{-2}$ |
| 37 | exhibit | $1.1 \times 10^{-2}$ |
| 38 | surfac | $1.1 \times 10^{-2}$ |
| 39 | result | $1.1 \times 10^{-2}$ |
| 40 | background | $1.1 \times 10^{-2}$ |
| 41 | data | $1.1 \times 10^{-2}$ |
| 42 | diffract | $1.1 \times 10^{-2}$ |
| 43 | assess | $1 \times 10^{-2}$ |
| 44 | risk | $1 \times 10^{-2}$ |
| 45 | problem | $9.9 \times 10^{-3}$ |
| 46 | properti | $9.9 \times 10^{-3}$ |
| 47 | adsorpt | $9.8 \times 10^{-3}$ |
| 48 | molecular | $9.8 \times 10^{-3}$ |
| 49 | dot | $9.7 \times 10^{-3}$ |
| 50 | microscopi | $9.6 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | excel | $9.6 \times 10^{-3}$ |
| 52 | yield | $9.5 \times 10^{-3}$ |
| 53 | bis | $9.5 \times 10^{-3}$ |
| 54 | electrochem | $9.3 \times 10^{-3}$ |
| 55 | carbon | $9.2 \times 10^{-3}$ |
| 56 | nanostructur | $9.2 \times 10^{-3}$ |
| 57 | graphen | $9.2 \times 10^{-3}$ |
| 58 | manag | $9.1 \times 10^{-3}$ |
| 59 | anion | $9.1 \times 10^{-3}$ |
| 60 | aim | $9 \times 10^{-3}$ |
| 61 | format | $8.7 \times 10^{-3}$ |
| 62 | cation | $8.6 \times 10^{-3}$ |
| 63 | fluoresc | $8.5 \times 10^{-3}$ |
| 64 | algorithm | $8.5 \times 10^{-3}$ |
| 65 | clinic | $8.5 \times 10^{-3}$ |
| 66 | model | $8.1 \times 10^{-3}$ |
| 67 | stabil | $8.1 \times 10^{-3}$ |
| 68 | supramolecular | $8.1 \times 10^{-3}$ |
| 69 | propos | $8 \times 10^{-3}$ |
| 70 | poli | $8 \times 10^{-3}$ |
| 71 | moieti | $7.9 \times 10^{-3}$ |
| 72 | outcom | $7.8 \times 10^{-3}$ |
| 73 | inform | $7.7 \times 10^{-3}$ |
| 74 | charg | $7.7 \times 10^{-3}$ |
| 75 | may | $7.7 \times 10^{-3}$ |
| 76 | amin | $7.5 \times 10^{-3}$ |
| 77 | case | $7.4 \times 10^{-3}$ |
| 78 | herein | $7.4 \times 10^{-3}$ |
| 79 | chemistri | $7.4 \times 10^{-3}$ |
| 80 | ionic | $7.2 \times 10^{-3}$ |
| 81 | aryl | $7.2 \times 10^{-3}$ |
| 82 | dft | $7.1 \times 10^{-3}$ |
| 83 | level | $6.9 \times 10^{-3}$ |
| 84 | aromat | $6.9 \times 10^{-3}$ |
| 85 | particip | $6.9 \times 10^{-3}$ |
| 86 | consid | $6.8 \times 10^{-3}$ |
| 87 | fabric | $6.8 \times 10^{-3}$ |
| 88 | substitut | $6.7 \times 10^{-3}$ |
| 89 | character | $6.6 \times 10^{-3}$ |
| 90 | popul | $6.6 \times 10^{-3}$ |
| 91 | conjug | $6.5 \times 10^{-3}$ |
| 92 | alkyl | $6.5 \times 10^{-3}$ |
| 93 | research | $6.4 \times 10^{-3}$ |
| 94 | social | $6.4 \times 10^{-3}$ |
| 95 | substitu | $6.4 \times 10^{-3}$ |
| 96 | polymer | $6.3 \times 10^{-3}$ |
| 97 | dye | $6.3 \times 10^{-3}$ |
| 98 | temperatur | $6.3 \times 10^{-3}$ |
| 99 | tem | $6.2 \times 10^{-3}$ |
| 100 | studi | $6.1 \times 10^{-3}$ |

Table D.37. The list of the top 100 words in the category Chemistry, Organic with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | reaction | $1.1 \times 10^{-1}$ |
| 2 | synthesi | $8.4 \times 10^{-2}$ |
| 3 | catalyz | $6 \times 10^{-2}$ |
| 4 | yield | $5.7 \times 10^{-2}$ |
| 5 | compound | $5.6 \times 10^{-2}$ |
| 6 | aryl | $4.8 \times 10^{-2}$ |
| 7 | synthes | $4.7 \times 10^{-2}$ |
| 8 | substitut | $4.5 \times 10^{-2}$ |
| 9 | result | $3.4 \times 10^{-2}$ |
| 10 | cycliz | $3.4 \times 10^{-2}$ |
| 11 | nmr | $3.3 \times 10^{-2}$ |
| 12 | paper | $3 \times 10^{-2}$ |
| 13 | afford | $2.9 \times 10^{-2}$ |
| 14 | catalyst | $2.9 \times 10^{-2}$ |
| 15 | deriv | $2.9 \times 10^{-2}$ |
| 16 | acid | $2.8 \times 10^{-2}$ |
| 17 | ring | $2.8 \times 10^{-2}$ |
| 18 | amin | $2.7 \times 10^{-2}$ |
| 19 | alkyl | $2.5 \times 10^{-2}$ |
| 20 | bond | $2.4 \times 10^{-2}$ |
| 21 | moieti | $2.4 \times 10^{-2}$ |
| 22 | aldehyd | $2.4 \times 10^{-2}$ |
| 23 | heterocycl | $2.3 \times 10^{-2}$ |
| 24 | intramolecular | $2.3 \times 10^{-2}$ |
| 25 | chiral | $2.3 \times 10^{-2}$ |
| 26 | substitu | $2.3 \times 10^{-2}$ |
| 27 | enantioselect | $2.3 \times 10^{-2}$ |
| 28 | conclus | $2.3 \times 10^{-2}$ |
| 29 | pot | $2.2 \times 10^{-2}$ |
| 30 | aromat | $2.1 \times 10^{-2}$ |
| 31 | alkyn | $2 \times 10^{-2}$ |
| 32 | patient | $2 \times 10^{-2}$ |
| 33 | nucleophil | $1.9 \times 10^{-2}$ |
| 34 | synthet | $1.9 \times 10^{-2}$ |
| 35 | ligand | $1.9 \times 10^{-2}$ |
| 36 | prepar | $1.9 \times 10^{-2}$ |
| 37 | keton | $1.9 \times 10^{-2}$ |
| 38 | palladium | $1.8 \times 10^{-2}$ |
| 39 | model | $1.8 \times 10^{-2}$ |
| 40 | ester | $1.7 \times 10^{-2}$ |
| 41 | reagent | $1.7 \times 10^{-2}$ |
| 42 | measur | $1.7 \times 10^{-2}$ |
| 43 | studi | $1.6 \times 10^{-2}$ |
| 44 | increas | $1.6 \times 10^{-2}$ |
| 45 | amino | $1.6 \times 10^{-2}$ |
| 46 | object | $1.5 \times 10^{-2}$ |
| 47 | bis | $1.5 \times 10^{-2}$ |
| 48 | catalyt | $1.5 \times 10^{-2}$ |
| 49 | data | $1.5 \times 10^{-2}$ |
| 50 | year | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | perform | $1.4 \times 10^{-2}$ |
| 52 | associ | $1.4 \times 10^{-2}$ |
| 53 | methyl | $1.4 \times 10^{-2}$ |
| 54 | proceed | $1.3 \times 10^{-2}$ |
| 55 | amid | $1.3 \times 10^{-2}$ |
| 56 | excel | $1.3 \times 10^{-2}$ |
| 57 | phenyl | $1.3 \times 10^{-2}$ |
| 58 | mild | $1.2 \times 10^{-2}$ |
| 59 | age | $1.2 \times 10^{-2}$ |
| 60 | assess | $1.2 \times 10^{-2}$ |
| 61 | background | $1.2 \times 10^{-2}$ |
| 62 | simul | $1.2 \times 10^{-2}$ |
| 63 | compar | $1.2 \times 10^{-2}$ |
| 64 | differ | $1.2 \times 10^{-2}$ |
| 65 | intermedi | $1.2 \times 10^{-2}$ |
| 66 | signific | $1.2 \times 10^{-2}$ |
| 67 | level | $1.2 \times 10^{-2}$ |
| 68 | dure | $1.2 \times 10^{-2}$ |
| 69 | may | $1.2 \times 10^{-2}$ |
| 70 | problem | $1.2 \times 10^{-2}$ |
| 71 | good | $1.1 \times 10^{-2}$ |
| 72 | pyridin | $1.1 \times 10^{-2}$ |
| 73 | propos | $1.1 \times 10^{-2}$ |
| 74 | react | $1.1 \times 10^{-2}$ |
| 75 | present | $1.1 \times 10^{-2}$ |
| 76 | aim | $1.1 \times 10^{-2}$ |
| 77 | find | $1.1 \times 10^{-2}$ |
| 78 | analogu | $1.1 \times 10^{-2}$ |
| 79 | alpha | $1.1 \times 10^{-2}$ |
| 80 | howev | $1.1 \times 10^{-2}$ |
| 81 | solvent | $1.1 \times 10^{-2}$ |
| 82 | inform | $1.1 \times 10^{-2}$ |
| 83 | factor | $1 \times 10^{-2}$ |
| 84 | seri | $1 \times 10^{-2}$ |
| 85 | carboxyl | $1 \times 10^{-2}$ |
| 86 | sampl | $1 \times 10^{-2}$ |
| 87 | potent | $1 \times 10^{-2}$ |
| 88 | algorithm | $1 \times 10^{-2}$ |
| 89 | beta | $1 \times 10^{-2}$ |
| 90 | carbonyl | $1 \times 10^{-2}$ |
| 91 | consid | $9.9 \times 10^{-3}$ |
| 92 | asymmetr | $9.9 \times 10^{-3}$ |
| 93 | research | $9.8 \times 10^{-3}$ |
| 94 | analyz | $9.8 \times 10^{-3}$ |
| 95 | can | $9.8 \times 10^{-3}$ |
| 96 | hydroxi | $9.7 \times 10^{-3}$ |
| 97 | use | $9.7 \times 10^{-3}$ |
| 98 | conjug | $9.6 \times 10^{-3}$ |
| 99 | time | $9.5 \times 10^{-3}$ |
| 100 | risk | $9.5 \times 10^{-3}$ |

Table D.38. The list of the top 100 words in the category Chemistry, Physical with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | electron | $4.6 \times 10^{-2}$ |
| 2 | surfac | $4.3 \times 10^{-2}$ |
| 3 | catalyst | $3.9 \times 10^{-2}$ |
| 4 | spectroscopi | $3.6 \times 10^{-2}$ |
| 5 | temperatur | $3.1 \times 10^{-2}$ |
| 6 | reaction | $3.1 \times 10^{-2}$ |
| 7 | hydrogen | $3.1 \times 10^{-2}$ |
| 8 | atom | $2.9 \times 10^{-2}$ |
| 9 | energi | $2.9 \times 10^{-2}$ |
| 10 | molecul | $2.8 \times 10^{-2}$ |
| 11 | oxid | $2.7 \times 10^{-2}$ |
| 12 | structur | $2.7 \times 10^{-2}$ |
| 13 | patient | $2.7 \times 10^{-2}$ |
| 14 | charg | $2.7 \times 10^{-2}$ |
| 15 | conclus | $2.7 \times 10^{-2}$ |
| 16 | adsorpt | $2.6 \times 10^{-2}$ |
| 17 | nanoparticl | $2.6 \times 10^{-2}$ |
| 18 | prepar | $2.5 \times 10^{-2}$ |
| 19 | ion | $2.5 \times 10^{-2}$ |
| 20 | properti | $2.4 \times 10^{-2}$ |
| 21 | catalyt | $2.4 \times 10^{-2}$ |
| 22 | densiti | $2.3 \times 10^{-2}$ |
| 23 | ray | $2.3 \times 10^{-2}$ |
| 24 | bond | $2.2 \times 10^{-2}$ |
| 25 | synthes | $2.1 \times 10^{-2}$ |
| 26 | electrochem | $2.1 \times 10^{-2}$ |
| 27 | metal | $2 \times 10^{-2}$ |
| 28 | paper | $2 \times 10^{-2}$ |
| 29 | carbon | $1.9 \times 10^{-2}$ |
| 30 | chemic | $1.8 \times 10^{-2}$ |
| 31 | diffract | $1.8 \times 10^{-2}$ |
| 32 | molecular | $1.7 \times 10^{-2}$ |
| 33 | xrd | $1.7 \times 10^{-2}$ |
| 34 | microscopi | $1.7 \times 10^{-2}$ |
| 35 | year | $1.7 \times 10^{-2}$ |
| 36 | format | $1.6 \times 10^{-2}$ |
| 37 | calcul | $1.6 \times 10^{-2}$ |
| 38 | stabil | $1.6 \times 10^{-2}$ |
| 39 | solvent | $1.5 \times 10^{-2}$ |
| 40 | adsorb | $1.5 \times 10^{-2}$ |
| 41 | aqueous | $1.5 \times 10^{-2}$ |
| 42 | electrod | $1.5 \times 10^{-2}$ |
| 43 | electrolyt | $1.5 \times 10^{-2}$ |
| 44 | object | $1.5 \times 10^{-2}$ |
| 45 | graphen | $1.5 \times 10^{-2}$ |
| 46 | ionic | $1.5 \times 10^{-2}$ |
| 47 | film | $1.5 \times 10^{-2}$ |
| 48 | background | $1.5 \times 10^{-2}$ |
| 49 | clinic | $1.4 \times 10^{-2}$ |
| 50 | materi | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | spectra | $1.3 \times 10^{-2}$ |
| 52 | exhibit | $1.3 \times 10^{-2}$ |
| 53 | photoelectron | $1.3 \times 10^{-2}$ |
| 54 | phase | $1.3 \times 10^{-2}$ |
| 55 | dft | $1.3 \times 10^{-2}$ |
| 56 | tio2 | $1.3 \times 10^{-2}$ |
| 57 | crystal | $1.3 \times 10^{-2}$ |
| 58 | risk | $1.3 \times 10^{-2}$ |
| 59 | xps | $1.3 \times 10^{-2}$ |
| 60 | cation | $1.3 \times 10^{-2}$ |
| 61 | dope | $1.2 \times 10^{-2}$ |
| 62 | diseas | $1.2 \times 10^{-2}$ |
| 63 | polym | $1.2 \times 10^{-2}$ |
| 64 | absorpt | $1.2 \times 10^{-2}$ |
| 65 | kinet | $1.2 \times 10^{-2}$ |
| 66 | solid | $1.2 \times 10^{-2}$ |
| 67 | assess | $1.2 \times 10^{-2}$ |
| 68 | composit | $1.2 \times 10^{-2}$ |
| 69 | layer | $1.2 \times 10^{-2}$ |
| 70 | liquid | $1.1 \times 10^{-2}$ |
| 71 | thermodynam | $1.1 \times 10^{-2}$ |
| 72 | particl | $1.1 \times 10^{-2}$ |
| 73 | age | $1.1 \times 10^{-2}$ |
| 74 | raman | $1.1 \times 10^{-2}$ |
| 75 | mol | $1.1 \times 10^{-2}$ |
| 76 | tem | $1.1 \times 10^{-2}$ |
| 77 | associ | $1.1 \times 10^{-2}$ |
| 78 | mesopor | $1.1 \times 10^{-2}$ |
| 79 | water | $1 \times 10^{-2}$ |
| 80 | aim | $1 \times 10^{-2}$ |
| 81 | photocatalyt | $1 \times 10^{-2}$ |
| 82 | nanostructur | $1 \times 10^{-2}$ |
| 83 | lithium | $1 \times 10^{-2}$ |
| 84 | dispers | $9.9 \times 10^{-3}$ |
| 85 | oxygen | $9.9 \times 10^{-3}$ |
| 86 | transit | $9.8 \times 10^{-3}$ |
| 87 | crystallin | $9.8 \times 10^{-3}$ |
| 88 | surfact | $9.5 \times 10^{-3}$ |
| 89 | thermal | $9.5 \times 10^{-3}$ |
| 90 | deposit | $9.4 \times 10^{-3}$ |
| 91 | anod | $9 \times 10^{-3}$ |
| 92 | outcom | $9 \times 10^{-3}$ |
| 93 | nanotub | $9 \times 10^{-3}$ |
| 94 | problem | $8.9 \times 10^{-3}$ |
| 95 | degre | $8.9 \times 10^{-3}$ |
| 96 | solut | $8.9 \times 10^{-3}$ |
| 97 | gene | $8.9 \times 10^{-3}$ |
| 98 | character | $8.8 \times 10^{-3}$ |
| 99 | express | $8.8 \times 10^{-3}$ |
| 100 | manag | $8.8 \times 10^{-3}$ |

Table D.39. The list of the top 100 words in the category Classics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | greek | $9.3 \times 10^{-2}$ |
| 2 | roman | $9.3 \times 10^{-2}$ |
| 3 | argu | $6.7 \times 10^{-2}$ |
| 4 | ancient | $6.3 \times 10^{-2}$ |
| 5 | poet | $6.2 \times 10^{-2}$ |
| 6 | literari | $5.6 \times 10^{-2}$ |
| 7 | poem | $5.4 \times 10^{-2}$ |
| 8 | result | $5.2 \times 10^{-2}$ |
| 9 | text | $4.9 \times 10^{-2}$ |
| 10 | poetri | $4.9 \times 10^{-2}$ |
| 11 | poetic | $4.7 \times 10^{-2}$ |
| 12 | articl | $4.4 \times 10^{-2}$ |
| 13 | scholar | $4.4 \times 10^{-2}$ |
| 14 | narrat | $3.7 \times 10^{-2}$ |
| 15 | centuri | $3.7 \times 10^{-2}$ |
| 16 | epic | $3.6 \times 10^{-2}$ |
| 17 | read | $3.4 \times 10^{-2}$ |
| 18 | rome | $3.3 \times 10^{-2}$ |
| 19 | book | $3.2 \times 10^{-2}$ |
| 20 | passag | $3 \times 10^{-2}$ |
| 21 | method | $2.8 \times 10^{-2}$ |
| 22 | divin | $2.8 \times 10^{-2}$ |
| 23 | studi | $2.7 \times 10^{-2}$ |
| 24 | allus | $2.7 \times 10^{-2}$ |
| 25 | interpret | $2.5 \times 10^{-2}$ |
| 26 | polit | $2.4 \times 10^{-2}$ |
| 27 | rhetor | $2.3 \times 10^{-2}$ |
| 28 | data | $2.3 \times 10^{-2}$ |
| 29 | tragedi | $2.1 \times 10^{-2}$ |
| 30 | stori | $2.1 \times 10^{-2}$ |
| 31 | antiqu | $2.1 \times 10^{-2}$ |
| 32 | effect | $2.1 \times 10^{-2}$ |
| 33 | myth | $1.9 \times 10^{-2}$ |
| 34 | use | $1.9 \times 10^{-2}$ |
| 35 | increas | $1.8 \times 10^{-2}$ |
| 36 | scholarship | $1.8 \times 10^{-2}$ |
| 37 | base | $1.8 \times 10^{-2}$ |
| 38 | author | $1.8 \times 10^{-2}$ |
| 39 | word | $1.8 \times 10^{-2}$ |
| 40 | historian | $1.8 \times 10^{-2}$ |
| 41 | system | $1.7 \times 10^{-2}$ |
| 42 | vers | $1.7 \times 10^{-2}$ |
| 43 | recept | $1.7 \times 10^{-2}$ |
| 44 | tradit | $1.7 \times 10^{-2}$ |
| 45 | epigram | $1.6 \times 10^{-2}$ |
| 46 | audienc | $1.6 \times 10^{-2}$ |
| 47 | war | $1.6 \times 10^{-2}$ |
| 48 | god | $1.5 \times 10^{-2}$ |
| 49 | philosoph | $1.5 \times 10^{-2}$ |
| 50 | famous | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | measur | $1.5 \times 10^{-2}$ |
| 52 | high | $1.5 \times 10^{-2}$ |
| 53 | charact | $1.5 \times 10^{-2}$ |
| 54 | argument | $1.4 \times 10^{-2}$ |
| 55 | latin | $1.4 \times 10^{-2}$ |
| 56 | imperi | $1.4 \times 10^{-2}$ |
| 57 | inscript | $1.4 \times 10^{-2}$ |
| 58 | intertextu | $1.4 \times 10^{-2}$ |
| 59 | higher | $1.4 \times 10^{-2}$ |
| 60 | low | $1.4 \times 10^{-2}$ |
| 61 | patient | $1.3 \times 10^{-2}$ |
| 62 | compar | $1.3 \times 10^{-2}$ |
| 63 | test | $1.3 \times 10^{-2}$ |
| 64 | evalu | $1.3 \times 10^{-2}$ |
| 65 | cell | $1.3 \times 10^{-2}$ |
| 66 | imit | $1.2 \times 10^{-2}$ |
| 67 | figur | $1.2 \times 10^{-2}$ |
| 68 | rate | $1.2 \times 10^{-2}$ |
| 69 | histori | $1.2 \times 10^{-2}$ |
| 70 | dialogu | $1.2 \times 10^{-2}$ |
| 71 | histor | $1.2 \times 10^{-2}$ |
| 72 | hero | $1.2 \times 10^{-2}$ |
| 73 | question | $1.2 \times 10^{-2}$ |
| 74 | philosophi | $1.2 \times 10^{-2}$ |
| 75 | determin | $1.2 \times 10^{-2}$ |
| 76 | context | $1.1 \times 10^{-2}$ |
| 77 | tale | $1.1 \times 10^{-2}$ |
| 78 | obtain | $1.1 \times 10^{-2}$ |
| 79 | theme | $1.1 \times 10^{-2}$ |
| 80 | improv | $1.1 \times 10^{-2}$ |
| 81 | reader | $1.1 \times 10^{-2}$ |
| 82 | panegyr | $1.1 \times 10^{-2}$ |
| 83 | simul | $1.1 \times 10^{-2}$ |
| 84 | contemporari | $1.1 \times 10^{-2}$ |
| 85 | satir | $1 \times 10^{-2}$ |
| 86 | textual | $1 \times 10^{-2}$ |
| 87 | decreas | $1 \times 10^{-2}$ |
| 88 | epsilon | $1 \times 10^{-2}$ |
| 89 | genr | $1 \times 10^{-2}$ |
| 90 | modern | $1 \times 10^{-2}$ |
| 91 | control | $1 \times 10^{-2}$ |
| 92 | observ | $1 \times 10^{-2}$ |
| 93 | whi | $9.9 \times 10^{-3}$ |
| 94 | perform | $9.9 \times 10^{-3}$ |
| 95 | speech | $9.9 \times 10^{-3}$ |
| 96 | paramet | $9.8 \times 10^{-3}$ |
| 97 | attempt | $9.8 \times 10^{-3}$ |
| 98 | lyric | $9.8 \times 10^{-3}$ |
| 99 | sampl | $9.8 \times 10^{-3}$ |
| 100 | theatric | $9.6 \times 10^{-3}$ |

Table D.40. The list of the top 100 words in the category Clinical Neurology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | patient | $1.6 \times 10^{-1}$ |
| 2 | conclus | $9.2 \times 10^{-2}$ |
| 3 | clinic | $6.6 \times 10^{-2}$ |
| 4 | brain | $5.9 \times 10^{-2}$ |
| 5 | neurolog | $4.6 \times 10^{-2}$ |
| 6 | background | $4.5 \times 10^{-2}$ |
| 7 | object | $4.1 \times 10^{-2}$ |
| 8 | symptom | $4.1 \times 10^{-2}$ |
| 9 | age | $3.9 \times 10^{-2}$ |
| 10 | epilepsi | $3.7 \times 10^{-2}$ |
| 11 | disord | $3.7 \times 10^{-2}$ |
| 12 | spinal | $3.7 \times 10^{-2}$ |
| 13 | cerebr | $3.7 \times 10^{-2}$ |
| 14 | score | $3.6 \times 10^{-2}$ |
| 15 | seizur | $3.6 \times 10^{-2}$ |
| 16 | outcom | $3.4 \times 10^{-2}$ |
| 17 | year | $3.2 \times 10^{-2}$ |
| 18 | paper | $3.1 \times 10^{-2}$ |
| 19 | associ | $3.1 \times 10^{-2}$ |
| 20 | method | $3 \times 10^{-2}$ |
| 21 | stroke | $3 \times 10^{-2}$ |
| 22 | diseas | $2.9 \times 10^{-2}$ |
| 23 | treatment | $2.9 \times 10^{-2}$ |
| 24 | mri | $2.7 \times 10^{-2}$ |
| 25 | intracrani | $2.7 \times 10^{-2}$ |
| 26 | underw | $2.7 \times 10^{-2}$ |
| 27 | cognit | $2.7 \times 10^{-2}$ |
| 28 | assess | $2.7 \times 10^{-2}$ |
| 29 | pain | $2.6 \times 10^{-2}$ |
| 30 | month | $2.6 \times 10^{-2}$ |
| 31 | onset | $2.5 \times 10^{-2}$ |
| 32 | retrospect | $2.4 \times 10^{-2}$ |
| 33 | sclerosi | $2.4 \times 10^{-2}$ |
| 34 | surgeri | $2.4 \times 10^{-2}$ |
| 35 | signific | $2.3 \times 10^{-2}$ |
| 36 | impair | $2.2 \times 10^{-2}$ |
| 37 | deficit | $2.1 \times 10^{-2}$ |
| 38 | motor | $2.1 \times 10^{-2}$ |
| 39 | surgic | $2.1 \times 10^{-2}$ |
| 40 | disabl | $2.1 \times 10^{-2}$ |
| 41 | follow | $2.1 \times 10^{-2}$ |
| 42 | sleep | $2 \times 10^{-2}$ |
| 43 | studi | $2 \times 10^{-2}$ |
| 44 | hemorrhag | $2 \times 10^{-2}$ |
| 45 | nerv | $1.9 \times 10^{-2}$ |
| 46 | parkinson | $1.9 \times 10^{-2}$ |
| 47 | diagnosi | $1.9 \times 10^{-2}$ |
| 48 | lesion | $1.8 \times 10^{-2}$ |
| 49 | may | $1.8 \times 10^{-2}$ |
| 50 | syndrom | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | depress | $1.8 \times 10^{-2}$ |
| 52 | result | $1.8 \times 10^{-2}$ |
| 53 | spine | $1.7 \times 10^{-2}$ |
| 54 | posterior | $1.7 \times 10^{-2}$ |
| 55 | lumbar | $1.7 \times 10^{-2}$ |
| 56 | group | $1.7 \times 10^{-2}$ |
| 57 | healthi | $1.7 \times 10^{-2}$ |
| 58 | ischem | $1.6 \times 10^{-2}$ |
| 59 | postop | $1.6 \times 10^{-2}$ |
| 60 | injuri | $1.6 \times 10^{-2}$ |
| 61 | cortic | $1.6 \times 10^{-2}$ |
| 62 | cohort | $1.6 \times 10^{-2}$ |
| 63 | medic | $1.6 \times 10^{-2}$ |
| 64 | neuropsycholog | $1.5 \times 10^{-2}$ |
| 65 | headach | $1.5 \times 10^{-2}$ |
| 66 | dementia | $1.5 \times 10^{-2}$ |
| 67 | propos | $1.5 \times 10^{-2}$ |
| 68 | treat | $1.5 \times 10^{-2}$ |
| 69 | anterior | $1.4 \times 10^{-2}$ |
| 70 | abnorm | $1.4 \times 10^{-2}$ |
| 71 | acut | $1.4 \times 10^{-2}$ |
| 72 | prospect | $1.4 \times 10^{-2}$ |
| 73 | report | $1.4 \times 10^{-2}$ |
| 74 | cord | $1.4 \times 10^{-2}$ |
| 75 | risk | $1.4 \times 10^{-2}$ |
| 76 | review | $1.4 \times 10^{-2}$ |
| 77 | baselin | $1.4 \times 10^{-2}$ |
| 78 | aneurysm | $1.3 \times 10^{-2}$ |
| 79 | consecut | $1.3 \times 10^{-2}$ |
| 80 | imag | $1.3 \times 10^{-2}$ |
| 81 | includ | $1.3 \times 10^{-2}$ |
| 82 | diagnos | $1.3 \times 10^{-2}$ |
| 83 | arteri | $1.3 \times 10^{-2}$ |
| 84 | simul | $1.3 \times 10^{-2}$ |
| 85 | alzheim | $1.3 \times 10^{-2}$ |
| 86 | temperatur | $1.3 \times 10^{-2}$ |
| 87 | cerebrospin | $1.2 \times 10^{-2}$ |
| 88 | cortex | $1.2 \times 10^{-2}$ |
| 89 | subject | $1.2 \times 10^{-2}$ |
| 90 | particip | $1.2 \times 10^{-2}$ |
| 91 | bilater | $1.1 \times 10^{-2}$ |
| 92 | traumat | $1.1 \times 10^{-2}$ |
| 93 | therapi | $1.1 \times 10^{-2}$ |
| 94 | frontal | $1.1 \times 10^{-2}$ |
| 95 | patholog | $1.1 \times 10^{-2}$ |
| 96 | complic | $1.1 \times 10^{-2}$ |
| 97 | adult | $1.1 \times 10^{-2}$ |
| 98 | eeg | $1 \times 10^{-2}$ |
| 99 | energi | $1 \times 10^{-2}$ |
| 100 | solut | $1 \times 10^{-2}$ |

Table D.41. The list of the top 100 words in the category Communication with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | media | $1 \times 10^{-1}$ |
| 2 | news | $6.7 \times 10^{-2}$ |
| 3 | social | $6 \times 10^{-2}$ |
| 4 | communic | $5.6 \times 10^{-2}$ |
| 5 | articl | $5.5 \times 10^{-2}$ |
| 6 | polit | $5.2 \times 10^{-2}$ |
| 7 | journalist | $4.7 \times 10^{-2}$ |
| 8 | discours | $4.6 \times 10^{-2}$ |
| 9 | public | $4.3 \times 10^{-2}$ |
| 10 | audienc | $3.5 \times 10^{-2}$ |
| 11 | televis | $3.4 \times 10^{-2}$ |
| 12 | onlin | $3.1 \times 10^{-2}$ |
| 13 | argu | $3 \times 10^{-2}$ |
| 14 | newspap | $2.9 \times 10^{-2}$ |
| 15 | method | $2.3 \times 10^{-2}$ |
| 16 | examin | $2.3 \times 10^{-2}$ |
| 17 | research | $2.2 \times 10^{-2}$ |
| 18 | engag | $2.2 \times 10^{-2}$ |
| 19 | advertis | $2.1 \times 10^{-2}$ |
| 20 | narrat | $2 \times 10^{-2}$ |
| 21 | journal | $1.9 \times 10^{-2}$ |
| 22 | discurs | $1.8 \times 10^{-2}$ |
| 23 | draw | $1.8 \times 10^{-2}$ |
| 24 | citizen | $1.7 \times 10^{-2}$ |
| 25 | messag | $1.6 \times 10^{-2}$ |
| 26 | internet | $1.6 \times 10^{-2}$ |
| 27 | cultur | $1.6 \times 10^{-2}$ |
| 28 | stori | $1.6 \times 10^{-2}$ |
| 29 | peopl | $1.5 \times 10^{-2}$ |
| 30 | attitud | $1.5 \times 10^{-2}$ |
| 31 | rhetor | $1.5 \times 10^{-2}$ |
| 32 | cell | $1.5 \times 10^{-2}$ |
| 33 | interview | $1.5 \times 10^{-2}$ |
| 34 | context | $1.5 \times 10^{-2}$ |
| 35 | nation | $1.4 \times 10^{-2}$ |
| 36 | practic | $1.4 \times 10^{-2}$ |
| 37 | implic | $1.4 \times 10^{-2}$ |
| 38 | scholar | $1.4 \times 10^{-2}$ |
| 39 | perceiv | $1.3 \times 10^{-2}$ |
| 40 | result | $1.3 \times 10^{-2}$ |
| 41 | way | $1.3 \times 10^{-2}$ |
| 42 | discuss | $1.3 \times 10^{-2}$ |
| 43 | explor | $1.3 \times 10^{-2}$ |
| 44 | survey | $1.3 \times 10^{-2}$ |
| 45 | focus | $1.2 \times 10^{-2}$ |
| 46 | temperatur | $1.2 \times 10^{-2}$ |
| 47 | percept | $1.2 \times 10^{-2}$ |
| 48 | broadcast | $1.2 \times 10^{-2}$ |
| 49 | particip | $1.2 \times 10^{-2}$ |
| 50 | ideolog | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | essay | $1.1 \times 10^{-2}$ |
| 52 | simul | $1.1 \times 10^{-2}$ |
| 53 | campaign | $1.1 \times 10^{-2}$ |
| 54 | talk | $1.1 \times 10^{-2}$ |
| 55 | paramet | $1.1 \times 10^{-2}$ |
| 56 | surfac | $1 \times 10^{-2}$ |
| 57 | genr | $1 \times 10^{-2}$ |
| 58 | digit | $1 \times 10^{-2}$ |
| 59 | entertain | $1 \times 10^{-2}$ |
| 60 | perform | $1 \times 10^{-2}$ |
| 61 | question | $1 \times 10^{-2}$ |
| 62 | conclus | $1 \times 10^{-2}$ |
| 63 | text | $1 \times 10^{-2}$ |
| 64 | obtain | $9.9 \times 10^{-3}$ |
| 65 | seek | $9.9 \times 10^{-3}$ |
| 66 | energi | $9.8 \times 10^{-3}$ |
| 67 | societi | $9.7 \times 10^{-3}$ |
| 68 | debat | $9.4 \times 10^{-3}$ |
| 69 | protein | $9.3 \times 10^{-3}$ |
| 70 | theori | $9.2 \times 10^{-3}$ |
| 71 | high | $9.2 \times 10^{-3}$ |
| 72 | inform | $9.2 \times 10^{-3}$ |
| 73 | market | $9.1 \times 10^{-3}$ |
| 74 | perspect | $9.1 \times 10^{-3}$ |
| 75 | brand | $9.1 \times 10^{-3}$ |
| 76 | corpor | $9 \times 10^{-3}$ |
| 77 | contemporari | $8.9 \times 10^{-3}$ |
| 78 | system | $8.9 \times 10^{-3}$ |
| 79 | author | $8.8 \times 10^{-3}$ |
| 80 | american | $8.7 \times 10^{-3}$ |
| 81 | patient | $8.6 \times 10^{-3}$ |
| 82 | parti | $8.6 \times 10^{-3}$ |
| 83 | democrat | $8.6 \times 10^{-3}$ |
| 84 | person | $8.5 \times 10^{-3}$ |
| 85 | detect | $8.4 \times 10^{-3}$ |
| 86 | relationship | $8.3 \times 10^{-3}$ |
| 87 | ratio | $8.3 \times 10^{-3}$ |
| 88 | viewer | $8.2 \times 10^{-3}$ |
| 89 | frame | $8.2 \times 10^{-3}$ |
| 90 | argument | $8 \times 10^{-3}$ |
| 91 | properti | $8 \times 10^{-3}$ |
| 92 | issu | $7.9 \times 10^{-3}$ |
| 93 | view | $7.8 \times 10^{-3}$ |
| 94 | water | $7.8 \times 10^{-3}$ |
| 95 | find | $7.8 \times 10^{-3}$ |
| 96 | democraci | $7.7 \times 10^{-3}$ |
| 97 | understand | $7.7 \times 10^{-3}$ |
| 98 | content | $7.6 \times 10^{-3}$ |
| 99 | conceptu | $7.6 \times 10^{-3}$ |
| 100 | agenda | $7.6 \times 10^{-3}$ |

Table D.42. The list of the top 100 words in the category Computer Science, Artificial Intelligence with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | paper | $9.9 \times 10^{-2}$ |
| 2 | propos | $8.9 \times 10^{-2}$ |
| 3 | algorithm | $7.9 \times 10^{-2}$ |
| 4 | problem | $4 \times 10^{-2}$ |
| 5 | learn | $3.4 \times 10^{-2}$ |
| 6 | base | $3 \times 10^{-2}$ |
| 7 | approach | $2.8 \times 10^{-2}$ |
| 8 | fuzzi | $2.7 \times 10^{-2}$ |
| 9 | dataset | $2.7 \times 10^{-2}$ |
| 10 | comput | $2.5 \times 10^{-2}$ |
| 11 | studi | $2.5 \times 10^{-2}$ |
| 12 | conclus | $2.4 \times 10^{-2}$ |
| 13 | real | $2.2 \times 10^{-2}$ |
| 14 | classif | $2.2 \times 10^{-2}$ |
| 15 | task | $2.2 \times 10^{-2}$ |
| 16 | art | $2 \times 10^{-2}$ |
| 17 | robot | $2 \times 10^{-2}$ |
| 18 | featur | $1.9 \times 10^{-2}$ |
| 19 | recognit | $1.9 \times 10^{-2}$ |
| 20 | automat | $1.7 \times 10^{-2}$ |
| 21 | inform | $1.7 \times 10^{-2}$ |
| 22 | imag | $1.6 \times 10^{-2}$ |
| 23 | cell | $1.6 \times 10^{-2}$ |
| 24 | set | $1.6 \times 10^{-2}$ |
| 25 | network | $1.6 \times 10^{-2}$ |
| 26 | outperform | $1.6 \times 10^{-2}$ |
| 27 | machin | $1.5 \times 10^{-2}$ |
| 28 | user | $1.5 \times 10^{-2}$ |
| 29 | treatment | $1.5 \times 10^{-2}$ |
| 30 | neural | $1.5 \times 10^{-2}$ |
| 31 | patient | $1.4 \times 10^{-2}$ |
| 32 | accuraci | $1.4 \times 10^{-2}$ |
| 33 | train | $1.4 \times 10^{-2}$ |
| 34 | classifi | $1.4 \times 10^{-2}$ |
| 35 | solv | $1.4 \times 10^{-2}$ |
| 36 | represent | $1.3 \times 10^{-2}$ |
| 37 | semant | $1.3 \times 10^{-2}$ |
| 38 | intellig | $1.3 \times 10^{-2}$ |
| 39 | temperatur | $1.3 \times 10^{-2}$ |
| 40 | system | $1.2 \times 10^{-2}$ |
| 41 | benchmark | $1.2 \times 10^{-2}$ |
| 42 | optim | $1.2 \times 10^{-2}$ |
| 43 | search | $1.1 \times 10^{-2}$ |
| 44 | increas | $1.1 \times 10^{-2}$ |
| 45 | introduc | $1.1 \times 10^{-2}$ |
| 46 | framework | $1.1 \times 10^{-2}$ |
| 47 | suggest | $1.1 \times 10^{-2}$ |
| 48 | protein | $1.1 \times 10^{-2}$ |
| 49 | found | $1.1 \times 10^{-2}$ |
| 50 | perform | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | acid | $1.1 \times 10^{-2}$ |
| 52 | decreas | $1 \times 10^{-2}$ |
| 53 | robust | $1 \times 10^{-2}$ |
| 54 | concentr | $1 \times 10^{-2}$ |
| 55 | associ | $1 \times 10^{-2}$ |
| 56 | age | $9.9 \times 10^{-3}$ |
| 57 | model | $9.9 \times 10^{-3}$ |
| 58 | signific | $9.5 \times 10^{-3}$ |
| 59 | can | $9.5 \times 10^{-3}$ |
| 60 | vector | $9.4 \times 10^{-3}$ |
| 61 | induc | $9.4 \times 10^{-3}$ |
| 62 | investig | $9.3 \times 10^{-3}$ |
| 63 | scene | $9 \times 10^{-3}$ |
| 64 | experi | $9 \times 10^{-3}$ |
| 65 | materi | $8.9 \times 10^{-3}$ |
| 66 | speci | $8.7 \times 10^{-3}$ |
| 67 | clinic | $8.6 \times 10^{-3}$ |
| 68 | report | $8.5 \times 10^{-3}$ |
| 69 | oxid | $8.4 \times 10^{-3}$ |
| 70 | video | $8.4 \times 10^{-3}$ |
| 71 | graph | $8.2 \times 10^{-3}$ |
| 72 | higher | $7.9 \times 10^{-3}$ |
| 73 | adapt | $7.8 \times 10^{-3}$ |
| 74 | camera | $7.8 \times 10^{-3}$ |
| 75 | swarm | $7.7 \times 10^{-3}$ |
| 76 | reaction | $7.7 \times 10^{-3}$ |
| 77 | observ | $7.7 \times 10^{-3}$ |
| 78 | svm | $7.7 \times 10^{-3}$ |
| 79 | examin | $7.6 \times 10^{-3}$ |
| 80 | water | $7.5 \times 10^{-3}$ |
| 81 | decis | $7.4 \times 10^{-3}$ |
| 82 | vision | $7.4 \times 10^{-3}$ |
| 83 | molecular | $7.4 \times 10^{-3}$ |
| 84 | applic | $7.2 \times 10^{-3}$ |
| 85 | method | $7.2 \times 10^{-3}$ |
| 86 | experiment | $7.2 \times 10^{-3}$ |
| 87 | extract | $7.2 \times 10^{-3}$ |
| 88 | diseas | $7.1 \times 10^{-3}$ |
| 89 | reveal | $7.1 \times 10^{-3}$ |
| 90 | activ | $7.1 \times 10^{-3}$ |
| 91 | call | $7 \times 10^{-3}$ |
| 92 | electron | $6.9 \times 10^{-3}$ |
| 93 | gene | $6.9 \times 10^{-3}$ |
| 94 | total | $6.8 \times 10^{-3}$ |
| 95 | make | $6.7 \times 10^{-3}$ |
| 96 | techniqu | $6.7 \times 10^{-3}$ |
| 97 | input | $6.7 \times 10^{-3}$ |
| 98 | mine | $6.6 \times 10^{-3}$ |
| 99 | surfac | $6.6 \times 10^{-3}$ |
| 100 | indic | $6.5 \times 10^{-3}$ |

Table D.43. The list of the top 100 words in the category Computer Science, Cybernetics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | paper | $5.4 \times 10^{-2}$ |
| 2 | user | $4.1 \times 10^{-2}$ |
| 3 | propos | $3.7 \times 10^{-2}$ |
| 4 | algorithm | $2.3 \times 10^{-2}$ |
| 5 | robot | $2.1 \times 10^{-2}$ |
| 6 | task | $2.1 \times 10^{-2}$ |
| 7 | system | $1.7 \times 10^{-2}$ |
| 8 | learn | $1.6 \times 10^{-2}$ |
| 9 | conclus | $1.5 \times 10^{-2}$ |
| 10 | base | $1.5 \times 10^{-2}$ |
| 11 | comput | $1.4 \times 10^{-2}$ |
| 12 | visual | $1.4 \times 10^{-2}$ |
| 13 | problem | $1.4 \times 10^{-2}$ |
| 14 | real | $1.3 \times 10^{-2}$ |
| 15 | inform | $1.2 \times 10^{-2}$ |
| 16 | approach | $1.2 \times 10^{-2}$ |
| 17 | experi | $1.1 \times 10^{-2}$ |
| 18 | virtual | $1.1 \times 10^{-2}$ |
| 19 | cell | $1.1 \times 10^{-2}$ |
| 20 | interfac | $1 \times 10^{-2}$ |
| 21 | feedback | $9.8 \times 10^{-3}$ |
| 22 | recognit | $9.7 \times 10^{-3}$ |
| 23 | design | $9.7 \times 10^{-3}$ |
| 24 | treatment | $9.5 \times 10^{-3}$ |
| 25 | fuzzi | $9 \times 10^{-3}$ |
| 26 | temperatur | $8.8 \times 10^{-3}$ |
| 27 | interact | $8.8 \times 10^{-3}$ |
| 28 | camera | $8.7 \times 10^{-3}$ |
| 29 | patient | $8.3 \times 10^{-3}$ |
| 30 | gestur | $8.1 \times 10^{-3}$ |
| 31 | video | $8 \times 10^{-3}$ |
| 32 | realiti | $7.8 \times 10^{-3}$ |
| 33 | protein | $7.8 \times 10^{-3}$ |
| 34 | can | $7.6 \times 10^{-3}$ |
| 35 | featur | $7.5 \times 10^{-3}$ |
| 36 | environ | $7.4 \times 10^{-3}$ |
| 37 | acid | $7.4 \times 10^{-3}$ |
| 38 | concentr | $7.4 \times 10^{-3}$ |
| 39 | associ | $7.3 \times 10^{-3}$ |
| 40 | human | $7 \times 10^{-3}$ |
| 41 | machin | $6.9 \times 10^{-3}$ |
| 42 | usabl | $6.9 \times 10^{-3}$ |
| 43 | studi | $6.6 \times 10^{-3}$ |
| 44 | track | $6.4 \times 10^{-3}$ |
| 45 | accuraci | $6.2 \times 10^{-3}$ |
| 46 | automat | $6.2 \times 10^{-3}$ |
| 47 | diseas | $6.2 \times 10^{-3}$ |
| 48 | oxid | $6.1 \times 10^{-3}$ |
| 49 | represent | $6 \times 10^{-3}$ |
| 50 | make | $5.9 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | clinic | $5.8 \times 10^{-3}$ |
| 52 | speci | $5.8 \times 10^{-3}$ |
| 53 | set | $5.8 \times 10^{-3}$ |
| 54 | increas | $5.8 \times 10^{-3}$ |
| 55 | devic | $5.8 \times 10^{-3}$ |
| 56 | decreas | $5.8 \times 10^{-3}$ |
| 57 | framework | $5.6 \times 10^{-3}$ |
| 58 | dataset | $5.5 \times 10^{-3}$ |
| 59 | scene | $5.5 \times 10^{-3}$ |
| 60 | train | $5.4 \times 10^{-3}$ |
| 61 | molecular | $5.4 \times 10^{-3}$ |
| 62 | intellig | $5.4 \times 10^{-3}$ |
| 63 | total | $5.4 \times 10^{-3}$ |
| 64 | classif | $5.4 \times 10^{-3}$ |
| 65 | navig | $5.3 \times 10^{-3}$ |
| 66 | gene | $5.2 \times 10^{-3}$ |
| 67 | perform | $5.2 \times 10^{-3}$ |
| 68 | materi | $5.2 \times 10^{-3}$ |
| 69 | vision | $5 \times 10^{-3}$ |
| 70 | solv | $5 \times 10^{-3}$ |
| 71 | ratio | $5 \times 10^{-3}$ |
| 72 | motion | $4.9 \times 10^{-3}$ |
| 73 | signific | $4.8 \times 10^{-3}$ |
| 74 | onlin | $4.8 \times 10^{-3}$ |
| 75 | decis | $4.7 \times 10^{-3}$ |
| 76 | model | $4.7 \times 10^{-3}$ |
| 77 | implement | $4.6 \times 10^{-3}$ |
| 78 | art | $4.6 \times 10^{-3}$ |
| 79 | percept | $4.6 \times 10^{-3}$ |
| 80 | chemic | $4.5 \times 10^{-3}$ |
| 81 | higher | $4.5 \times 10^{-3}$ |
| 82 | introduc | $4.5 \times 10^{-3}$ |
| 83 | induc | $4.5 \times 10^{-3}$ |
| 84 | robust | $4.5 \times 10^{-3}$ |
| 85 | game | $4.4 \times 10^{-3}$ |
| 86 | water | $4.4 \times 10^{-3}$ |
| 87 | adapt | $4.3 \times 10^{-3}$ |
| 88 | age | $4.3 \times 10^{-3}$ |
| 89 | perceiv | $4.3 \times 10^{-3}$ |
| 90 | mobil | $4.3 \times 10^{-3}$ |
| 91 | movement | $4.3 \times 10^{-3}$ |
| 92 | applic | $4.2 \times 10^{-3}$ |
| 93 | growth | $4.1 \times 10^{-3}$ |
| 94 | prepar | $4.1 \times 10^{-3}$ |
| 95 | present | $4.1 \times 10^{-3}$ |
| 96 | ray | $4 \times 10^{-3}$ |
| 97 | report | $4 \times 10^{-3}$ |
| 98 | imag | $3.9 \times 10^{-3}$ |
| 99 | scenario | $3.9 \times 10^{-3}$ |
| 100 | electron | $3.9 \times 10^{-3}$ |

Table D.44. The list of the top 100 words in the category Computer Science, Hardware and Architecture with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | paper | $8.1 \times 10^{-2}$ |
| 2 | propos | $6.9 \times 10^{-2}$ |
| 3 | network | $6.5 \times 10^{-2}$ |
| 4 | algorithm | $3.8 \times 10^{-2}$ |
| 5 | wireless | $3.5 \times 10^{-2}$ |
| 6 | user | $3 \times 10^{-2}$ |
| 7 | architectur | $3 \times 10^{-2}$ |
| 8 | communic | $2.7 \times 10^{-2}$ |
| 9 | studi | $2.7 \times 10^{-2}$ |
| 10 | implement | $2.6 \times 10^{-2}$ |
| 11 | node | $2.6 \times 10^{-2}$ |
| 12 | overhead | $2.5 \times 10^{-2}$ |
| 13 | hardwar | $2.5 \times 10^{-2}$ |
| 14 | conclus | $2.2 \times 10^{-2}$ |
| 15 | comput | $2.1 \times 10^{-2}$ |
| 16 | scheme | $2 \times 10^{-2}$ |
| 17 | servic | $1.9 \times 10^{-2}$ |
| 18 | traffic | $1.9 \times 10^{-2}$ |
| 19 | effici | $1.9 \times 10^{-2}$ |
| 20 | simul | $1.9 \times 10^{-2}$ |
| 21 | system | $1.8 \times 10^{-2}$ |
| 22 | applic | $1.8 \times 10^{-2}$ |
| 23 | base | $1.8 \times 10^{-2}$ |
| 24 | patient | $1.7 \times 10^{-2}$ |
| 25 | power | $1.7 \times 10^{-2}$ |
| 26 | packet | $1.7 \times 10^{-2}$ |
| 27 | processor | $1.7 \times 10^{-2}$ |
| 28 | perform | $1.7 \times 10^{-2}$ |
| 29 | resourc | $1.6 \times 10^{-2}$ |
| 30 | deploy | $1.6 \times 10^{-2}$ |
| 31 | problem | $1.5 \times 10^{-2}$ |
| 32 | scalabl | $1.5 \times 10^{-2}$ |
| 33 | treatment | $1.5 \times 10^{-2}$ |
| 34 | mobil | $1.5 \times 10^{-2}$ |
| 35 | design | $1.5 \times 10^{-2}$ |
| 36 | technolog | $1.4 \times 10^{-2}$ |
| 37 | memori | $1.4 \times 10^{-2}$ |
| 38 | throughput | $1.4 \times 10^{-2}$ |
| 39 | cloud | $1.4 \times 10^{-2}$ |
| 40 | execut | $1.4 \times 10^{-2}$ |
| 41 | bandwidth | $1.3 \times 10^{-2}$ |
| 42 | secur | $1.3 \times 10^{-2}$ |
| 43 | suggest | $1.3 \times 10^{-2}$ |
| 44 | server | $1.3 \times 10^{-2}$ |
| 45 | access | $1.3 \times 10^{-2}$ |
| 46 | can | $1.3 \times 10^{-2}$ |
| 47 | found | $1.2 \times 10^{-2}$ |
| 48 | optim | $1.2 \times 10^{-2}$ |
| 49 | chip | $1.2 \times 10^{-2}$ |
| 50 | internet | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | infrastructur | $1.2 \times 10^{-2}$ |
| 52 | consumpt | $1.2 \times 10^{-2}$ |
| 53 | fpga | $1.2 \times 10^{-2}$ |
| 54 | clinic | $1.2 \times 10^{-2}$ |
| 55 | devic | $1.2 \times 10^{-2}$ |
| 56 | achiev | $1.1 \times 10^{-2}$ |
| 57 | schedul | $1.1 \times 10^{-2}$ |
| 58 | protein | $1.1 \times 10^{-2}$ |
| 59 | associ | $1.1 \times 10^{-2}$ |
| 60 | bit | $1.1 \times 10^{-2}$ |
| 61 | real | $1.1 \times 10^{-2}$ |
| 62 | protocol | $1.1 \times 10^{-2}$ |
| 63 | latenc | $1.1 \times 10^{-2}$ |
| 64 | softwar | $1.1 \times 10^{-2}$ |
| 65 | requir | $9.9 \times 10^{-3}$ |
| 66 | diseas | $9.9 \times 10^{-3}$ |
| 67 | circuit | $9.9 \times 10^{-3}$ |
| 68 | acid | $9.7 \times 10^{-3}$ |
| 69 | surfac | $9.6 \times 10^{-3}$ |
| 70 | workload | $9.4 \times 10^{-3}$ |
| 71 | cost | $9.4 \times 10^{-3}$ |
| 72 | concentr | $9.4 \times 10^{-3}$ |
| 73 | age | $9.3 \times 10^{-3}$ |
| 74 | techniqu | $9.1 \times 10^{-3}$ |
| 75 | platform | $9 \times 10^{-3}$ |
| 76 | speci | $8.8 \times 10^{-3}$ |
| 77 | oper | $8.7 \times 10^{-3}$ |
| 78 | materi | $8.7 \times 10^{-3}$ |
| 79 | group | $8.7 \times 10^{-3}$ |
| 80 | run | $8.6 \times 10^{-3}$ |
| 81 | virtual | $8.5 \times 10^{-3}$ |
| 82 | channel | $8.5 \times 10^{-3}$ |
| 83 | observ | $8.4 \times 10^{-3}$ |
| 84 | background | $8.3 \times 10^{-3}$ |
| 85 | gene | $8.2 \times 10^{-3}$ |
| 86 | parallel | $8.2 \times 10^{-3}$ |
| 87 | cmos | $8.2 \times 10^{-3}$ |
| 88 | examin | $8.1 \times 10^{-3}$ |
| 89 | radio | $8.1 \times 10^{-3}$ |
| 90 | exploit | $8 \times 10^{-3}$ |
| 91 | rout | $8 \times 10^{-3}$ |
| 92 | scenario | $7.9 \times 10^{-3}$ |
| 93 | investig | $7.9 \times 10^{-3}$ |
| 94 | delay | $7.9 \times 10^{-3}$ |
| 95 | share | $7.8 \times 10^{-3}$ |
| 96 | approach | $7.8 \times 10^{-3}$ |
| 97 | enabl | $7.8 \times 10^{-3}$ |
| 98 | indic | $7.7 \times 10^{-3}$ |
| 99 | assess | $7.6 \times 10^{-3}$ |
| 100 | reaction | $7.6 \times 10^{-3}$ |

Table D.45. The list of the top 100 words in the category Computer Science, Information Systems with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | paper | $9.4 \times 10^{-2}$ |
| 2 | propos | $7.2 \times 10^{-2}$ |
| 3 | user | $5 \times 10^{-2}$ |
| 4 | network | $4.2 \times 10^{-2}$ |
| 5 | algorithm | $4.1 \times 10^{-2}$ |
| 6 | base | $2.5 \times 10^{-2}$ |
| 7 | inform | $2.4 \times 10^{-2}$ |
| 8 | servic | $2.4 \times 10^{-2}$ |
| 9 | problem | $2.2 \times 10^{-2}$ |
| 10 | comput | $2.2 \times 10^{-2}$ |
| 11 | conclus | $2 \times 10^{-2}$ |
| 12 | studi | $1.9 \times 10^{-2}$ |
| 13 | wireless | $1.9 \times 10^{-2}$ |
| 14 | secur | $1.9 \times 10^{-2}$ |
| 15 | implement | $1.7 \times 10^{-2}$ |
| 16 | system | $1.7 \times 10^{-2}$ |
| 17 | communic | $1.6 \times 10^{-2}$ |
| 18 | approach | $1.6 \times 10^{-2}$ |
| 19 | treatment | $1.6 \times 10^{-2}$ |
| 20 | cloud | $1.5 \times 10^{-2}$ |
| 21 | cell | $1.5 \times 10^{-2}$ |
| 22 | node | $1.4 \times 10^{-2}$ |
| 23 | patient | $1.4 \times 10^{-2}$ |
| 24 | real | $1.4 \times 10^{-2}$ |
| 25 | queri | $1.4 \times 10^{-2}$ |
| 26 | web | $1.4 \times 10^{-2}$ |
| 27 | internet | $1.3 \times 10^{-2}$ |
| 28 | scheme | $1.3 \times 10^{-2}$ |
| 29 | temperatur | $1.3 \times 10^{-2}$ |
| 30 | applic | $1.3 \times 10^{-2}$ |
| 31 | semant | $1.2 \times 10^{-2}$ |
| 32 | architectur | $1.2 \times 10^{-2}$ |
| 33 | can | $1.1 \times 10^{-2}$ |
| 34 | found | $1.1 \times 10^{-2}$ |
| 35 | surfac | $1.1 \times 10^{-2}$ |
| 36 | concentr | $1.1 \times 10^{-2}$ |
| 37 | mobil | $1.1 \times 10^{-2}$ |
| 38 | associ | $1.1 \times 10^{-2}$ |
| 39 | induc | $1.1 \times 10^{-2}$ |
| 40 | acid | $1.1 \times 10^{-2}$ |
| 41 | effici | $1.1 \times 10^{-2}$ |
| 42 | protein | $1 \times 10^{-2}$ |
| 43 | technolog | $1 \times 10^{-2}$ |
| 44 | framework | $1 \times 10^{-2}$ |
| 45 | observ | $1 \times 10^{-2}$ |
| 46 | deploy | $1 \times 10^{-2}$ |
| 47 | task | $1 \times 10^{-2}$ |
| 48 | data | $1 \times 10^{-2}$ |
| 49 | age | $1 \times 10^{-2}$ |
| 50 | dataset | $1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | resourc | $9.7 \times 10^{-3}$ |
| 52 | speci | $9.7 \times 10^{-3}$ |
| 53 | suggest | $9.6 \times 10^{-3}$ |
| 54 | softwar | $9.6 \times 10^{-3}$ |
| 55 | scalabl | $9.3 \times 10^{-3}$ |
| 56 | attack | $9.2 \times 10^{-3}$ |
| 57 | materi | $9.2 \times 10^{-3}$ |
| 58 | investig | $9.1 \times 10^{-3}$ |
| 59 | learn | $9.1 \times 10^{-3}$ |
| 60 | automat | $9.1 \times 10^{-3}$ |
| 61 | exist | $8.9 \times 10^{-3}$ |
| 62 | decreas | $8.8 \times 10^{-3}$ |
| 63 | infrastructur | $8.8 \times 10^{-3}$ |
| 64 | oxid | $8.7 \times 10^{-3}$ |
| 65 | access | $8.7 \times 10^{-3}$ |
| 66 | traffic | $8.7 \times 10^{-3}$ |
| 67 | privaci | $8.7 \times 10^{-3}$ |
| 68 | clinic | $8.6 \times 10^{-3}$ |
| 69 | diseas | $8.4 \times 10^{-3}$ |
| 70 | water | $8.3 \times 10^{-3}$ |
| 71 | server | $8.3 \times 10^{-3}$ |
| 72 | signific | $8.3 \times 10^{-3}$ |
| 73 | gene | $8.2 \times 10^{-3}$ |
| 74 | packet | $8.1 \times 10^{-3}$ |
| 75 | reaction | $8.1 \times 10^{-3}$ |
| 76 | challeng | $8 \times 10^{-3}$ |
| 77 | platform | $7.9 \times 10^{-3}$ |
| 78 | introduc | $7.9 \times 10^{-3}$ |
| 79 | outperform | $7.9 \times 10^{-3}$ |
| 80 | perform | $7.8 \times 10^{-3}$ |
| 81 | execut | $7.8 \times 10^{-3}$ |
| 82 | set | $7.8 \times 10^{-3}$ |
| 83 | machin | $7.7 \times 10^{-3}$ |
| 84 | overhead | $7.6 \times 10^{-3}$ |
| 85 | call | $7.5 \times 10^{-3}$ |
| 86 | messag | $7.5 \times 10^{-3}$ |
| 87 | busi | $7.4 \times 10^{-3}$ |
| 88 | sensor | $7.4 \times 10^{-3}$ |
| 89 | background | $7.3 \times 10^{-3}$ |
| 90 | make | $7.2 \times 10^{-3}$ |
| 91 | higher | $7.1 \times 10^{-3}$ |
| 92 | popular | $7 \times 10^{-3}$ |
| 93 | virtual | $7 \times 10^{-3}$ |
| 94 | provid | $6.9 \times 10^{-3}$ |
| 95 | video | $6.9 \times 10^{-3}$ |
| 96 | report | $6.9 \times 10^{-3}$ |
| 97 | onlin | $6.9 \times 10^{-3}$ |
| 98 | environ | $6.9 \times 10^{-3}$ |
| 99 | issu | $6.9 \times 10^{-3}$ |
| 100 | scenario | $6.9 \times 10^{-3}$ |

Table D.46. The list of the top 100 words in the category Computer Science, Interdisciplinary Applications with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | paper | $4.8 \times 10^{-2}$ |
| 2 | propos | $3.4 \times 10^{-2}$ |
| 3 | algorithm | $3.3 \times 10^{-2}$ |
| 4 | comput | $2.7 \times 10^{-2}$ |
| 5 | problem | $1.8 \times 10^{-2}$ |
| 6 | base | $1.7 \times 10^{-2}$ |
| 7 | conclus | $1.6 \times 10^{-2}$ |
| 8 | approach | $1.4 \times 10^{-2}$ |
| 9 | simul | $1.4 \times 10^{-2}$ |
| 10 | user | $1.4 \times 10^{-2}$ |
| 11 | implement | $1.3 \times 10^{-2}$ |
| 12 | model | $1.1 \times 10^{-2}$ |
| 13 | system | $1.1 \times 10^{-2}$ |
| 14 | network | $1.1 \times 10^{-2}$ |
| 15 | inform | $1 \times 10^{-2}$ |
| 16 | solv | $8.7 \times 10^{-3}$ |
| 17 | treatment | $8.6 \times 10^{-3}$ |
| 18 | cell | $8.4 \times 10^{-3}$ |
| 19 | accuraci | $8.3 \times 10^{-3}$ |
| 20 | studi | $8.2 \times 10^{-3}$ |
| 21 | softwar | $7.9 \times 10^{-3}$ |
| 22 | signific | $7.6 \times 10^{-3}$ |
| 23 | age | $7.4 \times 10^{-3}$ |
| 24 | automat | $7.2 \times 10^{-3}$ |
| 25 | applic | $7.2 \times 10^{-3}$ |
| 26 | patient | $7.1 \times 10^{-3}$ |
| 27 | real | $7.1 \times 10^{-3}$ |
| 28 | technolog | $7 \times 10^{-3}$ |
| 29 | concentr | $7 \times 10^{-3}$ |
| 30 | induc | $6.9 \times 10^{-3}$ |
| 31 | decreas | $6.8 \times 10^{-3}$ |
| 32 | suggest | $6.7 \times 10^{-3}$ |
| 33 | associ | $6.5 \times 10^{-3}$ |
| 34 | machin | $6.4 \times 10^{-3}$ |
| 35 | optim | $6.4 \times 10^{-3}$ |
| 36 | temperatur | $6.4 \times 10^{-3}$ |
| 37 | oxid | $6.3 \times 10^{-3}$ |
| 38 | tool | $6.3 \times 10^{-3}$ |
| 39 | background | $6.2 \times 10^{-3}$ |
| 40 | acid | $6 \times 10^{-3}$ |
| 41 | can | $5.8 \times 10^{-3}$ |
| 42 | web | $5.8 \times 10^{-3}$ |
| 43 | observ | $5.7 \times 10^{-3}$ |
| 44 | design | $5.7 \times 10^{-3}$ |
| 45 | dataset | $5.7 \times 10^{-3}$ |
| 46 | set | $5.6 \times 10^{-3}$ |
| 47 | learn | $5.4 \times 10^{-3}$ |
| 48 | increas | $5.4 \times 10^{-3}$ |
| 49 | speci | $5.4 \times 10^{-3}$ |
| 50 | fuzzi | $5.3 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | report | $5.3 \times 10^{-3}$ |
| 52 | found | $5.2 \times 10^{-3}$ |
| 53 | data | $5.1 \times 10^{-3}$ |
| 54 | scheme | $5.1 \times 10^{-3}$ |
| 55 | present | $5.1 \times 10^{-3}$ |
| 56 | month | $5.1 \times 10^{-3}$ |
| 57 | investig | $5 \times 10^{-3}$ |
| 58 | use | $5 \times 10^{-3}$ |
| 59 | framework | $5 \times 10^{-3}$ |
| 60 | task | $5 \times 10^{-3}$ |
| 61 | higher | $4.8 \times 10^{-3}$ |
| 62 | decis | $4.8 \times 10^{-3}$ |
| 63 | perform | $4.8 \times 10^{-3}$ |
| 64 | spectroscopi | $4.7 \times 10^{-3}$ |
| 65 | prepar | $4.6 \times 10^{-3}$ |
| 66 | introduc | $4.5 \times 10^{-3}$ |
| 67 | classif | $4.5 \times 10^{-3}$ |
| 68 | make | $4.5 \times 10^{-3}$ |
| 69 | microscopi | $4.4 \times 10^{-3}$ |
| 70 | group | $4.3 \times 10^{-3}$ |
| 71 | activ | $4.2 \times 10^{-3}$ |
| 72 | integr | $4.2 \times 10^{-3}$ |
| 73 | effici | $4.2 \times 10^{-3}$ |
| 74 | inhibit | $4.1 \times 10^{-3}$ |
| 75 | techniqu | $4.1 \times 10^{-3}$ |
| 76 | featur | $4.1 \times 10^{-3}$ |
| 77 | lower | $4.1 \times 10^{-3}$ |
| 78 | intellig | $4 \times 10^{-3}$ |
| 79 | discret | $3.9 \times 10^{-3}$ |
| 80 | virtual | $3.9 \times 10^{-3}$ |
| 81 | servic | $3.9 \times 10^{-3}$ |
| 82 | order | $3.9 \times 10^{-3}$ |
| 83 | examin | $3.9 \times 10^{-3}$ |
| 84 | appli | $3.8 \times 10^{-3}$ |
| 85 | methodolog | $3.8 \times 10^{-3}$ |
| 86 | mice | $3.8 \times 10^{-3}$ |
| 87 | graphic | $3.8 \times 10^{-3}$ |
| 88 | internet | $3.8 \times 10^{-3}$ |
| 89 | ray | $3.8 \times 10^{-3}$ |
| 90 | reveal | $3.8 \times 10^{-3}$ |
| 91 | process | $3.7 \times 10^{-3}$ |
| 92 | research | $3.7 \times 10^{-3}$ |
| 93 | diffract | $3.6 \times 10^{-3}$ |
| 94 | dure | $3.6 \times 10^{-3}$ |
| 95 | male | $3.6 \times 10^{-3}$ |
| 96 | languag | $3.6 \times 10^{-3}$ |
| 97 | mediat | $3.6 \times 10^{-3}$ |
| 98 | autom | $3.6 \times 10^{-3}$ |
| 99 | year | $3.6 \times 10^{-3}$ |
| 100 | databas | $3.6 \times 10^{-3}$ |

Table D.47. The list of the top 100 words in the category Computer Science, Software Engineering with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | paper | $6.3 \times 10^{-2}$ |
| 2 | propos | $4.8 \times 10^{-2}$ |
| 3 | softwar | $3.8 \times 10^{-2}$ |
| 4 | user | $3.4 \times 10^{-2}$ |
| 5 | algorithm | $3.3 \times 10^{-2}$ |
| 6 | comput | $2.6 \times 10^{-2}$ |
| 7 | approach | $2.6 \times 10^{-2}$ |
| 8 | implement | $2.2 \times 10^{-2}$ |
| 9 | problem | $2 \times 10^{-2}$ |
| 10 | base | $2 \times 10^{-2}$ |
| 11 | execut | $1.9 \times 10^{-2}$ |
| 12 | semant | $1.9 \times 10^{-2}$ |
| 13 | conclus | $1.8 \times 10^{-2}$ |
| 14 | languag | $1.7 \times 10^{-2}$ |
| 15 | automat | $1.7 \times 10^{-2}$ |
| 16 | studi | $1.7 \times 10^{-2}$ |
| 17 | patient | $1.6 \times 10^{-2}$ |
| 18 | system | $1.6 \times 10^{-2}$ |
| 19 | applic | $1.5 \times 10^{-2}$ |
| 20 | framework | $1.5 \times 10^{-2}$ |
| 21 | cell | $1.5 \times 10^{-2}$ |
| 22 | treatment | $1.4 \times 10^{-2}$ |
| 23 | architectur | $1.3 \times 10^{-2}$ |
| 24 | code | $1.3 \times 10^{-2}$ |
| 25 | real | $1.3 \times 10^{-2}$ |
| 26 | can | $1.3 \times 10^{-2}$ |
| 27 | program | $1.2 \times 10^{-2}$ |
| 28 | temperatur | $1.2 \times 10^{-2}$ |
| 29 | task | $1.2 \times 10^{-2}$ |
| 30 | introduc | $1.1 \times 10^{-2}$ |
| 31 | web | $1.1 \times 10^{-2}$ |
| 32 | formal | $1.1 \times 10^{-2}$ |
| 33 | exist | $1.1 \times 10^{-2}$ |
| 34 | techniqu | $1.1 \times 10^{-2}$ |
| 35 | clinic | $1 \times 10^{-2}$ |
| 36 | abstract | $1 \times 10^{-2}$ |
| 37 | protein | $1 \times 10^{-2}$ |
| 38 | tool | $1 \times 10^{-2}$ |
| 39 | servic | $9.9 \times 10^{-3}$ |
| 40 | concentr | $9.6 \times 10^{-3}$ |
| 41 | investig | $9.6 \times 10^{-3}$ |
| 42 | video | $9.5 \times 10^{-3}$ |
| 43 | acid | $9.5 \times 10^{-3}$ |
| 44 | set | $9.4 \times 10^{-3}$ |
| 45 | graph | $9.3 \times 10^{-3}$ |
| 46 | age | $9.3 \times 10^{-3}$ |
| 47 | inform | $9.3 \times 10^{-3}$ |
| 48 | diseas | $9.2 \times 10^{-3}$ |
| 49 | queri | $9 \times 10^{-3}$ |
| 50 | found | $9 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | call | $9 \times 10^{-3}$ |
| 52 | suggest | $8.9 \times 10^{-3}$ |
| 53 | associ | $8.8 \times 10^{-3}$ |
| 54 | decreas | $8.7 \times 10^{-3}$ |
| 55 | requir | $8.7 \times 10^{-3}$ |
| 56 | network | $8.5 \times 10^{-3}$ |
| 57 | secur | $8.4 \times 10^{-3}$ |
| 58 | speci | $8.3 \times 10^{-3}$ |
| 59 | engin | $8.2 \times 10^{-3}$ |
| 60 | water | $8.2 \times 10^{-3}$ |
| 61 | challeng | $8.2 \times 10^{-3}$ |
| 62 | cloud | $8.1 \times 10^{-3}$ |
| 63 | verif | $8.1 \times 10^{-3}$ |
| 64 | scalabl | $8 \times 10^{-3}$ |
| 65 | logic | $7.9 \times 10^{-3}$ |
| 66 | art | $7.9 \times 10^{-3}$ |
| 67 | gene | $7.8 \times 10^{-3}$ |
| 68 | induc | $7.8 \times 10^{-3}$ |
| 69 | effici | $7.7 \times 10^{-3}$ |
| 70 | materi | $7.7 \times 10^{-3}$ |
| 71 | hardwar | $7.7 \times 10^{-3}$ |
| 72 | oxid | $7.6 \times 10^{-3}$ |
| 73 | visual | $7.5 \times 10^{-3}$ |
| 74 | autom | $7.5 \times 10^{-3}$ |
| 75 | overhead | $7.5 \times 10^{-3}$ |
| 76 | observ | $7.3 \times 10^{-3}$ |
| 77 | model | $7.3 \times 10^{-3}$ |
| 78 | signific | $7.2 \times 10^{-3}$ |
| 79 | virtual | $7.1 \times 10^{-3}$ |
| 80 | present | $7.1 \times 10^{-3}$ |
| 81 | handl | $7 \times 10^{-3}$ |
| 82 | run | $6.9 \times 10^{-3}$ |
| 83 | represent | $6.8 \times 10^{-3}$ |
| 84 | enabl | $6.8 \times 10^{-3}$ |
| 85 | examin | $6.7 \times 10^{-3}$ |
| 86 | reaction | $6.6 \times 10^{-3}$ |
| 87 | indic | $6.6 \times 10^{-3}$ |
| 88 | background | $6.5 \times 10^{-3}$ |
| 89 | make | $6.5 \times 10^{-3}$ |
| 90 | support | $6.4 \times 10^{-3}$ |
| 91 | server | $6.4 \times 10^{-3}$ |
| 92 | group | $6.2 \times 10^{-3}$ |
| 93 | platform | $6.2 \times 10^{-3}$ |
| 94 | higher | $6.1 \times 10^{-3}$ |
| 95 | domain | $6 \times 10^{-3}$ |
| 96 | provid | $6 \times 10^{-3}$ |
| 97 | featur | $5.9 \times 10^{-3}$ |
| 98 | activ | $5.9 \times 10^{-3}$ |
| 99 | metric | $5.9 \times 10^{-3}$ |
| 100 | increas | $5.9 \times 10^{-3}$ |

Table D.48. The list of the top 100 words in the category Computer Science, Theory and Methods with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | paper | $9.8 \times 10^{-2}$ |
| 2 | propos | $6.7 \times 10^{-2}$ |
| 3 | algorithm | $5.7 \times 10^{-2}$ |
| 4 | user | $3.4 \times 10^{-2}$ |
| 5 | comput | $3.3 \times 10^{-2}$ |
| 6 | problem | $3 \times 10^{-2}$ |
| 7 | conclus | $2.7 \times 10^{-2}$ |
| 8 | network | $2.5 \times 10^{-2}$ |
| 9 | studi | $2.5 \times 10^{-2}$ |
| 10 | base | $2.2 \times 10^{-2}$ |
| 11 | patient | $1.9 \times 10^{-2}$ |
| 12 | secur | $1.8 \times 10^{-2}$ |
| 13 | treatment | $1.7 \times 10^{-2}$ |
| 14 | approach | $1.6 \times 10^{-2}$ |
| 15 | implement | $1.6 \times 10^{-2}$ |
| 16 | cell | $1.6 \times 10^{-2}$ |
| 17 | cloud | $1.5 \times 10^{-2}$ |
| 18 | inform | $1.5 \times 10^{-2}$ |
| 19 | suggest | $1.3 \times 10^{-2}$ |
| 20 | system | $1.3 \times 10^{-2}$ |
| 21 | real | $1.3 \times 10^{-2}$ |
| 22 | servic | $1.3 \times 10^{-2}$ |
| 23 | protein | $1.3 \times 10^{-2}$ |
| 24 | found | $1.3 \times 10^{-2}$ |
| 25 | temperatur | $1.2 \times 10^{-2}$ |
| 26 | applic | $1.2 \times 10^{-2}$ |
| 27 | associ | $1.2 \times 10^{-2}$ |
| 28 | communic | $1.2 \times 10^{-2}$ |
| 29 | graph | $1.2 \times 10^{-2}$ |
| 30 | acid | $1.2 \times 10^{-2}$ |
| 31 | concentr | $1.2 \times 10^{-2}$ |
| 32 | execut | $1.1 \times 10^{-2}$ |
| 33 | signific | $1.1 \times 10^{-2}$ |
| 34 | age | $1.1 \times 10^{-2}$ |
| 35 | semant | $1.1 \times 10^{-2}$ |
| 36 | observ | $1.1 \times 10^{-2}$ |
| 37 | clinic | $1.1 \times 10^{-2}$ |
| 38 | architectur | $1.1 \times 10^{-2}$ |
| 39 | softwar | $1.1 \times 10^{-2}$ |
| 40 | scheme | $1.1 \times 10^{-2}$ |
| 41 | task | $1.1 \times 10^{-2}$ |
| 42 | investig | $1.1 \times 10^{-2}$ |
| 43 | can | $1 \times 10^{-2}$ |
| 44 | induc | $1 \times 10^{-2}$ |
| 45 | learn | $1 \times 10^{-2}$ |
| 46 | node | $1 \times 10^{-2}$ |
| 47 | automat | $1 \times 10^{-2}$ |
| 48 | framework | $9.9 \times 10^{-3}$ |
| 49 | speci | $9.9 \times 10^{-3}$ |
| 50 | decreas | $9.8 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | dataset | $9.7 \times 10^{-3}$ |
| 52 | surfac | $9.7 \times 10^{-3}$ |
| 53 | diseas | $9.6 \times 10^{-3}$ |
| 54 | introduc | $9.6 \times 10^{-3}$ |
| 55 | queri | $9.5 \times 10^{-3}$ |
| 56 | indic | $9.5 \times 10^{-3}$ |
| 57 | web | $9.3 \times 10^{-3}$ |
| 58 | materi | $9.3 \times 10^{-3}$ |
| 59 | solv | $9 \times 10^{-3}$ |
| 60 | effici | $8.9 \times 10^{-3}$ |
| 61 | gene | $8.9 \times 10^{-3}$ |
| 62 | art | $8.8 \times 10^{-3}$ |
| 63 | attack | $8.8 \times 10^{-3}$ |
| 64 | water | $8.8 \times 10^{-3}$ |
| 65 | activ | $8.8 \times 10^{-3}$ |
| 66 | set | $8.7 \times 10^{-3}$ |
| 67 | scalabl | $8.7 \times 10^{-3}$ |
| 68 | reaction | $8.6 \times 10^{-3}$ |
| 69 | wireless | $8.6 \times 10^{-3}$ |
| 70 | report | $8.5 \times 10^{-3}$ |
| 71 | machin | $8.5 \times 10^{-3}$ |
| 72 | examin | $8.3 \times 10^{-3}$ |
| 73 | oxid | $8.2 \times 10^{-3}$ |
| 74 | optim | $8.2 \times 10^{-3}$ |
| 75 | background | $8.2 \times 10^{-3}$ |
| 76 | outperform | $8.1 \times 10^{-3}$ |
| 77 | call | $7.9 \times 10^{-3}$ |
| 78 | group | $7.9 \times 10^{-3}$ |
| 79 | video | $7.8 \times 10^{-3}$ |
| 80 | server | $7.8 \times 10^{-3}$ |
| 81 | higher | $7.7 \times 10^{-3}$ |
| 82 | dure | $7.5 \times 10^{-3}$ |
| 83 | hardwar | $7.4 \times 10^{-3}$ |
| 84 | internet | $7.4 \times 10^{-3}$ |
| 85 | assess | $7.3 \times 10^{-3}$ |
| 86 | molecular | $7.3 \times 10^{-3}$ |
| 87 | overhead | $7.3 \times 10^{-3}$ |
| 88 | increas | $7.3 \times 10^{-3}$ |
| 89 | code | $7.3 \times 10^{-3}$ |
| 90 | techniqu | $7.2 \times 10^{-3}$ |
| 91 | reveal | $7.2 \times 10^{-3}$ |
| 92 | inhibit | $7.2 \times 10^{-3}$ |
| 93 | featur | $7.2 \times 10^{-3}$ |
| 94 | perform | $7.1 \times 10^{-3}$ |
| 95 | exist | $6.9 \times 10^{-3}$ |
| 96 | mass | $6.7 \times 10^{-3}$ |
| 97 | platform | $6.7 \times 10^{-3}$ |
| 98 | messag | $6.7 \times 10^{-3}$ |
| 99 | prepar | $6.7 \times 10^{-3}$ |
| 100 | resourc | $6.7 \times 10^{-3}$ |

Table D.49. The list of the top 100 words in the category Construction and Building Technology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | concret | $1.2 \times 10^{-1}$ |
| 2 | build | $5.8 \times 10^{-2}$ |
| 3 | cement | $4.4 \times 10^{-2}$ |
| 4 | strength | $3.4 \times 10^{-2}$ |
| 5 | reinforc | $3.2 \times 10^{-2}$ |
| 6 | steel | $3 \times 10^{-2}$ |
| 7 | load | $3 \times 10^{-2}$ |
| 8 | asphalt | $2.7 \times 10^{-2}$ |
| 9 | paper | $2.6 \times 10^{-2}$ |
| 10 | mortar | $2.3 \times 10^{-2}$ |
| 11 | compress | $2.3 \times 10^{-2}$ |
| 12 | pavement | $2.2 \times 10^{-2}$ |
| 13 | patient | $2 \times 10^{-2}$ |
| 14 | construct | $1.9 \times 10^{-2}$ |
| 15 | test | $1.7 \times 10^{-2}$ |
| 16 | crack | $1.7 \times 10^{-2}$ |
| 17 | indoor | $1.6 \times 10^{-2}$ |
| 18 | binder | $1.5 \times 10^{-2}$ |
| 19 | seismic | $1.5 \times 10^{-2}$ |
| 20 | shear | $1.5 \times 10^{-2}$ |
| 21 | specimen | $1.5 \times 10^{-2}$ |
| 22 | flexur | $1.4 \times 10^{-2}$ |
| 23 | conclus | $1.4 \times 10^{-2}$ |
| 24 | air | $1.4 \times 10^{-2}$ |
| 25 | heat | $1.4 \times 10^{-2}$ |
| 26 | cell | $1.4 \times 10^{-2}$ |
| 27 | stiff | $1.3 \times 10^{-2}$ |
| 28 | design | $1.2 \times 10^{-2}$ |
| 29 | durabl | $1.2 \times 10^{-2}$ |
| 30 | comfort | $1.2 \times 10^{-2}$ |
| 31 | clinic | $1.2 \times 10^{-2}$ |
| 32 | energi | $1.1 \times 10^{-2}$ |
| 33 | materi | $1.1 \times 10^{-2}$ |
| 34 | beam | $1.1 \times 10^{-2}$ |
| 35 | protein | $1.1 \times 10^{-2}$ |
| 36 | ventil | $1.1 \times 10^{-2}$ |
| 37 | ductil | $1 \times 10^{-2}$ |
| 38 | ash | $1 \times 10^{-2}$ |
| 39 | diseas | $9.9 \times 10^{-3}$ |
| 40 | thermal | $9.8 \times 10^{-3}$ |
| 41 | earthquak | $9.7 \times 10^{-3}$ |
| 42 | group | $9.7 \times 10^{-3}$ |
| 43 | element | $9.6 \times 10^{-3}$ |
| 44 | bridg | $9.5 \times 10^{-3}$ |
| 45 | experiment | $9.4 \times 10^{-3}$ |
| 46 | structur | $8.6 \times 10^{-3}$ |
| 47 | associ | $8.5 \times 10^{-3}$ |
| 48 | gene | $8.4 \times 10^{-3}$ |
| 49 | residenti | $8.4 \times 10^{-3}$ |
| 50 | tensil | $8.4 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | save | $8.2 \times 10^{-3}$ |
| 52 | hydrat | $8 \times 10^{-3}$ |
| 53 | engin | $8 \times 10^{-3}$ |
| 54 | column | $7.9 \times 10^{-3}$ |
| 55 | background | $7.7 \times 10^{-3}$ |
| 56 | finit | $7.6 \times 10^{-3}$ |
| 57 | floor | $7.6 \times 10^{-3}$ |
| 58 | treatment | $7.5 \times 10^{-3}$ |
| 59 | cool | $7.5 \times 10^{-3}$ |
| 60 | aggreg | $7.4 \times 10^{-3}$ |
| 61 | displac | $7.2 \times 10^{-3}$ |
| 62 | slab | $7.1 \times 10^{-3}$ |
| 63 | simul | $7 \times 10^{-3}$ |
| 64 | bend | $6.9 \times 10^{-3}$ |
| 65 | cure | $6.9 \times 10^{-3}$ |
| 66 | hous | $6.7 \times 10^{-3}$ |
| 67 | failur | $6.7 \times 10^{-3}$ |
| 68 | wall | $6.6 \times 10^{-3}$ |
| 69 | perform | $6.6 \times 10^{-3}$ |
| 70 | modulus | $6.6 \times 10^{-3}$ |
| 71 | model | $6.6 \times 10^{-3}$ |
| 72 | capac | $6.5 \times 10^{-3}$ |
| 73 | deform | $6.5 \times 10^{-3}$ |
| 74 | activ | $6.5 \times 10^{-3}$ |
| 75 | harden | $6.2 \times 10^{-3}$ |
| 76 | numer | $6.2 \times 10^{-3}$ |
| 77 | damag | $6.2 \times 10^{-3}$ |
| 78 | suggest | $6.1 \times 10^{-3}$ |
| 79 | tissu | $5.9 \times 10^{-3}$ |
| 80 | cancer | $5.7 \times 10^{-3}$ |
| 81 | instal | $5.7 \times 10^{-3}$ |
| 82 | mixtur | $5.6 \times 10^{-3}$ |
| 83 | humid | $5.6 \times 10^{-3}$ |
| 84 | express | $5.6 \times 10^{-3}$ |
| 85 | frame | $5.5 \times 10^{-3}$ |
| 86 | carri | $5.4 \times 10^{-3}$ |
| 87 | fli | $5.4 \times 10^{-3}$ |
| 88 | research | $5.4 \times 10^{-3}$ |
| 89 | elast | $5.4 \times 10^{-3}$ |
| 90 | molecular | $5.4 \times 10^{-3}$ |
| 91 | therapi | $5.3 \times 10^{-3}$ |
| 92 | speci | $5.3 \times 10^{-3}$ |
| 93 | report | $5.3 \times 10^{-3}$ |
| 94 | consumpt | $5.2 \times 10^{-3}$ |
| 95 | popul | $5.1 \times 10^{-3}$ |
| 96 | deflect | $5.1 \times 10^{-3}$ |
| 97 | vibrat | $5.1 \times 10^{-3}$ |
| 98 | acid | $5 \times 10^{-3}$ |
| 99 | water | $5 \times 10^{-3}$ |
| 100 | blood | $5 \times 10^{-3}$ |

Table D.50. The list of the top 100 words in the category Criminology and Penology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | offend | $1.7 \times 10^{-1}$ |
| 2 | crime | $1.4 \times 10^{-1}$ |
| 3 | crimin | $1.3 \times 10^{-1}$ |
| 4 | violenc | $9.5 \times 10^{-2}$ |
| 5 | victim | $8.9 \times 10^{-2}$ |
| 6 | polic | $8.2 \times 10^{-2}$ |
| 7 | justic | $5.1 \times 10^{-2}$ |
| 8 | research | $4.4 \times 10^{-2}$ |
| 9 | prison | $4.3 \times 10^{-2}$ |
| 10 | sexual | $4.2 \times 10^{-2}$ |
| 11 | violent | $4.2 \times 10^{-2}$ |
| 12 | examin | $4.1 \times 10^{-2}$ |
| 13 | abus | $3.3 \times 10^{-2}$ |
| 14 | perpetr | $3.1 \times 10^{-2}$ |
| 15 | implic | $3.1 \times 10^{-2}$ |
| 16 | delinqu | $3 \times 10^{-2}$ |
| 17 | articl | $2.9 \times 10^{-2}$ |
| 18 | legal | $2.6 \times 10^{-2}$ |
| 19 | assault | $2.6 \times 10^{-2}$ |
| 20 | find | $2.5 \times 10^{-2}$ |
| 21 | convict | $2.5 \times 10^{-2}$ |
| 22 | social | $2.4 \times 10^{-2}$ |
| 23 | incarcer | $2.4 \times 10^{-2}$ |
| 24 | court | $2.2 \times 10^{-2}$ |
| 25 | youth | $2.1 \times 10^{-2}$ |
| 26 | antisoci | $2 \times 10^{-2}$ |
| 27 | law | $2 \times 10^{-2}$ |
| 28 | relationship | $1.9 \times 10^{-2}$ |
| 29 | offic | $1.8 \times 10^{-2}$ |
| 30 | forens | $1.7 \times 10^{-2}$ |
| 31 | interview | $1.7 \times 10^{-2}$ |
| 32 | intim | $1.7 \times 10^{-2}$ |
| 33 | polici | $1.6 \times 10^{-2}$ |
| 34 | discuss | $1.6 \times 10^{-2}$ |
| 35 | gender | $1.6 \times 10^{-2}$ |
| 36 | commit | $1.6 \times 10^{-2}$ |
| 37 | risk | $1.6 \times 10^{-2}$ |
| 38 | ipv | $1.5 \times 10^{-2}$ |
| 39 | cell | $1.5 \times 10^{-2}$ |
| 40 | adolesc | $1.5 \times 10^{-2}$ |
| 41 | partner | $1.4 \times 10^{-2}$ |
| 42 | sentenc | $1.4 \times 10^{-2}$ |
| 43 | male | $1.3 \times 10^{-2}$ |
| 44 | perform | $1.3 \times 10^{-2}$ |
| 45 | mental | $1.3 \times 10^{-2}$ |
| 46 | enforc | $1.3 \times 10^{-2}$ |
| 47 | communiti | $1.2 \times 10^{-2}$ |
| 48 | person | $1.2 \times 10^{-2}$ |
| 49 | psycholog | $1.2 \times 10^{-2}$ |
| 50 | women | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | survey | $1.2 \times 10^{-2}$ |
| 52 | selfreport | $1.2 \times 10^{-2}$ |
| 53 | temperatur | $1.2 \times 10^{-2}$ |
| 54 | nation | $1.1 \times 10^{-2}$ |
| 55 | aggress | $1.1 \times 10^{-2}$ |
| 56 | punish | $1.1 \times 10^{-2}$ |
| 57 | juvenil | $1.1 \times 10^{-2}$ |
| 58 | child | $1.1 \times 10^{-2}$ |
| 59 | sex | $1.1 \times 10^{-2}$ |
| 60 | surfac | $1.1 \times 10^{-2}$ |
| 61 | whether | $1.1 \times 10^{-2}$ |
| 62 | particip | $1 \times 10^{-2}$ |
| 63 | explor | $1 \times 10^{-2}$ |
| 64 | simul | $1 \times 10^{-2}$ |
| 65 | draw | $9.8 \times 10^{-3}$ |
| 66 | peer | $9.7 \times 10^{-3}$ |
| 67 | femal | $9.4 \times 10^{-3}$ |
| 68 | public | $9.1 \times 10^{-3}$ |
| 69 | induc | $9.1 \times 10^{-3}$ |
| 70 | paramet | $9.1 \times 10^{-3}$ |
| 71 | sanction | $9 \times 10^{-3}$ |
| 72 | intervent | $9 \times 10^{-3}$ |
| 73 | energi | $9 \times 10^{-3}$ |
| 74 | legisl | $8.9 \times 10^{-3}$ |
| 75 | emot | $8.8 \times 10^{-3}$ |
| 76 | murder | $8.7 \times 10^{-3}$ |
| 77 | empir | $8.7 \times 10^{-3}$ |
| 78 | percept | $8.4 \times 10^{-3}$ |
| 79 | question | $8.4 \times 10^{-3}$ |
| 80 | suggest | $8.3 \times 10^{-3}$ |
| 81 | among | $8.2 \times 10^{-3}$ |
| 82 | protein | $8 \times 10^{-3}$ |
| 83 | effici | $8 \times 10^{-3}$ |
| 84 | perceiv | $7.9 \times 10^{-3}$ |
| 85 | interperson | $7.9 \times 10^{-3}$ |
| 86 | materi | $7.9 \times 10^{-3}$ |
| 87 | offici | $7.9 \times 10^{-3}$ |
| 88 | obtain | $7.7 \times 10^{-3}$ |
| 89 | literatur | $7.6 \times 10^{-3}$ |
| 90 | wit | $7.6 \times 10^{-3}$ |
| 91 | across | $7.6 \times 10^{-3}$ |
| 92 | futur | $7.6 \times 10^{-3}$ |
| 93 | argu | $7.6 \times 10^{-3}$ |
| 94 | behavior | $7.6 \times 10^{-3}$ |
| 95 | practic | $7.1 \times 10^{-3}$ |
| 96 | method | $7.1 \times 10^{-3}$ |
| 97 | context | $7.1 \times 10^{-3}$ |
| 98 | men | $7.1 \times 10^{-3}$ |
| 99 | studi | $7.1 \times 10^{-3}$ |
| 100 | show | $6.9 \times 10^{-3}$ |

Table D.51. The list of the top 100 words in the category Critical Care Medicine with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | patient | $1.6 \times 10^{-1}$ |
| 2 | conclus | $1.3 \times 10^{-1}$ |
| 3 | icu | $9.9 \times 10^{-2}$ |
| 4 | injuri | $9.4 \times 10^{-2}$ |
| 5 | hospit | $8.4 \times 10^{-2}$ |
| 6 | care | $8 \times 10^{-2}$ |
| 7 | mortal | $6.7 \times 10^{-2}$ |
| 8 | trauma | $6.7 \times 10^{-2}$ |
| 9 | ventil | $6.5 \times 10^{-2}$ |
| 10 | outcom | $6.4 \times 10^{-2}$ |
| 11 | admiss | $5.6 \times 10^{-2}$ |
| 12 | resuscit | $5.5 \times 10^{-2}$ |
| 13 | prospect | $4.9 \times 10^{-2}$ |
| 14 | score | $4.6 \times 10^{-2}$ |
| 15 | admit | $4.4 \times 10^{-2}$ |
| 16 | acut | $4.4 \times 10^{-2}$ |
| 17 | ill | $3.9 \times 10^{-2}$ |
| 18 | clinic | $3.9 \times 10^{-2}$ |
| 19 | retrospect | $3.8 \times 10^{-2}$ |
| 20 | method | $3.8 \times 10^{-2}$ |
| 21 | cardiac | $3.7 \times 10^{-2}$ |
| 22 | intervent | $3.7 \times 10^{-2}$ |
| 23 | associ | $3.6 \times 10^{-2}$ |
| 24 | background | $3.6 \times 10^{-2}$ |
| 25 | sepsi | $3.5 \times 10^{-2}$ |
| 26 | hour | $3.4 \times 10^{-2}$ |
| 27 | respiratori | $3.3 \times 10^{-2}$ |
| 28 | pulmonari | $3.2 \times 10^{-2}$ |
| 29 | cohort | $3.2 \times 10^{-2}$ |
| 30 | day | $3.2 \times 10^{-2}$ |
| 31 | unit | $3 \times 10^{-2}$ |
| 32 | result | $3 \times 10^{-2}$ |
| 33 | stay | $2.9 \times 10^{-2}$ |
| 34 | traumat | $2.9 \times 10^{-2}$ |
| 35 | receiv | $2.8 \times 10^{-2}$ |
| 36 | introduct | $2.7 \times 10^{-2}$ |
| 37 | arrest | $2.7 \times 10^{-2}$ |
| 38 | septic | $2.6 \times 10^{-2}$ |
| 39 | paper | $2.6 \times 10^{-2}$ |
| 40 | lung | $2.4 \times 10^{-2}$ |
| 41 | medic | $2.4 \times 10^{-2}$ |
| 42 | age | $2.4 \times 10^{-2}$ |
| 43 | blood | $2.3 \times 10^{-2}$ |
| 44 | median | $2.3 \times 10^{-2}$ |
| 45 | object | $2.3 \times 10^{-2}$ |
| 46 | intens | $2.2 \times 10^{-2}$ |
| 47 | risk | $2.2 \times 10^{-2}$ |
| 48 | year | $2.2 \times 10^{-2}$ |
| 49 | signific | $2.2 \times 10^{-2}$ |
| 50 | assess | $2.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | studi | $2.1 \times 10^{-2}$ |
| 52 | injur | $2 \times 10^{-2}$ |
| 53 | sever | $2 \times 10^{-2}$ |
| 54 | shock | $2 \times 10^{-2}$ |
| 55 | death | $2 \times 10^{-2}$ |
| 56 | odd | $2 \times 10^{-2}$ |
| 57 | inhospit | $2 \times 10^{-2}$ |
| 58 | adult | $2 \times 10^{-2}$ |
| 59 | surviv | $1.9 \times 10^{-2}$ |
| 60 | critic | $1.8 \times 10^{-2}$ |
| 61 | includ | $1.7 \times 10^{-2}$ |
| 62 | measur | $1.7 \times 10^{-2}$ |
| 63 | airway | $1.7 \times 10^{-2}$ |
| 64 | surgic | $1.7 \times 10^{-2}$ |
| 65 | group | $1.7 \times 10^{-2}$ |
| 66 | hemodynam | $1.7 \times 10^{-2}$ |
| 67 | neurolog | $1.7 \times 10^{-2}$ |
| 68 | hemorrhag | $1.7 \times 10^{-2}$ |
| 69 | rational | $1.6 \times 10^{-2}$ |
| 70 | survivor | $1.6 \times 10^{-2}$ |
| 71 | arteri | $1.6 \times 10^{-2}$ |
| 72 | intub | $1.6 \times 10^{-2}$ |
| 73 | cardiopulmonari | $1.6 \times 10^{-2}$ |
| 74 | logist | $1.6 \times 10^{-2}$ |
| 75 | chest | $1.6 \times 10^{-2}$ |
| 76 | follow | $1.6 \times 10^{-2}$ |
| 77 | discharg | $1.5 \times 10^{-2}$ |
| 78 | burn | $1.5 \times 10^{-2}$ |
| 79 | trial | $1.5 \times 10^{-2}$ |
| 80 | regress | $1.5 \times 10^{-2}$ |
| 81 | therapi | $1.5 \times 10^{-2}$ |
| 82 | pediatr | $1.5 \times 10^{-2}$ |
| 83 | complic | $1.5 \times 10^{-2}$ |
| 84 | total | $1.5 \times 10^{-2}$ |
| 85 | multivari | $1.4 \times 10^{-2}$ |
| 86 | compar | $1.4 \times 10^{-2}$ |
| 87 | surgeri | $1.4 \times 10^{-2}$ |
| 88 | interquartil | $1.4 \times 10^{-2}$ |
| 89 | consecut | $1.4 \times 10^{-2}$ |
| 90 | month | $1.4 \times 10^{-2}$ |
| 91 | pneumonia | $1.3 \times 10^{-2}$ |
| 92 | dure | $1.3 \times 10^{-2}$ |
| 93 | adjust | $1.3 \times 10^{-2}$ |
| 94 | review | $1.3 \times 10^{-2}$ |
| 95 | failur | $1.3 \times 10^{-2}$ |
| 96 | none | $1.3 \times 10^{-2}$ |
| 97 | enrol | $1.3 \times 10^{-2}$ |
| 98 | confid | $1.3 \times 10^{-2}$ |
| 99 | tertiari | $1.3 \times 10^{-2}$ |
| 100 | interv | $1.3 \times 10^{-2}$ |

Table D.52. The list of the top 100 words in the category Crystallography with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | crystal | $1.9 \times 10^{-1}$ |
| 2 | diffract | $7.8 \times 10^{-2}$ |
| 3 | ray | $7.5 \times 10^{-2}$ |
| 4 | angstrom | $7.1 \times 10^{-2}$ |
| 5 | structur | $6.4 \times 10^{-2}$ |
| 6 | dot | $5.2 \times 10^{-2}$ |
| 7 | bond | $4.1 \times 10^{-2}$ |
| 8 | ligand | $4 \times 10^{-2}$ |
| 9 | h2o | $3.4 \times 10^{-2}$ |
| 10 | synthes | $3.3 \times 10^{-2}$ |
| 11 | monoclin | $3.2 \times 10^{-2}$ |
| 12 | molecul | $3.2 \times 10^{-2}$ |
| 13 | center | $3.1 \times 10^{-2}$ |
| 14 | compound | $2.8 \times 10^{-2}$ |
| 15 | atom | $2.7 \times 10^{-2}$ |
| 16 | hydrogen | $2.7 \times 10^{-2}$ |
| 17 | coordin | $2.6 \times 10^{-2}$ |
| 18 | supramolecular | $2.2 \times 10^{-2}$ |
| 19 | crystallograph | $2.1 \times 10^{-2}$ |
| 20 | grown | $2.1 \times 10^{-2}$ |
| 21 | conclus | $1.9 \times 10^{-2}$ |
| 22 | patient | $1.8 \times 10^{-2}$ |
| 23 | bis | $1.8 \times 10^{-2}$ |
| 24 | singl | $1.8 \times 10^{-2}$ |
| 25 | intermolecular | $1.7 \times 10^{-2}$ |
| 26 | crystallin | $1.6 \times 10^{-2}$ |
| 27 | paper | $1.6 \times 10^{-2}$ |
| 28 | anion | $1.6 \times 10^{-2}$ |
| 29 | form | $1.4 \times 10^{-2}$ |
| 30 | hydrotherm | $1.4 \times 10^{-2}$ |
| 31 | complex | $1.4 \times 10^{-2}$ |
| 32 | character | $1.4 \times 10^{-2}$ |
| 33 | solvent | $1.4 \times 10^{-2}$ |
| 34 | temperatur | $1.3 \times 10^{-2}$ |
| 35 | epitaxi | $1.3 \times 10^{-2}$ |
| 36 | powder | $1.3 \times 10^{-2}$ |
| 37 | result | $1.3 \times 10^{-2}$ |
| 38 | sic | $1.3 \times 10^{-2}$ |
| 39 | orthorhomb | $1.2 \times 10^{-2}$ |
| 40 | titl | $1.2 \times 10^{-2}$ |
| 41 | year | $1.2 \times 10^{-2}$ |
| 42 | crystallographi | $1.2 \times 10^{-2}$ |
| 43 | ion | $1.2 \times 10^{-2}$ |
| 44 | beta | $1.2 \times 10^{-2}$ |
| 45 | metal | $1.1 \times 10^{-2}$ |
| 46 | object | $1.1 \times 10^{-2}$ |
| 47 | pyridin | $1.1 \times 10^{-2}$ |
| 48 | photoluminesc | $1.1 \times 10^{-2}$ |
| 49 | space | $1.1 \times 10^{-2}$ |
| 50 | chain | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | spectroscopi | $1.1 \times 10^{-2}$ |
| 52 | assess | $1.1 \times 10^{-2}$ |
| 53 | pack | $1.1 \times 10^{-2}$ |
| 54 | solid | $1.1 \times 10^{-2}$ |
| 55 | cation | $1.1 \times 10^{-2}$ |
| 56 | bridg | $1.1 \times 10^{-2}$ |
| 57 | degre | $1 \times 10^{-2}$ |
| 58 | octahedr | $1 \times 10^{-2}$ |
| 59 | unit | $1 \times 10^{-2}$ |
| 60 | dimer | $1 \times 10^{-2}$ |
| 61 | stack | $1 \times 10^{-2}$ |
| 62 | test | $1 \times 10^{-2}$ |
| 63 | background | $1 \times 10^{-2}$ |
| 64 | molecular | $1 \times 10^{-2}$ |
| 65 | electron | $1 \times 10^{-2}$ |
| 66 | polym | $1 \times 10^{-2}$ |
| 67 | signific | $1 \times 10^{-2}$ |
| 68 | luminesc | $9.7 \times 10^{-3}$ |
| 69 | clinic | $9.5 \times 10^{-3}$ |
| 70 | nmr | $9.5 \times 10^{-3}$ |
| 71 | layer | $9.3 \times 10^{-3}$ |
| 72 | resolut | $9.3 \times 10^{-3}$ |
| 73 | dimension | $9.3 \times 10^{-3}$ |
| 74 | age | $9.3 \times 10^{-3}$ |
| 75 | interact | $9.2 \times 10^{-3}$ |
| 76 | aim | $9.2 \times 10^{-3}$ |
| 77 | reaction | $9.2 \times 10^{-3}$ |
| 78 | properti | $8.9 \times 10^{-3}$ |
| 79 | growth | $8.9 \times 10^{-3}$ |
| 80 | risk | $8.9 \times 10^{-3}$ |
| 81 | acid | $8.7 \times 10^{-3}$ |
| 82 | associ | $8.7 \times 10^{-3}$ |
| 83 | evalu | $8.5 \times 10^{-3}$ |
| 84 | develop | $8.5 \times 10^{-3}$ |
| 85 | level | $8.4 \times 10^{-3}$ |
| 86 | exhibit | $8.4 \times 10^{-3}$ |
| 87 | ring | $8.2 \times 10^{-3}$ |
| 88 | format | $8.1 \times 10^{-3}$ |
| 89 | research | $8 \times 10^{-3}$ |
| 90 | phase | $8 \times 10^{-3}$ |
| 91 | nucleat | $7.9 \times 10^{-3}$ |
| 92 | conform | $7.9 \times 10^{-3}$ |
| 93 | carboxyl | $7.9 \times 10^{-3}$ |
| 94 | asymmetr | $7.7 \times 10^{-3}$ |
| 95 | lattic | $7.4 \times 10^{-3}$ |
| 96 | find | $7.3 \times 10^{-3}$ |
| 97 | problem | $7.1 \times 10^{-3}$ |
| 98 | dft | $7 \times 10^{-3}$ |
| 99 | diseas | $6.9 \times 10^{-3}$ |
| 100 | microscopi | $6.9 \times 10^{-3}$ |

Table D.53. The list of the top 100 words in the category Cultural Studies with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | articl | $9.7 \times 10^{-2}$ |
| 2 | polit | $8.6 \times 10^{-2}$ |
| 3 | cultur | $8.1 \times 10^{-2}$ |
| 4 | argu | $7.1 \times 10^{-2}$ |
| 5 | essay | $5.7 \times 10^{-2}$ |
| 6 | discours | $4.8 \times 10^{-2}$ |
| 7 | social | $4.7 \times 10^{-2}$ |
| 8 | contemporari | $4.3 \times 10^{-2}$ |
| 9 | result | $4.1 \times 10^{-2}$ |
| 10 | narrat | $3.4 \times 10^{-2}$ |
| 11 | draw | $3.1 \times 10^{-2}$ |
| 12 | media | $2.7 \times 10^{-2}$ |
| 13 | way | $2.5 \times 10^{-2}$ |
| 14 | method | $2.4 \times 10^{-2}$ |
| 15 | ident | $2.3 \times 10^{-2}$ |
| 16 | histor | $2.3 \times 10^{-2}$ |
| 17 | public | $2.2 \times 10^{-2}$ |
| 18 | societi | $2.2 \times 10^{-2}$ |
| 19 | context | $2.2 \times 10^{-2}$ |
| 20 | nation | $2.1 \times 10^{-2}$ |
| 21 | centuri | $2 \times 10^{-2}$ |
| 22 | imagin | $1.9 \times 10^{-2}$ |
| 23 | practic | $1.9 \times 10^{-2}$ |
| 24 | notion | $1.9 \times 10^{-2}$ |
| 25 | ideolog | $1.8 \times 10^{-2}$ |
| 26 | explor | $1.8 \times 10^{-2}$ |
| 27 | artist | $1.7 \times 10^{-2}$ |
| 28 | critiqu | $1.7 \times 10^{-2}$ |
| 29 | audienc | $1.7 \times 10^{-2}$ |
| 30 | claim | $1.7 \times 10^{-2}$ |
| 31 | transnat | $1.7 \times 10^{-2}$ |
| 32 | world | $1.7 \times 10^{-2}$ |
| 33 | neoliber | $1.6 \times 10^{-2}$ |
| 34 | look | $1.6 \times 10^{-2}$ |
| 35 | peopl | $1.6 \times 10^{-2}$ |
| 36 | engag | $1.6 \times 10^{-2}$ |
| 37 | histori | $1.6 \times 10^{-2}$ |
| 38 | war | $1.6 \times 10^{-2}$ |
| 39 | stori | $1.6 \times 10^{-2}$ |
| 40 | postcoloni | $1.5 \times 10^{-2}$ |
| 41 | articul | $1.5 \times 10^{-2}$ |
| 42 | celebr | $1.5 \times 10^{-2}$ |
| 43 | televis | $1.5 \times 10^{-2}$ |
| 44 | scholar | $1.5 \times 10^{-2}$ |
| 45 | debat | $1.5 \times 10^{-2}$ |
| 46 | use | $1.5 \times 10^{-2}$ |
| 47 | question | $1.5 \times 10^{-2}$ |
| 48 | effect | $1.5 \times 10^{-2}$ |
| 49 | creativ | $1.5 \times 10^{-2}$ |
| 50 | measur | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | patient | $1.4 \times 10^{-2}$ |
| 52 | literari | $1.4 \times 10^{-2}$ |
| 53 | obtain | $1.4 \times 10^{-2}$ |
| 54 | cinema | $1.4 \times 10^{-2}$ |
| 55 | everyday | $1.3 \times 10^{-2}$ |
| 56 | focus | $1.3 \times 10^{-2}$ |
| 57 | struggl | $1.3 \times 10^{-2}$ |
| 58 | compar | $1.3 \times 10^{-2}$ |
| 59 | seek | $1.3 \times 10^{-2}$ |
| 60 | represent | $1.3 \times 10^{-2}$ |
| 61 | discurs | $1.3 \times 10^{-2}$ |
| 62 | text | $1.2 \times 10^{-2}$ |
| 63 | fiction | $1.2 \times 10^{-2}$ |
| 64 | evalu | $1.2 \times 10^{-2}$ |
| 65 | high | $1.2 \times 10^{-2}$ |
| 66 | understand | $1.2 \times 10^{-2}$ |
| 67 | emerg | $1.2 \times 10^{-2}$ |
| 68 | conclus | $1.2 \times 10^{-2}$ |
| 69 | themselv | $1.2 \times 10^{-2}$ |
| 70 | activist | $1.2 \times 10^{-2}$ |
| 71 | ethnograph | $1.2 \times 10^{-2}$ |
| 72 | aesthet | $1.2 \times 10^{-2}$ |
| 73 | data | $1.2 \times 10^{-2}$ |
| 74 | read | $1.1 \times 10^{-2}$ |
| 75 | author | $1.1 \times 10^{-2}$ |
| 76 | popular | $1.1 \times 10^{-2}$ |
| 77 | figur | $1.1 \times 10^{-2}$ |
| 78 | cell | $1.1 \times 10^{-2}$ |
| 79 | examin | $1.1 \times 10^{-2}$ |
| 80 | capit | $1.1 \times 10^{-2}$ |
| 81 | coloni | $1.1 \times 10^{-2}$ |
| 82 | contest | $1.1 \times 10^{-2}$ |
| 83 | determin | $1.1 \times 10^{-2}$ |
| 84 | simul | $1.1 \times 10^{-2}$ |
| 85 | filmmak | $1.1 \times 10^{-2}$ |
| 86 | test | $1.1 \times 10^{-2}$ |
| 87 | rate | $1.1 \times 10^{-2}$ |
| 88 | concept | $1.1 \times 10^{-2}$ |
| 89 | improv | $1.1 \times 10^{-2}$ |
| 90 | write | $1 \times 10^{-2}$ |
| 91 | decreas | $1 \times 10^{-2}$ |
| 92 | particular | $1 \times 10^{-2}$ |
| 93 | think | $1 \times 10^{-2}$ |
| 94 | model | $1 \times 10^{-2}$ |
| 95 | econom | $1 \times 10^{-2}$ |
| 96 | reduc | $1 \times 10^{-2}$ |
| 97 | rhetor | $9.8 \times 10^{-3}$ |
| 98 | modern | $9.7 \times 10^{-3}$ |
| 99 | low | $9.6 \times 10^{-3}$ |
| 100 | citizenship | $9.5 \times 10^{-3}$ |

Table D.54. The list of the top 100 words in the category Dance with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | danc | $6.6 \times 10^{-1}$ |
| 2 | dancer | $1.7 \times 10^{-1}$ |
| 3 | choreograph | $1.4 \times 10^{-1}$ |
| 4 | festiv | $1.2 \times 10^{-1}$ |
| 5 | music | $9.3 \times 10^{-2}$ |
| 6 | ballet | $8.7 \times 10^{-2}$ |
| 7 | folk | $7.9 \times 10^{-2}$ |
| 8 | place | $6.2 \times 10^{-2}$ |
| 9 | contemporari | $6.2 \times 10^{-2}$ |
| 10 | choreographi | $4.5 \times 10^{-2}$ |
| 11 | cultur | $4.4 \times 10^{-2}$ |
| 12 | tradit | $4.4 \times 10^{-2}$ |
| 13 | creativ | $3.9 \times 10^{-2}$ |
| 14 | ethnograph | $3.7 \times 10^{-2}$ |
| 15 | result | $3 \times 10^{-2}$ |
| 16 | essay | $3 \times 10^{-2}$ |
| 17 | fieldwork | $2.9 \times 10^{-2}$ |
| 18 | celebr | $2.9 \times 10^{-2}$ |
| 19 | musician | $2.8 \times 10^{-2}$ |
| 20 | audienc | $2.8 \times 10^{-2}$ |
| 21 | genr | $2.8 \times 10^{-2}$ |
| 22 | villag | $2.7 \times 10^{-2}$ |
| 23 | communiti | $2.6 \times 10^{-2}$ |
| 24 | context | $2.5 \times 10^{-2}$ |
| 25 | ritual | $2.5 \times 10^{-2}$ |
| 26 | artist | $2.5 \times 10^{-2}$ |
| 27 | teacher | $2.4 \times 10^{-2}$ |
| 28 | creat | $2.4 \times 10^{-2}$ |
| 29 | postmodern | $2.3 \times 10^{-2}$ |
| 30 | aesthet | $2.2 \times 10^{-2}$ |
| 31 | effect | $2.1 \times 10^{-2}$ |
| 32 | movement | $2.1 \times 10^{-2}$ |
| 33 | art | $2 \times 10^{-2}$ |
| 34 | practic | $2 \times 10^{-2}$ |
| 35 | theatr | $2 \times 10^{-2}$ |
| 36 | form | $1.9 \times 10^{-2}$ |
| 37 | question | $1.8 \times 10^{-2}$ |
| 38 | social | $1.8 \times 10^{-2}$ |
| 39 | interview | $1.8 \times 10^{-2}$ |
| 40 | diaspora | $1.7 \times 10^{-2}$ |
| 41 | discours | $1.7 \times 10^{-2}$ |
| 42 | measur | $1.7 \times 10^{-2}$ |
| 43 | brought | $1.7 \times 10^{-2}$ |
| 44 | organis | $1.7 \times 10^{-2}$ |
| 45 | ident | $1.7 \times 10^{-2}$ |
| 46 | high | $1.7 \times 10^{-2}$ |
| 47 | discuss | $1.6 \times 10^{-2}$ |
| 48 | today | $1.6 \times 10^{-2}$ |
| 49 | held | $1.6 \times 10^{-2}$ |
| 50 | style | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | societi | $1.5 \times 10^{-2}$ |
| 52 | increas | $1.5 \times 10^{-2}$ |
| 53 | citi | $1.5 \times 10^{-2}$ |
| 54 | represent | $1.5 \times 10^{-2}$ |
| 55 | argu | $1.5 \times 10^{-2}$ |
| 56 | show | $1.5 \times 10^{-2}$ |
| 57 | ethnographi | $1.5 \times 10^{-2}$ |
| 58 | participatori | $1.5 \times 10^{-2}$ |
| 59 | repertoir | $1.5 \times 10^{-2}$ |
| 60 | 1930s | $1.5 \times 10^{-2}$ |
| 61 | educ | $1.4 \times 10^{-2}$ |
| 62 | event | $1.4 \times 10^{-2}$ |
| 63 | look | $1.4 \times 10^{-2}$ |
| 64 | articl | $1.4 \times 10^{-2}$ |
| 65 | test | $1.4 \times 10^{-2}$ |
| 66 | improv | $1.3 \times 10^{-2}$ |
| 67 | multicultur | $1.3 \times 10^{-2}$ |
| 68 | explor | $1.3 \times 10^{-2}$ |
| 69 | master | $1.3 \times 10^{-2}$ |
| 70 | obtain | $1.3 \times 10^{-2}$ |
| 71 | system | $1.2 \times 10^{-2}$ |
| 72 | realiti | $1.2 \times 10^{-2}$ |
| 73 | becam | $1.2 \times 10^{-2}$ |
| 74 | model | $1.2 \times 10^{-2}$ |
| 75 | student | $1.2 \times 10^{-2}$ |
| 76 | book | $1.2 \times 10^{-2}$ |
| 77 | low | $1.2 \times 10^{-2}$ |
| 78 | centuri | $1.2 \times 10^{-2}$ |
| 79 | negoti | $1.2 \times 10^{-2}$ |
| 80 | reduc | $1.2 \times 10^{-2}$ |
| 81 | patient | $1.1 \times 10^{-2}$ |
| 82 | entertain | $1.1 \times 10^{-2}$ |
| 83 | peopl | $1.1 \times 10^{-2}$ |
| 84 | public | $1.1 \times 10^{-2}$ |
| 85 | nineteenth | $1.1 \times 10^{-2}$ |
| 86 | inhabit | $1.1 \times 10^{-2}$ |
| 87 | speak | $1.1 \times 10^{-2}$ |
| 88 | focus | $1.1 \times 10^{-2}$ |
| 89 | cell | $1.1 \times 10^{-2}$ |
| 90 | modern | $1.1 \times 10^{-2}$ |
| 91 | exil | $1.1 \times 10^{-2}$ |
| 92 | instructor | $1.1 \times 10^{-2}$ |
| 93 | way | $1.1 \times 10^{-2}$ |
| 94 | franc | $1 \times 10^{-2}$ |
| 95 | someth | $1 \times 10^{-2}$ |
| 96 | sixteenth | $1 \times 10^{-2}$ |
| 97 | tourist | $1 \times 10^{-2}$ |
| 98 | jew | $9.9 \times 10^{-3}$ |
| 99 | turkish | $9.7 \times 10^{-3}$ |
| 100 | spectacl | $9.7 \times 10^{-3}$ |

Table D.55. The list of the top 100 words in the category Demography with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | migrant | $9.2 \times 10^{-2}$ |
| 2 | immigr | $8.4 \times 10^{-2}$ |
| 3 | countri | $6.6 \times 10^{-2}$ |
| 4 | migrat | $5.9 \times 10^{-2}$ |
| 5 | marriag | $4.7 \times 10^{-2}$ |
| 6 | survey | $4.1 \times 10^{-2}$ |
| 7 | women | $3.9 \times 10^{-2}$ |
| 8 | econom | $3.9 \times 10^{-2}$ |
| 9 | social | $3.8 \times 10^{-2}$ |
| 10 | demograph | $3.8 \times 10^{-2}$ |
| 11 | fertil | $3.7 \times 10^{-2}$ |
| 12 | famili | $3.7 \times 10^{-2}$ |
| 13 | nation | $3.3 \times 10^{-2}$ |
| 14 | marri | $3.3 \times 10^{-2}$ |
| 15 | polici | $3.2 \times 10^{-2}$ |
| 16 | articl | $3.2 \times 10^{-2}$ |
| 17 | educ | $3.1 \times 10^{-2}$ |
| 18 | birth | $2.9 \times 10^{-2}$ |
| 19 | household | $2.9 \times 10^{-2}$ |
| 20 | children | $2.7 \times 10^{-2}$ |
| 21 | examin | $2.5 \times 10^{-2}$ |
| 22 | labour | $2.4 \times 10^{-2}$ |
| 23 | census | $2.2 \times 10^{-2}$ |
| 24 | popul | $2.2 \times 10^{-2}$ |
| 25 | data | $2.2 \times 10^{-2}$ |
| 26 | find | $2.1 \times 10^{-2}$ |
| 27 | context | $2.1 \times 10^{-2}$ |
| 28 | contracept | $2.1 \times 10^{-2}$ |
| 29 | age | $1.9 \times 10^{-2}$ |
| 30 | union | $1.9 \times 10^{-2}$ |
| 31 | argu | $1.9 \times 10^{-2}$ |
| 32 | born | $1.9 \times 10^{-2}$ |
| 33 | transnat | $1.9 \times 10^{-2}$ |
| 34 | refuge | $1.8 \times 10^{-2}$ |
| 35 | among | $1.8 \times 10^{-2}$ |
| 36 | incom | $1.7 \times 10^{-2}$ |
| 37 | european | $1.7 \times 10^{-2}$ |
| 38 | socioeconom | $1.7 \times 10^{-2}$ |
| 39 | child | $1.6 \times 10^{-2}$ |
| 40 | marit | $1.6 \times 10^{-2}$ |
| 41 | rural | $1.6 \times 10^{-2}$ |
| 42 | men | $1.5 \times 10^{-2}$ |
| 43 | gender | $1.5 \times 10^{-2}$ |
| 44 | live | $1.5 \times 10^{-2}$ |
| 45 | draw | $1.4 \times 10^{-2}$ |
| 46 | polit | $1.4 \times 10^{-2}$ |
| 47 | ethnic | $1.4 \times 10^{-2}$ |
| 48 | socio | $1.3 \times 10^{-2}$ |
| 49 | declin | $1.3 \times 10^{-2}$ |
| 50 | cell | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | capit | $1.3 \times 10^{-2}$ |
| 52 | mother | $1.3 \times 10^{-2}$ |
| 53 | urban | $1.2 \times 10^{-2}$ |
| 54 | parent | $1.2 \times 10^{-2}$ |
| 55 | labor | $1.2 \times 10^{-2}$ |
| 56 | emigr | $1.2 \times 10^{-2}$ |
| 57 | health | $1.2 \times 10^{-2}$ |
| 58 | across | $1.2 \times 10^{-2}$ |
| 59 | research | $1.2 \times 10^{-2}$ |
| 60 | resid | $1.2 \times 10^{-2}$ |
| 61 | life | $1.2 \times 10^{-2}$ |
| 62 | relationship | $1.2 \times 10^{-2}$ |
| 63 | patient | $1.1 \times 10^{-2}$ |
| 64 | longitudin | $1.1 \times 10^{-2}$ |
| 65 | intern | $1.1 \times 10^{-2}$ |
| 66 | individu | $1.1 \times 10^{-2}$ |
| 67 | peopl | $1.1 \times 10^{-2}$ |
| 68 | temperatur | $1.1 \times 10^{-2}$ |
| 69 | young | $1 \times 10^{-2}$ |
| 70 | legal | $1 \times 10^{-2}$ |
| 71 | societi | $1 \times 10^{-2}$ |
| 72 | empir | $1 \times 10^{-2}$ |
| 73 | status | $1 \times 10^{-2}$ |
| 74 | perform | $9.9 \times 10^{-3}$ |
| 75 | subsaharan | $9.9 \times 10^{-3}$ |
| 76 | mortal | $9.9 \times 10^{-3}$ |
| 77 | europ | $9.6 \times 10^{-3}$ |
| 78 | abroad | $9.3 \times 10^{-3}$ |
| 79 | market | $9.3 \times 10^{-3}$ |
| 80 | properti | $9.1 \times 10^{-3}$ |
| 81 | focus | $9.1 \times 10^{-3}$ |
| 82 | foreign | $9 \times 10^{-3}$ |
| 83 | surfac | $8.7 \times 10^{-3}$ |
| 84 | destin | $8.6 \times 10^{-3}$ |
| 85 | less | $8.5 \times 10^{-3}$ |
| 86 | partner | $8.4 \times 10^{-3}$ |
| 87 | decad | $8.4 \times 10^{-3}$ |
| 88 | experiment | $8.3 \times 10^{-3}$ |
| 89 | husband | $8.3 \times 10^{-3}$ |
| 90 | worker | $8.1 \times 10^{-3}$ |
| 91 | father | $8 \times 10^{-3}$ |
| 92 | detect | $7.8 \times 10^{-3}$ |
| 93 | spous | $7.8 \times 10^{-3}$ |
| 94 | africa | $7.8 \times 10^{-3}$ |
| 95 | electron | $7.7 \times 10^{-3}$ |
| 96 | sex | $7.7 \times 10^{-3}$ |
| 97 | interview | $7.6 \times 10^{-3}$ |
| 98 | propos | $7.5 \times 10^{-3}$ |
| 99 | energi | $7.5 \times 10^{-3}$ |
| 100 | regress | $7.5 \times 10^{-3}$ |

Table D.56. The list of the top 100 words in the category Dentistry, Oral Surgery and Medicine with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | dental | $1.9 \times 10^{-1}$ |
| 2 | teeth | $1.1 \times 10^{-1}$ |
| 3 | conclus | $1 \times 10^{-1}$ |
| 4 | tooth | $8 \times 10^{-2}$ |
| 5 | periodont | $7.4 \times 10^{-2}$ |
| 6 | maxillari | $7.2 \times 10^{-2}$ |
| 7 | mandibular | $7.2 \times 10^{-2}$ |
| 8 | oral | $6.5 \times 10^{-2}$ |
| 9 | implant | $5.3 \times 10^{-2}$ |
| 10 | bone | $5.3 \times 10^{-2}$ |
| 11 | materi | $4.8 \times 10^{-2}$ |
| 12 | patient | $4.7 \times 10^{-2}$ |
| 13 | dentin | $4.6 \times 10^{-2}$ |
| 14 | mandibl | $4 \times 10^{-2}$ |
| 15 | signific | $4 \times 10^{-2}$ |
| 16 | clinic | $3.9 \times 10^{-2}$ |
| 17 | method | $3.7 \times 10^{-2}$ |
| 18 | molar | $3.6 \times 10^{-2}$ |
| 19 | group | $3.4 \times 10^{-2}$ |
| 20 | purpos | $3.4 \times 10^{-2}$ |
| 21 | resin | $3.2 \times 10^{-2}$ |
| 22 | aim | $3.2 \times 10^{-2}$ |
| 23 | statist | $3.1 \times 10^{-2}$ |
| 24 | object | $3.1 \times 10^{-2}$ |
| 25 | evalu | $3.1 \times 10^{-2}$ |
| 26 | enamel | $2.8 \times 10^{-2}$ |
| 27 | radiograph | $2.8 \times 10^{-2}$ |
| 28 | restor | $2.7 \times 10^{-2}$ |
| 29 | treatment | $2.5 \times 10^{-2}$ |
| 30 | anova | $2.4 \times 10^{-2}$ |
| 31 | canal | $2.4 \times 10^{-2}$ |
| 32 | result | $2.4 \times 10^{-2}$ |
| 33 | palat | $2.3 \times 10^{-2}$ |
| 34 | alveolar | $2.2 \times 10^{-2}$ |
| 35 | paper | $2.1 \times 10^{-2}$ |
| 36 | studi | $2.1 \times 10^{-2}$ |
| 37 | crown | $2.1 \times 10^{-2}$ |
| 38 | specimen | $2 \times 10^{-2}$ |
| 39 | occlus | $1.8 \times 10^{-2}$ |
| 40 | mouth | $1.7 \times 10^{-2}$ |
| 41 | surgeri | $1.6 \times 10^{-2}$ |
| 42 | heal | $1.6 \times 10^{-2}$ |
| 43 | surgic | $1.6 \times 10^{-2}$ |
| 44 | root | $1.6 \times 10^{-2}$ |
| 45 | tissu | $1.6 \times 10^{-2}$ |
| 46 | test | $1.5 \times 10^{-2}$ |
| 47 | facial | $1.5 \times 10^{-2}$ |
| 48 | divid | $1.5 \times 10^{-2}$ |
| 49 | assess | $1.4 \times 10^{-2}$ |
| 50 | treat | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | placement | $1.4 \times 10^{-2}$ |
| 52 | propos | $1.4 \times 10^{-2}$ |
| 53 | pulp | $1.4 \times 10^{-2}$ |
| 54 | year | $1.4 \times 10^{-2}$ |
| 55 | apic | $1.3 \times 10^{-2}$ |
| 56 | follow | $1.3 \times 10^{-2}$ |
| 57 | month | $1.3 \times 10^{-2}$ |
| 58 | anterior | $1.2 \times 10^{-2}$ |
| 59 | plaqu | $1.2 \times 10^{-2}$ |
| 60 | titanium | $1.2 \times 10^{-2}$ |
| 61 | cone | $1.2 \times 10^{-2}$ |
| 62 | cement | $1.2 \times 10^{-2}$ |
| 63 | tomographi | $1.1 \times 10^{-2}$ |
| 64 | age | $1.1 \times 10^{-2}$ |
| 65 | prosthesi | $1.1 \times 10^{-2}$ |
| 66 | fractur | $1.1 \times 10^{-2}$ |
| 67 | posterior | $1 \times 10^{-2}$ |
| 68 | introduct | $1 \times 10^{-2}$ |
| 69 | differ | $9.9 \times 10^{-3}$ |
| 70 | mean | $9.9 \times 10^{-3}$ |
| 71 | postop | $9.8 \times 10^{-3}$ |
| 72 | lesion | $9.5 \times 10^{-3}$ |
| 73 | flap | $9.2 \times 10^{-3}$ |
| 74 | compar | $9.2 \times 10^{-3}$ |
| 75 | adhes | $9 \times 10^{-3}$ |
| 76 | subject | $9 \times 10^{-3}$ |
| 77 | neck | $8.7 \times 10^{-3}$ |
| 78 | soft | $8.7 \times 10^{-3}$ |
| 79 | histolog | $8.4 \times 10^{-3}$ |
| 80 | squamous | $8.4 \times 10^{-3}$ |
| 81 | ceram | $8.3 \times 10^{-3}$ |
| 82 | fluorid | $8.3 \times 10^{-3}$ |
| 83 | random | $8.2 \times 10^{-3}$ |
| 84 | graft | $7.9 \times 10^{-3}$ |
| 85 | place | $7.8 \times 10^{-3}$ |
| 86 | record | $7.8 \times 10^{-3}$ |
| 87 | screw | $7.8 \times 10^{-3}$ |
| 88 | temperatur | $7.7 \times 10^{-3}$ |
| 89 | examin | $7.7 \times 10^{-3}$ |
| 90 | statement | $7.5 \times 10^{-3}$ |
| 91 | bleed | $7.3 \times 10^{-3}$ |
| 92 | procedur | $7.3 \times 10^{-3}$ |
| 93 | effici | $7.1 \times 10^{-3}$ |
| 94 | remov | $7.1 \times 10^{-3}$ |
| 95 | algorithm | $7 \times 10^{-3}$ |
| 96 | fill | $7 \times 10^{-3}$ |
| 97 | thirti | $6.9 \times 10^{-3}$ |
| 98 | old | $6.8 \times 10^{-3}$ |
| 99 | befor | $6.8 \times 10^{-3}$ |
| 100 | scan | $6.8 \times 10^{-3}$ |

Table D.57. The list of the top 100 words in the category Dermatology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | skin | $1.8 \times 10^{-1}$ |
| 2 | patient | $9.5 \times 10^{-2}$ |
| 3 | cutan | $8.7 \times 10^{-2}$ |
| 4 | dermatolog | $6.4 \times 10^{-2}$ |
| 5 | lesion | $5.5 \times 10^{-2}$ |
| 6 | psoriasi | $5.4 \times 10^{-2}$ |
| 7 | clinic | $5.2 \times 10^{-2}$ |
| 8 | background | $5 \times 10^{-2}$ |
| 9 | conclus | $4.8 \times 10^{-2}$ |
| 10 | dermat | $4.3 \times 10^{-2}$ |
| 11 | treatment | $4 \times 10^{-2}$ |
| 12 | object | $3.9 \times 10^{-2}$ |
| 13 | melanoma | $3.8 \times 10^{-2}$ |
| 14 | wound | $3 \times 10^{-2}$ |
| 15 | diseas | $3 \times 10^{-2}$ |
| 16 | keratinocyt | $2.8 \times 10^{-2}$ |
| 17 | dermal | $2.7 \times 10^{-2}$ |
| 18 | epiderm | $2.6 \times 10^{-2}$ |
| 19 | paper | $2.6 \times 10^{-2}$ |
| 20 | therapi | $2.4 \times 10^{-2}$ |
| 21 | treat | $2.3 \times 10^{-2}$ |
| 22 | biopsi | $2.3 \times 10^{-2}$ |
| 23 | ulcer | $2.2 \times 10^{-2}$ |
| 24 | histopatholog | $2.2 \times 10^{-2}$ |
| 25 | heal | $2.1 \times 10^{-2}$ |
| 26 | case | $2.1 \times 10^{-2}$ |
| 27 | diagnosi | $2.1 \times 10^{-2}$ |
| 28 | hair | $2.1 \times 10^{-2}$ |
| 29 | burn | $2 \times 10^{-2}$ |
| 30 | scar | $1.9 \times 10^{-2}$ |
| 31 | atop | $1.9 \times 10^{-2}$ |
| 32 | topic | $1.8 \times 10^{-2}$ |
| 33 | rare | $1.8 \times 10^{-2}$ |
| 34 | report | $1.8 \times 10^{-2}$ |
| 35 | efficaci | $1.7 \times 10^{-2}$ |
| 36 | histolog | $1.4 \times 10^{-2}$ |
| 37 | old | $1.4 \times 10^{-2}$ |
| 38 | year | $1.4 \times 10^{-2}$ |
| 39 | inflammatori | $1.4 \times 10^{-2}$ |
| 40 | chronic | $1.4 \times 10^{-2}$ |
| 41 | common | $1.4 \times 10^{-2}$ |
| 42 | retrospect | $1.3 \times 10^{-2}$ |
| 43 | pigment | $1.2 \times 10^{-2}$ |
| 44 | facial | $1.2 \times 10^{-2}$ |
| 45 | cell | $1.2 \times 10^{-2}$ |
| 46 | plaqu | $1.1 \times 10^{-2}$ |
| 47 | propos | $1.1 \times 10^{-2}$ |
| 48 | malign | $1.1 \times 10^{-2}$ |
| 49 | excis | $1.1 \times 10^{-2}$ |
| 50 | diagnos | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | advers | $1 \times 10^{-2}$ |
| 52 | week | $1 \times 10^{-2}$ |
| 53 | model | $1 \times 10^{-2}$ |
| 54 | simul | $1 \times 10^{-2}$ |
| 55 | age | $9.5 \times 10^{-3}$ |
| 56 | disord | $9.5 \times 10^{-3}$ |
| 57 | may | $9.4 \times 10^{-3}$ |
| 58 | month | $9.3 \times 10^{-3}$ |
| 59 | review | $9.2 \times 10^{-3}$ |
| 60 | tissu | $9.2 \times 10^{-3}$ |
| 61 | base | $8.9 \times 10^{-3}$ |
| 62 | associ | $8.7 \times 10^{-3}$ |
| 63 | temperatur | $8.6 \times 10^{-3}$ |
| 64 | carcinoma | $8.6 \times 10^{-3}$ |
| 65 | pathogenesi | $8.5 \times 10^{-3}$ |
| 66 | corticosteroid | $8.5 \times 10^{-3}$ |
| 67 | method | $8.4 \times 10^{-3}$ |
| 68 | sever | $7.9 \times 10^{-3}$ |
| 69 | structur | $7.9 \times 10^{-3}$ |
| 70 | squamous | $7.8 \times 10^{-3}$ |
| 71 | manifest | $7.7 \times 10^{-3}$ |
| 72 | allerg | $7.7 \times 10^{-3}$ |
| 73 | erupt | $7.6 \times 10^{-3}$ |
| 74 | follicl | $7.6 \times 10^{-3}$ |
| 75 | therapeut | $7.5 \times 10^{-3}$ |
| 76 | frequent | $7.4 \times 10^{-3}$ |
| 77 | subcutan | $7.2 \times 10^{-3}$ |
| 78 | infect | $7 \times 10^{-3}$ |
| 79 | autoimmun | $6.9 \times 10^{-3}$ |
| 80 | infiltr | $6.8 \times 10^{-3}$ |
| 81 | effici | $6.7 \times 10^{-3}$ |
| 82 | collagen | $6.6 \times 10^{-3}$ |
| 83 | medic | $6.6 \times 10^{-3}$ |
| 84 | tumor | $6.6 \times 10^{-3}$ |
| 85 | recurr | $6.6 \times 10^{-3}$ |
| 86 | evalu | $6.6 \times 10^{-3}$ |
| 87 | energi | $6.5 \times 10^{-3}$ |
| 88 | physician | $6.5 \times 10^{-3}$ |
| 89 | process | $6.3 \times 10^{-3}$ |
| 90 | immunohistochem | $6.2 \times 10^{-3}$ |
| 91 | experiment | $6.2 \times 10^{-3}$ |
| 92 | score | $6.2 \times 10^{-3}$ |
| 93 | oral | $6.2 \times 10^{-3}$ |
| 94 | syndrom | $6.2 \times 10^{-3}$ |
| 95 | assess | $6.2 \times 10^{-3}$ |
| 96 | includ | $6.1 \times 10^{-3}$ |
| 97 | basal | $6.1 \times 10^{-3}$ |
| 98 | woman | $6 \times 10^{-3}$ |
| 99 | neoplasm | $6 \times 10^{-3}$ |
| 100 | signific | $6 \times 10^{-3}$ |

Table D.58. The list of the top 100 words in the category Developmental Biology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | embryo | $8.7 \times 10^{-2}$ |
| 2 | cell | $8.7 \times 10^{-2}$ |
| 3 | express | $8 \times 10^{-2}$ |
| 4 | embryon | $6.6 \times 10^{-2}$ |
| 5 | regul | $6.3 \times 10^{-2}$ |
| 6 | gene | $5.6 \times 10^{-2}$ |
| 7 | development | $5.1 \times 10^{-2}$ |
| 8 | transcript | $4.9 \times 10^{-2}$ |
| 9 | protein | $3.9 \times 10^{-2}$ |
| 10 | mous | $3.5 \times 10^{-2}$ |
| 11 | dure | $2.9 \times 10^{-2}$ |
| 12 | role | $2.9 \times 10^{-2}$ |
| 13 | zebrafish | $2.9 \times 10^{-2}$ |
| 14 | develop | $2.9 \times 10^{-2}$ |
| 15 | differenti | $2.9 \times 10^{-2}$ |
| 16 | progenitor | $2.7 \times 10^{-2}$ |
| 17 | drosophila | $2.6 \times 10^{-2}$ |
| 18 | vertebr | $2.5 \times 10^{-2}$ |
| 19 | paper | $2.5 \times 10^{-2}$ |
| 20 | earli | $2.4 \times 10^{-2}$ |
| 21 | tissu | $2.3 \times 10^{-2}$ |
| 22 | signal | $2.3 \times 10^{-2}$ |
| 23 | placent | $2.3 \times 10^{-2}$ |
| 24 | placenta | $2.2 \times 10^{-2}$ |
| 25 | oocyt | $2.1 \times 10^{-2}$ |
| 26 | prolifer | $2.1 \times 10^{-2}$ |
| 27 | lineag | $2.1 \times 10^{-2}$ |
| 28 | matern | $2 \times 10^{-2}$ |
| 29 | stem | $2 \times 10^{-2}$ |
| 30 | fetal | $2 \times 10^{-2}$ |
| 31 | mutant | $1.9 \times 10^{-2}$ |
| 32 | matur | $1.9 \times 10^{-2}$ |
| 33 | pathway | $1.9 \times 10^{-2}$ |
| 34 | germ | $1.8 \times 10^{-2}$ |
| 35 | fate | $1.8 \times 10^{-2}$ |
| 36 | mammalian | $1.8 \times 10^{-2}$ |
| 37 | neuron | $1.8 \times 10^{-2}$ |
| 38 | defect | $1.7 \times 10^{-2}$ |
| 39 | blastocyst | $1.7 \times 10^{-2}$ |
| 40 | pregnanc | $1.7 \times 10^{-2}$ |
| 41 | function | $1.7 \times 10^{-2}$ |
| 42 | mediat | $1.6 \times 10^{-2}$ |
| 43 | specif | $1.6 \times 10^{-2}$ |
| 44 | phenotyp | $1.6 \times 10^{-2}$ |
| 45 | postnat | $1.6 \times 10^{-2}$ |
| 46 | mice | $1.5 \times 10^{-2}$ |
| 47 | stage | $1.5 \times 10^{-2}$ |
| 48 | wnt | $1.5 \times 10^{-2}$ |
| 49 | vitro | $1.5 \times 10^{-2}$ |
| 50 | receptor | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | neural | $1.4 \times 10^{-2}$ |
| 52 | mrna | $1.4 \times 10^{-2}$ |
| 53 | regulatori | $1.4 \times 10^{-2}$ |
| 54 | suggest | $1.4 \times 10^{-2}$ |
| 55 | epithelium | $1.3 \times 10^{-2}$ |
| 56 | activ | $1.3 \times 10^{-2}$ |
| 57 | pattern | $1.3 \times 10^{-2}$ |
| 58 | epitheli | $1.3 \times 10^{-2}$ |
| 59 | factor | $1.2 \times 10^{-2}$ |
| 60 | promot | $1.2 \times 10^{-2}$ |
| 61 | cellular | $1.2 \times 10^{-2}$ |
| 62 | repress | $1.2 \times 10^{-2}$ |
| 63 | growth | $1.2 \times 10^{-2}$ |
| 64 | vivo | $1.2 \times 10^{-2}$ |
| 65 | adult | $1.2 \times 10^{-2}$ |
| 66 | format | $1.2 \times 10^{-2}$ |
| 67 | essenti | $1.2 \times 10^{-2}$ |
| 68 | genet | $1.2 \times 10^{-2}$ |
| 69 | simul | $1.1 \times 10^{-2}$ |
| 70 | sperm | $1.1 \times 10^{-2}$ |
| 71 | birth | $1.1 \times 10^{-2}$ |
| 72 | bind | $1.1 \times 10^{-2}$ |
| 73 | induc | $1.1 \times 10^{-2}$ |
| 74 | mesenchym | $1.1 \times 10^{-2}$ |
| 75 | base | $1.1 \times 10^{-2}$ |
| 76 | cultur | $1.1 \times 10^{-2}$ |
| 77 | rescu | $1.1 \times 10^{-2}$ |
| 78 | transgen | $1 \times 10^{-2}$ |
| 79 | method | $1 \times 10^{-2}$ |
| 80 | mechan | $1 \times 10^{-2}$ |
| 81 | fertil | $1 \times 10^{-2}$ |
| 82 | follicl | $1 \times 10^{-2}$ |
| 83 | nervous | $1 \times 10^{-2}$ |
| 84 | anim | $1 \times 10^{-2}$ |
| 85 | chromatin | $1 \times 10^{-2}$ |
| 86 | normal | $9.8 \times 10^{-3}$ |
| 87 | disrupt | $9.7 \times 10^{-3}$ |
| 88 | dorsal | $9.6 \times 10^{-3}$ |
| 89 | genom | $9.4 \times 10^{-3}$ |
| 90 | ovari | $9.4 \times 10^{-3}$ |
| 91 | migrat | $9.3 \times 10^{-3}$ |
| 92 | gestat | $9.3 \times 10^{-3}$ |
| 93 | knockdown | $9.3 \times 10^{-3}$ |
| 94 | axon | $9.3 \times 10^{-3}$ |
| 95 | conserv | $9.3 \times 10^{-3}$ |
| 96 | design | $9.2 \times 10^{-3}$ |
| 97 | reproduct | $9.1 \times 10^{-3}$ |
| 98 | understood | $8.7 \times 10^{-3}$ |
| 99 | rna | $8.7 \times 10^{-3}$ |
| 100 | testi | $8.6 \times 10^{-3}$ |

Table D.59. The list of the top 100 words in the category Ecology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | speci | $1.6 \times 10^{-1}$ |
| 2 | habitat | $9.1 \times 10^{-2}$ |
| 3 | ecolog | $8.5 \times 10^{-2}$ |
| 4 | ecosystem | $7.9 \times 10^{-2}$ |
| 5 | forest | $5.2 \times 10^{-2}$ |
| 6 | plant | $4.8 \times 10^{-2}$ |
| 7 | communiti | $4.5 \times 10^{-2}$ |
| 8 | popul | $4.5 \times 10^{-2}$ |
| 9 | abund | $4.3 \times 10^{-2}$ |
| 10 | climat | $3.7 \times 10^{-2}$ |
| 11 | divers | $3.7 \times 10^{-2}$ |
| 12 | biodivers | $3.6 \times 10^{-2}$ |
| 13 | predat | $3.5 \times 10^{-2}$ |
| 14 | landscap | $3.5 \times 10^{-2}$ |
| 15 | environment | $3.4 \times 10^{-2}$ |
| 16 | veget | $3.3 \times 10^{-2}$ |
| 17 | trait | $3.1 \times 10^{-2}$ |
| 18 | soil | $3.1 \times 10^{-2}$ |
| 19 | season | $3 \times 10^{-2}$ |
| 20 | conserv | $2.9 \times 10^{-2}$ |
| 21 | across | $2.6 \times 10^{-2}$ |
| 22 | tree | $2.4 \times 10^{-2}$ |
| 23 | suggest | $2.4 \times 10^{-2}$ |
| 24 | spatial | $2.3 \times 10^{-2}$ |
| 25 | pattern | $2.3 \times 10^{-2}$ |
| 26 | area | $2.3 \times 10^{-2}$ |
| 27 | land | $2.3 \times 10^{-2}$ |
| 28 | bird | $2.2 \times 10^{-2}$ |
| 29 | reproduct | $2.2 \times 10^{-2}$ |
| 30 | variat | $2.2 \times 10^{-2}$ |
| 31 | grassland | $2.1 \times 10^{-2}$ |
| 32 | may | $2.1 \times 10^{-2}$ |
| 33 | patient | $2.1 \times 10^{-2}$ |
| 34 | site | $2.1 \times 10^{-2}$ |
| 35 | biomass | $2.1 \times 10^{-2}$ |
| 36 | chang | $2 \times 10^{-2}$ |
| 37 | prey | $2 \times 10^{-2}$ |
| 38 | nutrient | $1.9 \times 10^{-2}$ |
| 39 | forag | $1.9 \times 10^{-2}$ |
| 40 | taxa | $1.9 \times 10^{-2}$ |
| 41 | rich | $1.8 \times 10^{-2}$ |
| 42 | fish | $1.8 \times 10^{-2}$ |
| 43 | declin | $1.8 \times 10^{-2}$ |
| 44 | herbivor | $1.8 \times 10^{-2}$ |
| 45 | manag | $1.8 \times 10^{-2}$ |
| 46 | paper | $1.8 \times 10^{-2}$ |
| 47 | evolutionari | $1.7 \times 10^{-2}$ |
| 48 | nativ | $1.7 \times 10^{-2}$ |
| 49 | import | $1.7 \times 10^{-2}$ |
| 50 | assemblag | $1.6 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | individu | $1.6 \times 10^{-2}$ |
| 52 | trophic | $1.6 \times 10^{-2}$ |
| 53 | natur | $1.6 \times 10^{-2}$ |
| 54 | domin | $1.5 \times 10^{-2}$ |
| 55 | north | $1.5 \times 10^{-2}$ |
| 56 | nich | $1.4 \times 10^{-2}$ |
| 57 | within | $1.4 \times 10^{-2}$ |
| 58 | marin | $1.3 \times 10^{-2}$ |
| 59 | affect | $1.3 \times 10^{-2}$ |
| 60 | understand | $1.3 \times 10^{-2}$ |
| 61 | water | $1.3 \times 10^{-2}$ |
| 62 | tropic | $1.3 \times 10^{-2}$ |
| 63 | annual | $1.3 \times 10^{-2}$ |
| 64 | resourc | $1.3 \times 10^{-2}$ |
| 65 | wetland | $1.3 \times 10^{-2}$ |
| 66 | anthropogen | $1.3 \times 10^{-2}$ |
| 67 | wildlif | $1.3 \times 10^{-2}$ |
| 68 | geograph | $1.3 \times 10^{-2}$ |
| 69 | cover | $1.3 \times 10^{-2}$ |
| 70 | river | $1.3 \times 10^{-2}$ |
| 71 | northern | $1.3 \times 10^{-2}$ |
| 72 | influenc | $1.2 \times 10^{-2}$ |
| 73 | shrub | $1.2 \times 10^{-2}$ |
| 74 | howev | $1.2 \times 10^{-2}$ |
| 75 | southern | $1.2 \times 10^{-2}$ |
| 76 | breed | $1.2 \times 10^{-2}$ |
| 77 | food | $1.2 \times 10^{-2}$ |
| 78 | summer | $1.2 \times 10^{-2}$ |
| 79 | clinic | $1.2 \times 10^{-2}$ |
| 80 | among | $1.2 \times 10^{-2}$ |
| 81 | canopi | $1.2 \times 10^{-2}$ |
| 82 | plot | $1.2 \times 10^{-2}$ |
| 83 | aquat | $1.2 \times 10^{-2}$ |
| 84 | graze | $1.2 \times 10^{-2}$ |
| 85 | insect | $1.1 \times 10^{-2}$ |
| 86 | relat | $1.1 \times 10^{-2}$ |
| 87 | gradient | $1.1 \times 10^{-2}$ |
| 88 | terrestri | $1.1 \times 10^{-2}$ |
| 89 | mate | $1.1 \times 10^{-2}$ |
| 90 | variabl | $1.1 \times 10^{-2}$ |
| 91 | agricultur | $1.1 \times 10^{-2}$ |
| 92 | scale | $1.1 \times 10^{-2}$ |
| 93 | biotic | $1.1 \times 10^{-2}$ |
| 94 | temper | $1.1 \times 10^{-2}$ |
| 95 | method | $1.1 \times 10^{-2}$ |
| 96 | woodi | $1.1 \times 10^{-2}$ |
| 97 | invertebr | $1.1 \times 10^{-2}$ |
| 98 | differ | $1.1 \times 10^{-2}$ |
| 99 | grass | $1.1 \times 10^{-2}$ |
| 100 | genet | $1 \times 10^{-2}$ |

Table D.60. The list of the top 100 words in the category Economics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | market | $9.1 \times 10^{-2}$ |
| 2 | econom | $6.4 \times 10^{-2}$ |
| 3 | price | $6 \times 10^{-2}$ |
| 4 | polici | $5.8 \times 10^{-2}$ |
| 5 | economi | $5.1 \times 10^{-2}$ |
| 6 | countri | $5.1 \times 10^{-2}$ |
| 7 | financi | $4.8 \times 10^{-2}$ |
| 8 | firm | $4.4 \times 10^{-2}$ |
| 9 | empir | $3.4 \times 10^{-2}$ |
| 10 | capit | $3.2 \times 10^{-2}$ |
| 11 | invest | $3.2 \times 10^{-2}$ |
| 12 | trade | $3.1 \times 10^{-2}$ |
| 13 | sector | $2.7 \times 10^{-2}$ |
| 14 | find | $2.6 \times 10^{-2}$ |
| 15 | incom | $2.6 \times 10^{-2}$ |
| 16 | tax | $2.4 \times 10^{-2}$ |
| 17 | paper | $2.4 \times 10^{-2}$ |
| 18 | crisi | $2.3 \times 10^{-2}$ |
| 19 | cell | $2.1 \times 10^{-2}$ |
| 20 | macroeconom | $2 \times 10^{-2}$ |
| 21 | asset | $2 \times 10^{-2}$ |
| 22 | busi | $1.9 \times 10^{-2}$ |
| 23 | monetari | $1.9 \times 10^{-2}$ |
| 24 | bank | $1.9 \times 10^{-2}$ |
| 25 | wage | $1.9 \times 10^{-2}$ |
| 26 | welfar | $1.8 \times 10^{-2}$ |
| 27 | stock | $1.7 \times 10^{-2}$ |
| 28 | govern | $1.7 \times 10^{-2}$ |
| 29 | method | $1.7 \times 10^{-2}$ |
| 30 | patient | $1.6 \times 10^{-2}$ |
| 31 | incent | $1.6 \times 10^{-2}$ |
| 32 | household | $1.6 \times 10^{-2}$ |
| 33 | competit | $1.6 \times 10^{-2}$ |
| 34 | financ | $1.6 \times 10^{-2}$ |
| 35 | debt | $1.5 \times 10^{-2}$ |
| 36 | credit | $1.5 \times 10^{-2}$ |
| 37 | surfac | $1.5 \times 10^{-2}$ |
| 38 | investor | $1.5 \times 10^{-2}$ |
| 39 | privat | $1.5 \times 10^{-2}$ |
| 40 | temperatur | $1.4 \times 10^{-2}$ |
| 41 | gdp | $1.4 \times 10^{-2}$ |
| 42 | panel | $1.4 \times 10^{-2}$ |
| 43 | labor | $1.4 \times 10^{-2}$ |
| 44 | profit | $1.4 \times 10^{-2}$ |
| 45 | compani | $1.3 \times 10^{-2}$ |
| 46 | impact | $1.3 \times 10^{-2}$ |
| 47 | econometr | $1.3 \times 10^{-2}$ |
| 48 | return | $1.3 \times 10^{-2}$ |
| 49 | foreign | $1.3 \times 10^{-2}$ |
| 50 | fiscal | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | conclus | $1.3 \times 10^{-2}$ |
| 52 | cost | $1.2 \times 10^{-2}$ |
| 53 | protein | $1.2 \times 10^{-2}$ |
| 54 | articl | $1.2 \times 10^{-2}$ |
| 55 | public | $1.2 \times 10^{-2}$ |
| 56 | european | $1.2 \times 10^{-2}$ |
| 57 | decis | $1.2 \times 10^{-2}$ |
| 58 | equilibrium | $1.1 \times 10^{-2}$ |
| 59 | clinic | $1.1 \times 10^{-2}$ |
| 60 | unemploy | $1.1 \times 10^{-2}$ |
| 61 | labour | $1.1 \times 10^{-2}$ |
| 62 | equiti | $1.1 \times 10^{-2}$ |
| 63 | export | $1 \times 10^{-2}$ |
| 64 | portfolio | $1 \times 10^{-2}$ |
| 65 | acid | $1 \times 10^{-2}$ |
| 66 | social | $1 \times 10^{-2}$ |
| 67 | estim | $9.8 \times 10^{-3}$ |
| 68 | detect | $9.7 \times 10^{-3}$ |
| 69 | corpor | $9.7 \times 10^{-3}$ |
| 70 | polit | $9.6 \times 10^{-3}$ |
| 71 | fund | $9.5 \times 10^{-3}$ |
| 72 | volatil | $9.3 \times 10^{-3}$ |
| 73 | industri | $9.1 \times 10^{-3}$ |
| 74 | shock | $9.1 \times 10^{-3}$ |
| 75 | gene | $9 \times 10^{-3}$ |
| 76 | union | $8.9 \times 10^{-3}$ |
| 77 | electron | $8.8 \times 10^{-3}$ |
| 78 | inflat | $8.7 \times 10^{-3}$ |
| 79 | experiment | $8.7 \times 10^{-3}$ |
| 80 | domest | $8.6 \times 10^{-3}$ |
| 81 | premium | $8.5 \times 10^{-3}$ |
| 82 | loan | $8.5 \times 10^{-3}$ |
| 83 | institut | $8.4 \times 10^{-3}$ |
| 84 | demand | $8.4 \times 10^{-3}$ |
| 85 | treatment | $8.4 \times 10^{-3}$ |
| 86 | diseas | $8.4 \times 10^{-3}$ |
| 87 | molecular | $8.3 \times 10^{-3}$ |
| 88 | model | $8.2 \times 10^{-3}$ |
| 89 | choic | $8.2 \times 10^{-3}$ |
| 90 | pay | $8.2 \times 10^{-3}$ |
| 91 | imag | $8.1 \times 10^{-3}$ |
| 92 | background | $8.1 \times 10^{-3}$ |
| 93 | earn | $8 \times 10^{-3}$ |
| 94 | oxid | $7.9 \times 10^{-3}$ |
| 95 | phase | $7.8 \times 10^{-3}$ |
| 96 | literatur | $7.7 \times 10^{-3}$ |
| 97 | materi | $7.7 \times 10^{-3}$ |
| 98 | evid | $7.7 \times 10^{-3}$ |
| 99 | reform | $7.7 \times 10^{-3}$ |
| 100 | express | $7.6 \times 10^{-3}$ |

Table D.61. The list of the top 100 words in the category Education and Educational Research with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | student | $2.7 \times 10^{-1}$ |
| 2 | educ | $2.2 \times 10^{-1}$ |
| 3 | teacher | $1.6 \times 10^{-1}$ |
| 4 | learn | $1.4 \times 10^{-1}$ |
| 5 | teach | $1.4 \times 10^{-1}$ |
| 6 | school | $1.2 \times 10^{-1}$ |
| 7 | univers | $6.5 \times 10^{-2}$ |
| 8 | classroom | $6.3 \times 10^{-2}$ |
| 9 | skill | $5.7 \times 10^{-2}$ |
| 10 | research | $5.5 \times 10^{-2}$ |
| 11 | cours | $5.1 \times 10^{-2}$ |
| 12 | learner | $4.8 \times 10^{-2}$ |
| 13 | academ | $4.6 \times 10^{-2}$ |
| 14 | curriculum | $4.3 \times 10^{-2}$ |
| 15 | pedagog | $3.6 \times 10^{-2}$ |
| 16 | profession | $3.5 \times 10^{-2}$ |
| 17 | practic | $3.5 \times 10^{-2}$ |
| 18 | social | $3.3 \times 10^{-2}$ |
| 19 | languag | $3.3 \times 10^{-2}$ |
| 20 | knowledg | $3.3 \times 10^{-2}$ |
| 21 | instruct | $3.2 \times 10^{-2}$ |
| 22 | scienc | $3.1 \times 10^{-2}$ |
| 23 | colleg | $2.9 \times 10^{-2}$ |
| 24 | english | $2.8 \times 10^{-2}$ |
| 25 | particip | $2.8 \times 10^{-2}$ |
| 26 | undergradu | $2.6 \times 10^{-2}$ |
| 27 | faculti | $2.5 \times 10^{-2}$ |
| 28 | engag | $2.4 \times 10^{-2}$ |
| 29 | graduat | $2.4 \times 10^{-2}$ |
| 30 | interview | $2.3 \times 10^{-2}$ |
| 31 | develop | $2.2 \times 10^{-2}$ |
| 32 | think | $2.1 \times 10^{-2}$ |
| 33 | context | $2.1 \times 10^{-2}$ |
| 34 | train | $2.1 \times 10^{-2}$ |
| 35 | institut | $2.1 \times 10^{-2}$ |
| 36 | focus | $2 \times 10^{-2}$ |
| 37 | cell | $2 \times 10^{-2}$ |
| 38 | pedagogi | $1.9 \times 10^{-2}$ |
| 39 | articl | $1.9 \times 10^{-2}$ |
| 40 | way | $1.9 \times 10^{-2}$ |
| 41 | program | $1.8 \times 10^{-2}$ |
| 42 | compet | $1.7 \times 10^{-2}$ |
| 43 | project | $1.7 \times 10^{-2}$ |
| 44 | taught | $1.7 \times 10^{-2}$ |
| 45 | question | $1.7 \times 10^{-2}$ |
| 46 | lectur | $1.6 \times 10^{-2}$ |
| 47 | instructor | $1.6 \times 10^{-2}$ |
| 48 | collabor | $1.6 \times 10^{-2}$ |
| 49 | questionnair | $1.6 \times 10^{-2}$ |
| 50 | discuss | $1.6 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | concept | $1.6 \times 10^{-2}$ |
| 52 | attitud | $1.5 \times 10^{-2}$ |
| 53 | semest | $1.5 \times 10^{-2}$ |
| 54 | literaci | $1.5 \times 10^{-2}$ |
| 55 | technolog | $1.5 \times 10^{-2}$ |
| 56 | temperatur | $1.5 \times 10^{-2}$ |
| 57 | lesson | $1.4 \times 10^{-2}$ |
| 58 | patient | $1.4 \times 10^{-2}$ |
| 59 | opportun | $1.4 \times 10^{-2}$ |
| 60 | motiv | $1.4 \times 10^{-2}$ |
| 61 | creativ | $1.4 \times 10^{-2}$ |
| 62 | person | $1.4 \times 10^{-2}$ |
| 63 | career | $1.3 \times 10^{-2}$ |
| 64 | explor | $1.3 \times 10^{-2}$ |
| 65 | perspect | $1.3 \times 10^{-2}$ |
| 66 | qualit | $1.3 \times 10^{-2}$ |
| 67 | societi | $1.3 \times 10^{-2}$ |
| 68 | need | $1.3 \times 10^{-2}$ |
| 69 | understand | $1.3 \times 10^{-2}$ |
| 70 | percept | $1.2 \times 10^{-2}$ |
| 71 | innov | $1.2 \times 10^{-2}$ |
| 72 | disciplin | $1.2 \times 10^{-2}$ |
| 73 | surfac | $1.2 \times 10^{-2}$ |
| 74 | write | $1.2 \times 10^{-2}$ |
| 75 | onlin | $1.2 \times 10^{-2}$ |
| 76 | communic | $1.2 \times 10^{-2}$ |
| 77 | reform | $1.2 \times 10^{-2}$ |
| 78 | induc | $1.2 \times 10^{-2}$ |
| 79 | protein | $1.2 \times 10^{-2}$ |
| 80 | curricula | $1.2 \times 10^{-2}$ |
| 81 | survey | $1.2 \times 10^{-2}$ |
| 82 | properti | $1.1 \times 10^{-2}$ |
| 83 | draw | $1.1 \times 10^{-2}$ |
| 84 | cultur | $1.1 \times 10^{-2}$ |
| 85 | children | $1.1 \times 10^{-2}$ |
| 86 | polici | $1.1 \times 10^{-2}$ |
| 87 | grade | $1.1 \times 10^{-2}$ |
| 88 | paramet | $1 \times 10^{-2}$ |
| 89 | experi | $1 \times 10^{-2}$ |
| 90 | find | $9.9 \times 10^{-3}$ |
| 91 | peer | $9.9 \times 10^{-3}$ |
| 92 | nation | $9.9 \times 10^{-3}$ |
| 93 | peopl | $9.7 \times 10^{-3}$ |
| 94 | acid | $9.7 \times 10^{-3}$ |
| 95 | work | $9.6 \times 10^{-3}$ |
| 96 | issu | $9.6 \times 10^{-3}$ |
| 97 | treatment | $9.6 \times 10^{-3}$ |
| 98 | vocat | $9.5 \times 10^{-3}$ |
| 99 | creat | $9.5 \times 10^{-3}$ |
| 100 | decreas | $9.4 \times 10^{-3}$ |

Table D.62. The list of the top 100 words in the category Education, Scientific Disciplines with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | student | $3 \times 10^{-1}$ |
| 2 | educ | $1.4 \times 10^{-1}$ |
| 3 | learn | $1.3 \times 10^{-1}$ |
| 4 | cours | $1.1 \times 10^{-1}$ |
| 5 | teach | $1 \times 10^{-1}$ |
| 6 | engin | $8.8 \times 10^{-2}$ |
| 7 | undergradu | $8.1 \times 10^{-2}$ |
| 8 | skill | $6.5 \times 10^{-2}$ |
| 9 | curriculum | $6 \times 10^{-2}$ |
| 10 | univers | $5.5 \times 10^{-2}$ |
| 11 | faculti | $5.2 \times 10^{-2}$ |
| 12 | school | $5.1 \times 10^{-2}$ |
| 13 | graduat | $4.9 \times 10^{-2}$ |
| 14 | program | $4.7 \times 10^{-2}$ |
| 15 | scienc | $4.6 \times 10^{-2}$ |
| 16 | profession | $3.7 \times 10^{-2}$ |
| 17 | classroom | $3.7 \times 10^{-2}$ |
| 18 | instructor | $3.7 \times 10^{-2}$ |
| 19 | semest | $3.3 \times 10^{-2}$ |
| 20 | academ | $3.2 \times 10^{-2}$ |
| 21 | project | $3.1 \times 10^{-2}$ |
| 22 | lectur | $3.1 \times 10^{-2}$ |
| 23 | introductori | $3.1 \times 10^{-2}$ |
| 24 | colleg | $3 \times 10^{-2}$ |
| 25 | practic | $2.8 \times 10^{-2}$ |
| 26 | instruct | $2.8 \times 10^{-2}$ |
| 27 | knowledg | $2.8 \times 10^{-2}$ |
| 28 | teacher | $2.6 \times 10^{-2}$ |
| 29 | curricula | $2.5 \times 10^{-2}$ |
| 30 | taught | $2.4 \times 10^{-2}$ |
| 31 | experi | $2.4 \times 10^{-2}$ |
| 32 | particip | $2.4 \times 10^{-2}$ |
| 33 | engag | $2.3 \times 10^{-2}$ |
| 34 | team | $2.3 \times 10^{-2}$ |
| 35 | survey | $2.3 \times 10^{-2}$ |
| 36 | career | $2.2 \times 10^{-2}$ |
| 37 | train | $2.1 \times 10^{-2}$ |
| 38 | develop | $2.1 \times 10^{-2}$ |
| 39 | research | $2.1 \times 10^{-2}$ |
| 40 | design | $1.9 \times 10^{-2}$ |
| 41 | concept | $1.9 \times 10^{-2}$ |
| 42 | implement | $1.8 \times 10^{-2}$ |
| 43 | institut | $1.8 \times 10^{-2}$ |
| 44 | disciplin | $1.8 \times 10^{-2}$ |
| 45 | collabor | $1.8 \times 10^{-2}$ |
| 46 | understand | $1.7 \times 10^{-2}$ |
| 47 | topic | $1.7 \times 10^{-2}$ |
| 48 | pedagog | $1.7 \times 10^{-2}$ |
| 49 | opportun | $1.6 \times 10^{-2}$ |
| 50 | medic | $1.6 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | technolog | $1.6 \times 10^{-2}$ |
| 52 | think | $1.6 \times 10^{-2}$ |
| 53 | compet | $1.5 \times 10^{-2}$ |
| 54 | learner | $1.5 \times 10^{-2}$ |
| 55 | question | $1.5 \times 10^{-2}$ |
| 56 | discuss | $1.5 \times 10^{-2}$ |
| 57 | year | $1.4 \times 10^{-2}$ |
| 58 | focus | $1.4 \times 10^{-2}$ |
| 59 | laboratori | $1.4 \times 10^{-2}$ |
| 60 | tool | $1.3 \times 10^{-2}$ |
| 61 | need | $1.3 \times 10^{-2}$ |
| 62 | senior | $1.3 \times 10^{-2}$ |
| 63 | assess | $1.3 \times 10^{-2}$ |
| 64 | goal | $1.3 \times 10^{-2}$ |
| 65 | onlin | $1.3 \times 10^{-2}$ |
| 66 | chemistri | $1.2 \times 10^{-2}$ |
| 67 | help | $1.2 \times 10^{-2}$ |
| 68 | interview | $1.2 \times 10^{-2}$ |
| 69 | feedback | $1.1 \times 10^{-2}$ |
| 70 | describ | $1.1 \times 10^{-2}$ |
| 71 | work | $1.1 \times 10^{-2}$ |
| 72 | motiv | $1 \times 10^{-2}$ |
| 73 | peer | $1 \times 10^{-2}$ |
| 74 | paper | $1 \times 10^{-2}$ |
| 75 | percept | $1 \times 10^{-2}$ |
| 76 | lesson | $9.9 \times 10^{-3}$ |
| 77 | pedagogi | $9.9 \times 10^{-3}$ |
| 78 | cell | $9.9 \times 10^{-3}$ |
| 79 | workshop | $9.8 \times 10^{-3}$ |
| 80 | creat | $9.6 \times 10^{-3}$ |
| 81 | technic | $9.4 \times 10^{-3}$ |
| 82 | encourag | $9.3 \times 10^{-3}$ |
| 83 | will | $9.3 \times 10^{-3}$ |
| 84 | class | $9.1 \times 10^{-3}$ |
| 85 | challeng | $9 \times 10^{-3}$ |
| 86 | profess | $9 \times 10^{-3}$ |
| 87 | attitud | $9 \times 10^{-3}$ |
| 88 | inquiri | $8.8 \times 10^{-3}$ |
| 89 | qualit | $8.8 \times 10^{-3}$ |
| 90 | induc | $8.7 \times 10^{-3}$ |
| 91 | provid | $8.5 \times 10^{-3}$ |
| 92 | innov | $8.4 \times 10^{-3}$ |
| 93 | communic | $8.2 \times 10^{-3}$ |
| 94 | session | $8.2 \times 10^{-3}$ |
| 95 | theme | $7.9 \times 10^{-3}$ |
| 96 | medicin | $7.8 \times 10^{-3}$ |
| 97 | complet | $7.8 \times 10^{-3}$ |
| 98 | nurs | $7.7 \times 10^{-3}$ |
| 99 | author | $7.6 \times 10^{-3}$ |
| 100 | address | $7.5 \times 10^{-3}$ |

Table D.63. The list of the top 100 words in the category Education, Special with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | disabl | $1.6 \times 10^{-1}$ |
| 2 | children | $1.1 \times 10^{-1}$ |
| 3 | autism | $8.8 \times 10^{-2}$ |
| 4 | intellectu | $8.7 \times 10^{-2}$ |
| 5 | asd | $6.2 \times 10^{-2}$ |
| 6 | particip | $5.5 \times 10^{-2}$ |
| 7 | student | $5.5 \times 10^{-2}$ |
| 8 | intervent | $5.2 \times 10^{-2}$ |
| 9 | skill | $5 \times 10^{-2}$ |
| 10 | development | $4.5 \times 10^{-2}$ |
| 11 | school | $4.3 \times 10^{-2}$ |
| 12 | disord | $4.1 \times 10^{-2}$ |
| 13 | educ | $3.7 \times 10^{-2}$ |
| 14 | teacher | $3.3 \times 10^{-2}$ |
| 15 | instruct | $3.1 \times 10^{-2}$ |
| 16 | parent | $3 \times 10^{-2}$ |
| 17 | child | $2.7 \times 10^{-2}$ |
| 18 | research | $2.7 \times 10^{-2}$ |
| 19 | social | $2.6 \times 10^{-2}$ |
| 20 | languag | $2.6 \times 10^{-2}$ |
| 21 | age | $2.6 \times 10^{-2}$ |
| 22 | peopl | $2.6 \times 10^{-2}$ |
| 23 | difficulti | $2.6 \times 10^{-2}$ |
| 24 | learn | $2.5 \times 10^{-2}$ |
| 25 | read | $2.4 \times 10^{-2}$ |
| 26 | classroom | $2.3 \times 10^{-2}$ |
| 27 | impair | $2.3 \times 10^{-2}$ |
| 28 | spectrum | $2.1 \times 10^{-2}$ |
| 29 | peer | $1.9 \times 10^{-2}$ |
| 30 | implic | $1.9 \times 10^{-2}$ |
| 31 | emot | $1.9 \times 10^{-2}$ |
| 32 | examin | $1.8 \times 10^{-2}$ |
| 33 | preschool | $1.7 \times 10^{-2}$ |
| 34 | word | $1.7 \times 10^{-2}$ |
| 35 | individu | $1.7 \times 10^{-2}$ |
| 36 | deficit | $1.7 \times 10^{-2}$ |
| 37 | studi | $1.7 \times 10^{-2}$ |
| 38 | group | $1.6 \times 10^{-2}$ |
| 39 | cognit | $1.6 \times 10^{-2}$ |
| 40 | support | $1.5 \times 10^{-2}$ |
| 41 | score | $1.4 \times 10^{-2}$ |
| 42 | cell | $1.4 \times 10^{-2}$ |
| 43 | adult | $1.4 \times 10^{-2}$ |
| 44 | assess | $1.4 \times 10^{-2}$ |
| 45 | task | $1.3 \times 10^{-2}$ |
| 46 | behavior | $1.3 \times 10^{-2}$ |
| 47 | discuss | $1.3 \times 10^{-2}$ |
| 48 | typic | $1.3 \times 10^{-2}$ |
| 49 | across | $1.3 \times 10^{-2}$ |
| 50 | special | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | need | $1.2 \times 10^{-2}$ |
| 52 | syndrom | $1.2 \times 10^{-2}$ |
| 53 | hear | $1.2 \times 10^{-2}$ |
| 54 | phonolog | $1.2 \times 10^{-2}$ |
| 55 | young | $1.2 \times 10^{-2}$ |
| 56 | literaci | $1.2 \times 10^{-2}$ |
| 57 | temperatur | $1.1 \times 10^{-2}$ |
| 58 | find | $1.1 \times 10^{-2}$ |
| 59 | abil | $1 \times 10^{-2}$ |
| 60 | practic | $1 \times 10^{-2}$ |
| 61 | vocabulari | $1 \times 10^{-2}$ |
| 62 | fluenci | $1 \times 10^{-2}$ |
| 63 | nonverb | $1 \times 10^{-2}$ |
| 64 | caregiv | $1 \times 10^{-2}$ |
| 65 | interview | $1 \times 10^{-2}$ |
| 66 | access | $9.8 \times 10^{-3}$ |
| 67 | verbal | $9.8 \times 10^{-3}$ |
| 68 | year | $9.7 \times 10^{-3}$ |
| 69 | simul | $9.7 \times 10^{-3}$ |
| 70 | palsi | $9.3 \times 10^{-3}$ |
| 71 | teach | $9.1 \times 10^{-3}$ |
| 72 | taught | $9.1 \times 10^{-3}$ |
| 73 | person | $9 \times 10^{-3}$ |
| 74 | reader | $8.7 \times 10^{-3}$ |
| 75 | academ | $8.5 \times 10^{-3}$ |
| 76 | energi | $8.5 \times 10^{-3}$ |
| 77 | speech | $8.4 \times 10^{-3}$ |
| 78 | train | $8.2 \times 10^{-3}$ |
| 79 | elementari | $8 \times 10^{-3}$ |
| 80 | concentr | $8 \times 10^{-3}$ |
| 81 | program | $8 \times 10^{-3}$ |
| 82 | mental | $7.8 \times 10^{-3}$ |
| 83 | surfac | $7.8 \times 10^{-3}$ |
| 84 | item | $7.7 \times 10^{-3}$ |
| 85 | profession | $7.6 \times 10^{-3}$ |
| 86 | staff | $7.5 \times 10^{-3}$ |
| 87 | grade | $7.4 \times 10^{-3}$ |
| 88 | adolesc | $7.4 \times 10^{-3}$ |
| 89 | boy | $7.4 \times 10^{-3}$ |
| 90 | questionnair | $7.3 \times 10^{-3}$ |
| 91 | propos | $7.3 \times 10^{-3}$ |
| 92 | properti | $7.2 \times 10^{-3}$ |
| 93 | induc | $7.2 \times 10^{-3}$ |
| 94 | famili | $7.1 \times 10^{-3}$ |
| 95 | session | $7.1 \times 10^{-3}$ |
| 96 | develop | $7.1 \times 10^{-3}$ |
| 97 | protein | $6.9 \times 10^{-3}$ |
| 98 | mechan | $6.9 \times 10^{-3}$ |
| 99 | servic | $6.8 \times 10^{-3}$ |
| 100 | visual | $6.8 \times 10^{-3}$ |

Table D.64. The list of the top 100 words in the category Electrochemistry with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | electrochem | $1.9 \times 10^{-1}$ |
| 2 | electrod | $1.5 \times 10^{-1}$ |
| 3 | electrolyt | $7.8 \times 10^{-2}$ |
| 4 | voltammetri | $6.7 \times 10^{-2}$ |
| 5 | anod | $5.8 \times 10^{-2}$ |
| 6 | cathod | $5.6 \times 10^{-2}$ |
| 7 | oxid | $5.1 \times 10^{-2}$ |
| 8 | carbon | $4.7 \times 10^{-2}$ |
| 9 | fuel | $4.1 \times 10^{-2}$ |
| 10 | cyclic | $4 \times 10^{-2}$ |
| 11 | batteri | $3.7 \times 10^{-2}$ |
| 12 | imped | $3.5 \times 10^{-2}$ |
| 13 | lithium | $3.5 \times 10^{-2}$ |
| 14 | ion | $3.4 \times 10^{-2}$ |
| 15 | hydrogen | $3.3 \times 10^{-2}$ |
| 16 | surfac | $3.2 \times 10^{-2}$ |
| 17 | prepar | $3.1 \times 10^{-2}$ |
| 18 | spectroscopi | $3 \times 10^{-2}$ |
| 19 | charg | $3 \times 10^{-2}$ |
| 20 | electron | $3 \times 10^{-2}$ |
| 21 | electrocatalyt | $2.8 \times 10^{-2}$ |
| 22 | mah | $2.8 \times 10^{-2}$ |
| 23 | sensor | $2.7 \times 10^{-2}$ |
| 24 | film | $2.4 \times 10^{-2}$ |
| 25 | discharg | $2.4 \times 10^{-2}$ |
| 26 | reaction | $2.3 \times 10^{-2}$ |
| 27 | cycl | $2.3 \times 10^{-2}$ |
| 28 | catalyst | $2.2 \times 10^{-2}$ |
| 29 | conclus | $2.2 \times 10^{-2}$ |
| 30 | nanoparticl | $2.1 \times 10^{-2}$ |
| 31 | fabric | $1.9 \times 10^{-2}$ |
| 32 | glassi | $1.9 \times 10^{-2}$ |
| 33 | electrodeposit | $1.8 \times 10^{-2}$ |
| 34 | layer | $1.8 \times 10^{-2}$ |
| 35 | deposit | $1.8 \times 10^{-2}$ |
| 36 | exhibit | $1.8 \times 10^{-2}$ |
| 37 | synthes | $1.8 \times 10^{-2}$ |
| 38 | stabil | $1.8 \times 10^{-2}$ |
| 39 | patient | $1.8 \times 10^{-2}$ |
| 40 | sem | $1.7 \times 10^{-2}$ |
| 41 | redox | $1.7 \times 10^{-2}$ |
| 42 | biosensor | $1.7 \times 10^{-2}$ |
| 43 | microscopi | $1.7 \times 10^{-2}$ |
| 44 | graphen | $1.6 \times 10^{-2}$ |
| 45 | xrd | $1.6 \times 10^{-2}$ |
| 46 | scan | $1.6 \times 10^{-2}$ |
| 47 | densiti | $1.6 \times 10^{-2}$ |
| 48 | capac | $1.5 \times 10^{-2}$ |
| 49 | cell | $1.5 \times 10^{-2}$ |
| 50 | excel | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | composit | $1.5 \times 10^{-2}$ |
| 52 | coat | $1.5 \times 10^{-2}$ |
| 53 | metal | $1.4 \times 10^{-2}$ |
| 54 | materi | $1.4 \times 10^{-2}$ |
| 55 | nanotub | $1.4 \times 10^{-2}$ |
| 56 | catalyt | $1.4 \times 10^{-2}$ |
| 57 | ray | $1.4 \times 10^{-2}$ |
| 58 | temperatur | $1.4 \times 10^{-2}$ |
| 59 | graphit | $1.3 \times 10^{-2}$ |
| 60 | sensit | $1.3 \times 10^{-2}$ |
| 61 | current | $1.3 \times 10^{-2}$ |
| 62 | ionic | $1.3 \times 10^{-2}$ |
| 63 | capacit | $1.3 \times 10^{-2}$ |
| 64 | oxygen | $1.3 \times 10^{-2}$ |
| 65 | solut | $1.3 \times 10^{-2}$ |
| 66 | porous | $1.2 \times 10^{-2}$ |
| 67 | year | $1.2 \times 10^{-2}$ |
| 68 | diffract | $1.2 \times 10^{-2}$ |
| 69 | concentr | $1.2 \times 10^{-2}$ |
| 70 | perform | $1.2 \times 10^{-2}$ |
| 71 | detect | $1.2 \times 10^{-2}$ |
| 72 | dope | $1.1 \times 10^{-2}$ |
| 73 | immobil | $1.1 \times 10^{-2}$ |
| 74 | associ | $1.1 \times 10^{-2}$ |
| 75 | membran | $1.1 \times 10^{-2}$ |
| 76 | xps | $1.1 \times 10^{-2}$ |
| 77 | modifi | $1 \times 10^{-2}$ |
| 78 | corros | $1 \times 10^{-2}$ |
| 79 | solid | $1 \times 10^{-2}$ |
| 80 | photoelectron | $9.8 \times 10^{-3}$ |
| 81 | high | $9.8 \times 10^{-3}$ |
| 82 | diffus | $9.7 \times 10^{-3}$ |
| 83 | polym | $9.6 \times 10^{-3}$ |
| 84 | platinum | $9.3 \times 10^{-3}$ |
| 85 | tem | $9.2 \times 10^{-3}$ |
| 86 | proton | $9.2 \times 10^{-3}$ |
| 87 | mol | $9.1 \times 10^{-3}$ |
| 88 | background | $9.1 \times 10^{-3}$ |
| 89 | adsorpt | $9.1 \times 10^{-3}$ |
| 90 | object | $9.1 \times 10^{-3}$ |
| 91 | transfer | $9 \times 10^{-3}$ |
| 92 | character | $8.7 \times 10^{-3}$ |
| 93 | conduct | $8.5 \times 10^{-3}$ |
| 94 | risk | $8.5 \times 10^{-3}$ |
| 95 | gold | $8.5 \times 10^{-3}$ |
| 96 | chemic | $8.5 \times 10^{-3}$ |
| 97 | aqueous | $8.5 \times 10^{-3}$ |
| 98 | electr | $8.4 \times 10^{-3}$ |
| 99 | voltag | $8.3 \times 10^{-3}$ |
| 100 | degre | $8.3 \times 10^{-3}$ |

Table D.65. The list of the top 100 words in the category Emergency Medicine with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | emerg | $1.5 \times 10^{-1}$ |
| 2 | depart | $1.5 \times 10^{-1}$ |
| 3 | patient | $1.4 \times 10^{-1}$ |
| 4 | conclus | $1 \times 10^{-1}$ |
| 5 | hospit | $8 \times 10^{-2}$ |
| 6 | trauma | $7.8 \times 10^{-2}$ |
| 7 | resuscit | $7.4 \times 10^{-2}$ |
| 8 | injuri | $7.1 \times 10^{-2}$ |
| 9 | care | $6.1 \times 10^{-2}$ |
| 10 | physician | $5.1 \times 10^{-2}$ |
| 11 | prehospit | $4.8 \times 10^{-2}$ |
| 12 | medic | $4.6 \times 10^{-2}$ |
| 13 | outcom | $4.5 \times 10^{-2}$ |
| 14 | object | $4.4 \times 10^{-2}$ |
| 15 | retrospect | $4.3 \times 10^{-2}$ |
| 16 | arrest | $4.2 \times 10^{-2}$ |
| 17 | method | $4.1 \times 10^{-2}$ |
| 18 | cardiac | $3.9 \times 10^{-2}$ |
| 19 | year | $3.9 \times 10^{-2}$ |
| 20 | admiss | $3.7 \times 10^{-2}$ |
| 21 | acut | $3.6 \times 10^{-2}$ |
| 22 | admit | $3.3 \times 10^{-2}$ |
| 23 | clinic | $3.2 \times 10^{-2}$ |
| 24 | chest | $3 \times 10^{-2}$ |
| 25 | background | $3 \times 10^{-2}$ |
| 26 | prospect | $2.9 \times 10^{-2}$ |
| 27 | cardiopulmonari | $2.5 \times 10^{-2}$ |
| 28 | score | $2.4 \times 10^{-2}$ |
| 29 | pain | $2.4 \times 10^{-2}$ |
| 30 | review | $2.4 \times 10^{-2}$ |
| 31 | fractur | $2.4 \times 10^{-2}$ |
| 32 | mortal | $2.3 \times 10^{-2}$ |
| 33 | pediatr | $2.3 \times 10^{-2}$ |
| 34 | introduct | $2.3 \times 10^{-2}$ |
| 35 | age | $2.3 \times 10^{-2}$ |
| 36 | paper | $2.2 \times 10^{-2}$ |
| 37 | discharg | $2.2 \times 10^{-2}$ |
| 38 | traumat | $2 \times 10^{-2}$ |
| 39 | case | $1.9 \times 10^{-2}$ |
| 40 | diagnosi | $1.9 \times 10^{-2}$ |
| 41 | result | $1.8 \times 10^{-2}$ |
| 42 | neurolog | $1.8 \times 10^{-2}$ |
| 43 | injur | $1.7 \times 10^{-2}$ |
| 44 | manag | $1.7 \times 10^{-2}$ |
| 45 | complic | $1.7 \times 10^{-2}$ |
| 46 | includ | $1.7 \times 10^{-2}$ |
| 47 | intub | $1.7 \times 10^{-2}$ |
| 48 | stay | $1.6 \times 10^{-2}$ |
| 49 | confid | $1.6 \times 10^{-2}$ |
| 50 | receiv | $1.6 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | visit | $1.6 \times 10^{-2}$ |
| 52 | old | $1.6 \times 10^{-2}$ |
| 53 | median | $1.6 \times 10^{-2}$ |
| 54 | adult | $1.5 \times 10^{-2}$ |
| 55 | month | $1.5 \times 10^{-2}$ |
| 56 | interv | $1.5 \times 10^{-2}$ |
| 57 | treatment | $1.5 \times 10^{-2}$ |
| 58 | surgic | $1.5 \times 10^{-2}$ |
| 59 | januari | $1.5 \times 10^{-2}$ |
| 60 | inhospit | $1.5 \times 10^{-2}$ |
| 61 | report | $1.4 \times 10^{-2}$ |
| 62 | intervent | $1.4 \times 10^{-2}$ |
| 63 | blunt | $1.3 \times 10^{-2}$ |
| 64 | record | $1.3 \times 10^{-2}$ |
| 65 | medicin | $1.3 \times 10^{-2}$ |
| 66 | propos | $1.3 \times 10^{-2}$ |
| 67 | treat | $1.3 \times 10^{-2}$ |
| 68 | associ | $1.2 \times 10^{-2}$ |
| 69 | abdomin | $1.2 \times 10^{-2}$ |
| 70 | arriv | $1.2 \times 10^{-2}$ |
| 71 | icu | $1.2 \times 10^{-2}$ |
| 72 | hour | $1.2 \times 10^{-2}$ |
| 73 | children | $1.2 \times 10^{-2}$ |
| 74 | aim | $1.2 \times 10^{-2}$ |
| 75 | common | $1.1 \times 10^{-2}$ |
| 76 | minut | $1.1 \times 10^{-2}$ |
| 77 | cohort | $1.1 \times 10^{-2}$ |
| 78 | decemb | $1.1 \times 10^{-2}$ |
| 79 | death | $1.1 \times 10^{-2}$ |
| 80 | enrol | $1.1 \times 10^{-2}$ |
| 81 | properti | $1.1 \times 10^{-2}$ |
| 82 | iqr | $1.1 \times 10^{-2}$ |
| 83 | total | $1 \times 10^{-2}$ |
| 84 | studi | $1 \times 10^{-2}$ |
| 85 | group | $1 \times 10^{-2}$ |
| 86 | diagnos | $1 \times 10^{-2}$ |
| 87 | day | $1 \times 10^{-2}$ |
| 88 | return | $1 \times 10^{-2}$ |
| 89 | assess | $9.9 \times 10^{-3}$ |
| 90 | burn | $9.9 \times 10^{-3}$ |
| 91 | demograph | $9.9 \times 10^{-3}$ |
| 92 | initi | $9.9 \times 10^{-3}$ |
| 93 | registri | $9.8 \times 10^{-3}$ |
| 94 | risk | $9.7 \times 10^{-3}$ |
| 95 | rate | $9.6 \times 10^{-3}$ |
| 96 | period | $9.6 \times 10^{-3}$ |
| 97 | primari | $9.6 \times 10^{-3}$ |
| 98 | sign | $9.5 \times 10^{-3}$ |
| 99 | servic | $9.3 \times 10^{-3}$ |
| 100 | intraven | $9.3 \times 10^{-3}$ |

Table D.66. The list of the top 100 words in the category Endocrinology and Metabolism with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | diabet | $1.2 \times 10^{-1}$ |
| 2 | insulin | $8.7 \times 10^{-2}$ |
| 3 | glucos | $6.7 \times 10^{-2}$ |
| 4 | conclus | $6.1 \times 10^{-2}$ |
| 5 | obes | $5.3 \times 10^{-2}$ |
| 6 | hormon | $5.3 \times 10^{-2}$ |
| 7 | metabol | $5.1 \times 10^{-2}$ |
| 8 | associ | $4 \times 10^{-2}$ |
| 9 | age | $3.8 \times 10^{-2}$ |
| 10 | patient | $3.6 \times 10^{-2}$ |
| 11 | bmi | $3.4 \times 10^{-2}$ |
| 12 | level | $3.3 \times 10^{-2}$ |
| 13 | receptor | $3.2 \times 10^{-2}$ |
| 14 | paper | $3.2 \times 10^{-2}$ |
| 15 | serum | $3 \times 10^{-2}$ |
| 16 | thyroid | $3 \times 10^{-2}$ |
| 17 | increas | $2.9 \times 10^{-2}$ |
| 18 | mellitus | $2.7 \times 10^{-2}$ |
| 19 | fat | $2.6 \times 10^{-2}$ |
| 20 | blood | $2.5 \times 10^{-2}$ |
| 21 | adipos | $2.5 \times 10^{-2}$ |
| 22 | bone | $2.4 \times 10^{-2}$ |
| 23 | bodi | $2.3 \times 10^{-2}$ |
| 24 | risk | $2.3 \times 10^{-2}$ |
| 25 | women | $2.3 \times 10^{-2}$ |
| 26 | express | $2.3 \times 10^{-2}$ |
| 27 | diseas | $2.2 \times 10^{-2}$ |
| 28 | secret | $2.1 \times 10^{-2}$ |
| 29 | signific | $2.1 \times 10^{-2}$ |
| 30 | regul | $2.1 \times 10^{-2}$ |
| 31 | treatment | $2 \times 10^{-2}$ |
| 32 | aim | $2 \times 10^{-2}$ |
| 33 | mice | $2 \times 10^{-2}$ |
| 34 | pituitari | $1.9 \times 10^{-2}$ |
| 35 | studi | $1.9 \times 10^{-2}$ |
| 36 | protein | $1.8 \times 10^{-2}$ |
| 37 | type | $1.8 \times 10^{-2}$ |
| 38 | object | $1.8 \times 10^{-2}$ |
| 39 | induc | $1.8 \times 10^{-2}$ |
| 40 | plasma | $1.7 \times 10^{-2}$ |
| 41 | year | $1.7 \times 10^{-2}$ |
| 42 | diet | $1.7 \times 10^{-2}$ |
| 43 | subject | $1.6 \times 10^{-2}$ |
| 44 | stimul | $1.6 \times 10^{-2}$ |
| 45 | homeostasi | $1.6 \times 10^{-2}$ |
| 46 | baselin | $1.6 \times 10^{-2}$ |
| 47 | cardiovascular | $1.6 \times 10^{-2}$ |
| 48 | male | $1.6 \times 10^{-2}$ |
| 49 | clinic | $1.5 \times 10^{-2}$ |
| 50 | rat | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | gene | $1.5 \times 10^{-2}$ |
| 52 | decreas | $1.5 \times 10^{-2}$ |
| 53 | cell | $1.5 \times 10^{-2}$ |
| 54 | syndrom | $1.5 \times 10^{-2}$ |
| 55 | assess | $1.5 \times 10^{-2}$ |
| 56 | propos | $1.5 \times 10^{-2}$ |
| 57 | impair | $1.4 \times 10^{-2}$ |
| 58 | week | $1.4 \times 10^{-2}$ |
| 59 | defici | $1.4 \times 10^{-2}$ |
| 60 | lipid | $1.4 \times 10^{-2}$ |
| 61 | control | $1.4 \times 10^{-2}$ |
| 62 | tissu | $1.4 \times 10^{-2}$ |
| 63 | beta | $1.4 \times 10^{-2}$ |
| 64 | adult | $1.4 \times 10^{-2}$ |
| 65 | simul | $1.4 \times 10^{-2}$ |
| 66 | may | $1.4 \times 10^{-2}$ |
| 67 | normal | $1.3 \times 10^{-2}$ |
| 68 | weight | $1.3 \times 10^{-2}$ |
| 69 | whether | $1.3 \times 10^{-2}$ |
| 70 | adjust | $1.3 \times 10^{-2}$ |
| 71 | sex | $1.3 \times 10^{-2}$ |
| 72 | group | $1.3 \times 10^{-2}$ |
| 73 | elev | $1.3 \times 10^{-2}$ |
| 74 | mass | $1.3 \times 10^{-2}$ |
| 75 | mrna | $1.3 \times 10^{-2}$ |
| 76 | cholesterol | $1.3 \times 10^{-2}$ |
| 77 | factor | $1.3 \times 10^{-2}$ |
| 78 | men | $1.3 \times 10^{-2}$ |
| 79 | endocrin | $1.2 \times 10^{-2}$ |
| 80 | triglycerid | $1.2 \times 10^{-2}$ |
| 81 | suggest | $1.2 \times 10^{-2}$ |
| 82 | marker | $1.2 \times 10^{-2}$ |
| 83 | cortisol | $1.2 \times 10^{-2}$ |
| 84 | testosteron | $1.2 \times 10^{-2}$ |
| 85 | intak | $1.2 \times 10^{-2}$ |
| 86 | healthi | $1.2 \times 10^{-2}$ |
| 87 | mediat | $1.2 \times 10^{-2}$ |
| 88 | femal | $1.1 \times 10^{-2}$ |
| 89 | peptid | $1.1 \times 10^{-2}$ |
| 90 | waist | $1.1 \times 10^{-2}$ |
| 91 | skelet | $1.1 \times 10^{-2}$ |
| 92 | estradiol | $1.1 \times 10^{-2}$ |
| 93 | alter | $1.1 \times 10^{-2}$ |
| 94 | role | $1.1 \times 10^{-2}$ |
| 95 | activ | $1.1 \times 10^{-2}$ |
| 96 | temperatur | $1.1 \times 10^{-2}$ |
| 97 | index | $1.1 \times 10^{-2}$ |
| 98 | androgen | $1.1 \times 10^{-2}$ |
| 99 | overweight | $1.1 \times 10^{-2}$ |
| 100 | cohort | $1.1 \times 10^{-2}$ |

Table D.67. The list of the top 100 words in the category Energy and Fuels with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | power | $5.2 \times 10^{-2}$ |
| 2 | energi | $5.2 \times 10^{-2}$ |
| 3 | fuel | $5.1 \times 10^{-2}$ |
| 4 | solar | $4.3 \times 10^{-2}$ |
| 5 | electr | $2.9 \times 10^{-2}$ |
| 6 | heat | $2.9 \times 10^{-2}$ |
| 7 | gas | $2.7 \times 10^{-2}$ |
| 8 | patient | $2.6 \times 10^{-2}$ |
| 9 | voltag | $2.5 \times 10^{-2}$ |
| 10 | oper | $2.3 \times 10^{-2}$ |
| 11 | photovolta | $2.2 \times 10^{-2}$ |
| 12 | temperatur | $2.2 \times 10^{-2}$ |
| 13 | renew | $2.2 \times 10^{-2}$ |
| 14 | co2 | $2.2 \times 10^{-2}$ |
| 15 | effici | $2.1 \times 10^{-2}$ |
| 16 | conclus | $2.1 \times 10^{-2}$ |
| 17 | turbin | $2 \times 10^{-2}$ |
| 18 | wind | $1.9 \times 10^{-2}$ |
| 19 | grid | $1.8 \times 10^{-2}$ |
| 20 | thermal | $1.8 \times 10^{-2}$ |
| 21 | combust | $1.8 \times 10^{-2}$ |
| 22 | storag | $1.8 \times 10^{-2}$ |
| 23 | carbon | $1.6 \times 10^{-2}$ |
| 24 | batteri | $1.6 \times 10^{-2}$ |
| 25 | clinic | $1.6 \times 10^{-2}$ |
| 26 | paper | $1.5 \times 10^{-2}$ |
| 27 | convert | $1.5 \times 10^{-2}$ |
| 28 | diseas | $1.4 \times 10^{-2}$ |
| 29 | oil | $1.4 \times 10^{-2}$ |
| 30 | load | $1.4 \times 10^{-2}$ |
| 31 | coal | $1.4 \times 10^{-2}$ |
| 32 | simul | $1.3 \times 10^{-2}$ |
| 33 | cost | $1.3 \times 10^{-2}$ |
| 34 | biomass | $1.2 \times 10^{-2}$ |
| 35 | perform | $1.2 \times 10^{-2}$ |
| 36 | air | $1.2 \times 10^{-2}$ |
| 37 | steam | $1.1 \times 10^{-2}$ |
| 38 | hydrogen | $1.1 \times 10^{-2}$ |
| 39 | convers | $1.1 \times 10^{-2}$ |
| 40 | background | $1.1 \times 10^{-2}$ |
| 41 | system | $1.1 \times 10^{-2}$ |
| 42 | associ | $1.1 \times 10^{-2}$ |
| 43 | generat | $1 \times 10^{-2}$ |
| 44 | electrochem | $1 \times 10^{-2}$ |
| 45 | group | $1 \times 10^{-2}$ |
| 46 | protein | $1 \times 10^{-2}$ |
| 47 | cycl | $9.4 \times 10^{-3}$ |
| 48 | catalyst | $9.4 \times 10^{-3}$ |
| 49 | electrolyt | $9.3 \times 10^{-3}$ |
| 50 | diesel | $9.2 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | express | $9.1 \times 10^{-3}$ |
| 52 | reactor | $9.1 \times 10^{-3}$ |
| 53 | suppli | $9.1 \times 10^{-3}$ |
| 54 | age | $8.9 \times 10^{-3}$ |
| 55 | human | $8.8 \times 10^{-3}$ |
| 56 | cathod | $8.8 \times 10^{-3}$ |
| 57 | capac | $8.7 \times 10^{-3}$ |
| 58 | gene | $8.5 \times 10^{-3}$ |
| 59 | product | $8.3 \times 10^{-3}$ |
| 60 | electrod | $8.2 \times 10^{-3}$ |
| 61 | biodiesel | $8.1 \times 10^{-3}$ |
| 62 | output | $8 \times 10^{-3}$ |
| 63 | cancer | $8 \times 10^{-3}$ |
| 64 | instal | $7.9 \times 10^{-3}$ |
| 65 | flow | $7.9 \times 10^{-3}$ |
| 66 | emiss | $7.8 \times 10^{-3}$ |
| 67 | anod | $7.8 \times 10^{-3}$ |
| 68 | optim | $7.8 \times 10^{-3}$ |
| 69 | feedstock | $7.7 \times 10^{-3}$ |
| 70 | methan | $7.7 \times 10^{-3}$ |
| 71 | tissu | $7.5 \times 10^{-3}$ |
| 72 | consumpt | $7.3 \times 10^{-3}$ |
| 73 | demand | $7.2 \times 10^{-3}$ |
| 74 | pressur | $6.9 \times 10^{-3}$ |
| 75 | condit | $6.8 \times 10^{-3}$ |
| 76 | collector | $6.8 \times 10^{-3}$ |
| 77 | outcom | $6.7 \times 10^{-3}$ |
| 78 | therapi | $6.6 \times 10^{-3}$ |
| 79 | invert | $6.6 \times 10^{-3}$ |
| 80 | lithium | $6.6 \times 10^{-3}$ |
| 81 | cool | $6.6 \times 10^{-3}$ |
| 82 | econom | $6.6 \times 10^{-3}$ |
| 83 | technolog | $6.5 \times 10^{-3}$ |
| 84 | blood | $6.3 \times 10^{-3}$ |
| 85 | charg | $6.3 \times 10^{-3}$ |
| 86 | current | $6.2 \times 10^{-3}$ |
| 87 | pyrolysi | $6.2 \times 10^{-3}$ |
| 88 | infect | $6.1 \times 10^{-3}$ |
| 89 | drug | $6 \times 10^{-3}$ |
| 90 | fossil | $6 \times 10^{-3}$ |
| 91 | popul | $5.9 \times 10^{-3}$ |
| 92 | reservoir | $5.9 \times 10^{-3}$ |
| 93 | degre | $5.9 \times 10^{-3}$ |
| 94 | suggest | $5.9 \times 10^{-3}$ |
| 95 | male | $5.8 \times 10^{-3}$ |
| 96 | adult | $5.8 \times 10^{-3}$ |
| 97 | wast | $5.7 \times 10^{-3}$ |
| 98 | may | $5.7 \times 10^{-3}$ |
| 99 | tumor | $5.7 \times 10^{-3}$ |
| 100 | circuit | $5.6 \times 10^{-3}$ |

Table D.68. The list of the top 100 words in the category Engineering, Aerospace with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | spacecraft | $6.7 \times 10^{-2}$ |
| 2 | aircraft | $6.2 \times 10^{-2}$ |
| 3 | flight | $6.2 \times 10^{-2}$ |
| 4 | mission | $5.8 \times 10^{-2}$ |
| 5 | orbit | $4 \times 10^{-2}$ |
| 6 | aerodynam | $3.6 \times 10^{-2}$ |
| 7 | satellit | $3.2 \times 10^{-2}$ |
| 8 | paper | $3 \times 10^{-2}$ |
| 9 | simul | $2.5 \times 10^{-2}$ |
| 10 | space | $2.5 \times 10^{-2}$ |
| 11 | earth | $2.3 \times 10^{-2}$ |
| 12 | design | $2.2 \times 10^{-2}$ |
| 13 | wing | $2.2 \times 10^{-2}$ |
| 14 | propuls | $2.1 \times 10^{-2}$ |
| 15 | thrust | $2 \times 10^{-2}$ |
| 16 | launch | $1.8 \times 10^{-2}$ |
| 17 | trajectori | $1.8 \times 10^{-2}$ |
| 18 | patient | $1.8 \times 10^{-2}$ |
| 19 | system | $1.7 \times 10^{-2}$ |
| 20 | vehicl | $1.7 \times 10^{-2}$ |
| 21 | numer | $1.5 \times 10^{-2}$ |
| 22 | engin | $1.5 \times 10^{-2}$ |
| 23 | conclus | $1.4 \times 10^{-2}$ |
| 24 | navig | $1.3 \times 10^{-2}$ |
| 25 | flow | $1.3 \times 10^{-2}$ |
| 26 | drag | $1.2 \times 10^{-2}$ |
| 27 | dynam | $1.2 \times 10^{-2}$ |
| 28 | angl | $1.2 \times 10^{-2}$ |
| 29 | unsteadi | $1.2 \times 10^{-2}$ |
| 30 | unman | $1.1 \times 10^{-2}$ |
| 31 | oper | $1.1 \times 10^{-2}$ |
| 32 | attitud | $1.1 \times 10^{-2}$ |
| 33 | reynold | $1.1 \times 10^{-2}$ |
| 34 | perform | $1.1 \times 10^{-2}$ |
| 35 | treatment | $1.1 \times 10^{-2}$ |
| 36 | capabl | $1.1 \times 10^{-2}$ |
| 37 | blade | $1.1 \times 10^{-2}$ |
| 38 | clinic | $1 \times 10^{-2}$ |
| 39 | comput | $1 \times 10^{-2}$ |
| 40 | altitud | $1 \times 10^{-2}$ |
| 41 | configur | $1 \times 10^{-2}$ |
| 42 | diseas | $9.9 \times 10^{-3}$ |
| 43 | motion | $9.6 \times 10^{-3}$ |
| 44 | track | $9.5 \times 10^{-3}$ |
| 45 | veloc | $9.3 \times 10^{-3}$ |
| 46 | rotor | $9.3 \times 10^{-3}$ |
| 47 | navier | $9.2 \times 10^{-3}$ |
| 48 | algorithm | $9.1 \times 10^{-3}$ |
| 49 | actuat | $9 \times 10^{-3}$ |
| 50 | lift | $9 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | cell | $9 \times 10^{-3}$ |
| 52 | group | $8.9 \times 10^{-3}$ |
| 53 | protein | $8.9 \times 10^{-3}$ |
| 54 | turbul | $8.7 \times 10^{-3}$ |
| 55 | model | $8.6 \times 10^{-3}$ |
| 56 | air | $8.5 \times 10^{-3}$ |
| 57 | jet | $8.5 \times 10^{-3}$ |
| 58 | requir | $8.3 \times 10^{-3}$ |
| 59 | pressur | $8.2 \times 10^{-3}$ |
| 60 | sensor | $8.1 \times 10^{-3}$ |
| 61 | suggest | $7.9 \times 10^{-3}$ |
| 62 | nonlinear | $7.6 \times 10^{-3}$ |
| 63 | problem | $7.5 \times 10^{-3}$ |
| 64 | present | $7.5 \times 10^{-3}$ |
| 65 | fli | $7.4 \times 10^{-3}$ |
| 66 | stoke | $7.3 \times 10^{-3}$ |
| 67 | radar | $7.1 \times 10^{-3}$ |
| 68 | gene | $7 \times 10^{-3}$ |
| 69 | age | $7 \times 10^{-3}$ |
| 70 | ground | $6.9 \times 10^{-3}$ |
| 71 | acid | $6.7 \times 10^{-3}$ |
| 72 | wind | $6.7 \times 10^{-3}$ |
| 73 | background | $6.5 \times 10^{-3}$ |
| 74 | vortex | $6.5 \times 10^{-3}$ |
| 75 | propos | $6.4 \times 10^{-3}$ |
| 76 | error | $6.3 \times 10^{-3}$ |
| 77 | fuel | $6.1 \times 10^{-3}$ |
| 78 | speed | $5.8 \times 10^{-3}$ |
| 79 | kalman | $5.6 \times 10^{-3}$ |
| 80 | studi | $5.5 \times 10^{-3}$ |
| 81 | solver | $5.5 \times 10^{-3}$ |
| 82 | optim | $5.5 \times 10^{-3}$ |
| 83 | cancer | $5.4 \times 10^{-3}$ |
| 84 | aerial | $5.4 \times 10^{-3}$ |
| 85 | guidanc | $5.3 \times 10^{-3}$ |
| 86 | report | $5.2 \times 10^{-3}$ |
| 87 | tunnel | $5.1 \times 10^{-3}$ |
| 88 | concentr | $5.1 \times 10^{-3}$ |
| 89 | tissu | $5.1 \times 10^{-3}$ |
| 90 | base | $5 \times 10^{-3}$ |
| 91 | equat | $4.9 \times 10^{-3}$ |
| 92 | constraint | $4.9 \times 10^{-3}$ |
| 93 | hardwar | $4.9 \times 10^{-3}$ |
| 94 | accuraci | $4.9 \times 10^{-3}$ |
| 95 | approach | $4.8 \times 10^{-3}$ |
| 96 | architectur | $4.8 \times 10^{-3}$ |
| 97 | concept | $4.8 \times 10^{-3}$ |
| 98 | associ | $4.8 \times 10^{-3}$ |
| 99 | autonom | $4.8 \times 10^{-3}$ |
| 100 | pitch | $4.8 \times 10^{-3}$ |

Table D.69. The list of the top 100 words in the category Engineering, Biomedical with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | implant | $3 \times 10^{-2}$ |
| 2 | tissu | $2.9 \times 10^{-2}$ |
| 3 | bone | $2.2 \times 10^{-2}$ |
| 4 | imag | $1.9 \times 10^{-2}$ |
| 5 | scaffold | $1.6 \times 10^{-2}$ |
| 6 | biomechan | $1.4 \times 10^{-2}$ |
| 7 | vivo | $1.2 \times 10^{-2}$ |
| 8 | biomateri | $1.1 \times 10^{-2}$ |
| 9 | collagen | $1.1 \times 10^{-2}$ |
| 10 | phantom | $1.1 \times 10^{-2}$ |
| 11 | gait | $1 \times 10^{-2}$ |
| 12 | use | $1 \times 10^{-2}$ |
| 13 | clinic | $9.3 \times 10^{-3}$ |
| 14 | biocompat | $9.2 \times 10^{-3}$ |
| 15 | vitro | $8.8 \times 10^{-3}$ |
| 16 | segment | $8.7 \times 10^{-3}$ |
| 17 | devic | $8.6 \times 10^{-3}$ |
| 18 | motion | $8.5 \times 10^{-3}$ |
| 19 | hydrogel | $8.3 \times 10^{-3}$ |
| 20 | muscl | $8.1 \times 10^{-3}$ |
| 21 | comput | $8.1 \times 10^{-3}$ |
| 22 | subject | $7.9 \times 10^{-3}$ |
| 23 | human | $7.7 \times 10^{-3}$ |
| 24 | accuraci | $7.5 \times 10^{-3}$ |
| 25 | movement | $7.4 \times 10^{-3}$ |
| 26 | eeg | $7.1 \times 10^{-3}$ |
| 27 | kinemat | $7.1 \times 10^{-3}$ |
| 28 | robot | $7.1 \times 10^{-3}$ |
| 29 | heart | $6.8 \times 10^{-3}$ |
| 30 | regener | $6.8 \times 10^{-3}$ |
| 31 | signal | $6.7 \times 10^{-3}$ |
| 32 | knee | $6.7 \times 10^{-3}$ |
| 33 | brain | $6.5 \times 10^{-3}$ |
| 34 | stiff | $6.4 \times 10^{-3}$ |
| 35 | joint | $6.3 \times 10^{-3}$ |
| 36 | ecg | $6.2 \times 10^{-3}$ |
| 37 | cell | $6.1 \times 10^{-3}$ |
| 38 | noninvas | $5.9 \times 10^{-3}$ |
| 39 | rehabilit | $5.9 \times 10^{-3}$ |
| 40 | biomed | $5.8 \times 10^{-3}$ |
| 41 | walk | $5.8 \times 10^{-3}$ |
| 42 | tomographi | $5.7 \times 10^{-3}$ |
| 43 | load | $5.7 \times 10^{-3}$ |
| 44 | limb | $5.7 \times 10^{-3}$ |
| 45 | forc | $5.7 \times 10^{-3}$ |
| 46 | physiolog | $5.6 \times 10^{-3}$ |
| 47 | osteogen | $5.3 \times 10^{-3}$ |
| 48 | reconstruct | $5.3 \times 10^{-3}$ |
| 49 | deliveri | $5.2 \times 10^{-3}$ |
| 50 | healthi | $5.2 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | automat | $5.1 \times 10^{-3}$ |
| 52 | hydroxyapatit | $5.1 \times 10^{-3}$ |
| 53 | heal | $5 \times 10^{-3}$ |
| 54 | engin | $5 \times 10^{-3}$ |
| 55 | flexion | $4.9 \times 10^{-3}$ |
| 56 | poli | $4.9 \times 10^{-3}$ |
| 57 | cartilag | $4.9 \times 10^{-3}$ |
| 58 | mesenchym | $4.8 \times 10^{-3}$ |
| 59 | cardiac | $4.8 \times 10^{-3}$ |
| 60 | anatom | $4.7 \times 10^{-3}$ |
| 61 | blood | $4.6 \times 10^{-3}$ |
| 62 | osteoblast | $4.5 \times 10^{-3}$ |
| 63 | mri | $4.4 \times 10^{-3}$ |
| 64 | ankl | $4.4 \times 10^{-3}$ |
| 65 | adhes | $4.4 \times 10^{-3}$ |
| 66 | mechan | $4.3 \times 10^{-3}$ |
| 67 | speci | $4.3 \times 10^{-3}$ |
| 68 | accur | $4.3 \times 10^{-3}$ |
| 69 | evalu | $4.3 \times 10^{-3}$ |
| 70 | stem | $4.2 \times 10^{-3}$ |
| 71 | applic | $4.2 \times 10^{-3}$ |
| 72 | prosthesi | $4.1 \times 10^{-3}$ |
| 73 | patient | $4.1 \times 10^{-3}$ |
| 74 | classif | $4.1 \times 10^{-3}$ |
| 75 | test | $4.1 \times 10^{-3}$ |
| 76 | propos | $4 \times 10^{-3}$ |
| 77 | postur | $3.9 \times 10^{-3}$ |
| 78 | algorithm | $3.9 \times 10^{-3}$ |
| 79 | compar | $3.8 \times 10^{-3}$ |
| 80 | hemodynam | $3.8 \times 10^{-3}$ |
| 81 | dental | $3.8 \times 10^{-3}$ |
| 82 | plant | $3.8 \times 10^{-3}$ |
| 83 | temperatur | $3.8 \times 10^{-3}$ |
| 84 | method | $3.7 \times 10^{-3}$ |
| 85 | hip | $3.7 \times 10^{-3}$ |
| 86 | regen | $3.7 \times 10^{-3}$ |
| 87 | ventricular | $3.6 \times 10^{-3}$ |
| 88 | perform | $3.6 \times 10^{-3}$ |
| 89 | attach | $3.6 \times 10^{-3}$ |
| 90 | ultrasound | $3.6 \times 10^{-3}$ |
| 91 | neural | $3.6 \times 10^{-3}$ |
| 92 | registr | $3.6 \times 10^{-3}$ |
| 93 | base | $3.5 \times 10^{-3}$ |
| 94 | promis | $3.5 \times 10^{-3}$ |
| 95 | modulus | $3.5 \times 10^{-3}$ |
| 96 | can | $3.5 \times 10^{-3}$ |
| 97 | vessel | $3.5 \times 10^{-3}$ |
| 98 | therapi | $3.4 \times 10^{-3}$ |
| 99 | prolifer | $3.4 \times 10^{-3}$ |
| 100 | measur | $3.4 \times 10^{-3}$ |

Table D.70. The list of the top 100 words in the category Engineering, Chemical with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | temperatur | $4.1 \times 10^{-2}$ |
| 2 | gas | $3.5 \times 10^{-2}$ |
| 3 | catalyst | $3.3 \times 10^{-2}$ |
| 4 | adsorpt | $3 \times 10^{-2}$ |
| 5 | reactor | $2.9 \times 10^{-2}$ |
| 6 | reaction | $2.4 \times 10^{-2}$ |
| 7 | patient | $2.4 \times 10^{-2}$ |
| 8 | co2 | $2.2 \times 10^{-2}$ |
| 9 | concentr | $2.2 \times 10^{-2}$ |
| 10 | kinet | $2.2 \times 10^{-2}$ |
| 11 | process | $2.1 \times 10^{-2}$ |
| 12 | fuel | $2.1 \times 10^{-2}$ |
| 13 | water | $2.1 \times 10^{-2}$ |
| 14 | pressur | $2 \times 10^{-2}$ |
| 15 | oil | $2 \times 10^{-2}$ |
| 16 | carbon | $2 \times 10^{-2}$ |
| 17 | liquid | $1.9 \times 10^{-2}$ |
| 18 | particl | $1.9 \times 10^{-2}$ |
| 19 | conclus | $1.8 \times 10^{-2}$ |
| 20 | mixtur | $1.8 \times 10^{-2}$ |
| 21 | remov | $1.7 \times 10^{-2}$ |
| 22 | chemic | $1.7 \times 10^{-2}$ |
| 23 | aqueous | $1.7 \times 10^{-2}$ |
| 24 | catalyt | $1.7 \times 10^{-2}$ |
| 25 | combust | $1.7 \times 10^{-2}$ |
| 26 | product | $1.6 \times 10^{-2}$ |
| 27 | bed | $1.6 \times 10^{-2}$ |
| 28 | prepar | $1.6 \times 10^{-2}$ |
| 29 | batch | $1.5 \times 10^{-2}$ |
| 30 | adsorb | $1.5 \times 10^{-2}$ |
| 31 | isotherm | $1.5 \times 10^{-2}$ |
| 32 | degre | $1.4 \times 10^{-2}$ |
| 33 | surfac | $1.4 \times 10^{-2}$ |
| 34 | solut | $1.4 \times 10^{-2}$ |
| 35 | experiment | $1.3 \times 10^{-2}$ |
| 36 | clinic | $1.3 \times 10^{-2}$ |
| 37 | acid | $1.3 \times 10^{-2}$ |
| 38 | wastewat | $1.2 \times 10^{-2}$ |
| 39 | diseas | $1.2 \times 10^{-2}$ |
| 40 | solvent | $1.2 \times 10^{-2}$ |
| 41 | heat | $1.2 \times 10^{-2}$ |
| 42 | langmuir | $1.2 \times 10^{-2}$ |
| 43 | oxid | $1.2 \times 10^{-2}$ |
| 44 | flow | $1.2 \times 10^{-2}$ |
| 45 | solid | $1.2 \times 10^{-2}$ |
| 46 | condit | $1.1 \times 10^{-2}$ |
| 47 | convers | $1.1 \times 10^{-2}$ |
| 48 | coal | $1.1 \times 10^{-2}$ |
| 49 | membran | $1.1 \times 10^{-2}$ |
| 50 | industri | $1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | associ | $1 \times 10^{-2}$ |
| 52 | biomass | $9.9 \times 10^{-3}$ |
| 53 | methan | $9.8 \times 10^{-3}$ |
| 54 | equilibrium | $9.7 \times 10^{-3}$ |
| 55 | composit | $9.7 \times 10^{-3}$ |
| 56 | xrd | $9.6 \times 10^{-3}$ |
| 57 | obtain | $9.6 \times 10^{-3}$ |
| 58 | pore | $9.3 \times 10^{-3}$ |
| 59 | hydrogen | $9.2 \times 10^{-3}$ |
| 60 | background | $9.2 \times 10^{-3}$ |
| 61 | age | $9.2 \times 10^{-3}$ |
| 62 | energi | $9 \times 10^{-3}$ |
| 63 | year | $8.9 \times 10^{-3}$ |
| 64 | permeat | $8.9 \times 10^{-3}$ |
| 65 | thermodynam | $8.8 \times 10^{-3}$ |
| 66 | sem | $8.6 \times 10^{-3}$ |
| 67 | effici | $8.5 \times 10^{-3}$ |
| 68 | hydrocarbon | $8.5 \times 10^{-3}$ |
| 69 | investig | $8 \times 10^{-3}$ |
| 70 | properti | $8 \times 10^{-3}$ |
| 71 | ethanol | $7.9 \times 10^{-3}$ |
| 72 | gene | $7.7 \times 10^{-3}$ |
| 73 | paramet | $7.6 \times 10^{-3}$ |
| 74 | thermal | $7.6 \times 10^{-3}$ |
| 75 | viscos | $7.5 \times 10^{-3}$ |
| 76 | pyrolysi | $7.5 \times 10^{-3}$ |
| 77 | steam | $7.3 \times 10^{-3}$ |
| 78 | separ | $7.3 \times 10^{-3}$ |
| 79 | wast | $7.3 \times 10^{-3}$ |
| 80 | spectroscopi | $7.3 \times 10^{-3}$ |
| 81 | optimum | $7.2 \times 10^{-3}$ |
| 82 | synthes | $7.2 \times 10^{-3}$ |
| 83 | biodiesel | $7.1 \times 10^{-3}$ |
| 84 | molar | $7.1 \times 10^{-3}$ |
| 85 | outcom | $7.1 \times 10^{-3}$ |
| 86 | pseudo | $7.1 \times 10^{-3}$ |
| 87 | signal | $7 \times 10^{-3}$ |
| 88 | flame | $6.9 \times 10^{-3}$ |
| 89 | oper | $6.9 \times 10^{-3}$ |
| 90 | may | $6.9 \times 10^{-3}$ |
| 91 | mpa | $6.8 \times 10^{-3}$ |
| 92 | human | $6.8 \times 10^{-3}$ |
| 93 | methanol | $6.8 \times 10^{-3}$ |
| 94 | air | $6.7 \times 10^{-3}$ |
| 95 | feed | $6.7 \times 10^{-3}$ |
| 96 | oxygen | $6.6 \times 10^{-3}$ |
| 97 | sorption | $6.6 \times 10^{-3}$ |
| 98 | phase | $6.6 \times 10^{-3}$ |
| 99 | diesel | $6.6 \times 10^{-3}$ |
| 100 | feedstock | $6.6 \times 10^{-3}$ |

Table D.71. The list of the top 100 words in the category Engineering, Civil with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | concret | $7.2 \times 10^{-2}$ |
| 2 | load | $3.2 \times 10^{-2}$ |
| 3 | paper | $3.1 \times 10^{-2}$ |
| 4 | steel | $2.7 \times 10^{-2}$ |
| 5 | build | $2.6 \times 10^{-2}$ |
| 6 | reinforc | $2.5 \times 10^{-2}$ |
| 7 | seismic | $2.3 \times 10^{-2}$ |
| 8 | patient | $2.3 \times 10^{-2}$ |
| 9 | pavement | $2.3 \times 10^{-2}$ |
| 10 | asphalt | $2.1 \times 10^{-2}$ |
| 11 | model | $2.1 \times 10^{-2}$ |
| 12 | bridg | $1.8 \times 10^{-2}$ |
| 13 | strength | $1.8 \times 10^{-2}$ |
| 14 | shear | $1.7 \times 10^{-2}$ |
| 15 | earthquak | $1.6 \times 10^{-2}$ |
| 16 | conclus | $1.5 \times 10^{-2}$ |
| 17 | numer | $1.5 \times 10^{-2}$ |
| 18 | cell | $1.5 \times 10^{-2}$ |
| 19 | cement | $1.5 \times 10^{-2}$ |
| 20 | construct | $1.5 \times 10^{-2}$ |
| 21 | finit | $1.5 \times 10^{-2}$ |
| 22 | stiff | $1.5 \times 10^{-2}$ |
| 23 | clinic | $1.3 \times 10^{-2}$ |
| 24 | element | $1.3 \times 10^{-2}$ |
| 25 | water | $1.3 \times 10^{-2}$ |
| 26 | crack | $1.3 \times 10^{-2}$ |
| 27 | test | $1.2 \times 10^{-2}$ |
| 28 | protein | $1.2 \times 10^{-2}$ |
| 29 | compress | $1.2 \times 10^{-2}$ |
| 30 | displac | $1.2 \times 10^{-2}$ |
| 31 | traffic | $1.2 \times 10^{-2}$ |
| 32 | diseas | $1.2 \times 10^{-2}$ |
| 33 | design | $1.1 \times 10^{-2}$ |
| 34 | structur | $1.1 \times 10^{-2}$ |
| 35 | highway | $1.1 \times 10^{-2}$ |
| 36 | engin | $1.1 \times 10^{-2}$ |
| 37 | flexur | $1.1 \times 10^{-2}$ |
| 38 | simul | $1 \times 10^{-2}$ |
| 39 | group | $1 \times 10^{-2}$ |
| 40 | road | $1 \times 10^{-2}$ |
| 41 | beam | $1 \times 10^{-2}$ |
| 42 | deform | $9.4 \times 10^{-3}$ |
| 43 | gene | $9.2 \times 10^{-3}$ |
| 44 | mortar | $9.2 \times 10^{-3}$ |
| 45 | soil | $9.2 \times 10^{-3}$ |
| 46 | damag | $8.9 \times 10^{-3}$ |
| 47 | background | $8.9 \times 10^{-3}$ |
| 48 | activ | $8.7 \times 10^{-3}$ |
| 49 | column | $8.7 \times 10^{-3}$ |
| 50 | river | $8.3 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | buckl | $8.2 \times 10^{-3}$ |
| 52 | nonlinear | $8 \times 10^{-3}$ |
| 53 | ductil | $8 \times 10^{-3}$ |
| 54 | treatment | $8 \times 10^{-3}$ |
| 55 | failur | $7.9 \times 10^{-3}$ |
| 56 | specimen | $7.9 \times 10^{-3}$ |
| 57 | hydraul | $7.7 \times 10^{-3}$ |
| 58 | railway | $7.4 \times 10^{-3}$ |
| 59 | hydrolog | $7.3 \times 10^{-3}$ |
| 60 | capac | $7.2 \times 10^{-3}$ |
| 61 | vibrat | $7.2 \times 10^{-3}$ |
| 62 | binder | $7.1 \times 10^{-3}$ |
| 63 | bend | $7.1 \times 10^{-3}$ |
| 64 | associ | $6.8 \times 10^{-3}$ |
| 65 | cancer | $6.7 \times 10^{-3}$ |
| 66 | elast | $6.7 \times 10^{-3}$ |
| 67 | tissu | $6.6 \times 10^{-3}$ |
| 68 | flow | $6.5 \times 10^{-3}$ |
| 69 | experiment | $6.5 \times 10^{-3}$ |
| 70 | molecular | $6.4 \times 10^{-3}$ |
| 71 | speci | $6.4 \times 10^{-3}$ |
| 72 | acid | $6.3 \times 10^{-3}$ |
| 73 | project | $6.2 \times 10^{-3}$ |
| 74 | base | $6.2 \times 10^{-3}$ |
| 75 | wall | $6.2 \times 10^{-3}$ |
| 76 | propos | $6 \times 10^{-3}$ |
| 77 | therapi | $6 \times 10^{-3}$ |
| 78 | report | $5.9 \times 10^{-3}$ |
| 79 | deflect | $5.8 \times 10^{-3}$ |
| 80 | electron | $5.8 \times 10^{-3}$ |
| 81 | slab | $5.8 \times 10^{-3}$ |
| 82 | forc | $5.7 \times 10^{-3}$ |
| 83 | tunnel | $5.6 \times 10^{-3}$ |
| 84 | blood | $5.5 \times 10^{-3}$ |
| 85 | frame | $5.5 \times 10^{-3}$ |
| 86 | carri | $5.5 \times 10^{-3}$ |
| 87 | stress | $5.5 \times 10^{-3}$ |
| 88 | mediat | $5.4 \times 10^{-3}$ |
| 89 | paramet | $5.4 \times 10^{-3}$ |
| 90 | span | $5.4 \times 10^{-3}$ |
| 91 | predict | $5.4 \times 10^{-3}$ |
| 92 | suggest | $5.3 \times 10^{-3}$ |
| 93 | vehicl | $5.3 \times 10^{-3}$ |
| 94 | rail | $5.2 \times 10^{-3}$ |
| 95 | tumor | $5.2 \times 10^{-3}$ |
| 96 | research | $5.2 \times 10^{-3}$ |
| 97 | drug | $5.2 \times 10^{-3}$ |
| 98 | infect | $5.1 \times 10^{-3}$ |
| 99 | inhibit | $5.1 \times 10^{-3}$ |
| 100 | pile | $5.1 \times 10^{-3}$ |

Table D.72. The list of the top 100 words in the category Engineering, Electrical and Electronic with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | paper | $1.1 \times 10^{-1}$ |
| 2 | propos | $9.2 \times 10^{-2}$ |
| 3 | power | $4.2 \times 10^{-2}$ |
| 4 | algorithm | $4.1 \times 10^{-2}$ |
| 5 | studi | $4.1 \times 10^{-2}$ |
| 6 | conclus | $3.9 \times 10^{-2}$ |
| 7 | simul | $3.8 \times 10^{-2}$ |
| 8 | voltag | $3.1 \times 10^{-2}$ |
| 9 | patient | $2.8 \times 10^{-2}$ |
| 10 | network | $2.5 \times 10^{-2}$ |
| 11 | system | $2.4 \times 10^{-2}$ |
| 12 | antenna | $2.4 \times 10^{-2}$ |
| 13 | circuit | $2.4 \times 10^{-2}$ |
| 14 | suggest | $2.3 \times 10^{-2}$ |
| 15 | treatment | $2.3 \times 10^{-2}$ |
| 16 | associ | $2.2 \times 10^{-2}$ |
| 17 | wireless | $2.1 \times 10^{-2}$ |
| 18 | base | $2.1 \times 10^{-2}$ |
| 19 | protein | $1.9 \times 10^{-2}$ |
| 20 | scheme | $1.9 \times 10^{-2}$ |
| 21 | frequenc | $1.8 \times 10^{-2}$ |
| 22 | group | $1.8 \times 10^{-2}$ |
| 23 | output | $1.7 \times 10^{-2}$ |
| 24 | design | $1.7 \times 10^{-2}$ |
| 25 | bandwidth | $1.7 \times 10^{-2}$ |
| 26 | clinic | $1.7 \times 10^{-2}$ |
| 27 | ghz | $1.6 \times 10^{-2}$ |
| 28 | signific | $1.6 \times 10^{-2}$ |
| 29 | devic | $1.6 \times 10^{-2}$ |
| 30 | age | $1.6 \times 10^{-2}$ |
| 31 | diseas | $1.6 \times 10^{-2}$ |
| 32 | oper | $1.6 \times 10^{-2}$ |
| 33 | nois | $1.6 \times 10^{-2}$ |
| 34 | gene | $1.5 \times 10^{-2}$ |
| 35 | implement | $1.5 \times 10^{-2}$ |
| 36 | cmos | $1.5 \times 10^{-2}$ |
| 37 | acid | $1.4 \times 10^{-2}$ |
| 38 | perform | $1.4 \times 10^{-2}$ |
| 39 | speci | $1.4 \times 10^{-2}$ |
| 40 | achiev | $1.4 \times 10^{-2}$ |
| 41 | examin | $1.4 \times 10^{-2}$ |
| 42 | found | $1.4 \times 10^{-2}$ |
| 43 | filter | $1.4 \times 10^{-2}$ |
| 44 | communic | $1.3 \times 10^{-2}$ |
| 45 | sensor | $1.3 \times 10^{-2}$ |
| 46 | background | $1.3 \times 10^{-2}$ |
| 47 | may | $1.2 \times 10^{-2}$ |
| 48 | signal | $1.2 \times 10^{-2}$ |
| 49 | switch | $1.2 \times 10^{-2}$ |
| 50 | problem | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | optim | $1.2 \times 10^{-2}$ |
| 52 | user | $1.2 \times 10^{-2}$ |
| 53 | year | $1.2 \times 10^{-2}$ |
| 54 | electr | $1.2 \times 10^{-2}$ |
| 55 | indic | $1.1 \times 10^{-2}$ |
| 56 | applic | $1.1 \times 10^{-2}$ |
| 57 | assess | $1.1 \times 10^{-2}$ |
| 58 | channel | $1.1 \times 10^{-2}$ |
| 59 | bit | $1.1 \times 10^{-2}$ |
| 60 | cell | $1.1 \times 10^{-2}$ |
| 61 | input | $1.1 \times 10^{-2}$ |
| 62 | effici | $1.1 \times 10^{-2}$ |
| 63 | activ | $1.1 \times 10^{-2}$ |
| 64 | technolog | $1.1 \times 10^{-2}$ |
| 65 | error | $1.1 \times 10^{-2}$ |
| 66 | popul | $1.1 \times 10^{-2}$ |
| 67 | evid | $1 \times 10^{-2}$ |
| 68 | outcom | $1 \times 10^{-2}$ |
| 69 | role | $1 \times 10^{-2}$ |
| 70 | relat | $1 \times 10^{-2}$ |
| 71 | risk | $1 \times 10^{-2}$ |
| 72 | reaction | $1 \times 10^{-2}$ |
| 73 | reveal | $1 \times 10^{-2}$ |
| 74 | follow | $9.9 \times 10^{-3}$ |
| 75 | concentr | $9.9 \times 10^{-3}$ |
| 76 | inhibit | $9.8 \times 10^{-3}$ |
| 77 | convert | $9.8 \times 10^{-3}$ |
| 78 | comput | $9.7 \times 10^{-3}$ |
| 79 | month | $9.6 \times 10^{-3}$ |
| 80 | molecular | $9.5 \times 10^{-3}$ |
| 81 | mediat | $9.2 \times 10^{-3}$ |
| 82 | techniqu | $9.2 \times 10^{-3}$ |
| 83 | can | $9.2 \times 10^{-3}$ |
| 84 | observ | $9.1 \times 10^{-3}$ |
| 85 | grid | $9 \times 10^{-3}$ |
| 86 | treat | $8.8 \times 10^{-3}$ |
| 87 | cancer | $8.6 \times 10^{-3}$ |
| 88 | induc | $8.6 \times 10^{-3}$ |
| 89 | present | $8.5 \times 10^{-3}$ |
| 90 | decreas | $8.4 \times 10^{-3}$ |
| 91 | express | $8.4 \times 10^{-3}$ |
| 92 | report | $8.4 \times 10^{-3}$ |
| 93 | infect | $8.3 \times 10^{-3}$ |
| 94 | hardwar | $8.2 \times 10^{-3}$ |
| 95 | verifi | $8.2 \times 10^{-3}$ |
| 96 | increas | $8.2 \times 10^{-3}$ |
| 97 | pathway | $8.2 \times 10^{-3}$ |
| 98 | therapi | $8.2 \times 10^{-3}$ |
| 99 | radio | $8 \times 10^{-3}$ |
| 100 | transmiss | $8 \times 10^{-3}$ |

Table D.73. The list of the top 100 words in the category Engineering, Environmental with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | water | $4.4 \times 10^{-2}$ |
| 2 | wastewat | $4.2 \times 10^{-2}$ |
| 3 | remov | $3.5 \times 10^{-2}$ |
| 4 | concentr | $3.1 \times 10^{-2}$ |
| 5 | wast | $3 \times 10^{-2}$ |
| 6 | environment | $3 \times 10^{-2}$ |
| 7 | pollut | $2.7 \times 10^{-2}$ |
| 8 | sludg | $2 \times 10^{-2}$ |
| 9 | patient | $2 \times 10^{-2}$ |
| 10 | effluent | $1.8 \times 10^{-2}$ |
| 11 | carbon | $1.8 \times 10^{-2}$ |
| 12 | adsorpt | $1.8 \times 10^{-2}$ |
| 13 | contamin | $1.6 \times 10^{-2}$ |
| 14 | reactor | $1.4 \times 10^{-2}$ |
| 15 | co2 | $1.3 \times 10^{-2}$ |
| 16 | product | $1.3 \times 10^{-2}$ |
| 17 | chemic | $1.3 \times 10^{-2}$ |
| 18 | recycl | $1.3 \times 10^{-2}$ |
| 19 | batch | $1.2 \times 10^{-2}$ |
| 20 | organ | $1.2 \times 10^{-2}$ |
| 21 | oxid | $1.2 \times 10^{-2}$ |
| 22 | gas | $1.2 \times 10^{-2}$ |
| 23 | clinic | $1.2 \times 10^{-2}$ |
| 24 | process | $1.2 \times 10^{-2}$ |
| 25 | adsorb | $1.1 \times 10^{-2}$ |
| 26 | cod | $1.1 \times 10^{-2}$ |
| 27 | soil | $1.1 \times 10^{-2}$ |
| 28 | plant | $1.1 \times 10^{-2}$ |
| 29 | municip | $1.1 \times 10^{-2}$ |
| 30 | anaerob | $1.1 \times 10^{-2}$ |
| 31 | emiss | $1.1 \times 10^{-2}$ |
| 32 | conclus | $1.1 \times 10^{-2}$ |
| 33 | river | $1 \times 10^{-2}$ |
| 34 | kinet | $1 \times 10^{-2}$ |
| 35 | catalyst | $9.7 \times 10^{-3}$ |
| 36 | degrad | $9.6 \times 10^{-3}$ |
| 37 | dissolv | $9.2 \times 10^{-3}$ |
| 38 | industri | $9 \times 10^{-3}$ |
| 39 | hydraul | $8.7 \times 10^{-3}$ |
| 40 | nitrogen | $8.6 \times 10^{-3}$ |
| 41 | diseas | $8.5 \times 10^{-3}$ |
| 42 | biomass | $8.4 \times 10^{-3}$ |
| 43 | aqueous | $8.3 \times 10^{-3}$ |
| 44 | surfac | $8.3 \times 10^{-3}$ |
| 45 | effici | $8.1 \times 10^{-3}$ |
| 46 | air | $8 \times 10^{-3}$ |
| 47 | photocatalyt | $8 \times 10^{-3}$ |
| 48 | langmuir | $7.6 \times 10^{-3}$ |
| 49 | microbi | $7.6 \times 10^{-3}$ |
| 50 | solid | $7.5 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | bed | $7.4 \times 10^{-3}$ |
| 52 | sediment | $7.4 \times 10^{-3}$ |
| 53 | sorption | $7.4 \times 10^{-3}$ |
| 54 | condit | $6.8 \times 10^{-3}$ |
| 55 | groundwat | $6.8 \times 10^{-3}$ |
| 56 | reduct | $6.8 \times 10^{-3}$ |
| 57 | flow | $6.7 \times 10^{-3}$ |
| 58 | biodegrad | $6.7 \times 10^{-3}$ |
| 59 | oxygen | $6.6 \times 10^{-3}$ |
| 60 | ozon | $6.6 \times 10^{-3}$ |
| 61 | toxic | $6.6 \times 10^{-3}$ |
| 62 | temperatur | $6.3 \times 10^{-3}$ |
| 63 | express | $6.2 \times 10^{-3}$ |
| 64 | capac | $6.2 \times 10^{-3}$ |
| 65 | asphalt | $6.2 \times 10^{-3}$ |
| 66 | sustain | $6.1 \times 10^{-3}$ |
| 67 | metal | $6 \times 10^{-3}$ |
| 68 | impact | $6 \times 10^{-3}$ |
| 69 | reaction | $5.8 \times 10^{-3}$ |
| 70 | aquat | $5.8 \times 10^{-3}$ |
| 71 | greenhous | $5.8 \times 10^{-3}$ |
| 72 | isotherm | $5.8 \times 10^{-3}$ |
| 73 | fuel | $5.8 \times 10^{-3}$ |
| 74 | amount | $5.7 \times 10^{-3}$ |
| 75 | pseudo | $5.7 \times 10^{-3}$ |
| 76 | pavement | $5.7 \times 10^{-3}$ |
| 77 | matter | $5.6 \times 10^{-3}$ |
| 78 | urban | $5.6 \times 10^{-3}$ |
| 79 | signal | $5.5 \times 10^{-3}$ |
| 80 | tio2 | $5.4 \times 10^{-3}$ |
| 81 | catalyt | $5.3 \times 10^{-3}$ |
| 82 | therapi | $5.3 \times 10^{-3}$ |
| 83 | miner | $5.2 \times 10^{-3}$ |
| 84 | dioxid | $5.2 \times 10^{-3}$ |
| 85 | cycl | $5.2 \times 10^{-3}$ |
| 86 | sourc | $5.1 \times 10^{-3}$ |
| 87 | phosphorus | $5.1 \times 10^{-3}$ |
| 88 | reus | $4.9 \times 10^{-3}$ |
| 89 | bioreactor | $4.9 \times 10^{-3}$ |
| 90 | indic | $4.9 \times 10^{-3}$ |
| 91 | ammonia | $4.9 \times 10^{-3}$ |
| 92 | wetland | $4.8 \times 10^{-3}$ |
| 93 | particul | $4.8 \times 10^{-3}$ |
| 94 | methan | $4.8 \times 10^{-3}$ |
| 95 | leach | $4.8 \times 10^{-3}$ |
| 96 | age | $4.7 \times 10^{-3}$ |
| 97 | protein | $4.6 \times 10^{-3}$ |
| 98 | demand | $4.6 \times 10^{-3}$ |
| 99 | iron | $4.6 \times 10^{-3}$ |
| 100 | photocatalyst | $4.6 \times 10^{-3}$ |

Table D.74. The list of the top 100 words in the category Engineering, Geological with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | soil | $1.2 \times 10^{-1}$ |
| 2 | seismic | $6.5 \times 10^{-2}$ |
| 3 | rock | $6.3 \times 10^{-2}$ |
| 4 | shear | $5.1 \times 10^{-2}$ |
| 5 | earthquak | $5 \times 10^{-2}$ |
| 6 | geotechn | $4.8 \times 10^{-2}$ |
| 7 | clay | $3.9 \times 10^{-2}$ |
| 8 | pile | $3.7 \times 10^{-2}$ |
| 9 | stress | $3.6 \times 10^{-2}$ |
| 10 | load | $3.5 \times 10^{-2}$ |
| 11 | sand | $3.3 \times 10^{-2}$ |
| 12 | displac | $3.3 \times 10^{-2}$ |
| 13 | ground | $3 \times 10^{-2}$ |
| 14 | slope | $3 \times 10^{-2}$ |
| 15 | deform | $2.8 \times 10^{-2}$ |
| 16 | excav | $2.7 \times 10^{-2}$ |
| 17 | landslid | $2.7 \times 10^{-2}$ |
| 18 | strength | $2.7 \times 10^{-2}$ |
| 19 | foundat | $2.6 \times 10^{-2}$ |
| 20 | numer | $2.5 \times 10^{-2}$ |
| 21 | test | $2.5 \times 10^{-2}$ |
| 22 | stiff | $2.3 \times 10^{-2}$ |
| 23 | failur | $2.3 \times 10^{-2}$ |
| 24 | settlement | $2.2 \times 10^{-2}$ |
| 25 | suction | $2.2 \times 10^{-2}$ |
| 26 | finit | $2.1 \times 10^{-2}$ |
| 27 | geolog | $2.1 \times 10^{-2}$ |
| 28 | compress | $2 \times 10^{-2}$ |
| 29 | element | $2 \times 10^{-2}$ |
| 30 | concret | $1.9 \times 10^{-2}$ |
| 31 | pressur | $1.9 \times 10^{-2}$ |
| 32 | pore | $1.9 \times 10^{-2}$ |
| 33 | patient | $1.8 \times 10^{-2}$ |
| 34 | unsatur | $1.8 \times 10^{-2}$ |
| 35 | underground | $1.8 \times 10^{-2}$ |
| 36 | tunnel | $1.7 \times 10^{-2}$ |
| 37 | model | $1.7 \times 10^{-2}$ |
| 38 | strain | $1.7 \times 10^{-2}$ |
| 39 | paper | $1.6 \times 10^{-2}$ |
| 40 | engin | $1.6 \times 10^{-2}$ |
| 41 | consolid | $1.5 \times 10^{-2}$ |
| 42 | reinforc | $1.5 \times 10^{-2}$ |
| 43 | elast | $1.5 \times 10^{-2}$ |
| 44 | depth | $1.5 \times 10^{-2}$ |
| 45 | horizont | $1.5 \times 10^{-2}$ |
| 46 | satur | $1.4 \times 10^{-2}$ |
| 47 | vertic | $1.3 \times 10^{-2}$ |
| 48 | water | $1.3 \times 10^{-2}$ |
| 49 | hydraul | $1.3 \times 10^{-2}$ |
| 50 | plastic | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | laboratori | $1.3 \times 10^{-2}$ |
| 52 | damag | $1.3 \times 10^{-2}$ |
| 53 | conclus | $1.2 \times 10^{-2}$ |
| 54 | friction | $1.1 \times 10^{-2}$ |
| 55 | paramet | $1.1 \times 10^{-2}$ |
| 56 | behaviour | $1.1 \times 10^{-2}$ |
| 57 | wall | $1.1 \times 10^{-2}$ |
| 58 | build | $1.1 \times 10^{-2}$ |
| 59 | clinic | $1.1 \times 10^{-2}$ |
| 60 | shallow | $1 \times 10^{-2}$ |
| 61 | protein | $9.8 \times 10^{-3}$ |
| 62 | cell | $9.7 \times 10^{-3}$ |
| 63 | modulus | $9.3 \times 10^{-3}$ |
| 64 | diseas | $9.3 \times 10^{-3}$ |
| 65 | construct | $9.3 \times 10^{-3}$ |
| 66 | drill | $9.2 \times 10^{-3}$ |
| 67 | fractur | $9.2 \times 10^{-3}$ |
| 68 | bear | $9 \times 10^{-3}$ |
| 69 | collaps | $8.9 \times 10^{-3}$ |
| 70 | permeabl | $8.9 \times 10^{-3}$ |
| 71 | borehol | $8.7 \times 10^{-3}$ |
| 72 | dam | $8.6 \times 10^{-3}$ |
| 73 | crack | $8.5 \times 10^{-3}$ |
| 74 | motion | $8.4 \times 10^{-3}$ |
| 75 | specimen | $8.4 \times 10^{-3}$ |
| 76 | behavior | $8.3 \times 10^{-3}$ |
| 77 | curv | $8.3 \times 10^{-3}$ |
| 78 | slide | $8.1 \times 10^{-3}$ |
| 79 | instal | $8 \times 10^{-3}$ |
| 80 | mine | $8 \times 10^{-3}$ |
| 81 | nonlinear | $8 \times 10^{-3}$ |
| 82 | simul | $7.8 \times 10^{-3}$ |
| 83 | treatment | $7.8 \times 10^{-3}$ |
| 84 | group | $7.7 \times 10^{-3}$ |
| 85 | soft | $7.4 \times 10^{-3}$ |
| 86 | background | $7.4 \times 10^{-3}$ |
| 87 | column | $7.3 \times 10^{-3}$ |
| 88 | gene | $7.2 \times 10^{-3}$ |
| 89 | condit | $7.1 \times 10^{-3}$ |
| 90 | static | $7 \times 10^{-3}$ |
| 91 | influenc | $7 \times 10^{-3}$ |
| 92 | cyclic | $7 \times 10^{-3}$ |
| 93 | mechan | $7 \times 10^{-3}$ |
| 94 | activ | $6.8 \times 10^{-3}$ |
| 95 | penetr | $6.7 \times 10^{-3}$ |
| 96 | zone | $6.7 \times 10^{-3}$ |
| 97 | damp | $6.7 \times 10^{-3}$ |
| 98 | predict | $6.5 \times 10^{-3}$ |
| 99 | uniaxi | $6.5 \times 10^{-3}$ |
| 100 | parametr | $6.5 \times 10^{-3}$ |

Table D.75. The list of the top 100 words in the category Engineering, Industrial with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | paper | $4.7 \times 10^{-2}$ |
| 2 | manufactur | $2.7 \times 10^{-2}$ |
| 3 | industri | $2.1 \times 10^{-2}$ |
| 4 | propos | $1.7 \times 10^{-2}$ |
| 5 | design | $1.6 \times 10^{-2}$ |
| 6 | patient | $1.6 \times 10^{-2}$ |
| 7 | compani | $1.5 \times 10^{-2}$ |
| 8 | machin | $1.4 \times 10^{-2}$ |
| 9 | cost | $1.3 \times 10^{-2}$ |
| 10 | product | $1.2 \times 10^{-2}$ |
| 11 | model | $1.2 \times 10^{-2}$ |
| 12 | engin | $1.2 \times 10^{-2}$ |
| 13 | custom | $1.1 \times 10^{-2}$ |
| 14 | process | $1.1 \times 10^{-2}$ |
| 15 | conclus | $1.1 \times 10^{-2}$ |
| 16 | protein | $1.1 \times 10^{-2}$ |
| 17 | problem | $1.1 \times 10^{-2}$ |
| 18 | decis | $1.1 \times 10^{-2}$ |
| 19 | cell | $1 \times 10^{-2}$ |
| 20 | oper | $9.8 \times 10^{-3}$ |
| 21 | clinic | $9.7 \times 10^{-3}$ |
| 22 | diseas | $9.2 \times 10^{-3}$ |
| 23 | manag | $9.1 \times 10^{-3}$ |
| 24 | demand | $8.9 \times 10^{-3}$ |
| 25 | simul | $8.9 \times 10^{-3}$ |
| 26 | treatment | $8.8 \times 10^{-3}$ |
| 27 | system | $8.2 \times 10^{-3}$ |
| 28 | suppli | $8.1 \times 10^{-3}$ |
| 29 | gene | $8.1 \times 10^{-3}$ |
| 30 | supplier | $8 \times 10^{-3}$ |
| 31 | speci | $7.6 \times 10^{-3}$ |
| 32 | schedul | $7.5 \times 10^{-3}$ |
| 33 | base | $7.4 \times 10^{-3}$ |
| 34 | technolog | $7.2 \times 10^{-3}$ |
| 35 | optim | $7 \times 10^{-3}$ |
| 36 | group | $6.8 \times 10^{-3}$ |
| 37 | research | $6.7 \times 10^{-3}$ |
| 38 | acid | $6.6 \times 10^{-3}$ |
| 39 | heurist | $6.3 \times 10^{-3}$ |
| 40 | firm | $6.3 \times 10^{-3}$ |
| 41 | concentr | $6.3 \times 10^{-3}$ |
| 42 | molecular | $6.2 \times 10^{-3}$ |
| 43 | plan | $6.2 \times 10^{-3}$ |
| 44 | busi | $6.1 \times 10^{-3}$ |
| 45 | solv | $6.1 \times 10^{-3}$ |
| 46 | observ | $6 \times 10^{-3}$ |
| 47 | express | $5.9 \times 10^{-3}$ |
| 48 | methodolog | $5.8 \times 10^{-3}$ |
| 49 | cancer | $5.8 \times 10^{-3}$ |
| 50 | exampl | $5.7 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | develop | $5.6 \times 10^{-3}$ |
| 52 | approach | $5.6 \times 10^{-3}$ |
| 53 | tool | $5.3 \times 10^{-3}$ |
| 54 | report | $5.3 \times 10^{-3}$ |
| 55 | innov | $5.2 \times 10^{-3}$ |
| 56 | safeti | $5.2 \times 10^{-3}$ |
| 57 | algorithm | $5.1 \times 10^{-3}$ |
| 58 | age | $5.1 \times 10^{-3}$ |
| 59 | background | $5.1 \times 10^{-3}$ |
| 60 | implement | $5 \times 10^{-3}$ |
| 61 | integr | $5 \times 10^{-3}$ |
| 62 | associ | $4.9 \times 10^{-3}$ |
| 63 | automot | $4.8 \times 10^{-3}$ |
| 64 | order | $4.8 \times 10^{-3}$ |
| 65 | enterpris | $4.7 \times 10^{-3}$ |
| 66 | therapi | $4.6 \times 10^{-3}$ |
| 67 | inhibit | $4.5 \times 10^{-3}$ |
| 68 | tissu | $4.5 \times 10^{-3}$ |
| 69 | perform | $4.5 \times 10^{-3}$ |
| 70 | tumor | $4.4 \times 10^{-3}$ |
| 71 | induc | $4.4 \times 10^{-3}$ |
| 72 | profit | $4.3 \times 10^{-3}$ |
| 73 | load | $4.3 \times 10^{-3}$ |
| 74 | requir | $4.3 \times 10^{-3}$ |
| 75 | ergonom | $4.2 \times 10^{-3}$ |
| 76 | assay | $4.2 \times 10^{-3}$ |
| 77 | job | $4.2 \times 10^{-3}$ |
| 78 | applic | $4.2 \times 10^{-3}$ |
| 79 | infect | $4.2 \times 10^{-3}$ |
| 80 | drug | $4.2 \times 10^{-3}$ |
| 81 | project | $4.1 \times 10^{-3}$ |
| 82 | oxid | $4.1 \times 10^{-3}$ |
| 83 | receptor | $4.1 \times 10^{-3}$ |
| 84 | inventori | $4.1 \times 10^{-3}$ |
| 85 | exhibit | $4.1 \times 10^{-3}$ |
| 86 | practic | $4.1 \times 10^{-3}$ |
| 87 | pathway | $4.1 \times 10^{-3}$ |
| 88 | reaction | $4 \times 10^{-3}$ |
| 89 | make | $4 \times 10^{-3}$ |
| 90 | popul | $4 \times 10^{-3}$ |
| 91 | month | $3.9 \times 10^{-3}$ |
| 92 | market | $3.9 \times 10^{-3}$ |
| 93 | integ | $3.9 \times 10^{-3}$ |
| 94 | illustr | $3.8 \times 10^{-3}$ |
| 95 | can | $3.8 \times 10^{-3}$ |
| 96 | softwar | $3.8 \times 10^{-3}$ |
| 97 | vitro | $3.8 \times 10^{-3}$ |
| 98 | bind | $3.7 \times 10^{-3}$ |
| 99 | molecul | $3.7 \times 10^{-3}$ |
| 100 | signific | $3.7 \times 10^{-3}$ |

Table D.76. The list of the top 100 words in the category Engineering, Manufacturing with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | manufactur | $4.6 \times 10^{-2}$ |
| 2 | machin | $3.9 \times 10^{-2}$ |
| 3 | paper | $3 \times 10^{-2}$ |
| 4 | process | $2.7 \times 10^{-2}$ |
| 5 | cut | $1.7 \times 10^{-2}$ |
| 6 | patient | $1.7 \times 10^{-2}$ |
| 7 | weld | $1.6 \times 10^{-2}$ |
| 8 | conclus | $1.6 \times 10^{-2}$ |
| 9 | industri | $1.5 \times 10^{-2}$ |
| 10 | steel | $1.5 \times 10^{-2}$ |
| 11 | tool | $1.4 \times 10^{-2}$ |
| 12 | alloy | $1.3 \times 10^{-2}$ |
| 13 | speed | $1.2 \times 10^{-2}$ |
| 14 | design | $1.2 \times 10^{-2}$ |
| 15 | materi | $1.2 \times 10^{-2}$ |
| 16 | wear | $1.1 \times 10^{-2}$ |
| 17 | clinic | $1.1 \times 10^{-2}$ |
| 18 | protein | $1 \times 10^{-2}$ |
| 19 | associ | $1 \times 10^{-2}$ |
| 20 | product | $1 \times 10^{-2}$ |
| 21 | cell | $1 \times 10^{-2}$ |
| 22 | diseas | $1 \times 10^{-2}$ |
| 23 | background | $9.6 \times 10^{-3}$ |
| 24 | gene | $8.6 \times 10^{-3}$ |
| 25 | group | $8.6 \times 10^{-3}$ |
| 26 | mill | $8.4 \times 10^{-3}$ |
| 27 | suggest | $8.4 \times 10^{-3}$ |
| 28 | paramet | $8.4 \times 10^{-3}$ |
| 29 | activ | $8.3 \times 10^{-3}$ |
| 30 | rough | $8.2 \times 10^{-3}$ |
| 31 | technolog | $8.2 \times 10^{-3}$ |
| 32 | optim | $7.9 \times 10^{-3}$ |
| 33 | age | $7.8 \times 10^{-3}$ |
| 34 | tensil | $7.7 \times 10^{-3}$ |
| 35 | simul | $7.4 \times 10^{-3}$ |
| 36 | speci | $7.3 \times 10^{-3}$ |
| 37 | model | $7 \times 10^{-3}$ |
| 38 | friction | $6.9 \times 10^{-3}$ |
| 39 | express | $6.9 \times 10^{-3}$ |
| 40 | report | $6.8 \times 10^{-3}$ |
| 41 | may | $6.7 \times 10^{-3}$ |
| 42 | hard | $6.6 \times 10^{-3}$ |
| 43 | cost | $6.6 \times 10^{-3}$ |
| 44 | propos | $6.6 \times 10^{-3}$ |
| 45 | microstructur | $6.5 \times 10^{-3}$ |
| 46 | finit | $6.4 \times 10^{-3}$ |
| 47 | engin | $6.3 \times 10^{-3}$ |
| 48 | year | $6.2 \times 10^{-3}$ |
| 49 | forc | $6.1 \times 10^{-3}$ |
| 50 | surfac | $6.1 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | strength | $6.1 \times 10^{-3}$ |
| 52 | treatment | $6.1 \times 10^{-3}$ |
| 53 | popul | $6.1 \times 10^{-3}$ |
| 54 | custom | $5.9 \times 10^{-3}$ |
| 55 | cancer | $5.9 \times 10^{-3}$ |
| 56 | compani | $5.7 \times 10^{-3}$ |
| 57 | aluminum | $5.6 \times 10^{-3}$ |
| 58 | deform | $5.6 \times 10^{-3}$ |
| 59 | supplier | $5.4 \times 10^{-3}$ |
| 60 | signific | $5.4 \times 10^{-3}$ |
| 61 | month | $5.4 \times 10^{-3}$ |
| 62 | carbid | $5.3 \times 10^{-3}$ |
| 63 | experiment | $5.3 \times 10^{-3}$ |
| 64 | automot | $5.2 \times 10^{-3}$ |
| 65 | softwar | $4.9 \times 10^{-3}$ |
| 66 | element | $4.8 \times 10^{-3}$ |
| 67 | therapi | $4.8 \times 10^{-3}$ |
| 68 | suppli | $4.7 \times 10^{-3}$ |
| 69 | infect | $4.6 \times 10^{-3}$ |
| 70 | qualiti | $4.5 \times 10^{-3}$ |
| 71 | pathway | $4.4 \times 10^{-3}$ |
| 72 | research | $4.3 \times 10^{-3}$ |
| 73 | part | $4.3 \times 10^{-3}$ |
| 74 | evid | $4.3 \times 10^{-3}$ |
| 75 | molecular | $4.3 \times 10^{-3}$ |
| 76 | blood | $4.2 \times 10^{-3}$ |
| 77 | tumor | $4.2 \times 10^{-3}$ |
| 78 | mediat | $4.2 \times 10^{-3}$ |
| 79 | receptor | $4.2 \times 10^{-3}$ |
| 80 | particip | $4.2 \times 10^{-3}$ |
| 81 | adult | $4.2 \times 10^{-3}$ |
| 82 | base | $4.2 \times 10^{-3}$ |
| 83 | inhibit | $4.1 \times 10^{-3}$ |
| 84 | fabric | $4 \times 10^{-3}$ |
| 85 | assay | $4 \times 10^{-3}$ |
| 86 | day | $4 \times 10^{-3}$ |
| 87 | demand | $4 \times 10^{-3}$ |
| 88 | problem | $3.9 \times 10^{-3}$ |
| 89 | heat | $3.9 \times 10^{-3}$ |
| 90 | bind | $3.9 \times 10^{-3}$ |
| 91 | male | $3.9 \times 10^{-3}$ |
| 92 | sheet | $3.9 \times 10^{-3}$ |
| 93 | metal | $3.9 \times 10^{-3}$ |
| 94 | induc | $3.9 \times 10^{-3}$ |
| 95 | week | $3.8 \times 10^{-3}$ |
| 96 | drug | $3.8 \times 10^{-3}$ |
| 97 | outcom | $3.8 \times 10^{-3}$ |
| 98 | acid | $3.7 \times 10^{-3}$ |
| 99 | laser | $3.7 \times 10^{-3}$ |
| 100 | carri | $3.7 \times 10^{-3}$ |

Table D.77. The list of the top 100 words in the category Engineering, Marine with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | ship | $1.1 \times 10^{-1}$ |
| 2 | underwat | $7.7 \times 10^{-2}$ |
| 3 | sea | $6.1 \times 10^{-2}$ |
| 4 | offshor | $5.7 \times 10^{-2}$ |
| 5 | wave | $4.9 \times 10^{-2}$ |
| 6 | hull | $4.9 \times 10^{-2}$ |
| 7 | paper | $3.6 \times 10^{-2}$ |
| 8 | ocean | $3.3 \times 10^{-2}$ |
| 9 | vessel | $3 \times 10^{-2}$ |
| 10 | hydrodynam | $3 \times 10^{-2}$ |
| 11 | numer | $2.8 \times 10^{-2}$ |
| 12 | marin | $2.7 \times 10^{-2}$ |
| 13 | simul | $2.6 \times 10^{-2}$ |
| 14 | motion | $2.4 \times 10^{-2}$ |
| 15 | water | $2.4 \times 10^{-2}$ |
| 16 | float | $2.2 \times 10^{-2}$ |
| 17 | model | $2 \times 10^{-2}$ |
| 18 | tank | $2 \times 10^{-2}$ |
| 19 | load | $1.9 \times 10^{-2}$ |
| 20 | cfd | $1.9 \times 10^{-2}$ |
| 21 | turbin | $1.9 \times 10^{-2}$ |
| 22 | oper | $1.9 \times 10^{-2}$ |
| 23 | acoust | $1.9 \times 10^{-2}$ |
| 24 | riser | $1.9 \times 10^{-2}$ |
| 25 | moor | $1.9 \times 10^{-2}$ |
| 26 | design | $1.7 \times 10^{-2}$ |
| 27 | vehicl | $1.7 \times 10^{-2}$ |
| 28 | patient | $1.6 \times 10^{-2}$ |
| 29 | propuls | $1.6 \times 10^{-2}$ |
| 30 | forc | $1.6 \times 10^{-2}$ |
| 31 | navig | $1.5 \times 10^{-2}$ |
| 32 | drag | $1.4 \times 10^{-2}$ |
| 33 | speed | $1.4 \times 10^{-2}$ |
| 34 | autonom | $1.4 \times 10^{-2}$ |
| 35 | wind | $1.4 \times 10^{-2}$ |
| 36 | instal | $1.3 \times 10^{-2}$ |
| 37 | vortex | $1.2 \times 10^{-2}$ |
| 38 | flow | $1.2 \times 10^{-2}$ |
| 39 | veloc | $1.1 \times 10^{-2}$ |
| 40 | depth | $1.1 \times 10^{-2}$ |
| 41 | present | $1.1 \times 10^{-2}$ |
| 42 | conclus | $1.1 \times 10^{-2}$ |
| 43 | cell | $1 \times 10^{-2}$ |
| 44 | fluid | $1 \times 10^{-2}$ |
| 45 | engin | $1 \times 10^{-2}$ |
| 46 | platform | $1 \times 10^{-2}$ |
| 47 | clinic | $9.8 \times 10^{-3}$ |
| 48 | nonlinear | $9.6 \times 10^{-3}$ |
| 49 | maritim | $9.6 \times 10^{-3}$ |
| 50 | finit | $9.6 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | cylind | $9.4 \times 10^{-3}$ |
| 52 | reynold | $9.2 \times 10^{-3}$ |
| 53 | treatment | $9.1 \times 10^{-3}$ |
| 54 | carri | $9 \times 10^{-3}$ |
| 55 | diseas | $8.9 \times 10^{-3}$ |
| 56 | system | $8.6 \times 10^{-3}$ |
| 57 | seafloor | $8.3 \times 10^{-3}$ |
| 58 | fatigu | $8.3 \times 10^{-3}$ |
| 59 | navier | $8.3 \times 10^{-3}$ |
| 60 | protein | $8.1 \times 10^{-3}$ |
| 61 | lift | $7.9 \times 10^{-3}$ |
| 62 | age | $7.8 \times 10^{-3}$ |
| 63 | coastal | $7.8 \times 10^{-3}$ |
| 64 | ice | $7.8 \times 10^{-3}$ |
| 65 | blade | $7.8 \times 10^{-3}$ |
| 66 | pressur | $7.8 \times 10^{-3}$ |
| 67 | submerg | $7.7 \times 10^{-3}$ |
| 68 | valid | $7.6 \times 10^{-3}$ |
| 69 | vertic | $7.5 \times 10^{-3}$ |
| 70 | height | $7.5 \times 10^{-3}$ |
| 71 | stoke | $7.4 \times 10^{-3}$ |
| 72 | acid | $7.4 \times 10^{-3}$ |
| 73 | suggest | $7.4 \times 10^{-3}$ |
| 74 | bottom | $7.3 \times 10^{-3}$ |
| 75 | deep | $7.2 \times 10^{-3}$ |
| 76 | gene | $6.9 \times 10^{-3}$ |
| 77 | damp | $6.8 \times 10^{-3}$ |
| 78 | perform | $6.8 \times 10^{-3}$ |
| 79 | dynam | $6.8 \times 10^{-3}$ |
| 80 | oil | $6.7 \times 10^{-3}$ |
| 81 | shallow | $6.5 \times 10^{-3}$ |
| 82 | predict | $6.5 \times 10^{-3}$ |
| 83 | comput | $6.5 \times 10^{-3}$ |
| 84 | condit | $6.4 \times 10^{-3}$ |
| 85 | group | $6.3 \times 10^{-3}$ |
| 86 | estim | $6.3 \times 10^{-3}$ |
| 87 | turbul | $6 \times 10^{-3}$ |
| 88 | equip | $6 \times 10^{-3}$ |
| 89 | activ | $5.9 \times 10^{-3}$ |
| 90 | experiment | $5.9 \times 10^{-3}$ |
| 91 | appli | $5.9 \times 10^{-3}$ |
| 92 | environ | $5.8 \times 10^{-3}$ |
| 93 | molecular | $5.8 \times 10^{-3}$ |
| 94 | unsteadi | $5.8 \times 10^{-3}$ |
| 95 | vibrat | $5.7 \times 10^{-3}$ |
| 96 | popul | $5.6 \times 10^{-3}$ |
| 97 | horizont | $5.5 \times 10^{-3}$ |
| 98 | angl | $5.4 \times 10^{-3}$ |
| 99 | background | $5.4 \times 10^{-3}$ |
| 100 | consid | $5.3 \times 10^{-3}$ |

Table D.78. The list of the top 100 words in the category Engineering, Mechanical with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | paper | $3.4 \times 10^{-2}$ |
| 2 | simul | $2.6 \times 10^{-2}$ |
| 3 | flow | $2.6 \times 10^{-2}$ |
| 4 | heat | $2.4 \times 10^{-2}$ |
| 5 | numer | $2.4 \times 10^{-2}$ |
| 6 | patient | $2.4 \times 10^{-2}$ |
| 7 | load | $2.4 \times 10^{-2}$ |
| 8 | turbin | $2.2 \times 10^{-2}$ |
| 9 | conclus | $2.1 \times 10^{-2}$ |
| 10 | vibrat | $2 \times 10^{-2}$ |
| 11 | finit | $1.9 \times 10^{-2}$ |
| 12 | design | $1.9 \times 10^{-2}$ |
| 13 | pressur | $1.9 \times 10^{-2}$ |
| 14 | experiment | $1.7 \times 10^{-2}$ |
| 15 | model | $1.6 \times 10^{-2}$ |
| 16 | steel | $1.6 \times 10^{-2}$ |
| 17 | engin | $1.6 \times 10^{-2}$ |
| 18 | speed | $1.5 \times 10^{-2}$ |
| 19 | fluid | $1.5 \times 10^{-2}$ |
| 20 | clinic | $1.5 \times 10^{-2}$ |
| 21 | veloc | $1.5 \times 10^{-2}$ |
| 22 | group | $1.4 \times 10^{-2}$ |
| 23 | fatigu | $1.4 \times 10^{-2}$ |
| 24 | reynold | $1.4 \times 10^{-2}$ |
| 25 | cfd | $1.4 \times 10^{-2}$ |
| 26 | blade | $1.4 \times 10^{-2}$ |
| 27 | friction | $1.4 \times 10^{-2}$ |
| 28 | pipe | $1.4 \times 10^{-2}$ |
| 29 | forc | $1.4 \times 10^{-2}$ |
| 30 | crack | $1.4 \times 10^{-2}$ |
| 31 | protein | $1.3 \times 10^{-2}$ |
| 32 | diseas | $1.3 \times 10^{-2}$ |
| 33 | cell | $1.3 \times 10^{-2}$ |
| 34 | activ | $1.2 \times 10^{-2}$ |
| 35 | suggest | $1.2 \times 10^{-2}$ |
| 36 | associ | $1.2 \times 10^{-2}$ |
| 37 | element | $1.1 \times 10^{-2}$ |
| 38 | gene | $1.1 \times 10^{-2}$ |
| 39 | dynam | $1.1 \times 10^{-2}$ |
| 40 | paramet | $1.1 \times 10^{-2}$ |
| 41 | background | $1.1 \times 10^{-2}$ |
| 42 | inlet | $1.1 \times 10^{-2}$ |
| 43 | turbul | $1 \times 10^{-2}$ |
| 44 | age | $1 \times 10^{-2}$ |
| 45 | cool | $9.4 \times 10^{-3}$ |
| 46 | stress | $9.4 \times 10^{-3}$ |
| 47 | thermal | $9.2 \times 10^{-3}$ |
| 48 | treatment | $9.2 \times 10^{-3}$ |
| 49 | rotor | $9.1 \times 10^{-3}$ |
| 50 | motion | $9 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | equat | $8.8 \times 10^{-3}$ |
| 52 | stiff | $8.5 \times 10^{-3}$ |
| 53 | oper | $8.5 \times 10^{-3}$ |
| 54 | system | $8.5 \times 10^{-3}$ |
| 55 | condit | $8.4 \times 10^{-3}$ |
| 56 | machin | $8.4 \times 10^{-3}$ |
| 57 | report | $8.3 \times 10^{-3}$ |
| 58 | popul | $8.2 \times 10^{-3}$ |
| 59 | wear | $8 \times 10^{-3}$ |
| 60 | damp | $7.9 \times 10^{-3}$ |
| 61 | nonlinear | $7.8 \times 10^{-3}$ |
| 62 | cancer | $7.8 \times 10^{-3}$ |
| 63 | weld | $7.6 \times 10^{-3}$ |
| 64 | unsteadi | $7.6 \times 10^{-3}$ |
| 65 | aerodynam | $7.6 \times 10^{-3}$ |
| 66 | temperatur | $7.6 \times 10^{-3}$ |
| 67 | wall | $7.6 \times 10^{-3}$ |
| 68 | deform | $7.4 \times 10^{-3}$ |
| 69 | plate | $7.4 \times 10^{-3}$ |
| 70 | air | $7.3 \times 10^{-3}$ |
| 71 | manufactur | $7.2 \times 10^{-3}$ |
| 72 | hydraul | $7.2 \times 10^{-3}$ |
| 73 | cylind | $7.2 \times 10^{-3}$ |
| 74 | transfer | $7.1 \times 10^{-3}$ |
| 75 | displac | $7 \times 10^{-3}$ |
| 76 | fuel | $6.9 \times 10^{-3}$ |
| 77 | ansi | $6.9 \times 10^{-3}$ |
| 78 | axial | $6.9 \times 10^{-3}$ |
| 79 | speci | $6.9 \times 10^{-3}$ |
| 80 | outcom | $6.8 \times 10^{-3}$ |
| 81 | mediat | $6.8 \times 10^{-3}$ |
| 82 | year | $6.8 \times 10^{-3}$ |
| 83 | acid | $6.8 \times 10^{-3}$ |
| 84 | solv | $6.8 \times 10^{-3}$ |
| 85 | particip | $6.7 \times 10^{-3}$ |
| 86 | gas | $6.5 \times 10^{-3}$ |
| 87 | may | $6.5 \times 10^{-3}$ |
| 88 | base | $6.5 \times 10^{-3}$ |
| 89 | therapi | $6.5 \times 10^{-3}$ |
| 90 | express | $6.4 \times 10^{-3}$ |
| 91 | actuat | $6.4 \times 10^{-3}$ |
| 92 | month | $6.4 \times 10^{-3}$ |
| 93 | boundari | $6.4 \times 10^{-3}$ |
| 94 | day | $6.2 \times 10^{-3}$ |
| 95 | infect | $6.2 \times 10^{-3}$ |
| 96 | coeffici | $6.1 \times 10^{-3}$ |
| 97 | geometri | $6.1 \times 10^{-3}$ |
| 98 | combust | $6.1 \times 10^{-3}$ |
| 99 | carri | $6 \times 10^{-3}$ |
| 100 | evid | $6 \times 10^{-3}$ |

Table D.79. The list of the top 100 words in the category Engineering, Multidisciplinary with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | paper | $4.2 \times 10^{-2}$ |
| 2 | engin | $1.9 \times 10^{-2}$ |
| 3 | patient | $1.8 \times 10^{-2}$ |
| 4 | propos | $1.8 \times 10^{-2}$ |
| 5 | problem | $1.7 \times 10^{-2}$ |
| 6 | conclus | $1.7 \times 10^{-2}$ |
| 7 | numer | $1.3 \times 10^{-2}$ |
| 8 | solv | $1.3 \times 10^{-2}$ |
| 9 | protein | $1.1 \times 10^{-2}$ |
| 10 | cell | $1.1 \times 10^{-2}$ |
| 11 | algorithm | $1.1 \times 10^{-2}$ |
| 12 | clinic | $1.1 \times 10^{-2}$ |
| 13 | simul | $1 \times 10^{-2}$ |
| 14 | associ | $1 \times 10^{-2}$ |
| 15 | diseas | $9.1 \times 10^{-3}$ |
| 16 | design | $9 \times 10^{-3}$ |
| 17 | student | $8.8 \times 10^{-3}$ |
| 18 | gene | $8.8 \times 10^{-3}$ |
| 19 | finit | $8.7 \times 10^{-3}$ |
| 20 | suggest | $8.7 \times 10^{-3}$ |
| 21 | treatment | $8.6 \times 10^{-3}$ |
| 22 | age | $8.6 \times 10^{-3}$ |
| 23 | base | $8.3 \times 10^{-3}$ |
| 24 | system | $8.2 \times 10^{-3}$ |
| 25 | exampl | $7.9 \times 10^{-3}$ |
| 26 | signific | $7.2 \times 10^{-3}$ |
| 27 | group | $7.1 \times 10^{-3}$ |
| 28 | background | $6.6 \times 10^{-3}$ |
| 29 | comput | $5.9 \times 10^{-3}$ |
| 30 | activ | $5.9 \times 10^{-3}$ |
| 31 | cancer | $5.9 \times 10^{-3}$ |
| 32 | machin | $5.9 \times 10^{-3}$ |
| 33 | report | $5.8 \times 10^{-3}$ |
| 34 | nonlinear | $5.7 \times 10^{-3}$ |
| 35 | may | $5.7 \times 10^{-3}$ |
| 36 | studi | $5.6 \times 10^{-3}$ |
| 37 | acid | $5.5 \times 10^{-3}$ |
| 38 | model | $5.5 \times 10^{-3}$ |
| 39 | element | $5.3 \times 10^{-3}$ |
| 40 | induc | $5.3 \times 10^{-3}$ |
| 41 | optim | $5.3 \times 10^{-3}$ |
| 42 | therapi | $5.2 \times 10^{-3}$ |
| 43 | implement | $5.2 \times 10^{-3}$ |
| 44 | mediat | $5 \times 10^{-3}$ |
| 45 | equat | $5 \times 10^{-3}$ |
| 46 | technolog | $5 \times 10^{-3}$ |
| 47 | mathemat | $4.9 \times 10^{-3}$ |
| 48 | speed | $4.8 \times 10^{-3}$ |
| 49 | paramet | $4.8 \times 10^{-3}$ |
| 50 | speci | $4.8 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | month | $4.8 \times 10^{-3}$ |
| 52 | molecular | $4.7 \times 10^{-3}$ |
| 53 | express | $4.7 \times 10^{-3}$ |
| 54 | inhibit | $4.6 \times 10^{-3}$ |
| 55 | load | $4.6 \times 10^{-3}$ |
| 56 | infect | $4.5 \times 10^{-3}$ |
| 57 | assay | $4.5 \times 10^{-3}$ |
| 58 | tissu | $4.5 \times 10^{-3}$ |
| 59 | drug | $4.4 \times 10^{-3}$ |
| 60 | adult | $4.3 \times 10^{-3}$ |
| 61 | receptor | $4.3 \times 10^{-3}$ |
| 62 | accuraci | $4.3 \times 10^{-3}$ |
| 63 | matlab | $4.3 \times 10^{-3}$ |
| 64 | tumor | $4.2 \times 10^{-3}$ |
| 65 | flame | $4.2 \times 10^{-3}$ |
| 66 | industri | $4.2 \times 10^{-3}$ |
| 67 | fuzzi | $4.1 \times 10^{-3}$ |
| 68 | potenti | $4.1 \times 10^{-3}$ |
| 69 | present | $4 \times 10^{-3}$ |
| 70 | blood | $4 \times 10^{-3}$ |
| 71 | softwar | $4 \times 10^{-3}$ |
| 72 | order | $3.9 \times 10^{-3}$ |
| 73 | evid | $3.9 \times 10^{-3}$ |
| 74 | popul | $3.9 \times 10^{-3}$ |
| 75 | bind | $3.9 \times 10^{-3}$ |
| 76 | vitro | $3.9 \times 10^{-3}$ |
| 77 | solut | $3.8 \times 10^{-3}$ |
| 78 | mice | $3.8 \times 10^{-3}$ |
| 79 | therapeut | $3.7 \times 10^{-3}$ |
| 80 | pathway | $3.6 \times 10^{-3}$ |
| 81 | cours | $3.6 \times 10^{-3}$ |
| 82 | beta | $3.5 \times 10^{-3}$ |
| 83 | observ | $3.5 \times 10^{-3}$ |
| 84 | day | $3.5 \times 10^{-3}$ |
| 85 | learn | $3.4 \times 10^{-3}$ |
| 86 | male | $3.4 \times 10^{-3}$ |
| 87 | process | $3.4 \times 10^{-3}$ |
| 88 | molecul | $3.4 \times 10^{-3}$ |
| 89 | undergradu | $3.4 \times 10^{-3}$ |
| 90 | dna | $3.4 \times 10^{-3}$ |
| 91 | dose | $3.4 \times 10^{-3}$ |
| 92 | remain | $3.4 \times 10^{-3}$ |
| 93 | verifi | $3.4 \times 10^{-3}$ |
| 94 | surviv | $3.3 \times 10^{-3}$ |
| 95 | faculti | $3.3 \times 10^{-3}$ |
| 96 | disord | $3.3 \times 10^{-3}$ |
| 97 | examin | $3.3 \times 10^{-3}$ |
| 98 | underw | $3.3 \times 10^{-3}$ |
| 99 | retrospect | $3.2 \times 10^{-3}$ |
| 100 | discret | $3.2 \times 10^{-3}$ |

Table D.80. The list of the top 100 words in the category Engineering, Ocean with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | wave | $9.1 \times 10^{-2}$ |
| 2 | offshor | $8.6 \times 10^{-2}$ |
| 3 | sea | $6.1 \times 10^{-2}$ |
| 4 | ship | $5.2 \times 10^{-2}$ |
| 5 | hydrodynam | $4.4 \times 10^{-2}$ |
| 6 | underwat | $4.3 \times 10^{-2}$ |
| 7 | numer | $4.1 \times 10^{-2}$ |
| 8 | riser | $3.8 \times 10^{-2}$ |
| 9 | ocean | $3.8 \times 10^{-2}$ |
| 10 | float | $3.6 \times 10^{-2}$ |
| 11 | water | $3.6 \times 10^{-2}$ |
| 12 | moor | $3.2 \times 10^{-2}$ |
| 13 | motion | $3.1 \times 10^{-2}$ |
| 14 | paper | $3.1 \times 10^{-2}$ |
| 15 | simul | $2.9 \times 10^{-2}$ |
| 16 | model | $2.9 \times 10^{-2}$ |
| 17 | load | $2.8 \times 10^{-2}$ |
| 18 | wind | $2.8 \times 10^{-2}$ |
| 19 | hull | $2.7 \times 10^{-2}$ |
| 20 | forc | $2.4 \times 10^{-2}$ |
| 21 | depth | $2.3 \times 10^{-2}$ |
| 22 | marin | $2 \times 10^{-2}$ |
| 23 | veloc | $1.9 \times 10^{-2}$ |
| 24 | pipe | $1.8 \times 10^{-2}$ |
| 25 | drag | $1.8 \times 10^{-2}$ |
| 26 | vessel | $1.7 \times 10^{-2}$ |
| 27 | coastal | $1.7 \times 10^{-2}$ |
| 28 | patient | $1.7 \times 10^{-2}$ |
| 29 | horizont | $1.7 \times 10^{-2}$ |
| 30 | height | $1.6 \times 10^{-2}$ |
| 31 | flow | $1.6 \times 10^{-2}$ |
| 32 | tank | $1.6 \times 10^{-2}$ |
| 33 | instal | $1.6 \times 10^{-2}$ |
| 34 | vertic | $1.5 \times 10^{-2}$ |
| 35 | pipelin | $1.5 \times 10^{-2}$ |
| 36 | turbin | $1.5 \times 10^{-2}$ |
| 37 | submerg | $1.4 \times 10^{-2}$ |
| 38 | cfd | $1.4 \times 10^{-2}$ |
| 39 | vortex | $1.4 \times 10^{-2}$ |
| 40 | fluid | $1.4 \times 10^{-2}$ |
| 41 | finit | $1.3 \times 10^{-2}$ |
| 42 | nonlinear | $1.3 \times 10^{-2}$ |
| 43 | acoust | $1.3 \times 10^{-2}$ |
| 44 | design | $1.3 \times 10^{-2}$ |
| 45 | fatigu | $1.2 \times 10^{-2}$ |
| 46 | pressur | $1.2 \times 10^{-2}$ |
| 47 | shallow | $1.1 \times 10^{-2}$ |
| 48 | platform | $1.1 \times 10^{-2}$ |
| 49 | bottom | $1.1 \times 10^{-2}$ |
| 50 | predict | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | present | $1.1 \times 10^{-2}$ |
| 52 | reynold | $1.1 \times 10^{-2}$ |
| 53 | equat | $1 \times 10^{-2}$ |
| 54 | cylind | $1 \times 10^{-2}$ |
| 55 | conclus | $1 \times 10^{-2}$ |
| 56 | tension | $1 \times 10^{-2}$ |
| 57 | condit | $1 \times 10^{-2}$ |
| 58 | cell | $1 \times 10^{-2}$ |
| 59 | valid | $1 \times 10^{-2}$ |
| 60 | oper | $9.9 \times 10^{-3}$ |
| 61 | clinic | $9.9 \times 10^{-3}$ |
| 62 | beach | $9.6 \times 10^{-3}$ |
| 63 | navier | $9.6 \times 10^{-3}$ |
| 64 | dynam | $9.6 \times 10^{-3}$ |
| 65 | stoke | $9.4 \times 10^{-3}$ |
| 66 | damp | $9.3 \times 10^{-3}$ |
| 67 | speed | $9.2 \times 10^{-3}$ |
| 68 | deep | $9.1 \times 10^{-3}$ |
| 69 | diseas | $9.1 \times 10^{-3}$ |
| 70 | coast | $9.1 \times 10^{-3}$ |
| 71 | test | $8.9 \times 10^{-3}$ |
| 72 | carri | $8.8 \times 10^{-3}$ |
| 73 | propag | $8.4 \times 10^{-3}$ |
| 74 | oil | $8.4 \times 10^{-3}$ |
| 75 | turbul | $8.3 \times 10^{-3}$ |
| 76 | protein | $8.3 \times 10^{-3}$ |
| 77 | ice | $8.2 \times 10^{-3}$ |
| 78 | drill | $8.2 \times 10^{-3}$ |
| 79 | estim | $8.1 \times 10^{-3}$ |
| 80 | consid | $8.1 \times 10^{-3}$ |
| 81 | appli | $8.1 \times 10^{-3}$ |
| 82 | shore | $7.8 \times 10^{-3}$ |
| 83 | boundari | $7.8 \times 10^{-3}$ |
| 84 | comparison | $7.7 \times 10^{-3}$ |
| 85 | storm | $7.6 \times 10^{-3}$ |
| 86 | bend | $7.5 \times 10^{-3}$ |
| 87 | age | $7.5 \times 10^{-3}$ |
| 88 | activ | $7.4 \times 10^{-3}$ |
| 89 | acid | $7.2 \times 10^{-3}$ |
| 90 | frequenc | $7.2 \times 10^{-3}$ |
| 91 | experiment | $7.1 \times 10^{-3}$ |
| 92 | gene | $7 \times 10^{-3}$ |
| 93 | treatment | $6.9 \times 10^{-3}$ |
| 94 | tidal | $6.8 \times 10^{-3}$ |
| 95 | group | $6.6 \times 10^{-3}$ |
| 96 | lift | $6.6 \times 10^{-3}$ |
| 97 | simplifi | $6.3 \times 10^{-3}$ |
| 98 | accur | $6.3 \times 10^{-3}$ |
| 99 | calcul | $6.2 \times 10^{-3}$ |
| 100 | steel | $6.2 \times 10^{-3}$ |

Table D.81. The list of the top 100 words in the category Engineering, Petroleum with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | reservoir | $1.4 \times 10^{-1}$ |
| 2 | oil | $1.3 \times 10^{-1}$ |
| 3 | gas | $6.2 \times 10^{-2}$ |
| 4 | permeabl | $4.5 \times 10^{-2}$ |
| 5 | drill | $4.5 \times 10^{-2}$ |
| 6 | rock | $4.2 \times 10^{-2}$ |
| 7 | pressur | $4.1 \times 10^{-2}$ |
| 8 | fluid | $3.7 \times 10^{-2}$ |
| 9 | shale | $3.3 \times 10^{-2}$ |
| 10 | hydrocarbon | $2.9 \times 10^{-2}$ |
| 11 | fractur | $2.8 \times 10^{-2}$ |
| 12 | petroleum | $2.6 \times 10^{-2}$ |
| 13 | sandston | $2.3 \times 10^{-2}$ |
| 14 | format | $2.2 \times 10^{-2}$ |
| 15 | geolog | $2.2 \times 10^{-2}$ |
| 16 | flow | $2.2 \times 10^{-2}$ |
| 17 | recoveri | $2.1 \times 10^{-2}$ |
| 18 | viscos | $2 \times 10^{-2}$ |
| 19 | product | $1.9 \times 10^{-2}$ |
| 20 | basin | $1.8 \times 10^{-2}$ |
| 21 | inject | $1.8 \times 10^{-2}$ |
| 22 | pore | $1.6 \times 10^{-2}$ |
| 23 | patient | $1.6 \times 10^{-2}$ |
| 24 | water | $1.6 \times 10^{-2}$ |
| 25 | crude | $1.6 \times 10^{-2}$ |
| 26 | poros | $1.5 \times 10^{-2}$ |
| 27 | well | $1.5 \times 10^{-2}$ |
| 28 | flood | $1.4 \times 10^{-2}$ |
| 29 | horizont | $1.3 \times 10^{-2}$ |
| 30 | borehol | $1.2 \times 10^{-2}$ |
| 31 | sand | $1.2 \times 10^{-2}$ |
| 32 | satur | $1.1 \times 10^{-2}$ |
| 33 | conclus | $1.1 \times 10^{-2}$ |
| 34 | hydraul | $1.1 \times 10^{-2}$ |
| 35 | co2 | $1.1 \times 10^{-2}$ |
| 36 | field | $1 \times 10^{-2}$ |
| 37 | coal | $1 \times 10^{-2}$ |
| 38 | $\log$ | $9.7 \times 10^{-3}$ |
| 39 | clinic | $9.7 \times 10^{-3}$ |
| 40 | temperatur | $9.3 \times 10^{-3}$ |
| 41 | diseas | $9.2 \times 10^{-3}$ |
| 42 | carbon | $8.9 \times 10^{-3}$ |
| 43 | offshor | $8.9 \times 10^{-3}$ |
| 44 | pipe | $8.5 \times 10^{-3}$ |
| 45 | sedimentari | $8.1 \times 10^{-3}$ |
| 46 | litholog | $8 \times 10^{-3}$ |
| 47 | zone | $8 \times 10^{-3}$ |
| 48 | protein | $8 \times 10^{-3}$ |
| 49 | faci | $7.9 \times 10^{-3}$ |
| 50 | miner | $7.5 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | heavi | $7.5 \times 10^{-3}$ |
| 52 | cell | $7.5 \times 10^{-3}$ |
| 53 | porous | $7.4 \times 10^{-3}$ |
| 54 | core | $7 \times 10^{-3}$ |
| 55 | background | $7 \times 10^{-3}$ |
| 56 | displac | $6.7 \times 10^{-3}$ |
| 57 | drainag | $6.7 \times 10^{-3}$ |
| 58 | human | $6.5 \times 10^{-3}$ |
| 59 | seismic | $6.5 \times 10^{-3}$ |
| 60 | surfact | $6.5 \times 10^{-3}$ |
| 61 | properti | $6.3 \times 10^{-3}$ |
| 62 | gene | $6.2 \times 10^{-3}$ |
| 63 | condit | $5.9 \times 10^{-3}$ |
| 64 | capillari | $5.8 \times 10^{-3}$ |
| 65 | bed | $5.8 \times 10^{-3}$ |
| 66 | simul | $5.8 \times 10^{-3}$ |
| 67 | graviti | $5.7 \times 10^{-3}$ |
| 68 | rheolog | $5.7 \times 10^{-3}$ |
| 69 | industri | $5.5 \times 10^{-3}$ |
| 70 | deposit | $5.4 \times 10^{-3}$ |
| 71 | volum | $5.3 \times 10^{-3}$ |
| 72 | particip | $5.3 \times 10^{-3}$ |
| 73 | methan | $5.3 \times 10^{-3}$ |
| 74 | paramet | $5.1 \times 10^{-3}$ |
| 75 | cancer | $5 \times 10^{-3}$ |
| 76 | solut | $4.9 \times 10^{-3}$ |
| 77 | popul | $4.9 \times 10^{-3}$ |
| 78 | cement | $4.9 \times 10^{-3}$ |
| 79 | tecton | $4.9 \times 10^{-3}$ |
| 80 | ore | $4.9 \times 10^{-3}$ |
| 81 | model | $4.8 \times 10^{-3}$ |
| 82 | steam | $4.8 \times 10^{-3}$ |
| 83 | level | $4.8 \times 10^{-3}$ |
| 84 | tissu | $4.6 \times 10^{-3}$ |
| 85 | express | $4.6 \times 10^{-3}$ |
| 86 | geochem | $4.6 \times 10^{-3}$ |
| 87 | numer | $4.5 \times 10^{-3}$ |
| 88 | diesel | $4.4 \times 10^{-3}$ |
| 89 | catalyst | $4.4 \times 10^{-3}$ |
| 90 | crack | $4.4 \times 10^{-3}$ |
| 91 | fault | $4.3 \times 10^{-3}$ |
| 92 | therapi | $4.2 \times 10^{-3}$ |
| 93 | strata | $4.2 \times 10^{-3}$ |
| 94 | group | $4.1 \times 10^{-3}$ |
| 95 | vertic | $4.1 \times 10^{-3}$ |
| 96 | blood | $4.1 \times 10^{-3}$ |
| 97 | distribut | $4.1 \times 10^{-3}$ |
| 98 | outcom | $4 \times 10^{-3}$ |
| 99 | health | $4 \times 10^{-3}$ |
| 100 | subsurfac | $4 \times 10^{-3}$ |

Table D.82. The list of the top 100 words in the category Entomology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | insect | $1.3 \times 10^{-1}$ |
| 2 | pest | $1.3 \times 10^{-1}$ |
| 3 | speci | $1.3 \times 10^{-1}$ |
| 4 | larva | $8.1 \times 10^{-2}$ |
| 5 | egg | $5.2 \times 10^{-2}$ |
| 6 | larval | $5.1 \times 10^{-2}$ |
| 7 | beetl | $4.8 \times 10^{-2}$ |
| 8 | adult | $4.4 \times 10^{-2}$ |
| 9 | parasitoid | $4.4 \times 10^{-2}$ |
| 10 | instar | $4.4 \times 10^{-2}$ |
| 11 | femal | $4.2 \times 10^{-2}$ |
| 12 | insecticid | $4.2 \times 10^{-2}$ |
| 13 | oviposit | $4.1 \times 10^{-2}$ |
| 14 | host | $4 \times 10^{-2}$ |
| 15 | plant | $3.9 \times 10^{-2}$ |
| 16 | infest | $3.3 \times 10^{-2}$ |
| 17 | rear | $3 \times 10^{-2}$ |
| 18 | mite | $3 \times 10^{-2}$ |
| 19 | genus | $2.9 \times 10^{-2}$ |
| 20 | feed | $2.7 \times 10^{-2}$ |
| 21 | fli | $2.6 \times 10^{-2}$ |
| 22 | predat | $2.4 \times 10^{-2}$ |
| 23 | crop | $2.4 \times 10^{-2}$ |
| 24 | popul | $2.3 \times 10^{-2}$ |
| 25 | fecund | $2.3 \times 10^{-2}$ |
| 26 | paper | $2 \times 10^{-2}$ |
| 27 | enemi | $2 \times 10^{-2}$ |
| 28 | male | $1.9 \times 10^{-2}$ |
| 29 | method | $1.9 \times 10^{-2}$ |
| 30 | biolog | $1.8 \times 10^{-2}$ |
| 31 | patient | $1.8 \times 10^{-2}$ |
| 32 | nov | $1.8 \times 10^{-2}$ |
| 33 | mosquito | $1.8 \times 10^{-2}$ |
| 34 | habitat | $1.7 \times 10^{-2}$ |
| 35 | mate | $1.7 \times 10^{-2}$ |
| 36 | reproduct | $1.6 \times 10^{-2}$ |
| 37 | laboratori | $1.6 \times 10^{-2}$ |
| 38 | parasit | $1.6 \times 10^{-2}$ |
| 39 | genera | $1.5 \times 10^{-2}$ |
| 40 | abund | $1.5 \times 10^{-2}$ |
| 41 | trap | $1.5 \times 10^{-2}$ |
| 42 | bioassay | $1.4 \times 10^{-2}$ |
| 43 | leaf | $1.4 \times 10^{-2}$ |
| 44 | coloni | $1.4 \times 10^{-2}$ |
| 45 | fruit | $1.3 \times 10^{-2}$ |
| 46 | herbivor | $1.3 \times 10^{-2}$ |
| 47 | arthropod | $1.3 \times 10^{-2}$ |
| 48 | model | $1.3 \times 10^{-2}$ |
| 49 | prey | $1.2 \times 10^{-2}$ |
| 50 | collect | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | aed | $1.2 \times 10^{-2}$ |
| 52 | propos | $1.2 \times 10^{-2}$ |
| 53 | record | $1.1 \times 10^{-2}$ |
| 54 | forest | $1.1 \times 10^{-2}$ |
| 55 | tree | $1 \times 10^{-2}$ |
| 56 | immatur | $1 \times 10^{-2}$ |
| 57 | mortal | $1 \times 10^{-2}$ |
| 58 | season | $1 \times 10^{-2}$ |
| 59 | orchard | $9.8 \times 10^{-3}$ |
| 60 | clinic | $9.8 \times 10^{-3}$ |
| 61 | pesticid | $9.7 \times 10^{-3}$ |
| 62 | forag | $9.6 \times 10^{-3}$ |
| 63 | simul | $9.6 \times 10^{-3}$ |
| 64 | wing | $9.3 \times 10^{-3}$ |
| 65 | hatch | $9 \times 10^{-3}$ |
| 66 | development | $9 \times 10^{-3}$ |
| 67 | ecolog | $8.8 \times 10^{-3}$ |
| 68 | leav | $8.8 \times 10^{-3}$ |
| 69 | nativ | $8.7 \times 10^{-3}$ |
| 70 | sex | $8.6 \times 10^{-3}$ |
| 71 | brazil | $8.6 \times 10^{-3}$ |
| 72 | fauna | $8.4 \times 10^{-3}$ |
| 73 | spp | $8.3 \times 10^{-3}$ |
| 74 | divers | $8.1 \times 10^{-3}$ |
| 75 | surviv | $8 \times 10^{-3}$ |
| 76 | properti | $8 \times 10^{-3}$ |
| 77 | comput | $8 \times 10^{-3}$ |
| 78 | america | $7.9 \times 10^{-3}$ |
| 79 | control | $7.8 \times 10^{-3}$ |
| 80 | algorithm | $7.6 \times 10^{-3}$ |
| 81 | stage | $7.5 \times 10^{-3}$ |
| 82 | food | $7.5 \times 10^{-3}$ |
| 83 | taxonom | $7.4 \times 10^{-3}$ |
| 84 | perform | $7.4 \times 10^{-3}$ |
| 85 | taxa | $7.3 \times 10^{-3}$ |
| 86 | fed | $7.3 \times 10^{-3}$ |
| 87 | flower | $7.3 \times 10^{-3}$ |
| 88 | problem | $7.2 \times 10^{-3}$ |
| 89 | system | $7.1 \times 10^{-3}$ |
| 90 | suscept | $7 \times 10^{-3}$ |
| 91 | process | $7 \times 10^{-3}$ |
| 92 | nest | $6.9 \times 10^{-3}$ |
| 93 | energi | $6.9 \times 10^{-3}$ |
| 94 | design | $6.8 \times 10^{-3}$ |
| 95 | belong | $6.7 \times 10^{-3}$ |
| 96 | oper | $6.4 \times 10^{-3}$ |
| 97 | field | $6.4 \times 10^{-3}$ |
| 98 | north | $6.4 \times 10^{-3}$ |
| 99 | southern | $6.4 \times 10^{-3}$ |
| 100 | phylogenet | $6.4 \times 10^{-3}$ |

Table D.83. The list of the top 100 words in the category Environmental Sciences with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | water | $5.2 \times 10^{-2}$ |
| 2 | pollut | $5.1 \times 10^{-2}$ |
| 3 | concentr | $5.1 \times 10^{-2}$ |
| 4 | environment | $4.4 \times 10^{-2}$ |
| 5 | soil | $4.4 \times 10^{-2}$ |
| 6 | contamin | $3.6 \times 10^{-2}$ |
| 7 | ecosystem | $2.5 \times 10^{-2}$ |
| 8 | river | $2.4 \times 10^{-2}$ |
| 9 | wastewat | $2.4 \times 10^{-2}$ |
| 10 | climat | $2.4 \times 10^{-2}$ |
| 11 | land | $2.2 \times 10^{-2}$ |
| 12 | area | $2.1 \times 10^{-2}$ |
| 13 | patient | $2 \times 10^{-2}$ |
| 14 | sediment | $2 \times 10^{-2}$ |
| 15 | organ | $1.9 \times 10^{-2}$ |
| 16 | agricultur | $1.9 \times 10^{-2}$ |
| 17 | plant | $1.9 \times 10^{-2}$ |
| 18 | carbon | $1.7 \times 10^{-2}$ |
| 19 | exposur | $1.6 \times 10^{-2}$ |
| 20 | wast | $1.6 \times 10^{-2}$ |
| 21 | season | $1.6 \times 10^{-2}$ |
| 22 | urban | $1.6 \times 10^{-2}$ |
| 23 | groundwat | $1.6 \times 10^{-2}$ |
| 24 | aquat | $1.6 \times 10^{-2}$ |
| 25 | toxic | $1.5 \times 10^{-2}$ |
| 26 | biomass | $1.5 \times 10^{-2}$ |
| 27 | remov | $1.4 \times 10^{-2}$ |
| 28 | anthropogen | $1.4 \times 10^{-2}$ |
| 29 | ecolog | $1.4 \times 10^{-2}$ |
| 30 | emiss | $1.3 \times 10^{-2}$ |
| 31 | impact | $1.3 \times 10^{-2}$ |
| 32 | sourc | $1.3 \times 10^{-2}$ |
| 33 | effluent | $1.3 \times 10^{-2}$ |
| 34 | indic | $1.3 \times 10^{-2}$ |
| 35 | air | $1.3 \times 10^{-2}$ |
| 36 | site | $1.2 \times 10^{-2}$ |
| 37 | particul | $1.2 \times 10^{-2}$ |
| 38 | dissolv | $1.2 \times 10^{-2}$ |
| 39 | veget | $1.2 \times 10^{-2}$ |
| 40 | matter | $1.2 \times 10^{-2}$ |
| 41 | lake | $1.1 \times 10^{-2}$ |
| 42 | sludg | $1.1 \times 10^{-2}$ |
| 43 | clinic | $1.1 \times 10^{-2}$ |
| 44 | conclus | $1.1 \times 10^{-2}$ |
| 45 | speci | $1.1 \times 10^{-2}$ |
| 46 | china | $1.1 \times 10^{-2}$ |
| 47 | chemic | $1.1 \times 10^{-2}$ |
| 48 | nitrogen | $1.1 \times 10^{-2}$ |
| 49 | hydrolog | $1 \times 10^{-2}$ |
| 50 | assess | $1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | product | $1 \times 10^{-2}$ |
| 52 | coastal | $1 \times 10^{-2}$ |
| 53 | forest | $9.8 \times 10^{-3}$ |
| 54 | total | $9.7 \times 10^{-3}$ |
| 55 | annual | $9.5 \times 10^{-3}$ |
| 56 | nutrient | $9.4 \times 10^{-3}$ |
| 57 | wetland | $9.3 \times 10^{-3}$ |
| 58 | summer | $9.2 \times 10^{-3}$ |
| 59 | environ | $9 \times 10^{-3}$ |
| 60 | atmospher | $8.9 \times 10^{-3}$ |
| 61 | spatial | $8.5 \times 10^{-3}$ |
| 62 | manag | $8.5 \times 10^{-3}$ |
| 63 | pesticid | $8.4 \times 10^{-3}$ |
| 64 | microbi | $8.3 \times 10^{-3}$ |
| 65 | runoff | $8 \times 10^{-3}$ |
| 66 | citi | $7.9 \times 10^{-3}$ |
| 67 | monitor | $7.8 \times 10^{-3}$ |
| 68 | hydrocarbon | $7.8 \times 10^{-3}$ |
| 69 | sustain | $7.8 \times 10^{-3}$ |
| 70 | sampl | $7.8 \times 10^{-3}$ |
| 71 | watersh | $7.6 \times 10^{-3}$ |
| 72 | aerosol | $7.5 \times 10^{-3}$ |
| 73 | municip | $7.4 \times 10^{-3}$ |
| 74 | phosphorus | $7.4 \times 10^{-3}$ |
| 75 | studi | $7.2 \times 10^{-3}$ |
| 76 | highest | $7.2 \times 10^{-3}$ |
| 77 | catchment | $7.2 \times 10^{-3}$ |
| 78 | habitat | $7.2 \times 10^{-3}$ |
| 79 | heavi | $7.1 \times 10^{-3}$ |
| 80 | winter | $7.1 \times 10^{-3}$ |
| 81 | basin | $7 \times 10^{-3}$ |
| 82 | industri | $7 \times 10^{-3}$ |
| 83 | increas | $6.9 \times 10^{-3}$ |
| 84 | greenhous | $6.7 \times 10^{-3}$ |
| 85 | degrad | $6.7 \times 10^{-3}$ |
| 86 | rainfal | $6.6 \times 10^{-3}$ |
| 87 | collect | $6.6 \times 10^{-3}$ |
| 88 | fish | $6.5 \times 10^{-3}$ |
| 89 | potenti | $6.4 \times 10^{-3}$ |
| 90 | metal | $6.4 \times 10^{-3}$ |
| 91 | region | $6.4 \times 10^{-3}$ |
| 92 | communiti | $6.3 \times 10^{-3}$ |
| 93 | chang | $6.2 \times 10^{-3}$ |
| 94 | econom | $6.2 \times 10^{-3}$ |
| 95 | dri | $6.2 \times 10^{-3}$ |
| 96 | ozon | $6.1 \times 10^{-3}$ |
| 97 | precipit | $6.1 \times 10^{-3}$ |
| 98 | estim | $6 \times 10^{-3}$ |
| 99 | nitrat | $6 \times 10^{-3}$ |
| 100 | freshwat | $5.9 \times 10^{-3}$ |

Table D.84. The list of the top 100 words in the category Environmental Studies with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | polici | $8.7 \times 10^{-2}$ |
| 2 | econom | $5.6 \times 10^{-2}$ |
| 3 | urban | $4.6 \times 10^{-2}$ |
| 4 | environment | $4.5 \times 10^{-2}$ |
| 5 | sustain | $4.1 \times 10^{-2}$ |
| 6 | govern | $4.1 \times 10^{-2}$ |
| 7 | climat | $3.8 \times 10^{-2}$ |
| 8 | social | $3.6 \times 10^{-2}$ |
| 9 | land | $3.5 \times 10^{-2}$ |
| 10 | citi | $3.2 \times 10^{-2}$ |
| 11 | sector | $2.6 \times 10^{-2}$ |
| 12 | plan | $2.5 \times 10^{-2}$ |
| 13 | manag | $2.4 \times 10^{-2}$ |
| 14 | market | $2.4 \times 10^{-2}$ |
| 15 | polit | $2.4 \times 10^{-2}$ |
| 16 | countri | $2.3 \times 10^{-2}$ |
| 17 | impact | $2.1 \times 10^{-2}$ |
| 18 | resourc | $2.1 \times 10^{-2}$ |
| 19 | price | $1.9 \times 10^{-2}$ |
| 20 | ecolog | $1.9 \times 10^{-2}$ |
| 21 | paper | $1.9 \times 10^{-2}$ |
| 22 | patient | $1.9 \times 10^{-2}$ |
| 23 | economi | $1.8 \times 10^{-2}$ |
| 24 | stakehold | $1.8 \times 10^{-2}$ |
| 25 | household | $1.8 \times 10^{-2}$ |
| 26 | public | $1.7 \times 10^{-2}$ |
| 27 | ecosystem | $1.7 \times 10^{-2}$ |
| 28 | develop | $1.6 \times 10^{-2}$ |
| 29 | cell | $1.6 \times 10^{-2}$ |
| 30 | communiti | $1.6 \times 10^{-2}$ |
| 31 | hous | $1.5 \times 10^{-2}$ |
| 32 | nation | $1.5 \times 10^{-2}$ |
| 33 | method | $1.5 \times 10^{-2}$ |
| 34 | agricultur | $1.5 \times 10^{-2}$ |
| 35 | landscap | $1.5 \times 10^{-2}$ |
| 36 | chang | $1.5 \times 10^{-2}$ |
| 37 | actor | $1.4 \times 10^{-2}$ |
| 38 | research | $1.4 \times 10^{-2}$ |
| 39 | area | $1.4 \times 10^{-2}$ |
| 40 | argu | $1.4 \times 10^{-2}$ |
| 41 | institut | $1.3 \times 10^{-2}$ |
| 42 | livelihood | $1.3 \times 10^{-2}$ |
| 43 | tourism | $1.3 \times 10^{-2}$ |
| 44 | focus | $1.3 \times 10^{-2}$ |
| 45 | invest | $1.3 \times 10^{-2}$ |
| 46 | local | $1.3 \times 10^{-2}$ |
| 47 | decis | $1.3 \times 10^{-2}$ |
| 48 | rural | $1.3 \times 10^{-2}$ |
| 49 | fisheri | $1.2 \times 10^{-2}$ |
| 50 | global | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | project | $1.1 \times 10^{-2}$ |
| 52 | framework | $1.1 \times 10^{-2}$ |
| 53 | clinic | $1.1 \times 10^{-2}$ |
| 54 | build | $1.1 \times 10^{-2}$ |
| 55 | context | $1.1 \times 10^{-2}$ |
| 56 | futur | $1.1 \times 10^{-2}$ |
| 57 | conclus | $1.1 \times 10^{-2}$ |
| 58 | issu | $1.1 \times 10^{-2}$ |
| 59 | empir | $1.1 \times 10^{-2}$ |
| 60 | region | $1.1 \times 10^{-2}$ |
| 61 | spatial | $1.1 \times 10^{-2}$ |
| 62 | trade | $1.1 \times 10^{-2}$ |
| 63 | socio | $1 \times 10^{-2}$ |
| 64 | privat | $1 \times 10^{-2}$ |
| 65 | interview | $1 \times 10^{-2}$ |
| 66 | industri | $1 \times 10^{-2}$ |
| 67 | capit | $1 \times 10^{-2}$ |
| 68 | maker | $1 \times 10^{-2}$ |
| 69 | residenti | $9.9 \times 10^{-3}$ |
| 70 | benefit | $9.7 \times 10^{-3}$ |
| 71 | incom | $9.7 \times 10^{-3}$ |
| 72 | conserv | $9.7 \times 10^{-3}$ |
| 73 | peopl | $9.6 \times 10^{-3}$ |
| 74 | emiss | $9.4 \times 10^{-3}$ |
| 75 | servic | $9.4 \times 10^{-3}$ |
| 76 | draw | $9.3 \times 10^{-3}$ |
| 77 | protein | $9.3 \times 10^{-3}$ |
| 78 | incent | $9.2 \times 10^{-3}$ |
| 79 | perspect | $9.2 \times 10^{-3}$ |
| 80 | china | $9.2 \times 10^{-3}$ |
| 81 | forest | $9.1 \times 10^{-3}$ |
| 82 | natur | $9 \times 10^{-3}$ |
| 83 | farmer | $8.9 \times 10^{-3}$ |
| 84 | mitig | $8.7 \times 10^{-3}$ |
| 85 | treatment | $8.7 \times 10^{-3}$ |
| 86 | survey | $8.6 \times 10^{-3}$ |
| 87 | obtain | $8.6 \times 10^{-3}$ |
| 88 | explor | $8.5 \times 10^{-3}$ |
| 89 | biodivers | $8.5 \times 10^{-3}$ |
| 90 | articl | $8.5 \times 10^{-3}$ |
| 91 | demand | $8.5 \times 10^{-3}$ |
| 92 | practic | $8.4 \times 10^{-3}$ |
| 93 | infrastructur | $8 \times 10^{-3}$ |
| 94 | electron | $8 \times 10^{-3}$ |
| 95 | diseas | $8 \times 10^{-3}$ |
| 96 | address | $7.9 \times 10^{-3}$ |
| 97 | find | $7.7 \times 10^{-3}$ |
| 98 | acid | $7.6 \times 10^{-3}$ |
| 99 | detect | $7.6 \times 10^{-3}$ |
| 100 | experiment | $7.6 \times 10^{-3}$ |

Table D.85. The list of the top 100 words in the category Ergonomics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | crash | $5.3 \times 10^{-2}$ |
| 2 | driver | $4.9 \times 10^{-2}$ |
| 3 | task | $4.5 \times 10^{-2}$ |
| 4 | safeti | $4.3 \times 10^{-2}$ |
| 5 | ergonom | $4 \times 10^{-2}$ |
| 6 | road | $3.9 \times 10^{-2}$ |
| 7 | user | $3.4 \times 10^{-2}$ |
| 8 | particip | $3.3 \times 10^{-2}$ |
| 9 | worker | $3 \times 10^{-2}$ |
| 10 | traffic | $2.8 \times 10^{-2}$ |
| 11 | practition | $2.6 \times 10^{-2}$ |
| 12 | accid | $2.4 \times 10^{-2}$ |
| 13 | vehicl | $2.3 \times 10^{-2}$ |
| 14 | drive | $2.2 \times 10^{-2}$ |
| 15 | injuri | $1.8 \times 10^{-2}$ |
| 16 | perceiv | $1.8 \times 10^{-2}$ |
| 17 | postur | $1.7 \times 10^{-2}$ |
| 18 | research | $1.7 \times 10^{-2}$ |
| 19 | summari | $1.6 \times 10^{-2}$ |
| 20 | musculoskelet | $1.6 \times 10^{-2}$ |
| 21 | studi | $1.6 \times 10^{-2}$ |
| 22 | design | $1.5 \times 10^{-2}$ |
| 23 | risk | $1.5 \times 10^{-2}$ |
| 24 | occup | $1.4 \times 10^{-2}$ |
| 25 | fatal | $1.3 \times 10^{-2}$ |
| 26 | workplac | $1.3 \times 10^{-2}$ |
| 27 | lane | $1.3 \times 10^{-2}$ |
| 28 | work | $1.2 \times 10^{-2}$ |
| 29 | industri | $1.2 \times 10^{-2}$ |
| 30 | usabl | $1.2 \times 10^{-2}$ |
| 31 | car | $1.1 \times 10^{-2}$ |
| 32 | cognit | $1.1 \times 10^{-2}$ |
| 33 | cell | $1 \times 10^{-2}$ |
| 34 | relev | $9.7 \times 10^{-3}$ |
| 35 | person | $9.7 \times 10^{-3}$ |
| 36 | percept | $9.5 \times 10^{-3}$ |
| 37 | pedestrian | $9.4 \times 10^{-3}$ |
| 38 | job | $9.2 \times 10^{-3}$ |
| 39 | factor | $9.1 \times 10^{-3}$ |
| 40 | inform | $9 \times 10^{-3}$ |
| 41 | shoulder | $8.9 \times 10^{-3}$ |
| 42 | workload | $8.9 \times 10^{-3}$ |
| 43 | subject | $8.2 \times 10^{-3}$ |
| 44 | speed | $8.2 \times 10^{-3}$ |
| 45 | protein | $7.9 \times 10^{-3}$ |
| 46 | collis | $7.5 \times 10^{-3}$ |
| 47 | highway | $7.5 \times 10^{-3}$ |
| 48 | behaviour | $7.5 \times 10^{-3}$ |
| 49 | manual | $7.3 \times 10^{-3}$ |
| 50 | experi | $7.3 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | comfort | $7.2 \times 10^{-3}$ |
| 52 | acid | $7.1 \times 10^{-3}$ |
| 53 | practic | $7.1 \times 10^{-3}$ |
| 54 | questionnair | $6.9 \times 10^{-3}$ |
| 55 | passeng | $6.9 \times 10^{-3}$ |
| 56 | train | $6.9 \times 10^{-3}$ |
| 57 | employe | $6.8 \times 10^{-3}$ |
| 58 | organis | $6.5 \times 10^{-3}$ |
| 59 | violat | $6.5 \times 10^{-3}$ |
| 60 | speci | $6.5 \times 10^{-3}$ |
| 61 | visual | $6.5 \times 10^{-3}$ |
| 62 | polic | $6.4 \times 10^{-3}$ |
| 63 | selfreport | $6.3 \times 10^{-3}$ |
| 64 | environ | $6.2 \times 10^{-3}$ |
| 65 | gene | $6.1 \times 10^{-3}$ |
| 66 | treatment | $6.1 \times 10^{-3}$ |
| 67 | patient | $6 \times 10^{-3}$ |
| 68 | fatigu | $5.9 \times 10^{-3}$ |
| 69 | situat | $5.9 \times 10^{-3}$ |
| 70 | hand | $5.9 \times 10^{-3}$ |
| 71 | energi | $5.8 \times 10^{-3}$ |
| 72 | back | $5.8 \times 10^{-3}$ |
| 73 | interfac | $5.7 \times 10^{-3}$ |
| 74 | decis | $5.7 \times 10^{-3}$ |
| 75 | lift | $5.4 \times 10^{-3}$ |
| 76 | assess | $5.3 \times 10^{-3}$ |
| 77 | result | $5.3 \times 10^{-3}$ |
| 78 | technolog | $5.3 \times 10^{-3}$ |
| 79 | need | $5.2 \times 10^{-3}$ |
| 80 | movement | $5.2 \times 10^{-3}$ |
| 81 | peopl | $5.1 \times 10^{-3}$ |
| 82 | support | $5.1 \times 10^{-3}$ |
| 83 | object | $5.1 \times 10^{-3}$ |
| 84 | awar | $5 \times 10^{-3}$ |
| 85 | differ | $5 \times 10^{-3}$ |
| 86 | help | $5 \times 10^{-3}$ |
| 87 | concentr | $4.9 \times 10^{-3}$ |
| 88 | wear | $4.9 \times 10^{-3}$ |
| 89 | biomechan | $4.9 \times 10^{-3}$ |
| 90 | provid | $4.9 \times 10^{-3}$ |
| 91 | find | $4.9 \times 10^{-3}$ |
| 92 | character | $4.8 \times 10^{-3}$ |
| 93 | affect | $4.8 \times 10^{-3}$ |
| 94 | effort | $4.8 \times 10^{-3}$ |
| 95 | examin | $4.8 \times 10^{-3}$ |
| 96 | molecular | $4.8 \times 10^{-3}$ |
| 97 | virtual | $4.8 \times 10^{-3}$ |
| 98 | perform | $4.7 \times 10^{-3}$ |
| 99 | attitud | $4.7 \times 10^{-3}$ |
| 100 | growth | $4.7 \times 10^{-3}$ |

Table D.86. The list of the top 100 words in the category Ethics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | ethic | $2.2 \times 10^{-1}$ |
| 2 | moral | $1 \times 10^{-1}$ |
| 3 | argu | $8.2 \times 10^{-2}$ |
| 4 | philosoph | $3.4 \times 10^{-2}$ |
| 5 | argument | $3.4 \times 10^{-2}$ |
| 6 | bioethic | $3.2 \times 10^{-2}$ |
| 7 | social | $3.1 \times 10^{-2}$ |
| 8 | issu | $2.5 \times 10^{-2}$ |
| 9 | question | $2.4 \times 10^{-2}$ |
| 10 | consent | $2.4 \times 10^{-2}$ |
| 11 | articl | $2.3 \times 10^{-2}$ |
| 12 | legal | $2.3 \times 10^{-2}$ |
| 13 | debat | $2.2 \times 10^{-2}$ |
| 14 | claim | $2.2 \times 10^{-2}$ |
| 15 | concern | $2.2 \times 10^{-2}$ |
| 16 | view | $2.2 \times 10^{-2}$ |
| 17 | autonomi | $2.2 \times 10^{-2}$ |
| 18 | research | $2.1 \times 10^{-2}$ |
| 19 | practic | $2.1 \times 10^{-2}$ |
| 20 | corpor | $1.9 \times 10^{-2}$ |
| 21 | discuss | $1.8 \times 10^{-2}$ |
| 22 | result | $1.8 \times 10^{-2}$ |
| 23 | public | $1.8 \times 10^{-2}$ |
| 24 | justifi | $1.8 \times 10^{-2}$ |
| 25 | decis | $1.8 \times 10^{-2}$ |
| 26 | profession | $1.8 \times 10^{-2}$ |
| 27 | oblig | $1.8 \times 10^{-2}$ |
| 28 | way | $1.7 \times 10^{-2}$ |
| 29 | justic | $1.7 \times 10^{-2}$ |
| 30 | philosophi | $1.7 \times 10^{-2}$ |
| 31 | right | $1.6 \times 10^{-2}$ |
| 32 | reason | $1.6 \times 10^{-2}$ |
| 33 | defend | $1.6 \times 10^{-2}$ |
| 34 | harm | $1.5 \times 10^{-2}$ |
| 35 | make | $1.5 \times 10^{-2}$ |
| 36 | normat | $1.5 \times 10^{-2}$ |
| 37 | perspect | $1.4 \times 10^{-2}$ |
| 38 | justif | $1.4 \times 10^{-2}$ |
| 39 | medic | $1.4 \times 10^{-2}$ |
| 40 | polici | $1.3 \times 10^{-2}$ |
| 41 | scienc | $1.3 \times 10^{-2}$ |
| 42 | person | $1.3 \times 10^{-2}$ |
| 43 | principl | $1.3 \times 10^{-2}$ |
| 44 | concept | $1.3 \times 10^{-2}$ |
| 45 | societi | $1.3 \times 10^{-2}$ |
| 46 | rais | $1.2 \times 10^{-2}$ |
| 47 | busi | $1.2 \times 10^{-2}$ |
| 48 | think | $1.2 \times 10^{-2}$ |
| 49 | method | $1.2 \times 10^{-2}$ |
| 50 | institut | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | stakehold | $1.1 \times 10^{-2}$ |
| 52 | organiz | $1.1 \times 10^{-2}$ |
| 53 | dilemma | $1.1 \times 10^{-2}$ |
| 54 | temperatur | $1.1 \times 10^{-2}$ |
| 55 | health | $1.1 \times 10^{-2}$ |
| 56 | draw | $1.1 \times 10^{-2}$ |
| 57 | duti | $1.1 \times 10^{-2}$ |
| 58 | polit | $1.1 \times 10^{-2}$ |
| 59 | cell | $1.1 \times 10^{-2}$ |
| 60 | context | $1.1 \times 10^{-2}$ |
| 61 | compar | $1 \times 10^{-2}$ |
| 62 | high | $1 \times 10^{-2}$ |
| 63 | whi | $1 \times 10^{-2}$ |
| 64 | peopl | $1 \times 10^{-2}$ |
| 65 | attitud | $1 \times 10^{-2}$ |
| 66 | paramet | $1 \times 10^{-2}$ |
| 67 | care | $9.9 \times 10^{-3}$ |
| 68 | conceptu | $9.9 \times 10^{-3}$ |
| 69 | surfac | $9.9 \times 10^{-3}$ |
| 70 | observ | $9.8 \times 10^{-3}$ |
| 71 | simul | $9.4 \times 10^{-3}$ |
| 72 | empir | $9.4 \times 10^{-3}$ |
| 73 | implic | $9.3 \times 10^{-3}$ |
| 74 | physician | $8.9 \times 10^{-3}$ |
| 75 | scientif | $8.9 \times 10^{-3}$ |
| 76 | address | $8.8 \times 10^{-3}$ |
| 77 | theori | $8.7 \times 10^{-3}$ |
| 78 | virtu | $8.7 \times 10^{-3}$ |
| 79 | engag | $8.6 \times 10^{-3}$ |
| 80 | essay | $8.5 \times 10^{-3}$ |
| 81 | conclud | $8.5 \times 10^{-3}$ |
| 82 | employe | $8.4 \times 10^{-3}$ |
| 83 | measur | $8.4 \times 10^{-3}$ |
| 84 | scholar | $8.2 \times 10^{-3}$ |
| 85 | individu | $8.1 \times 10^{-3}$ |
| 86 | will | $8 \times 10^{-3}$ |
| 87 | account | $8 \times 10^{-3}$ |
| 88 | protein | $8 \times 10^{-3}$ |
| 89 | studi | $7.8 \times 10^{-3}$ |
| 90 | focus | $7.8 \times 10^{-3}$ |
| 91 | commit | $7.8 \times 10^{-3}$ |
| 92 | judgment | $7.7 \times 10^{-3}$ |
| 93 | law | $7.6 \times 10^{-3}$ |
| 94 | ratio | $7.6 \times 10^{-3}$ |
| 95 | understand | $7.6 \times 10^{-3}$ |
| 96 | perform | $7.4 \times 10^{-3}$ |
| 97 | undermin | $7.4 \times 10^{-3}$ |
| 98 | offer | $7.3 \times 10^{-3}$ |
| 99 | idea | $7.2 \times 10^{-3}$ |
| 100 | human | $7.1 \times 10^{-3}$ |

Table D.87. The list of the top 100 words in the category Ethnic Studies with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | ethnic | $1 \times 10^{-1}$ |
| 2 | racial | $9 \times 10^{-2}$ |
| 3 | polit | $8.7 \times 10^{-2}$ |
| 4 | immigr | $8.5 \times 10^{-2}$ |
| 5 | articl | $7.4 \times 10^{-2}$ |
| 6 | argu | $5.7 \times 10^{-2}$ |
| 7 | migrant | $5.6 \times 10^{-2}$ |
| 8 | cultur | $5.1 \times 10^{-2}$ |
| 9 | social | $5 \times 10^{-2}$ |
| 10 | american | $4.7 \times 10^{-2}$ |
| 11 | nation | $4.6 \times 10^{-2}$ |
| 12 | ident | $4.4 \times 10^{-2}$ |
| 13 | race | $4.4 \times 10^{-2}$ |
| 14 | racism | $4.2 \times 10^{-2}$ |
| 15 | multicultur | $3.3 \times 10^{-2}$ |
| 16 | white | $3.1 \times 10^{-2}$ |
| 17 | examin | $3 \times 10^{-2}$ |
| 18 | polici | $3 \times 10^{-2}$ |
| 19 | black | $3 \times 10^{-2}$ |
| 20 | refuge | $2.9 \times 10^{-2}$ |
| 21 | minor | $2.9 \times 10^{-2}$ |
| 22 | draw | $2.9 \times 10^{-2}$ |
| 23 | discours | $2.8 \times 10^{-2}$ |
| 24 | societi | $2.6 \times 10^{-2}$ |
| 25 | transnat | $2.4 \times 10^{-2}$ |
| 26 | method | $2.4 \times 10^{-2}$ |
| 27 | asian | $2.2 \times 10^{-2}$ |
| 28 | context | $2 \times 10^{-2}$ |
| 29 | latino | $2 \times 10^{-2}$ |
| 30 | communiti | $2 \times 10^{-2}$ |
| 31 | contemporari | $2 \times 10^{-2}$ |
| 32 | citizenship | $1.9 \times 10^{-2}$ |
| 33 | african | $1.9 \times 10^{-2}$ |
| 34 | countri | $1.9 \times 10^{-2}$ |
| 35 | peopl | $1.8 \times 10^{-2}$ |
| 36 | muslim | $1.8 \times 10^{-2}$ |
| 37 | interview | $1.8 \times 10^{-2}$ |
| 38 | result | $1.7 \times 10^{-2}$ |
| 39 | ethnograph | $1.6 \times 10^{-2}$ |
| 40 | attitud | $1.6 \times 10^{-2}$ |
| 41 | debat | $1.6 \times 10^{-2}$ |
| 42 | migrat | $1.6 \times 10^{-2}$ |
| 43 | narrat | $1.6 \times 10^{-2}$ |
| 44 | religi | $1.5 \times 10^{-2}$ |
| 45 | explor | $1.5 \times 10^{-2}$ |
| 46 | usa | $1.5 \times 10^{-2}$ |
| 47 | educ | $1.4 \times 10^{-2}$ |
| 48 | prejudic | $1.4 \times 10^{-2}$ |
| 49 | european | $1.4 \times 10^{-2}$ |
| 50 | live | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | focus | $1.3 \times 10^{-2}$ |
| 52 | research | $1.3 \times 10^{-2}$ |
| 53 | ideolog | $1.3 \times 10^{-2}$ |
| 54 | divers | $1.3 \times 10^{-2}$ |
| 55 | conflict | $1.3 \times 10^{-2}$ |
| 56 | europ | $1.3 \times 10^{-2}$ |
| 57 | public | $1.3 \times 10^{-2}$ |
| 58 | cell | $1.2 \times 10^{-2}$ |
| 59 | question | $1.2 \times 10^{-2}$ |
| 60 | actor | $1.2 \times 10^{-2}$ |
| 61 | legal | $1.2 \times 10^{-2}$ |
| 62 | seek | $1.2 \times 10^{-2}$ |
| 63 | simul | $1.1 \times 10^{-2}$ |
| 64 | liber | $1.1 \times 10^{-2}$ |
| 65 | mainstream | $1.1 \times 10^{-2}$ |
| 66 | scholar | $1.1 \times 10^{-2}$ |
| 67 | way | $1.1 \times 10^{-2}$ |
| 68 | implic | $1.1 \times 10^{-2}$ |
| 69 | youth | $1.1 \times 10^{-2}$ |
| 70 | perform | $1.1 \times 10^{-2}$ |
| 71 | contest | $1.1 \times 10^{-2}$ |
| 72 | use | $1.1 \times 10^{-2}$ |
| 73 | struggl | $1 \times 10^{-2}$ |
| 74 | school | $1 \times 10^{-2}$ |
| 75 | econom | $1 \times 10^{-2}$ |
| 76 | diaspora | $1 \times 10^{-2}$ |
| 77 | right | $1 \times 10^{-2}$ |
| 78 | temperatur | $1 \times 10^{-2}$ |
| 79 | among | $1 \times 10^{-2}$ |
| 80 | obtain | $9.9 \times 10^{-3}$ |
| 81 | gender | $9.9 \times 10^{-3}$ |
| 82 | perceiv | $9.9 \times 10^{-3}$ |
| 83 | british | $9.9 \times 10^{-3}$ |
| 84 | group | $9.8 \times 10^{-3}$ |
| 85 | discurs | $9.6 \times 10^{-3}$ |
| 86 | understand | $9.6 \times 10^{-3}$ |
| 87 | state | $9.6 \times 10^{-3}$ |
| 88 | surfac | $9.4 \times 10^{-3}$ |
| 89 | themselv | $9.4 \times 10^{-3}$ |
| 90 | histor | $9.3 \times 10^{-3}$ |
| 91 | nationalist | $9.3 \times 10^{-3}$ |
| 92 | war | $9.2 \times 10^{-3}$ |
| 93 | analys | $9.2 \times 10^{-3}$ |
| 94 | stereotyp | $9.2 \times 10^{-3}$ |
| 95 | oppress | $9.1 \times 10^{-3}$ |
| 96 | justic | $9 \times 10^{-3}$ |
| 97 | citizen | $8.8 \times 10^{-3}$ |
| 98 | engag | $8.7 \times 10^{-3}$ |
| 99 | detect | $8.6 \times 10^{-3}$ |
| 100 | women | $8.5 \times 10^{-3}$ |

Table D.88. The list of the top 100 words in the category Evolutionary Biology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | speci | $1.5 \times 10^{-1}$ |
| 2 | evolutionari | $1 \times 10^{-1}$ |
| 3 | phylogenet | $8 \times 10^{-2}$ |
| 4 | genet | $6.9 \times 10^{-2}$ |
| 5 | popul | $6.1 \times 10^{-2}$ |
| 6 | evolut | $6 \times 10^{-2}$ |
| 7 | diverg | $5.9 \times 10^{-2}$ |
| 8 | lineag | $5.6 \times 10^{-2}$ |
| 9 | clade | $5 \times 10^{-2}$ |
| 10 | phylogeni | $4.9 \times 10^{-2}$ |
| 11 | taxa | $4.9 \times 10^{-2}$ |
| 12 | divers | $4.8 \times 10^{-2}$ |
| 13 | trait | $4.6 \times 10^{-2}$ |
| 14 | gene | $4.4 \times 10^{-2}$ |
| 15 | ecolog | $4.3 \times 10^{-2}$ |
| 16 | sequenc | $4 \times 10^{-2}$ |
| 17 | genom | $3.8 \times 10^{-2}$ |
| 18 | genus | $3.4 \times 10^{-2}$ |
| 19 | suggest | $3.2 \times 10^{-2}$ |
| 20 | variat | $3.2 \times 10^{-2}$ |
| 21 | loci | $3.2 \times 10^{-2}$ |
| 22 | taxonom | $3.1 \times 10^{-2}$ |
| 23 | pattern | $2.9 \times 10^{-2}$ |
| 24 | evolv | $2.7 \times 10^{-2}$ |
| 25 | reproduct | $2.7 \times 10^{-2}$ |
| 26 | histori | $2.7 \times 10^{-2}$ |
| 27 | diversif | $2.7 \times 10^{-2}$ |
| 28 | habitat | $2.6 \times 10^{-2}$ |
| 29 | ancestr | $2.6 \times 10^{-2}$ |
| 30 | geograph | $2.6 \times 10^{-2}$ |
| 31 | mate | $2.5 \times 10^{-2}$ |
| 32 | morpholog | $2.5 \times 10^{-2}$ |
| 33 | mitochondri | $2.4 \times 10^{-2}$ |
| 34 | microsatellit | $2.4 \times 10^{-2}$ |
| 35 | paper | $2.4 \times 10^{-2}$ |
| 36 | sister | $2.4 \times 10^{-2}$ |
| 37 | infer | $2.3 \times 10^{-2}$ |
| 38 | within | $2.2 \times 10^{-2}$ |
| 39 | among | $2.2 \times 10^{-2}$ |
| 40 | genera | $2.2 \times 10^{-2}$ |
| 41 | adapt | $2.1 \times 10^{-2}$ |
| 42 | analys | $2.1 \times 10^{-2}$ |
| 43 | across | $2.1 \times 10^{-2}$ |
| 44 | speciat | $2.1 \times 10^{-2}$ |
| 45 | ancestor | $2 \times 10^{-2}$ |
| 46 | phenotyp | $1.9 \times 10^{-2}$ |
| 47 | hypothesi | $1.9 \times 10^{-2}$ |
| 48 | select | $1.9 \times 10^{-2}$ |
| 49 | bayesian | $1.9 \times 10^{-2}$ |
| 50 | tree | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | individu | $1.8 \times 10^{-2}$ |
| 52 | patient | $1.8 \times 10^{-2}$ |
| 53 | dna | $1.8 \times 10^{-2}$ |
| 54 | sexual | $1.7 \times 10^{-2}$ |
| 55 | nuclear | $1.7 \times 10^{-2}$ |
| 56 | evid | $1.6 \times 10^{-2}$ |
| 57 | plant | $1.6 \times 10^{-2}$ |
| 58 | taxon | $1.5 \times 10^{-2}$ |
| 59 | polymorph | $1.5 \times 10^{-2}$ |
| 60 | conserv | $1.5 \times 10^{-2}$ |
| 61 | predat | $1.4 \times 10^{-2}$ |
| 62 | biogeograph | $1.4 \times 10^{-2}$ |
| 63 | marker | $1.4 \times 10^{-2}$ |
| 64 | pleistocen | $1.4 \times 10^{-2}$ |
| 65 | molecular | $1.4 \times 10^{-2}$ |
| 66 | allel | $1.3 \times 10^{-2}$ |
| 67 | charact | $1.3 \times 10^{-2}$ |
| 68 | may | $1.3 \times 10^{-2}$ |
| 69 | nich | $1.3 \times 10^{-2}$ |
| 70 | endem | $1.3 \times 10^{-2}$ |
| 71 | bird | $1.3 \times 10^{-2}$ |
| 72 | hypothes | $1.2 \times 10^{-2}$ |
| 73 | mammal | $1.2 \times 10^{-2}$ |
| 74 | fossil | $1.2 \times 10^{-2}$ |
| 75 | extant | $1.2 \times 10^{-2}$ |
| 76 | extinct | $1.2 \times 10^{-2}$ |
| 77 | genotyp | $1.2 \times 10^{-2}$ |
| 78 | relationship | $1.2 \times 10^{-2}$ |
| 79 | interspecif | $1.2 \times 10^{-2}$ |
| 80 | method | $1.2 \times 10^{-2}$ |
| 81 | distinct | $1.2 \times 10^{-2}$ |
| 82 | insect | $1.2 \times 10^{-2}$ |
| 83 | ancient | $1.1 \times 10^{-2}$ |
| 84 | femal | $1.1 \times 10^{-2}$ |
| 85 | male | $1.1 \times 10^{-2}$ |
| 86 | fit | $1.1 \times 10^{-2}$ |
| 87 | offspr | $1.1 \times 10^{-2}$ |
| 88 | anim | $1.1 \times 10^{-2}$ |
| 89 | vertebr | $1.1 \times 10^{-2}$ |
| 90 | haplotyp | $1.1 \times 10^{-2}$ |
| 91 | origin | $1 \times 10^{-2}$ |
| 92 | north | $1 \times 10^{-2}$ |
| 93 | support | $1 \times 10^{-2}$ |
| 94 | strong | $1 \times 10^{-2}$ |
| 95 | fish | $1 \times 10^{-2}$ |
| 96 | climat | $9.3 \times 10^{-3}$ |
| 97 | host | $9.3 \times 10^{-3}$ |
| 98 | famili | $9.2 \times 10^{-3}$ |
| 99 | region | $9.2 \times 10^{-3}$ |
| 100 | relat | $9.1 \times 10^{-3}$ |

Table D.89. The list of the top 100 words in the category Family Studies with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | child | $1.3 \times 10^{-1}$ |
| 2 | famili | $1 \times 10^{-1}$ |
| 3 | parent | $9.4 \times 10^{-2}$ |
| 4 | children | $8.6 \times 10^{-2}$ |
| 5 | abus | $6.5 \times 10^{-2}$ |
| 6 | violenc | $5.9 \times 10^{-2}$ |
| 7 | adolesc | $5.9 \times 10^{-2}$ |
| 8 | sexual | $5.3 \times 10^{-2}$ |
| 9 | youth | $5.2 \times 10^{-2}$ |
| 10 | examin | $5.1 \times 10^{-2}$ |
| 11 | relationship | $4.8 \times 10^{-2}$ |
| 12 | maltreat | $4.7 \times 10^{-2}$ |
| 13 | partner | $4.6 \times 10^{-2}$ |
| 14 | mother | $4.4 \times 10^{-2}$ |
| 15 | victim | $4.4 \times 10^{-2}$ |
| 16 | social | $3.8 \times 10^{-2}$ |
| 17 | research | $3.2 \times 10^{-2}$ |
| 18 | emot | $3 \times 10^{-2}$ |
| 19 | father | $2.9 \times 10^{-2}$ |
| 20 | particip | $2.9 \times 10^{-2}$ |
| 21 | implic | $2.8 \times 10^{-2}$ |
| 22 | interview | $2.8 \times 10^{-2}$ |
| 23 | women | $2.7 \times 10^{-2}$ |
| 24 | intervent | $2.7 \times 10^{-2}$ |
| 25 | childhood | $2.5 \times 10^{-2}$ |
| 26 | perpetr | $2.5 \times 10^{-2}$ |
| 27 | caregiv | $2.3 \times 10^{-2}$ |
| 28 | health | $2.2 \times 10^{-2}$ |
| 29 | marriag | $2.2 \times 10^{-2}$ |
| 30 | intim | $2.2 \times 10^{-2}$ |
| 31 | gender | $2.2 \times 10^{-2}$ |
| 32 | find | $2.2 \times 10^{-2}$ |
| 33 | psycholog | $2.1 \times 10^{-2}$ |
| 34 | welfar | $2.1 \times 10^{-2}$ |
| 35 | school | $2 \times 10^{-2}$ |
| 36 | ipv | $2 \times 10^{-2}$ |
| 37 | mental | $1.9 \times 10^{-2}$ |
| 38 | age | $1.9 \times 10^{-2}$ |
| 39 | behavior | $1.9 \times 10^{-2}$ |
| 40 | marit | $1.9 \times 10^{-2}$ |
| 41 | among | $1.8 \times 10^{-2}$ |
| 42 | support | $1.8 \times 10^{-2}$ |
| 43 | care | $1.8 \times 10^{-2}$ |
| 44 | young | $1.8 \times 10^{-2}$ |
| 45 | foster | $1.7 \times 10^{-2}$ |
| 46 | servic | $1.7 \times 10^{-2}$ |
| 47 | studi | $1.7 \times 10^{-2}$ |
| 48 | risk | $1.7 \times 10^{-2}$ |
| 49 | experienc | $1.7 \times 10^{-2}$ |
| 50 | marri | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | perform | $1.6 \times 10^{-2}$ |
| 52 | survey | $1.6 \times 10^{-2}$ |
| 53 | discuss | $1.5 \times 10^{-2}$ |
| 54 | live | $1.4 \times 10^{-2}$ |
| 55 | depress | $1.4 \times 10^{-2}$ |
| 56 | cell | $1.4 \times 10^{-2}$ |
| 57 | report | $1.4 \times 10^{-2}$ |
| 58 | associ | $1.4 \times 10^{-2}$ |
| 59 | explor | $1.3 \times 10^{-2}$ |
| 60 | engag | $1.3 \times 10^{-2}$ |
| 61 | method | $1.3 \times 10^{-2}$ |
| 62 | selfreport | $1.3 \times 10^{-2}$ |
| 63 | adult | $1.3 \times 10^{-2}$ |
| 64 | girl | $1.3 \times 10^{-2}$ |
| 65 | peer | $1.3 \times 10^{-2}$ |
| 66 | articl | $1.2 \times 10^{-2}$ |
| 67 | men | $1.2 \times 10^{-2}$ |
| 68 | perceiv | $1.2 \times 10^{-2}$ |
| 69 | romant | $1.2 \times 10^{-2}$ |
| 70 | spous | $1.2 \times 10^{-2}$ |
| 71 | surfac | $1.2 \times 10^{-2}$ |
| 72 | neglect | $1.2 \times 10^{-2}$ |
| 73 | communiti | $1.2 \times 10^{-2}$ |
| 74 | temperatur | $1.2 \times 10^{-2}$ |
| 75 | simul | $1.2 \times 10^{-2}$ |
| 76 | practic | $1.2 \times 10^{-2}$ |
| 77 | longitudin | $1.2 \times 10^{-2}$ |
| 78 | adulthood | $1.2 \times 10^{-2}$ |
| 79 | percept | $1.2 \times 10^{-2}$ |
| 80 | dyad | $1.1 \times 10^{-2}$ |
| 81 | trauma | $1.1 \times 10^{-2}$ |
| 82 | conflict | $1.1 \times 10^{-2}$ |
| 83 | effici | $1.1 \times 10^{-2}$ |
| 84 | paramet | $1.1 \times 10^{-2}$ |
| 85 | offend | $1.1 \times 10^{-2}$ |
| 86 | context | $1.1 \times 10^{-2}$ |
| 87 | symptom | $1.1 \times 10^{-2}$ |
| 88 | violent | $1.1 \times 10^{-2}$ |
| 89 | outcom | $1.1 \times 10^{-2}$ |
| 90 | home | $1 \times 10^{-2}$ |
| 91 | assault | $1 \times 10^{-2}$ |
| 92 | energi | $1 \times 10^{-2}$ |
| 93 | qualit | $1 \times 10^{-2}$ |
| 94 | educ | $1 \times 10^{-2}$ |
| 95 | matern | $1 \times 10^{-2}$ |
| 96 | aggress | $1 \times 10^{-2}$ |
| 97 | american | $1 \times 10^{-2}$ |
| 98 | ethnic | $1 \times 10^{-2}$ |
| 99 | relat | $9.9 \times 10^{-3}$ |
| 100 | induc | $9.8 \times 10^{-3}$ |

Table D.90. The list of the top 100 words in the category Film, Radio, Television with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | televis | $1.3 \times 10^{-1}$ |
| 2 | articl | $1.2 \times 10^{-1}$ |
| 3 | cinema | $9.3 \times 10^{-2}$ |
| 4 | film | $8.8 \times 10^{-2}$ |
| 5 | audienc | $6.8 \times 10^{-2}$ |
| 6 | media | $6 \times 10^{-2}$ |
| 7 | argu | $5.9 \times 10^{-2}$ |
| 8 | cultur | $4.8 \times 10^{-2}$ |
| 9 | narrat | $4.6 \times 10^{-2}$ |
| 10 | cinemat | $4.3 \times 10^{-2}$ |
| 11 | genr | $4.2 \times 10^{-2}$ |
| 12 | polit | $3.8 \times 10^{-2}$ |
| 13 | broadcast | $3.3 \times 10^{-2}$ |
| 14 | filmmak | $3.3 \times 10^{-2}$ |
| 15 | discours | $3.2 \times 10^{-2}$ |
| 16 | viewer | $3 \times 10^{-2}$ |
| 17 | contemporari | $3 \times 10^{-2}$ |
| 18 | result | $2.9 \times 10^{-2}$ |
| 19 | british | $2.7 \times 10^{-2}$ |
| 20 | social | $2.6 \times 10^{-2}$ |
| 21 | essay | $2.4 \times 10^{-2}$ |
| 22 | drama | $2.4 \times 10^{-2}$ |
| 23 | aesthet | $2.3 \times 10^{-2}$ |
| 24 | explor | $2.3 \times 10^{-2}$ |
| 25 | draw | $2.3 \times 10^{-2}$ |
| 26 | method | $2.3 \times 10^{-2}$ |
| 27 | transnat | $2.3 \times 10^{-2}$ |
| 28 | stori | $2.3 \times 10^{-2}$ |
| 29 | studio | $2.2 \times 10^{-2}$ |
| 30 | entertain | $2.1 \times 10^{-2}$ |
| 31 | documentari | $2.1 \times 10^{-2}$ |
| 32 | text | $2 \times 10^{-2}$ |
| 33 | charact | $1.9 \times 10^{-2}$ |
| 34 | director | $1.9 \times 10^{-2}$ |
| 35 | portray | $1.8 \times 10^{-2}$ |
| 36 | news | $1.8 \times 10^{-2}$ |
| 37 | popular | $1.8 \times 10^{-2}$ |
| 38 | american | $1.7 \times 10^{-2}$ |
| 39 | writer | $1.7 \times 10^{-2}$ |
| 40 | imagin | $1.7 \times 10^{-2}$ |
| 41 | way | $1.7 \times 10^{-2}$ |
| 42 | artist | $1.7 \times 10^{-2}$ |
| 43 | style | $1.6 \times 10^{-2}$ |
| 44 | comedi | $1.6 \times 10^{-2}$ |
| 45 | theatr | $1.6 \times 10^{-2}$ |
| 46 | examin | $1.6 \times 10^{-2}$ |
| 47 | fiction | $1.6 \times 10^{-2}$ |
| 48 | represent | $1.5 \times 10^{-2}$ |
| 49 | ideolog | $1.5 \times 10^{-2}$ |
| 50 | creativ | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | engag | $1.4 \times 10^{-2}$ |
| 52 | 1970s | $1.4 \times 10^{-2}$ |
| 53 | nation | $1.4 \times 10^{-2}$ |
| 54 | digit | $1.4 \times 10^{-2}$ |
| 55 | patient | $1.3 \times 10^{-2}$ |
| 56 | journalist | $1.3 \times 10^{-2}$ |
| 57 | improv | $1.3 \times 10^{-2}$ |
| 58 | measur | $1.2 \times 10^{-2}$ |
| 59 | onlin | $1.2 \times 10^{-2}$ |
| 60 | fan | $1.2 \times 10^{-2}$ |
| 61 | war | $1.2 \times 10^{-2}$ |
| 62 | conclus | $1.2 \times 10^{-2}$ |
| 63 | 1960s | $1.2 \times 10^{-2}$ |
| 64 | public | $1.2 \times 10^{-2}$ |
| 65 | recept | $1.2 \times 10^{-2}$ |
| 66 | realism | $1.2 \times 10^{-2}$ |
| 67 | cell | $1.2 \times 10^{-2}$ |
| 68 | celebr | $1.2 \times 10^{-2}$ |
| 69 | 1980s | $1.1 \times 10^{-2}$ |
| 70 | histori | $1.1 \times 10^{-2}$ |
| 71 | context | $1.1 \times 10^{-2}$ |
| 72 | script | $1.1 \times 10^{-2}$ |
| 73 | obtain | $1.1 \times 10^{-2}$ |
| 74 | screen | $1.1 \times 10^{-2}$ |
| 75 | articul | $1.1 \times 10^{-2}$ |
| 76 | critiqu | $1.1 \times 10^{-2}$ |
| 77 | spectat | $1.1 \times 10^{-2}$ |
| 78 | literari | $1 \times 10^{-2}$ |
| 79 | compar | $1 \times 10^{-2}$ |
| 80 | discuss | $1 \times 10^{-2}$ |
| 81 | theatric | $1 \times 10^{-2}$ |
| 82 | theme | $1 \times 10^{-2}$ |
| 83 | applic | $1 \times 10^{-2}$ |
| 84 | industri | $1 \times 10^{-2}$ |
| 85 | higher | $1 \times 10^{-2}$ |
| 86 | focus | $9.8 \times 10^{-3}$ |
| 87 | histor | $9.7 \times 10^{-3}$ |
| 88 | evalu | $9.6 \times 10^{-3}$ |
| 89 | effect | $9.6 \times 10^{-3}$ |
| 90 | temperatur | $9.5 \times 10^{-3}$ |
| 91 | debat | $9.5 \times 10^{-3}$ |
| 92 | observ | $9.4 \times 10^{-3}$ |
| 93 | discurs | $9.3 \times 10^{-3}$ |
| 94 | 1950s | $9.1 \times 10^{-3}$ |
| 95 | offer | $9.1 \times 10^{-3}$ |
| 96 | data | $9.1 \times 10^{-3}$ |
| 97 | world | $9 \times 10^{-3}$ |
| 98 | corpor | $8.9 \times 10^{-3}$ |
| 99 | archiv | $8.9 \times 10^{-3}$ |
| 100 | use | $8.9 \times 10^{-3}$ |

Table D.91. The list of the top 100 words in the category Fisheries with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | fish | $3 \times 10^{-1}$ |
| 2 | fisheri | $7.4 \times 10^{-2}$ |
| 3 | speci | $6.5 \times 10^{-2}$ |
| 4 | juvenil | $6.3 \times 10^{-2}$ |
| 5 | aquacultur | $6.2 \times 10^{-2}$ |
| 6 | spawn | $5.2 \times 10^{-2}$ |
| 7 | stock | $5 \times 10^{-2}$ |
| 8 | feed | $4.5 \times 10^{-2}$ |
| 9 | salmon | $4.3 \times 10^{-2}$ |
| 10 | diet | $3.9 \times 10^{-2}$ |
| 11 | fed | $3.7 \times 10^{-2}$ |
| 12 | trout | $3.5 \times 10^{-2}$ |
| 13 | sea | $3.3 \times 10^{-2}$ |
| 14 | catch | $3.1 \times 10^{-2}$ |
| 15 | atlant | $3.1 \times 10^{-2}$ |
| 16 | gill | $2.8 \times 10^{-2}$ |
| 17 | growth | $2.8 \times 10^{-2}$ |
| 18 | rear | $2.7 \times 10^{-2}$ |
| 19 | larva | $2.6 \times 10^{-2}$ |
| 20 | river | $2.6 \times 10^{-2}$ |
| 21 | shrimp | $2.6 \times 10^{-2}$ |
| 22 | marin | $2.5 \times 10^{-2}$ |
| 23 | immun | $2.5 \times 10^{-2}$ |
| 24 | habitat | $2.4 \times 10^{-2}$ |
| 25 | dietari | $2.3 \times 10^{-2}$ |
| 26 | vibrio | $2.3 \times 10^{-2}$ |
| 27 | freshwat | $2.1 \times 10^{-2}$ |
| 28 | abund | $2.1 \times 10^{-2}$ |
| 29 | farm | $2 \times 10^{-2}$ |
| 30 | paper | $1.9 \times 10^{-2}$ |
| 31 | mortal | $1.9 \times 10^{-2}$ |
| 32 | larval | $1.9 \times 10^{-2}$ |
| 33 | water | $1.9 \times 10^{-2}$ |
| 34 | length | $1.8 \times 10^{-2}$ |
| 35 | patient | $1.8 \times 10^{-2}$ |
| 36 | surviv | $1.7 \times 10^{-2}$ |
| 37 | pacif | $1.7 \times 10^{-2}$ |
| 38 | popul | $1.6 \times 10^{-2}$ |
| 39 | hatch | $1.6 \times 10^{-2}$ |
| 40 | weight | $1.5 \times 10^{-2}$ |
| 41 | coast | $1.4 \times 10^{-2}$ |
| 42 | egg | $1.4 \times 10^{-2}$ |
| 43 | season | $1.4 \times 10^{-2}$ |
| 44 | lake | $1.4 \times 10^{-2}$ |
| 45 | indic | $1.4 \times 10^{-2}$ |
| 46 | tank | $1.4 \times 10^{-2}$ |
| 47 | method | $1.3 \times 10^{-2}$ |
| 48 | propos | $1.3 \times 10^{-2}$ |
| 49 | reproduct | $1.3 \times 10^{-2}$ |
| 50 | day | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | prey | $1.3 \times 10^{-2}$ |
| 52 | caught | $1.3 \times 10^{-2}$ |
| 53 | infect | $1.2 \times 10^{-2}$ |
| 54 | innat | $1.2 \times 10^{-2}$ |
| 55 | gulf | $1.2 \times 10^{-2}$ |
| 56 | cdna | $1.2 \times 10^{-2}$ |
| 57 | signific | $1.2 \times 10^{-2}$ |
| 58 | matur | $1.1 \times 10^{-2}$ |
| 59 | pathogen | $1.1 \times 10^{-2}$ |
| 60 | suggest | $1.1 \times 10^{-2}$ |
| 61 | pond | $1.1 \times 10^{-2}$ |
| 62 | commerci | $1.1 \times 10^{-2}$ |
| 63 | supplement | $1.1 \times 10^{-2}$ |
| 64 | protein | $1 \times 10^{-2}$ |
| 65 | gonad | $1 \times 10^{-2}$ |
| 66 | coastal | $1 \times 10^{-2}$ |
| 67 | pelag | $9.8 \times 10^{-3}$ |
| 68 | conserv | $9.8 \times 10^{-3}$ |
| 69 | total | $9.5 \times 10^{-3}$ |
| 70 | bodi | $9.4 \times 10^{-3}$ |
| 71 | highest | $8.9 \times 10^{-3}$ |
| 72 | north | $8.8 \times 10^{-3}$ |
| 73 | intestin | $8.8 \times 10^{-3}$ |
| 74 | conclus | $8.7 \times 10^{-3}$ |
| 75 | manag | $8.7 \times 10^{-3}$ |
| 76 | tag | $8.4 \times 10^{-3}$ |
| 77 | estuari | $8.4 \times 10^{-3}$ |
| 78 | dure | $8.4 \times 10^{-3}$ |
| 79 | ecosystem | $8.3 \times 10^{-3}$ |
| 80 | bay | $8.3 \times 10^{-3}$ |
| 81 | amino | $8.2 \times 10^{-3}$ |
| 82 | predat | $8.1 \times 10^{-3}$ |
| 83 | spleen | $8.1 \times 10^{-3}$ |
| 84 | cultur | $8.1 \times 10^{-3}$ |
| 85 | bacteri | $7.9 \times 10^{-3}$ |
| 86 | liver | $7.8 \times 10^{-3}$ |
| 87 | period | $7.8 \times 10^{-3}$ |
| 88 | summer | $7.7 \times 10^{-3}$ |
| 89 | biomass | $7.7 \times 10^{-3}$ |
| 90 | meal | $7.6 \times 10^{-3}$ |
| 91 | femal | $7.6 \times 10^{-3}$ |
| 92 | tissu | $7.5 \times 10^{-3}$ |
| 93 | lipid | $7.5 \times 10^{-3}$ |
| 94 | ocean | $7.4 \times 10^{-3}$ |
| 95 | digest | $7.3 \times 10^{-3}$ |
| 96 | gene | $7.3 \times 10^{-3}$ |
| 97 | trophic | $7.2 \times 10^{-3}$ |
| 98 | declin | $7.2 \times 10^{-3}$ |
| 99 | muscl | $7.1 \times 10^{-3}$ |
| 100 | food | $7.1 \times 10^{-3}$ |

Table D.92. The list of the top 100 words in the category Folklore with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | folklor | $1.7 \times 10^{-1}$ |
| 2 | articl | $1.1 \times 10^{-1}$ |
| 3 | folk | $9 \times 10^{-2}$ |
| 4 | folklorist | $8.2 \times 10^{-2}$ |
| 5 | centuri | $6.5 \times 10^{-2}$ |
| 6 | cultur | $6.1 \times 10^{-2}$ |
| 7 | ritual | $5.3 \times 10^{-2}$ |
| 8 | tradit | $5.3 \times 10^{-2}$ |
| 9 | legend | $4.6 \times 10^{-2}$ |
| 10 | narrat | $4.3 \times 10^{-2}$ |
| 11 | result | $4.2 \times 10^{-2}$ |
| 12 | indigen | $3.5 \times 10^{-2}$ |
| 13 | song | $3.2 \times 10^{-2}$ |
| 14 | tale | $3 \times 10^{-2}$ |
| 15 | symbol | $3 \times 10^{-2}$ |
| 16 | villag | $2.9 \times 10^{-2}$ |
| 17 | polit | $2.8 \times 10^{-2}$ |
| 18 | religi | $2.8 \times 10^{-2}$ |
| 19 | stori | $2.6 \times 10^{-2}$ |
| 20 | nineteenth | $2.6 \times 10^{-2}$ |
| 21 | festiv | $2.6 \times 10^{-2}$ |
| 22 | social | $2.6 \times 10^{-2}$ |
| 23 | heritag | $2.5 \times 10^{-2}$ |
| 24 | histor | $2.5 \times 10^{-2}$ |
| 25 | scholar | $2.3 \times 10^{-2}$ |
| 26 | music | $2.2 \times 10^{-2}$ |
| 27 | text | $2.2 \times 10^{-2}$ |
| 28 | fieldwork | $2.1 \times 10^{-2}$ |
| 29 | societi | $2.1 \times 10^{-2}$ |
| 30 | argu | $2.1 \times 10^{-2}$ |
| 31 | peopl | $2.1 \times 10^{-2}$ |
| 32 | archiv | $2 \times 10^{-2}$ |
| 33 | effect | $2 \times 10^{-2}$ |
| 34 | popular | $2 \times 10^{-2}$ |
| 35 | genr | $2 \times 10^{-2}$ |
| 36 | contemporari | $1.9 \times 10^{-2}$ |
| 37 | twentieth | $1.9 \times 10^{-2}$ |
| 38 | model | $1.9 \times 10^{-2}$ |
| 39 | offici | $1.8 \times 10^{-2}$ |
| 40 | belief | $1.8 \times 10^{-2}$ |
| 41 | ident | $1.7 \times 10^{-2}$ |
| 42 | celebr | $1.7 \times 10^{-2}$ |
| 43 | modern | $1.7 \times 10^{-2}$ |
| 44 | discuss | $1.7 \times 10^{-2}$ |
| 45 | essay | $1.6 \times 10^{-2}$ |
| 46 | 20th | $1.6 \times 10^{-2}$ |
| 47 | mediev | $1.5 \times 10^{-2}$ |
| 48 | vernacular | $1.5 \times 10^{-2}$ |
| 49 | today | $1.5 \times 10^{-2}$ |
| 50 | histori | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | measur | $1.5 \times 10^{-2}$ |
| 52 | anthropolog | $1.5 \times 10^{-2}$ |
| 53 | written | $1.5 \times 10^{-2}$ |
| 54 | test | $1.4 \times 10^{-2}$ |
| 55 | way | $1.4 \times 10^{-2}$ |
| 56 | improv | $1.4 \times 10^{-2}$ |
| 57 | increas | $1.4 \times 10^{-2}$ |
| 58 | represent | $1.4 \times 10^{-2}$ |
| 59 | high | $1.4 \times 10^{-2}$ |
| 60 | author | $1.4 \times 10^{-2}$ |
| 61 | method | $1.3 \times 10^{-2}$ |
| 62 | collect | $1.3 \times 10^{-2}$ |
| 63 | aesthet | $1.3 \times 10^{-2}$ |
| 64 | typolog | $1.3 \times 10^{-2}$ |
| 65 | world | $1.2 \times 10^{-2}$ |
| 66 | higher | $1.2 \times 10^{-2}$ |
| 67 | low | $1.2 \times 10^{-2}$ |
| 68 | ethnograph | $1.2 \times 10^{-2}$ |
| 69 | reduc | $1.2 \times 10^{-2}$ |
| 70 | religion | $1.2 \times 10^{-2}$ |
| 71 | patient | $1.2 \times 10^{-2}$ |
| 72 | use | $1.2 \times 10^{-2}$ |
| 73 | artist | $1.2 \times 10^{-2}$ |
| 74 | 19th | $1.2 \times 10^{-2}$ |
| 75 | cell | $1.2 \times 10^{-2}$ |
| 76 | british | $1.2 \times 10^{-2}$ |
| 77 | concept | $1.2 \times 10^{-2}$ |
| 78 | communiti | $1.2 \times 10^{-2}$ |
| 79 | whi | $1.1 \times 10^{-2}$ |
| 80 | ancient | $1.1 \times 10^{-2}$ |
| 81 | south | $1.1 \times 10^{-2}$ |
| 82 | system | $1.1 \times 10^{-2}$ |
| 83 | magic | $1.1 \times 10^{-2}$ |
| 84 | themselv | $1.1 \times 10^{-2}$ |
| 85 | obtain | $1.1 \times 10^{-2}$ |
| 86 | collector | $1 \times 10^{-2}$ |
| 87 | eighteenth | $1 \times 10^{-2}$ |
| 88 | sing | $1 \times 10^{-2}$ |
| 89 | context | $1 \times 10^{-2}$ |
| 90 | past | $1 \times 10^{-2}$ |
| 91 | literari | $1 \times 10^{-2}$ |
| 92 | treatment | $9.8 \times 10^{-3}$ |
| 93 | compar | $9.8 \times 10^{-3}$ |
| 94 | interpret | $9.8 \times 10^{-3}$ |
| 95 | simul | $9.7 \times 10^{-3}$ |
| 96 | scholarship | $9.7 \times 10^{-3}$ |
| 97 | rate | $9.7 \times 10^{-3}$ |
| 98 | effici | $9.6 \times 10^{-3}$ |
| 99 | discours | $9.6 \times 10^{-3}$ |
| 100 | danc | $9.6 \times 10^{-3}$ |

Table D.93. The list of the top 100 words in the category Food Science and Technology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | food | $8 \times 10^{-2}$ |
| 2 | acid | $5.4 \times 10^{-2}$ |
| 3 | content | $4.3 \times 10^{-2}$ |
| 4 | antioxid | $4 \times 10^{-2}$ |
| 5 | milk | $3.8 \times 10^{-2}$ |
| 6 | product | $3.6 \times 10^{-2}$ |
| 7 | extract | $3.2 \times 10^{-2}$ |
| 8 | chromatographi | $2.9 \times 10^{-2}$ |
| 9 | phenol | $2.9 \times 10^{-2}$ |
| 10 | concentr | $2.9 \times 10^{-2}$ |
| 11 | compound | $2.6 \times 10^{-2}$ |
| 12 | sensori | $2.4 \times 10^{-2}$ |
| 13 | sampl | $2.4 \times 10^{-2}$ |
| 14 | fruit | $2.3 \times 10^{-2}$ |
| 15 | ferment | $2.2 \times 10^{-2}$ |
| 16 | oil | $2.2 \times 10^{-2}$ |
| 17 | meat | $2.2 \times 10^{-2}$ |
| 18 | hplc | $2 \times 10^{-2}$ |
| 19 | storag | $1.9 \times 10^{-2}$ |
| 20 | fatti | $1.8 \times 10^{-2}$ |
| 21 | dri | $1.8 \times 10^{-2}$ |
| 22 | dairi | $1.8 \times 10^{-2}$ |
| 23 | polyphenol | $1.7 \times 10^{-2}$ |
| 24 | fat | $1.7 \times 10^{-2}$ |
| 25 | starch | $1.7 \times 10^{-2}$ |
| 26 | patient | $1.7 \times 10^{-2}$ |
| 27 | paper | $1.7 \times 10^{-2}$ |
| 28 | cook | $1.6 \times 10^{-2}$ |
| 29 | dpph | $1.5 \times 10^{-2}$ |
| 30 | wine | $1.4 \times 10^{-2}$ |
| 31 | spectrometri | $1.4 \times 10^{-2}$ |
| 32 | fresh | $1.4 \times 10^{-2}$ |
| 33 | cfu | $1.3 \times 10^{-2}$ |
| 34 | degre | $1.3 \times 10^{-2}$ |
| 35 | nutrit | $1.3 \times 10^{-2}$ |
| 36 | consum | $1.3 \times 10^{-2}$ |
| 37 | scaveng | $1.3 \times 10^{-2}$ |
| 38 | protein | $1.3 \times 10^{-2}$ |
| 39 | total | $1.3 \times 10^{-2}$ |
| 40 | sugar | $1.2 \times 10^{-2}$ |
| 41 | flavonoid | $1.2 \times 10^{-2}$ |
| 42 | determin | $1.2 \times 10^{-2}$ |
| 43 | lactobacillus | $1.2 \times 10^{-2}$ |
| 44 | cow | $1.2 \times 10^{-2}$ |
| 45 | dietari | $1.2 \times 10^{-2}$ |
| 46 | bioactiv | $1.1 \times 10^{-2}$ |
| 47 | ingredi | $1.1 \times 10^{-2}$ |
| 48 | wheat | $1.1 \times 10^{-2}$ |
| 49 | solubl | $1.1 \times 10^{-2}$ |
| 50 | anthocyanin | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | raw | $1.1 \times 10^{-2}$ |
| 52 | respect | $1.1 \times 10^{-2}$ |
| 53 | grape | $1.1 \times 10^{-2}$ |
| 54 | moistur | $1 \times 10^{-2}$ |
| 55 | lipid | $1 \times 10^{-2}$ |
| 56 | min | $1 \times 10^{-2}$ |
| 57 | contamin | $9.9 \times 10^{-3}$ |
| 58 | flavor | $9.7 \times 10^{-3}$ |
| 59 | activ | $9.7 \times 10^{-3}$ |
| 60 | liquid | $9.6 \times 10^{-3}$ |
| 61 | commerci | $9.6 \times 10^{-3}$ |
| 62 | water | $9.6 \times 10^{-3}$ |
| 63 | qualiti | $9.6 \times 10^{-3}$ |
| 64 | shelf | $9.5 \times 10^{-3}$ |
| 65 | isol | $9.4 \times 10^{-3}$ |
| 66 | bacteria | $9.4 \times 10^{-3}$ |
| 67 | highest | $9.4 \times 10^{-3}$ |
| 68 | textur | $9.2 \times 10^{-3}$ |
| 69 | enzym | $9.2 \times 10^{-3}$ |
| 70 | digest | $9.1 \times 10^{-3}$ |
| 71 | salmonella | $9 \times 10^{-3}$ |
| 72 | lactic | $8.9 \times 10^{-3}$ |
| 73 | contain | $8.8 \times 10^{-3}$ |
| 74 | diet | $8.8 \times 10^{-3}$ |
| 75 | volatil | $8.8 \times 10^{-3}$ |
| 76 | detect | $8.7 \times 10^{-3}$ |
| 77 | assay | $8.7 \times 10^{-3}$ |
| 78 | cultivar | $8.6 \times 10^{-3}$ |
| 79 | produc | $8.6 \times 10^{-3}$ |
| 80 | physicochem | $8.5 \times 10^{-3}$ |
| 81 | tast | $8.4 \times 10^{-3}$ |
| 82 | colour | $8.1 \times 10^{-3}$ |
| 83 | beef | $7.8 \times 10^{-3}$ |
| 84 | valu | $7.8 \times 10^{-3}$ |
| 85 | antimicrobi | $7.8 \times 10^{-3}$ |
| 86 | ripen | $7.7 \times 10^{-3}$ |
| 87 | propos | $7.6 \times 10^{-3}$ |
| 88 | microbi | $7.5 \times 10^{-3}$ |
| 89 | composit | $7.4 \times 10^{-3}$ |
| 90 | effect | $7.2 \times 10^{-3}$ |
| 91 | decreas | $7.2 \times 10^{-3}$ |
| 92 | radic | $6.9 \times 10^{-3}$ |
| 93 | rice | $6.9 \times 10^{-3}$ |
| 94 | comput | $6.9 \times 10^{-3}$ |
| 95 | yeast | $6.8 \times 10^{-3}$ |
| 96 | recoveri | $6.8 \times 10^{-3}$ |
| 97 | store | $6.7 \times 10^{-3}$ |
| 98 | microbiolog | $6.6 \times 10^{-3}$ |
| 99 | acet | $6.6 \times 10^{-3}$ |
| 100 | soybean | $6.5 \times 10^{-3}$ |

Table D.94. The list of the top 100 words in the category Forestry with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | forest | $2.3 \times 10^{-1}$ |
| 2 | tree | $1.7 \times 10^{-1}$ |
| 3 | speci | $8.5 \times 10^{-2}$ |
| 4 | wood | $8 \times 10^{-2}$ |
| 5 | stand | $7.2 \times 10^{-2}$ |
| 6 | pine | $6.4 \times 10^{-2}$ |
| 7 | pinus | $6 \times 10^{-2}$ |
| 8 | plant | $5 \times 10^{-2}$ |
| 9 | plantat | $4.5 \times 10^{-2}$ |
| 10 | canopi | $4.5 \times 10^{-2}$ |
| 11 | spruce | $4.1 \times 10^{-2}$ |
| 12 | timber | $4 \times 10^{-2}$ |
| 13 | soil | $4 \times 10^{-2}$ |
| 14 | ecosystem | $3.8 \times 10^{-2}$ |
| 15 | plot | $3.8 \times 10^{-2}$ |
| 16 | forestri | $3.7 \times 10^{-2}$ |
| 17 | climat | $3.6 \times 10^{-2}$ |
| 18 | veget | $3.6 \times 10^{-2}$ |
| 19 | seedl | $3.4 \times 10^{-2}$ |
| 20 | area | $3.3 \times 10^{-2}$ |
| 21 | manag | $3 \times 10^{-2}$ |
| 22 | growth | $2.9 \times 10^{-2}$ |
| 23 | height | $2.9 \times 10^{-2}$ |
| 24 | fire | $2.7 \times 10^{-2}$ |
| 25 | oak | $2.6 \times 10^{-2}$ |
| 26 | woodi | $2.6 \times 10^{-2}$ |
| 27 | biomass | $2.5 \times 10^{-2}$ |
| 28 | land | $2.4 \times 10^{-2}$ |
| 29 | site | $2.3 \times 10^{-2}$ |
| 30 | harvest | $2.3 \times 10^{-2}$ |
| 31 | leaf | $2.2 \times 10^{-2}$ |
| 32 | stem | $2 \times 10^{-2}$ |
| 33 | ecolog | $2 \times 10^{-2}$ |
| 34 | year | $1.9 \times 10^{-2}$ |
| 35 | landscap | $1.8 \times 10^{-2}$ |
| 36 | season | $1.8 \times 10^{-2}$ |
| 37 | patient | $1.8 \times 10^{-2}$ |
| 38 | regener | $1.8 \times 10^{-2}$ |
| 39 | drought | $1.8 \times 10^{-2}$ |
| 40 | diamet | $1.8 \times 10^{-2}$ |
| 41 | annual | $1.7 \times 10^{-2}$ |
| 42 | grow | $1.7 \times 10^{-2}$ |
| 43 | habitat | $1.5 \times 10^{-2}$ |
| 44 | cover | $1.5 \times 10^{-2}$ |
| 45 | biodivers | $1.5 \times 10^{-2}$ |
| 46 | mountain | $1.5 \times 10^{-2}$ |
| 47 | crown | $1.5 \times 10^{-2}$ |
| 48 | shrub | $1.4 \times 10^{-2}$ |
| 49 | moistur | $1.3 \times 10^{-2}$ |
| 50 | bark | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | disturb | $1.3 \times 10^{-2}$ |
| 52 | divers | $1.3 \times 10^{-2}$ |
| 53 | dri | $1.3 \times 10^{-2}$ |
| 54 | densiti | $1.2 \times 10^{-2}$ |
| 55 | communiti | $1.2 \times 10^{-2}$ |
| 56 | boreal | $1.2 \times 10^{-2}$ |
| 57 | burn | $1.2 \times 10^{-2}$ |
| 58 | northern | $1.2 \times 10^{-2}$ |
| 59 | variabl | $1.2 \times 10^{-2}$ |
| 60 | root | $1.2 \times 10^{-2}$ |
| 61 | seed | $1.1 \times 10^{-2}$ |
| 62 | domin | $1.1 \times 10^{-2}$ |
| 63 | southern | $1.1 \times 10^{-2}$ |
| 64 | inventori | $1.1 \times 10^{-2}$ |
| 65 | tropic | $1.1 \times 10^{-2}$ |
| 66 | clinic | $1.1 \times 10^{-2}$ |
| 67 | product | $1.1 \times 10^{-2}$ |
| 68 | environment | $1.1 \times 10^{-2}$ |
| 69 | basal | $1.1 \times 10^{-2}$ |
| 70 | differ | $1 \times 10^{-2}$ |
| 71 | natur | $1 \times 10^{-2}$ |
| 72 | conserv | $1 \times 10^{-2}$ |
| 73 | temper | $1 \times 10^{-2}$ |
| 74 | trait | $1 \times 10^{-2}$ |
| 75 | stock | $1 \times 10^{-2}$ |
| 76 | chang | $9.8 \times 10^{-3}$ |
| 77 | mediterranean | $9.8 \times 10^{-3}$ |
| 78 | nutrient | $9.6 \times 10^{-3}$ |
| 79 | woodland | $9.4 \times 10^{-3}$ |
| 80 | nativ | $9.3 \times 10^{-3}$ |
| 81 | locat | $9.1 \times 10^{-3}$ |
| 82 | north | $8.9 \times 10^{-3}$ |
| 83 | litter | $8.6 \times 10^{-3}$ |
| 84 | variat | $8.6 \times 10^{-3}$ |
| 85 | increas | $8.6 \times 10^{-3}$ |
| 86 | spatial | $8.6 \times 10^{-3}$ |
| 87 | abund | $8.5 \times 10^{-3}$ |
| 88 | beetl | $8.5 \times 10^{-3}$ |
| 89 | declin | $8.3 \times 10^{-3}$ |
| 90 | across | $8.1 \times 10^{-3}$ |
| 91 | grassland | $8.1 \times 10^{-3}$ |
| 92 | carbon | $8.1 \times 10^{-3}$ |
| 93 | eastern | $7.7 \times 10^{-3}$ |
| 94 | influenc | $7.7 \times 10^{-3}$ |
| 95 | indic | $7.5 \times 10^{-3}$ |
| 96 | $\log$ | $7.5 \times 10^{-3}$ |
| 97 | region | $7.5 \times 10^{-3}$ |
| 98 | propos | $7.5 \times 10^{-3}$ |
| 99 | old | $7.4 \times 10^{-3}$ |
| 100 | estim | $7.2 \times 10^{-3}$ |

Table D.95. The list of the top 100 words in the category Gastroenterology and Hepatology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | patient | $1.8 \times 10^{-1}$ |
| 2 | conclus | $1.2 \times 10^{-1}$ |
| 3 | liver | $9.8 \times 10^{-2}$ |
| 4 | hepat | $9 \times 10^{-2}$ |
| 5 | aim | $8.4 \times 10^{-2}$ |
| 6 | background | $7 \times 10^{-2}$ |
| 7 | diseas | $6.7 \times 10^{-2}$ |
| 8 | endoscop | $6.7 \times 10^{-2}$ |
| 9 | bowel | $6.6 \times 10^{-2}$ |
| 10 | resect | $4.7 \times 10^{-2}$ |
| 11 | cirrhosi | $4.6 \times 10^{-2}$ |
| 12 | clinic | $4.2 \times 10^{-2}$ |
| 13 | crohn | $4.2 \times 10^{-2}$ |
| 14 | gastric | $4 \times 10^{-2}$ |
| 15 | hepatocellular | $3.9 \times 10^{-2}$ |
| 16 | underw | $3.9 \times 10^{-2}$ |
| 17 | pancreat | $3.8 \times 10^{-2}$ |
| 18 | coliti | $3.7 \times 10^{-2}$ |
| 19 | endoscopi | $3.7 \times 10^{-2}$ |
| 20 | cancer | $3.7 \times 10^{-2}$ |
| 21 | ulcer | $3.5 \times 10^{-2}$ |
| 22 | treatment | $3.4 \times 10^{-2}$ |
| 23 | therapi | $3.4 \times 10^{-2}$ |
| 24 | gastrointestin | $3.3 \times 10^{-2}$ |
| 25 | colorect | $3.2 \times 10^{-2}$ |
| 26 | carcinoma | $3.2 \times 10^{-2}$ |
| 27 | retrospect | $3.1 \times 10^{-2}$ |
| 28 | paper | $3.1 \times 10^{-2}$ |
| 29 | chronic | $3.1 \times 10^{-2}$ |
| 30 | associ | $2.9 \times 10^{-2}$ |
| 31 | hcc | $2.9 \times 10^{-2}$ |
| 32 | esophag | $2.9 \times 10^{-2}$ |
| 33 | surgeri | $2.8 \times 10^{-2}$ |
| 34 | outcom | $2.7 \times 10^{-2}$ |
| 35 | complic | $2.7 \times 10^{-2}$ |
| 36 | median | $2.7 \times 10^{-2}$ |
| 37 | method | $2.6 \times 10^{-2}$ |
| 38 | intestin | $2.6 \times 10^{-2}$ |
| 39 | diagnosi | $2.6 \times 10^{-2}$ |
| 40 | tumor | $2.5 \times 10^{-2}$ |
| 41 | biopsi | $2.5 \times 10^{-2}$ |
| 42 | inflammatori | $2.5 \times 10^{-2}$ |
| 43 | risk | $2.4 \times 10^{-2}$ |
| 44 | hcv | $2.4 \times 10^{-2}$ |
| 45 | colon | $2.4 \times 10^{-2}$ |
| 46 | biliari | $2.3 \times 10^{-2}$ |
| 47 | surviv | $2.3 \times 10^{-2}$ |
| 48 | signific | $2.3 \times 10^{-2}$ |
| 49 | year | $2.3 \times 10^{-2}$ |
| 50 | review | $2.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | surgic | $2.2 \times 10^{-2}$ |
| 52 | histolog | $2.1 \times 10^{-2}$ |
| 53 | mucos | $2 \times 10^{-2}$ |
| 54 | recurr | $2 \times 10^{-2}$ |
| 55 | bile | $2 \times 10^{-2}$ |
| 56 | infect | $2 \times 10^{-2}$ |
| 57 | diagnos | $1.9 \times 10^{-2}$ |
| 58 | postop | $1.9 \times 10^{-2}$ |
| 59 | prospect | $1.9 \times 10^{-2}$ |
| 60 | abdomin | $1.9 \times 10^{-2}$ |
| 61 | multivari | $1.9 \times 10^{-2}$ |
| 62 | hospit | $1.8 \times 10^{-2}$ |
| 63 | age | $1.8 \times 10^{-2}$ |
| 64 | fibrosi | $1.8 \times 10^{-2}$ |
| 65 | hbv | $1.7 \times 10^{-2}$ |
| 66 | rectal | $1.7 \times 10^{-2}$ |
| 67 | transplant | $1.7 \times 10^{-2}$ |
| 68 | virus | $1.7 \times 10^{-2}$ |
| 69 | serum | $1.6 \times 10^{-2}$ |
| 70 | result | $1.6 \times 10^{-2}$ |
| 71 | treat | $1.6 \times 10^{-2}$ |
| 72 | includ | $1.6 \times 10^{-2}$ |
| 73 | factor | $1.6 \times 10^{-2}$ |
| 74 | lesion | $1.6 \times 10^{-2}$ |
| 75 | bleed | $1.5 \times 10^{-2}$ |
| 76 | cohort | $1.5 \times 10^{-2}$ |
| 77 | mortal | $1.5 \times 10^{-2}$ |
| 78 | structur | $1.5 \times 10^{-2}$ |
| 79 | group | $1.5 \times 10^{-2}$ |
| 80 | score | $1.5 \times 10^{-2}$ |
| 81 | propos | $1.5 \times 10^{-2}$ |
| 82 | duct | $1.4 \times 10^{-2}$ |
| 83 | inflamm | $1.4 \times 10^{-2}$ |
| 84 | follow | $1.4 \times 10^{-2}$ |
| 85 | assess | $1.4 \times 10^{-2}$ |
| 86 | symptom | $1.4 \times 10^{-2}$ |
| 87 | consecut | $1.4 \times 10^{-2}$ |
| 88 | enrol | $1.4 \times 10^{-2}$ |
| 89 | adenocarcinoma | $1.3 \times 10^{-2}$ |
| 90 | laparoscop | $1.3 \times 10^{-2}$ |
| 91 | receiv | $1.3 \times 10^{-2}$ |
| 92 | mucosa | $1.3 \times 10^{-2}$ |
| 93 | simul | $1.3 \times 10^{-2}$ |
| 94 | virolog | $1.3 \times 10^{-2}$ |
| 95 | efficaci | $1.3 \times 10^{-2}$ |
| 96 | evalu | $1.3 \times 10^{-2}$ |
| 97 | temperatur | $1.2 \times 10^{-2}$ |
| 98 | rate | $1.2 \times 10^{-2}$ |
| 99 | incid | $1.2 \times 10^{-2}$ |
| 100 | studi | $1.2 \times 10^{-2}$ |

Table D.96. The list of the top 100 words in the category Genetics and Heredity with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | gene | $1.8 \times 10^{-1}$ |
| 2 | genom | $1.3 \times 10^{-1}$ |
| 3 | genet | $1.2 \times 10^{-1}$ |
| 4 | sequenc | $7.6 \times 10^{-2}$ |
| 5 | chromosom | $5.9 \times 10^{-2}$ |
| 6 | allel | $5.5 \times 10^{-2}$ |
| 7 | mutat | $5.4 \times 10^{-2}$ |
| 8 | polymorph | $5.1 \times 10^{-2}$ |
| 9 | phenotyp | $4.9 \times 10^{-2}$ |
| 10 | loci | $4.8 \times 10^{-2}$ |
| 11 | dna | $4.6 \times 10^{-2}$ |
| 12 | genotyp | $4.3 \times 10^{-2}$ |
| 13 | express | $4.2 \times 10^{-2}$ |
| 14 | transcript | $3.8 \times 10^{-2}$ |
| 15 | protein | $3.7 \times 10^{-2}$ |
| 16 | identifi | $3.6 \times 10^{-2}$ |
| 17 | nucleotid | $3.3 \times 10^{-2}$ |
| 18 | paper | $2.9 \times 10^{-2}$ |
| 19 | trait | $2.9 \times 10^{-2}$ |
| 20 | popul | $2.8 \times 10^{-2}$ |
| 21 | locus | $2.7 \times 10^{-2}$ |
| 22 | marker | $2.6 \times 10^{-2}$ |
| 23 | famili | $2.6 \times 10^{-2}$ |
| 24 | associ | $2.5 \times 10^{-2}$ |
| 25 | variant | $2.5 \times 10^{-2}$ |
| 26 | snps | $2.4 \times 10^{-2}$ |
| 27 | speci | $2.2 \times 10^{-2}$ |
| 28 | encod | $2.2 \times 10^{-2}$ |
| 29 | regul | $2.2 \times 10^{-2}$ |
| 30 | snp | $2.2 \times 10^{-2}$ |
| 31 | evolutionari | $2.1 \times 10^{-2}$ |
| 32 | rna | $2 \times 10^{-2}$ |
| 33 | delet | $2 \times 10^{-2}$ |
| 34 | microsatellit | $1.9 \times 10^{-2}$ |
| 35 | transcriptom | $1.9 \times 10^{-2}$ |
| 36 | autosom | $1.9 \times 10^{-2}$ |
| 37 | cell | $1.8 \times 10^{-2}$ |
| 38 | phylogenet | $1.8 \times 10^{-2}$ |
| 39 | suggest | $1.8 \times 10^{-2}$ |
| 40 | molecular | $1.7 \times 10^{-2}$ |
| 41 | divers | $1.6 \times 10^{-2}$ |
| 42 | conserv | $1.6 \times 10^{-2}$ |
| 43 | breed | $1.6 \times 10^{-2}$ |
| 44 | exon | $1.6 \times 10^{-2}$ |
| 45 | pathway | $1.5 \times 10^{-2}$ |
| 46 | diseas | $1.5 \times 10^{-2}$ |
| 47 | region | $1.5 \times 10^{-2}$ |
| 48 | haplotyp | $1.5 \times 10^{-2}$ |
| 49 | lineag | $1.5 \times 10^{-2}$ |
| 50 | syndrom | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | mitochondri | $1.4 \times 10^{-2}$ |
| 52 | inherit | $1.4 \times 10^{-2}$ |
| 53 | role | $1.3 \times 10^{-2}$ |
| 54 | qtl | $1.3 \times 10^{-2}$ |
| 55 | mutant | $1.3 \times 10^{-2}$ |
| 56 | heterozygos | $1.3 \times 10^{-2}$ |
| 57 | diverg | $1.3 \times 10^{-2}$ |
| 58 | human | $1.2 \times 10^{-2}$ |
| 59 | seq | $1.2 \times 10^{-2}$ |
| 60 | involv | $1.2 \times 10^{-2}$ |
| 61 | putat | $1.2 \times 10^{-2}$ |
| 62 | individu | $1.2 \times 10^{-2}$ |
| 63 | copi | $1.1 \times 10^{-2}$ |
| 64 | background | $1.1 \times 10^{-2}$ |
| 65 | reveal | $1.1 \times 10^{-2}$ |
| 66 | homolog | $1.1 \times 10^{-2}$ |
| 67 | pcr | $1.1 \times 10^{-2}$ |
| 68 | linkag | $1.1 \times 10^{-2}$ |
| 69 | novo | $1.1 \times 10^{-2}$ |
| 70 | recess | $1.1 \times 10^{-2}$ |
| 71 | heterozyg | $1.1 \times 10^{-2}$ |
| 72 | annot | $1.1 \times 10^{-2}$ |
| 73 | wild | $1.1 \times 10^{-2}$ |
| 74 | differenti | $1 \times 10^{-2}$ |
| 75 | development | $1 \times 10^{-2}$ |
| 76 | homozyg | $1 \times 10^{-2}$ |
| 77 | variat | $1 \times 10^{-2}$ |
| 78 | drosophila | $1 \times 10^{-2}$ |
| 79 | epigenet | $1 \times 10^{-2}$ |
| 80 | chromatin | $9.9 \times 10^{-3}$ |
| 81 | specif | $9.7 \times 10^{-3}$ |
| 82 | solut | $9.5 \times 10^{-3}$ |
| 83 | regulatori | $9.4 \times 10^{-3}$ |
| 84 | analysi | $9.1 \times 10^{-3}$ |
| 85 | previous | $9 \times 10^{-3}$ |
| 86 | evolut | $8.9 \times 10^{-3}$ |
| 87 | metabol | $8.8 \times 10^{-3}$ |
| 88 | candid | $8.8 \times 10^{-3}$ |
| 89 | disord | $8.7 \times 10^{-3}$ |
| 90 | surfac | $8.5 \times 10^{-3}$ |
| 91 | phylogeni | $8.2 \times 10^{-3}$ |
| 92 | recombin | $8.2 \times 10^{-3}$ |
| 93 | microarray | $8.2 \times 10^{-3}$ |
| 94 | ancestr | $8.2 \times 10^{-3}$ |
| 95 | herit | $8.1 \times 10^{-3}$ |
| 96 | wide | $8 \times 10^{-3}$ |
| 97 | bind | $7.8 \times 10^{-3}$ |
| 98 | splice | $7.8 \times 10^{-3}$ |
| 99 | plant | $7.7 \times 10^{-3}$ |
| 100 | mous | $7.7 \times 10^{-3}$ |

Table D.97. The list of the top 100 words in the category Geochemistry and Geophysics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | seismic | $9.4 \times 10^{-2}$ |
| 2 | rock | $8.5 \times 10^{-2}$ |
| 3 | mantl | $6.9 \times 10^{-2}$ |
| 4 | crust | $5.2 \times 10^{-2}$ |
| 5 | crustal | $4.9 \times 10^{-2}$ |
| 6 | earthquak | $4.7 \times 10^{-2}$ |
| 7 | zone | $4.6 \times 10^{-2}$ |
| 8 | isotop | $4.5 \times 10^{-2}$ |
| 9 | subduct | $4.2 \times 10^{-2}$ |
| 10 | tecton | $4.1 \times 10^{-2}$ |
| 11 | geolog | $4 \times 10^{-2}$ |
| 12 | lithospher | $4 \times 10^{-2}$ |
| 13 | earth | $3.9 \times 10^{-2}$ |
| 14 | magma | $3.8 \times 10^{-2}$ |
| 15 | miner | $3.8 \times 10^{-2}$ |
| 16 | geochem | $3.8 \times 10^{-2}$ |
| 17 | magmat | $3.7 \times 10^{-2}$ |
| 18 | fault | $3.5 \times 10^{-2}$ |
| 19 | ocean | $3.4 \times 10^{-2}$ |
| 20 | depth | $3.3 \times 10^{-2}$ |
| 21 | volcan | $3.2 \times 10^{-2}$ |
| 22 | data | $2.9 \times 10^{-2}$ |
| 23 | basin | $2.9 \times 10^{-2}$ |
| 24 | sediment | $2.8 \times 10^{-2}$ |
| 25 | basalt | $2.7 \times 10^{-2}$ |
| 26 | melt | $2.5 \times 10^{-2}$ |
| 27 | beneath | $2.5 \times 10^{-2}$ |
| 28 | continent | $2.5 \times 10^{-2}$ |
| 29 | geophys | $2.3 \times 10^{-2}$ |
| 30 | interpret | $2.2 \times 10^{-2}$ |
| 31 | sedimentari | $2.1 \times 10^{-2}$ |
| 32 | slip | $2.1 \times 10^{-2}$ |
| 33 | olivin | $2.1 \times 10^{-2}$ |
| 34 | shallow | $2.1 \times 10^{-2}$ |
| 35 | patient | $2.1 \times 10^{-2}$ |
| 36 | metamorph | $2.1 \times 10^{-2}$ |
| 37 | sourc | $2 \times 10^{-2}$ |
| 38 | veloc | $2 \times 10^{-2}$ |
| 39 | along | $1.9 \times 10^{-2}$ |
| 40 | synthet | $1.9 \times 10^{-2}$ |
| 41 | similar | $1.9 \times 10^{-2}$ |
| 42 | wave | $1.9 \times 10^{-2}$ |
| 43 | region | $1.9 \times 10^{-2}$ |
| 44 | anomali | $1.8 \times 10^{-2}$ |
| 45 | mafic | $1.8 \times 10^{-2}$ |
| 46 | southern | $1.8 \times 10^{-2}$ |
| 47 | trace | $1.8 \times 10^{-2}$ |
| 48 | zircon | $1.7 \times 10^{-2}$ |
| 49 | north | $1.7 \times 10^{-2}$ |
| 50 | invers | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | radar | $1.7 \times 10^{-2}$ |
| 52 | northern | $1.6 \times 10^{-2}$ |
| 53 | constrain | $1.6 \times 10^{-2}$ |
| 54 | model | $1.6 \times 10^{-2}$ |
| 55 | orogen | $1.6 \times 10^{-2}$ |
| 56 | composit | $1.6 \times 10^{-2}$ |
| 57 | conclus | $1.5 \times 10^{-2}$ |
| 58 | belt | $1.5 \times 10^{-2}$ |
| 59 | upper | $1.5 \times 10^{-2}$ |
| 60 | near | $1.5 \times 10^{-2}$ |
| 61 | emplac | $1.5 \times 10^{-2}$ |
| 62 | estim | $1.5 \times 10^{-2}$ |
| 63 | fluid | $1.5 \times 10^{-2}$ |
| 64 | variat | $1.4 \times 10^{-2}$ |
| 65 | subsurfac | $1.4 \times 10^{-2}$ |
| 66 | station | $1.4 \times 10^{-2}$ |
| 67 | deform | $1.4 \times 10^{-2}$ |
| 68 | observ | $1.4 \times 10^{-2}$ |
| 69 | igneous | $1.4 \times 10^{-2}$ |
| 70 | event | $1.4 \times 10^{-2}$ |
| 71 | erupt | $1.4 \times 10^{-2}$ |
| 72 | record | $1.4 \times 10^{-2}$ |
| 73 | eastern | $1.4 \times 10^{-2}$ |
| 74 | locat | $1.4 \times 10^{-2}$ |
| 75 | plagioclas | $1.3 \times 10^{-2}$ |
| 76 | resolut | $1.3 \times 10^{-2}$ |
| 77 | silic | $1.3 \times 10^{-2}$ |
| 78 | surfac | $1.3 \times 10^{-2}$ |
| 79 | granit | $1.3 \times 10^{-2}$ |
| 80 | mineralog | $1.3 \times 10^{-2}$ |
| 81 | deep | $1.3 \times 10^{-2}$ |
| 82 | litholog | $1.3 \times 10^{-2}$ |
| 83 | enrich | $1.2 \times 10^{-2}$ |
| 84 | east | $1.2 \times 10^{-2}$ |
| 85 | occur | $1.2 \times 10^{-2}$ |
| 86 | clinic | $1.2 \times 10^{-2}$ |
| 87 | reservoir | $1.2 \times 10^{-2}$ |
| 88 | intrus | $1.2 \times 10^{-2}$ |
| 89 | ree | $1.2 \times 10^{-2}$ |
| 90 | craton | $1.2 \times 10^{-2}$ |
| 91 | south | $1.2 \times 10^{-2}$ |
| 92 | satellit | $1.2 \times 10^{-2}$ |
| 93 | dip | $1.2 \times 10^{-2}$ |
| 94 | slab | $1.2 \times 10^{-2}$ |
| 95 | ridg | $1.2 \times 10^{-2}$ |
| 96 | thrust | $1.2 \times 10^{-2}$ |
| 97 | vertic | $1.1 \times 10^{-2}$ |
| 98 | uplift | $1.1 \times 10^{-2}$ |
| 99 | reflect | $1.1 \times 10^{-2}$ |
| 100 | sea | $1.1 \times 10^{-2}$ |

Table D.98. The list of the top 100 words in the category Geography with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | geographi | $7.9 \times 10^{-2}$ |
| 2 | urban | $7.6 \times 10^{-2}$ |
| 3 | citi | $5.7 \times 10^{-2}$ |
| 4 | polit | $5.3 \times 10^{-2}$ |
| 5 | geograph | $5 \times 10^{-2}$ |
| 6 | spatial | $4.7 \times 10^{-2}$ |
| 7 | argu | $4.2 \times 10^{-2}$ |
| 8 | polici | $4.2 \times 10^{-2}$ |
| 9 | social | $4.1 \times 10^{-2}$ |
| 10 | econom | $3.9 \times 10^{-2}$ |
| 11 | articl | $3.6 \times 10^{-2}$ |
| 12 | land | $3.3 \times 10^{-2}$ |
| 13 | draw | $3.2 \times 10^{-2}$ |
| 14 | landscap | $2.9 \times 10^{-2}$ |
| 15 | govern | $2.7 \times 10^{-2}$ |
| 16 | economi | $2 \times 10^{-2}$ |
| 17 | place | $2 \times 10^{-2}$ |
| 18 | rural | $2 \times 10^{-2}$ |
| 19 | research | $2 \times 10^{-2}$ |
| 20 | area | $1.9 \times 10^{-2}$ |
| 21 | explor | $1.9 \times 10^{-2}$ |
| 22 | actor | $1.9 \times 10^{-2}$ |
| 23 | territori | $1.8 \times 10^{-2}$ |
| 24 | region | $1.8 \times 10^{-2}$ |
| 25 | space | $1.8 \times 10^{-2}$ |
| 26 | patient | $1.7 \times 10^{-2}$ |
| 27 | communiti | $1.7 \times 10^{-2}$ |
| 28 | context | $1.7 \times 10^{-2}$ |
| 29 | focus | $1.7 \times 10^{-2}$ |
| 30 | public | $1.7 \times 10^{-2}$ |
| 31 | discours | $1.6 \times 10^{-2}$ |
| 32 | paper | $1.6 \times 10^{-2}$ |
| 33 | socio | $1.6 \times 10^{-2}$ |
| 34 | nation | $1.6 \times 10^{-2}$ |
| 35 | plan | $1.6 \times 10^{-2}$ |
| 36 | understand | $1.6 \times 10^{-2}$ |
| 37 | engag | $1.5 \times 10^{-2}$ |
| 38 | capit | $1.5 \times 10^{-2}$ |
| 39 | way | $1.5 \times 10^{-2}$ |
| 40 | market | $1.5 \times 10^{-2}$ |
| 41 | local | $1.4 \times 10^{-2}$ |
| 42 | global | $1.4 \times 10^{-2}$ |
| 43 | peopl | $1.4 \times 10^{-2}$ |
| 44 | cell | $1.4 \times 10^{-2}$ |
| 45 | practic | $1.4 \times 10^{-2}$ |
| 46 | contemporari | $1.4 \times 10^{-2}$ |
| 47 | neoliber | $1.3 \times 10^{-2}$ |
| 48 | empir | $1.3 \times 10^{-2}$ |
| 49 | histor | $1.3 \times 10^{-2}$ |
| 50 | institut | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | climat | $1.2 \times 10^{-2}$ |
| 52 | method | $1.2 \times 10^{-2}$ |
| 53 | agricultur | $1.2 \times 10^{-2}$ |
| 54 | gis | $1.2 \times 10^{-2}$ |
| 55 | metropolitan | $1.2 \times 10^{-2}$ |
| 56 | contest | $1.2 \times 10^{-2}$ |
| 57 | countri | $1.2 \times 10^{-2}$ |
| 58 | interview | $1.2 \times 10^{-2}$ |
| 59 | labour | $1.2 \times 10^{-2}$ |
| 60 | migrant | $1.2 \times 10^{-2}$ |
| 61 | perspect | $1.1 \times 10^{-2}$ |
| 62 | conclus | $1.1 \times 10^{-2}$ |
| 63 | treatment | $1.1 \times 10^{-2}$ |
| 64 | debat | $1.1 \times 10^{-2}$ |
| 65 | narrat | $1.1 \times 10^{-2}$ |
| 66 | examin | $1.1 \times 10^{-2}$ |
| 67 | environment | $1.1 \times 10^{-2}$ |
| 68 | sector | $1.1 \times 10^{-2}$ |
| 69 | livelihood | $1 \times 10^{-2}$ |
| 70 | clinic | $1 \times 10^{-2}$ |
| 71 | world | $1 \times 10^{-2}$ |
| 72 | cultur | $1 \times 10^{-2}$ |
| 73 | result | $1 \times 10^{-2}$ |
| 74 | develop | $9.9 \times 10^{-3}$ |
| 75 | particular | $9.9 \times 10^{-3}$ |
| 76 | emerg | $9.7 \times 10^{-3}$ |
| 77 | ecolog | $9.7 \times 10^{-3}$ |
| 78 | question | $9.6 \times 10^{-3}$ |
| 79 | conceptu | $9.6 \times 10^{-3}$ |
| 80 | concept | $9.3 \times 10^{-3}$ |
| 81 | residenti | $9.3 \times 10^{-3}$ |
| 82 | protein | $9.1 \times 10^{-3}$ |
| 83 | map | $9 \times 10^{-3}$ |
| 84 | within | $8.9 \times 10^{-3}$ |
| 85 | resid | $8.9 \times 10^{-3}$ |
| 86 | natur | $8.8 \times 10^{-3}$ |
| 87 | across | $8.8 \times 10^{-3}$ |
| 88 | transnat | $8.7 \times 10^{-3}$ |
| 89 | attent | $8.5 \times 10^{-3}$ |
| 90 | sustain | $8.4 \times 10^{-3}$ |
| 91 | farmer | $8.1 \times 10^{-3}$ |
| 92 | negoti | $7.9 \times 10^{-3}$ |
| 93 | experiment | $7.9 \times 10^{-3}$ |
| 94 | project | $7.8 \times 10^{-3}$ |
| 95 | embodi | $7.8 \times 10^{-3}$ |
| 96 | opportun | $7.8 \times 10^{-3}$ |
| 97 | electron | $7.7 \times 10^{-3}$ |
| 98 | highlight | $7.7 \times 10^{-3}$ |
| 99 | privat | $7.6 \times 10^{-3}$ |
| 100 | live | $7.6 \times 10^{-3}$ |

Table D.99. The list of the top 100 words in the category Geography, Physical with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | climat | $7.2 \times 10^{-2}$ |
| 2 | sediment | $6.2 \times 10^{-2}$ |
| 3 | holocen | $5.1 \times 10^{-2}$ |
| 4 | area | $5.1 \times 10^{-2}$ |
| 5 | ice | $4.5 \times 10^{-2}$ |
| 6 | glacial | $4.2 \times 10^{-2}$ |
| 7 | spatial | $4 \times 10^{-2}$ |
| 8 | land | $3.9 \times 10^{-2}$ |
| 9 | glacier | $3.6 \times 10^{-2}$ |
| 10 | pleistocen | $3.4 \times 10^{-2}$ |
| 11 | veget | $3.3 \times 10^{-2}$ |
| 12 | sea | $3.3 \times 10^{-2}$ |
| 13 | river | $3.1 \times 10^{-2}$ |
| 14 | region | $3.1 \times 10^{-2}$ |
| 15 | landscap | $3 \times 10^{-2}$ |
| 16 | basin | $2.7 \times 10^{-2}$ |
| 17 | remot | $2.6 \times 10^{-2}$ |
| 18 | mountain | $2.6 \times 10^{-2}$ |
| 19 | date | $2.6 \times 10^{-2}$ |
| 20 | map | $2.6 \times 10^{-2}$ |
| 21 | data | $2.5 \times 10^{-2}$ |
| 22 | cover | $2.5 \times 10^{-2}$ |
| 23 | satellit | $2.5 \times 10^{-2}$ |
| 24 | forest | $2.4 \times 10^{-2}$ |
| 25 | lake | $2.4 \times 10^{-2}$ |
| 26 | southern | $2.4 \times 10^{-2}$ |
| 27 | geomorpholog | $2.4 \times 10^{-2}$ |
| 28 | sar | $2.4 \times 10^{-2}$ |
| 29 | northern | $2.4 \times 10^{-2}$ |
| 30 | eros | $2.4 \times 10^{-2}$ |
| 31 | resolut | $2.3 \times 10^{-2}$ |
| 32 | locat | $2.3 \times 10^{-2}$ |
| 33 | cal | $2.3 \times 10^{-2}$ |
| 34 | late | $2.2 \times 10^{-2}$ |
| 35 | north | $2.2 \times 10^{-2}$ |
| 36 | reconstruct | $2.2 \times 10^{-2}$ |
| 37 | chang | $2.2 \times 10^{-2}$ |
| 38 | slope | $2.1 \times 10^{-2}$ |
| 39 | coastal | $2.1 \times 10^{-2}$ |
| 40 | record | $2.1 \times 10^{-2}$ |
| 41 | chronolog | $1.9 \times 10^{-2}$ |
| 42 | gis | $1.9 \times 10^{-2}$ |
| 43 | assemblag | $1.9 \times 10^{-2}$ |
| 44 | patient | $1.8 \times 10^{-2}$ |
| 45 | fluvial | $1.8 \times 10^{-2}$ |
| 46 | deposit | $1.8 \times 10^{-2}$ |
| 47 | imageri | $1.7 \times 10^{-2}$ |
| 48 | radar | $1.7 \times 10^{-2}$ |
| 49 | warm | $1.7 \times 10^{-2}$ |
| 50 | ocean | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | site | $1.7 \times 10^{-2}$ |
| 52 | sedimentari | $1.7 \times 10^{-2}$ |
| 53 | radiocarbon | $1.7 \times 10^{-2}$ |
| 54 | valley | $1.7 \times 10^{-2}$ |
| 55 | topograph | $1.6 \times 10^{-2}$ |
| 56 | eastern | $1.6 \times 10^{-2}$ |
| 57 | south | $1.6 \times 10^{-2}$ |
| 58 | geograph | $1.6 \times 10^{-2}$ |
| 59 | period | $1.6 \times 10^{-2}$ |
| 60 | stratigraph | $1.5 \times 10^{-2}$ |
| 61 | season | $1.5 \times 10^{-2}$ |
| 62 | east | $1.5 \times 10^{-2}$ |
| 63 | coast | $1.5 \times 10^{-2}$ |
| 64 | dure | $1.5 \times 10^{-2}$ |
| 65 | last | $1.5 \times 10^{-2}$ |
| 66 | hydrolog | $1.5 \times 10^{-2}$ |
| 67 | marin | $1.5 \times 10^{-2}$ |
| 68 | summer | $1.4 \times 10^{-2}$ |
| 69 | soil | $1.4 \times 10^{-2}$ |
| 70 | terrestri | $1.4 \times 10^{-2}$ |
| 71 | tempor | $1.3 \times 10^{-2}$ |
| 72 | flood | $1.3 \times 10^{-2}$ |
| 73 | water | $1.3 \times 10^{-2}$ |
| 74 | scale | $1.3 \times 10^{-2}$ |
| 75 | sens | $1.3 \times 10^{-2}$ |
| 76 | proxi | $1.3 \times 10^{-2}$ |
| 77 | archaeolog | $1.3 \times 10^{-2}$ |
| 78 | pattern | $1.3 \times 10^{-2}$ |
| 79 | isotop | $1.3 \times 10^{-2}$ |
| 80 | fossil | $1.3 \times 10^{-2}$ |
| 81 | precipit | $1.3 \times 10^{-2}$ |
| 82 | retreat | $1.2 \times 10^{-2}$ |
| 83 | urban | $1.2 \times 10^{-2}$ |
| 84 | pollen | $1.2 \times 10^{-2}$ |
| 85 | monsoon | $1.2 \times 10^{-2}$ |
| 86 | ecolog | $1.2 \times 10^{-2}$ |
| 87 | west | $1.2 \times 10^{-2}$ |
| 88 | clinic | $1.2 \times 10^{-2}$ |
| 89 | snow | $1.2 \times 10^{-2}$ |
| 90 | ecosystem | $1.1 \times 10^{-2}$ |
| 91 | island | $1.1 \times 10^{-2}$ |
| 92 | treatment | $1.1 \times 10^{-2}$ |
| 93 | elev | $1.1 \times 10^{-2}$ |
| 94 | past | $1.1 \times 10^{-2}$ |
| 95 | geolog | $1.1 \times 10^{-2}$ |
| 96 | along | $1.1 \times 10^{-2}$ |
| 97 | cell | $1.1 \times 10^{-2}$ |
| 98 | landsat | $1.1 \times 10^{-2}$ |
| 99 | zone | $1.1 \times 10^{-2}$ |
| 100 | middl | $1.1 \times 10^{-2}$ |

Table D.100. The list of the top 100 words in the category Geology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | rock | $1.2 \times 10^{-1}$ |
| 2 | deposit | $9.3 \times 10^{-2}$ |
| 3 | sediment | $8.6 \times 10^{-2}$ |
| 4 | basin | $8.2 \times 10^{-2}$ |
| 5 | sedimentari | $7.4 \times 10^{-2}$ |
| 6 | stratigraph | $6.9 \times 10^{-2}$ |
| 7 | late | $6.4 \times 10^{-2}$ |
| 8 | faci | $6.1 \times 10^{-2}$ |
| 9 | tecton | $6 \times 10^{-2}$ |
| 10 | cretac | $6 \times 10^{-2}$ |
| 11 | zone | $5.5 \times 10^{-2}$ |
| 12 | format | $4.9 \times 10^{-2}$ |
| 13 | geolog | $4.8 \times 10^{-2}$ |
| 14 | isotop | $4.8 \times 10^{-2}$ |
| 15 | zircon | $4.7 \times 10^{-2}$ |
| 16 | upper | $4.6 \times 10^{-2}$ |
| 17 | assemblag | $4.5 \times 10^{-2}$ |
| 18 | miner | $4.3 \times 10^{-2}$ |
| 19 | geochem | $4.1 \times 10^{-2}$ |
| 20 | volcan | $4.1 \times 10^{-2}$ |
| 21 | magmat | $4 \times 10^{-2}$ |
| 22 | marin | $3.6 \times 10^{-2}$ |
| 23 | sandston | $3.6 \times 10^{-2}$ |
| 24 | metamorph | $3.5 \times 10^{-2}$ |
| 25 | jurass | $3.4 \times 10^{-2}$ |
| 26 | middl | $3.3 \times 10^{-2}$ |
| 27 | continent | $3.3 \times 10^{-2}$ |
| 28 | shallow | $3.3 \times 10^{-2}$ |
| 29 | crust | $3.2 \times 10^{-2}$ |
| 30 | earli | $3.2 \times 10^{-2}$ |
| 31 | north | $3.2 \times 10^{-2}$ |
| 32 | fossil | $3.2 \times 10^{-2}$ |
| 33 | southern | $3.2 \times 10^{-2}$ |
| 34 | limeston | $3.1 \times 10^{-2}$ |
| 35 | northern | $3 \times 10^{-2}$ |
| 36 | interpret | $3 \times 10^{-2}$ |
| 37 | belt | $3 \times 10^{-2}$ |
| 38 | sea | $3 \times 10^{-2}$ |
| 39 | orogen | $2.9 \times 10^{-2}$ |
| 40 | eastern | $2.9 \times 10^{-2}$ |
| 41 | subduct | $2.9 \times 10^{-2}$ |
| 42 | part | $2.9 \times 10^{-2}$ |
| 43 | margin | $2.8 \times 10^{-2}$ |
| 44 | ordovician | $2.8 \times 10^{-2}$ |
| 45 | record | $2.7 \times 10^{-2}$ |
| 46 | triassic | $2.6 \times 10^{-2}$ |
| 47 | bed | $2.6 \times 10^{-2}$ |
| 48 | calcit | $2.6 \times 10^{-2}$ |
| 49 | fluvial | $2.5 \times 10^{-2}$ |
| 50 | mantl | $2.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | quartz | $2.5 \times 10^{-2}$ |
| 52 | outcrop | $2.4 \times 10^{-2}$ |
| 53 | granit | $2.4 \times 10^{-2}$ |
| 54 | strata | $2.4 \times 10^{-2}$ |
| 55 | preserv | $2.4 \times 10^{-2}$ |
| 56 | miocen | $2.4 \times 10^{-2}$ |
| 57 | south | $2.3 \times 10^{-2}$ |
| 58 | magma | $2.3 \times 10^{-2}$ |
| 59 | domin | $2.3 \times 10^{-2}$ |
| 60 | crustal | $2.3 \times 10^{-2}$ |
| 61 | ore | $2.3 \times 10^{-2}$ |
| 62 | carbon | $2.3 \times 10^{-2}$ |
| 63 | sedimentolog | $2.3 \times 10^{-2}$ |
| 64 | mineralog | $2.3 \times 10^{-2}$ |
| 65 | emplac | $2.2 \times 10^{-2}$ |
| 66 | permian | $2.2 \times 10^{-2}$ |
| 67 | dure | $2.1 \times 10^{-2}$ |
| 68 | litholog | $2.1 \times 10^{-2}$ |
| 69 | stratigraphi | $2.1 \times 10^{-2}$ |
| 70 | method | $2 \times 10^{-2}$ |
| 71 | geochemistri | $2 \times 10^{-2}$ |
| 72 | grain | $2 \times 10^{-2}$ |
| 73 | ocean | $2 \times 10^{-2}$ |
| 74 | uplift | $1.9 \times 10^{-2}$ |
| 75 | form | $1.9 \times 10^{-2}$ |
| 76 | date | $1.9 \times 10^{-2}$ |
| 77 | fauna | $1.9 \times 10^{-2}$ |
| 78 | eocen | $1.9 \times 10^{-2}$ |
| 79 | cambrian | $1.9 \times 10^{-2}$ |
| 80 | occur | $1.8 \times 10^{-2}$ |
| 81 | western | $1.8 \times 10^{-2}$ |
| 82 | central | $1.8 \times 10^{-2}$ |
| 83 | rich | $1.8 \times 10^{-2}$ |
| 84 | basalt | $1.8 \times 10^{-2}$ |
| 85 | pluton | $1.8 \times 10^{-2}$ |
| 86 | transgress | $1.8 \times 10^{-2}$ |
| 87 | along | $1.7 \times 10^{-2}$ |
| 88 | sand | $1.7 \times 10^{-2}$ |
| 89 | geochronolog | $1.7 \times 10^{-2}$ |
| 90 | climat | $1.7 \times 10^{-2}$ |
| 91 | water | $1.7 \times 10^{-2}$ |
| 92 | area | $1.7 \times 10^{-2}$ |
| 93 | repres | $1.7 \times 10^{-2}$ |
| 94 | fault | $1.7 \times 10^{-2}$ |
| 95 | igneous | $1.7 \times 10^{-2}$ |
| 96 | river | $1.7 \times 10^{-2}$ |
| 97 | clay | $1.7 \times 10^{-2}$ |
| 98 | evolut | $1.7 \times 10^{-2}$ |
| 99 | eros | $1.6 \times 10^{-2}$ |
| 100 | patient | $1.6 \times 10^{-2}$ |

Table D.101. The list of the top 100 words in the category Geosciences, Multidisciplinary with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | rock | $5.8 \times 10^{-2}$ |
| 2 | sediment | $5.7 \times 10^{-2}$ |
| 3 | basin | $5.4 \times 10^{-2}$ |
| 4 | climat | $4.1 \times 10^{-2}$ |
| 5 | geolog | $3.7 \times 10^{-2}$ |
| 6 | area | $3.5 \times 10^{-2}$ |
| 7 | water | $3.4 \times 10^{-2}$ |
| 8 | soil | $3.4 \times 10^{-2}$ |
| 9 | sea | $3.3 \times 10^{-2}$ |
| 10 | zone | $3.2 \times 10^{-2}$ |
| 11 | tecton | $3.1 \times 10^{-2}$ |
| 12 | river | $3.1 \times 10^{-2}$ |
| 13 | sedimentari | $3 \times 10^{-2}$ |
| 14 | ocean | $2.7 \times 10^{-2}$ |
| 15 | region | $2.7 \times 10^{-2}$ |
| 16 | southern | $2.5 \times 10^{-2}$ |
| 17 | deposit | $2.5 \times 10^{-2}$ |
| 18 | seismic | $2.5 \times 10^{-2}$ |
| 19 | volcan | $2.4 \times 10^{-2}$ |
| 20 | patient | $2.4 \times 10^{-2}$ |
| 21 | geochem | $2.4 \times 10^{-2}$ |
| 22 | north | $2.4 \times 10^{-2}$ |
| 23 | northern | $2.4 \times 10^{-2}$ |
| 24 | hydrolog | $2.3 \times 10^{-2}$ |
| 25 | ice | $2.3 \times 10^{-2}$ |
| 26 | land | $2.3 \times 10^{-2}$ |
| 27 | groundwat | $2.2 \times 10^{-2}$ |
| 28 | holocen | $2.2 \times 10^{-2}$ |
| 29 | isotop | $2.2 \times 10^{-2}$ |
| 30 | stratigraph | $2.1 \times 10^{-2}$ |
| 31 | depth | $2.1 \times 10^{-2}$ |
| 32 | shallow | $2.1 \times 10^{-2}$ |
| 33 | late | $2.1 \times 10^{-2}$ |
| 34 | continent | $2 \times 10^{-2}$ |
| 35 | slope | $2 \times 10^{-2}$ |
| 36 | eastern | $1.9 \times 10^{-2}$ |
| 37 | spatial | $1.9 \times 10^{-2}$ |
| 38 | dure | $1.8 \times 10^{-2}$ |
| 39 | glacial | $1.8 \times 10^{-2}$ |
| 40 | conclus | $1.8 \times 10^{-2}$ |
| 41 | data | $1.7 \times 10^{-2}$ |
| 42 | south | $1.7 \times 10^{-2}$ |
| 43 | locat | $1.7 \times 10^{-2}$ |
| 44 | eros | $1.7 \times 10^{-2}$ |
| 45 | magmat | $1.6 \times 10^{-2}$ |
| 46 | earthquak | $1.6 \times 10^{-2}$ |
| 47 | miner | $1.5 \times 10^{-2}$ |
| 48 | upper | $1.5 \times 10^{-2}$ |
| 49 | east | $1.5 \times 10^{-2}$ |
| 50 | mountain | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | flood | $1.5 \times 10^{-2}$ |
| 52 | lake | $1.5 \times 10^{-2}$ |
| 53 | marin | $1.5 \times 10^{-2}$ |
| 54 | faci | $1.5 \times 10^{-2}$ |
| 55 | aquif | $1.5 \times 10^{-2}$ |
| 56 | clinic | $1.4 \times 10^{-2}$ |
| 57 | event | $1.4 \times 10^{-2}$ |
| 58 | assemblag | $1.4 \times 10^{-2}$ |
| 59 | along | $1.4 \times 10^{-2}$ |
| 60 | precipit | $1.4 \times 10^{-2}$ |
| 61 | rainfal | $1.4 \times 10^{-2}$ |
| 62 | sand | $1.4 \times 10^{-2}$ |
| 63 | earth | $1.4 \times 10^{-2}$ |
| 64 | fault | $1.4 \times 10^{-2}$ |
| 65 | record | $1.4 \times 10^{-2}$ |
| 66 | season | $1.4 \times 10^{-2}$ |
| 67 | coastal | $1.4 \times 10^{-2}$ |
| 68 | catchment | $1.4 \times 10^{-2}$ |
| 69 | belt | $1.3 \times 10^{-2}$ |
| 70 | cell | $1.3 \times 10^{-2}$ |
| 71 | pleistocen | $1.3 \times 10^{-2}$ |
| 72 | satellit | $1.3 \times 10^{-2}$ |
| 73 | crust | $1.3 \times 10^{-2}$ |
| 74 | date | $1.3 \times 10^{-2}$ |
| 75 | reservoir | $1.3 \times 10^{-2}$ |
| 76 | surfac | $1.3 \times 10^{-2}$ |
| 77 | crustal | $1.3 \times 10^{-2}$ |
| 78 | clay | $1.2 \times 10^{-2}$ |
| 79 | interpret | $1.2 \times 10^{-2}$ |
| 80 | landslid | $1.2 \times 10^{-2}$ |
| 81 | domin | $1.2 \times 10^{-2}$ |
| 82 | weather | $1.2 \times 10^{-2}$ |
| 83 | period | $1.2 \times 10^{-2}$ |
| 84 | zircon | $1.2 \times 10^{-2}$ |
| 85 | glacier | $1.2 \times 10^{-2}$ |
| 86 | litholog | $1.2 \times 10^{-2}$ |
| 87 | diseas | $1.2 \times 10^{-2}$ |
| 88 | cover | $1.2 \times 10^{-2}$ |
| 89 | indic | $1.2 \times 10^{-2}$ |
| 90 | part | $1.2 \times 10^{-2}$ |
| 91 | metamorph | $1.2 \times 10^{-2}$ |
| 92 | fluvial | $1.1 \times 10^{-2}$ |
| 93 | warm | $1.1 \times 10^{-2}$ |
| 94 | granit | $1.1 \times 10^{-2}$ |
| 95 | site | $1.1 \times 10^{-2}$ |
| 96 | atmospher | $1.1 \times 10^{-2}$ |
| 97 | cretac | $1.1 \times 10^{-2}$ |
| 98 | geomorpholog | $1.1 \times 10^{-2}$ |
| 99 | deep | $1.1 \times 10^{-2}$ |
| 100 | west | $1.1 \times 10^{-2}$ |

Table D.102. The list of the top 100 words in the category Geriatrics and Gerontology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | older | $1.7 \times 10^{-1}$ |
| 2 | age | $1.6 \times 10^{-1}$ |
| 3 | elder | $1 \times 10^{-1}$ |
| 4 | dementia | $7.5 \times 10^{-2}$ |
| 5 | cognit | $6.9 \times 10^{-2}$ |
| 6 | adult | $6.5 \times 10^{-2}$ |
| 7 | conclus | $6 \times 10^{-2}$ |
| 8 | particip | $5.7 \times 10^{-2}$ |
| 9 | geriatr | $5.2 \times 10^{-2}$ |
| 10 | alzheim | $5 \times 10^{-2}$ |
| 11 | associ | $4.8 \times 10^{-2}$ |
| 12 | year | $4.4 \times 10^{-2}$ |
| 13 | health | $4 \times 10^{-2}$ |
| 14 | dwell | $4 \times 10^{-2}$ |
| 15 | impair | $3.7 \times 10^{-2}$ |
| 16 | diseas | $3.3 \times 10^{-2}$ |
| 17 | declin | $3.3 \times 10^{-2}$ |
| 18 | depress | $3.1 \times 10^{-2}$ |
| 19 | assess | $3 \times 10^{-2}$ |
| 20 | care | $2.9 \times 10^{-2}$ |
| 21 | object | $2.8 \times 10^{-2}$ |
| 22 | score | $2.7 \times 10^{-2}$ |
| 23 | risk | $2.6 \times 10^{-2}$ |
| 24 | peopl | $2.5 \times 10^{-2}$ |
| 25 | mental | $2.5 \times 10^{-2}$ |
| 26 | live | $2.5 \times 10^{-2}$ |
| 27 | home | $2.4 \times 10^{-2}$ |
| 28 | life | $2.3 \times 10^{-2}$ |
| 29 | intervent | $2.3 \times 10^{-2}$ |
| 30 | studi | $2.2 \times 10^{-2}$ |
| 31 | paper | $2.2 \times 10^{-2}$ |
| 32 | patient | $2.2 \times 10^{-2}$ |
| 33 | nurs | $2.1 \times 10^{-2}$ |
| 34 | women | $2.1 \times 10^{-2}$ |
| 35 | mini | $2.1 \times 10^{-2}$ |
| 36 | communiti | $2.1 \times 10^{-2}$ |
| 37 | baselin | $2 \times 10^{-2}$ |
| 38 | old | $2 \times 10^{-2}$ |
| 39 | individu | $2 \times 10^{-2}$ |
| 40 | regress | $2 \times 10^{-2}$ |
| 41 | examin | $2 \times 10^{-2}$ |
| 42 | status | $1.9 \times 10^{-2}$ |
| 43 | symptom | $1.9 \times 10^{-2}$ |
| 44 | men | $1.9 \times 10^{-2}$ |
| 45 | signific | $1.9 \times 10^{-2}$ |
| 46 | cohort | $1.8 \times 10^{-2}$ |
| 47 | popul | $1.8 \times 10^{-2}$ |
| 48 | background | $1.8 \times 10^{-2}$ |
| 49 | group | $1.8 \times 10^{-2}$ |
| 50 | clinic | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | medic | $1.8 \times 10^{-2}$ |
| 52 | person | $1.7 \times 10^{-2}$ |
| 53 | caregiv | $1.6 \times 10^{-2}$ |
| 54 | adjust | $1.5 \times 10^{-2}$ |
| 55 | daili | $1.5 \times 10^{-2}$ |
| 56 | comorbid | $1.5 \times 10^{-2}$ |
| 57 | result | $1.5 \times 10^{-2}$ |
| 58 | memori | $1.4 \times 10^{-2}$ |
| 59 | relat | $1.4 \times 10^{-2}$ |
| 60 | resid | $1.4 \times 10^{-2}$ |
| 61 | physic | $1.4 \times 10^{-2}$ |
| 62 | function | $1.3 \times 10^{-2}$ |
| 63 | month | $1.3 \times 10^{-2}$ |
| 64 | measur | $1.3 \times 10^{-2}$ |
| 65 | outcom | $1.3 \times 10^{-2}$ |
| 66 | healthi | $1.3 \times 10^{-2}$ |
| 67 | hospit | $1.3 \times 10^{-2}$ |
| 68 | younger | $1.2 \times 10^{-2}$ |
| 69 | confid | $1.2 \times 10^{-2}$ |
| 70 | mild | $1.2 \times 10^{-2}$ |
| 71 | propos | $1.2 \times 10^{-2}$ |
| 72 | preval | $1.2 \times 10^{-2}$ |
| 73 | simul | $1.2 \times 10^{-2}$ |
| 74 | fall | $1.2 \times 10^{-2}$ |
| 75 | subject | $1.2 \times 10^{-2}$ |
| 76 | whether | $1.2 \times 10^{-2}$ |
| 77 | section | $1.1 \times 10^{-2}$ |
| 78 | may | $1.1 \times 10^{-2}$ |
| 79 | aim | $1.1 \times 10^{-2}$ |
| 80 | neuropsycholog | $1.1 \times 10^{-2}$ |
| 81 | young | $1.1 \times 10^{-2}$ |
| 82 | longitudin | $1.1 \times 10^{-2}$ |
| 83 | factor | $1.1 \times 10^{-2}$ |
| 84 | temperatur | $1.1 \times 10^{-2}$ |
| 85 | includ | $1 \times 10^{-2}$ |
| 86 | sex | $1 \times 10^{-2}$ |
| 87 | walk | $1 \times 10^{-2}$ |
| 88 | brain | $1 \times 10^{-2}$ |
| 89 | odd | $1 \times 10^{-2}$ |
| 90 | logist | $1 \times 10^{-2}$ |
| 91 | interview | $9.9 \times 10^{-3}$ |
| 92 | amyloid | $9.9 \times 10^{-3}$ |
| 93 | method | $9.6 \times 10^{-3}$ |
| 94 | muscl | $9.5 \times 10^{-3}$ |
| 95 | questionnair | $9.5 \times 10^{-3}$ |
| 96 | among | $9.4 \times 10^{-3}$ |
| 97 | selfreport | $9.3 \times 10^{-3}$ |
| 98 | disabl | $9.2 \times 10^{-3}$ |
| 99 | independ | $9 \times 10^{-3}$ |
| 100 | increas | $8.8 \times 10^{-3}$ |

Table D.103. The list of the top 100 words in the category Gerontology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | older | $2.5 \times 10^{-1}$ |
| 2 | age | $1.4 \times 10^{-1}$ |
| 3 | adult | $1.1 \times 10^{-1}$ |
| 4 | dementia | $8.5 \times 10^{-2}$ |
| 5 | particip | $8.4 \times 10^{-2}$ |
| 6 | elder | $7.3 \times 10^{-2}$ |
| 7 | health | $7.3 \times 10^{-2}$ |
| 8 | cognit | $6 \times 10^{-2}$ |
| 9 | care | $5.7 \times 10^{-2}$ |
| 10 | dwell | $4.9 \times 10^{-2}$ |
| 11 | geriatr | $4.8 \times 10^{-2}$ |
| 12 | conclus | $4.8 \times 10^{-2}$ |
| 13 | depress | $4.7 \times 10^{-2}$ |
| 14 | life | $4.5 \times 10^{-2}$ |
| 15 | home | $4.2 \times 10^{-2}$ |
| 16 | communiti | $3.9 \times 10^{-2}$ |
| 17 | peopl | $3.8 \times 10^{-2}$ |
| 18 | person | $3.8 \times 10^{-2}$ |
| 19 | live | $3.8 \times 10^{-2}$ |
| 20 | object | $3.7 \times 10^{-2}$ |
| 21 | caregiv | $3.4 \times 10^{-2}$ |
| 22 | examin | $3.4 \times 10^{-2}$ |
| 23 | mental | $3.3 \times 10^{-2}$ |
| 24 | nurs | $3.3 \times 10^{-2}$ |
| 25 | associ | $3.1 \times 10^{-2}$ |
| 26 | interview | $3.1 \times 10^{-2}$ |
| 27 | year | $3.1 \times 10^{-2}$ |
| 28 | individu | $2.9 \times 10^{-2}$ |
| 29 | social | $2.8 \times 10^{-2}$ |
| 30 | intervent | $2.8 \times 10^{-2}$ |
| 31 | assess | $2.7 \times 10^{-2}$ |
| 32 | score | $2.5 \times 10^{-2}$ |
| 33 | resid | $2.4 \times 10^{-2}$ |
| 34 | symptom | $2.4 \times 10^{-2}$ |
| 35 | studi | $2.4 \times 10^{-2}$ |
| 36 | regress | $2.3 \times 10^{-2}$ |
| 37 | impair | $2.3 \times 10^{-2}$ |
| 38 | physic | $2.2 \times 10^{-2}$ |
| 39 | declin | $2.1 \times 10^{-2}$ |
| 40 | retir | $2 \times 10^{-2}$ |
| 41 | medic | $2 \times 10^{-2}$ |
| 42 | baselin | $1.9 \times 10^{-2}$ |
| 43 | status | $1.9 \times 10^{-2}$ |
| 44 | women | $1.8 \times 10^{-2}$ |
| 45 | alzheim | $1.8 \times 10^{-2}$ |
| 46 | longitudin | $1.8 \times 10^{-2}$ |
| 47 | men | $1.7 \times 10^{-2}$ |
| 48 | educ | $1.7 \times 10^{-2}$ |
| 49 | mini | $1.7 \times 10^{-2}$ |
| 50 | risk | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | daili | $1.7 \times 10^{-2}$ |
| 52 | among | $1.6 \times 10^{-2}$ |
| 53 | cohort | $1.6 \times 10^{-2}$ |
| 54 | method | $1.6 \times 10^{-2}$ |
| 55 | group | $1.6 \times 10^{-2}$ |
| 56 | adjust | $1.6 \times 10^{-2}$ |
| 57 | result | $1.6 \times 10^{-2}$ |
| 58 | popul | $1.5 \times 10^{-2}$ |
| 59 | outcom | $1.5 \times 10^{-2}$ |
| 60 | selfreport | $1.5 \times 10^{-2}$ |
| 61 | younger | $1.4 \times 10^{-2}$ |
| 62 | survey | $1.4 \times 10^{-2}$ |
| 63 | measur | $1.4 \times 10^{-2}$ |
| 64 | confid | $1.4 \times 10^{-2}$ |
| 65 | propos | $1.3 \times 10^{-2}$ |
| 66 | memori | $1.3 \times 10^{-2}$ |
| 67 | comorbid | $1.3 \times 10^{-2}$ |
| 68 | paper | $1.2 \times 10^{-2}$ |
| 69 | logist | $1.2 \times 10^{-2}$ |
| 70 | old | $1.2 \times 10^{-2}$ |
| 71 | disabl | $1.2 \times 10^{-2}$ |
| 72 | relationship | $1.2 \times 10^{-2}$ |
| 73 | greater | $1.2 \times 10^{-2}$ |
| 74 | demograph | $1.2 \times 10^{-2}$ |
| 75 | preval | $1.1 \times 10^{-2}$ |
| 76 | psycholog | $1.1 \times 10^{-2}$ |
| 77 | predictor | $1.1 \times 10^{-2}$ |
| 78 | questionnair | $1.1 \times 10^{-2}$ |
| 79 | staff | $1.1 \times 10^{-2}$ |
| 80 | aim | $1.1 \times 10^{-2}$ |
| 81 | whether | $1.1 \times 10^{-2}$ |
| 82 | clinic | $1.1 \times 10^{-2}$ |
| 83 | gender | $1.1 \times 10^{-2}$ |
| 84 | surfac | $1.1 \times 10^{-2}$ |
| 85 | simul | $1.1 \times 10^{-2}$ |
| 86 | temperatur | $1 \times 10^{-2}$ |
| 87 | section | $1 \times 10^{-2}$ |
| 88 | item | $1 \times 10^{-2}$ |
| 89 | odd | $1 \times 10^{-2}$ |
| 90 | servic | $1 \times 10^{-2}$ |
| 91 | cell | $1 \times 10^{-2}$ |
| 92 | hospit | $1 \times 10^{-2}$ |
| 93 | need | $9.9 \times 10^{-3}$ |
| 94 | support | $9.7 \times 10^{-3}$ |
| 95 | relat | $9.7 \times 10^{-3}$ |
| 96 | perceiv | $9.6 \times 10^{-3}$ |
| 97 | sociodemograph | $9.3 \times 10^{-3}$ |
| 98 | spous | $9.3 \times 10^{-3}$ |
| 99 | famili | $9.1 \times 10^{-3}$ |
| 100 | factor | $9.1 \times 10^{-3}$ |

Table D.104. The list of the top 100 words in the category Green and Sustainable Science and Technology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | energi | $3.9 \times 10^{-2}$ |
| 2 | sustain | $3.7 \times 10^{-2}$ |
| 3 | environment | $3.3 \times 10^{-2}$ |
| 4 | renew | $2.7 \times 10^{-2}$ |
| 5 | co2 | $2.3 \times 10^{-2}$ |
| 6 | product | $2.3 \times 10^{-2}$ |
| 7 | econom | $2.2 \times 10^{-2}$ |
| 8 | fuel | $2.2 \times 10^{-2}$ |
| 9 | patient | $1.9 \times 10^{-2}$ |
| 10 | wast | $1.8 \times 10^{-2}$ |
| 11 | turbin | $1.7 \times 10^{-2}$ |
| 12 | carbon | $1.6 \times 10^{-2}$ |
| 13 | catalyst | $1.6 \times 10^{-2}$ |
| 14 | solar | $1.6 \times 10^{-2}$ |
| 15 | wind | $1.5 \times 10^{-2}$ |
| 16 | biomass | $1.5 \times 10^{-2}$ |
| 17 | electr | $1.5 \times 10^{-2}$ |
| 18 | effici | $1.5 \times 10^{-2}$ |
| 19 | emiss | $1.4 \times 10^{-2}$ |
| 20 | conclus | $1.4 \times 10^{-2}$ |
| 21 | industri | $1.4 \times 10^{-2}$ |
| 22 | power | $1.4 \times 10^{-2}$ |
| 23 | consumpt | $1.2 \times 10^{-2}$ |
| 24 | cost | $1.2 \times 10^{-2}$ |
| 25 | gas | $1.2 \times 10^{-2}$ |
| 26 | demand | $1.1 \times 10^{-2}$ |
| 27 | recycl | $1.1 \times 10^{-2}$ |
| 28 | greenhous | $1.1 \times 10^{-2}$ |
| 29 | clinic | $1.1 \times 10^{-2}$ |
| 30 | photovolta | $1.1 \times 10^{-2}$ |
| 31 | water | $1.1 \times 10^{-2}$ |
| 32 | polici | $8.8 \times 10^{-3}$ |
| 33 | diseas | $8.8 \times 10^{-3}$ |
| 34 | impact | $8.6 \times 10^{-3}$ |
| 35 | green | $8.5 \times 10^{-3}$ |
| 36 | fossil | $8.2 \times 10^{-3}$ |
| 37 | background | $8.2 \times 10^{-3}$ |
| 38 | convers | $8.2 \times 10^{-3}$ |
| 39 | heat | $8.1 \times 10^{-3}$ |
| 40 | feedstock | $8 \times 10^{-3}$ |
| 41 | cycl | $8 \times 10^{-3}$ |
| 42 | suppli | $7.8 \times 10^{-3}$ |
| 43 | technolog | $7.8 \times 10^{-3}$ |
| 44 | resourc | $7.6 \times 10^{-3}$ |
| 45 | storag | $7.5 \times 10^{-3}$ |
| 46 | generat | $7.3 \times 10^{-3}$ |
| 47 | farm | $7.3 \times 10^{-3}$ |
| 48 | sector | $7.3 \times 10^{-3}$ |
| 49 | oil | $7.2 \times 10^{-3}$ |
| 50 | grid | $7.2 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | system | $7.2 \times 10^{-3}$ |
| 52 | oper | $7.2 \times 10^{-3}$ |
| 53 | yield | $6.8 \times 10^{-3}$ |
| 54 | develop | $6.7 \times 10^{-3}$ |
| 55 | gene | $6.7 \times 10^{-3}$ |
| 56 | plant | $6.5 \times 10^{-3}$ |
| 57 | biodiesel | $6.5 \times 10^{-3}$ |
| 58 | climat | $6.5 \times 10^{-3}$ |
| 59 | solvent | $6.4 \times 10^{-3}$ |
| 60 | age | $6.3 \times 10^{-3}$ |
| 61 | express | $6.3 \times 10^{-3}$ |
| 62 | catalyt | $6.1 \times 10^{-3}$ |
| 63 | save | $6 \times 10^{-3}$ |
| 64 | temperatur | $5.8 \times 10^{-3}$ |
| 65 | coal | $5.6 \times 10^{-3}$ |
| 66 | biofuel | $5.5 \times 10^{-3}$ |
| 67 | protein | $5.5 \times 10^{-3}$ |
| 68 | reaction | $5.5 \times 10^{-3}$ |
| 69 | cancer | $5.5 \times 10^{-3}$ |
| 70 | instal | $5.4 \times 10^{-3}$ |
| 71 | price | $5.4 \times 10^{-3}$ |
| 72 | pollut | $5.4 \times 10^{-3}$ |
| 73 | agricultur | $5.3 \times 10^{-3}$ |
| 74 | dioxid | $5.3 \times 10^{-3}$ |
| 75 | diesel | $5.3 \times 10^{-3}$ |
| 76 | process | $5.3 \times 10^{-3}$ |
| 77 | produc | $5.1 \times 10^{-3}$ |
| 78 | therapi | $5 \times 10^{-3}$ |
| 79 | lignin | $5 \times 10^{-3}$ |
| 80 | wastewat | $4.9 \times 10^{-3}$ |
| 81 | paper | $4.9 \times 10^{-3}$ |
| 82 | build | $4.9 \times 10^{-3}$ |
| 83 | capac | $4.8 \times 10^{-3}$ |
| 84 | detect | $4.8 \times 10^{-3}$ |
| 85 | imag | $4.8 \times 10^{-3}$ |
| 86 | tissu | $4.6 \times 10^{-3}$ |
| 87 | sourc | $4.6 \times 10^{-3}$ |
| 88 | convert | $4.5 \times 10^{-3}$ |
| 89 | stakehold | $4.5 \times 10^{-3}$ |
| 90 | invest | $4.5 \times 10^{-3}$ |
| 91 | cellulos | $4.4 \times 10^{-3}$ |
| 92 | blood | $4.4 \times 10^{-3}$ |
| 93 | optim | $4.3 \times 10^{-3}$ |
| 94 | induc | $4.3 \times 10^{-3}$ |
| 95 | infect | $4.3 \times 10^{-3}$ |
| 96 | scenario | $4.3 \times 10^{-3}$ |
| 97 | aqueous | $4.3 \times 10^{-3}$ |
| 98 | signal | $4.2 \times 10^{-3}$ |
| 99 | china | $4.2 \times 10^{-3}$ |
| 100 | tumor | $4.2 \times 10^{-3}$ |

Table D.105. The list of the top 100 words in the category Health Care Sciences and Services with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | health | $1.5 \times 10^{-1}$ |
| 2 | care | $1.5 \times 10^{-1}$ |
| 3 | conclus | $7.5 \times 10^{-2}$ |
| 4 | medic | $7.5 \times 10^{-2}$ |
| 5 | patient | $7.5 \times 10^{-2}$ |
| 6 | background | $4.8 \times 10^{-2}$ |
| 7 | hospit | $4.6 \times 10^{-2}$ |
| 8 | particip | $3.9 \times 10^{-2}$ |
| 9 | healthcar | $3.8 \times 10^{-2}$ |
| 10 | physician | $3.7 \times 10^{-2}$ |
| 11 | object | $3.7 \times 10^{-2}$ |
| 12 | clinic | $3.7 \times 10^{-2}$ |
| 13 | servic | $3.7 \times 10^{-2}$ |
| 14 | interview | $3.4 \times 10^{-2}$ |
| 15 | qualiti | $3.2 \times 10^{-2}$ |
| 16 | intervent | $3.2 \times 10^{-2}$ |
| 17 | outcom | $3.2 \times 10^{-2}$ |
| 18 | survey | $3.1 \times 10^{-2}$ |
| 19 | assess | $2.7 \times 10^{-2}$ |
| 20 | profession | $2.7 \times 10^{-2}$ |
| 21 | palliat | $2.5 \times 10^{-2}$ |
| 22 | practic | $2.5 \times 10^{-2}$ |
| 23 | need | $2.5 \times 10^{-2}$ |
| 24 | questionnair | $2.5 \times 10^{-2}$ |
| 25 | method | $2.4 \times 10^{-2}$ |
| 26 | nurs | $2.3 \times 10^{-2}$ |
| 27 | educ | $2.3 \times 10^{-2}$ |
| 28 | life | $2 \times 10^{-2}$ |
| 29 | inform | $2 \times 10^{-2}$ |
| 30 | data | $1.9 \times 10^{-2}$ |
| 31 | research | $1.9 \times 10^{-2}$ |
| 32 | score | $1.9 \times 10^{-2}$ |
| 33 | nation | $1.8 \times 10^{-2}$ |
| 34 | year | $1.8 \times 10^{-2}$ |
| 35 | medicar | $1.7 \times 10^{-2}$ |
| 36 | staff | $1.7 \times 10^{-2}$ |
| 37 | support | $1.7 \times 10^{-2}$ |
| 38 | insur | $1.6 \times 10^{-2}$ |
| 39 | provid | $1.6 \times 10^{-2}$ |
| 40 | polici | $1.6 \times 10^{-2}$ |
| 41 | visit | $1.6 \times 10^{-2}$ |
| 42 | team | $1.6 \times 10^{-2}$ |
| 43 | item | $1.6 \times 10^{-2}$ |
| 44 | medicin | $1.6 \times 10^{-2}$ |
| 45 | improv | $1.6 \times 10^{-2}$ |
| 46 | includ | $1.5 \times 10^{-2}$ |
| 47 | inpati | $1.5 \times 10^{-2}$ |
| 48 | identifi | $1.5 \times 10^{-2}$ |
| 49 | decis | $1.5 \times 10^{-2}$ |
| 50 | implement | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | among | $1.4 \times 10^{-2}$ |
| 52 | public | $1.4 \times 10^{-2}$ |
| 53 | manag | $1.4 \times 10^{-2}$ |
| 54 | clinician | $1.4 \times 10^{-2}$ |
| 55 | program | $1.4 \times 10^{-2}$ |
| 56 | semistructur | $1.4 \times 10^{-2}$ |
| 57 | studi | $1.4 \times 10^{-2}$ |
| 58 | conduct | $1.3 \times 10^{-2}$ |
| 59 | qualit | $1.3 \times 10^{-2}$ |
| 60 | respond | $1.3 \times 10^{-2}$ |
| 61 | primari | $1.3 \times 10^{-2}$ |
| 62 | receiv | $1.3 \times 10^{-2}$ |
| 63 | regress | $1.3 \times 10^{-2}$ |
| 64 | cost | $1.3 \times 10^{-2}$ |
| 65 | ill | $1.3 \times 10^{-2}$ |
| 66 | access | $1.3 \times 10^{-2}$ |
| 67 | popul | $1.2 \times 10^{-2}$ |
| 68 | home | $1.2 \times 10^{-2}$ |
| 69 | aim | $1.2 \times 10^{-2}$ |
| 70 | practition | $1.2 \times 10^{-2}$ |
| 71 | perceiv | $1.2 \times 10^{-2}$ |
| 72 | medicaid | $1.2 \times 10^{-2}$ |
| 73 | cell | $1.2 \times 10^{-2}$ |
| 74 | communiti | $1.2 \times 10^{-2}$ |
| 75 | temperatur | $1.2 \times 10^{-2}$ |
| 76 | across | $1.2 \times 10^{-2}$ |
| 77 | consult | $1.1 \times 10^{-2}$ |
| 78 | surfac | $1.1 \times 10^{-2}$ |
| 79 | recommend | $1.1 \times 10^{-2}$ |
| 80 | outpati | $1.1 \times 10^{-2}$ |
| 81 | set | $1.1 \times 10^{-2}$ |
| 82 | peopl | $1.1 \times 10^{-2}$ |
| 83 | plan | $1.1 \times 10^{-2}$ |
| 84 | doctor | $1.1 \times 10^{-2}$ |
| 85 | age | $1.1 \times 10^{-2}$ |
| 86 | train | $1.1 \times 10^{-2}$ |
| 87 | theme | $1 \times 10^{-2}$ |
| 88 | person | $1 \times 10^{-2}$ |
| 89 | review | $1 \times 10^{-2}$ |
| 90 | evid | $1 \times 10^{-2}$ |
| 91 | cancer | $1 \times 10^{-2}$ |
| 92 | benefit | $9.9 \times 10^{-3}$ |
| 93 | month | $9.8 \times 10^{-3}$ |
| 94 | examin | $9.8 \times 10^{-3}$ |
| 95 | group | $9.8 \times 10^{-3}$ |
| 96 | report | $9.7 \times 10^{-3}$ |
| 97 | result | $9.7 \times 10^{-3}$ |
| 98 | trial | $9.6 \times 10^{-3}$ |
| 99 | satisfact | $9.5 \times 10^{-3}$ |
| 100 | impact | $9.4 \times 10^{-3}$ |

Table D.106. The list of the top 100 words in the category Health Policy and Services with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | health | $1.9 \times 10^{-1}$ |
| 2 | care | $1.4 \times 10^{-1}$ |
| 3 | servic | $5.1 \times 10^{-2}$ |
| 4 | interview | $4.2 \times 10^{-2}$ |
| 5 | medic | $4 \times 10^{-2}$ |
| 6 | patient | $4 \times 10^{-2}$ |
| 7 | hospit | $3.7 \times 10^{-2}$ |
| 8 | survey | $3.7 \times 10^{-2}$ |
| 9 | particip | $3.5 \times 10^{-2}$ |
| 10 | healthcar | $3.2 \times 10^{-2}$ |
| 11 | mental | $3.2 \times 10^{-2}$ |
| 12 | polici | $3.2 \times 10^{-2}$ |
| 13 | qualiti | $3.1 \times 10^{-2}$ |
| 14 | intervent | $3.1 \times 10^{-2}$ |
| 15 | insur | $2.6 \times 10^{-2}$ |
| 16 | outcom | $2.6 \times 10^{-2}$ |
| 17 | nation | $2.5 \times 10^{-2}$ |
| 18 | need | $2.4 \times 10^{-2}$ |
| 19 | among | $2.4 \times 10^{-2}$ |
| 20 | conclus | $2.4 \times 10^{-2}$ |
| 21 | physician | $2.3 \times 10^{-2}$ |
| 22 | practic | $2.2 \times 10^{-2}$ |
| 23 | public | $2.2 \times 10^{-2}$ |
| 24 | object | $2.2 \times 10^{-2}$ |
| 25 | communiti | $2.1 \times 10^{-2}$ |
| 26 | profession | $2.1 \times 10^{-2}$ |
| 27 | assess | $2 \times 10^{-2}$ |
| 28 | questionnair | $2 \times 10^{-2}$ |
| 29 | medicar | $1.9 \times 10^{-2}$ |
| 30 | peopl | $1.9 \times 10^{-2}$ |
| 31 | medicaid | $1.9 \times 10^{-2}$ |
| 32 | clinic | $1.9 \times 10^{-2}$ |
| 33 | hiv | $1.8 \times 10^{-2}$ |
| 34 | nurs | $1.8 \times 10^{-2}$ |
| 35 | educ | $1.8 \times 10^{-2}$ |
| 36 | life | $1.8 \times 10^{-2}$ |
| 37 | popul | $1.8 \times 10^{-2}$ |
| 38 | examin | $1.7 \times 10^{-2}$ |
| 39 | program | $1.7 \times 10^{-2}$ |
| 40 | staff | $1.7 \times 10^{-2}$ |
| 41 | social | $1.7 \times 10^{-2}$ |
| 42 | research | $1.6 \times 10^{-2}$ |
| 43 | year | $1.6 \times 10^{-2}$ |
| 44 | regress | $1.6 \times 10^{-2}$ |
| 45 | data | $1.6 \times 10^{-2}$ |
| 46 | incom | $1.5 \times 10^{-2}$ |
| 47 | background | $1.5 \times 10^{-2}$ |
| 48 | access | $1.5 \times 10^{-2}$ |
| 49 | implement | $1.5 \times 10^{-2}$ |
| 50 | ill | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | perceiv | $1.5 \times 10^{-2}$ |
| 52 | individu | $1.4 \times 10^{-2}$ |
| 53 | support | $1.4 \times 10^{-2}$ |
| 54 | visit | $1.4 \times 10^{-2}$ |
| 55 | inform | $1.4 \times 10^{-2}$ |
| 56 | age | $1.3 \times 10^{-2}$ |
| 57 | provid | $1.3 \times 10^{-2}$ |
| 58 | item | $1.3 \times 10^{-2}$ |
| 59 | score | $1.3 \times 10^{-2}$ |
| 60 | countri | $1.3 \times 10^{-2}$ |
| 61 | cost | $1.3 \times 10^{-2}$ |
| 62 | evid | $1.3 \times 10^{-2}$ |
| 63 | qualit | $1.3 \times 10^{-2}$ |
| 64 | decis | $1.3 \times 10^{-2}$ |
| 65 | cell | $1.2 \times 10^{-2}$ |
| 66 | temperatur | $1.2 \times 10^{-2}$ |
| 67 | surfac | $1.2 \times 10^{-2}$ |
| 68 | fund | $1.2 \times 10^{-2}$ |
| 69 | engag | $1.2 \times 10^{-2}$ |
| 70 | inpati | $1.2 \times 10^{-2}$ |
| 71 | includ | $1.2 \times 10^{-2}$ |
| 72 | person | $1.2 \times 10^{-2}$ |
| 73 | improv | $1.1 \times 10^{-2}$ |
| 74 | across | $1.1 \times 10^{-2}$ |
| 75 | respond | $1.1 \times 10^{-2}$ |
| 76 | studi | $1.1 \times 10^{-2}$ |
| 77 | adult | $1.1 \times 10^{-2}$ |
| 78 | conduct | $1.1 \times 10^{-2}$ |
| 79 | maker | $1.1 \times 10^{-2}$ |
| 80 | older | $1.1 \times 10^{-2}$ |
| 81 | semistructur | $1.1 \times 10^{-2}$ |
| 82 | impact | $1.1 \times 10^{-2}$ |
| 83 | status | $1 \times 10^{-2}$ |
| 84 | percent | $1 \times 10^{-2}$ |
| 85 | practition | $1 \times 10^{-2}$ |
| 86 | associ | $1 \times 10^{-2}$ |
| 87 | demograph | $1 \times 10^{-2}$ |
| 88 | find | $1 \times 10^{-2}$ |
| 89 | team | $1 \times 10^{-2}$ |
| 90 | outpati | $9.9 \times 10^{-3}$ |
| 91 | expenditur | $9.9 \times 10^{-3}$ |
| 92 | payment | $9.9 \times 10^{-3}$ |
| 93 | address | $9.9 \times 10^{-3}$ |
| 94 | live | $9.8 \times 10^{-3}$ |
| 95 | satisfact | $9.8 \times 10^{-3}$ |
| 96 | identifi | $9.8 \times 10^{-3}$ |
| 97 | report | $9.8 \times 10^{-3}$ |
| 98 | receiv | $9.7 \times 10^{-3}$ |
| 99 | energi | $9.5 \times 10^{-3}$ |
| 100 | plan | $9.4 \times 10^{-3}$ |

Table D.107. The list of the top 100 words in the category Hematology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | patient | $1 \times 10^{-1}$ |
| 2 | cell | $8.1 \times 10^{-2}$ |
| 3 | leukemia | $7.8 \times 10^{-2}$ |
| 4 | hematopoiet | $5.9 \times 10^{-2}$ |
| 5 | blood | $5.8 \times 10^{-2}$ |
| 6 | transplant | $5.2 \times 10^{-2}$ |
| 7 | platelet | $5.1 \times 10^{-2}$ |
| 8 | acut | $4.6 \times 10^{-2}$ |
| 9 | stem | $4.6 \times 10^{-2}$ |
| 10 | myeloid | $4.5 \times 10^{-2}$ |
| 11 | marrow | $4.3 \times 10^{-2}$ |
| 12 | diseas | $4.3 \times 10^{-2}$ |
| 13 | surviv | $4 \times 10^{-2}$ |
| 14 | therapi | $4 \times 10^{-2}$ |
| 15 | allogen | $3.6 \times 10^{-2}$ |
| 16 | lymphoma | $3.5 \times 10^{-2}$ |
| 17 | transfus | $3.4 \times 10^{-2}$ |
| 18 | paper | $3.3 \times 10^{-2}$ |
| 19 | relaps | $3.3 \times 10^{-2}$ |
| 20 | clinic | $3 \times 10^{-2}$ |
| 21 | treatment | $2.8 \times 10^{-2}$ |
| 22 | median | $2.6 \times 10^{-2}$ |
| 23 | risk | $2.5 \times 10^{-2}$ |
| 24 | hematolog | $2.5 \times 10^{-2}$ |
| 25 | thrombosi | $2.4 \times 10^{-2}$ |
| 26 | bone | $2.4 \times 10^{-2}$ |
| 27 | bleed | $2.3 \times 10^{-2}$ |
| 28 | conclus | $2.2 \times 10^{-2}$ |
| 29 | associ | $2.1 \times 10^{-2}$ |
| 30 | anemia | $2 \times 10^{-2}$ |
| 31 | factor | $2 \times 10^{-2}$ |
| 32 | donor | $2 \times 10^{-2}$ |
| 33 | gvhd | $2 \times 10^{-2}$ |
| 34 | remiss | $1.9 \times 10^{-2}$ |
| 35 | express | $1.9 \times 10^{-2}$ |
| 36 | chemotherapi | $1.9 \times 10^{-2}$ |
| 37 | inhibitor | $1.8 \times 10^{-2}$ |
| 38 | regimen | $1.8 \times 10^{-2}$ |
| 39 | chronic | $1.8 \times 10^{-2}$ |
| 40 | coagul | $1.7 \times 10^{-2}$ |
| 41 | anticoagul | $1.7 \times 10^{-2}$ |
| 42 | thromboembol | $1.7 \times 10^{-2}$ |
| 43 | treat | $1.7 \times 10^{-2}$ |
| 44 | mutat | $1.7 \times 10^{-2}$ |
| 45 | dose | $1.7 \times 10^{-2}$ |
| 46 | progenitor | $1.6 \times 10^{-2}$ |
| 47 | lymphocyt | $1.6 \times 10^{-2}$ |
| 48 | malign | $1.6 \times 10^{-2}$ |
| 49 | therapeut | $1.6 \times 10^{-2}$ |
| 50 | mice | $1.6 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | prognost | $1.5 \times 10^{-2}$ |
| 52 | plasma | $1.5 \times 10^{-2}$ |
| 53 | venous | $1.5 \times 10^{-2}$ |
| 54 | propos | $1.4 \times 10^{-2}$ |
| 55 | outcom | $1.4 \times 10^{-2}$ |
| 56 | autolog | $1.4 \times 10^{-2}$ |
| 57 | engraft | $1.4 \times 10^{-2}$ |
| 58 | receiv | $1.4 \times 10^{-2}$ |
| 59 | year | $1.3 \times 10^{-2}$ |
| 60 | syndrom | $1.3 \times 10^{-2}$ |
| 61 | count | $1.2 \times 10^{-2}$ |
| 62 | vivo | $1.2 \times 10^{-2}$ |
| 63 | cd34 | $1.2 \times 10^{-2}$ |
| 64 | gene | $1.2 \times 10^{-2}$ |
| 65 | endotheli | $1.2 \times 10^{-2}$ |
| 66 | diagnosi | $1.2 \times 10^{-2}$ |
| 67 | structur | $1.2 \times 10^{-2}$ |
| 68 | induc | $1.2 \times 10^{-2}$ |
| 69 | simul | $1.2 \times 10^{-2}$ |
| 70 | overal | $1.2 \times 10^{-2}$ |
| 71 | defici | $1.1 \times 10^{-2}$ |
| 72 | neutrophil | $1.1 \times 10^{-2}$ |
| 73 | mortal | $1.1 \times 10^{-2}$ |
| 74 | hemoglobin | $1.1 \times 10^{-2}$ |
| 75 | receptor | $1.1 \times 10^{-2}$ |
| 76 | refractori | $1.1 \times 10^{-2}$ |
| 77 | signific | $1.1 \times 10^{-2}$ |
| 78 | background | $1.1 \times 10^{-2}$ |
| 79 | pediatr | $1.1 \times 10^{-2}$ |
| 80 | temperatur | $1.1 \times 10^{-2}$ |
| 81 | month | $1.1 \times 10^{-2}$ |
| 82 | peripher | $1.1 \times 10^{-2}$ |
| 83 | progress | $1.1 \times 10^{-2}$ |
| 84 | antigen | $1.1 \times 10^{-2}$ |
| 85 | antibodi | $1.1 \times 10^{-2}$ |
| 86 | incid | $1 \times 10^{-2}$ |
| 87 | immun | $1 \times 10^{-2}$ |
| 88 | protein | $1 \times 10^{-2}$ |
| 89 | retrospect | $1 \times 10^{-2}$ |
| 90 | age | $1 \times 10^{-2}$ |
| 91 | recipi | $9.9 \times 10^{-3}$ |
| 92 | versus | $9.9 \times 10^{-3}$ |
| 93 | activ | $9.7 \times 10^{-3}$ |
| 94 | arteri | $9.7 \times 10^{-3}$ |
| 95 | vitro | $9.7 \times 10^{-3}$ |
| 96 | diagnos | $9.5 \times 10^{-3}$ |
| 97 | cohort | $9.5 \times 10^{-3}$ |
| 98 | inhibit | $9.4 \times 10^{-3}$ |
| 99 | energi | $9.4 \times 10^{-3}$ |
| 100 | mediat | $9.3 \times 10^{-3}$ |

Table D.108. The list of the top 100 words in the category History with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | articl | $1.5 \times 10^{-1}$ |
| 2 | centuri | $1.1 \times 10^{-1}$ |
| 3 | polit | $9.9 \times 10^{-2}$ |
| 4 | war | $8.8 \times 10^{-2}$ |
| 5 | argu | $6 \times 10^{-2}$ |
| 6 | historian | $5.7 \times 10^{-2}$ |
| 7 | histori | $5.4 \times 10^{-2}$ |
| 8 | result | $4.8 \times 10^{-2}$ |
| 9 | histor | $4.6 \times 10^{-2}$ |
| 10 | british | $4.5 \times 10^{-2}$ |
| 11 | nineteenth | $4.4 \times 10^{-2}$ |
| 12 | twentieth | $3.5 \times 10^{-2}$ |
| 13 | nation | $3.3 \times 10^{-2}$ |
| 14 | method | $3.1 \times 10^{-2}$ |
| 15 | essay | $3.1 \times 10^{-2}$ |
| 16 | britain | $3 \times 10^{-2}$ |
| 17 | imperi | $2.9 \times 10^{-2}$ |
| 18 | modern | $2.7 \times 10^{-2}$ |
| 19 | cultur | $2.6 \times 10^{-2}$ |
| 20 | scholar | $2.6 \times 10^{-2}$ |
| 21 | social | $2.5 \times 10^{-2}$ |
| 22 | world | $2.5 \times 10^{-2}$ |
| 23 | use | $2.5 \times 10^{-2}$ |
| 24 | debat | $2.4 \times 10^{-2}$ |
| 25 | religi | $2.4 \times 10^{-2}$ |
| 26 | narrat | $2.3 \times 10^{-2}$ |
| 27 | historiographi | $2.3 \times 10^{-2}$ |
| 28 | offici | $2.2 \times 10^{-2}$ |
| 29 | postwar | $2.2 \times 10^{-2}$ |
| 30 | soviet | $2.2 \times 10^{-2}$ |
| 31 | societi | $2.2 \times 10^{-2}$ |
| 32 | effect | $2.1 \times 10^{-2}$ |
| 33 | ideolog | $2 \times 10^{-2}$ |
| 34 | public | $1.9 \times 10^{-2}$ |
| 35 | coloni | $1.8 \times 10^{-2}$ |
| 36 | christian | $1.8 \times 10^{-2}$ |
| 37 | contemporari | $1.8 \times 10^{-2}$ |
| 38 | discours | $1.8 \times 10^{-2}$ |
| 39 | perform | $1.8 \times 10^{-2}$ |
| 40 | high | $1.7 \times 10^{-2}$ |
| 41 | eighteenth | $1.7 \times 10^{-2}$ |
| 42 | american | $1.7 \times 10^{-2}$ |
| 43 | becam | $1.7 \times 10^{-2}$ |
| 44 | late | $1.7 \times 10^{-2}$ |
| 45 | french | $1.7 \times 10^{-2}$ |
| 46 | write | $1.7 \times 10^{-2}$ |
| 47 | church | $1.7 \times 10^{-2}$ |
| 48 | jewish | $1.6 \times 10^{-2}$ |
| 49 | cell | $1.6 \times 10^{-2}$ |
| 50 | revolut | $1.6 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | archiv | $1.6 \times 10^{-2}$ |
| 52 | militari | $1.6 \times 10^{-2}$ |
| 53 | author | $1.6 \times 10^{-2}$ |
| 54 | german | $1.6 \times 10^{-2}$ |
| 55 | patient | $1.5 \times 10^{-2}$ |
| 56 | measur | $1.5 \times 10^{-2}$ |
| 57 | evalu | $1.5 \times 10^{-2}$ |
| 58 | data | $1.5 \times 10^{-2}$ |
| 59 | earli | $1.5 \times 10^{-2}$ |
| 60 | struggl | $1.5 \times 10^{-2}$ |
| 61 | obtain | $1.5 \times 10^{-2}$ |
| 62 | govern | $1.5 \times 10^{-2}$ |
| 63 | studi | $1.5 \times 10^{-2}$ |
| 64 | 1930s | $1.4 \times 10^{-2}$ |
| 65 | model | $1.4 \times 10^{-2}$ |
| 66 | era | $1.4 \times 10^{-2}$ |
| 67 | ottoman | $1.4 \times 10^{-2}$ |
| 68 | econom | $1.4 \times 10^{-2}$ |
| 69 | europ | $1.4 \times 10^{-2}$ |
| 70 | cathol | $1.4 \times 10^{-2}$ |
| 71 | nationalist | $1.4 \times 10^{-2}$ |
| 72 | communist | $1.4 \times 10^{-2}$ |
| 73 | idea | $1.4 \times 10^{-2}$ |
| 74 | 1970s | $1.4 \times 10^{-2}$ |
| 75 | elit | $1.4 \times 10^{-2}$ |
| 76 | civil | $1.4 \times 10^{-2}$ |
| 77 | question | $1.3 \times 10^{-2}$ |
| 78 | claim | $1.3 \times 10^{-2}$ |
| 79 | simul | $1.3 \times 10^{-2}$ |
| 80 | 1960s | $1.3 \times 10^{-2}$ |
| 81 | way | $1.3 \times 10^{-2}$ |
| 82 | context | $1.3 \times 10^{-2}$ |
| 83 | stori | $1.3 \times 10^{-2}$ |
| 84 | compar | $1.3 \times 10^{-2}$ |
| 85 | european | $1.3 \times 10^{-2}$ |
| 86 | union | $1.3 \times 10^{-2}$ |
| 87 | book | $1.3 \times 10^{-2}$ |
| 88 | seventeenth | $1.3 \times 10^{-2}$ |
| 89 | reform | $1.3 \times 10^{-2}$ |
| 90 | religion | $1.2 \times 10^{-2}$ |
| 91 | test | $1.2 \times 10^{-2}$ |
| 92 | movement | $1.2 \times 10^{-2}$ |
| 93 | protest | $1.2 \times 10^{-2}$ |
| 94 | improv | $1.2 \times 10^{-2}$ |
| 95 | low | $1.2 \times 10^{-2}$ |
| 96 | labour | $1.2 \times 10^{-2}$ |
| 97 | came | $1.2 \times 10^{-2}$ |
| 98 | reduc | $1.2 \times 10^{-2}$ |
| 99 | ident | $1.2 \times 10^{-2}$ |
| 100 | decreas | $1.2 \times 10^{-2}$ |

Table D.109. The list of the top 100 words in the category History and Philosophy Of Science with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | scienc | $7.9 \times 10^{-2}$ |
| 2 | argu | $7.5 \times 10^{-2}$ |
| 3 | scientif | $6.2 \times 10^{-2}$ |
| 4 | centuri | $4.3 \times 10^{-2}$ |
| 5 | philosoph | $3.6 \times 10^{-2}$ |
| 6 | ethic | $3.1 \times 10^{-2}$ |
| 7 | result | $3 \times 10^{-2}$ |
| 8 | argument | $2.9 \times 10^{-2}$ |
| 9 | scientist | $2.8 \times 10^{-2}$ |
| 10 | articl | $2.5 \times 10^{-2}$ |
| 11 | claim | $2.3 \times 10^{-2}$ |
| 12 | philosophi | $2.3 \times 10^{-2}$ |
| 13 | epistem | $2.2 \times 10^{-2}$ |
| 14 | view | $2 \times 10^{-2}$ |
| 15 | histori | $2 \times 10^{-2}$ |
| 16 | theori | $1.9 \times 10^{-2}$ |
| 17 | essay | $1.9 \times 10^{-2}$ |
| 18 | nineteenth | $1.8 \times 10^{-2}$ |
| 19 | debat | $1.7 \times 10^{-2}$ |
| 20 | histor | $1.7 \times 10^{-2}$ |
| 21 | method | $1.6 \times 10^{-2}$ |
| 22 | way | $1.6 \times 10^{-2}$ |
| 23 | perform | $1.6 \times 10^{-2}$ |
| 24 | concept | $1.6 \times 10^{-2}$ |
| 25 | twentieth | $1.6 \times 10^{-2}$ |
| 26 | effect | $1.6 \times 10^{-2}$ |
| 27 | epistemolog | $1.5 \times 10^{-2}$ |
| 28 | world | $1.5 \times 10^{-2}$ |
| 29 | war | $1.5 \times 10^{-2}$ |
| 30 | social | $1.5 \times 10^{-2}$ |
| 31 | idea | $1.5 \times 10^{-2}$ |
| 32 | high | $1.4 \times 10^{-2}$ |
| 33 | public | $1.4 \times 10^{-2}$ |
| 34 | question | $1.4 \times 10^{-2}$ |
| 35 | notion | $1.4 \times 10^{-2}$ |
| 36 | historian | $1.3 \times 10^{-2}$ |
| 37 | use | $1.2 \times 10^{-2}$ |
| 38 | practic | $1.2 \times 10^{-2}$ |
| 39 | defend | $1.2 \times 10^{-2}$ |
| 40 | rate | $1.2 \times 10^{-2}$ |
| 41 | concern | $1.1 \times 10^{-2}$ |
| 42 | compar | $1.1 \times 10^{-2}$ |
| 43 | explan | $1.1 \times 10^{-2}$ |
| 44 | modern | $1.1 \times 10^{-2}$ |
| 45 | natur | $1.1 \times 10^{-2}$ |
| 46 | knowledg | $1.1 \times 10^{-2}$ |
| 47 | studi | $1.1 \times 10^{-2}$ |
| 48 | low | $1.1 \times 10^{-2}$ |
| 49 | moral | $1.1 \times 10^{-2}$ |
| 50 | attempt | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | think | $1.1 \times 10^{-2}$ |
| 52 | cell | $1.1 \times 10^{-2}$ |
| 53 | belief | $1 \times 10^{-2}$ |
| 54 | societi | $1 \times 10^{-2}$ |
| 55 | polit | $1 \times 10^{-2}$ |
| 56 | context | $9.6 \times 10^{-3}$ |
| 57 | discuss | $9.6 \times 10^{-3}$ |
| 58 | decreas | $9.6 \times 10^{-3}$ |
| 59 | british | $9.6 \times 10^{-3}$ |
| 60 | higher | $9.4 \times 10^{-3}$ |
| 61 | draw | $9.4 \times 10^{-3}$ |
| 62 | obtain | $9.3 \times 10^{-3}$ |
| 63 | measur | $9.2 \times 10^{-3}$ |
| 64 | contemporari | $9.1 \times 10^{-3}$ |
| 65 | temperatur | $9.1 \times 10^{-3}$ |
| 66 | increas | $9 \times 10^{-3}$ |
| 67 | research | $9 \times 10^{-3}$ |
| 68 | control | $9 \times 10^{-3}$ |
| 69 | effici | $8.9 \times 10^{-3}$ |
| 70 | becam | $8.9 \times 10^{-3}$ |
| 71 | sampl | $8.9 \times 10^{-3}$ |
| 72 | lower | $8.9 \times 10^{-3}$ |
| 73 | scholar | $8.9 \times 10^{-3}$ |
| 74 | conceptu | $8.8 \times 10^{-3}$ |
| 75 | univers | $8.7 \times 10^{-3}$ |
| 76 | simul | $8.6 \times 10^{-3}$ |
| 77 | book | $8.6 \times 10^{-3}$ |
| 78 | john | $8.4 \times 10^{-3}$ |
| 79 | data | $8.3 \times 10^{-3}$ |
| 80 | induc | $8 \times 10^{-3}$ |
| 81 | paramet | $8 \times 10^{-3}$ |
| 82 | author | $8 \times 10^{-3}$ |
| 83 | understand | $7.9 \times 10^{-3}$ |
| 84 | discours | $7.7 \times 10^{-3}$ |
| 85 | reduc | $7.7 \times 10^{-3}$ |
| 86 | eighteenth | $7.6 \times 10^{-3}$ |
| 87 | 1950s | $7.5 \times 10^{-3}$ |
| 88 | improv | $7.5 \times 10^{-3}$ |
| 89 | evalu | $7.4 \times 10^{-3}$ |
| 90 | account | $7.4 \times 10^{-3}$ |
| 91 | mathemat | $7.3 \times 10^{-3}$ |
| 92 | stori | $7.3 \times 10^{-3}$ |
| 93 | issu | $7.3 \times 10^{-3}$ |
| 94 | surfac | $7.2 \times 10^{-3}$ |
| 95 | investig | $7.2 \times 10^{-3}$ |
| 96 | particular | $7.2 \times 10^{-3}$ |
| 97 | concentr | $7.2 \times 10^{-3}$ |
| 98 | write | $7.2 \times 10^{-3}$ |
| 99 | focus | $7.1 \times 10^{-3}$ |
| 100 | test | $7.1 \times 10^{-3}$ |

Table D.110. The list of the top 100 words in the category History Of Social Sciences with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | articl | $9.6 \times 10^{-2}$ |
| 2 | centuri | $9.3 \times 10^{-2}$ |
| 3 | histor | $5.4 \times 10^{-2}$ |
| 4 | nineteenth | $5 \times 10^{-2}$ |
| 5 | twentieth | $4.9 \times 10^{-2}$ |
| 6 | argu | $4.2 \times 10^{-2}$ |
| 7 | polit | $4 \times 10^{-2}$ |
| 8 | histori | $4 \times 10^{-2}$ |
| 9 | war | $3.5 \times 10^{-2}$ |
| 10 | historian | $3.1 \times 10^{-2}$ |
| 11 | result | $3 \times 10^{-2}$ |
| 12 | econom | $2.8 \times 10^{-2}$ |
| 13 | social | $2.6 \times 10^{-2}$ |
| 14 | becam | $2.2 \times 10^{-2}$ |
| 15 | educ | $2.1 \times 10^{-2}$ |
| 16 | scholar | $2.1 \times 10^{-2}$ |
| 17 | british | $2.1 \times 10^{-2}$ |
| 18 | institut | $2 \times 10^{-2}$ |
| 19 | britain | $1.9 \times 10^{-2}$ |
| 20 | market | $1.9 \times 10^{-2}$ |
| 21 | 1970s | $1.9 \times 10^{-2}$ |
| 22 | 1930s | $1.8 \times 10^{-2}$ |
| 23 | earli | $1.8 \times 10^{-2}$ |
| 24 | method | $1.7 \times 10^{-2}$ |
| 25 | debat | $1.7 \times 10^{-2}$ |
| 26 | nation | $1.7 \times 10^{-2}$ |
| 27 | busi | $1.7 \times 10^{-2}$ |
| 28 | economi | $1.7 \times 10^{-2}$ |
| 29 | american | $1.6 \times 10^{-2}$ |
| 30 | modern | $1.6 \times 10^{-2}$ |
| 31 | world | $1.5 \times 10^{-2}$ |
| 32 | 1920s | $1.5 \times 10^{-2}$ |
| 33 | idea | $1.5 \times 10^{-2}$ |
| 34 | capit | $1.5 \times 10^{-2}$ |
| 35 | und | $1.5 \times 10^{-2}$ |
| 36 | perform | $1.4 \times 10^{-2}$ |
| 37 | citi | $1.4 \times 10^{-2}$ |
| 38 | cell | $1.4 \times 10^{-2}$ |
| 39 | archiv | $1.4 \times 10^{-2}$ |
| 40 | reform | $1.4 \times 10^{-2}$ |
| 41 | revolut | $1.4 \times 10^{-2}$ |
| 42 | school | $1.4 \times 10^{-2}$ |
| 43 | societi | $1.3 \times 10^{-2}$ |
| 44 | public | $1.3 \times 10^{-2}$ |
| 45 | use | $1.3 \times 10^{-2}$ |
| 46 | contemporari | $1.3 \times 10^{-2}$ |
| 47 | late | $1.3 \times 10^{-2}$ |
| 48 | postwar | $1.3 \times 10^{-2}$ |
| 49 | countri | $1.3 \times 10^{-2}$ |
| 50 | labour | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | firm | $1.3 \times 10^{-2}$ |
| 52 | german | $1.2 \times 10^{-2}$ |
| 53 | govern | $1.2 \times 10^{-2}$ |
| 54 | 1950s | $1.2 \times 10^{-2}$ |
| 55 | scholarship | $1.2 \times 10^{-2}$ |
| 56 | evalu | $1.2 \times 10^{-2}$ |
| 57 | draw | $1.2 \times 10^{-2}$ |
| 58 | discours | $1.1 \times 10^{-2}$ |
| 59 | cultur | $1.1 \times 10^{-2}$ |
| 60 | way | $1.1 \times 10^{-2}$ |
| 61 | patient | $1.1 \times 10^{-2}$ |
| 62 | simul | $1.1 \times 10^{-2}$ |
| 63 | book | $1.1 \times 10^{-2}$ |
| 64 | obtain | $1.1 \times 10^{-2}$ |
| 65 | historiographi | $1.1 \times 10^{-2}$ |
| 66 | effect | $1.1 \times 10^{-2}$ |
| 67 | focus | $1.1 \times 10^{-2}$ |
| 68 | context | $1.1 \times 10^{-2}$ |
| 69 | write | $1.1 \times 10^{-2}$ |
| 70 | detect | $1 \times 10^{-2}$ |
| 71 | temperatur | $1 \times 10^{-2}$ |
| 72 | paramet | $1 \times 10^{-2}$ |
| 73 | high | $9.9 \times 10^{-3}$ |
| 74 | intern | $9.8 \times 10^{-3}$ |
| 75 | intellectu | $9.7 \times 10^{-3}$ |
| 76 | eighteenth | $9.6 \times 10^{-3}$ |
| 77 | trade | $9.6 \times 10^{-3}$ |
| 78 | 1960s | $9.5 \times 10^{-3}$ |
| 79 | surfac | $9.4 \times 10^{-3}$ |
| 80 | urban | $9.3 \times 10^{-3}$ |
| 81 | offici | $9.3 \times 10^{-3}$ |
| 82 | question | $9.3 \times 10^{-3}$ |
| 83 | period | $9.1 \times 10^{-3}$ |
| 84 | explor | $9 \times 10^{-3}$ |
| 85 | geographi | $9 \times 10^{-3}$ |
| 86 | view | $8.9 \times 10^{-3}$ |
| 87 | industri | $8.9 \times 10^{-3}$ |
| 88 | narrat | $8.9 \times 10^{-3}$ |
| 89 | measur | $8.8 \times 10^{-3}$ |
| 90 | transnat | $8.8 \times 10^{-3}$ |
| 91 | polici | $8.7 \times 10^{-3}$ |
| 92 | census | $8.4 \times 10^{-3}$ |
| 93 | labor | $8.3 \times 10^{-3}$ |
| 94 | compani | $8.3 \times 10^{-3}$ |
| 95 | essay | $8.3 \times 10^{-3}$ |
| 96 | perspect | $8.2 \times 10^{-3}$ |
| 97 | wage | $8.1 \times 10^{-3}$ |
| 98 | studi | $8.1 \times 10^{-3}$ |
| 99 | organis | $8 \times 10^{-3}$ |
| 100 | coloni | $8 \times 10^{-3}$ |

Table D.111. The list of the top 100 words in the category Horticulture with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | cultivar | $1.7 \times 10^{-1}$ |
| 2 | fruit | $1.5 \times 10^{-1}$ |
| 3 | plant | $1.3 \times 10^{-1}$ |
| 4 | crop | $7.7 \times 10^{-2}$ |
| 5 | breed | $5.8 \times 10^{-2}$ |
| 6 | flower | $5.1 \times 10^{-2}$ |
| 7 | leaf | $5 \times 10^{-2}$ |
| 8 | orchard | $4.3 \times 10^{-2}$ |
| 9 | harvest | $4.2 \times 10^{-2}$ |
| 10 | trait | $3.8 \times 10^{-2}$ |
| 11 | cultiv | $3.6 \times 10^{-2}$ |
| 12 | shoot | $3.5 \times 10^{-2}$ |
| 13 | grown | $3.5 \times 10^{-2}$ |
| 14 | tree | $3.4 \times 10^{-2}$ |
| 15 | greenhous | $3.1 \times 10^{-2}$ |
| 16 | product | $3.1 \times 10^{-2}$ |
| 17 | grape | $3 \times 10^{-2}$ |
| 18 | seedl | $3 \times 10^{-2}$ |
| 19 | genotyp | $3 \times 10^{-2}$ |
| 20 | genet | $3 \times 10^{-2}$ |
| 21 | yield | $2.9 \times 10^{-2}$ |
| 22 | irrig | $2.9 \times 10^{-2}$ |
| 23 | germplasm | $2.9 \times 10^{-2}$ |
| 24 | postharvest | $2.9 \times 10^{-2}$ |
| 25 | grower | $2.8 \times 10^{-2}$ |
| 26 | seed | $2.7 \times 10^{-2}$ |
| 27 | leav | $2.7 \times 10^{-2}$ |
| 28 | content | $2.6 \times 10^{-2}$ |
| 29 | qualiti | $2.6 \times 10^{-2}$ |
| 30 | root | $2.5 \times 10^{-2}$ |
| 31 | soil | $2.5 \times 10^{-2}$ |
| 32 | fresh | $2.4 \times 10^{-2}$ |
| 33 | qtl | $2.4 \times 10^{-2}$ |
| 34 | season | $2.3 \times 10^{-2}$ |
| 35 | appl | $2.3 \times 10^{-2}$ |
| 36 | tomato | $2.3 \times 10^{-2}$ |
| 37 | marker | $2.3 \times 10^{-2}$ |
| 38 | veget | $2.3 \times 10^{-2}$ |
| 39 | growth | $2.3 \times 10^{-2}$ |
| 40 | commerci | $2.2 \times 10^{-2}$ |
| 41 | ssr | $2.1 \times 10^{-2}$ |
| 42 | grow | $2.1 \times 10^{-2}$ |
| 43 | bud | $2.1 \times 10^{-2}$ |
| 44 | ripen | $2 \times 10^{-2}$ |
| 45 | sweet | $1.9 \times 10^{-2}$ |
| 46 | patient | $1.8 \times 10^{-2}$ |
| 47 | loci | $1.8 \times 10^{-2}$ |
| 48 | dri | $1.8 \times 10^{-2}$ |
| 49 | anthocyanin | $1.7 \times 10^{-2}$ |
| 50 | fertil | $1.6 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | speci | $1.6 \times 10^{-2}$ |
| 52 | matur | $1.5 \times 10^{-2}$ |
| 53 | inocul | $1.5 \times 10^{-2}$ |
| 54 | gene | $1.5 \times 10^{-2}$ |
| 55 | paper | $1.5 \times 10^{-2}$ |
| 56 | chromosom | $1.4 \times 10^{-2}$ |
| 57 | progeni | $1.4 \times 10^{-2}$ |
| 58 | highest | $1.4 \times 10^{-2}$ |
| 59 | wine | $1.4 \times 10^{-2}$ |
| 60 | day | $1.4 \times 10^{-2}$ |
| 61 | total | $1.4 \times 10^{-2}$ |
| 62 | agronom | $1.3 \times 10^{-2}$ |
| 63 | ornament | $1.3 \times 10^{-2}$ |
| 64 | germin | $1.3 \times 10^{-2}$ |
| 65 | nutrient | $1.3 \times 10^{-2}$ |
| 66 | sugar | $1.3 \times 10^{-2}$ |
| 67 | acid | $1.2 \times 10^{-2}$ |
| 68 | propos | $1.2 \times 10^{-2}$ |
| 69 | weight | $1.2 \times 10^{-2}$ |
| 70 | pathogen | $1.2 \times 10^{-2}$ |
| 71 | phenol | $1.2 \times 10^{-2}$ |
| 72 | solubl | $1.1 \times 10^{-2}$ |
| 73 | per | $1.1 \times 10^{-2}$ |
| 74 | model | $1.1 \times 10^{-2}$ |
| 75 | polymorph | $1.1 \times 10^{-2}$ |
| 76 | locus | $1.1 \times 10^{-2}$ |
| 77 | allel | $1.1 \times 10^{-2}$ |
| 78 | produc | $1.1 \times 10^{-2}$ |
| 79 | treatment | $1.1 \times 10^{-2}$ |
| 80 | genom | $1 \times 10^{-2}$ |
| 81 | canopi | $1 \times 10^{-2}$ |
| 82 | three | $1 \times 10^{-2}$ |
| 83 | compost | $1 \times 10^{-2}$ |
| 84 | pest | $1 \times 10^{-2}$ |
| 85 | chlorophyl | $9.9 \times 10^{-3}$ |
| 86 | storag | $9.9 \times 10^{-3}$ |
| 87 | pollin | $9.8 \times 10^{-3}$ |
| 88 | clinic | $9.8 \times 10^{-3}$ |
| 89 | ascorb | $9.8 \times 10^{-3}$ |
| 90 | control | $9.6 \times 10^{-3}$ |
| 91 | agricultur | $9.6 \times 10^{-3}$ |
| 92 | resist | $9.6 \times 10^{-3}$ |
| 93 | clone | $9.4 \times 10^{-3}$ |
| 94 | linkag | $9.4 \times 10^{-3}$ |
| 95 | four | $9.3 \times 10^{-3}$ |
| 96 | water | $9.2 \times 10^{-3}$ |
| 97 | market | $9.1 \times 10^{-3}$ |
| 98 | select | $9 \times 10^{-3}$ |
| 99 | winter | $9 \times 10^{-3}$ |
| 100 | bloom | $9 \times 10^{-3}$ |

Table D.112. The list of the top 100 words in the category Hospitality, Leisure, Sport and Tourism with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | tourism | $1.8 \times 10^{-1}$ |
| 2 | sport | $1 \times 10^{-1}$ |
| 3 | tourist | $9.8 \times 10^{-2}$ |
| 4 | destin | $5.1 \times 10^{-2}$ |
| 5 | hotel | $4.7 \times 10^{-2}$ |
| 6 | research | $3.9 \times 10^{-2}$ |
| 7 | athlet | $3.5 \times 10^{-2}$ |
| 8 | market | $3.2 \times 10^{-2}$ |
| 9 | social | $3.2 \times 10^{-2}$ |
| 10 | visitor | $2.7 \times 10^{-2}$ |
| 11 | footbal | $2.2 \times 10^{-2}$ |
| 12 | travel | $2.2 \times 10^{-2}$ |
| 13 | perceiv | $2.1 \times 10^{-2}$ |
| 14 | implic | $1.9 \times 10^{-2}$ |
| 15 | leisur | $1.9 \times 10^{-2}$ |
| 16 | percept | $1.8 \times 10^{-2}$ |
| 17 | satisfact | $1.8 \times 10^{-2}$ |
| 18 | interview | $1.8 \times 10^{-2}$ |
| 19 | econom | $1.8 \times 10^{-2}$ |
| 20 | coach | $1.8 \times 10^{-2}$ |
| 21 | industri | $1.8 \times 10^{-2}$ |
| 22 | examin | $1.7 \times 10^{-2}$ |
| 23 | brand | $1.6 \times 10^{-2}$ |
| 24 | patient | $1.6 \times 10^{-2}$ |
| 25 | manag | $1.5 \times 10^{-2}$ |
| 26 | cell | $1.5 \times 10^{-2}$ |
| 27 | find | $1.4 \times 10^{-2}$ |
| 28 | practic | $1.4 \times 10^{-2}$ |
| 29 | competit | $1.4 \times 10^{-2}$ |
| 30 | intent | $1.4 \times 10^{-2}$ |
| 31 | cultur | $1.3 \times 10^{-2}$ |
| 32 | particip | $1.3 \times 10^{-2}$ |
| 33 | custom | $1.3 \times 10^{-2}$ |
| 34 | sustain | $1.2 \times 10^{-2}$ |
| 35 | countri | $1.2 \times 10^{-2}$ |
| 36 | relationship | $1.2 \times 10^{-2}$ |
| 37 | busi | $1.2 \times 10^{-2}$ |
| 38 | malaysia | $1.2 \times 10^{-2}$ |
| 39 | educ | $1.2 \times 10^{-2}$ |
| 40 | articl | $1.2 \times 10^{-2}$ |
| 41 | purpos | $1.2 \times 10^{-2}$ |
| 42 | player | $1.2 \times 10^{-2}$ |
| 43 | recreat | $1.2 \times 10^{-2}$ |
| 44 | attitud | $1.2 \times 10^{-2}$ |
| 45 | team | $1.1 \times 10^{-2}$ |
| 46 | heritag | $1.1 \times 10^{-2}$ |
| 47 | questionnair | $1.1 \times 10^{-2}$ |
| 48 | employe | $1.1 \times 10^{-2}$ |
| 49 | perspect | $1.1 \times 10^{-2}$ |
| 50 | game | $1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | economi | $1 \times 10^{-2}$ |
| 52 | nation | $1 \times 10^{-2}$ |
| 53 | motiv | $1 \times 10^{-2}$ |
| 54 | author | $1 \times 10^{-2}$ |
| 55 | tour | $1 \times 10^{-2}$ |
| 56 | explor | $1 \times 10^{-2}$ |
| 57 | simul | $9.9 \times 10^{-3}$ |
| 58 | survey | $9.8 \times 10^{-3}$ |
| 59 | servic | $9.8 \times 10^{-3}$ |
| 60 | empir | $9.7 \times 10^{-3}$ |
| 61 | influenc | $9.5 \times 10^{-3}$ |
| 62 | focus | $9.5 \times 10^{-3}$ |
| 63 | engag | $9 \times 10^{-3}$ |
| 64 | peopl | $9 \times 10^{-3}$ |
| 65 | temperatur | $9 \times 10^{-3}$ |
| 66 | attract | $9 \times 10^{-3}$ |
| 67 | surfac | $8.9 \times 10^{-3}$ |
| 68 | detect | $8.9 \times 10^{-3}$ |
| 69 | protein | $8.9 \times 10^{-3}$ |
| 70 | clinic | $8.7 \times 10^{-3}$ |
| 71 | sector | $8.6 \times 10^{-3}$ |
| 72 | loyalti | $8.6 \times 10^{-3}$ |
| 73 | treatment | $8.5 \times 10^{-3}$ |
| 74 | develop | $8.4 \times 10^{-3}$ |
| 75 | paramet | $8.3 \times 10^{-3}$ |
| 76 | properti | $8.1 \times 10^{-3}$ |
| 77 | literatur | $8 \times 10^{-3}$ |
| 78 | intern | $7.9 \times 10^{-3}$ |
| 79 | profession | $7.7 \times 10^{-3}$ |
| 80 | psycholog | $7.5 \times 10^{-3}$ |
| 81 | draw | $7.3 \times 10^{-3}$ |
| 82 | elit | $7.3 \times 10^{-3}$ |
| 83 | manageri | $7.3 \times 10^{-3}$ |
| 84 | gene | $7.3 \times 10^{-3}$ |
| 85 | govern | $7.2 \times 10^{-3}$ |
| 86 | discuss | $7.1 \times 10^{-3}$ |
| 87 | acid | $7.1 \times 10^{-3}$ |
| 88 | algorithm | $7.1 \times 10^{-3}$ |
| 89 | world | $7.1 \times 10^{-3}$ |
| 90 | system | $7.1 \times 10^{-3}$ |
| 91 | understand | $7.1 \times 10^{-3}$ |
| 92 | visit | $7 \times 10^{-3}$ |
| 93 | diseas | $6.9 \times 10^{-3}$ |
| 94 | high | $6.8 \times 10^{-3}$ |
| 95 | energi | $6.8 \times 10^{-3}$ |
| 96 | impact | $6.6 \times 10^{-3}$ |
| 97 | electron | $6.6 \times 10^{-3}$ |
| 98 | induc | $6.6 \times 10^{-3}$ |
| 99 | signal | $6.5 \times 10^{-3}$ |
| 100 | context | $6.5 \times 10^{-3}$ |

Table D.113. The list of the top 100 words in the category Humanities, Multidisciplinary with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | centuri | $4.8 \times 10^{-2}$ |
| 2 | articl | $4.8 \times 10^{-2}$ |
| 3 | cultur | $3.6 \times 10^{-2}$ |
| 4 | essay | $3.4 \times 10^{-2}$ |
| 5 | result | $3.3 \times 10^{-2}$ |
| 6 | polit | $3.1 \times 10^{-2}$ |
| 7 | artist | $2.8 \times 10^{-2}$ |
| 8 | argu | $2.3 \times 10^{-2}$ |
| 9 | social | $2.3 \times 10^{-2}$ |
| 10 | contemporari | $2.1 \times 10^{-2}$ |
| 11 | histor | $2.1 \times 10^{-2}$ |
| 12 | modern | $2 \times 10^{-2}$ |
| 13 | art | $1.9 \times 10^{-2}$ |
| 14 | text | $1.9 \times 10^{-2}$ |
| 15 | semiot | $1.9 \times 10^{-2}$ |
| 16 | aesthet | $1.8 \times 10^{-2}$ |
| 17 | teach | $1.8 \times 10^{-2}$ |
| 18 | heritag | $1.7 \times 10^{-2}$ |
| 19 | societi | $1.7 \times 10^{-2}$ |
| 20 | way | $1.6 \times 10^{-2}$ |
| 21 | nineteenth | $1.5 \times 10^{-2}$ |
| 22 | author | $1.5 \times 10^{-2}$ |
| 23 | creativ | $1.5 \times 10^{-2}$ |
| 24 | literari | $1.5 \times 10^{-2}$ |
| 25 | narrat | $1.5 \times 10^{-2}$ |
| 26 | colleg | $1.5 \times 10^{-2}$ |
| 27 | museum | $1.5 \times 10^{-2}$ |
| 28 | use | $1.5 \times 10^{-2}$ |
| 29 | cell | $1.4 \times 10^{-2}$ |
| 30 | reform | $1.4 \times 10^{-2}$ |
| 31 | world | $1.4 \times 10^{-2}$ |
| 32 | peopl | $1.4 \times 10^{-2}$ |
| 33 | ideolog | $1.3 \times 10^{-2}$ |
| 34 | patient | $1.3 \times 10^{-2}$ |
| 35 | educ | $1.3 \times 10^{-2}$ |
| 36 | write | $1.3 \times 10^{-2}$ |
| 37 | music | $1.3 \times 10^{-2}$ |
| 38 | explor | $1.2 \times 10^{-2}$ |
| 39 | histori | $1.2 \times 10^{-2}$ |
| 40 | high | $1.2 \times 10^{-2}$ |
| 41 | languag | $1.2 \times 10^{-2}$ |
| 42 | method | $1.2 \times 10^{-2}$ |
| 43 | talent | $1.2 \times 10^{-2}$ |
| 44 | war | $1.2 \times 10^{-2}$ |
| 45 | discours | $1.1 \times 10^{-2}$ |
| 46 | idea | $1.1 \times 10^{-2}$ |
| 47 | eighteenth | $1.1 \times 10^{-2}$ |
| 48 | context | $1.1 \times 10^{-2}$ |
| 49 | tradit | $1.1 \times 10^{-2}$ |
| 50 | stori | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | english | $1.1 \times 10^{-2}$ |
| 52 | show | $1.1 \times 10^{-2}$ |
| 53 | student | $1.1 \times 10^{-2}$ |
| 54 | compar | $1.1 \times 10^{-2}$ |
| 55 | measur | $1 \times 10^{-2}$ |
| 56 | philosoph | $1 \times 10^{-2}$ |
| 57 | decreas | $1 \times 10^{-2}$ |
| 58 | scholar | $1 \times 10^{-2}$ |
| 59 | obtain | $9.9 \times 10^{-3}$ |
| 60 | nation | $9.8 \times 10^{-3}$ |
| 61 | conclus | $9.8 \times 10^{-3}$ |
| 62 | data | $9.7 \times 10^{-3}$ |
| 63 | simul | $9.6 \times 10^{-3}$ |
| 64 | temperatur | $9.4 \times 10^{-3}$ |
| 65 | think | $9.4 \times 10^{-3}$ |
| 66 | public | $9.4 \times 10^{-3}$ |
| 67 | draw | $9.2 \times 10^{-3}$ |
| 68 | test | $9.2 \times 10^{-3}$ |
| 69 | twentieth | $9.2 \times 10^{-3}$ |
| 70 | put | $9.1 \times 10^{-3}$ |
| 71 | writer | $9.1 \times 10^{-3}$ |
| 72 | view | $9 \times 10^{-3}$ |
| 73 | situat | $8.9 \times 10^{-3}$ |
| 74 | rate | $8.8 \times 10^{-3}$ |
| 75 | induc | $8.6 \times 10^{-3}$ |
| 76 | increas | $8.6 \times 10^{-3}$ |
| 77 | poem | $8.6 \times 10^{-3}$ |
| 78 | effect | $8.6 \times 10^{-3}$ |
| 79 | detect | $8.5 \times 10^{-3}$ |
| 80 | philosophi | $8.4 \times 10^{-3}$ |
| 81 | religi | $8.4 \times 10^{-3}$ |
| 82 | paramet | $8.4 \times 10^{-3}$ |
| 83 | low | $8.3 \times 10^{-3}$ |
| 84 | fiction | $8.2 \times 10^{-3}$ |
| 85 | practic | $8.2 \times 10^{-3}$ |
| 86 | concept | $8.2 \times 10^{-3}$ |
| 87 | audienc | $8.2 \times 10^{-3}$ |
| 88 | observ | $8.1 \times 10^{-3}$ |
| 89 | perform | $8 \times 10^{-3}$ |
| 90 | paint | $8 \times 10^{-3}$ |
| 91 | clinic | $7.9 \times 10^{-3}$ |
| 92 | read | $7.9 \times 10^{-3}$ |
| 93 | charact | $7.8 \times 10^{-3}$ |
| 94 | protein | $7.8 \times 10^{-3}$ |
| 95 | control | $7.8 \times 10^{-3}$ |
| 96 | investig | $7.7 \times 10^{-3}$ |
| 97 | reduc | $7.7 \times 10^{-3}$ |
| 98 | perspect | $7.7 \times 10^{-3}$ |
| 99 | univers | $7.6 \times 10^{-3}$ |
| 100 | spiritu | $7.6 \times 10^{-3}$ |

Table D.114. The list of the top 100 words in the category Imaging Science and Photographic Technology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | imag | $1.6 \times 10^{-1}$ |
| 2 | propos | $5.6 \times 10^{-2}$ |
| 3 | algorithm | $5.3 \times 10^{-2}$ |
| 4 | pixel | $4.6 \times 10^{-2}$ |
| 5 | radar | $3.6 \times 10^{-2}$ |
| 6 | resolut | $3.6 \times 10^{-2}$ |
| 7 | sar | $3.6 \times 10^{-2}$ |
| 8 | satellit | $3.6 \times 10^{-2}$ |
| 9 | accuraci | $3.3 \times 10^{-2}$ |
| 10 | remot | $3.2 \times 10^{-2}$ |
| 11 | spatial | $3.2 \times 10^{-2}$ |
| 12 | scene | $3 \times 10^{-2}$ |
| 13 | map | $2.8 \times 10^{-2}$ |
| 14 | imageri | $2.8 \times 10^{-2}$ |
| 15 | apertur | $2.8 \times 10^{-2}$ |
| 16 | paper | $2.8 \times 10^{-2}$ |
| 17 | classif | $2.5 \times 10^{-2}$ |
| 18 | video | $2.5 \times 10^{-2}$ |
| 19 | hyperspectr | $2.5 \times 10^{-2}$ |
| 20 | dataset | $2.4 \times 10^{-2}$ |
| 21 | base | $2.4 \times 10^{-2}$ |
| 22 | art | $2.3 \times 10^{-2}$ |
| 23 | sens | $2.1 \times 10^{-2}$ |
| 24 | segment | $2.1 \times 10^{-2}$ |
| 25 | camera | $2.1 \times 10^{-2}$ |
| 26 | estim | $2.1 \times 10^{-2}$ |
| 27 | synthet | $2.1 \times 10^{-2}$ |
| 28 | data | $2 \times 10^{-2}$ |
| 29 | modi | $2 \times 10^{-2}$ |
| 30 | conclus | $2 \times 10^{-2}$ |
| 31 | approach | $1.9 \times 10^{-2}$ |
| 32 | featur | $1.9 \times 10^{-2}$ |
| 33 | land | $1.6 \times 10^{-2}$ |
| 34 | automat | $1.6 \times 10^{-2}$ |
| 35 | inform | $1.5 \times 10^{-2}$ |
| 36 | error | $1.5 \times 10^{-2}$ |
| 37 | reconstruct | $1.5 \times 10^{-2}$ |
| 38 | airborn | $1.4 \times 10^{-2}$ |
| 39 | retriev | $1.4 \times 10^{-2}$ |
| 40 | landsat | $1.4 \times 10^{-2}$ |
| 41 | nois | $1.4 \times 10^{-2}$ |
| 42 | comput | $1.4 \times 10^{-2}$ |
| 43 | spectral | $1.4 \times 10^{-2}$ |
| 44 | method | $1.4 \times 10^{-2}$ |
| 45 | veget | $1.3 \times 10^{-2}$ |
| 46 | outperform | $1.3 \times 10^{-2}$ |
| 47 | visual | $1.2 \times 10^{-2}$ |
| 48 | ground | $1.2 \times 10^{-2}$ |
| 49 | accur | $1.2 \times 10^{-2}$ |
| 50 | real | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | extract | $1.2 \times 10^{-2}$ |
| 52 | studi | $1.2 \times 10^{-2}$ |
| 53 | textur | $1.1 \times 10^{-2}$ |
| 54 | spars | $1.1 \times 10^{-2}$ |
| 55 | tempor | $1.1 \times 10^{-2}$ |
| 56 | robust | $1.1 \times 10^{-2}$ |
| 57 | filter | $1.1 \times 10^{-2}$ |
| 58 | classifi | $1.1 \times 10^{-2}$ |
| 59 | treatment | $1.1 \times 10^{-2}$ |
| 60 | use | $1 \times 10^{-2}$ |
| 61 | protein | $1 \times 10^{-2}$ |
| 62 | techniqu | $1 \times 10^{-2}$ |
| 63 | forest | $1 \times 10^{-2}$ |
| 64 | letter | $9.8 \times 10^{-3}$ |
| 65 | cell | $9.8 \times 10^{-3}$ |
| 66 | registr | $9.8 \times 10^{-3}$ |
| 67 | detect | $9.8 \times 10^{-3}$ |
| 68 | acquir | $9.7 \times 10^{-3}$ |
| 69 | sensor | $9.2 \times 10^{-3}$ |
| 70 | lidar | $9.2 \times 10^{-3}$ |
| 71 | cover | $9.1 \times 10^{-3}$ |
| 72 | band | $8.8 \times 10^{-3}$ |
| 73 | acid | $8.5 \times 10^{-3}$ |
| 74 | vector | $8.5 \times 10^{-3}$ |
| 75 | color | $8.3 \times 10^{-3}$ |
| 76 | digit | $8.1 \times 10^{-3}$ |
| 77 | area | $8.1 \times 10^{-3}$ |
| 78 | group | $8 \times 10^{-3}$ |
| 79 | represent | $7.9 \times 10^{-3}$ |
| 80 | age | $7.8 \times 10^{-3}$ |
| 81 | perform | $7.8 \times 10^{-3}$ |
| 82 | gene | $7.7 \times 10^{-3}$ |
| 83 | patient | $7.6 \times 10^{-3}$ |
| 84 | exploit | $7.5 \times 10^{-3}$ |
| 85 | reaction | $7.4 \times 10^{-3}$ |
| 86 | problem | $7.4 \times 10^{-3}$ |
| 87 | can | $7.2 \times 10^{-3}$ |
| 88 | motion | $7.1 \times 10^{-3}$ |
| 89 | control | $7 \times 10^{-3}$ |
| 90 | region | $7 \times 10^{-3}$ |
| 91 | track | $7 \times 10^{-3}$ |
| 92 | mechan | $6.9 \times 10^{-3}$ |
| 93 | geometr | $6.9 \times 10^{-3}$ |
| 94 | framework | $6.8 \times 10^{-3}$ |
| 95 | model | $6.7 \times 10^{-3}$ |
| 96 | set | $6.7 \times 10^{-3}$ |
| 97 | vision | $6.7 \times 10^{-3}$ |
| 98 | captur | $6.6 \times 10^{-3}$ |
| 99 | frame | $6.6 \times 10^{-3}$ |
| 100 | associ | $6.6 \times 10^{-3}$ |

Table D.115. The list of the top 100 words in the category Immunology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | immun | $1.4 \times 10^{-1}$ |
| 2 | infect | $9.3 \times 10^{-2}$ |
| 3 | cell | $8.2 \times 10^{-2}$ |
| 4 | vaccin | $6.7 \times 10^{-2}$ |
| 5 | cytokin | $6.4 \times 10^{-2}$ |
| 6 | cd4 | $5.2 \times 10^{-2}$ |
| 7 | diseas | $4.6 \times 10^{-2}$ |
| 8 | antibodi | $4.5 \times 10^{-2}$ |
| 9 | express | $4.4 \times 10^{-2}$ |
| 10 | mice | $4.4 \times 10^{-2}$ |
| 11 | antigen | $4.4 \times 10^{-2}$ |
| 12 | ifn | $4.1 \times 10^{-2}$ |
| 13 | inflammatori | $4.1 \times 10^{-2}$ |
| 14 | respons | $3.9 \times 10^{-2}$ |
| 15 | transplant | $3.8 \times 10^{-2}$ |
| 16 | paper | $3.5 \times 10^{-2}$ |
| 17 | virus | $3.4 \times 10^{-2}$ |
| 18 | hiv | $3.3 \times 10^{-2}$ |
| 19 | induc | $3.2 \times 10^{-2}$ |
| 20 | inflamm | $3.2 \times 10^{-2}$ |
| 21 | patient | $3 \times 10^{-2}$ |
| 22 | cd8 | $2.9 \times 10^{-2}$ |
| 23 | receptor | $2.8 \times 10^{-2}$ |
| 24 | innat | $2.8 \times 10^{-2}$ |
| 25 | interleukin | $2.7 \times 10^{-2}$ |
| 26 | tnf | $2.7 \times 10^{-2}$ |
| 27 | mediat | $2.6 \times 10^{-2}$ |
| 28 | macrophag | $2.5 \times 10^{-2}$ |
| 29 | lymphocyt | $2.4 \times 10^{-2}$ |
| 30 | autoimmun | $2.4 \times 10^{-2}$ |
| 31 | pathogen | $2.3 \times 10^{-2}$ |
| 32 | associ | $2.3 \times 10^{-2}$ |
| 33 | recipi | $2.3 \times 10^{-2}$ |
| 34 | protein | $2.3 \times 10^{-2}$ |
| 35 | proinflammatori | $2.3 \times 10^{-2}$ |
| 36 | allerg | $2.1 \times 10^{-2}$ |
| 37 | human | $2.1 \times 10^{-2}$ |
| 38 | blood | $2.1 \times 10^{-2}$ |
| 39 | viral | $2 \times 10^{-2}$ |
| 40 | activ | $1.9 \times 10^{-2}$ |
| 41 | conclus | $1.9 \times 10^{-2}$ |
| 42 | background | $1.9 \times 10^{-2}$ |
| 43 | serum | $1.9 \times 10^{-2}$ |
| 44 | stimul | $1.8 \times 10^{-2}$ |
| 45 | antiretrovir | $1.8 \times 10^{-2}$ |
| 46 | immunolog | $1.8 \times 10^{-2}$ |
| 47 | gamma | $1.8 \times 10^{-2}$ |
| 48 | role | $1.8 \times 10^{-2}$ |
| 49 | clinic | $1.8 \times 10^{-2}$ |
| 50 | hla | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | igg | $1.7 \times 10^{-2}$ |
| 52 | interferon | $1.7 \times 10^{-2}$ |
| 53 | immunogen | $1.7 \times 10^{-2}$ |
| 54 | dendrit | $1.7 \times 10^{-2}$ |
| 55 | asthma | $1.7 \times 10^{-2}$ |
| 56 | monocyt | $1.6 \times 10^{-2}$ |
| 57 | gene | $1.6 \times 10^{-2}$ |
| 58 | protect | $1.6 \times 10^{-2}$ |
| 59 | lps | $1.6 \times 10^{-2}$ |
| 60 | propos | $1.6 \times 10^{-2}$ |
| 61 | inhibit | $1.5 \times 10^{-2}$ |
| 62 | host | $1.5 \times 10^{-2}$ |
| 63 | secret | $1.5 \times 10^{-2}$ |
| 64 | peripher | $1.5 \times 10^{-2}$ |
| 65 | effector | $1.5 \times 10^{-2}$ |
| 66 | simul | $1.5 \times 10^{-2}$ |
| 67 | alpha | $1.5 \times 10^{-2}$ |
| 68 | regul | $1.5 \times 10^{-2}$ |
| 69 | ige | $1.4 \times 10^{-2}$ |
| 70 | immunosuppress | $1.4 \times 10^{-2}$ |
| 71 | assay | $1.4 \times 10^{-2}$ |
| 72 | therapi | $1.4 \times 10^{-2}$ |
| 73 | chronic | $1.4 \times 10^{-2}$ |
| 74 | neutrophil | $1.3 \times 10^{-2}$ |
| 75 | allergi | $1.3 \times 10^{-2}$ |
| 76 | acut | $1.3 \times 10^{-2}$ |
| 77 | chemokin | $1.3 \times 10^{-2}$ |
| 78 | elisa | $1.3 \times 10^{-2}$ |
| 79 | immunodefici | $1.3 \times 10^{-2}$ |
| 80 | donor | $1.3 \times 10^{-2}$ |
| 81 | influenza | $1.3 \times 10^{-2}$ |
| 82 | mous | $1.3 \times 10^{-2}$ |
| 83 | bacteri | $1.2 \times 10^{-2}$ |
| 84 | vivo | $1.2 \times 10^{-2}$ |
| 85 | vitro | $1.2 \times 10^{-2}$ |
| 86 | regulatori | $1.2 \times 10^{-2}$ |
| 87 | immunoglobulin | $1.2 \times 10^{-2}$ |
| 88 | pathogenesi | $1.2 \times 10^{-2}$ |
| 89 | murin | $1.2 \times 10^{-2}$ |
| 90 | allergen | $1.2 \times 10^{-2}$ |
| 91 | specif | $1.2 \times 10^{-2}$ |
| 92 | level | $1.2 \times 10^{-2}$ |
| 93 | defici | $1.2 \times 10^{-2}$ |
| 94 | hematopoiet | $1.2 \times 10^{-2}$ |
| 95 | titer | $1.1 \times 10^{-2}$ |
| 96 | immunotherapi | $1.1 \times 10^{-2}$ |
| 97 | signific | $1.1 \times 10^{-2}$ |
| 98 | dose | $1.1 \times 10^{-2}$ |
| 99 | energi | $1.1 \times 10^{-2}$ |
| 100 | beta | $1.1 \times 10^{-2}$ |

Table D.116. The list of the top 100 words in the category Industrial Relations and Labor with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | worker | $1 \times 10^{-1}$ |
| 2 | employe | $8.9 \times 10^{-2}$ |
| 3 | labour | $7.6 \times 10^{-2}$ |
| 4 | job | $7.4 \times 10^{-2}$ |
| 5 | union | $5.9 \times 10^{-2}$ |
| 6 | wage | $5.7 \times 10^{-2}$ |
| 7 | articl | $5.3 \times 10^{-2}$ |
| 8 | employ | $4.7 \times 10^{-2}$ |
| 9 | workplac | $4 \times 10^{-2}$ |
| 10 | labor | $4 \times 10^{-2}$ |
| 11 | find | $3.7 \times 10^{-2}$ |
| 12 | workforc | $3.7 \times 10^{-2}$ |
| 13 | organiz | $3.1 \times 10^{-2}$ |
| 14 | bargain | $2.9 \times 10^{-2}$ |
| 15 | market | $2.8 \times 10^{-2}$ |
| 16 | survey | $2.7 \times 10^{-2}$ |
| 17 | work | $2.7 \times 10^{-2}$ |
| 18 | firm | $2.6 \times 10^{-2}$ |
| 19 | methodolog | $2.6 \times 10^{-2}$ |
| 20 | implic | $2.5 \times 10^{-2}$ |
| 21 | sector | $2.4 \times 10^{-2}$ |
| 22 | polici | $2.4 \times 10^{-2}$ |
| 23 | practic | $2.4 \times 10^{-2}$ |
| 24 | organis | $2.3 \times 10^{-2}$ |
| 25 | author | $2.2 \times 10^{-2}$ |
| 26 | social | $2.2 \times 10^{-2}$ |
| 27 | skill | $2 \times 10^{-2}$ |
| 28 | research | $2 \times 10^{-2}$ |
| 29 | countri | $2 \times 10^{-2}$ |
| 30 | examin | $1.8 \times 10^{-2}$ |
| 31 | origin | $1.8 \times 10^{-2}$ |
| 32 | polit | $1.8 \times 10^{-2}$ |
| 33 | empir | $1.7 \times 10^{-2}$ |
| 34 | occup | $1.6 \times 10^{-2}$ |
| 35 | industri | $1.6 \times 10^{-2}$ |
| 36 | econom | $1.6 \times 10^{-2}$ |
| 37 | manag | $1.6 \times 10^{-2}$ |
| 38 | pay | $1.5 \times 10^{-2}$ |
| 39 | purpos | $1.4 \times 10^{-2}$ |
| 40 | capit | $1.4 \times 10^{-2}$ |
| 41 | relationship | $1.4 \times 10^{-2}$ |
| 42 | nation | $1.4 \times 10^{-2}$ |
| 43 | interview | $1.4 \times 10^{-2}$ |
| 44 | unemploy | $1.4 \times 10^{-2}$ |
| 45 | cell | $1.3 \times 10^{-2}$ |
| 46 | govern | $1.3 \times 10^{-2}$ |
| 47 | und | $1.3 \times 10^{-2}$ |
| 48 | australian | $1.3 \times 10^{-2}$ |
| 49 | argu | $1.3 \times 10^{-2}$ |
| 50 | public | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | economi | $1.3 \times 10^{-2}$ |
| 52 | crisi | $1.2 \times 10^{-2}$ |
| 53 | resourc | $1.2 \times 10^{-2}$ |
| 54 | context | $1.2 \times 10^{-2}$ |
| 55 | profession | $1.2 \times 10^{-2}$ |
| 56 | satisfact | $1.2 \times 10^{-2}$ |
| 57 | leadership | $1.1 \times 10^{-2}$ |
| 58 | earn | $1.1 \times 10^{-2}$ |
| 59 | gender | $1.1 \times 10^{-2}$ |
| 60 | career | $1.1 \times 10^{-2}$ |
| 61 | simul | $1.1 \times 10^{-2}$ |
| 62 | manageri | $1 \times 10^{-2}$ |
| 63 | australia | $1 \times 10^{-2}$ |
| 64 | educ | $1 \times 10^{-2}$ |
| 65 | privat | $1 \times 10^{-2}$ |
| 66 | focus | $9.9 \times 10^{-3}$ |
| 67 | institut | $9.8 \times 10^{-3}$ |
| 68 | temperatur | $9.7 \times 10^{-3}$ |
| 69 | british | $9.6 \times 10^{-3}$ |
| 70 | surfac | $9.4 \times 10^{-3}$ |
| 71 | servic | $9.3 \times 10^{-3}$ |
| 72 | trade | $9.3 \times 10^{-3}$ |
| 73 | commit | $9.2 \times 10^{-3}$ |
| 74 | draw | $9.2 \times 10^{-3}$ |
| 75 | collect | $8.9 \times 10^{-3}$ |
| 76 | health | $8.9 \times 10^{-3}$ |
| 77 | approach | $8.9 \times 10^{-3}$ |
| 78 | paramet | $8.8 \times 10^{-3}$ |
| 79 | reform | $8.8 \times 10^{-3}$ |
| 80 | incom | $8.7 \times 10^{-3}$ |
| 81 | detect | $8.7 \times 10^{-3}$ |
| 82 | explor | $8.7 \times 10^{-3}$ |
| 83 | supervisor | $8.5 \times 10^{-3}$ |
| 84 | properti | $8.5 \times 10^{-3}$ |
| 85 | experiment | $8.5 \times 10^{-3}$ |
| 86 | migrant | $8.4 \times 10^{-3}$ |
| 87 | relat | $8.4 \times 10^{-3}$ |
| 88 | data | $8.3 \times 10^{-3}$ |
| 89 | method | $8.3 \times 10^{-3}$ |
| 90 | compani | $8.3 \times 10^{-3}$ |
| 91 | patient | $8.1 \times 10^{-3}$ |
| 92 | perceiv | $7.9 \times 10^{-3}$ |
| 93 | protein | $7.9 \times 10^{-3}$ |
| 94 | agenc | $7.9 \times 10^{-3}$ |
| 95 | immigr | $7.8 \times 10^{-3}$ |
| 96 | literatur | $7.8 \times 10^{-3}$ |
| 97 | impact | $7.6 \times 10^{-3}$ |
| 98 | obtain | $7.6 \times 10^{-3}$ |
| 99 | paid | $7.4 \times 10^{-3}$ |
| 100 | women | $7.3 \times 10^{-3}$ |

Table D.117. The list of the top 100 words in the category Infectious Diseases with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | infect | $2.3 \times 10^{-1}$ |
| 2 | hiv | $8.7 \times 10^{-2}$ |
| 3 | virus | $5.6 \times 10^{-2}$ |
| 4 | conclus | $5 \times 10^{-2}$ |
| 5 | antiretrovir | $4.9 \times 10^{-2}$ |
| 6 | patient | $4.6 \times 10^{-2}$ |
| 7 | background | $4.6 \times 10^{-2}$ |
| 8 | vaccin | $3.9 \times 10^{-2}$ |
| 9 | hospit | $3.6 \times 10^{-2}$ |
| 10 | clinic | $3.5 \times 10^{-2}$ |
| 11 | diseas | $3.4 \times 10^{-2}$ |
| 12 | pathogen | $3.4 \times 10^{-2}$ |
| 13 | isol | $3.2 \times 10^{-2}$ |
| 14 | preval | $3.1 \times 10^{-2}$ |
| 15 | paper | $3 \times 10^{-2}$ |
| 16 | antibiot | $2.9 \times 10^{-2}$ |
| 17 | associ | $2.9 \times 10^{-2}$ |
| 18 | epidemiolog | $2.9 \times 10^{-2}$ |
| 19 | viral | $2.8 \times 10^{-2}$ |
| 20 | malaria | $2.7 \times 10^{-2}$ |
| 21 | surveil | $2.7 \times 10^{-2}$ |
| 22 | pneumonia | $2.6 \times 10^{-2}$ |
| 23 | resist | $2.6 \times 10^{-2}$ |
| 24 | among | $2.6 \times 10^{-2}$ |
| 25 | risk | $2.6 \times 10^{-2}$ |
| 26 | immun | $2.5 \times 10^{-2}$ |
| 27 | tuberculosi | $2.4 \times 10^{-2}$ |
| 28 | fever | $2.4 \times 10^{-2}$ |
| 29 | therapi | $2.4 \times 10^{-2}$ |
| 30 | strain | $2.4 \times 10^{-2}$ |
| 31 | cd4 | $2.4 \times 10^{-2}$ |
| 32 | outbreak | $2.3 \times 10^{-2}$ |
| 33 | suscept | $2.3 \times 10^{-2}$ |
| 34 | pcr | $2.1 \times 10^{-2}$ |
| 35 | health | $2.1 \times 10^{-2}$ |
| 36 | year | $2 \times 10^{-2}$ |
| 37 | influenza | $1.9 \times 10^{-2}$ |
| 38 | antimicrobi | $1.9 \times 10^{-2}$ |
| 39 | infecti | $1.9 \times 10^{-2}$ |
| 40 | endem | $1.7 \times 10^{-2}$ |
| 41 | staphylococcus | $1.7 \times 10^{-2}$ |
| 42 | plasmodium | $1.7 \times 10^{-2}$ |
| 43 | antibodi | $1.7 \times 10^{-2}$ |
| 44 | prevent | $1.7 \times 10^{-2}$ |
| 45 | children | $1.6 \times 10^{-2}$ |
| 46 | aureus | $1.6 \times 10^{-2}$ |
| 47 | coinfect | $1.6 \times 10^{-2}$ |
| 48 | virolog | $1.6 \times 10^{-2}$ |
| 49 | immunodefici | $1.6 \times 10^{-2}$ |
| 50 | parasit | $1.6 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | propos | $1.6 \times 10^{-2}$ |
| 52 | bacteri | $1.6 \times 10^{-2}$ |
| 53 | popul | $1.5 \times 10^{-2}$ |
| 54 | genotyp | $1.5 \times 10^{-2}$ |
| 55 | mortal | $1.5 \times 10^{-2}$ |
| 56 | age | $1.5 \times 10^{-2}$ |
| 57 | care | $1.5 \times 10^{-2}$ |
| 58 | treatment | $1.5 \times 10^{-2}$ |
| 59 | blood | $1.5 \times 10^{-2}$ |
| 60 | human | $1.5 \times 10^{-2}$ |
| 61 | incid | $1.4 \times 10^{-2}$ |
| 62 | cohort | $1.4 \times 10^{-2}$ |
| 63 | drug | $1.4 \times 10^{-2}$ |
| 64 | antigen | $1.4 \times 10^{-2}$ |
| 65 | falciparum | $1.4 \times 10^{-2}$ |
| 66 | caus | $1.4 \times 10^{-2}$ |
| 67 | epidem | $1.3 \times 10^{-2}$ |
| 68 | case | $1.3 \times 10^{-2}$ |
| 69 | transmiss | $1.3 \times 10^{-2}$ |
| 70 | posit | $1.3 \times 10^{-2}$ |
| 71 | regimen | $1.3 \times 10^{-2}$ |
| 72 | identifi | $1.3 \times 10^{-2}$ |
| 73 | virul | $1.3 \times 10^{-2}$ |
| 74 | confid | $1.3 \times 10^{-2}$ |
| 75 | host | $1.2 \times 10^{-2}$ |
| 76 | countri | $1.2 \times 10^{-2}$ |
| 77 | multidrug | $1.2 \times 10^{-2}$ |
| 78 | collect | $1.2 \times 10^{-2}$ |
| 79 | process | $1.2 \times 10^{-2}$ |
| 80 | detect | $1.2 \times 10^{-2}$ |
| 81 | assay | $1.2 \times 10^{-2}$ |
| 82 | energi | $1.2 \times 10^{-2}$ |
| 83 | serolog | $1.2 \times 10^{-2}$ |
| 84 | africa | $1.2 \times 10^{-2}$ |
| 85 | respiratori | $1.2 \times 10^{-2}$ |
| 86 | diagnosi | $1.1 \times 10^{-2}$ |
| 87 | median | $1.1 \times 10^{-2}$ |
| 88 | month | $1.1 \times 10^{-2}$ |
| 89 | serotyp | $1.1 \times 10^{-2}$ |
| 90 | mycobacterium | $1.1 \times 10^{-2}$ |
| 91 | count | $1 \times 10^{-2}$ |
| 92 | properti | $1 \times 10^{-2}$ |
| 93 | simul | $1 \times 10^{-2}$ |
| 94 | interv | $1 \times 10^{-2}$ |
| 95 | hepat | $1 \times 10^{-2}$ |
| 96 | microbiolog | $1 \times 10^{-2}$ |
| 97 | structur | $1 \times 10^{-2}$ |
| 98 | sequenc | $1 \times 10^{-2}$ |
| 99 | adult | $9.9 \times 10^{-3}$ |
| 100 | mosquito | $9.6 \times 10^{-3}$ |

Table D.118. The list of the top 100 words in the category Information Science and Library Science with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | research | $5.7 \times 10^{-2}$ |
| 2 | inform | $5.5 \times 10^{-2}$ |
| 3 | librari | $5.2 \times 10^{-2}$ |
| 4 | citat | $3.7 \times 10^{-2}$ |
| 5 | user | $3.2 \times 10^{-2}$ |
| 6 | journal | $2.6 \times 10^{-2}$ |
| 7 | public | $2.5 \times 10^{-2}$ |
| 8 | social | $2.5 \times 10^{-2}$ |
| 9 | scienc | $2.4 \times 10^{-2}$ |
| 10 | web | $2.3 \times 10^{-2}$ |
| 11 | academ | $2.3 \times 10^{-2}$ |
| 12 | paper | $2.1 \times 10^{-2}$ |
| 13 | onlin | $2 \times 10^{-2}$ |
| 14 | servic | $2 \times 10^{-2}$ |
| 15 | knowledg | $1.9 \times 10^{-2}$ |
| 16 | technolog | $1.8 \times 10^{-2}$ |
| 17 | digit | $1.7 \times 10^{-2}$ |
| 18 | author | $1.7 \times 10^{-2}$ |
| 19 | articl | $1.7 \times 10^{-2}$ |
| 20 | find | $1.6 \times 10^{-2}$ |
| 21 | scholar | $1.5 \times 10^{-2}$ |
| 22 | methodolog | $1.5 \times 10^{-2}$ |
| 23 | practic | $1.5 \times 10^{-2}$ |
| 24 | organiz | $1.5 \times 10^{-2}$ |
| 25 | implic | $1.5 \times 10^{-2}$ |
| 26 | manag | $1.5 \times 10^{-2}$ |
| 27 | collabor | $1.4 \times 10^{-2}$ |
| 28 | institut | $1.4 \times 10^{-2}$ |
| 29 | access | $1.4 \times 10^{-2}$ |
| 30 | share | $1.3 \times 10^{-2}$ |
| 31 | cell | $1.2 \times 10^{-2}$ |
| 32 | survey | $1.2 \times 10^{-2}$ |
| 33 | univers | $1.2 \times 10^{-2}$ |
| 34 | approach | $1.2 \times 10^{-2}$ |
| 35 | temperatur | $1.2 \times 10^{-2}$ |
| 36 | text | $1.2 \times 10^{-2}$ |
| 37 | publish | $1.1 \times 10^{-2}$ |
| 38 | busi | $1.1 \times 10^{-2}$ |
| 39 | communic | $1.1 \times 10^{-2}$ |
| 40 | scientif | $1.1 \times 10^{-2}$ |
| 41 | internet | $1 \times 10^{-2}$ |
| 42 | document | $1 \times 10^{-2}$ |
| 43 | context | $9.9 \times 10^{-3}$ |
| 44 | resourc | $9.7 \times 10^{-3}$ |
| 45 | disciplin | $9.6 \times 10^{-3}$ |
| 46 | literatur | $9.6 \times 10^{-3}$ |
| 47 | empir | $9.6 \times 10^{-3}$ |
| 48 | interview | $9.3 \times 10^{-3}$ |
| 49 | surfac | $9.3 \times 10^{-3}$ |
| 50 | provid | $9.2 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | collect | $9.1 \times 10^{-3}$ |
| 52 | protein | $9.1 \times 10^{-3}$ |
| 53 | explor | $9 \times 10^{-3}$ |
| 54 | induc | $9 \times 10^{-3}$ |
| 55 | purpos | $9 \times 10^{-3}$ |
| 56 | data | $8.9 \times 10^{-3}$ |
| 57 | focus | $8.8 \times 10^{-3}$ |
| 58 | seek | $8.8 \times 10^{-3}$ |
| 59 | profession | $8.5 \times 10^{-3}$ |
| 60 | understand | $8.3 \times 10^{-3}$ |
| 61 | perspect | $8.3 \times 10^{-3}$ |
| 62 | archiv | $8.2 \times 10^{-3}$ |
| 63 | discuss | $7.9 \times 10^{-3}$ |
| 64 | issu | $7.9 \times 10^{-3}$ |
| 65 | conceptu | $7.8 \times 10^{-3}$ |
| 66 | adopt | $7.8 \times 10^{-3}$ |
| 67 | network | $7.8 \times 10^{-3}$ |
| 68 | innov | $7.7 \times 10^{-3}$ |
| 69 | languag | $7.7 \times 10^{-3}$ |
| 70 | websit | $7.6 \times 10^{-3}$ |
| 71 | treatment | $7.6 \times 10^{-3}$ |
| 72 | search | $7.4 \times 10^{-3}$ |
| 73 | acid | $7.4 \times 10^{-3}$ |
| 74 | support | $7.3 \times 10^{-3}$ |
| 75 | origin | $7.3 \times 10^{-3}$ |
| 76 | concentr | $7.3 \times 10^{-3}$ |
| 77 | project | $7.2 \times 10^{-3}$ |
| 78 | book | $7.1 \times 10^{-3}$ |
| 79 | literaci | $7.1 \times 10^{-3}$ |
| 80 | framework | $7 \times 10^{-3}$ |
| 81 | energi | $7 \times 10^{-3}$ |
| 82 | decreas | $6.8 \times 10^{-3}$ |
| 83 | qualit | $6.8 \times 10^{-3}$ |
| 84 | retriev | $6.7 \times 10^{-3}$ |
| 85 | perceiv | $6.5 \times 10^{-3}$ |
| 86 | water | $6.4 \times 10^{-3}$ |
| 87 | semant | $6.4 \times 10^{-3}$ |
| 88 | need | $6.4 \times 10^{-3}$ |
| 89 | strateg | $6.4 \times 10^{-3}$ |
| 90 | decis | $6.4 \times 10^{-3}$ |
| 91 | databas | $6.3 \times 10^{-3}$ |
| 92 | learn | $6.2 \times 10^{-3}$ |
| 93 | topic | $6.2 \times 10^{-3}$ |
| 94 | oxid | $6.2 \times 10^{-3}$ |
| 95 | countri | $6.1 \times 10^{-3}$ |
| 96 | gene | $6.1 \times 10^{-3}$ |
| 97 | control | $6 \times 10^{-3}$ |
| 98 | ratio | $5.9 \times 10^{-3}$ |
| 99 | educ | $5.9 \times 10^{-3}$ |
| 100 | impact | $5.8 \times 10^{-3}$ |

Table D.119. The list of the top 100 words in the category Instruments and Instrumentation with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | sensor | $5.1 \times 10^{-2}$ |
| 2 | detector | $3.1 \times 10^{-2}$ |
| 3 | beam | $2.1 \times 10^{-2}$ |
| 4 | measur | $2.1 \times 10^{-2}$ |
| 5 | conclus | $1.9 \times 10^{-2}$ |
| 6 | patient | $1.6 \times 10^{-2}$ |
| 7 | telescop | $1.5 \times 10^{-2}$ |
| 8 | paper | $1.4 \times 10^{-2}$ |
| 9 | design | $1.3 \times 10^{-2}$ |
| 10 | resolut | $1.3 \times 10^{-2}$ |
| 11 | system | $1.3 \times 10^{-2}$ |
| 12 | propos | $1.3 \times 10^{-2}$ |
| 13 | optic | $1.3 \times 10^{-2}$ |
| 14 | sens | $1.2 \times 10^{-2}$ |
| 15 | fabric | $1.2 \times 10^{-2}$ |
| 16 | calibr | $1.2 \times 10^{-2}$ |
| 17 | studi | $1.2 \times 10^{-2}$ |
| 18 | instrument | $1.1 \times 10^{-2}$ |
| 19 | devic | $1.1 \times 10^{-2}$ |
| 20 | detect | $1.1 \times 10^{-2}$ |
| 21 | suggest | $1.1 \times 10^{-2}$ |
| 22 | associ | $1.1 \times 10^{-2}$ |
| 23 | experiment | $1 \times 10^{-2}$ |
| 24 | treatment | $9.6 \times 10^{-3}$ |
| 25 | group | $9.5 \times 10^{-3}$ |
| 26 | signific | $9.4 \times 10^{-3}$ |
| 27 | kev | $9.4 \times 10^{-3}$ |
| 28 | actuat | $9.3 \times 10^{-3}$ |
| 29 | age | $9.1 \times 10^{-3}$ |
| 30 | signal | $8.9 \times 10^{-3}$ |
| 31 | base | $8.8 \times 10^{-3}$ |
| 32 | diseas | $8.7 \times 10^{-3}$ |
| 33 | prototyp | $8.6 \times 10^{-3}$ |
| 34 | sensit | $8.4 \times 10^{-3}$ |
| 35 | nois | $8 \times 10^{-3}$ |
| 36 | oper | $8 \times 10^{-3}$ |
| 37 | gene | $7.4 \times 10^{-3}$ |
| 38 | silicon | $7.4 \times 10^{-3}$ |
| 39 | mev | $7.1 \times 10^{-3}$ |
| 40 | may | $7.1 \times 10^{-3}$ |
| 41 | voltag | $7 \times 10^{-3}$ |
| 42 | protein | $7 \times 10^{-3}$ |
| 43 | clinic | $7 \times 10^{-3}$ |
| 44 | accuraci | $6.8 \times 10^{-3}$ |
| 45 | error | $6.6 \times 10^{-3}$ |
| 46 | scintil | $6.6 \times 10^{-3}$ |
| 47 | role | $6.5 \times 10^{-3}$ |
| 48 | array | $6.5 \times 10^{-3}$ |
| 49 | linear | $6.5 \times 10^{-3}$ |
| 50 | perform | $6.5 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | year | $6.4 \times 10^{-3}$ |
| 52 | techniqu | $6.4 \times 10^{-3}$ |
| 53 | find | $6.4 \times 10^{-3}$ |
| 54 | camera | $6.3 \times 10^{-3}$ |
| 55 | electrod | $6.3 \times 10^{-3}$ |
| 56 | risk | $6.3 \times 10^{-3}$ |
| 57 | simul | $6.3 \times 10^{-3}$ |
| 58 | examin | $6.2 \times 10^{-3}$ |
| 59 | popul | $6.2 \times 10^{-3}$ |
| 60 | present | $6.2 \times 10^{-3}$ |
| 61 | express | $6.2 \times 10^{-3}$ |
| 62 | ion | $6.1 \times 10^{-3}$ |
| 63 | outcom | $6 \times 10^{-3}$ |
| 64 | applic | $6 \times 10^{-3}$ |
| 65 | capabl | $5.9 \times 10^{-3}$ |
| 66 | mirror | $5.9 \times 10^{-3}$ |
| 67 | cell | $5.8 \times 10^{-3}$ |
| 68 | spectromet | $5.8 \times 10^{-3}$ |
| 69 | frequenc | $5.7 \times 10^{-3}$ |
| 70 | track | $5.6 \times 10^{-3}$ |
| 71 | imag | $5.6 \times 10^{-3}$ |
| 72 | precis | $5.5 \times 10^{-3}$ |
| 73 | pixel | $5.4 \times 10^{-3}$ |
| 74 | assess | $5.4 \times 10^{-3}$ |
| 75 | particip | $5.3 \times 10^{-3}$ |
| 76 | output | $5.3 \times 10^{-3}$ |
| 77 | rang | $5.2 \times 10^{-3}$ |
| 78 | ray | $5.2 \times 10^{-3}$ |
| 79 | evid | $5.1 \times 10^{-3}$ |
| 80 | laser | $5.1 \times 10^{-3}$ |
| 81 | energi | $5 \times 10^{-3}$ |
| 82 | puls | $5 \times 10^{-3}$ |
| 83 | piezoelectr | $5 \times 10^{-3}$ |
| 84 | monitor | $4.9 \times 10^{-3}$ |
| 85 | wavelength | $4.8 \times 10^{-3}$ |
| 86 | whether | $4.8 \times 10^{-3}$ |
| 87 | observatori | $4.7 \times 10^{-3}$ |
| 88 | day | $4.7 \times 10^{-3}$ |
| 89 | instal | $4.7 \times 10^{-3}$ |
| 90 | setup | $4.6 \times 10^{-3}$ |
| 91 | field | $4.6 \times 10^{-3}$ |
| 92 | increas | $4.6 \times 10^{-3}$ |
| 93 | filter | $4.6 \times 10^{-3}$ |
| 94 | treat | $4.5 \times 10^{-3}$ |
| 95 | among | $4.5 \times 10^{-3}$ |
| 96 | month | $4.5 \times 10^{-3}$ |
| 97 | adult | $4.5 \times 10^{-3}$ |
| 98 | electron | $4.5 \times 10^{-3}$ |
| 99 | interferomet | $4.3 \times 10^{-3}$ |
| 100 | neutron | $4.3 \times 10^{-3}$ |

Table D.120. The list of the top 100 words in the category Integrative and Complementary Medicine with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | medicin | $1.6 \times 10^{-1}$ |
| 2 | ethnopharmacolog | $1.4 \times 10^{-1}$ |
| 3 | conclus | $9.6 \times 10^{-2}$ |
| 4 | treatment | $6.6 \times 10^{-2}$ |
| 5 | extract | $6.6 \times 10^{-2}$ |
| 6 | herbal | $6.2 \times 10^{-2}$ |
| 7 | tradit | $6 \times 10^{-2}$ |
| 8 | chines | $5.3 \times 10^{-2}$ |
| 9 | rat | $5.2 \times 10^{-2}$ |
| 10 | activ | $5 \times 10^{-2}$ |
| 11 | effect | $5 \times 10^{-2}$ |
| 12 | inhibit | $4.9 \times 10^{-2}$ |
| 13 | treat | $4.6 \times 10^{-2}$ |
| 14 | induc | $4.3 \times 10^{-2}$ |
| 15 | herb | $3.9 \times 10^{-2}$ |
| 16 | dose | $3.6 \times 10^{-2}$ |
| 17 | assay | $3.6 \times 10^{-2}$ |
| 18 | method | $3.6 \times 10^{-2}$ |
| 19 | signific | $3.1 \times 10^{-2}$ |
| 20 | oral | $2.9 \times 10^{-2}$ |
| 21 | antioxid | $2.9 \times 10^{-2}$ |
| 22 | studi | $2.9 \times 10^{-2}$ |
| 23 | relev | $2.9 \times 10^{-2}$ |
| 24 | antiinflammatori | $2.7 \times 10^{-2}$ |
| 25 | result | $2.7 \times 10^{-2}$ |
| 26 | plant | $2.6 \times 10^{-2}$ |
| 27 | administr | $2.3 \times 10^{-2}$ |
| 28 | compound | $2.3 \times 10^{-2}$ |
| 29 | inhibitori | $2.2 \times 10^{-2}$ |
| 30 | background | $2.2 \times 10^{-2}$ |
| 31 | group | $2.2 \times 10^{-2}$ |
| 32 | mice | $2 \times 10^{-2}$ |
| 33 | week | $2 \times 10^{-2}$ |
| 34 | ic50 | $1.9 \times 10^{-2}$ |
| 35 | evalu | $1.9 \times 10^{-2}$ |
| 36 | flavonoid | $1.9 \times 10^{-2}$ |
| 37 | decreas | $1.8 \times 10^{-2}$ |
| 38 | pharmacolog | $1.8 \times 10^{-2}$ |
| 39 | cell | $1.8 \times 10^{-2}$ |
| 40 | pain | $1.8 \times 10^{-2}$ |
| 41 | administ | $1.8 \times 10^{-2}$ |
| 42 | phytochem | $1.8 \times 10^{-2}$ |
| 43 | paper | $1.7 \times 10^{-2}$ |
| 44 | vitro | $1.7 \times 10^{-2}$ |
| 45 | constitu | $1.7 \times 10^{-2}$ |
| 46 | diseas | $1.7 \times 10^{-2}$ |
| 47 | blot | $1.7 \times 10^{-2}$ |
| 48 | folk | $1.7 \times 10^{-2}$ |
| 49 | random | $1.7 \times 10^{-2}$ |
| 50 | therapeut | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | drug | $1.7 \times 10^{-2}$ |
| 52 | serum | $1.6 \times 10^{-2}$ |
| 53 | cytotox | $1.6 \times 10^{-2}$ |
| 54 | western | $1.5 \times 10^{-2}$ |
| 55 | aim | $1.5 \times 10^{-2}$ |
| 56 | express | $1.5 \times 10^{-2}$ |
| 57 | day | $1.5 \times 10^{-2}$ |
| 58 | materi | $1.5 \times 10^{-2}$ |
| 59 | liver | $1.4 \times 10^{-2}$ |
| 60 | investig | $1.4 \times 10^{-2}$ |
| 61 | hplc | $1.4 \times 10^{-2}$ |
| 62 | tnf | $1.4 \times 10^{-2}$ |
| 63 | ethanol | $1.3 \times 10^{-2}$ |
| 64 | mtt | $1.3 \times 10^{-2}$ |
| 65 | inflammatori | $1.3 \times 10^{-2}$ |
| 66 | bioactiv | $1.3 \times 10^{-2}$ |
| 67 | level | $1.3 \times 10^{-2}$ |
| 68 | propos | $1.3 \times 10^{-2}$ |
| 69 | leav | $1.2 \times 10^{-2}$ |
| 70 | beta | $1.2 \times 10^{-2}$ |
| 71 | apoptosi | $1.2 \times 10^{-2}$ |
| 72 | isol | $1.2 \times 10^{-2}$ |
| 73 | alkaloid | $1.2 \times 10^{-2}$ |
| 74 | blood | $1.2 \times 10^{-2}$ |
| 75 | efficaci | $1.2 \times 10^{-2}$ |
| 76 | inflamm | $1.1 \times 10^{-2}$ |
| 77 | spragu | $1.1 \times 10^{-2}$ |
| 78 | alpha | $1.1 \times 10^{-2}$ |
| 79 | symptom | $1.1 \times 10^{-2}$ |
| 80 | bark | $1.1 \times 10^{-2}$ |
| 81 | dawley | $1.1 \times 10^{-2}$ |
| 82 | divid | $1.1 \times 10^{-2}$ |
| 83 | vivo | $1.1 \times 10^{-2}$ |
| 84 | reduc | $1.1 \times 10^{-2}$ |
| 85 | stimul | $1.1 \times 10^{-2}$ |
| 86 | sham | $1.1 \times 10^{-2}$ |
| 87 | amelior | $1.1 \times 10^{-2}$ |
| 88 | methanol | $1.1 \times 10^{-2}$ |
| 89 | nitric | $1 \times 10^{-2}$ |
| 90 | potent | $1 \times 10^{-2}$ |
| 91 | therapi | $1 \times 10^{-2}$ |
| 92 | dpph | $1 \times 10^{-2}$ |
| 93 | clinic | $1 \times 10^{-2}$ |
| 94 | chromatographi | $1 \times 10^{-2}$ |
| 95 | diabet | $9.8 \times 10^{-3}$ |
| 96 | crude | $9.8 \times 10^{-3}$ |
| 97 | anticanc | $9.7 \times 10^{-3}$ |
| 98 | sod | $9.7 \times 10^{-3}$ |
| 99 | control | $9.7 \times 10^{-3}$ |
| 100 | potenti | $9.4 \times 10^{-3}$ |

Table D.121. The list of the top 100 words in the category International Relations with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | polit | $1.2 \times 10^{-1}$ |
| 2 | articl | $1.1 \times 10^{-1}$ |
| 3 | polici | $7.2 \times 10^{-2}$ |
| 4 | argu | $7 \times 10^{-2}$ |
| 5 | intern | $6.3 \times 10^{-2}$ |
| 6 | govern | $4.8 \times 10^{-2}$ |
| 7 | war | $4.8 \times 10^{-2}$ |
| 8 | countri | $4.5 \times 10^{-2}$ |
| 9 | econom | $3.7 \times 10^{-2}$ |
| 10 | foreign | $3.6 \times 10^{-2}$ |
| 11 | actor | $3.4 \times 10^{-2}$ |
| 12 | nation | $3.2 \times 10^{-2}$ |
| 13 | trade | $3.2 \times 10^{-2}$ |
| 14 | secur | $3.1 \times 10^{-2}$ |
| 15 | state | $3.1 \times 10^{-2}$ |
| 16 | domest | $2.9 \times 10^{-2}$ |
| 17 | european | $2.8 \times 10^{-2}$ |
| 18 | method | $2.8 \times 10^{-2}$ |
| 19 | union | $2.7 \times 10^{-2}$ |
| 20 | conflict | $2.7 \times 10^{-2}$ |
| 21 | world | $2.6 \times 10^{-2}$ |
| 22 | peac | $2.5 \times 10^{-2}$ |
| 23 | democrat | $2.5 \times 10^{-2}$ |
| 24 | militari | $2.5 \times 10^{-2}$ |
| 25 | institut | $2.4 \times 10^{-2}$ |
| 26 | global | $2.2 \times 10^{-2}$ |
| 27 | result | $2.2 \times 10^{-2}$ |
| 28 | treati | $2.2 \times 10^{-2}$ |
| 29 | democraci | $2.2 \times 10^{-2}$ |
| 30 | crisi | $2 \times 10^{-2}$ |
| 31 | legal | $1.9 \times 10^{-2}$ |
| 32 | economi | $1.8 \times 10^{-2}$ |
| 33 | argument | $1.8 \times 10^{-2}$ |
| 34 | scholar | $1.8 \times 10^{-2}$ |
| 35 | terror | $1.7 \times 10^{-2}$ |
| 36 | market | $1.7 \times 10^{-2}$ |
| 37 | debat | $1.7 \times 10^{-2}$ |
| 38 | parti | $1.7 \times 10^{-2}$ |
| 39 | fisheri | $1.7 \times 10^{-2}$ |
| 40 | negoti | $1.7 \times 10^{-2}$ |
| 41 | disput | $1.6 \times 10^{-2}$ |
| 42 | weapon | $1.6 \times 10^{-2}$ |
| 43 | empir | $1.6 \times 10^{-2}$ |
| 44 | liber | $1.6 \times 10^{-2}$ |
| 45 | whi | $1.5 \times 10^{-2}$ |
| 46 | cell | $1.5 \times 10^{-2}$ |
| 47 | patient | $1.5 \times 10^{-2}$ |
| 48 | strateg | $1.4 \times 10^{-2}$ |
| 49 | draw | $1.4 \times 10^{-2}$ |
| 50 | right | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | cooper | $1.4 \times 10^{-2}$ |
| 52 | social | $1.4 \times 10^{-2}$ |
| 53 | civil | $1.4 \times 10^{-2}$ |
| 54 | china | $1.4 \times 10^{-2}$ |
| 55 | threat | $1.4 \times 10^{-2}$ |
| 56 | perform | $1.3 \times 10^{-2}$ |
| 57 | question | $1.3 \times 10^{-2}$ |
| 58 | transnat | $1.3 \times 10^{-2}$ |
| 59 | law | $1.3 \times 10^{-2}$ |
| 60 | public | $1.3 \times 10^{-2}$ |
| 61 | engag | $1.3 \times 10^{-2}$ |
| 62 | agenda | $1.2 \times 10^{-2}$ |
| 63 | violenc | $1.2 \times 10^{-2}$ |
| 64 | obtain | $1.2 \times 10^{-2}$ |
| 65 | focus | $1.2 \times 10^{-2}$ |
| 66 | reform | $1.1 \times 10^{-2}$ |
| 67 | issu | $1.1 \times 10^{-2}$ |
| 68 | invest | $1.1 \times 10^{-2}$ |
| 69 | temperatur | $1.1 \times 10^{-2}$ |
| 70 | commit | $1.1 \times 10^{-2}$ |
| 71 | sector | $1.1 \times 10^{-2}$ |
| 72 | regim | $1.1 \times 10^{-2}$ |
| 73 | claim | $1.1 \times 10^{-2}$ |
| 74 | discours | $1.1 \times 10^{-2}$ |
| 75 | studi | $1 \times 10^{-2}$ |
| 76 | use | $1 \times 10^{-2}$ |
| 77 | europ | $1 \times 10^{-2}$ |
| 78 | asia | $1 \times 10^{-2}$ |
| 79 | legitimaci | $1 \times 10^{-2}$ |
| 80 | seek | $1 \times 10^{-2}$ |
| 81 | leader | $1 \times 10^{-2}$ |
| 82 | compar | $9.9 \times 10^{-3}$ |
| 83 | conclus | $9.9 \times 10^{-3}$ |
| 84 | financi | $9.8 \times 10^{-3}$ |
| 85 | surfac | $9.8 \times 10^{-3}$ |
| 86 | histor | $9.6 \times 10^{-3}$ |
| 87 | member | $9.5 \times 10^{-3}$ |
| 88 | presid | $9.4 \times 10^{-3}$ |
| 89 | paramet | $9.4 \times 10^{-3}$ |
| 90 | clinic | $9.3 \times 10^{-3}$ |
| 91 | simul | $9.2 \times 10^{-3}$ |
| 92 | examin | $9 \times 10^{-3}$ |
| 93 | experiment | $9 \times 10^{-3}$ |
| 94 | protein | $8.6 \times 10^{-3}$ |
| 95 | emerg | $8.6 \times 10^{-3}$ |
| 96 | marin | $8.5 \times 10^{-3}$ |
| 97 | scholarship | $8.5 \times 10^{-3}$ |
| 98 | export | $8.4 \times 10^{-3}$ |
| 99 | societi | $8.4 \times 10^{-3}$ |
| 100 | territori | $8.4 \times 10^{-3}$ |

Table D.122. The list of the top 100 words in the category Language and Linguistics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | languag | $2.2 \times 10^{-1}$ |
| 2 | english | $1.3 \times 10^{-1}$ |
| 3 | linguist | $1.1 \times 10^{-1}$ |
| 4 | corpus | $7.7 \times 10^{-2}$ |
| 5 | text | $5.8 \times 10^{-2}$ |
| 6 | speaker | $5.4 \times 10^{-2}$ |
| 7 | lexic | $5.3 \times 10^{-2}$ |
| 8 | word | $5.1 \times 10^{-2}$ |
| 9 | verb | $4.7 \times 10^{-2}$ |
| 10 | semant | $4.2 \times 10^{-2}$ |
| 11 | discours | $4 \times 10^{-2}$ |
| 12 | learner | $3.9 \times 10^{-2}$ |
| 13 | syntact | $3.8 \times 10^{-2}$ |
| 14 | speech | $3.5 \times 10^{-2}$ |
| 15 | corpora | $3.5 \times 10^{-2}$ |
| 16 | argu | $3 \times 10^{-2}$ |
| 17 | articl | $3 \times 10^{-2}$ |
| 18 | grammat | $3 \times 10^{-2}$ |
| 19 | grammar | $2.9 \times 10^{-2}$ |
| 20 | sentenc | $2.8 \times 10^{-2}$ |
| 21 | annot | $2.7 \times 10^{-2}$ |
| 22 | translat | $2.7 \times 10^{-2}$ |
| 23 | multilingu | $2.6 \times 10^{-2}$ |
| 24 | spoken | $2.3 \times 10^{-2}$ |
| 25 | student | $2.2 \times 10^{-2}$ |
| 26 | noun | $2.2 \times 10^{-2}$ |
| 27 | pragmat | $2.1 \times 10^{-2}$ |
| 28 | context | $2 \times 10^{-2}$ |
| 29 | phonolog | $2 \times 10^{-2}$ |
| 30 | teacher | $1.9 \times 10^{-2}$ |
| 31 | speak | $1.9 \times 10^{-2}$ |
| 32 | claus | $1.8 \times 10^{-2}$ |
| 33 | paper | $1.8 \times 10^{-2}$ |
| 34 | bilingu | $1.8 \times 10^{-2}$ |
| 35 | spanish | $1.8 \times 10^{-2}$ |
| 36 | narrat | $1.8 \times 10^{-2}$ |
| 37 | cell | $1.7 \times 10^{-2}$ |
| 38 | write | $1.7 \times 10^{-2}$ |
| 39 | phrase | $1.7 \times 10^{-2}$ |
| 40 | teach | $1.6 \times 10^{-2}$ |
| 41 | learn | $1.6 \times 10^{-2}$ |
| 42 | german | $1.5 \times 10^{-2}$ |
| 43 | written | $1.5 \times 10^{-2}$ |
| 44 | patient | $1.5 \times 10^{-2}$ |
| 45 | method | $1.5 \times 10^{-2}$ |
| 46 | dialect | $1.4 \times 10^{-2}$ |
| 47 | genr | $1.4 \times 10^{-2}$ |
| 48 | profici | $1.4 \times 10^{-2}$ |
| 49 | literari | $1.4 \times 10^{-2}$ |
| 50 | syntax | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | vowel | $1.3 \times 10^{-2}$ |
| 52 | foreign | $1.3 \times 10^{-2}$ |
| 53 | phonet | $1.3 \times 10^{-2}$ |
| 54 | task | $1.3 \times 10^{-2}$ |
| 55 | argument | $1.3 \times 10^{-2}$ |
| 56 | increas | $1.3 \times 10^{-2}$ |
| 57 | vocabulari | $1.2 \times 10^{-2}$ |
| 58 | metaphor | $1.2 \times 10^{-2}$ |
| 59 | temperatur | $1.2 \times 10^{-2}$ |
| 60 | read | $1.2 \times 10^{-2}$ |
| 61 | classroom | $1.2 \times 10^{-2}$ |
| 62 | french | $1.2 \times 10^{-2}$ |
| 63 | question | $1.2 \times 10^{-2}$ |
| 64 | focus | $1.2 \times 10^{-2}$ |
| 65 | research | $1.1 \times 10^{-2}$ |
| 66 | energi | $1.1 \times 10^{-2}$ |
| 67 | writer | $1.1 \times 10^{-2}$ |
| 68 | decreas | $1.1 \times 10^{-2}$ |
| 69 | way | $1.1 \times 10^{-2}$ |
| 70 | utter | $1.1 \times 10^{-2}$ |
| 71 | verbal | $1.1 \times 10^{-2}$ |
| 72 | simul | $1.1 \times 10^{-2}$ |
| 73 | high | $1.1 \times 10^{-2}$ |
| 74 | result | $1 \times 10^{-2}$ |
| 75 | conclus | $1 \times 10^{-2}$ |
| 76 | protein | $9.9 \times 10^{-3}$ |
| 77 | interpret | $9.8 \times 10^{-3}$ |
| 78 | claim | $9.4 \times 10^{-3}$ |
| 79 | draw | $9.3 \times 10^{-3}$ |
| 80 | cultur | $9 \times 10^{-3}$ |
| 81 | reduc | $9 \times 10^{-3}$ |
| 82 | communic | $8.9 \times 10^{-3}$ |
| 83 | clinic | $8.9 \times 10^{-3}$ |
| 84 | instruct | $8.8 \times 10^{-3}$ |
| 85 | predic | $8.7 \times 10^{-3}$ |
| 86 | concentr | $8.7 \times 10^{-3}$ |
| 87 | ratio | $8.6 \times 10^{-3}$ |
| 88 | discuss | $8.6 \times 10^{-3}$ |
| 89 | diseas | $8.6 \times 10^{-3}$ |
| 90 | measur | $8.5 \times 10^{-3}$ |
| 91 | acid | $8.4 \times 10^{-3}$ |
| 92 | control | $8.3 \times 10^{-3}$ |
| 93 | automat | $8.3 \times 10^{-3}$ |
| 94 | perspect | $8.2 \times 10^{-3}$ |
| 95 | effect | $8.2 \times 10^{-3}$ |
| 96 | water | $8.1 \times 10^{-3}$ |
| 97 | surfac | $8 \times 10^{-3}$ |
| 98 | social | $8 \times 10^{-3}$ |
| 99 | explor | $8 \times 10^{-3}$ |
| 100 | low | $8 \times 10^{-3}$ |

Table D.123. The list of the top 100 words in the category Law with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | law | $1.9 \times 10^{-1}$ |
| 2 | court | $1.9 \times 10^{-1}$ |
| 3 | legal | $1.7 \times 10^{-1}$ |
| 4 | articl | $1.2 \times 10^{-1}$ |
| 5 | crimin | $6.6 \times 10^{-2}$ |
| 6 | argu | $6.6 \times 10^{-2}$ |
| 7 | judici | $6.2 \times 10^{-2}$ |
| 8 | suprem | $6.2 \times 10^{-2}$ |
| 9 | right | $5.5 \times 10^{-2}$ |
| 10 | legisl | $5.2 \times 10^{-2}$ |
| 11 | justic | $5.1 \times 10^{-2}$ |
| 12 | doctrin | $5 \times 10^{-2}$ |
| 13 | rule | $4.2 \times 10^{-2}$ |
| 14 | feder | $3.8 \times 10^{-2}$ |
| 15 | govern | $3.5 \times 10^{-2}$ |
| 16 | jurisdict | $3.4 \times 10^{-2}$ |
| 17 | polit | $3.3 \times 10^{-2}$ |
| 18 | crime | $3.1 \times 10^{-2}$ |
| 19 | enforc | $2.9 \times 10^{-2}$ |
| 20 | polici | $2.9 \times 10^{-2}$ |
| 21 | constitut | $2.9 \times 10^{-2}$ |
| 22 | state | $2.8 \times 10^{-2}$ |
| 23 | decis | $2.7 \times 10^{-2}$ |
| 24 | parti | $2.6 \times 10^{-2}$ |
| 25 | civil | $2.5 \times 10^{-2}$ |
| 26 | claim | $2.4 \times 10^{-2}$ |
| 27 | result | $2.4 \times 10^{-2}$ |
| 28 | reform | $2.4 \times 10^{-2}$ |
| 29 | nation | $2.4 \times 10^{-2}$ |
| 30 | treati | $2.4 \times 10^{-2}$ |
| 31 | intern | $2.3 \times 10^{-2}$ |
| 32 | question | $2.3 \times 10^{-2}$ |
| 33 | public | $2.3 \times 10^{-2}$ |
| 34 | method | $2.3 \times 10^{-2}$ |
| 35 | defend | $2.2 \times 10^{-2}$ |
| 36 | scholar | $2.2 \times 10^{-2}$ |
| 37 | european | $2.1 \times 10^{-2}$ |
| 38 | disput | $2.1 \times 10^{-2}$ |
| 39 | protect | $2.1 \times 10^{-2}$ |
| 40 | provis | $2 \times 10^{-2}$ |
| 41 | judg | $2 \times 10^{-2}$ |
| 42 | act | $1.9 \times 10^{-2}$ |
| 43 | offend | $1.9 \times 10^{-2}$ |
| 44 | institut | $1.9 \times 10^{-2}$ |
| 45 | amend | $1.9 \times 10^{-2}$ |
| 46 | author | $1.8 \times 10^{-2}$ |
| 47 | issu | $1.8 \times 10^{-2}$ |
| 48 | debat | $1.8 \times 10^{-2}$ |
| 49 | studi | $1.7 \times 10^{-2}$ |
| 50 | normat | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | case | $1.6 \times 10^{-2}$ |
| 52 | oblig | $1.6 \times 10^{-2}$ |
| 53 | union | $1.5 \times 10^{-2}$ |
| 54 | privat | $1.5 \times 10^{-2}$ |
| 55 | cell | $1.5 \times 10^{-2}$ |
| 56 | concern | $1.5 \times 10^{-2}$ |
| 57 | commit | $1.5 \times 10^{-2}$ |
| 58 | use | $1.4 \times 10^{-2}$ |
| 59 | judgment | $1.4 \times 10^{-2}$ |
| 60 | enact | $1.4 \times 10^{-2}$ |
| 61 | principl | $1.4 \times 10^{-2}$ |
| 62 | perform | $1.4 \times 10^{-2}$ |
| 63 | note | $1.4 \times 10^{-2}$ |
| 64 | violat | $1.3 \times 10^{-2}$ |
| 65 | substant | $1.3 \times 10^{-2}$ |
| 66 | regulatori | $1.3 \times 10^{-2}$ |
| 67 | market | $1.3 \times 10^{-2}$ |
| 68 | conclud | $1.3 \times 10^{-2}$ |
| 69 | practic | $1.2 \times 10^{-2}$ |
| 70 | conflict | $1.2 \times 10^{-2}$ |
| 71 | make | $1.2 \times 10^{-2}$ |
| 72 | econom | $1.2 \times 10^{-2}$ |
| 73 | seek | $1.2 \times 10^{-2}$ |
| 74 | claus | $1.2 \times 10^{-2}$ |
| 75 | argument | $1.2 \times 10^{-2}$ |
| 76 | commiss | $1.2 \times 10^{-2}$ |
| 77 | countri | $1.2 \times 10^{-2}$ |
| 78 | social | $1.2 \times 10^{-2}$ |
| 79 | interpret | $1.2 \times 10^{-2}$ |
| 80 | regul | $1.2 \times 10^{-2}$ |
| 81 | simul | $1.2 \times 10^{-2}$ |
| 82 | whether | $1.2 \times 10^{-2}$ |
| 83 | trade | $1.2 \times 10^{-2}$ |
| 84 | temperatur | $1.2 \times 10^{-2}$ |
| 85 | will | $1.2 \times 10^{-2}$ |
| 86 | convict | $1.1 \times 10^{-2}$ |
| 87 | person | $1.1 \times 10^{-2}$ |
| 88 | surfac | $1.1 \times 10^{-2}$ |
| 89 | polic | $1.1 \times 10^{-2}$ |
| 90 | corpor | $1.1 \times 10^{-2}$ |
| 91 | agenc | $1.1 \times 10^{-2}$ |
| 92 | citizen | $1.1 \times 10^{-2}$ |
| 93 | legitimaci | $1.1 \times 10^{-2}$ |
| 94 | scholarship | $1.1 \times 10^{-2}$ |
| 95 | paramet | $1 \times 10^{-2}$ |
| 96 | context | $1 \times 10^{-2}$ |
| 97 | victim | $1 \times 10^{-2}$ |
| 98 | reason | $1 \times 10^{-2}$ |
| 99 | draw | $1 \times 10^{-2}$ |
| 100 | way | $1 \times 10^{-2}$ |

Table D.124. The list of the top 100 words in the category Limnology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | water | $1 \times 10^{-1}$ |
| 2 | lake | $1 \times 10^{-1}$ |
| 3 | river | $5.8 \times 10^{-2}$ |
| 4 | hydrolog | $4.5 \times 10^{-2}$ |
| 5 | sediment | $4.5 \times 10^{-2}$ |
| 6 | phytoplankton | $3.5 \times 10^{-2}$ |
| 7 | aquat | $3.3 \times 10^{-2}$ |
| 8 | ecosystem | $3.3 \times 10^{-2}$ |
| 9 | season | $2.8 \times 10^{-2}$ |
| 10 | nutrient | $2.8 \times 10^{-2}$ |
| 11 | catchment | $2.8 \times 10^{-2}$ |
| 12 | dissolv | $2.6 \times 10^{-2}$ |
| 13 | speci | $2.6 \times 10^{-2}$ |
| 14 | habitat | $2.5 \times 10^{-2}$ |
| 15 | freshwat | $2.5 \times 10^{-2}$ |
| 16 | abund | $2.4 \times 10^{-2}$ |
| 17 | benthic | $2.4 \times 10^{-2}$ |
| 18 | fish | $2.3 \times 10^{-2}$ |
| 19 | climat | $2.2 \times 10^{-2}$ |
| 20 | ecolog | $2.2 \times 10^{-2}$ |
| 21 | groundwat | $2.2 \times 10^{-2}$ |
| 22 | basin | $2.2 \times 10^{-2}$ |
| 23 | summer | $2.1 \times 10^{-2}$ |
| 24 | flow | $2.1 \times 10^{-2}$ |
| 25 | eutroph | $2 \times 10^{-2}$ |
| 26 | zooplankton | $2 \times 10^{-2}$ |
| 27 | spatial | $1.9 \times 10^{-2}$ |
| 28 | phosphorus | $1.9 \times 10^{-2}$ |
| 29 | domin | $1.9 \times 10^{-2}$ |
| 30 | variabl | $1.9 \times 10^{-2}$ |
| 31 | communiti | $1.8 \times 10^{-2}$ |
| 32 | stream | $1.8 \times 10^{-2}$ |
| 33 | trophic | $1.8 \times 10^{-2}$ |
| 34 | environment | $1.8 \times 10^{-2}$ |
| 35 | assemblag | $1.7 \times 10^{-2}$ |
| 36 | depth | $1.6 \times 10^{-2}$ |
| 37 | patient | $1.6 \times 10^{-2}$ |
| 38 | runoff | $1.6 \times 10^{-2}$ |
| 39 | aquif | $1.6 \times 10^{-2}$ |
| 40 | watersh | $1.5 \times 10^{-2}$ |
| 41 | algal | $1.5 \times 10^{-2}$ |
| 42 | diatom | $1.5 \times 10^{-2}$ |
| 43 | shallow | $1.4 \times 10^{-2}$ |
| 44 | conclus | $1.4 \times 10^{-2}$ |
| 45 | bloom | $1.4 \times 10^{-2}$ |
| 46 | biomass | $1.4 \times 10^{-2}$ |
| 47 | hydraul | $1.4 \times 10^{-2}$ |
| 48 | wetland | $1.3 \times 10^{-2}$ |
| 49 | bay | $1.3 \times 10^{-2}$ |
| 50 | chlorophyl | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | taxa | $1.3 \times 10^{-2}$ |
| 52 | alga | $1.2 \times 10^{-2}$ |
| 53 | flood | $1.2 \times 10^{-2}$ |
| 54 | rainfal | $1.2 \times 10^{-2}$ |
| 55 | chang | $1.2 \times 10^{-2}$ |
| 56 | reservoir | $1.2 \times 10^{-2}$ |
| 57 | tempor | $1.2 \times 10^{-2}$ |
| 58 | concentr | $1.2 \times 10^{-2}$ |
| 59 | precipit | $1.1 \times 10^{-2}$ |
| 60 | annual | $1.1 \times 10^{-2}$ |
| 61 | spring | $1.1 \times 10^{-2}$ |
| 62 | column | $1.1 \times 10^{-2}$ |
| 63 | invertebr | $1.1 \times 10^{-2}$ |
| 64 | winter | $1.1 \times 10^{-2}$ |
| 65 | condit | $1.1 \times 10^{-2}$ |
| 66 | period | $1 \times 10^{-2}$ |
| 67 | coastal | $1 \times 10^{-2}$ |
| 68 | nitrogen | $1 \times 10^{-2}$ |
| 69 | estuari | $1 \times 10^{-2}$ |
| 70 | scale | $1 \times 10^{-2}$ |
| 71 | subsurfac | $1 \times 10^{-2}$ |
| 72 | flux | $9.7 \times 10^{-3}$ |
| 73 | clinic | $9.7 \times 10^{-3}$ |
| 74 | soil | $9.6 \times 10^{-3}$ |
| 75 | veget | $9.5 \times 10^{-3}$ |
| 76 | plankton | $9.5 \times 10^{-3}$ |
| 77 | dure | $9.4 \times 10^{-3}$ |
| 78 | site | $9.2 \times 10^{-3}$ |
| 79 | pelag | $9.2 \times 10^{-3}$ |
| 80 | organ | $9.1 \times 10^{-3}$ |
| 81 | distribut | $9 \times 10^{-3}$ |
| 82 | estim | $9 \times 10^{-3}$ |
| 83 | indic | $8.9 \times 10^{-3}$ |
| 84 | anthropogen | $8.9 \times 10^{-3}$ |
| 85 | variat | $8.7 \times 10^{-3}$ |
| 86 | zone | $8.6 \times 10^{-3}$ |
| 87 | predat | $8.5 \times 10^{-3}$ |
| 88 | area | $8.4 \times 10^{-3}$ |
| 89 | north | $8.2 \times 10^{-3}$ |
| 90 | sea | $8.1 \times 10^{-3}$ |
| 91 | prey | $7.7 \times 10^{-3}$ |
| 92 | influenc | $7.6 \times 10^{-3}$ |
| 93 | wastewat | $7.6 \times 10^{-3}$ |
| 94 | transport | $7.6 \times 10^{-3}$ |
| 95 | nitrat | $7.6 \times 10^{-3}$ |
| 96 | land | $7.6 \times 10^{-3}$ |
| 97 | relat | $7.4 \times 10^{-3}$ |
| 98 | discharg | $7.4 \times 10^{-3}$ |
| 99 | diseas | $7.4 \times 10^{-3}$ |
| 100 | salin | $7.2 \times 10^{-3}$ |

Table D.125. The list of the top 100 words in the category Linguistics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | languag | $2.6 \times 10^{-1}$ |
| 2 | english | $1.3 \times 10^{-1}$ |
| 3 | linguist | $1.2 \times 10^{-1}$ |
| 4 | speaker | $7.2 \times 10^{-2}$ |
| 5 | word | $7.1 \times 10^{-2}$ |
| 6 | corpus | $6.8 \times 10^{-2}$ |
| 7 | lexic | $6.7 \times 10^{-2}$ |
| 8 | speech | $6.6 \times 10^{-2}$ |
| 9 | verb | $5.2 \times 10^{-2}$ |
| 10 | semant | $4.3 \times 10^{-2}$ |
| 11 | text | $4.2 \times 10^{-2}$ |
| 12 | syntact | $4.1 \times 10^{-2}$ |
| 13 | sentenc | $3.9 \times 10^{-2}$ |
| 14 | learner | $3.8 \times 10^{-2}$ |
| 15 | grammat | $3.6 \times 10^{-2}$ |
| 16 | discours | $3.6 \times 10^{-2}$ |
| 17 | phonolog | $3.3 \times 10^{-2}$ |
| 18 | corpora | $3 \times 10^{-2}$ |
| 19 | bilingu | $2.8 \times 10^{-2}$ |
| 20 | spoken | $2.8 \times 10^{-2}$ |
| 21 | noun | $2.7 \times 10^{-2}$ |
| 22 | grammar | $2.5 \times 10^{-2}$ |
| 23 | speak | $2.5 \times 10^{-2}$ |
| 24 | task | $2.5 \times 10^{-2}$ |
| 25 | multilingu | $2.4 \times 10^{-2}$ |
| 26 | articl | $2.4 \times 10^{-2}$ |
| 27 | argu | $2.4 \times 10^{-2}$ |
| 28 | annot | $2.3 \times 10^{-2}$ |
| 29 | spanish | $2.3 \times 10^{-2}$ |
| 30 | context | $2.2 \times 10^{-2}$ |
| 31 | learn | $2.1 \times 10^{-2}$ |
| 32 | vowel | $1.9 \times 10^{-2}$ |
| 33 | claus | $1.9 \times 10^{-2}$ |
| 34 | phonet | $1.8 \times 10^{-2}$ |
| 35 | pragmat | $1.8 \times 10^{-2}$ |
| 36 | phrase | $1.8 \times 10^{-2}$ |
| 37 | profici | $1.8 \times 10^{-2}$ |
| 38 | cell | $1.8 \times 10^{-2}$ |
| 39 | vocabulari | $1.6 \times 10^{-2}$ |
| 40 | student | $1.6 \times 10^{-2}$ |
| 41 | translat | $1.6 \times 10^{-2}$ |
| 42 | utter | $1.5 \times 10^{-2}$ |
| 43 | children | $1.4 \times 10^{-2}$ |
| 44 | syntax | $1.4 \times 10^{-2}$ |
| 45 | particip | $1.4 \times 10^{-2}$ |
| 46 | syllabl | $1.4 \times 10^{-2}$ |
| 47 | german | $1.3 \times 10^{-2}$ |
| 48 | dialect | $1.3 \times 10^{-2}$ |
| 49 | read | $1.3 \times 10^{-2}$ |
| 50 | listen | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | teacher | $1.3 \times 10^{-2}$ |
| 52 | research | $1.3 \times 10^{-2}$ |
| 53 | verbal | $1.3 \times 10^{-2}$ |
| 54 | french | $1.3 \times 10^{-2}$ |
| 55 | written | $1.3 \times 10^{-2}$ |
| 56 | write | $1.3 \times 10^{-2}$ |
| 57 | classroom | $1.2 \times 10^{-2}$ |
| 58 | temperatur | $1.2 \times 10^{-2}$ |
| 59 | foreign | $1.2 \times 10^{-2}$ |
| 60 | conson | $1.2 \times 10^{-2}$ |
| 61 | patient | $1.2 \times 10^{-2}$ |
| 62 | narrat | $1.1 \times 10^{-2}$ |
| 63 | argument | $1.1 \times 10^{-2}$ |
| 64 | energi | $1.1 \times 10^{-2}$ |
| 65 | genr | $1.1 \times 10^{-2}$ |
| 66 | nativ | $1 \times 10^{-2}$ |
| 67 | interpret | $1 \times 10^{-2}$ |
| 68 | question | $1 \times 10^{-2}$ |
| 69 | protein | $1 \times 10^{-2}$ |
| 70 | focus | $9.9 \times 10^{-3}$ |
| 71 | teach | $9.9 \times 10^{-3}$ |
| 72 | simul | $9.8 \times 10^{-3}$ |
| 73 | discuss | $9.7 \times 10^{-3}$ |
| 74 | communic | $9.7 \times 10^{-3}$ |
| 75 | paper | $9.7 \times 10^{-3}$ |
| 76 | draw | $9.1 \times 10^{-3}$ |
| 77 | instruct | $9.1 \times 10^{-3}$ |
| 78 | acquisit | $9 \times 10^{-3}$ |
| 79 | increas | $9 \times 10^{-3}$ |
| 80 | decreas | $9 \times 10^{-3}$ |
| 81 | concentr | $8.9 \times 10^{-3}$ |
| 82 | metaphor | $8.8 \times 10^{-3}$ |
| 83 | high | $8.8 \times 10^{-3}$ |
| 84 | social | $8.6 \times 10^{-3}$ |
| 85 | reader | $8.4 \times 10^{-3}$ |
| 86 | method | $8.4 \times 10^{-3}$ |
| 87 | water | $8.3 \times 10^{-3}$ |
| 88 | school | $8.3 \times 10^{-3}$ |
| 89 | acid | $8.3 \times 10^{-3}$ |
| 90 | chines | $8.2 \times 10^{-3}$ |
| 91 | examin | $8.1 \times 10^{-3}$ |
| 92 | way | $8 \times 10^{-3}$ |
| 93 | voic | $8 \times 10^{-3}$ |
| 94 | cognit | $7.9 \times 10^{-3}$ |
| 95 | explor | $7.9 \times 10^{-3}$ |
| 96 | surfac | $7.8 \times 10^{-3}$ |
| 97 | predic | $7.7 \times 10^{-3}$ |
| 98 | resourc | $7.7 \times 10^{-3}$ |
| 99 | automat | $7.6 \times 10^{-3}$ |
| 100 | claim | $7.5 \times 10^{-3}$ |

Table D.126. The list of the top 100 words in the category Literary Reviews with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | essay | $2.3 \times 10^{-1}$ |
| 2 | connor | $2.1 \times 10^{-1}$ |
| 3 | steven | $1.3 \times 10^{-1}$ |
| 4 | irish | $1.2 \times 10^{-1}$ |
| 5 | writer | $7.8 \times 10^{-2}$ |
| 6 | poem | $6.3 \times 10^{-2}$ |
| 7 | polit | $5.6 \times 10^{-2}$ |
| 8 | cultur | $5.5 \times 10^{-2}$ |
| 9 | ireland | $4.9 \times 10^{-2}$ |
| 10 | theatr | $4.6 \times 10^{-2}$ |
| 11 | narrat | $4.6 \times 10^{-2}$ |
| 12 | result | $4.6 \times 10^{-2}$ |
| 13 | stori | $3.9 \times 10^{-2}$ |
| 14 | intellectu | $3.9 \times 10^{-2}$ |
| 15 | imagin | $3.5 \times 10^{-2}$ |
| 16 | poetri | $3.5 \times 10^{-2}$ |
| 17 | beckett | $3.4 \times 10^{-2}$ |
| 18 | write | $3.2 \times 10^{-2}$ |
| 19 | argu | $3.2 \times 10^{-2}$ |
| 20 | adorno | $3.1 \times 10^{-2}$ |
| 21 | studi | $3.1 \times 10^{-2}$ |
| 22 | book | $3.1 \times 10^{-2}$ |
| 23 | ulyss | $3.1 \times 10^{-2}$ |
| 24 | english | $3 \times 10^{-2}$ |
| 25 | fiction | $3 \times 10^{-2}$ |
| 26 | playwright | $3 \times 10^{-2}$ |
| 27 | method | $3 \times 10^{-2}$ |
| 28 | work | $2.9 \times 10^{-2}$ |
| 29 | celebr | $2.9 \times 10^{-2}$ |
| 30 | magic | $2.9 \times 10^{-2}$ |
| 31 | oeuvr | $2.8 \times 10^{-2}$ |
| 32 | refus | $2.7 \times 10^{-2}$ |
| 33 | literari | $2.7 \times 10^{-2}$ |
| 34 | lyric | $2.6 \times 10^{-2}$ |
| 35 | london | $2.5 \times 10^{-2}$ |
| 36 | press | $2.5 \times 10^{-2}$ |
| 37 | prose | $2.5 \times 10^{-2}$ |
| 38 | theme | $2.4 \times 10^{-2}$ |
| 39 | vers | $2.4 \times 10^{-2}$ |
| 40 | obliqu | $2.3 \times 10^{-2}$ |
| 41 | read | $2.3 \times 10^{-2}$ |
| 42 | think | $2.3 \times 10^{-2}$ |
| 43 | jean | $2.3 \times 10^{-2}$ |
| 44 | york | $2.2 \times 10^{-2}$ |
| 45 | struggl | $2.2 \times 10^{-2}$ |
| 46 | drama | $2.2 \times 10^{-2}$ |
| 47 | model | $2.1 \times 10^{-2}$ |
| 48 | poetic | $2.1 \times 10^{-2}$ |
| 49 | heroin | $2.1 \times 10^{-2}$ |
| 50 | wrote | $2.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | claim | $2.1 \times 10^{-2}$ |
| 52 | british | $2 \times 10^{-2}$ |
| 53 | compar | $2 \times 10^{-2}$ |
| 54 | sexual | $2 \times 10^{-2}$ |
| 55 | assault | $2 \times 10^{-2}$ |
| 56 | tour | $2 \times 10^{-2}$ |
| 57 | paper | $2 \times 10^{-2}$ |
| 58 | effect | $2 \times 10^{-2}$ |
| 59 | jewish | $2 \times 10^{-2}$ |
| 60 | languag | $2 \times 10^{-2}$ |
| 61 | transcend | $2 \times 10^{-2}$ |
| 62 | reader | $1.9 \times 10^{-2}$ |
| 63 | system | $1.9 \times 10^{-2}$ |
| 64 | piec | $1.8 \times 10^{-2}$ |
| 65 | studio | $1.8 \times 10^{-2}$ |
| 66 | investig | $1.8 \times 10^{-2}$ |
| 67 | troubl | $1.7 \times 10^{-2}$ |
| 68 | world | $1.7 \times 10^{-2}$ |
| 69 | rememb | $1.7 \times 10^{-2}$ |
| 70 | entertain | $1.7 \times 10^{-2}$ |
| 71 | marriag | $1.7 \times 10^{-2}$ |
| 72 | life | $1.7 \times 10^{-2}$ |
| 73 | genr | $1.7 \times 10^{-2}$ |
| 74 | shelley | $1.7 \times 10^{-2}$ |
| 75 | public | $1.7 \times 10^{-2}$ |
| 76 | love | $1.6 \times 10^{-2}$ |
| 77 | metaphor | $1.6 \times 10^{-2}$ |
| 78 | measur | $1.6 \times 10^{-2}$ |
| 79 | retreat | $1.6 \times 10^{-2}$ |
| 80 | tell | $1.6 \times 10^{-2}$ |
| 81 | radic | $1.6 \times 10^{-2}$ |
| 82 | john | $1.6 \times 10^{-2}$ |
| 83 | show | $1.6 \times 10^{-2}$ |
| 84 | scholarship | $1.5 \times 10^{-2}$ |
| 85 | bront | $1.5 \times 10^{-2}$ |
| 86 | high | $1.5 \times 10^{-2}$ |
| 87 | figur | $1.5 \times 10^{-2}$ |
| 88 | famous | $1.5 \times 10^{-2}$ |
| 89 | artist | $1.5 \times 10^{-2}$ |
| 90 | articl | $1.4 \times 10^{-2}$ |
| 91 | propos | $1.4 \times 10^{-2}$ |
| 92 | art | $1.4 \times 10^{-2}$ |
| 93 | increas | $1.4 \times 10^{-2}$ |
| 94 | joyc | $1.4 \times 10^{-2}$ |
| 95 | inquiri | $1.4 \times 10^{-2}$ |
| 96 | antholog | $1.4 \times 10^{-2}$ |
| 97 | philosoph | $1.4 \times 10^{-2}$ |
| 98 | tradit | $1.4 \times 10^{-2}$ |
| 99 | control | $1.4 \times 10^{-2}$ |
| 100 | coloni | $1.4 \times 10^{-2}$ |

Table D.127. The list of the top 100 words in the category Literary Theory and Criticism with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | literari | $6.6 \times 10^{-2}$ |
| 2 | english | $5.6 \times 10^{-2}$ |
| 3 | languag | $5 \times 10^{-2}$ |
| 4 | essay | $4.3 \times 10^{-2}$ |
| 5 | fiction | $4.1 \times 10^{-2}$ |
| 6 | poetri | $4 \times 10^{-2}$ |
| 7 | result | $4 \times 10^{-2}$ |
| 8 | text | $3.9 \times 10^{-2}$ |
| 9 | writer | $3.7 \times 10^{-2}$ |
| 10 | cultur | $3.7 \times 10^{-2}$ |
| 11 | narrat | $3.7 \times 10^{-2}$ |
| 12 | write | $3.6 \times 10^{-2}$ |
| 13 | stori | $3.5 \times 10^{-2}$ |
| 14 | reader | $3.5 \times 10^{-2}$ |
| 15 | read | $2.8 \times 10^{-2}$ |
| 16 | discours | $2.8 \times 10^{-2}$ |
| 17 | poem | $2.7 \times 10^{-2}$ |
| 18 | polit | $2.6 \times 10^{-2}$ |
| 19 | poet | $2.5 \times 10^{-2}$ |
| 20 | translat | $2.3 \times 10^{-2}$ |
| 21 | centuri | $2.2 \times 10^{-2}$ |
| 22 | charact | $2.2 \times 10^{-2}$ |
| 23 | linguist | $2.1 \times 10^{-2}$ |
| 24 | argu | $2 \times 10^{-2}$ |
| 25 | book | $1.9 \times 10^{-2}$ |
| 26 | use | $1.9 \times 10^{-2}$ |
| 27 | measur | $1.9 \times 10^{-2}$ |
| 28 | poetic | $1.8 \times 10^{-2}$ |
| 29 | method | $1.8 \times 10^{-2}$ |
| 30 | stylist | $1.7 \times 10^{-2}$ |
| 31 | aesthet | $1.7 \times 10^{-2}$ |
| 32 | modern | $1.7 \times 10^{-2}$ |
| 33 | contemporari | $1.7 \times 10^{-2}$ |
| 34 | american | $1.6 \times 10^{-2}$ |
| 35 | artist | $1.6 \times 10^{-2}$ |
| 36 | ideolog | $1.6 \times 10^{-2}$ |
| 37 | romanian | $1.6 \times 10^{-2}$ |
| 38 | world | $1.6 \times 10^{-2}$ |
| 39 | increas | $1.5 \times 10^{-2}$ |
| 40 | high | $1.5 \times 10^{-2}$ |
| 41 | imagin | $1.5 \times 10^{-2}$ |
| 42 | teach | $1.5 \times 10^{-2}$ |
| 43 | way | $1.5 \times 10^{-2}$ |
| 44 | theolog | $1.4 \times 10^{-2}$ |
| 45 | chines | $1.4 \times 10^{-2}$ |
| 46 | articl | $1.4 \times 10^{-2}$ |
| 47 | perform | $1.3 \times 10^{-2}$ |
| 48 | rate | $1.3 \times 10^{-2}$ |
| 49 | symbol | $1.3 \times 10^{-2}$ |
| 50 | effect | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | higher | $1.2 \times 10^{-2}$ |
| 52 | histor | $1.2 \times 10^{-2}$ |
| 53 | tri | $1.2 \times 10^{-2}$ |
| 54 | attempt | $1.2 \times 10^{-2}$ |
| 55 | model | $1.2 \times 10^{-2}$ |
| 56 | ident | $1.2 \times 10^{-2}$ |
| 57 | obtain | $1.2 \times 10^{-2}$ |
| 58 | control | $1.2 \times 10^{-2}$ |
| 59 | philosoph | $1.2 \times 10^{-2}$ |
| 60 | patient | $1.2 \times 10^{-2}$ |
| 61 | protagonist | $1.2 \times 10^{-2}$ |
| 62 | view | $1.2 \times 10^{-2}$ |
| 63 | author | $1.2 \times 10^{-2}$ |
| 64 | data | $1.1 \times 10^{-2}$ |
| 65 | foreign | $1.1 \times 10^{-2}$ |
| 66 | system | $1.1 \times 10^{-2}$ |
| 67 | cell | $1.1 \times 10^{-2}$ |
| 68 | postcoloni | $1.1 \times 10^{-2}$ |
| 69 | art | $1.1 \times 10^{-2}$ |
| 70 | decreas | $1.1 \times 10^{-2}$ |
| 71 | low | $1.1 \times 10^{-2}$ |
| 72 | tale | $1.1 \times 10^{-2}$ |
| 73 | perspect | $1.1 \times 10^{-2}$ |
| 74 | reduc | $1.1 \times 10^{-2}$ |
| 75 | compar | $1.1 \times 10^{-2}$ |
| 76 | novelist | $1.1 \times 10^{-2}$ |
| 77 | improv | $1 \times 10^{-2}$ |
| 78 | british | $1 \times 10^{-2}$ |
| 79 | beckett | $1 \times 10^{-2}$ |
| 80 | theori | $1 \times 10^{-2}$ |
| 81 | war | $1 \times 10^{-2}$ |
| 82 | theme | $1 \times 10^{-2}$ |
| 83 | embodi | $1 \times 10^{-2}$ |
| 84 | treatment | $1 \times 10^{-2}$ |
| 85 | turkish | $1 \times 10^{-2}$ |
| 86 | religi | $1 \times 10^{-2}$ |
| 87 | literatur | $1 \times 10^{-2}$ |
| 88 | genr | $1 \times 10^{-2}$ |
| 89 | realiti | $9.9 \times 10^{-3}$ |
| 90 | societi | $9.9 \times 10^{-3}$ |
| 91 | christian | $9.8 \times 10^{-3}$ |
| 92 | temperatur | $9.8 \times 10^{-3}$ |
| 93 | lower | $9.6 \times 10^{-3}$ |
| 94 | divin | $9.5 \times 10^{-3}$ |
| 95 | william | $9.4 \times 10^{-3}$ |
| 96 | simul | $9.2 \times 10^{-3}$ |
| 97 | paramet | $9.2 \times 10^{-3}$ |
| 98 | written | $9.2 \times 10^{-3}$ |
| 99 | histori | $9.2 \times 10^{-3}$ |
| 100 | tragic | $9.2 \times 10^{-3}$ |

Table D.128. The list of the top 100 words in the category Literature with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | literari | $1.2 \times 10^{-1}$ |
| 2 | essay | $1 \times 10^{-1}$ |
| 3 | narrat | $9.1 \times 10^{-2}$ |
| 4 | articl | $8.6 \times 10^{-2}$ |
| 5 | fiction | $8 \times 10^{-2}$ |
| 6 | text | $7.9 \times 10^{-2}$ |
| 7 | argu | $7.6 \times 10^{-2}$ |
| 8 | writer | $6.1 \times 10^{-2}$ |
| 9 | write | $5.9 \times 10^{-2}$ |
| 10 | read | $5.9 \times 10^{-2}$ |
| 11 | result | $5.2 \times 10^{-2}$ |
| 12 | centuri | $4.7 \times 10^{-2}$ |
| 13 | poem | $4.5 \times 10^{-2}$ |
| 14 | poetri | $4.2 \times 10^{-2}$ |
| 15 | reader | $4.1 \times 10^{-2}$ |
| 16 | polit | $4 \times 10^{-2}$ |
| 17 | stori | $3.8 \times 10^{-2}$ |
| 18 | cultur | $3.7 \times 10^{-2}$ |
| 19 | contemporari | $3.5 \times 10^{-2}$ |
| 20 | rhetor | $3.4 \times 10^{-2}$ |
| 21 | genr | $3.4 \times 10^{-2}$ |
| 22 | poetic | $3.3 \times 10^{-2}$ |
| 23 | discours | $3.3 \times 10^{-2}$ |
| 24 | poet | $3.1 \times 10^{-2}$ |
| 25 | english | $3.1 \times 10^{-2}$ |
| 26 | charact | $2.6 \times 10^{-2}$ |
| 27 | postcoloni | $2.6 \times 10^{-2}$ |
| 28 | book | $2.5 \times 10^{-2}$ |
| 29 | histor | $2.5 \times 10^{-2}$ |
| 30 | protagonist | $2.4 \times 10^{-2}$ |
| 31 | method | $2.4 \times 10^{-2}$ |
| 32 | way | $2.4 \times 10^{-2}$ |
| 33 | imagin | $2.3 \times 10^{-2}$ |
| 34 | aesthet | $2.3 \times 10^{-2}$ |
| 35 | languag | $2.2 \times 10^{-2}$ |
| 36 | author | $2.2 \times 10^{-2}$ |
| 37 | translat | $2.2 \times 10^{-2}$ |
| 38 | explor | $2.1 \times 10^{-2}$ |
| 39 | use | $2.1 \times 10^{-2}$ |
| 40 | war | $2 \times 10^{-2}$ |
| 41 | histori | $2 \times 10^{-2}$ |
| 42 | critiqu | $1.9 \times 10^{-2}$ |
| 43 | modern | $1.9 \times 10^{-2}$ |
| 44 | artist | $1.9 \times 10^{-2}$ |
| 45 | world | $1.8 \times 10^{-2}$ |
| 46 | effect | $1.8 \times 10^{-2}$ |
| 47 | critic | $1.8 \times 10^{-2}$ |
| 48 | love | $1.8 \times 10^{-2}$ |
| 49 | data | $1.8 \times 10^{-2}$ |
| 50 | work | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | engag | $1.7 \times 10^{-2}$ |
| 52 | nineteenth | $1.7 \times 10^{-2}$ |
| 53 | high | $1.7 \times 10^{-2}$ |
| 54 | increas | $1.6 \times 10^{-2}$ |
| 55 | literatur | $1.6 \times 10^{-2}$ |
| 56 | measur | $1.6 \times 10^{-2}$ |
| 57 | scholar | $1.6 \times 10^{-2}$ |
| 58 | shakespear | $1.6 \times 10^{-2}$ |
| 59 | american | $1.6 \times 10^{-2}$ |
| 60 | textual | $1.6 \times 10^{-2}$ |
| 61 | draw | $1.6 \times 10^{-2}$ |
| 62 | linguist | $1.6 \times 10^{-2}$ |
| 63 | figur | $1.6 \times 10^{-2}$ |
| 64 | prose | $1.5 \times 10^{-2}$ |
| 65 | patient | $1.5 \times 10^{-2}$ |
| 66 | studi | $1.5 \times 10^{-2}$ |
| 67 | novel | $1.5 \times 10^{-2}$ |
| 68 | ideolog | $1.4 \times 10^{-2}$ |
| 69 | written | $1.4 \times 10^{-2}$ |
| 70 | scholarship | $1.4 \times 10^{-2}$ |
| 71 | audienc | $1.4 \times 10^{-2}$ |
| 72 | cell | $1.4 \times 10^{-2}$ |
| 73 | represent | $1.4 \times 10^{-2}$ |
| 74 | rate | $1.4 \times 10^{-2}$ |
| 75 | ethic | $1.4 \times 10^{-2}$ |
| 76 | improv | $1.3 \times 10^{-2}$ |
| 77 | john | $1.3 \times 10^{-2}$ |
| 78 | obtain | $1.3 \times 10^{-2}$ |
| 79 | social | $1.3 \times 10^{-2}$ |
| 80 | william | $1.3 \times 10^{-2}$ |
| 81 | ident | $1.3 \times 10^{-2}$ |
| 82 | reduc | $1.2 \times 10^{-2}$ |
| 83 | evalu | $1.2 \times 10^{-2}$ |
| 84 | novelist | $1.2 \times 10^{-2}$ |
| 85 | notion | $1.2 \times 10^{-2}$ |
| 86 | compar | $1.2 \times 10^{-2}$ |
| 87 | modernist | $1.2 \times 10^{-2}$ |
| 88 | question | $1.2 \times 10^{-2}$ |
| 89 | higher | $1.2 \times 10^{-2}$ |
| 90 | manuscript | $1.1 \times 10^{-2}$ |
| 91 | tale | $1.1 \times 10^{-2}$ |
| 92 | control | $1.1 \times 10^{-2}$ |
| 93 | system | $1.1 \times 10^{-2}$ |
| 94 | struggl | $1.1 \times 10^{-2}$ |
| 95 | decreas | $1.1 \times 10^{-2}$ |
| 96 | art | $1.1 \times 10^{-2}$ |
| 97 | temperatur | $1.1 \times 10^{-2}$ |
| 98 | effici | $1.1 \times 10^{-2}$ |
| 99 | trope | $1.1 \times 10^{-2}$ |
| 100 | context | $1.1 \times 10^{-2}$ |

Table D.129. The list of the top 100 words in the category Literature, African, Australian, Canadian with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | essay | $1.8 \times 10^{-1}$ |
| 2 | african | $1.8 \times 10^{-1}$ |
| 3 | literari | $1.6 \times 10^{-1}$ |
| 4 | postcoloni | $1.5 \times 10^{-1}$ |
| 5 | narrat | $1.3 \times 10^{-1}$ |
| 6 | writer | $9.2 \times 10^{-2}$ |
| 7 | read | $8 \times 10^{-2}$ |
| 8 | novel | $7.6 \times 10^{-2}$ |
| 9 | fiction | $7.4 \times 10^{-2}$ |
| 10 | diaspora | $7.2 \times 10^{-2}$ |
| 11 | argu | $6.8 \times 10^{-2}$ |
| 12 | articl | $6.6 \times 10^{-2}$ |
| 13 | protagonist | $6.5 \times 10^{-2}$ |
| 14 | africa | $6.2 \times 10^{-2}$ |
| 15 | discours | $6 \times 10^{-2}$ |
| 16 | text | $5.9 \times 10^{-2}$ |
| 17 | violenc | $5.3 \times 10^{-2}$ |
| 18 | coloni | $5 \times 10^{-2}$ |
| 19 | black | $4.8 \times 10^{-2}$ |
| 20 | novelist | $4.7 \times 10^{-2}$ |
| 21 | result | $4.6 \times 10^{-2}$ |
| 22 | cultur | $4.6 \times 10^{-2}$ |
| 23 | notion | $4.2 \times 10^{-2}$ |
| 24 | imagin | $3.8 \times 10^{-2}$ |
| 25 | inscrib | $3.7 \times 10^{-2}$ |
| 26 | modern | $3.7 \times 10^{-2}$ |
| 27 | contemporari | $3.5 \times 10^{-2}$ |
| 28 | subvers | $3.2 \times 10^{-2}$ |
| 29 | write | $3.2 \times 10^{-2}$ |
| 30 | societi | $3 \times 10^{-2}$ |
| 31 | histor | $3 \times 10^{-2}$ |
| 32 | atlant | $3 \times 10^{-2}$ |
| 33 | racial | $2.9 \times 10^{-2}$ |
| 34 | genr | $2.9 \times 10^{-2}$ |
| 35 | storytel | $2.9 \times 10^{-2}$ |
| 36 | overlook | $2.9 \times 10^{-2}$ |
| 37 | craft | $2.9 \times 10^{-2}$ |
| 38 | world | $2.8 \times 10^{-2}$ |
| 39 | portray | $2.8 \times 10^{-2}$ |
| 40 | symbol | $2.8 \times 10^{-2}$ |
| 41 | poetic | $2.7 \times 10^{-2}$ |
| 42 | poetri | $2.7 \times 10^{-2}$ |
| 43 | poem | $2.7 \times 10^{-2}$ |
| 44 | stori | $2.6 \times 10^{-2}$ |
| 45 | way | $2.6 \times 10^{-2}$ |
| 46 | critiqu | $2.6 \times 10^{-2}$ |
| 47 | literatur | $2.5 \times 10^{-2}$ |
| 48 | slaveri | $2.5 \times 10^{-2}$ |
| 49 | method | $2.5 \times 10^{-2}$ |
| 50 | agenc | $2.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | intertextu | $2.4 \times 10^{-2}$ |
| 52 | nation | $2.4 \times 10^{-2}$ |
| 53 | diaspor | $2.4 \times 10^{-2}$ |
| 54 | tradit | $2.3 \times 10^{-2}$ |
| 55 | ideolog | $2.3 \times 10^{-2}$ |
| 56 | languag | $2.3 \times 10^{-2}$ |
| 57 | trope | $2.3 \times 10^{-2}$ |
| 58 | question | $2.3 \times 10^{-2}$ |
| 59 | discurs | $2.2 \times 10^{-2}$ |
| 60 | transnat | $2.2 \times 10^{-2}$ |
| 61 | women | $2.2 \times 10^{-2}$ |
| 62 | base | $2.1 \times 10^{-2}$ |
| 63 | articul | $2.1 \times 10^{-2}$ |
| 64 | stylist | $2.1 \times 10^{-2}$ |
| 65 | race | $2.1 \times 10^{-2}$ |
| 66 | war | $2.1 \times 10^{-2}$ |
| 67 | centuri | $2.1 \times 10^{-2}$ |
| 68 | context | $2 \times 10^{-2}$ |
| 69 | english | $1.9 \times 10^{-2}$ |
| 70 | solidar | $1.9 \times 10^{-2}$ |
| 71 | author | $1.9 \times 10^{-2}$ |
| 72 | histori | $1.9 \times 10^{-2}$ |
| 73 | data | $1.9 \times 10^{-2}$ |
| 74 | west | $1.9 \times 10^{-2}$ |
| 75 | use | $1.9 \times 10^{-2}$ |
| 76 | charact | $1.9 \times 10^{-2}$ |
| 77 | high | $1.9 \times 10^{-2}$ |
| 78 | polit | $1.8 \times 10^{-2}$ |
| 79 | particular | $1.8 \times 10^{-2}$ |
| 80 | explor | $1.8 \times 10^{-2}$ |
| 81 | intersect | $1.8 \times 10^{-2}$ |
| 82 | represent | $1.8 \times 10^{-2}$ |
| 83 | indian | $1.7 \times 10^{-2}$ |
| 84 | american | $1.7 \times 10^{-2}$ |
| 85 | attempt | $1.7 \times 10^{-2}$ |
| 86 | trauma | $1.6 \times 10^{-2}$ |
| 87 | written | $1.6 \times 10^{-2}$ |
| 88 | global | $1.6 \times 10^{-2}$ |
| 89 | neglect | $1.6 \times 10^{-2}$ |
| 90 | effect | $1.6 \times 10^{-2}$ |
| 91 | slave | $1.6 \times 10^{-2}$ |
| 92 | haunt | $1.6 \times 10^{-2}$ |
| 93 | book | $1.6 \times 10^{-2}$ |
| 94 | figur | $1.6 \times 10^{-2}$ |
| 95 | satir | $1.5 \times 10^{-2}$ |
| 96 | work | $1.5 \times 10^{-2}$ |
| 97 | journey | $1.5 \times 10^{-2}$ |
| 98 | comedi | $1.5 \times 10^{-2}$ |
| 99 | critic | $1.5 \times 10^{-2}$ |
| 100 | speak | $1.5 \times 10^{-2}$ |

Table D.130. The list of the top 100 words in the category Literature, American with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | essay | $2.6 \times 10^{-1}$ |
| 2 | american | $1.2 \times 10^{-1}$ |
| 3 | antebellum | $9.9 \times 10^{-2}$ |
| 4 | argu | $9.2 \times 10^{-2}$ |
| 5 | dickinson | $8.9 \times 10^{-2}$ |
| 6 | poem | $8.5 \times 10^{-2}$ |
| 7 | literari | $8.3 \times 10^{-2}$ |
| 8 | narrat | $8.2 \times 10^{-2}$ |
| 9 | melvill | $8 \times 10^{-2}$ |
| 10 | poe | $6.6 \times 10^{-2}$ |
| 11 | slaveri | $6.1 \times 10^{-2}$ |
| 12 | stori | $6 \times 10^{-2}$ |
| 13 | text | $5.7 \times 10^{-2}$ |
| 14 | fiction | $5.6 \times 10^{-2}$ |
| 15 | jewish | $5.2 \times 10^{-2}$ |
| 16 | tale | $5 \times 10^{-2}$ |
| 17 | writer | $5 \times 10^{-2}$ |
| 18 | centuri | $4.6 \times 10^{-2}$ |
| 19 | satir | $4.3 \times 10^{-2}$ |
| 20 | letter | $4.3 \times 10^{-2}$ |
| 21 | poet | $4.3 \times 10^{-2}$ |
| 22 | write | $4.1 \times 10^{-2}$ |
| 23 | america | $4 \times 10^{-2}$ |
| 24 | scholar | $3.9 \times 10^{-2}$ |
| 25 | result | $3.8 \times 10^{-2}$ |
| 26 | engag | $3.8 \times 10^{-2}$ |
| 27 | racial | $3.7 \times 10^{-2}$ |
| 28 | critiqu | $3.6 \times 10^{-2}$ |
| 29 | histor | $3.5 \times 10^{-2}$ |
| 30 | poetic | $3.4 \times 10^{-2}$ |
| 31 | poetri | $3.4 \times 10^{-2}$ |
| 32 | rhetor | $3.4 \times 10^{-2}$ |
| 33 | read | $3.3 \times 10^{-2}$ |
| 34 | nineteenth | $3.3 \times 10^{-2}$ |
| 35 | emili | $3.3 \times 10^{-2}$ |
| 36 | reader | $3.3 \times 10^{-2}$ |
| 37 | trope | $3.2 \times 10^{-2}$ |
| 38 | cultur | $3.1 \times 10^{-2}$ |
| 39 | discours | $3 \times 10^{-2}$ |
| 40 | jew | $3 \times 10^{-2}$ |
| 41 | contemporari | $2.9 \times 10^{-2}$ |
| 42 | commentari | $2.9 \times 10^{-2}$ |
| 43 | anglo | $2.9 \times 10^{-2}$ |
| 44 | william | $2.8 \times 10^{-2}$ |
| 45 | archiv | $2.8 \times 10^{-2}$ |
| 46 | peter | $2.7 \times 10^{-2}$ |
| 47 | tell | $2.6 \times 10^{-2}$ |
| 48 | studi | $2.6 \times 10^{-2}$ |
| 49 | prose | $2.5 \times 10^{-2}$ |
| 50 | african | $2.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | war | $2.4 \times 10^{-2}$ |
| 52 | represent | $2.4 \times 10^{-2}$ |
| 53 | man | $2.4 \times 10^{-2}$ |
| 54 | slave | $2.3 \times 10^{-2}$ |
| 55 | biographi | $2.3 \times 10^{-2}$ |
| 56 | charact | $2.3 \times 10^{-2}$ |
| 57 | york | $2.2 \times 10^{-2}$ |
| 58 | formal | $2.2 \times 10^{-2}$ |
| 59 | genr | $2.2 \times 10^{-2}$ |
| 60 | articul | $2 \times 10^{-2}$ |
| 61 | method | $2 \times 10^{-2}$ |
| 62 | artist | $1.9 \times 10^{-2}$ |
| 63 | effect | $1.9 \times 10^{-2}$ |
| 64 | figur | $1.8 \times 10^{-2}$ |
| 65 | lyric | $1.8 \times 10^{-2}$ |
| 66 | audienc | $1.8 \times 10^{-2}$ |
| 67 | subvers | $1.8 \times 10^{-2}$ |
| 68 | publish | $1.7 \times 10^{-2}$ |
| 69 | newspap | $1.7 \times 10^{-2}$ |
| 70 | editor | $1.7 \times 10^{-2}$ |
| 71 | compar | $1.7 \times 10^{-2}$ |
| 72 | base | $1.7 \times 10^{-2}$ |
| 73 | way | $1.6 \times 10^{-2}$ |
| 74 | negoti | $1.6 \times 10^{-2}$ |
| 75 | portray | $1.6 \times 10^{-2}$ |
| 76 | violenc | $1.6 \times 10^{-2}$ |
| 77 | increas | $1.5 \times 10^{-2}$ |
| 78 | work | $1.5 \times 10^{-2}$ |
| 79 | articl | $1.5 \times 10^{-2}$ |
| 80 | edit | $1.5 \times 10^{-2}$ |
| 81 | autobiograph | $1.5 \times 10^{-2}$ |
| 82 | race | $1.5 \times 10^{-2}$ |
| 83 | protagonist | $1.5 \times 10^{-2}$ |
| 84 | data | $1.5 \times 10^{-2}$ |
| 85 | critic | $1.5 \times 10^{-2}$ |
| 86 | textual | $1.5 \times 10^{-2}$ |
| 87 | scholarship | $1.5 \times 10^{-2}$ |
| 88 | magazin | $1.5 \times 10^{-2}$ |
| 89 | voic | $1.5 \times 10^{-2}$ |
| 90 | wrote | $1.5 \times 10^{-2}$ |
| 91 | evalu | $1.4 \times 10^{-2}$ |
| 92 | chapter | $1.4 \times 10^{-2}$ |
| 93 | civil | $1.4 \times 10^{-2}$ |
| 94 | world | $1.4 \times 10^{-2}$ |
| 95 | offer | $1.4 \times 10^{-2}$ |
| 96 | antholog | $1.4 \times 10^{-2}$ |
| 97 | ident | $1.4 \times 10^{-2}$ |
| 98 | test | $1.4 \times 10^{-2}$ |
| 99 | novel | $1.4 \times 10^{-2}$ |
| 100 | improv | $1.3 \times 10^{-2}$ |

Table D.131. The list of the top 100 words in the category Literature, British Isles with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | essay | $1.1 \times 10^{-1}$ |
| 2 | shakespear | $9.9 \times 10^{-2}$ |
| 3 | bront | $8.4 \times 10^{-2}$ |
| 4 | joyc | $6.5 \times 10^{-2}$ |
| 5 | argu | $5.7 \times 10^{-2}$ |
| 6 | poem | $5.7 \times 10^{-2}$ |
| 7 | result | $5.3 \times 10^{-2}$ |
| 8 | narrat | $4.5 \times 10^{-2}$ |
| 9 | english | $4.5 \times 10^{-2}$ |
| 10 | chaucer | $4.5 \times 10^{-2}$ |
| 11 | articl | $4.4 \times 10^{-2}$ |
| 12 | text | $4.3 \times 10^{-2}$ |
| 13 | read | $3.5 \times 10^{-2}$ |
| 14 | john | $3.4 \times 10^{-2}$ |
| 15 | literari | $3.2 \times 10^{-2}$ |
| 16 | centuri | $3.2 \times 10^{-2}$ |
| 17 | theatr | $3.2 \times 10^{-2}$ |
| 18 | ulyss | $3.1 \times 10^{-2}$ |
| 19 | poet | $3 \times 10^{-2}$ |
| 20 | tale | $3 \times 10^{-2}$ |
| 21 | method | $2.7 \times 10^{-2}$ |
| 22 | studi | $2.7 \times 10^{-2}$ |
| 23 | jame | $2.7 \times 10^{-2}$ |
| 24 | write | $2.6 \times 10^{-2}$ |
| 25 | artist | $2.6 \times 10^{-2}$ |
| 26 | samuel | $2.6 \times 10^{-2}$ |
| 27 | theatric | $2.6 \times 10^{-2}$ |
| 28 | charact | $2.5 \times 10^{-2}$ |
| 29 | beckett | $2.5 \times 10^{-2}$ |
| 30 | play | $2.4 \times 10^{-2}$ |
| 31 | polit | $2.3 \times 10^{-2}$ |
| 32 | mediev | $2.3 \times 10^{-2}$ |
| 33 | effect | $2.3 \times 10^{-2}$ |
| 34 | fiction | $2.2 \times 10^{-2}$ |
| 35 | drama | $2.2 \times 10^{-2}$ |
| 36 | scholar | $2.2 \times 10^{-2}$ |
| 37 | henri | $2.2 \times 10^{-2}$ |
| 38 | poetic | $2.1 \times 10^{-2}$ |
| 39 | use | $2.1 \times 10^{-2}$ |
| 40 | aesthet | $2.1 \times 10^{-2}$ |
| 41 | imagin | $2.1 \times 10^{-2}$ |
| 42 | thoma | $2 \times 10^{-2}$ |
| 43 | system | $2 \times 10^{-2}$ |
| 44 | england | $2 \times 10^{-2}$ |
| 45 | contemporari | $2 \times 10^{-2}$ |
| 46 | prose | $2 \times 10^{-2}$ |
| 47 | victorian | $2 \times 10^{-2}$ |
| 48 | figur | $2 \times 10^{-2}$ |
| 49 | base | $1.9 \times 10^{-2}$ |
| 50 | moral | $1.9 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | high | $1.8 \times 10^{-2}$ |
| 52 | richard | $1.8 \times 10^{-2}$ |
| 53 | work | $1.8 \times 10^{-2}$ |
| 54 | romanc | $1.8 \times 10^{-2}$ |
| 55 | modern | $1.8 \times 10^{-2}$ |
| 56 | twentieth | $1.7 \times 10^{-2}$ |
| 57 | walter | $1.7 \times 10^{-2}$ |
| 58 | reader | $1.7 \times 10^{-2}$ |
| 59 | data | $1.6 \times 10^{-2}$ |
| 60 | poetri | $1.6 \times 10^{-2}$ |
| 61 | book | $1.6 \times 10^{-2}$ |
| 62 | renaiss | $1.6 \times 10^{-2}$ |
| 63 | histor | $1.6 \times 10^{-2}$ |
| 64 | edit | $1.6 \times 10^{-2}$ |
| 65 | writer | $1.6 \times 10^{-2}$ |
| 66 | explor | $1.6 \times 10^{-2}$ |
| 67 | audienc | $1.5 \times 10^{-2}$ |
| 68 | improv | $1.5 \times 10^{-2}$ |
| 69 | obtain | $1.4 \times 10^{-2}$ |
| 70 | signific | $1.4 \times 10^{-2}$ |
| 71 | compar | $1.4 \times 10^{-2}$ |
| 72 | measur | $1.4 \times 10^{-2}$ |
| 73 | emili | $1.4 \times 10^{-2}$ |
| 74 | show | $1.3 \times 10^{-2}$ |
| 75 | celebr | $1.3 \times 10^{-2}$ |
| 76 | way | $1.3 \times 10^{-2}$ |
| 77 | king | $1.3 \times 10^{-2}$ |
| 78 | genr | $1.3 \times 10^{-2}$ |
| 79 | persona | $1.3 \times 10^{-2}$ |
| 80 | cultur | $1.3 \times 10^{-2}$ |
| 81 | allus | $1.2 \times 10^{-2}$ |
| 82 | depict | $1.2 \times 10^{-2}$ |
| 83 | increas | $1.2 \times 10^{-2}$ |
| 84 | cell | $1.2 \times 10^{-2}$ |
| 85 | investig | $1.2 \times 10^{-2}$ |
| 86 | eighteenth | $1.2 \times 10^{-2}$ |
| 87 | report | $1.2 \times 10^{-2}$ |
| 88 | languag | $1.2 \times 10^{-2}$ |
| 89 | conclus | $1.2 \times 10^{-2}$ |
| 90 | test | $1.1 \times 10^{-2}$ |
| 91 | determin | $1.1 \times 10^{-2}$ |
| 92 | vers | $1.1 \times 10^{-2}$ |
| 93 | rate | $1.1 \times 10^{-2}$ |
| 94 | evalu | $1.1 \times 10^{-2}$ |
| 95 | sampl | $1.1 \times 10^{-2}$ |
| 96 | love | $1.1 \times 10^{-2}$ |
| 97 | level | $1.1 \times 10^{-2}$ |
| 98 | satir | $1.1 \times 10^{-2}$ |
| 99 | patient | $1.1 \times 10^{-2}$ |
| 100 | late | $1.1 \times 10^{-2}$ |

Table D.132. The list of the top 100 words in the category Literature, German, Dutch, Scandinavian with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | german | $1.4 \times 10^{-1}$ |
| 2 | literari | $1.1 \times 10^{-1}$ |
| 3 | von | $9.5 \times 10^{-2}$ |
| 4 | und | $9.4 \times 10^{-2}$ |
| 5 | der | $8.4 \times 10^{-2}$ |
| 6 | essay | $8.3 \times 10^{-2}$ |
| 7 | ein | $8.1 \times 10^{-2}$ |
| 8 | write | $7.5 \times 10^{-2}$ |
| 9 | die | $6.9 \times 10^{-2}$ |
| 10 | das | $6.9 \times 10^{-2}$ |
| 11 | text | $6.8 \times 10^{-2}$ |
| 12 | narrat | $6.8 \times 10^{-2}$ |
| 13 | articl | $6.7 \times 10^{-2}$ |
| 14 | auf | $6.6 \times 10^{-2}$ |
| 15 | germani | $6.6 \times 10^{-2}$ |
| 16 | wird | $5.9 \times 10^{-2}$ |
| 17 | des | $5.4 \times 10^{-2}$ |
| 18 | protagonist | $5.4 \times 10^{-2}$ |
| 19 | aesthet | $5.1 \times 10^{-2}$ |
| 20 | read | $4.9 \times 10^{-2}$ |
| 21 | writer | $4.5 \times 10^{-2}$ |
| 22 | poetic | $4.4 \times 10^{-2}$ |
| 23 | postwar | $3.9 \times 10^{-2}$ |
| 24 | poetri | $3.9 \times 10^{-2}$ |
| 25 | argu | $3.9 \times 10^{-2}$ |
| 26 | result | $3.8 \times 10^{-2}$ |
| 27 | jean | $3.7 \times 10^{-2}$ |
| 28 | poet | $3.7 \times 10^{-2}$ |
| 29 | discours | $3.6 \times 10^{-2}$ |
| 30 | use | $3.2 \times 10^{-2}$ |
| 31 | dem | $3.2 \times 10^{-2}$ |
| 32 | centuri | $3.1 \times 10^{-2}$ |
| 33 | book | $2.9 \times 10^{-2}$ |
| 34 | cultur | $2.8 \times 10^{-2}$ |
| 35 | benjamin | $2.7 \times 10^{-2}$ |
| 36 | prose | $2.7 \times 10^{-2}$ |
| 37 | poem | $2.6 \times 10^{-2}$ |
| 38 | polit | $2.6 \times 10^{-2}$ |
| 39 | johann | $2.6 \times 10^{-2}$ |
| 40 | depict | $2.5 \times 10^{-2}$ |
| 41 | histor | $2.4 \times 10^{-2}$ |
| 42 | berlin | $2.4 \times 10^{-2}$ |
| 43 | fiction | $2.3 \times 10^{-2}$ |
| 44 | muslim | $2.3 \times 10^{-2}$ |
| 45 | method | $2.3 \times 10^{-2}$ |
| 46 | stori | $2.2 \times 10^{-2}$ |
| 47 | walter | $2.2 \times 10^{-2}$ |
| 48 | reader | $2.2 \times 10^{-2}$ |
| 49 | charact | $2.2 \times 10^{-2}$ |
| 50 | author | $2.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | question | $2.1 \times 10^{-2}$ |
| 52 | contemporari | $2.1 \times 10^{-2}$ |
| 53 | data | $2.1 \times 10^{-2}$ |
| 54 | imagin | $2.1 \times 10^{-2}$ |
| 55 | war | $2 \times 10^{-2}$ |
| 56 | effect | $2 \times 10^{-2}$ |
| 57 | languag | $1.9 \times 10^{-2}$ |
| 58 | engag | $1.9 \times 10^{-2}$ |
| 59 | literatur | $1.9 \times 10^{-2}$ |
| 60 | critiqu | $1.9 \times 10^{-2}$ |
| 61 | represent | $1.9 \times 10^{-2}$ |
| 62 | insist | $1.8 \times 10^{-2}$ |
| 63 | peter | $1.8 \times 10^{-2}$ |
| 64 | islam | $1.8 \times 10^{-2}$ |
| 65 | theme | $1.8 \times 10^{-2}$ |
| 66 | studi | $1.8 \times 10^{-2}$ |
| 67 | genr | $1.8 \times 10^{-2}$ |
| 68 | ambival | $1.7 \times 10^{-2}$ |
| 69 | philosophi | $1.6 \times 10^{-2}$ |
| 70 | embodi | $1.6 \times 10^{-2}$ |
| 71 | mediev | $1.6 \times 10^{-2}$ |
| 72 | recept | $1.6 \times 10^{-2}$ |
| 73 | artist | $1.6 \times 10^{-2}$ |
| 74 | victim | $1.5 \times 10^{-2}$ |
| 75 | work | $1.5 \times 10^{-2}$ |
| 76 | increas | $1.5 \times 10^{-2}$ |
| 77 | translat | $1.5 \times 10^{-2}$ |
| 78 | reflect | $1.5 \times 10^{-2}$ |
| 79 | world | $1.5 \times 10^{-2}$ |
| 80 | modern | $1.5 \times 10^{-2}$ |
| 81 | secular | $1.5 \times 10^{-2}$ |
| 82 | base | $1.5 \times 10^{-2}$ |
| 83 | intertextu | $1.4 \times 10^{-2}$ |
| 84 | nineteenth | $1.4 \times 10^{-2}$ |
| 85 | idea | $1.4 \times 10^{-2}$ |
| 86 | love | $1.4 \times 10^{-2}$ |
| 87 | publish | $1.4 \times 10^{-2}$ |
| 88 | notion | $1.4 \times 10^{-2}$ |
| 89 | test | $1.4 \times 10^{-2}$ |
| 90 | romant | $1.4 \times 10^{-2}$ |
| 91 | ideolog | $1.4 \times 10^{-2}$ |
| 92 | myth | $1.4 \times 10^{-2}$ |
| 93 | exil | $1.4 \times 10^{-2}$ |
| 94 | ident | $1.4 \times 10^{-2}$ |
| 95 | trope | $1.3 \times 10^{-2}$ |
| 96 | obtain | $1.3 \times 10^{-2}$ |
| 97 | scholarship | $1.3 \times 10^{-2}$ |
| 98 | feminist | $1.3 \times 10^{-2}$ |
| 99 | paul | $1.3 \times 10^{-2}$ |
| 100 | measur | $1.3 \times 10^{-2}$ |

Table D.133. The list of the top 100 words in the category Literature, Romance with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | articl | $9.4 \times 10^{-2}$ |
| 2 | literari | $7.6 \times 10^{-2}$ |
| 3 | spanish | $6.9 \times 10^{-2}$ |
| 4 | narrat | $6.7 \times 10^{-2}$ |
| 5 | essay | $6 \times 10^{-2}$ |
| 6 | centuri | $5.6 \times 10^{-2}$ |
| 7 | war | $5.5 \times 10^{-2}$ |
| 8 | writer | $5.3 \times 10^{-2}$ |
| 9 | text | $4.7 \times 10^{-2}$ |
| 10 | argu | $4.5 \times 10^{-2}$ |
| 11 | french | $4.5 \times 10^{-2}$ |
| 12 | write | $4 \times 10^{-2}$ |
| 13 | result | $4 \times 10^{-2}$ |
| 14 | spain | $3.8 \times 10^{-2}$ |
| 15 | artist | $3.4 \times 10^{-2}$ |
| 16 | polit | $3.1 \times 10^{-2}$ |
| 17 | poetic | $3.1 \times 10^{-2}$ |
| 18 | fiction | $3.1 \times 10^{-2}$ |
| 19 | cultur | $2.9 \times 10^{-2}$ |
| 20 | civil | $2.8 \times 10^{-2}$ |
| 21 | method | $2.8 \times 10^{-2}$ |
| 22 | discours | $2.7 \times 10^{-2}$ |
| 23 | poem | $2.6 \times 10^{-2}$ |
| 24 | poet | $2.6 \times 10^{-2}$ |
| 25 | protagonist | $2.6 \times 10^{-2}$ |
| 26 | novelist | $2.6 \times 10^{-2}$ |
| 27 | stori | $2.5 \times 10^{-2}$ |
| 28 | italian | $2.4 \times 10^{-2}$ |
| 29 | genr | $2.3 \times 10^{-2}$ |
| 30 | poetri | $2.3 \times 10^{-2}$ |
| 31 | use | $2.1 \times 10^{-2}$ |
| 32 | que | $2.1 \times 10^{-2}$ |
| 33 | exil | $2.1 \times 10^{-2}$ |
| 34 | question | $2 \times 10^{-2}$ |
| 35 | nineteenth | $1.9 \times 10^{-2}$ |
| 36 | reader | $1.9 \times 10^{-2}$ |
| 37 | aesthet | $1.9 \times 10^{-2}$ |
| 38 | portray | $1.9 \times 10^{-2}$ |
| 39 | contemporari | $1.8 \times 10^{-2}$ |
| 40 | read | $1.8 \times 10^{-2}$ |
| 41 | written | $1.8 \times 10^{-2}$ |
| 42 | metaphor | $1.8 \times 10^{-2}$ |
| 43 | languag | $1.7 \times 10^{-2}$ |
| 44 | modern | $1.7 \times 10^{-2}$ |
| 45 | high | $1.7 \times 10^{-2}$ |
| 46 | figur | $1.7 \times 10^{-2}$ |
| 47 | histori | $1.7 \times 10^{-2}$ |
| 48 | romanc | $1.7 \times 10^{-2}$ |
| 49 | charact | $1.6 \times 10^{-2}$ |
| 50 | system | $1.6 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | des | $1.6 \times 10^{-2}$ |
| 52 | histor | $1.6 \times 10^{-2}$ |
| 53 | linguist | $1.6 \times 10^{-2}$ |
| 54 | theatr | $1.6 \times 10^{-2}$ |
| 55 | data | $1.5 \times 10^{-2}$ |
| 56 | author | $1.5 \times 10^{-2}$ |
| 57 | ident | $1.5 \times 10^{-2}$ |
| 58 | effect | $1.5 \times 10^{-2}$ |
| 59 | eighteenth | $1.5 \times 10^{-2}$ |
| 60 | cinema | $1.4 \times 10^{-2}$ |
| 61 | dialect | $1.4 \times 10^{-2}$ |
| 62 | notion | $1.4 \times 10^{-2}$ |
| 63 | jean | $1.4 \times 10^{-2}$ |
| 64 | explor | $1.4 \times 10^{-2}$ |
| 65 | represent | $1.4 \times 10^{-2}$ |
| 66 | novel | $1.4 \times 10^{-2}$ |
| 67 | ideolog | $1.4 \times 10^{-2}$ |
| 68 | franc | $1.4 \times 10^{-2}$ |
| 69 | test | $1.4 \times 10^{-2}$ |
| 70 | improv | $1.3 \times 10^{-2}$ |
| 71 | work | $1.3 \times 10^{-2}$ |
| 72 | recept | $1.3 \times 10^{-2}$ |
| 73 | measur | $1.3 \times 10^{-2}$ |
| 74 | patient | $1.3 \times 10^{-2}$ |
| 75 | critiqu | $1.3 \times 10^{-2}$ |
| 76 | obtain | $1.3 \times 10^{-2}$ |
| 77 | compar | $1.2 \times 10^{-2}$ |
| 78 | base | $1.2 \times 10^{-2}$ |
| 79 | photograph | $1.2 \times 10^{-2}$ |
| 80 | way | $1.2 \times 10^{-2}$ |
| 81 | determin | $1.2 \times 10^{-2}$ |
| 82 | son | $1.2 \times 10^{-2}$ |
| 83 | attempt | $1.2 \times 10^{-2}$ |
| 84 | creativ | $1.2 \times 10^{-2}$ |
| 85 | increas | $1.2 \times 10^{-2}$ |
| 86 | trope | $1.2 \times 10^{-2}$ |
| 87 | higher | $1.2 \times 10^{-2}$ |
| 88 | low | $1.2 \times 10^{-2}$ |
| 89 | sixteenth | $1.1 \times 10^{-2}$ |
| 90 | oeuvr | $1.1 \times 10^{-2}$ |
| 91 | cathol | $1.1 \times 10^{-2}$ |
| 92 | theater | $1.1 \times 10^{-2}$ |
| 93 | offer | $1.1 \times 10^{-2}$ |
| 94 | cell | $1.1 \times 10^{-2}$ |
| 95 | itali | $1.1 \times 10^{-2}$ |
| 96 | philosoph | $1.1 \times 10^{-2}$ |
| 97 | effici | $1 \times 10^{-2}$ |
| 98 | decreas | $1 \times 10^{-2}$ |
| 99 | societi | $1 \times 10^{-2}$ |
| 100 | persona | $1 \times 10^{-2}$ |

Table D.134. The list of the top 100 words in the category Literature, Slavic with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | russian | $1.4 \times 10^{-1}$ |
| 2 | panegyr | $8.5 \times 10^{-2}$ |
| 3 | text | $8.3 \times 10^{-2}$ |
| 4 | poetic | $8.1 \times 10^{-2}$ |
| 5 | poetri | $8 \times 10^{-2}$ |
| 6 | catherin | $7.2 \times 10^{-2}$ |
| 7 | literari | $6.4 \times 10^{-2}$ |
| 8 | soviet | $6.1 \times 10^{-2}$ |
| 9 | poet | $5.2 \times 10^{-2}$ |
| 10 | insist | $4.9 \times 10^{-2}$ |
| 11 | use | $4.6 \times 10^{-2}$ |
| 12 | centuri | $4.3 \times 10^{-2}$ |
| 13 | reign | $4.2 \times 10^{-2}$ |
| 14 | essay | $4 \times 10^{-2}$ |
| 15 | genr | $4 \times 10^{-2}$ |
| 16 | work | $3.9 \times 10^{-2}$ |
| 17 | postmodern | $3.8 \times 10^{-2}$ |
| 18 | result | $3.8 \times 10^{-2}$ |
| 19 | artist | $3.6 \times 10^{-2}$ |
| 20 | cultur | $3.5 \times 10^{-2}$ |
| 21 | eighteenth | $3.4 \times 10^{-2}$ |
| 22 | method | $3 \times 10^{-2}$ |
| 23 | iconographi | $2.9 \times 10^{-2}$ |
| 24 | articl | $2.9 \times 10^{-2}$ |
| 25 | visual | $2.8 \times 10^{-2}$ |
| 26 | christian | $2.8 \times 10^{-2}$ |
| 27 | ironi | $2.7 \times 10^{-2}$ |
| 28 | mystic | $2.7 \times 10^{-2}$ |
| 29 | mytholog | $2.7 \times 10^{-2}$ |
| 30 | can | $2.6 \times 10^{-2}$ |
| 31 | memoir | $2.5 \times 10^{-2}$ |
| 32 | attempt | $2.3 \times 10^{-2}$ |
| 33 | historiographi | $2.3 \times 10^{-2}$ |
| 34 | cinema | $2.3 \times 10^{-2}$ |
| 35 | increas | $2.2 \times 10^{-2}$ |
| 36 | protagonist | $2.2 \times 10^{-2}$ |
| 37 | peter | $2.1 \times 10^{-2}$ |
| 38 | cathol | $2.1 \times 10^{-2}$ |
| 39 | existenti | $2 \times 10^{-2}$ |
| 40 | metaphys | $2 \times 10^{-2}$ |
| 41 | art | $2 \times 10^{-2}$ |
| 42 | myth | $2 \times 10^{-2}$ |
| 43 | idea | $2 \times 10^{-2}$ |
| 44 | imperi | $2 \times 10^{-2}$ |
| 45 | enlighten | $1.9 \times 10^{-2}$ |
| 46 | investig | $1.8 \times 10^{-2}$ |
| 47 | conceptu | $1.8 \times 10^{-2}$ |
| 48 | data | $1.8 \times 10^{-2}$ |
| 49 | differ | $1.8 \times 10^{-2}$ |
| 50 | deal | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | manifest | $1.8 \times 10^{-2}$ |
| 52 | discours | $1.8 \times 10^{-2}$ |
| 53 | literatur | $1.8 \times 10^{-2}$ |
| 54 | sentiment | $1.7 \times 10^{-2}$ |
| 55 | scholar | $1.7 \times 10^{-2}$ |
| 56 | thought | $1.7 \times 10^{-2}$ |
| 57 | rhetor | $1.7 \times 10^{-2}$ |
| 58 | polit | $1.7 \times 10^{-2}$ |
| 59 | studi | $1.7 \times 10^{-2}$ |
| 60 | foreground | $1.7 \times 10^{-2}$ |
| 61 | entitl | $1.6 \times 10^{-2}$ |
| 62 | realiti | $1.6 \times 10^{-2}$ |
| 63 | measur | $1.6 \times 10^{-2}$ |
| 64 | explor | $1.6 \times 10^{-2}$ |
| 65 | writer | $1.6 \times 10^{-2}$ |
| 66 | write | $1.6 \times 10^{-2}$ |
| 67 | high | $1.5 \times 10^{-2}$ |
| 68 | effect | $1.4 \times 10^{-2}$ |
| 69 | propos | $1.4 \times 10^{-2}$ |
| 70 | activ | $1.4 \times 10^{-2}$ |
| 71 | person | $1.4 \times 10^{-2}$ |
| 72 | russia | $1.4 \times 10^{-2}$ |
| 73 | philosoph | $1.4 \times 10^{-2}$ |
| 74 | control | $1.4 \times 10^{-2}$ |
| 75 | observ | $1.4 \times 10^{-2}$ |
| 76 | themselv | $1.4 \times 10^{-2}$ |
| 77 | exemplifi | $1.3 \times 10^{-2}$ |
| 78 | ideolog | $1.3 \times 10^{-2}$ |
| 79 | conclus | $1.3 \times 10^{-2}$ |
| 80 | confront | $1.3 \times 10^{-2}$ |
| 81 | test | $1.3 \times 10^{-2}$ |
| 82 | margaret | $1.3 \times 10^{-2}$ |
| 83 | improv | $1.3 \times 10^{-2}$ |
| 84 | determin | $1.3 \times 10^{-2}$ |
| 85 | indic | $1.3 \times 10^{-2}$ |
| 86 | deleuz | $1.2 \times 10^{-2}$ |
| 87 | oeuvr | $1.2 \times 10^{-2}$ |
| 88 | univers | $1.2 \times 10^{-2}$ |
| 89 | associ | $1.2 \times 10^{-2}$ |
| 90 | themat | $1.2 \times 10^{-2}$ |
| 91 | tone | $1.2 \times 10^{-2}$ |
| 92 | satir | $1.2 \times 10^{-2}$ |
| 93 | book | $1.2 \times 10^{-2}$ |
| 94 | obtain | $1.2 \times 10^{-2}$ |
| 95 | influenti | $1.2 \times 10^{-2}$ |
| 96 | emphas | $1.2 \times 10^{-2}$ |
| 97 | design | $1.2 \times 10^{-2}$ |
| 98 | painter | $1.2 \times 10^{-2}$ |
| 99 | cult | $1.1 \times 10^{-2}$ |
| 100 | verbal | $1.1 \times 10^{-2}$ |

Table D.135. The list of the top 100 words in the category Logic with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | logic | $1.1 \times 10^{-1}$ |
| 2 | semant | $4.5 \times 10^{-2}$ |
| 3 | formal | $4.1 \times 10^{-2}$ |
| 4 | languag | $3.5 \times 10^{-2}$ |
| 5 | proof | $3.2 \times 10^{-2}$ |
| 6 | prove | $3.1 \times 10^{-2}$ |
| 7 | notion | $2.9 \times 10^{-2}$ |
| 8 | proposit | $2.6 \times 10^{-2}$ |
| 9 | algebra | $2.4 \times 10^{-2}$ |
| 10 | theorem | $2.2 \times 10^{-2}$ |
| 11 | set | $2 \times 10^{-2}$ |
| 12 | problem | $1.9 \times 10^{-2}$ |
| 13 | defin | $1.8 \times 10^{-2}$ |
| 14 | introduc | $1.8 \times 10^{-2}$ |
| 15 | effect | $1.7 \times 10^{-2}$ |
| 16 | decid | $1.7 \times 10^{-2}$ |
| 17 | high | $1.6 \times 10^{-2}$ |
| 18 | finit | $1.6 \times 10^{-2}$ |
| 19 | increas | $1.6 \times 10^{-2}$ |
| 20 | satisfi | $1.6 \times 10^{-2}$ |
| 21 | paper | $1.6 \times 10^{-2}$ |
| 22 | patient | $1.5 \times 10^{-2}$ |
| 23 | formula | $1.5 \times 10^{-2}$ |
| 24 | class | $1.5 \times 10^{-2}$ |
| 25 | theori | $1.5 \times 10^{-2}$ |
| 26 | abstract | $1.5 \times 10^{-2}$ |
| 27 | signific | $1.5 \times 10^{-2}$ |
| 28 | predic | $1.5 \times 10^{-2}$ |
| 29 | infinit | $1.4 \times 10^{-2}$ |
| 30 | studi | $1.4 \times 10^{-2}$ |
| 31 | bound | $1.4 \times 10^{-2}$ |
| 32 | activ | $1.4 \times 10^{-2}$ |
| 33 | polynomi | $1.4 \times 10^{-2}$ |
| 34 | verif | $1.4 \times 10^{-2}$ |
| 35 | call | $1.3 \times 10^{-2}$ |
| 36 | equival | $1.3 \times 10^{-2}$ |
| 37 | cell | $1.3 \times 10^{-2}$ |
| 38 | conclus | $1.2 \times 10^{-2}$ |
| 39 | program | $1.2 \times 10^{-2}$ |
| 40 | give | $1.2 \times 10^{-2}$ |
| 41 | general | $1.2 \times 10^{-2}$ |
| 42 | comput | $1.1 \times 10^{-2}$ |
| 43 | rate | $1.1 \times 10^{-2}$ |
| 44 | rule | $1.1 \times 10^{-2}$ |
| 45 | temperatur | $1.1 \times 10^{-2}$ |
| 46 | graph | $1.1 \times 10^{-2}$ |
| 47 | indic | $1 \times 10^{-2}$ |
| 48 | surfac | $1 \times 10^{-2}$ |
| 49 | extend | $1 \times 10^{-2}$ |
| 50 | dure | $1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | reason | $1 \times 10^{-2}$ |
| 52 | answer | $1 \times 10^{-2}$ |
| 53 | truth | $9.9 \times 10^{-3}$ |
| 54 | found | $9.8 \times 10^{-3}$ |
| 55 | complet | $9.6 \times 10^{-3}$ |
| 56 | clinic | $9.6 \times 10^{-3}$ |
| 57 | compar | $9.5 \times 10^{-3}$ |
| 58 | constraint | $9.5 \times 10^{-3}$ |
| 59 | decreas | $9.4 \times 10^{-3}$ |
| 60 | materi | $9.1 \times 10^{-3}$ |
| 61 | modal | $9.1 \times 10^{-3}$ |
| 62 | algorithm | $9 \times 10^{-3}$ |
| 63 | classic | $9 \times 10^{-3}$ |
| 64 | method | $9 \times 10^{-3}$ |
| 65 | instanc | $8.8 \times 10^{-3}$ |
| 66 | age | $8.8 \times 10^{-3}$ |
| 67 | higher | $8.8 \times 10^{-3}$ |
| 68 | reveal | $8.7 \times 10^{-3}$ |
| 69 | diseas | $8.7 \times 10^{-3}$ |
| 70 | given | $8.7 \times 10^{-3}$ |
| 71 | extens | $8.6 \times 10^{-3}$ |
| 72 | correl | $8.6 \times 10^{-3}$ |
| 73 | observ | $8.6 \times 10^{-3}$ |
| 74 | suggest | $8.6 \times 10^{-3}$ |
| 75 | argument | $8.5 \times 10^{-3}$ |
| 76 | measur | $8.5 \times 10^{-3}$ |
| 77 | probabilist | $8.4 \times 10^{-3}$ |
| 78 | low | $8.4 \times 10^{-3}$ |
| 79 | respons | $8.2 \times 10^{-3}$ |
| 80 | sound | $8 \times 10^{-3}$ |
| 81 | result | $7.9 \times 10^{-3}$ |
| 82 | protein | $7.8 \times 10^{-3}$ |
| 83 | syntact | $7.8 \times 10^{-3}$ |
| 84 | treatment | $7.8 \times 10^{-3}$ |
| 85 | sampl | $7.8 \times 10^{-3}$ |
| 86 | framework | $7.7 \times 10^{-3}$ |
| 87 | tree | $7.4 \times 10^{-3}$ |
| 88 | potenti | $7.3 \times 10^{-3}$ |
| 89 | acid | $7.3 \times 10^{-3}$ |
| 90 | everi | $7.2 \times 10^{-3}$ |
| 91 | control | $7.2 \times 10^{-3}$ |
| 92 | influenc | $7.2 \times 10^{-3}$ |
| 93 | concentr | $7.2 \times 10^{-3}$ |
| 94 | water | $7.1 \times 10^{-3}$ |
| 95 | year | $7.1 \times 10^{-3}$ |
| 96 | energi | $7 \times 10^{-3}$ |
| 97 | sentenc | $6.9 \times 10^{-3}$ |
| 98 | restrict | $6.7 \times 10^{-3}$ |
| 99 | region | $6.6 \times 10^{-3}$ |
| 100 | specifi | $6.6 \times 10^{-3}$ |

Table D.136. The list of the top 100 words in the category Management with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | firm | $6.7 \times 10^{-2}$ |
| 2 | manag | $6.3 \times 10^{-2}$ |
| 3 | research | $6.2 \times 10^{-2}$ |
| 4 | busi | $5.6 \times 10^{-2}$ |
| 5 | organiz | $5.5 \times 10^{-2}$ |
| 6 | compani | $5.2 \times 10^{-2}$ |
| 7 | market | $4.6 \times 10^{-2}$ |
| 8 | employe | $4.4 \times 10^{-2}$ |
| 9 | innov | $3.7 \times 10^{-2}$ |
| 10 | empir | $3.1 \times 10^{-2}$ |
| 11 | paper | $3 \times 10^{-2}$ |
| 12 | implic | $2.8 \times 10^{-2}$ |
| 13 | enterpris | $2.8 \times 10^{-2}$ |
| 14 | strateg | $2.7 \times 10^{-2}$ |
| 15 | financi | $2.6 \times 10^{-2}$ |
| 16 | practic | $2.6 \times 10^{-2}$ |
| 17 | literatur | $2.4 \times 10^{-2}$ |
| 18 | corpor | $2.4 \times 10^{-2}$ |
| 19 | find | $2.4 \times 10^{-2}$ |
| 20 | social | $2.3 \times 10^{-2}$ |
| 21 | competit | $2.3 \times 10^{-2}$ |
| 22 | industri | $2.3 \times 10^{-2}$ |
| 23 | manageri | $2.2 \times 10^{-2}$ |
| 24 | econom | $2.1 \times 10^{-2}$ |
| 25 | custom | $2 \times 10^{-2}$ |
| 26 | cell | $1.9 \times 10^{-2}$ |
| 27 | relationship | $1.9 \times 10^{-2}$ |
| 28 | economi | $1.8 \times 10^{-2}$ |
| 29 | decis | $1.8 \times 10^{-2}$ |
| 30 | methodolog | $1.7 \times 10^{-2}$ |
| 31 | perspect | $1.7 \times 10^{-2}$ |
| 32 | capit | $1.7 \times 10^{-2}$ |
| 33 | knowledg | $1.6 \times 10^{-2}$ |
| 34 | servic | $1.6 \times 10^{-2}$ |
| 35 | job | $1.5 \times 10^{-2}$ |
| 36 | invest | $1.5 \times 10^{-2}$ |
| 37 | resourc | $1.5 \times 10^{-2}$ |
| 38 | countri | $1.5 \times 10^{-2}$ |
| 39 | develop | $1.5 \times 10^{-2}$ |
| 40 | theori | $1.5 \times 10^{-2}$ |
| 41 | leadership | $1.5 \times 10^{-2}$ |
| 42 | patient | $1.5 \times 10^{-2}$ |
| 43 | sector | $1.4 \times 10^{-2}$ |
| 44 | temperatur | $1.4 \times 10^{-2}$ |
| 45 | entrepreneuri | $1.3 \times 10^{-2}$ |
| 46 | organ | $1.3 \times 10^{-2}$ |
| 47 | surfac | $1.3 \times 10^{-2}$ |
| 48 | context | $1.3 \times 10^{-2}$ |
| 49 | polici | $1.2 \times 10^{-2}$ |
| 50 | organis | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | entrepreneurship | $1.2 \times 10^{-2}$ |
| 52 | treatment | $1.2 \times 10^{-2}$ |
| 53 | protein | $1.1 \times 10^{-2}$ |
| 54 | focus | $1.1 \times 10^{-2}$ |
| 55 | conceptu | $1.1 \times 10^{-2}$ |
| 56 | profit | $1.1 \times 10^{-2}$ |
| 57 | leader | $1.1 \times 10^{-2}$ |
| 58 | govern | $1.1 \times 10^{-2}$ |
| 59 | detect | $1 \times 10^{-2}$ |
| 60 | entrepreneur | $1 \times 10^{-2}$ |
| 61 | draw | $1 \times 10^{-2}$ |
| 62 | survey | $1 \times 10^{-2}$ |
| 63 | make | $9.7 \times 10^{-3}$ |
| 64 | acid | $9.7 \times 10^{-3}$ |
| 65 | conclus | $9.7 \times 10^{-3}$ |
| 66 | articl | $9.6 \times 10^{-3}$ |
| 67 | clinic | $9.5 \times 10^{-3}$ |
| 68 | diseas | $9.5 \times 10^{-3}$ |
| 69 | purpos | $9.3 \times 10^{-3}$ |
| 70 | technolog | $9.2 \times 10^{-3}$ |
| 71 | theoret | $9.1 \times 10^{-3}$ |
| 72 | induc | $8.9 \times 10^{-3}$ |
| 73 | stakehold | $8.9 \times 10^{-3}$ |
| 74 | observ | $8.8 \times 10^{-3}$ |
| 75 | supplier | $8.8 \times 10^{-3}$ |
| 76 | perceiv | $8.7 \times 10^{-3}$ |
| 77 | gene | $8.7 \times 10^{-3}$ |
| 78 | intern | $8.5 \times 10^{-3}$ |
| 79 | sale | $8.5 \times 10^{-3}$ |
| 80 | price | $8.5 \times 10^{-3}$ |
| 81 | explor | $8.3 \times 10^{-3}$ |
| 82 | team | $8.3 \times 10^{-3}$ |
| 83 | institut | $8.2 \times 10^{-3}$ |
| 84 | impact | $8.2 \times 10^{-3}$ |
| 85 | method | $8.2 \times 10^{-3}$ |
| 86 | asset | $8.1 \times 10^{-3}$ |
| 87 | framework | $8.1 \times 10^{-3}$ |
| 88 | author | $8 \times 10^{-3}$ |
| 89 | speci | $8 \times 10^{-3}$ |
| 90 | strategi | $7.9 \times 10^{-3}$ |
| 91 | anteced | $7.9 \times 10^{-3}$ |
| 92 | china | $7.9 \times 10^{-3}$ |
| 93 | oxid | $7.9 \times 10^{-3}$ |
| 94 | experiment | $7.8 \times 10^{-3}$ |
| 95 | satisfact | $7.7 \times 10^{-3}$ |
| 96 | import | $7.7 \times 10^{-3}$ |
| 97 | issu | $7.6 \times 10^{-3}$ |
| 98 | rang | $7.6 \times 10^{-3}$ |
| 99 | interview | $7.4 \times 10^{-3}$ |
| 100 | water | $7.4 \times 10^{-3}$ |

Table D.137. The list of the top 100 words in the category Marine and Freshwater Biology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | fish | $1.2 \times 10^{-1}$ |
| 2 | speci | $1.1 \times 10^{-1}$ |
| 3 | sea | $6.5 \times 10^{-2}$ |
| 4 | marin | $6 \times 10^{-2}$ |
| 5 | habitat | $5.1 \times 10^{-2}$ |
| 6 | water | $4.7 \times 10^{-2}$ |
| 7 | abund | $4.6 \times 10^{-2}$ |
| 8 | coastal | $3.8 \times 10^{-2}$ |
| 9 | benthic | $3.6 \times 10^{-2}$ |
| 10 | ecosystem | $3.6 \times 10^{-2}$ |
| 11 | river | $3.2 \times 10^{-2}$ |
| 12 | atlant | $3.2 \times 10^{-2}$ |
| 13 | fisheri | $3.1 \times 10^{-2}$ |
| 14 | ecolog | $3 \times 10^{-2}$ |
| 15 | juvenil | $3 \times 10^{-2}$ |
| 16 | lake | $3 \times 10^{-2}$ |
| 17 | coast | $2.9 \times 10^{-2}$ |
| 18 | freshwat | $2.8 \times 10^{-2}$ |
| 19 | season | $2.7 \times 10^{-2}$ |
| 20 | sediment | $2.7 \times 10^{-2}$ |
| 21 | bay | $2.6 \times 10^{-2}$ |
| 22 | phytoplankton | $2.6 \times 10^{-2}$ |
| 23 | estuari | $2.5 \times 10^{-2}$ |
| 24 | aquat | $2.4 \times 10^{-2}$ |
| 25 | trophic | $2.4 \times 10^{-2}$ |
| 26 | alga | $2.4 \times 10^{-2}$ |
| 27 | spawn | $2.3 \times 10^{-2}$ |
| 28 | ocean | $2.3 \times 10^{-2}$ |
| 29 | biomass | $2.2 \times 10^{-2}$ |
| 30 | reef | $2.2 \times 10^{-2}$ |
| 31 | prey | $2.2 \times 10^{-2}$ |
| 32 | nutrient | $2.2 \times 10^{-2}$ |
| 33 | communiti | $2.1 \times 10^{-2}$ |
| 34 | assemblag | $2.1 \times 10^{-2}$ |
| 35 | algal | $2.1 \times 10^{-2}$ |
| 36 | environment | $2.1 \times 10^{-2}$ |
| 37 | predat | $2.1 \times 10^{-2}$ |
| 38 | summer | $2 \times 10^{-2}$ |
| 39 | feed | $1.9 \times 10^{-2}$ |
| 40 | zooplankton | $1.9 \times 10^{-2}$ |
| 41 | paper | $1.9 \times 10^{-2}$ |
| 42 | taxa | $1.9 \times 10^{-2}$ |
| 43 | method | $1.9 \times 10^{-2}$ |
| 44 | estuarin | $1.9 \times 10^{-2}$ |
| 45 | aquacultur | $1.9 \times 10^{-2}$ |
| 46 | patient | $1.8 \times 10^{-2}$ |
| 47 | bloom | $1.8 \times 10^{-2}$ |
| 48 | larva | $1.8 \times 10^{-2}$ |
| 49 | pelag | $1.7 \times 10^{-2}$ |
| 50 | coral | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | invertebr | $1.7 \times 10^{-2}$ |
| 52 | popul | $1.7 \times 10^{-2}$ |
| 53 | gulf | $1.7 \times 10^{-2}$ |
| 54 | diatom | $1.6 \times 10^{-2}$ |
| 55 | pacif | $1.6 \times 10^{-2}$ |
| 56 | larval | $1.6 \times 10^{-2}$ |
| 57 | reproduct | $1.5 \times 10^{-2}$ |
| 58 | mediterranean | $1.5 \times 10^{-2}$ |
| 59 | chlorophyl | $1.5 \times 10^{-2}$ |
| 60 | plankton | $1.5 \times 10^{-2}$ |
| 61 | north | $1.4 \times 10^{-2}$ |
| 62 | growth | $1.4 \times 10^{-2}$ |
| 63 | conclus | $1.4 \times 10^{-2}$ |
| 64 | island | $1.4 \times 10^{-2}$ |
| 65 | diet | $1.4 \times 10^{-2}$ |
| 66 | southern | $1.4 \times 10^{-2}$ |
| 67 | food | $1.3 \times 10^{-2}$ |
| 68 | salmon | $1.3 \times 10^{-2}$ |
| 69 | indic | $1.3 \times 10^{-2}$ |
| 70 | salin | $1.3 \times 10^{-2}$ |
| 71 | gill | $1.3 \times 10^{-2}$ |
| 72 | trout | $1.3 \times 10^{-2}$ |
| 73 | suggest | $1.3 \times 10^{-2}$ |
| 74 | stock | $1.3 \times 10^{-2}$ |
| 75 | shallow | $1.2 \times 10^{-2}$ |
| 76 | concentr | $1.2 \times 10^{-2}$ |
| 77 | domin | $1.2 \times 10^{-2}$ |
| 78 | divers | $1.2 \times 10^{-2}$ |
| 79 | spring | $1.2 \times 10^{-2}$ |
| 80 | organ | $1.2 \times 10^{-2}$ |
| 81 | shrimp | $1.2 \times 10^{-2}$ |
| 82 | northern | $1.2 \times 10^{-2}$ |
| 83 | area | $1.1 \times 10^{-2}$ |
| 84 | eutroph | $1.1 \times 10^{-2}$ |
| 85 | bivalv | $1.1 \times 10^{-2}$ |
| 86 | pattern | $1.1 \times 10^{-2}$ |
| 87 | anthropogen | $1.1 \times 10^{-2}$ |
| 88 | collect | $1.1 \times 10^{-2}$ |
| 89 | winter | $1.1 \times 10^{-2}$ |
| 90 | south | $1.1 \times 10^{-2}$ |
| 91 | genus | $1 \times 10^{-2}$ |
| 92 | site | $1 \times 10^{-2}$ |
| 93 | propos | $1 \times 10^{-2}$ |
| 94 | shore | $1 \times 10^{-2}$ |
| 95 | egg | $1 \times 10^{-2}$ |
| 96 | dissolv | $1 \times 10^{-2}$ |
| 97 | taxonom | $1 \times 10^{-2}$ |
| 98 | seawat | $1 \times 10^{-2}$ |
| 99 | catch | $9.9 \times 10^{-3}$ |
| 100 | spatial | $9.9 \times 10^{-3}$ |

Table D.138. The list of the top 100 words in the category Materials Science, Biomaterials with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | cell | $5.6 \times 10^{-2}$ |
| 2 | biocompat | $5.4 \times 10^{-2}$ |
| 3 | scaffold | $5.2 \times 10^{-2}$ |
| 4 | vitro | $4.7 \times 10^{-2}$ |
| 5 | poli | $4.6 \times 10^{-2}$ |
| 6 | tissu | $4.1 \times 10^{-2}$ |
| 7 | biomateri | $3.8 \times 10^{-2}$ |
| 8 | implant | $3.7 \times 10^{-2}$ |
| 9 | deliveri | $3.5 \times 10^{-2}$ |
| 10 | bone | $3.5 \times 10^{-2}$ |
| 11 | releas | $3.4 \times 10^{-2}$ |
| 12 | hydrogel | $3.4 \times 10^{-2}$ |
| 13 | adhes | $3.1 \times 10^{-2}$ |
| 14 | surfac | $3.1 \times 10^{-2}$ |
| 15 | vivo | $3 \times 10^{-2}$ |
| 16 | nanoparticl | $2.9 \times 10^{-2}$ |
| 17 | hydroxyapatit | $2.7 \times 10^{-2}$ |
| 18 | properti | $2.5 \times 10^{-2}$ |
| 19 | prepar | $2.4 \times 10^{-2}$ |
| 20 | cytotox | $2.4 \times 10^{-2}$ |
| 21 | drug | $2.4 \times 10^{-2}$ |
| 22 | collagen | $2.3 \times 10^{-2}$ |
| 23 | polym | $2.2 \times 10^{-2}$ |
| 24 | prolifer | $2.1 \times 10^{-2}$ |
| 25 | microscopi | $2.1 \times 10^{-2}$ |
| 26 | biomed | $2 \times 10^{-2}$ |
| 27 | coat | $2 \times 10^{-2}$ |
| 28 | regener | $2 \times 10^{-2}$ |
| 29 | bioactiv | $2 \times 10^{-2}$ |
| 30 | engin | $2 \times 10^{-2}$ |
| 31 | load | $1.9 \times 10^{-2}$ |
| 32 | glycol | $1.9 \times 10^{-2}$ |
| 33 | chitosan | $1.9 \times 10^{-2}$ |
| 34 | encapsul | $1.8 \times 10^{-2}$ |
| 35 | osteoblast | $1.8 \times 10^{-2}$ |
| 36 | biodegrad | $1.8 \times 10^{-2}$ |
| 37 | polymer | $1.7 \times 10^{-2}$ |
| 38 | materi | $1.7 \times 10^{-2}$ |
| 39 | osteogen | $1.6 \times 10^{-2}$ |
| 40 | phosphat | $1.6 \times 10^{-2}$ |
| 41 | viabil | $1.6 \times 10^{-2}$ |
| 42 | promis | $1.6 \times 10^{-2}$ |
| 43 | fabric | $1.5 \times 10^{-2}$ |
| 44 | peg | $1.4 \times 10^{-2}$ |
| 45 | acid | $1.4 \times 10^{-2}$ |
| 46 | graft | $1.4 \times 10^{-2}$ |
| 47 | crosslink | $1.3 \times 10^{-2}$ |
| 48 | morpholog | $1.3 \times 10^{-2}$ |
| 49 | applic | $1.3 \times 10^{-2}$ |
| 50 | cellular | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | matrix | $1.3 \times 10^{-2}$ |
| 52 | stem | $1.3 \times 10^{-2}$ |
| 53 | mesenchym | $1.3 \times 10^{-2}$ |
| 54 | hydrophil | $1.2 \times 10^{-2}$ |
| 55 | composit | $1.2 \times 10^{-2}$ |
| 56 | modulus | $1.2 \times 10^{-2}$ |
| 57 | porous | $1.2 \times 10^{-2}$ |
| 58 | cultur | $1.2 \times 10^{-2}$ |
| 59 | calcium | $1.2 \times 10^{-2}$ |
| 60 | hydrophob | $1.2 \times 10^{-2}$ |
| 61 | scan | $1.2 \times 10^{-2}$ |
| 62 | fibroblast | $1.2 \times 10^{-2}$ |
| 63 | copolym | $1.2 \times 10^{-2}$ |
| 64 | enhanc | $1.2 \times 10^{-2}$ |
| 65 | ethylen | $1.1 \times 10^{-2}$ |
| 66 | potenti | $1.1 \times 10^{-2}$ |
| 67 | mechan | $1.1 \times 10^{-2}$ |
| 68 | human | $1.1 \times 10^{-2}$ |
| 69 | conjug | $1 \times 10^{-2}$ |
| 70 | selfassembl | $1 \times 10^{-2}$ |
| 71 | attach | $1 \times 10^{-2}$ |
| 72 | exhibit | $1 \times 10^{-2}$ |
| 73 | biolog | $1 \times 10^{-2}$ |
| 74 | synthes | $1 \times 10^{-2}$ |
| 75 | sem | $1 \times 10^{-2}$ |
| 76 | fluoresc | $9.7 \times 10^{-3}$ |
| 77 | extracellular | $9.6 \times 10^{-3}$ |
| 78 | titanium | $9.5 \times 10^{-3}$ |
| 79 | gel | $9.4 \times 10^{-3}$ |
| 80 | methacryl | $9.3 \times 10^{-3}$ |
| 81 | spectroscopi | $8.8 \times 10^{-3}$ |
| 82 | immobil | $8.6 \times 10^{-3}$ |
| 83 | assay | $8.6 \times 10^{-3}$ |
| 84 | dental | $8.3 \times 10^{-3}$ |
| 85 | lactic | $8.2 \times 10^{-3}$ |
| 86 | apatit | $8.2 \times 10^{-3}$ |
| 87 | antibacteri | $8.2 \times 10^{-3}$ |
| 88 | electrospin | $8.2 \times 10^{-3}$ |
| 89 | modifi | $8.1 \times 10^{-3}$ |
| 90 | strength | $8 \times 10^{-3}$ |
| 91 | heal | $8 \times 10^{-3}$ |
| 92 | anticanc | $7.9 \times 10^{-3}$ |
| 93 | paper | $7.9 \times 10^{-3}$ |
| 94 | format | $7.9 \times 10^{-3}$ |
| 95 | background | $7.7 \times 10^{-3}$ |
| 96 | carrier | $7.6 \times 10^{-3}$ |
| 97 | regen | $7.5 \times 10^{-3}$ |
| 98 | onto | $7.5 \times 10^{-3}$ |
| 99 | uptak | $7.5 \times 10^{-3}$ |
| 100 | infrar | $7.4 \times 10^{-3}$ |

Table D.139. The list of the top 100 words in the category Materials Science, Ceramics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | ceram | $1.5 \times 10^{-1}$ |
| 2 | sinter | $1 \times 10^{-1}$ |
| 3 | temperatur | $6.5 \times 10^{-2}$ |
| 4 | prepar | $6.4 \times 10^{-2}$ |
| 5 | powder | $6.3 \times 10^{-2}$ |
| 6 | diffract | $5.8 \times 10^{-2}$ |
| 7 | xrd | $5.7 \times 10^{-2}$ |
| 8 | microstructur | $5.5 \times 10^{-2}$ |
| 9 | composit | $5.4 \times 10^{-2}$ |
| 10 | ray | $5.4 \times 10^{-2}$ |
| 11 | degre | $5.3 \times 10^{-2}$ |
| 12 | properti | $5 \times 10^{-2}$ |
| 13 | glass | $4.4 \times 10^{-2}$ |
| 14 | phase | $4.4 \times 10^{-2}$ |
| 15 | sol | $3.7 \times 10^{-2}$ |
| 16 | sem | $3.6 \times 10^{-2}$ |
| 17 | microscopi | $3.2 \times 10^{-2}$ |
| 18 | dope | $3.2 \times 10^{-2}$ |
| 19 | synthes | $3.1 \times 10^{-2}$ |
| 20 | scan | $3 \times 10^{-2}$ |
| 21 | materi | $2.9 \times 10^{-2}$ |
| 22 | electron | $2.9 \times 10^{-2}$ |
| 23 | grain | $2.8 \times 10^{-2}$ |
| 24 | gel | $2.6 \times 10^{-2}$ |
| 25 | thermal | $2.4 \times 10^{-2}$ |
| 26 | sic | $2.3 \times 10^{-2}$ |
| 27 | dielectr | $2.3 \times 10^{-2}$ |
| 28 | solid | $2.2 \times 10^{-2}$ |
| 29 | alumina | $2.2 \times 10^{-2}$ |
| 30 | crystal | $2.2 \times 10^{-2}$ |
| 31 | al2o3 | $2.1 \times 10^{-2}$ |
| 32 | spectroscopi | $2 \times 10^{-2}$ |
| 33 | particl | $2 \times 10^{-2}$ |
| 34 | size | $1.9 \times 10^{-2}$ |
| 35 | oxid | $1.9 \times 10^{-2}$ |
| 36 | conclus | $1.9 \times 10^{-2}$ |
| 37 | poros | $1.8 \times 10^{-2}$ |
| 38 | crystallin | $1.8 \times 10^{-2}$ |
| 39 | calcin | $1.8 \times 10^{-2}$ |
| 40 | structur | $1.8 \times 10^{-2}$ |
| 41 | fabric | $1.8 \times 10^{-2}$ |
| 42 | mpa | $1.8 \times 10^{-2}$ |
| 43 | patient | $1.7 \times 10^{-2}$ |
| 44 | coat | $1.6 \times 10^{-2}$ |
| 45 | morpholog | $1.6 \times 10^{-2}$ |
| 46 | sio2 | $1.6 \times 10^{-2}$ |
| 47 | precursor | $1.5 \times 10^{-2}$ |
| 48 | strength | $1.4 \times 10^{-2}$ |
| 49 | tetragon | $1.3 \times 10^{-2}$ |
| 50 | tough | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | ferroelectr | $1.3 \times 10^{-2}$ |
| 52 | sampl | $1.3 \times 10^{-2}$ |
| 53 | porous | $1.3 \times 10^{-2}$ |
| 54 | tio2 | $1.2 \times 10^{-2}$ |
| 55 | film | $1.2 \times 10^{-2}$ |
| 56 | ion | $1.2 \times 10^{-2}$ |
| 57 | pore | $1.2 \times 10^{-2}$ |
| 58 | content | $1.2 \times 10^{-2}$ |
| 59 | tem | $1.2 \times 10^{-2}$ |
| 60 | format | $1.1 \times 10^{-2}$ |
| 61 | model | $1.1 \times 10^{-2}$ |
| 62 | amorph | $1.1 \times 10^{-2}$ |
| 63 | silica | $1.1 \times 10^{-2}$ |
| 64 | data | $1.1 \times 10^{-2}$ |
| 65 | heat | $1.1 \times 10^{-2}$ |
| 66 | background | $1.1 \times 10^{-2}$ |
| 67 | surfac | $1.1 \times 10^{-2}$ |
| 68 | zno | $1.1 \times 10^{-2}$ |
| 69 | year | $1.1 \times 10^{-2}$ |
| 70 | crystallit | $1.1 \times 10^{-2}$ |
| 71 | reaction | $1 \times 10^{-2}$ |
| 72 | obtain | $1 \times 10^{-2}$ |
| 73 | room | $1 \times 10^{-2}$ |
| 74 | perovskit | $1 \times 10^{-2}$ |
| 75 | press | $1 \times 10^{-2}$ |
| 76 | electr | $1 \times 10^{-2}$ |
| 77 | densiti | $1 \times 10^{-2}$ |
| 78 | hydroxyapatit | $1 \times 10^{-2}$ |
| 79 | diseas | $1 \times 10^{-2}$ |
| 80 | associ | $1 \times 10^{-2}$ |
| 81 | character | $1 \times 10^{-2}$ |
| 82 | paper | $1 \times 10^{-2}$ |
| 83 | chemic | $9.8 \times 10^{-3}$ |
| 84 | exhibit | $9.7 \times 10^{-3}$ |
| 85 | investig | $9.7 \times 10^{-3}$ |
| 86 | level | $9.6 \times 10^{-3}$ |
| 87 | pure | $9.6 \times 10^{-3}$ |
| 88 | mol | $9.6 \times 10^{-3}$ |
| 89 | mechan | $9.5 \times 10^{-3}$ |
| 90 | dispers | $9.5 \times 10^{-3}$ |
| 91 | silic | $9.5 \times 10^{-3}$ |
| 92 | dens | $9.4 \times 10^{-3}$ |
| 93 | find | $9.4 \times 10^{-3}$ |
| 94 | express | $9.2 \times 10^{-3}$ |
| 95 | deposit | $9.2 \times 10^{-3}$ |
| 96 | assess | $9.2 \times 10^{-3}$ |
| 97 | risk | $9.1 \times 10^{-3}$ |
| 98 | raman | $8.9 \times 10^{-3}$ |
| 99 | spinel | $8.9 \times 10^{-3}$ |
| 100 | hydrotherm | $8.8 \times 10^{-3}$ |

Table D.140. The list of the top 100 words in the category Materials Science, Characterization and Testing with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | steel | $3.5 \times 10^{-2}$ |
| 2 | crack | $3 \times 10^{-2}$ |
| 3 | materi | $2.8 \times 10^{-2}$ |
| 4 | stress | $2.3 \times 10^{-2}$ |
| 5 | load | $2.2 \times 10^{-2}$ |
| 6 | specimen | $2.1 \times 10^{-2}$ |
| 7 | tensil | $2.1 \times 10^{-2}$ |
| 8 | strain | $1.8 \times 10^{-2}$ |
| 9 | test | $1.7 \times 10^{-2}$ |
| 10 | weld | $1.7 \times 10^{-2}$ |
| 11 | strength | $1.7 \times 10^{-2}$ |
| 12 | deform | $1.6 \times 10^{-2}$ |
| 13 | patient | $1.6 \times 10^{-2}$ |
| 14 | microstructur | $1.5 \times 10^{-2}$ |
| 15 | corros | $1.5 \times 10^{-2}$ |
| 16 | fatigu | $1.5 \times 10^{-2}$ |
| 17 | nondestruct | $1.5 \times 10^{-2}$ |
| 18 | pipelin | $1.4 \times 10^{-2}$ |
| 19 | pipe | $1.4 \times 10^{-2}$ |
| 20 | concret | $1.4 \times 10^{-2}$ |
| 21 | conclus | $1.3 \times 10^{-2}$ |
| 22 | fractur | $1.3 \times 10^{-2}$ |
| 23 | alloy | $1.3 \times 10^{-2}$ |
| 24 | reinforc | $1.1 \times 10^{-2}$ |
| 25 | finit | $1.1 \times 10^{-2}$ |
| 26 | failur | $1 \times 10^{-2}$ |
| 27 | compress | $1 \times 10^{-2}$ |
| 28 | properti | $1 \times 10^{-2}$ |
| 29 | modulus | $9.9 \times 10^{-3}$ |
| 30 | plastic | $9.6 \times 10^{-3}$ |
| 31 | element | $9.6 \times 10^{-3}$ |
| 32 | elast | $9.3 \times 10^{-3}$ |
| 33 | experiment | $9.1 \times 10^{-3}$ |
| 34 | diseas | $8.9 \times 10^{-3}$ |
| 35 | clinic | $8.9 \times 10^{-3}$ |
| 36 | composit | $8.7 \times 10^{-3}$ |
| 37 | temperatur | $8.6 \times 10^{-3}$ |
| 38 | mechan | $8.5 \times 10^{-3}$ |
| 39 | pavement | $8.3 \times 10^{-3}$ |
| 40 | defect | $8.2 \times 10^{-3}$ |
| 41 | protein | $8.2 \times 10^{-3}$ |
| 42 | tough | $8.1 \times 10^{-3}$ |
| 43 | shear | $8.1 \times 10^{-3}$ |
| 44 | ultrason | $7.7 \times 10^{-3}$ |
| 45 | bend | $7.5 \times 10^{-3}$ |
| 46 | background | $7.2 \times 10^{-3}$ |
| 47 | thick | $7.2 \times 10^{-3}$ |
| 48 | gene | $7 \times 10^{-3}$ |
| 49 | surfac | $6.8 \times 10^{-3}$ |
| 50 | activ | $6.6 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | uniaxi | $6.6 \times 10^{-3}$ |
| 52 | asphalt | $6.4 \times 10^{-3}$ |
| 53 | diffract | $6.1 \times 10^{-3}$ |
| 54 | damag | $6.1 \times 10^{-3}$ |
| 55 | group | $6 \times 10^{-3}$ |
| 56 | ductil | $6 \times 10^{-3}$ |
| 57 | displac | $5.9 \times 10^{-3}$ |
| 58 | popul | $5.9 \times 10^{-3}$ |
| 59 | plate | $5.9 \times 10^{-3}$ |
| 60 | harden | $5.5 \times 10^{-3}$ |
| 61 | cell | $5.4 \times 10^{-3}$ |
| 62 | associ | $5.4 \times 10^{-3}$ |
| 63 | suggest | $5.4 \times 10^{-3}$ |
| 64 | grain | $5.3 \times 10^{-3}$ |
| 65 | austenit | $5.1 \times 10^{-3}$ |
| 66 | structur | $5.1 \times 10^{-3}$ |
| 67 | human | $5.1 \times 10^{-3}$ |
| 68 | express | $5.1 \times 10^{-3}$ |
| 69 | speci | $4.9 \times 10^{-3}$ |
| 70 | aluminum | $4.9 \times 10^{-3}$ |
| 71 | thermal | $4.7 \times 10^{-3}$ |
| 72 | particip | $4.7 \times 10^{-3}$ |
| 73 | cancer | $4.7 \times 10^{-3}$ |
| 74 | brittl | $4.7 \times 10^{-3}$ |
| 75 | paramet | $4.6 \times 10^{-3}$ |
| 76 | lamin | $4.6 \times 10^{-3}$ |
| 77 | heat | $4.5 \times 10^{-3}$ |
| 78 | stainless | $4.4 \times 10^{-3}$ |
| 79 | outcom | $4.3 \times 10^{-3}$ |
| 80 | fiber | $4.3 \times 10^{-3}$ |
| 81 | therapi | $4.3 \times 10^{-3}$ |
| 82 | epoxi | $4.2 \times 10^{-3}$ |
| 83 | powder | $4.1 \times 10^{-3}$ |
| 84 | among | $4.1 \times 10^{-3}$ |
| 85 | may | $4.1 \times 10^{-3}$ |
| 86 | stiff | $4.1 \times 10^{-3}$ |
| 87 | manufactur | $4.1 \times 10^{-3}$ |
| 88 | tension | $4.1 \times 10^{-3}$ |
| 89 | mediat | $4 \times 10^{-3}$ |
| 90 | scan | $4 \times 10^{-3}$ |
| 91 | find | $4 \times 10^{-3}$ |
| 92 | deflect | $4 \times 10^{-3}$ |
| 93 | year | $4 \times 10^{-3}$ |
| 94 | propag | $3.9 \times 10^{-3}$ |
| 95 | wear | $3.7 \times 10^{-3}$ |
| 96 | friction | $3.7 \times 10^{-3}$ |
| 97 | carri | $3.7 \times 10^{-3}$ |
| 98 | beam | $3.7 \times 10^{-3}$ |
| 99 | tumor | $3.7 \times 10^{-3}$ |
| 100 | coat | $3.7 \times 10^{-3}$ |

Table D.141. The list of the top 100 words in the category Materials Science, Coatings and Films with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | film | $1.1 \times 10^{-1}$ |
| 2 | deposit | $9.4 \times 10^{-2}$ |
| 3 | coat | $8.8 \times 10^{-2}$ |
| 4 | surfac | $7.4 \times 10^{-2}$ |
| 5 | substrat | $6.5 \times 10^{-2}$ |
| 6 | layer | $5.1 \times 10^{-2}$ |
| 7 | thin | $4.7 \times 10^{-2}$ |
| 8 | spectroscopi | $4.7 \times 10^{-2}$ |
| 9 | electron | $4.6 \times 10^{-2}$ |
| 10 | microscopi | $4.2 \times 10^{-2}$ |
| 11 | ray | $4 \times 10^{-2}$ |
| 12 | sputter | $3.9 \times 10^{-2}$ |
| 13 | oxid | $3.7 \times 10^{-2}$ |
| 14 | electrochem | $3.6 \times 10^{-2}$ |
| 15 | properti | $3.5 \times 10^{-2}$ |
| 16 | scan | $3.2 \times 10^{-2}$ |
| 17 | diffract | $3 \times 10^{-2}$ |
| 18 | magnetron | $2.9 \times 10^{-2}$ |
| 19 | sem | $2.9 \times 10^{-2}$ |
| 20 | morpholog | $2.8 \times 10^{-2}$ |
| 21 | prepar | $2.8 \times 10^{-2}$ |
| 22 | temperatur | $2.7 \times 10^{-2}$ |
| 23 | corros | $2.7 \times 10^{-2}$ |
| 24 | xrd | $2.5 \times 10^{-2}$ |
| 25 | photoelectron | $2.5 \times 10^{-2}$ |
| 26 | composit | $2.5 \times 10^{-2}$ |
| 27 | thick | $2.4 \times 10^{-2}$ |
| 28 | atom | $2.4 \times 10^{-2}$ |
| 29 | resist | $2.4 \times 10^{-2}$ |
| 30 | microstructur | $2.3 \times 10^{-2}$ |
| 31 | xps | $2.2 \times 10^{-2}$ |
| 32 | anneal | $2.2 \times 10^{-2}$ |
| 33 | electrolyt | $2.2 \times 10^{-2}$ |
| 34 | electrod | $2.1 \times 10^{-2}$ |
| 35 | chemic | $2.1 \times 10^{-2}$ |
| 36 | conclus | $1.9 \times 10^{-2}$ |
| 37 | amorph | $1.9 \times 10^{-2}$ |
| 38 | alloy | $1.9 \times 10^{-2}$ |
| 39 | patient | $1.9 \times 10^{-2}$ |
| 40 | fabric | $1.8 \times 10^{-2}$ |
| 41 | structur | $1.8 \times 10^{-2}$ |
| 42 | spray | $1.8 \times 10^{-2}$ |
| 43 | degre | $1.7 \times 10^{-2}$ |
| 44 | tio2 | $1.7 \times 10^{-2}$ |
| 45 | dope | $1.7 \times 10^{-2}$ |
| 46 | metal | $1.7 \times 10^{-2}$ |
| 47 | crystallin | $1.7 \times 10^{-2}$ |
| 48 | anod | $1.6 \times 10^{-2}$ |
| 49 | ion | $1.6 \times 10^{-2}$ |
| 50 | cathod | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | rough | $1.5 \times 10^{-2}$ |
| 52 | wear | $1.4 \times 10^{-2}$ |
| 53 | steel | $1.4 \times 10^{-2}$ |
| 54 | carbon | $1.3 \times 10^{-2}$ |
| 55 | adhes | $1.3 \times 10^{-2}$ |
| 56 | thermal | $1.3 \times 10^{-2}$ |
| 57 | hard | $1.3 \times 10^{-2}$ |
| 58 | electrodeposit | $1.3 \times 10^{-2}$ |
| 59 | format | $1.2 \times 10^{-2}$ |
| 60 | silicon | $1.2 \times 10^{-2}$ |
| 61 | vapor | $1.2 \times 10^{-2}$ |
| 62 | glass | $1.2 \times 10^{-2}$ |
| 63 | optic | $1.2 \times 10^{-2}$ |
| 64 | investig | $1.2 \times 10^{-2}$ |
| 65 | titanium | $1.2 \times 10^{-2}$ |
| 66 | dispers | $1.2 \times 10^{-2}$ |
| 67 | tin | $1.1 \times 10^{-2}$ |
| 68 | character | $1.1 \times 10^{-2}$ |
| 69 | plasma | $1.1 \times 10^{-2}$ |
| 70 | zno | $1.1 \times 10^{-2}$ |
| 71 | materi | $1.1 \times 10^{-2}$ |
| 72 | exhibit | $1.1 \times 10^{-2}$ |
| 73 | nano | $1.1 \times 10^{-2}$ |
| 74 | raman | $1.1 \times 10^{-2}$ |
| 75 | associ | $1.1 \times 10^{-2}$ |
| 76 | year | $1 \times 10^{-2}$ |
| 77 | afm | $1 \times 10^{-2}$ |
| 78 | densiti | $1 \times 10^{-2}$ |
| 79 | adsorpt | $1 \times 10^{-2}$ |
| 80 | diseas | $1 \times 10^{-2}$ |
| 81 | oxygen | $1 \times 10^{-2}$ |
| 82 | clinic | $1 \times 10^{-2}$ |
| 83 | contact | $1 \times 10^{-2}$ |
| 84 | grown | $1 \times 10^{-2}$ |
| 85 | imped | $9.8 \times 10^{-3}$ |
| 86 | object | $9.7 \times 10^{-3}$ |
| 87 | nanoparticl | $9.6 \times 10^{-3}$ |
| 88 | background | $9.5 \times 10^{-3}$ |
| 89 | tem | $9.5 \times 10^{-3}$ |
| 90 | energi | $9.1 \times 10^{-3}$ |
| 91 | photocatalyt | $9 \times 10^{-3}$ |
| 92 | phase | $9 \times 10^{-3}$ |
| 93 | particl | $9 \times 10^{-3}$ |
| 94 | synthes | $8.7 \times 10^{-3}$ |
| 95 | data | $8.7 \times 10^{-3}$ |
| 96 | express | $8.7 \times 10^{-3}$ |
| 97 | interfac | $8.5 \times 10^{-3}$ |
| 98 | electr | $8.5 \times 10^{-3}$ |
| 99 | onto | $8.4 \times 10^{-3}$ |
| 100 | diamond | $8.3 \times 10^{-3}$ |

Table D.142. The list of the top 100 words in the category Materials Science, Composites with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | composit | $1.4 \times 10^{-1}$ |
| 2 | reinforc | $1 \times 10^{-1}$ |
| 3 | strength | $7.3 \times 10^{-2}$ |
| 4 | fiber | $6.6 \times 10^{-2}$ |
| 5 | lamin | $6.6 \times 10^{-2}$ |
| 6 | tensil | $6.2 \times 10^{-2}$ |
| 7 | properti | $5.7 \times 10^{-2}$ |
| 8 | epoxi | $5.1 \times 10^{-2}$ |
| 9 | load | $4.5 \times 10^{-2}$ |
| 10 | matrix | $4.2 \times 10^{-2}$ |
| 11 | modulus | $4.1 \times 10^{-2}$ |
| 12 | materi | $3.9 \times 10^{-2}$ |
| 13 | polym | $3.8 \times 10^{-2}$ |
| 14 | shear | $3.8 \times 10^{-2}$ |
| 15 | mechan | $3.7 \times 10^{-2}$ |
| 16 | resin | $3.5 \times 10^{-2}$ |
| 17 | fibr | $3.5 \times 10^{-2}$ |
| 18 | carbon | $3 \times 10^{-2}$ |
| 19 | flexur | $3 \times 10^{-2}$ |
| 20 | concret | $2.6 \times 10^{-2}$ |
| 21 | nanocomposit | $2.4 \times 10^{-2}$ |
| 22 | deform | $2.4 \times 10^{-2}$ |
| 23 | glass | $2.3 \times 10^{-2}$ |
| 24 | compress | $2.2 \times 10^{-2}$ |
| 25 | thermal | $2.2 \times 10^{-2}$ |
| 26 | crack | $2.2 \times 10^{-2}$ |
| 27 | filler | $2.1 \times 10^{-2}$ |
| 28 | stiff | $2.1 \times 10^{-2}$ |
| 29 | elast | $2.1 \times 10^{-2}$ |
| 30 | specimen | $2 \times 10^{-2}$ |
| 31 | finit | $2 \times 10^{-2}$ |
| 32 | polypropylen | $1.9 \times 10^{-2}$ |
| 33 | stress | $1.8 \times 10^{-2}$ |
| 34 | interfaci | $1.8 \times 10^{-2}$ |
| 35 | patient | $1.8 \times 10^{-2}$ |
| 36 | bend | $1.7 \times 10^{-2}$ |
| 37 | strain | $1.7 \times 10^{-2}$ |
| 38 | microstructur | $1.7 \times 10^{-2}$ |
| 39 | thick | $1.7 \times 10^{-2}$ |
| 40 | fractur | $1.6 \times 10^{-2}$ |
| 41 | plate | $1.6 \times 10^{-2}$ |
| 42 | sandwich | $1.6 \times 10^{-2}$ |
| 43 | woven | $1.6 \times 10^{-2}$ |
| 44 | test | $1.6 \times 10^{-2}$ |
| 45 | nanotub | $1.6 \times 10^{-2}$ |
| 46 | scan | $1.5 \times 10^{-2}$ |
| 47 | conclus | $1.5 \times 10^{-2}$ |
| 48 | element | $1.5 \times 10^{-2}$ |
| 49 | failur | $1.5 \times 10^{-2}$ |
| 50 | fabric | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | buckl | $1.5 \times 10^{-2}$ |
| 52 | prepar | $1.4 \times 10^{-2}$ |
| 53 | plastic | $1.3 \times 10^{-2}$ |
| 54 | damag | $1.3 \times 10^{-2}$ |
| 55 | experiment | $1.3 \times 10^{-2}$ |
| 56 | investig | $1.2 \times 10^{-2}$ |
| 57 | mold | $1.2 \times 10^{-2}$ |
| 58 | temperatur | $1.2 \times 10^{-2}$ |
| 59 | tough | $1.2 \times 10^{-2}$ |
| 60 | transvers | $1.1 \times 10^{-2}$ |
| 61 | microscopi | $1.1 \times 10^{-2}$ |
| 62 | adhes | $1.1 \times 10^{-2}$ |
| 63 | displac | $1.1 \times 10^{-2}$ |
| 64 | cement | $1.1 \times 10^{-2}$ |
| 65 | dispers | $1.1 \times 10^{-2}$ |
| 66 | behavior | $1 \times 10^{-2}$ |
| 67 | sem | $1 \times 10^{-2}$ |
| 68 | cure | $1 \times 10^{-2}$ |
| 69 | bond | $1 \times 10^{-2}$ |
| 70 | background | $1 \times 10^{-2}$ |
| 71 | diseas | $9.9 \times 10^{-3}$ |
| 72 | beam | $9.8 \times 10^{-3}$ |
| 73 | structur | $9.7 \times 10^{-3}$ |
| 74 | clinic | $9.6 \times 10^{-3}$ |
| 75 | associ | $9.6 \times 10^{-3}$ |
| 76 | steel | $9.5 \times 10^{-3}$ |
| 77 | inplan | $9 \times 10^{-3}$ |
| 78 | year | $8.5 \times 10^{-3}$ |
| 79 | ductil | $8.5 \times 10^{-3}$ |
| 80 | manufactur | $8.4 \times 10^{-3}$ |
| 81 | static | $8.4 \times 10^{-3}$ |
| 82 | deflect | $8.4 \times 10^{-3}$ |
| 83 | electron | $8.3 \times 10^{-3}$ |
| 84 | human | $8.2 \times 10^{-3}$ |
| 85 | protein | $8.1 \times 10^{-3}$ |
| 86 | multiwal | $8 \times 10^{-3}$ |
| 87 | melt | $7.9 \times 10^{-3}$ |
| 88 | activ | $7.9 \times 10^{-3}$ |
| 89 | surfac | $7.7 \times 10^{-3}$ |
| 90 | yarn | $7.7 \times 10^{-3}$ |
| 91 | numer | $7.7 \times 10^{-3}$ |
| 92 | blend | $7.6 \times 10^{-3}$ |
| 93 | thermogravimetr | $7.5 \times 10^{-3}$ |
| 94 | layer | $7.3 \times 10^{-3}$ |
| 95 | risk | $7.2 \times 10^{-3}$ |
| 96 | resist | $7.2 \times 10^{-3}$ |
| 97 | gene | $7.1 \times 10^{-3}$ |
| 98 | foam | $7 \times 10^{-3}$ |
| 99 | effect | $7 \times 10^{-3}$ |
| 100 | morpholog | $6.9 \times 10^{-3}$ |

Table D.143. The list of the top 100 words in the category Materials Science, Multidisciplinary with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | properti | $3.5 \times 10^{-2}$ |
| 2 | electron | $3.4 \times 10^{-2}$ |
| 3 | alloy | $3.3 \times 10^{-2}$ |
| 4 | materi | $3.3 \times 10^{-2}$ |
| 5 | temperatur | $3.3 \times 10^{-2}$ |
| 6 | patient | $3.2 \times 10^{-2}$ |
| 7 | conclus | $3.1 \times 10^{-2}$ |
| 8 | microstructur | $2.9 \times 10^{-2}$ |
| 9 | film | $2.8 \times 10^{-2}$ |
| 10 | surfac | $2.7 \times 10^{-2}$ |
| 11 | diffract | $2.4 \times 10^{-2}$ |
| 12 | microscopi | $2.3 \times 10^{-2}$ |
| 13 | fabric | $2.2 \times 10^{-2}$ |
| 14 | ray | $2.1 \times 10^{-2}$ |
| 15 | prepar | $2.1 \times 10^{-2}$ |
| 16 | structur | $2.1 \times 10^{-2}$ |
| 17 | layer | $1.9 \times 10^{-2}$ |
| 18 | nanoparticl | $1.9 \times 10^{-2}$ |
| 19 | associ | $1.9 \times 10^{-2}$ |
| 20 | metal | $1.8 \times 10^{-2}$ |
| 21 | composit | $1.7 \times 10^{-2}$ |
| 22 | clinic | $1.7 \times 10^{-2}$ |
| 23 | background | $1.6 \times 10^{-2}$ |
| 24 | steel | $1.6 \times 10^{-2}$ |
| 25 | diseas | $1.6 \times 10^{-2}$ |
| 26 | year | $1.6 \times 10^{-2}$ |
| 27 | dope | $1.6 \times 10^{-2}$ |
| 28 | xrd | $1.5 \times 10^{-2}$ |
| 29 | spectroscopi | $1.5 \times 10^{-2}$ |
| 30 | scan | $1.4 \times 10^{-2}$ |
| 31 | crystal | $1.4 \times 10^{-2}$ |
| 32 | thin | $1.4 \times 10^{-2}$ |
| 33 | deposit | $1.4 \times 10^{-2}$ |
| 34 | tensil | $1.3 \times 10^{-2}$ |
| 35 | thermal | $1.3 \times 10^{-2}$ |
| 36 | coat | $1.3 \times 10^{-2}$ |
| 37 | grain | $1.3 \times 10^{-2}$ |
| 38 | synthes | $1.3 \times 10^{-2}$ |
| 39 | sem | $1.3 \times 10^{-2}$ |
| 40 | oxid | $1.2 \times 10^{-2}$ |
| 41 | express | $1.2 \times 10^{-2}$ |
| 42 | anneal | $1.2 \times 10^{-2}$ |
| 43 | assess | $1.2 \times 10^{-2}$ |
| 44 | may | $1.2 \times 10^{-2}$ |
| 45 | nanostructur | $1.2 \times 10^{-2}$ |
| 46 | strength | $1.2 \times 10^{-2}$ |
| 47 | electrochem | $1.2 \times 10^{-2}$ |
| 48 | risk | $1.2 \times 10^{-2}$ |
| 49 | gene | $1.2 \times 10^{-2}$ |
| 50 | substrat | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | data | $1.1 \times 10^{-2}$ |
| 52 | outcom | $1.1 \times 10^{-2}$ |
| 53 | morpholog | $1.1 \times 10^{-2}$ |
| 54 | crystallin | $1.1 \times 10^{-2}$ |
| 55 | powder | $1.1 \times 10^{-2}$ |
| 56 | energi | $1.1 \times 10^{-2}$ |
| 57 | electrod | $1 \times 10^{-2}$ |
| 58 | crack | $1 \times 10^{-2}$ |
| 59 | popul | $1 \times 10^{-2}$ |
| 60 | identifi | $1 \times 10^{-2}$ |
| 61 | graphen | $1 \times 10^{-2}$ |
| 62 | degre | $1 \times 10^{-2}$ |
| 63 | object | $1 \times 10^{-2}$ |
| 64 | particip | $1 \times 10^{-2}$ |
| 65 | mechan | $1 \times 10^{-2}$ |
| 66 | level | $9.9 \times 10^{-3}$ |
| 67 | thick | $9.9 \times 10^{-3}$ |
| 68 | phase | $9.8 \times 10^{-3}$ |
| 69 | atom | $9.8 \times 10^{-3}$ |
| 70 | electr | $9.7 \times 10^{-3}$ |
| 71 | particl | $9.4 \times 10^{-3}$ |
| 72 | protein | $9.3 \times 10^{-3}$ |
| 73 | carbon | $9.2 \times 10^{-3}$ |
| 74 | polym | $9 \times 10^{-3}$ |
| 75 | age | $8.9 \times 10^{-3}$ |
| 76 | deform | $8.9 \times 10^{-3}$ |
| 77 | exhibit | $8.7 \times 10^{-3}$ |
| 78 | whether | $8.6 \times 10^{-3}$ |
| 79 | ion | $8.6 \times 10^{-3}$ |
| 80 | human | $8.6 \times 10^{-3}$ |
| 81 | group | $8.6 \times 10^{-3}$ |
| 82 | glass | $8.5 \times 10^{-3}$ |
| 83 | aim | $8.4 \times 10^{-3}$ |
| 84 | includ | $8.3 \times 10^{-3}$ |
| 85 | densiti | $8.3 \times 10^{-3}$ |
| 86 | charg | $8.3 \times 10^{-3}$ |
| 87 | zno | $8.2 \times 10^{-3}$ |
| 88 | chemic | $8.2 \times 10^{-3}$ |
| 89 | tem | $8.2 \times 10^{-3}$ |
| 90 | nanotub | $8.1 \times 10^{-3}$ |
| 91 | photoluminesc | $8 \times 10^{-3}$ |
| 92 | size | $8 \times 10^{-3}$ |
| 93 | room | $7.9 \times 10^{-3}$ |
| 94 | month | $7.9 \times 10^{-3}$ |
| 95 | health | $7.9 \times 10^{-3}$ |
| 96 | optic | $7.6 \times 10^{-3}$ |
| 97 | interfac | $7.6 \times 10^{-3}$ |
| 98 | sinter | $7.6 \times 10^{-3}$ |
| 99 | suggest | $7.6 \times 10^{-3}$ |
| 100 | score | $7.6 \times 10^{-3}$ |

Table D.144. The list of the top 100 words in the category Materials Science, Paper and Wood with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | wood | $1.7 \times 10^{-1}$ |
| 2 | cellulos | $1.2 \times 10^{-1}$ |
| 3 | pulp | $7.7 \times 10^{-2}$ |
| 4 | lignin | $5.9 \times 10^{-2}$ |
| 5 | strength | $3.5 \times 10^{-2}$ |
| 6 | fiber | $3.5 \times 10^{-2}$ |
| 7 | timber | $3.4 \times 10^{-2}$ |
| 8 | properti | $3.3 \times 10^{-2}$ |
| 9 | hemicellulos | $2.5 \times 10^{-2}$ |
| 10 | pine | $2.4 \times 10^{-2}$ |
| 11 | content | $2.4 \times 10^{-2}$ |
| 12 | modulus | $2.3 \times 10^{-2}$ |
| 13 | tensil | $2.2 \times 10^{-2}$ |
| 14 | spruce | $2.1 \times 10^{-2}$ |
| 15 | degre | $2 \times 10^{-2}$ |
| 16 | chemic | $1.9 \times 10^{-2}$ |
| 17 | dri | $1.9 \times 10^{-2}$ |
| 18 | moistur | $1.8 \times 10^{-2}$ |
| 19 | pinus | $1.6 \times 10^{-2}$ |
| 20 | patient | $1.6 \times 10^{-2}$ |
| 21 | mill | $1.6 \times 10^{-2}$ |
| 22 | product | $1.6 \times 10^{-2}$ |
| 23 | materi | $1.5 \times 10^{-2}$ |
| 24 | water | $1.5 \times 10^{-2}$ |
| 25 | lignocellulos | $1.5 \times 10^{-2}$ |
| 26 | fourier | $1.4 \times 10^{-2}$ |
| 27 | composit | $1.3 \times 10^{-2}$ |
| 28 | hydrolysi | $1.3 \times 10^{-2}$ |
| 29 | conclus | $1.3 \times 10^{-2}$ |
| 30 | fibr | $1.3 \times 10^{-2}$ |
| 31 | swell | $1.3 \times 10^{-2}$ |
| 32 | bond | $1.2 \times 10^{-2}$ |
| 33 | infrar | $1.2 \times 10^{-2}$ |
| 34 | pretreat | $1.2 \times 10^{-2}$ |
| 35 | ftir | $1.1 \times 10^{-2}$ |
| 36 | scan | $1.1 \times 10^{-2}$ |
| 37 | crystallin | $1.1 \times 10^{-2}$ |
| 38 | temperatur | $1.1 \times 10^{-2}$ |
| 39 | prepar | $1.1 \times 10^{-2}$ |
| 40 | naoh | $1.1 \times 10^{-2}$ |
| 41 | board | $1.1 \times 10^{-2}$ |
| 42 | biomass | $1.1 \times 10^{-2}$ |
| 43 | surfac | $1 \times 10^{-2}$ |
| 44 | cotton | $1 \times 10^{-2}$ |
| 45 | microscopi | $9.9 \times 10^{-3}$ |
| 46 | bend | $9.6 \times 10^{-3}$ |
| 47 | associ | $9.1 \times 10^{-3}$ |
| 48 | spectroscopi | $9.1 \times 10^{-3}$ |
| 49 | raw | $8.9 \times 10^{-3}$ |
| 50 | background | $8.8 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | alkali | $8.7 \times 10^{-3}$ |
| 52 | clinic | $8.7 \times 10^{-3}$ |
| 53 | sem | $8.5 \times 10^{-3}$ |
| 54 | lamin | $8.4 \times 10^{-3}$ |
| 55 | yield | $8.4 \times 10^{-3}$ |
| 56 | enzymat | $8.3 \times 10^{-3}$ |
| 57 | mechan | $8.2 \times 10^{-3}$ |
| 58 | elast | $8.2 \times 10^{-3}$ |
| 59 | industri | $8 \times 10^{-3}$ |
| 60 | phenol | $7.8 \times 10^{-3}$ |
| 61 | impregn | $7.8 \times 10^{-3}$ |
| 62 | thermogravimetr | $7.3 \times 10^{-3}$ |
| 63 | diseas | $7.2 \times 10^{-3}$ |
| 64 | oak | $7 \times 10^{-3}$ |
| 65 | shear | $6.8 \times 10^{-3}$ |
| 66 | straw | $6.8 \times 10^{-3}$ |
| 67 | mpa | $6.8 \times 10^{-3}$ |
| 68 | acid | $6.8 \times 10^{-3}$ |
| 69 | bark | $6.7 \times 10^{-3}$ |
| 70 | decreas | $6.6 \times 10^{-3}$ |
| 71 | sugar | $6.6 \times 10^{-3}$ |
| 72 | resin | $6.6 \times 10^{-3}$ |
| 73 | remov | $6.5 \times 10^{-3}$ |
| 74 | alkalin | $6.5 \times 10^{-3}$ |
| 75 | thermal | $6.4 \times 10^{-3}$ |
| 76 | acet | $6.4 \times 10^{-3}$ |
| 77 | adhes | $6.3 \times 10^{-3}$ |
| 78 | adsorpt | $6.3 \times 10^{-3}$ |
| 79 | wall | $6.3 \times 10^{-3}$ |
| 80 | propos | $6.2 \times 10^{-3}$ |
| 81 | solvent | $6.2 \times 10^{-3}$ |
| 82 | sodium | $6.2 \times 10^{-3}$ |
| 83 | amount | $5.9 \times 10^{-3}$ |
| 84 | specimen | $5.9 \times 10^{-3}$ |
| 85 | sampl | $5.9 \times 10^{-3}$ |
| 86 | viscos | $5.9 \times 10^{-3}$ |
| 87 | urea | $5.8 \times 10^{-3}$ |
| 88 | human | $5.8 \times 10^{-3}$ |
| 89 | hydrophob | $5.8 \times 10^{-3}$ |
| 90 | signal | $5.7 \times 10^{-3}$ |
| 91 | valu | $5.7 \times 10^{-3}$ |
| 92 | dissolv | $5.7 \times 10^{-3}$ |
| 93 | compress | $5.7 \times 10^{-3}$ |
| 94 | treat | $5.6 \times 10^{-3}$ |
| 95 | ethanol | $5.6 \times 10^{-3}$ |
| 96 | risk | $5.6 \times 10^{-3}$ |
| 97 | manufactur | $5.5 \times 10^{-3}$ |
| 98 | aqueous | $5.4 \times 10^{-3}$ |
| 99 | ash | $5.4 \times 10^{-3}$ |
| 100 | press | $5.4 \times 10^{-3}$ |

Table D.145. The list of the top 100 words in the category Materials Science, Textiles with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | yarn | $7.4 \times 10^{-2}$ |
| 2 | fabric | $7.2 \times 10^{-2}$ |
| 3 | textil | $6.9 \times 10^{-2}$ |
| 4 | cotton | $6 \times 10^{-2}$ |
| 5 | cellulos | $5.8 \times 10^{-2}$ |
| 6 | properti | $5.2 \times 10^{-2}$ |
| 7 | fiber | $5.1 \times 10^{-2}$ |
| 8 | dye | $3.5 \times 10^{-2}$ |
| 9 | woven | $3 \times 10^{-2}$ |
| 10 | tensil | $2.8 \times 10^{-2}$ |
| 11 | fibr | $2.2 \times 10^{-2}$ |
| 12 | strength | $2 \times 10^{-2}$ |
| 13 | conclus | $1.5 \times 10^{-2}$ |
| 14 | patient | $1.4 \times 10^{-2}$ |
| 15 | scan | $1.4 \times 10^{-2}$ |
| 16 | prepar | $1.4 \times 10^{-2}$ |
| 17 | modulus | $1.2 \times 10^{-2}$ |
| 18 | associ | $1.2 \times 10^{-2}$ |
| 19 | electron | $1.2 \times 10^{-2}$ |
| 20 | absorpt | $1.2 \times 10^{-2}$ |
| 21 | materi | $1.1 \times 10^{-2}$ |
| 22 | color | $1.1 \times 10^{-2}$ |
| 23 | surfac | $1 \times 10^{-2}$ |
| 24 | infrar | $1 \times 10^{-2}$ |
| 25 | sem | $1 \times 10^{-2}$ |
| 26 | composit | $1 \times 10^{-2}$ |
| 27 | microscopi | $1 \times 10^{-2}$ |
| 28 | thermal | $9.9 \times 10^{-3}$ |
| 29 | nanofib | $9.9 \times 10^{-3}$ |
| 30 | spectroscopi | $9.5 \times 10^{-3}$ |
| 31 | fourier | $9.4 \times 10^{-3}$ |
| 32 | electrospin | $9.3 \times 10^{-3}$ |
| 33 | polym | $9.2 \times 10^{-3}$ |
| 34 | crystallin | $9 \times 10^{-3}$ |
| 35 | comfort | $8.9 \times 10^{-3}$ |
| 36 | polypropylen | $8.7 \times 10^{-3}$ |
| 37 | synthes | $8.4 \times 10^{-3}$ |
| 38 | background | $8.4 \times 10^{-3}$ |
| 39 | blend | $8.3 \times 10^{-3}$ |
| 40 | elong | $8 \times 10^{-3}$ |
| 41 | chemic | $8 \times 10^{-3}$ |
| 42 | clinic | $7.8 \times 10^{-3}$ |
| 43 | diseas | $7.7 \times 10^{-3}$ |
| 44 | morpholog | $7.5 \times 10^{-3}$ |
| 45 | viscos | $7.3 \times 10^{-3}$ |
| 46 | ftir | $7.2 \times 10^{-3}$ |
| 47 | structur | $7.2 \times 10^{-3}$ |
| 48 | pulp | $7 \times 10^{-3}$ |
| 49 | year | $7 \times 10^{-3}$ |
| 50 | may | $6.9 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | wood | $6.9 \times 10^{-3}$ |
| 52 | break | $6.6 \times 10^{-3}$ |
| 53 | reinforc | $6.5 \times 10^{-3}$ |
| 54 | mechan | $6.5 \times 10^{-3}$ |
| 55 | express | $6.4 \times 10^{-3}$ |
| 56 | moistur | $6.4 \times 10^{-3}$ |
| 57 | chitosan | $6.3 \times 10^{-3}$ |
| 58 | antibacteri | $6.3 \times 10^{-3}$ |
| 59 | solvent | $6.3 \times 10^{-3}$ |
| 60 | gene | $6.2 \times 10^{-3}$ |
| 61 | process | $6.1 \times 10^{-3}$ |
| 62 | colour | $5.8 \times 10^{-3}$ |
| 63 | poli | $5.8 \times 10^{-3}$ |
| 64 | aqueous | $5.8 \times 10^{-3}$ |
| 65 | temperatur | $5.7 \times 10^{-3}$ |
| 66 | water | $5.6 \times 10^{-3}$ |
| 67 | permeabl | $5.6 \times 10^{-3}$ |
| 68 | identifi | $5.6 \times 10^{-3}$ |
| 69 | risk | $5.6 \times 10^{-3}$ |
| 70 | degre | $5.5 \times 10^{-3}$ |
| 71 | manufactur | $5.1 \times 10^{-3}$ |
| 72 | suggest | $5.1 \times 10^{-3}$ |
| 73 | produc | $5 \times 10^{-3}$ |
| 74 | coat | $5 \times 10^{-3}$ |
| 75 | outcom | $5 \times 10^{-3}$ |
| 76 | polymer | $4.9 \times 10^{-3}$ |
| 77 | dri | $4.9 \times 10^{-3}$ |
| 78 | popul | $4.7 \times 10^{-3}$ |
| 79 | blue | $4.7 \times 10^{-3}$ |
| 80 | age | $4.7 \times 10^{-3}$ |
| 81 | hemicellulos | $4.6 \times 10^{-3}$ |
| 82 | spin | $4.6 \times 10^{-3}$ |
| 83 | hydrophil | $4.6 \times 10^{-3}$ |
| 84 | thermogravimetr | $4.5 \times 10^{-3}$ |
| 85 | control | $4.4 \times 10^{-3}$ |
| 86 | ray | $4.4 \times 10^{-3}$ |
| 87 | character | $4.4 \times 10^{-3}$ |
| 88 | solut | $4.4 \times 10^{-3}$ |
| 89 | fluoresc | $4.3 \times 10^{-3}$ |
| 90 | data | $4.3 \times 10^{-3}$ |
| 91 | receiv | $4.2 \times 10^{-3}$ |
| 92 | microscop | $4.1 \times 10^{-3}$ |
| 93 | case | $4.1 \times 10^{-3}$ |
| 94 | wet | $4 \times 10^{-3}$ |
| 95 | naoh | $4 \times 10^{-3}$ |
| 96 | dispers | $4 \times 10^{-3}$ |
| 97 | whether | $4 \times 10^{-3}$ |
| 98 | crosslink | $3.9 \times 10^{-3}$ |
| 99 | alkali | $3.9 \times 10^{-3}$ |
| 100 | made | $3.9 \times 10^{-3}$ |

Table D.146. The list of the top 100 words in the category Mathematical and Computational Biology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | model | $2.9 \times 10^{-2}$ |
| 2 | comput | $2.7 \times 10^{-2}$ |
| 3 | dataset | $2.7 \times 10^{-2}$ |
| 4 | genom | $2.6 \times 10^{-2}$ |
| 5 | biolog | $2.5 \times 10^{-2}$ |
| 6 | data | $2.2 \times 10^{-2}$ |
| 7 | algorithm | $1.9 \times 10^{-2}$ |
| 8 | sequenc | $1.8 \times 10^{-2}$ |
| 9 | propos | $1.7 \times 10^{-2}$ |
| 10 | approach | $1.6 \times 10^{-2}$ |
| 11 | motiv | $1.6 \times 10^{-2}$ |
| 12 | annot | $1.4 \times 10^{-2}$ |
| 13 | simul | $1.4 \times 10^{-2}$ |
| 14 | predict | $1.3 \times 10^{-2}$ |
| 15 | infer | $1.3 \times 10^{-2}$ |
| 16 | set | $1.2 \times 10^{-2}$ |
| 17 | gene | $1.2 \times 10^{-2}$ |
| 18 | can | $1.2 \times 10^{-2}$ |
| 19 | base | $1.2 \times 10^{-2}$ |
| 20 | inform | $1.1 \times 10^{-2}$ |
| 21 | mathemat | $1.1 \times 10^{-2}$ |
| 22 | featur | $1 \times 10^{-2}$ |
| 23 | tool | $1 \times 10^{-2}$ |
| 24 | bioinformat | $1 \times 10^{-2}$ |
| 25 | accuraci | $1 \times 10^{-2}$ |
| 26 | network | $9.6 \times 10^{-3}$ |
| 27 | statist | $9.5 \times 10^{-3}$ |
| 28 | databas | $9.4 \times 10^{-3}$ |
| 29 | avail | $9.1 \times 10^{-3}$ |
| 30 | temperatur | $8.8 \times 10^{-3}$ |
| 31 | bayesian | $8.4 \times 10^{-3}$ |
| 32 | estim | $8.1 \times 10^{-3}$ |
| 33 | classif | $8.1 \times 10^{-3}$ |
| 34 | appli | $7.9 \times 10^{-3}$ |
| 35 | dynam | $7.7 \times 10^{-3}$ |
| 36 | framework | $7.2 \times 10^{-3}$ |
| 37 | use | $6.9 \times 10^{-3}$ |
| 38 | method | $6.9 \times 10^{-3}$ |
| 39 | ecg | $6.8 \times 10^{-3}$ |
| 40 | evolutionari | $6.4 \times 10^{-3}$ |
| 41 | exist | $6.4 \times 10^{-3}$ |
| 42 | number | $6.4 \times 10^{-3}$ |
| 43 | mani | $6.3 \times 10^{-3}$ |
| 44 | accur | $6.2 \times 10^{-3}$ |
| 45 | protein | $6.2 \times 10^{-3}$ |
| 46 | interact | $6.2 \times 10^{-3}$ |
| 47 | allow | $6.2 \times 10^{-3}$ |
| 48 | provid | $6.2 \times 10^{-3}$ |
| 49 | materi | $6.1 \times 10^{-3}$ |
| 50 | classifi | $6.1 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | novel | $6 \times 10^{-3}$ |
| 52 | analysi | $5.9 \times 10^{-3}$ |
| 53 | complex | $5.9 \times 10^{-3}$ |
| 54 | robust | $5.8 \times 10^{-3}$ |
| 55 | illustr | $5.7 \times 10^{-3}$ |
| 56 | throughput | $5.7 \times 10^{-3}$ |
| 57 | genet | $5.5 \times 10^{-3}$ |
| 58 | valid | $5.5 \times 10^{-3}$ |
| 59 | outperform | $5.5 \times 10^{-3}$ |
| 60 | water | $5.4 \times 10^{-3}$ |
| 61 | seq | $5.3 \times 10^{-3}$ |
| 62 | discoveri | $5.2 \times 10^{-3}$ |
| 63 | automat | $5.2 \times 10^{-3}$ |
| 64 | regulatori | $5.1 \times 10^{-3}$ |
| 65 | machin | $5.1 \times 10^{-3}$ |
| 66 | softwar | $5 \times 10^{-3}$ |
| 67 | often | $4.9 \times 10^{-3}$ |
| 68 | electron | $4.9 \times 10^{-3}$ |
| 69 | align | $4.8 \times 10^{-3}$ |
| 70 | multipl | $4.8 \times 10^{-3}$ |
| 71 | experiment | $4.7 \times 10^{-3}$ |
| 72 | ontolog | $4.6 \times 10^{-3}$ |
| 73 | likelihood | $4.6 \times 10^{-3}$ |
| 74 | graph | $4.5 \times 10^{-3}$ |
| 75 | identif | $4.5 \times 10^{-3}$ |
| 76 | markov | $4.5 \times 10^{-3}$ |
| 77 | oxid | $4.5 \times 10^{-3}$ |
| 78 | biomed | $4.5 \times 10^{-3}$ |
| 79 | error | $4.4 \times 10^{-3}$ |
| 80 | identifi | $4.4 \times 10^{-3}$ |
| 81 | diseas | $4.4 \times 10^{-3}$ |
| 82 | web | $4.4 \times 10^{-3}$ |
| 83 | prepar | $4.3 \times 10^{-3}$ |
| 84 | covari | $4.3 \times 10^{-3}$ |
| 85 | call | $4.3 \times 10^{-3}$ |
| 86 | metal | $4.3 \times 10^{-3}$ |
| 87 | problem | $4.3 \times 10^{-3}$ |
| 88 | larg | $4.2 \times 10^{-3}$ |
| 89 | challeng | $4.1 \times 10^{-3}$ |
| 90 | svm | $4.1 \times 10^{-3}$ |
| 91 | function | $4.1 \times 10^{-3}$ |
| 92 | thermal | $4.1 \times 10^{-3}$ |
| 93 | manual | $3.9 \times 10^{-3}$ |
| 94 | cluster | $3.9 \times 10^{-3}$ |
| 95 | specif | $3.9 \times 10^{-3}$ |
| 96 | graphic | $3.8 \times 10^{-3}$ |
| 97 | surfac | $3.8 \times 10^{-3}$ |
| 98 | real | $3.8 \times 10^{-3}$ |
| 99 | microarray | $3.8 \times 10^{-3}$ |
| 100 | nucleotid | $3.8 \times 10^{-3}$ |

Table D.147. The list of the top 100 words in the category Mathematics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | prove | $1 \times 10^{-1}$ |
| 2 | theorem | $7.4 \times 10^{-2}$ |
| 3 | let | $7 \times 10^{-2}$ |
| 4 | algebra | $6.5 \times 10^{-2}$ |
| 5 | space | $4.9 \times 10^{-2}$ |
| 6 | effect | $4.2 \times 10^{-2}$ |
| 7 | high | $4.1 \times 10^{-2}$ |
| 8 | signific | $4.1 \times 10^{-2}$ |
| 9 | increas | $4 \times 10^{-2}$ |
| 10 | use | $3.7 \times 10^{-2}$ |
| 11 | bound | $3.5 \times 10^{-2}$ |
| 12 | finit | $3.4 \times 10^{-2}$ |
| 13 | infin | $3.4 \times 10^{-2}$ |
| 14 | equat | $3.4 \times 10^{-2}$ |
| 15 | perform | $3.3 \times 10^{-2}$ |
| 16 | compar | $3.2 \times 10^{-2}$ |
| 17 | give | $3.1 \times 10^{-2}$ |
| 18 | conjectur | $3 \times 10^{-2}$ |
| 19 | activ | $2.9 \times 10^{-2}$ |
| 20 | manifold | $2.9 \times 10^{-2}$ |
| 21 | class | $2.7 \times 10^{-2}$ |
| 22 | dure | $2.5 \times 10^{-2}$ |
| 23 | banach | $2.5 \times 10^{-2}$ |
| 24 | conclus | $2.5 \times 10^{-2}$ |
| 25 | patient | $2.4 \times 10^{-2}$ |
| 26 | polynomi | $2.4 \times 10^{-2}$ |
| 27 | graph | $2.4 \times 10^{-2}$ |
| 28 | evalu | $2.3 \times 10^{-2}$ |
| 29 | differ | $2.3 \times 10^{-2}$ |
| 30 | data | $2.2 \times 10^{-2}$ |
| 31 | level | $2.2 \times 10^{-2}$ |
| 32 | proof | $2.2 \times 10^{-2}$ |
| 33 | general | $2.2 \times 10^{-2}$ |
| 34 | howev | $2.2 \times 10^{-2}$ |
| 35 | observ | $2.1 \times 10^{-2}$ |
| 36 | suggest | $2.1 \times 10^{-2}$ |
| 37 | test | $2.1 \times 10^{-2}$ |
| 38 | develop | $2.1 \times 10^{-2}$ |
| 39 | found | $2 \times 10^{-2}$ |
| 40 | integ | $2 \times 10^{-2}$ |
| 41 | inequ | $2 \times 10^{-2}$ |
| 42 | indic | $2 \times 10^{-2}$ |
| 43 | assess | $2 \times 10^{-2}$ |
| 44 | analysi | $2 \times 10^{-2}$ |
| 45 | report | $1.9 \times 10^{-2}$ |
| 46 | infinit | $1.9 \times 10^{-2}$ |
| 47 | low | $1.9 \times 10^{-2}$ |
| 48 | base | $1.9 \times 10^{-2}$ |
| 49 | cell | $1.9 \times 10^{-2}$ |
| 50 | process | $1.9 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | design | $1.8 \times 10^{-2}$ |
| 52 | mechan | $1.8 \times 10^{-2}$ |
| 53 | respons | $1.8 \times 10^{-2}$ |
| 54 | exist | $1.7 \times 10^{-2}$ |
| 55 | bar | $1.7 \times 10^{-2}$ |
| 56 | year | $1.7 \times 10^{-2}$ |
| 57 | treatment | $1.7 \times 10^{-2}$ |
| 58 | satisfi | $1.7 \times 10^{-2}$ |
| 59 | control | $1.7 \times 10^{-2}$ |
| 60 | chang | $1.6 \times 10^{-2}$ |
| 61 | may | $1.6 \times 10^{-2}$ |
| 62 | demonstr | $1.6 \times 10^{-2}$ |
| 63 | asymptot | $1.6 \times 10^{-2}$ |
| 64 | invari | $1.6 \times 10^{-2}$ |
| 65 | experiment | $1.5 \times 10^{-2}$ |
| 66 | model | $1.5 \times 10^{-2}$ |
| 67 | method | $1.5 \times 10^{-2}$ |
| 68 | hilbert | $1.5 \times 10^{-2}$ |
| 69 | sampl | $1.5 \times 10^{-2}$ |
| 70 | studi | $1.5 \times 10^{-2}$ |
| 71 | convex | $1.5 \times 10^{-2}$ |
| 72 | given | $1.5 \times 10^{-2}$ |
| 73 | solut | $1.5 \times 10^{-2}$ |
| 74 | singular | $1.5 \times 10^{-2}$ |
| 75 | import | $1.5 \times 10^{-2}$ |
| 76 | vertic | $1.5 \times 10^{-2}$ |
| 77 | commut | $1.5 \times 10^{-2}$ |
| 78 | decreas | $1.5 \times 10^{-2}$ |
| 79 | temperatur | $1.5 \times 10^{-2}$ |
| 80 | reveal | $1.5 \times 10^{-2}$ |
| 81 | clinic | $1.4 \times 10^{-2}$ |
| 82 | identifi | $1.4 \times 10^{-2}$ |
| 83 | detect | $1.4 \times 10^{-2}$ |
| 84 | age | $1.4 \times 10^{-2}$ |
| 85 | everi | $1.4 \times 10^{-2}$ |
| 86 | experi | $1.4 \times 10^{-2}$ |
| 87 | materi | $1.4 \times 10^{-2}$ |
| 88 | paper | $1.4 \times 10^{-2}$ |
| 89 | subset | $1.3 \times 10^{-2}$ |
| 90 | compact | $1.3 \times 10^{-2}$ |
| 91 | problem | $1.3 \times 10^{-2}$ |
| 92 | background | $1.3 \times 10^{-2}$ |
| 93 | enhanc | $1.3 \times 10^{-2}$ |
| 94 | specif | $1.3 \times 10^{-2}$ |
| 95 | affect | $1.3 \times 10^{-2}$ |
| 96 | higher | $1.3 \times 10^{-2}$ |
| 97 | caus | $1.3 \times 10^{-2}$ |
| 98 | research | $1.3 \times 10^{-2}$ |
| 99 | examin | $1.3 \times 10^{-2}$ |
| 100 | protein | $1.3 \times 10^{-2}$ |

Table D.148. The list of the top 100 words in the category Mathematics, Applied with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | equat | $7.7 \times 10^{-2}$ |
| 2 | prove | $5.3 \times 10^{-2}$ |
| 3 | problem | $5.1 \times 10^{-2}$ |
| 4 | solut | $4.4 \times 10^{-2}$ |
| 5 | theorem | $3.9 \times 10^{-2}$ |
| 6 | converg | $3.3 \times 10^{-2}$ |
| 7 | numer | $3.2 \times 10^{-2}$ |
| 8 | paper | $3.1 \times 10^{-2}$ |
| 9 | signific | $3 \times 10^{-2}$ |
| 10 | space | $3 \times 10^{-2}$ |
| 11 | increas | $2.8 \times 10^{-2}$ |
| 12 | bound | $2.8 \times 10^{-2}$ |
| 13 | nonlinear | $2.5 \times 10^{-2}$ |
| 14 | finit | $2.5 \times 10^{-2}$ |
| 15 | conclus | $2.4 \times 10^{-2}$ |
| 16 | activ | $2.3 \times 10^{-2}$ |
| 17 | high | $2.3 \times 10^{-2}$ |
| 18 | patient | $2.3 \times 10^{-2}$ |
| 19 | asymptot | $2.2 \times 10^{-2}$ |
| 20 | infin | $2.1 \times 10^{-2}$ |
| 21 | polynomi | $2 \times 10^{-2}$ |
| 22 | algebra | $2 \times 10^{-2}$ |
| 23 | exampl | $1.9 \times 10^{-2}$ |
| 24 | exist | $1.8 \times 10^{-2}$ |
| 25 | inequ | $1.8 \times 10^{-2}$ |
| 26 | boundari | $1.8 \times 10^{-2}$ |
| 27 | dure | $1.8 \times 10^{-2}$ |
| 28 | class | $1.8 \times 10^{-2}$ |
| 29 | given | $1.8 \times 10^{-2}$ |
| 30 | general | $1.7 \times 10^{-2}$ |
| 31 | effect | $1.7 \times 10^{-2}$ |
| 32 | solv | $1.7 \times 10^{-2}$ |
| 33 | suggest | $1.7 \times 10^{-2}$ |
| 34 | let | $1.7 \times 10^{-2}$ |
| 35 | convex | $1.6 \times 10^{-2}$ |
| 36 | assess | $1.5 \times 10^{-2}$ |
| 37 | cell | $1.5 \times 10^{-2}$ |
| 38 | level | $1.5 \times 10^{-2}$ |
| 39 | year | $1.4 \times 10^{-2}$ |
| 40 | report | $1.4 \times 10^{-2}$ |
| 41 | banach | $1.4 \times 10^{-2}$ |
| 42 | linear | $1.4 \times 10^{-2}$ |
| 43 | discret | $1.4 \times 10^{-2}$ |
| 44 | treatment | $1.4 \times 10^{-2}$ |
| 45 | evalu | $1.4 \times 10^{-2}$ |
| 46 | compar | $1.4 \times 10^{-2}$ |
| 47 | clinic | $1.3 \times 10^{-2}$ |
| 48 | singular | $1.3 \times 10^{-2}$ |
| 49 | give | $1.3 \times 10^{-2}$ |
| 50 | indic | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | graph | $1.3 \times 10^{-2}$ |
| 52 | found | $1.3 \times 10^{-2}$ |
| 53 | howev | $1.3 \times 10^{-2}$ |
| 54 | observ | $1.3 \times 10^{-2}$ |
| 55 | age | $1.3 \times 10^{-2}$ |
| 56 | studi | $1.2 \times 10^{-2}$ |
| 57 | protein | $1.2 \times 10^{-2}$ |
| 58 | background | $1.2 \times 10^{-2}$ |
| 59 | low | $1.2 \times 10^{-2}$ |
| 60 | iter | $1.2 \times 10^{-2}$ |
| 61 | norm | $1.1 \times 10^{-2}$ |
| 62 | eigenvalu | $1.1 \times 10^{-2}$ |
| 63 | ellipt | $1.1 \times 10^{-2}$ |
| 64 | approxim | $1.1 \times 10^{-2}$ |
| 65 | use | $1.1 \times 10^{-2}$ |
| 66 | identifi | $1.1 \times 10^{-2}$ |
| 67 | respons | $1.1 \times 10^{-2}$ |
| 68 | chang | $1.1 \times 10^{-2}$ |
| 69 | higher | $1.1 \times 10^{-2}$ |
| 70 | decreas | $1.1 \times 10^{-2}$ |
| 71 | may | $1.1 \times 10^{-2}$ |
| 72 | consid | $1 \times 10^{-2}$ |
| 73 | acid | $1 \times 10^{-2}$ |
| 74 | infinit | $1 \times 10^{-2}$ |
| 75 | perform | $1 \times 10^{-2}$ |
| 76 | reveal | $1 \times 10^{-2}$ |
| 77 | point | $1 \times 10^{-2}$ |
| 78 | fix | $1 \times 10^{-2}$ |
| 79 | examin | $9.9 \times 10^{-3}$ |
| 80 | sampl | $9.7 \times 10^{-3}$ |
| 81 | satisfi | $9.7 \times 10^{-3}$ |
| 82 | regular | $9.7 \times 10^{-3}$ |
| 83 | detect | $9.7 \times 10^{-3}$ |
| 84 | illustr | $9.6 \times 10^{-3}$ |
| 85 | mechan | $9.6 \times 10^{-3}$ |
| 86 | human | $9.5 \times 10^{-3}$ |
| 87 | element | $9.2 \times 10^{-3}$ |
| 88 | measur | $9.2 \times 10^{-3}$ |
| 89 | temperatur | $9.2 \times 10^{-3}$ |
| 90 | gene | $9.1 \times 10^{-3}$ |
| 91 | data | $9.1 \times 10^{-3}$ |
| 92 | differ | $9 \times 10^{-3}$ |
| 93 | potenti | $9 \times 10^{-3}$ |
| 94 | day | $9 \times 10^{-3}$ |
| 95 | diseas | $8.9 \times 10^{-3}$ |
| 96 | rang | $8.9 \times 10^{-3}$ |
| 97 | differenti | $8.9 \times 10^{-3}$ |
| 98 | introduc | $8.9 \times 10^{-3}$ |
| 99 | suffici | $8.8 \times 10^{-3}$ |
| 100 | affect | $8.7 \times 10^{-3}$ |

Table D.149. The list of the top 100 words in the category Mathematics, Interdisciplinary Applications with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | numer | $4.4 \times 10^{-2}$ |
| 2 | problem | $3.8 \times 10^{-2}$ |
| 3 | paper | $3.1 \times 10^{-2}$ |
| 4 | equat | $2.9 \times 10^{-2}$ |
| 5 | propos | $2.7 \times 10^{-2}$ |
| 6 | exampl | $2.5 \times 10^{-2}$ |
| 7 | model | $2.5 \times 10^{-2}$ |
| 8 | solv | $2.2 \times 10^{-2}$ |
| 9 | finit | $2.1 \times 10^{-2}$ |
| 10 | nonlinear | $1.8 \times 10^{-2}$ |
| 11 | conclus | $1.6 \times 10^{-2}$ |
| 12 | patient | $1.6 \times 10^{-2}$ |
| 13 | discret | $1.6 \times 10^{-2}$ |
| 14 | algorithm | $1.5 \times 10^{-2}$ |
| 15 | illustr | $1.5 \times 10^{-2}$ |
| 16 | simul | $1.5 \times 10^{-2}$ |
| 17 | solut | $1.4 \times 10^{-2}$ |
| 18 | comput | $1.3 \times 10^{-2}$ |
| 19 | converg | $1.3 \times 10^{-2}$ |
| 20 | stochast | $1.3 \times 10^{-2}$ |
| 21 | asymptot | $1.2 \times 10^{-2}$ |
| 22 | activ | $1.1 \times 10^{-2}$ |
| 23 | signific | $1.1 \times 10^{-2}$ |
| 24 | linear | $1.1 \times 10^{-2}$ |
| 25 | boundari | $1.1 \times 10^{-2}$ |
| 26 | increas | $1 \times 10^{-2}$ |
| 27 | lyapunov | $1 \times 10^{-2}$ |
| 28 | formul | $9.8 \times 10^{-3}$ |
| 29 | consid | $9.6 \times 10^{-3}$ |
| 30 | approach | $9.2 \times 10^{-3}$ |
| 31 | dynam | $9.2 \times 10^{-3}$ |
| 32 | optim | $8.9 \times 10^{-3}$ |
| 33 | clinic | $8.8 \times 10^{-3}$ |
| 34 | cell | $8.3 \times 10^{-3}$ |
| 35 | background | $8.2 \times 10^{-3}$ |
| 36 | paramet | $8.1 \times 10^{-3}$ |
| 37 | age | $8.1 \times 10^{-3}$ |
| 38 | given | $8 \times 10^{-3}$ |
| 39 | theori | $7.9 \times 10^{-3}$ |
| 40 | treatment | $7.7 \times 10^{-3}$ |
| 41 | approxim | $7.7 \times 10^{-3}$ |
| 42 | report | $7.7 \times 10^{-3}$ |
| 43 | method | $7.6 \times 10^{-3}$ |
| 44 | mathemat | $7.3 \times 10^{-3}$ |
| 45 | order | $7.2 \times 10^{-3}$ |
| 46 | protein | $7.2 \times 10^{-3}$ |
| 47 | dure | $7.1 \times 10^{-3}$ |
| 48 | year | $6.8 \times 10^{-3}$ |
| 49 | bifurc | $6.7 \times 10^{-3}$ |
| 50 | deriv | $6.6 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | suggest | $6.6 \times 10^{-3}$ |
| 52 | scheme | $6.6 \times 10^{-3}$ |
| 53 | appli | $6.5 \times 10^{-3}$ |
| 54 | dimension | $6.4 \times 10^{-3}$ |
| 55 | acid | $6.4 \times 10^{-3}$ |
| 56 | mesh | $6.4 \times 10^{-3}$ |
| 57 | diseas | $6.4 \times 10^{-3}$ |
| 58 | obtain | $6.3 \times 10^{-3}$ |
| 59 | accuraci | $6.2 \times 10^{-3}$ |
| 60 | price | $6.2 \times 10^{-3}$ |
| 61 | introduc | $6.1 \times 10^{-3}$ |
| 62 | group | $6 \times 10^{-3}$ |
| 63 | base | $6 \times 10^{-3}$ |
| 64 | error | $6 \times 10^{-3}$ |
| 65 | associ | $5.8 \times 10^{-3}$ |
| 66 | element | $5.8 \times 10^{-3}$ |
| 67 | estim | $5.7 \times 10^{-3}$ |
| 68 | function | $5.5 \times 10^{-3}$ |
| 69 | general | $5.5 \times 10^{-3}$ |
| 70 | prepar | $5.4 \times 10^{-3}$ |
| 71 | gene | $5.4 \times 10^{-3}$ |
| 72 | studi | $5.2 \times 10^{-3}$ |
| 73 | iter | $5.1 \times 10^{-3}$ |
| 74 | high | $5.1 \times 10^{-3}$ |
| 75 | day | $5 \times 10^{-3}$ |
| 76 | polynomi | $4.7 \times 10^{-3}$ |
| 77 | explicit | $4.7 \times 10^{-3}$ |
| 78 | singular | $4.6 \times 10^{-3}$ |
| 79 | analyt | $4.6 \times 10^{-3}$ |
| 80 | exist | $4.6 \times 10^{-3}$ |
| 81 | equilibrium | $4.5 \times 10^{-3}$ |
| 82 | variabl | $4.5 \times 10^{-3}$ |
| 83 | theorem | $4.5 \times 10^{-3}$ |
| 84 | final | $4.5 \times 10^{-3}$ |
| 85 | robust | $4.4 \times 10^{-3}$ |
| 86 | condit | $4.4 \times 10^{-3}$ |
| 87 | ray | $4.4 \times 10^{-3}$ |
| 88 | bound | $4.4 \times 10^{-3}$ |
| 89 | found | $4.4 \times 10^{-3}$ |
| 90 | higher | $4.3 \times 10^{-3}$ |
| 91 | content | $4.2 \times 10^{-3}$ |
| 92 | inhibit | $4.2 \times 10^{-3}$ |
| 93 | construct | $4.2 \times 10^{-3}$ |
| 94 | space | $4.2 \times 10^{-3}$ |
| 95 | oxid | $4.2 \times 10^{-3}$ |
| 96 | therapi | $4.1 \times 10^{-3}$ |
| 97 | set | $4.1 \times 10^{-3}$ |
| 98 | uncertainti | $4.1 \times 10^{-3}$ |
| 99 | low | $4.1 \times 10^{-3}$ |
| 100 | matrix | $4.1 \times 10^{-3}$ |

Table D.150. The list of the top 100 words in the category Mechanics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | numer | $4.5 \times 10^{-2}$ |
| 2 | flow | $3.1 \times 10^{-2}$ |
| 3 | equat | $2.8 \times 10^{-2}$ |
| 4 | finit | $2.8 \times 10^{-2}$ |
| 5 | patient | $2.3 \times 10^{-2}$ |
| 6 | simul | $2.2 \times 10^{-2}$ |
| 7 | paper | $2.1 \times 10^{-2}$ |
| 8 | fluid | $2 \times 10^{-2}$ |
| 9 | veloc | $2 \times 10^{-2}$ |
| 10 | reynold | $2 \times 10^{-2}$ |
| 11 | conclus | $1.9 \times 10^{-2}$ |
| 12 | boundari | $1.8 \times 10^{-2}$ |
| 13 | heat | $1.8 \times 10^{-2}$ |
| 14 | elast | $1.7 \times 10^{-2}$ |
| 15 | turbul | $1.6 \times 10^{-2}$ |
| 16 | shear | $1.5 \times 10^{-2}$ |
| 17 | model | $1.4 \times 10^{-2}$ |
| 18 | activ | $1.4 \times 10^{-2}$ |
| 19 | clinic | $1.4 \times 10^{-2}$ |
| 20 | deform | $1.4 \times 10^{-2}$ |
| 21 | solv | $1.4 \times 10^{-2}$ |
| 22 | load | $1.3 \times 10^{-2}$ |
| 23 | group | $1.3 \times 10^{-2}$ |
| 24 | nonlinear | $1.3 \times 10^{-2}$ |
| 25 | element | $1.3 \times 10^{-2}$ |
| 26 | stress | $1.2 \times 10^{-2}$ |
| 27 | protein | $1.2 \times 10^{-2}$ |
| 28 | diseas | $1.2 \times 10^{-2}$ |
| 29 | crack | $1.2 \times 10^{-2}$ |
| 30 | vibrat | $1.1 \times 10^{-2}$ |
| 31 | suggest | $1.1 \times 10^{-2}$ |
| 32 | age | $1.1 \times 10^{-2}$ |
| 33 | paramet | $1.1 \times 10^{-2}$ |
| 34 | forc | $1.1 \times 10^{-2}$ |
| 35 | associ | $1.1 \times 10^{-2}$ |
| 36 | displac | $1.1 \times 10^{-2}$ |
| 37 | experiment | $1 \times 10^{-2}$ |
| 38 | background | $1 \times 10^{-2}$ |
| 39 | gene | $1 \times 10^{-2}$ |
| 40 | convect | $9.9 \times 10^{-3}$ |
| 41 | year | $9.7 \times 10^{-3}$ |
| 42 | cell | $9.7 \times 10^{-3}$ |
| 43 | problem | $9.6 \times 10^{-3}$ |
| 44 | wall | $9.4 \times 10^{-3}$ |
| 45 | treatment | $8.9 \times 10^{-3}$ |
| 46 | report | $8.8 \times 10^{-3}$ |
| 47 | plate | $8.8 \times 10^{-3}$ |
| 48 | dynam | $8.8 \times 10^{-3}$ |
| 49 | may | $8.4 \times 10^{-3}$ |
| 50 | dimension | $8 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | pressur | $7.9 \times 10^{-3}$ |
| 52 | signific | $7.8 \times 10^{-3}$ |
| 53 | vortex | $7.8 \times 10^{-3}$ |
| 54 | cylind | $7.7 \times 10^{-3}$ |
| 55 | popul | $7.5 \times 10^{-3}$ |
| 56 | risk | $7.5 \times 10^{-3}$ |
| 57 | motion | $7.4 \times 10^{-3}$ |
| 58 | particip | $7.4 \times 10^{-3}$ |
| 59 | vortic | $7.3 \times 10^{-3}$ |
| 60 | level | $7.2 \times 10^{-3}$ |
| 61 | friction | $7.1 \times 10^{-3}$ |
| 62 | cancer | $7 \times 10^{-3}$ |
| 63 | outcom | $6.8 \times 10^{-3}$ |
| 64 | speed | $6.6 \times 10^{-3}$ |
| 65 | viscous | $6.6 \times 10^{-3}$ |
| 66 | obtain | $6.5 \times 10^{-3}$ |
| 67 | navier | $6.5 \times 10^{-3}$ |
| 68 | speci | $6.4 \times 10^{-3}$ |
| 69 | solut | $6.4 \times 10^{-3}$ |
| 70 | human | $6.3 \times 10^{-3}$ |
| 71 | stoke | $6.2 \times 10^{-3}$ |
| 72 | month | $6.1 \times 10^{-3}$ |
| 73 | therapi | $6 \times 10^{-3}$ |
| 74 | formul | $6 \times 10^{-3}$ |
| 75 | day | $5.9 \times 10^{-3}$ |
| 76 | assess | $5.9 \times 10^{-3}$ |
| 77 | thermal | $5.9 \times 10^{-3}$ |
| 78 | steadi | $5.9 \times 10^{-3}$ |
| 79 | unsteadi | $5.9 \times 10^{-3}$ |
| 80 | among | $5.9 \times 10^{-3}$ |
| 81 | mediat | $5.8 \times 10^{-3}$ |
| 82 | acid | $5.8 \times 10^{-3}$ |
| 83 | health | $5.7 \times 10^{-3}$ |
| 84 | materi | $5.7 \times 10^{-3}$ |
| 85 | stiff | $5.6 \times 10^{-3}$ |
| 86 | identifi | $5.6 \times 10^{-3}$ |
| 87 | howev | $5.6 \times 10^{-3}$ |
| 88 | analyt | $5.5 \times 10^{-3}$ |
| 89 | steel | $5.5 \times 10^{-3}$ |
| 90 | laminar | $5.5 \times 10^{-3}$ |
| 91 | sampl | $5.5 \times 10^{-3}$ |
| 92 | engin | $5.4 \times 10^{-3}$ |
| 93 | evid | $5.3 \times 10^{-3}$ |
| 94 | potenti | $5.3 \times 10^{-3}$ |
| 95 | adult | $5.3 \times 10^{-3}$ |
| 96 | pathway | $5.3 \times 10^{-3}$ |
| 97 | law | $5.2 \times 10^{-3}$ |
| 98 | male | $5.2 \times 10^{-3}$ |
| 99 | tissu | $5.1 \times 10^{-3}$ |
| 100 | infect | $5.1 \times 10^{-3}$ |

Table D.151. The list of the top 100 words in the category Medical Ethics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | ethic | $2.3 \times 10^{-1}$ |
| 2 | moral | $6.9 \times 10^{-2}$ |
| 3 | bioethic | $6.5 \times 10^{-2}$ |
| 4 | consent | $6 \times 10^{-2}$ |
| 5 | medic | $5.5 \times 10^{-2}$ |
| 6 | argu | $5.2 \times 10^{-2}$ |
| 7 | health | $4.2 \times 10^{-2}$ |
| 8 | autonomi | $3.6 \times 10^{-2}$ |
| 9 | physician | $3.2 \times 10^{-2}$ |
| 10 | research | $3.1 \times 10^{-2}$ |
| 11 | legal | $3 \times 10^{-2}$ |
| 12 | profession | $3 \times 10^{-2}$ |
| 13 | debat | $2.8 \times 10^{-2}$ |
| 14 | decis | $2.7 \times 10^{-2}$ |
| 15 | public | $2.7 \times 10^{-2}$ |
| 16 | care | $2.6 \times 10^{-2}$ |
| 17 | issu | $2.6 \times 10^{-2}$ |
| 18 | justifi | $2.5 \times 10^{-2}$ |
| 19 | argument | $2.5 \times 10^{-2}$ |
| 20 | concern | $2.4 \times 10^{-2}$ |
| 21 | oblig | $2.1 \times 10^{-2}$ |
| 22 | practic | $2 \times 10^{-2}$ |
| 23 | discuss | $2 \times 10^{-2}$ |
| 24 | justif | $2 \times 10^{-2}$ |
| 25 | doctor | $1.9 \times 10^{-2}$ |
| 26 | harm | $1.9 \times 10^{-2}$ |
| 27 | question | $1.9 \times 10^{-2}$ |
| 28 | polici | $1.7 \times 10^{-2}$ |
| 29 | right | $1.7 \times 10^{-2}$ |
| 30 | committe | $1.7 \times 10^{-2}$ |
| 31 | patient | $1.6 \times 10^{-2}$ |
| 32 | articl | $1.6 \times 10^{-2}$ |
| 33 | particip | $1.6 \times 10^{-2}$ |
| 34 | inform | $1.5 \times 10^{-2}$ |
| 35 | interview | $1.5 \times 10^{-2}$ |
| 36 | rais | $1.5 \times 10^{-2}$ |
| 37 | medicin | $1.4 \times 10^{-2}$ |
| 38 | view | $1.4 \times 10^{-2}$ |
| 39 | controversi | $1.4 \times 10^{-2}$ |
| 40 | clinic | $1.4 \times 10^{-2}$ |
| 41 | reason | $1.4 \times 10^{-2}$ |
| 42 | person | $1.4 \times 10^{-2}$ |
| 43 | make | $1.3 \times 10^{-2}$ |
| 44 | claim | $1.3 \times 10^{-2}$ |
| 45 | attitud | $1.3 \times 10^{-2}$ |
| 46 | philosoph | $1.3 \times 10^{-2}$ |
| 47 | healthcar | $1.3 \times 10^{-2}$ |
| 48 | institut | $1.3 \times 10^{-2}$ |
| 49 | dilemma | $1.2 \times 10^{-2}$ |
| 50 | scientif | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | principl | $1.1 \times 10^{-2}$ |
| 52 | whether | $1.1 \times 10^{-2}$ |
| 53 | donat | $1.1 \times 10^{-2}$ |
| 54 | result | $1.1 \times 10^{-2}$ |
| 55 | benefit | $1.1 \times 10^{-2}$ |
| 56 | accept | $1.1 \times 10^{-2}$ |
| 57 | social | $1 \times 10^{-2}$ |
| 58 | need | $1 \times 10^{-2}$ |
| 59 | justic | $1 \times 10^{-2}$ |
| 60 | regard | $1 \times 10^{-2}$ |
| 61 | life | $1 \times 10^{-2}$ |
| 62 | ask | $9.9 \times 10^{-3}$ |
| 63 | parent | $9.9 \times 10^{-3}$ |
| 64 | disclosur | $9.8 \times 10^{-3}$ |
| 65 | model | $9.8 \times 10^{-3}$ |
| 66 | paramet | $9.8 \times 10^{-3}$ |
| 67 | defend | $9.8 \times 10^{-3}$ |
| 68 | guidelin | $9.7 \times 10^{-3}$ |
| 69 | way | $9.6 \times 10^{-3}$ |
| 70 | biomed | $9.5 \times 10^{-3}$ |
| 71 | countri | $9.4 \times 10^{-3}$ |
| 72 | law | $9.3 \times 10^{-3}$ |
| 73 | author | $9.3 \times 10^{-3}$ |
| 74 | measur | $9.2 \times 10^{-3}$ |
| 75 | temperatur | $9.2 \times 10^{-3}$ |
| 76 | show | $9.1 \times 10^{-3}$ |
| 77 | refus | $9 \times 10^{-3}$ |
| 78 | simul | $8.9 \times 10^{-3}$ |
| 79 | peopl | $8.7 \times 10^{-3}$ |
| 80 | duti | $8.6 \times 10^{-3}$ |
| 81 | individu | $8.6 \times 10^{-3}$ |
| 82 | will | $8.5 \times 10^{-3}$ |
| 83 | conflict | $8.4 \times 10^{-3}$ |
| 84 | undermin | $8.4 \times 10^{-3}$ |
| 85 | context | $8.3 \times 10^{-3}$ |
| 86 | surfac | $8.2 \times 10^{-3}$ |
| 87 | scholar | $8.1 \times 10^{-3}$ |
| 88 | ill | $8.1 \times 10^{-3}$ |
| 89 | case | $8 \times 10^{-3}$ |
| 90 | scienc | $7.8 \times 10^{-3}$ |
| 91 | whi | $7.8 \times 10^{-3}$ |
| 92 | religi | $7.6 \times 10^{-3}$ |
| 93 | interest | $7.6 \times 10^{-3}$ |
| 94 | compar | $7.5 \times 10^{-3}$ |
| 95 | energi | $7.5 \times 10^{-3}$ |
| 96 | request | $7.5 \times 10^{-3}$ |
| 97 | concept | $7.4 \times 10^{-3}$ |
| 98 | respond | $7.4 \times 10^{-3}$ |
| 99 | high | $7.3 \times 10^{-3}$ |
| 100 | risk | $7.3 \times 10^{-3}$ |

Table D.152. The list of the top 100 words in the category Medical Informatics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | health | $4.1 \times 10^{-2}$ |
| 2 | medic | $3.6 \times 10^{-2}$ |
| 3 | inform | $3.1 \times 10^{-2}$ |
| 4 | data | $2.5 \times 10^{-2}$ |
| 5 | care | $2.3 \times 10^{-2}$ |
| 6 | clinic | $2.3 \times 10^{-2}$ |
| 7 | patient | $2.1 \times 10^{-2}$ |
| 8 | healthcar | $2.1 \times 10^{-2}$ |
| 9 | method | $2 \times 10^{-2}$ |
| 10 | object | $1.9 \times 10^{-2}$ |
| 11 | user | $1.8 \times 10^{-2}$ |
| 12 | base | $1.5 \times 10^{-2}$ |
| 13 | record | $1.4 \times 10^{-2}$ |
| 14 | propos | $1.4 \times 10^{-2}$ |
| 15 | technolog | $1.3 \times 10^{-2}$ |
| 16 | use | $1.3 \times 10^{-2}$ |
| 17 | decis | $1.3 \times 10^{-2}$ |
| 18 | hospit | $1.2 \times 10^{-2}$ |
| 19 | support | $1.1 \times 10^{-2}$ |
| 20 | implement | $1.1 \times 10^{-2}$ |
| 21 | research | $1.1 \times 10^{-2}$ |
| 22 | conclus | $1.1 \times 10^{-2}$ |
| 23 | paper | $1.1 \times 10^{-2}$ |
| 24 | tool | $1.1 \times 10^{-2}$ |
| 25 | physician | $1 \times 10^{-2}$ |
| 26 | classif | $1 \times 10^{-2}$ |
| 27 | provid | $9.8 \times 10^{-3}$ |
| 28 | system | $9.8 \times 10^{-3}$ |
| 29 | web | $9.1 \times 10^{-3}$ |
| 30 | approach | $8.9 \times 10^{-3}$ |
| 31 | comput | $8.5 \times 10^{-3}$ |
| 32 | dataset | $8.3 \times 10^{-3}$ |
| 33 | clinician | $8.3 \times 10^{-3}$ |
| 34 | algorithm | $8.2 \times 10^{-3}$ |
| 35 | temperatur | $8.1 \times 10^{-3}$ |
| 36 | automat | $8 \times 10^{-3}$ |
| 37 | expert | $7.8 \times 10^{-3}$ |
| 38 | accuraci | $7.6 \times 10^{-3}$ |
| 39 | develop | $7.4 \times 10^{-3}$ |
| 40 | classifi | $7.4 \times 10^{-3}$ |
| 41 | trial | $7.3 \times 10^{-3}$ |
| 42 | set | $7.3 \times 10^{-3}$ |
| 43 | autom | $7.2 \times 10^{-3}$ |
| 44 | onlin | $7.2 \times 10^{-3}$ |
| 45 | rational | $7.2 \times 10^{-3}$ |
| 46 | need | $7.1 \times 10^{-3}$ |
| 47 | databas | $7 \times 10^{-3}$ |
| 48 | internet | $7 \times 10^{-3}$ |
| 49 | access | $6.8 \times 10^{-3}$ |
| 50 | water | $6.7 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | cell | $6.5 \times 10^{-3}$ |
| 52 | servic | $6.3 \times 10^{-3}$ |
| 53 | person | $6.3 \times 10^{-3}$ |
| 54 | communic | $6.2 \times 10^{-3}$ |
| 55 | concentr | $6.1 \times 10^{-3}$ |
| 56 | nurs | $6 \times 10^{-3}$ |
| 57 | background | $6 \times 10^{-3}$ |
| 58 | train | $5.9 \times 10^{-3}$ |
| 59 | evalu | $5.8 \times 10^{-3}$ |
| 60 | standard | $5.8 \times 10^{-3}$ |
| 61 | ecg | $5.8 \times 10^{-3}$ |
| 62 | manag | $5.8 \times 10^{-3}$ |
| 63 | usabl | $5.8 \times 10^{-3}$ |
| 64 | improv | $5.8 \times 10^{-3}$ |
| 65 | oxid | $5.7 \times 10^{-3}$ |
| 66 | privaci | $5.7 \times 10^{-3}$ |
| 67 | medicin | $5.7 \times 10^{-3}$ |
| 68 | practic | $5.7 \times 10^{-3}$ |
| 69 | learn | $5.6 \times 10^{-3}$ |
| 70 | speci | $5.6 \times 10^{-3}$ |
| 71 | manual | $5.6 \times 10^{-3}$ |
| 72 | surfac | $5.5 \times 10^{-3}$ |
| 73 | profession | $5.5 \times 10^{-3}$ |
| 74 | avail | $5.5 \times 10^{-3}$ |
| 75 | biomed | $5.4 \times 10^{-3}$ |
| 76 | task | $5.3 \times 10^{-3}$ |
| 77 | help | $5.2 \times 10^{-3}$ |
| 78 | doctor | $5.2 \times 10^{-3}$ |
| 79 | can | $5.1 \times 10^{-3}$ |
| 80 | knowledg | $5.1 \times 10^{-3}$ |
| 81 | intervent | $5.1 \times 10^{-3}$ |
| 82 | acid | $5.1 \times 10^{-3}$ |
| 83 | valid | $5.1 \times 10^{-3}$ |
| 84 | featur | $5 \times 10^{-3}$ |
| 85 | error | $5 \times 10^{-3}$ |
| 86 | machin | $5 \times 10^{-3}$ |
| 87 | induc | $4.9 \times 10^{-3}$ |
| 88 | framework | $4.9 \times 10^{-3}$ |
| 89 | text | $4.8 \times 10^{-3}$ |
| 90 | make | $4.8 \times 10^{-3}$ |
| 91 | statist | $4.8 \times 10^{-3}$ |
| 92 | challeng | $4.8 \times 10^{-3}$ |
| 93 | adopt | $4.8 \times 10^{-3}$ |
| 94 | random | $4.6 \times 10^{-3}$ |
| 95 | qualiti | $4.5 \times 10^{-3}$ |
| 96 | carbon | $4.4 \times 10^{-3}$ |
| 97 | public | $4.4 \times 10^{-3}$ |
| 98 | websit | $4.4 \times 10^{-3}$ |
| 99 | real | $4.2 \times 10^{-3}$ |
| 100 | particip | $4.2 \times 10^{-3}$ |

Table D.153. The list of the top 100 words in the category Medical Laboratory Technology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | conclus | $1 \times 10^{-1}$ |
| 2 | background | $6.6 \times 10^{-2}$ |
| 3 | patient | $6 \times 10^{-2}$ |
| 4 | method | $4.6 \times 10^{-2}$ |
| 5 | clinic | $4.2 \times 10^{-2}$ |
| 6 | serum | $4.1 \times 10^{-2}$ |
| 7 | assay | $3.8 \times 10^{-2}$ |
| 8 | diagnosi | $3.3 \times 10^{-2}$ |
| 9 | cytolog | $3.3 \times 10^{-2}$ |
| 10 | diagnost | $3.2 \times 10^{-2}$ |
| 11 | blood | $3 \times 10^{-2}$ |
| 12 | laboratori | $2.8 \times 10^{-2}$ |
| 13 | sampl | $2.4 \times 10^{-2}$ |
| 14 | result | $2.3 \times 10^{-2}$ |
| 15 | diseas | $2.1 \times 10^{-2}$ |
| 16 | immunoassay | $2 \times 10^{-2}$ |
| 17 | concentr | $1.9 \times 10^{-2}$ |
| 18 | plasma | $1.9 \times 10^{-2}$ |
| 19 | tumor | $1.7 \times 10^{-2}$ |
| 20 | biomark | $1.7 \times 10^{-2}$ |
| 21 | aspir | $1.6 \times 10^{-2}$ |
| 22 | object | $1.6 \times 10^{-2}$ |
| 23 | healthi | $1.6 \times 10^{-2}$ |
| 24 | paper | $1.6 \times 10^{-2}$ |
| 25 | carcinoma | $1.6 \times 10^{-2}$ |
| 26 | marker | $1.5 \times 10^{-2}$ |
| 27 | detect | $1.5 \times 10^{-2}$ |
| 28 | context | $1.5 \times 10^{-2}$ |
| 29 | specimen | $1.4 \times 10^{-2}$ |
| 30 | needl | $1.4 \times 10^{-2}$ |
| 31 | cell | $1.3 \times 10^{-2}$ |
| 32 | evalu | $1.3 \times 10^{-2}$ |
| 33 | routin | $1.3 \times 10^{-2}$ |
| 34 | signific | $1.2 \times 10^{-2}$ |
| 35 | pathologist | $1.2 \times 10^{-2}$ |
| 36 | stain | $1.2 \times 10^{-2}$ |
| 37 | neoplasm | $1.2 \times 10^{-2}$ |
| 38 | test | $1.2 \times 10^{-2}$ |
| 39 | diagnos | $1.2 \times 10^{-2}$ |
| 40 | chromatographi | $1.2 \times 10^{-2}$ |
| 41 | malign | $1.2 \times 10^{-2}$ |
| 42 | pcr | $1.1 \times 10^{-2}$ |
| 43 | immunohistochem | $1.1 \times 10^{-2}$ |
| 44 | correl | $1.1 \times 10^{-2}$ |
| 45 | elisa | $1.1 \times 10^{-2}$ |
| 46 | sensit | $9.9 \times 10^{-3}$ |
| 47 | biopsi | $9.7 \times 10^{-3}$ |
| 48 | urin | $9.3 \times 10^{-3}$ |
| 49 | smear | $9.2 \times 10^{-3}$ |
| 50 | structur | $9.1 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | patholog | $8.9 \times 10^{-3}$ |
| 52 | creatinin | $8.8 \times 10^{-3}$ |
| 53 | respect | $8.3 \times 10^{-3}$ |
| 54 | energi | $8.2 \times 10^{-3}$ |
| 55 | histolog | $8.2 \times 10^{-3}$ |
| 56 | posit | $8.1 \times 10^{-3}$ |
| 57 | cancer | $7.8 \times 10^{-3}$ |
| 58 | case | $7.8 \times 10^{-3}$ |
| 59 | refer | $7.7 \times 10^{-3}$ |
| 60 | aim | $7.7 \times 10^{-3}$ |
| 61 | adenocarcinoma | $7.3 \times 10^{-3}$ |
| 62 | model | $7.2 \times 10^{-3}$ |
| 63 | screen | $7.2 \times 10^{-3}$ |
| 64 | analyt | $7.1 \times 10^{-3}$ |
| 65 | renal | $7 \times 10^{-3}$ |
| 66 | spectrometri | $6.9 \times 10^{-3}$ |
| 67 | determin | $6.9 \times 10^{-3}$ |
| 68 | level | $6.9 \times 10^{-3}$ |
| 69 | protein | $6.8 \times 10^{-3}$ |
| 70 | benign | $6.8 \times 10^{-3}$ |
| 71 | quantif | $6.7 \times 10^{-3}$ |
| 72 | negat | $6.7 \times 10^{-3}$ |
| 73 | specif | $6.6 \times 10^{-3}$ |
| 74 | compar | $6.6 \times 10^{-3}$ |
| 75 | prognost | $6.5 \times 10^{-3}$ |
| 76 | cholesterol | $6.5 \times 10^{-3}$ |
| 77 | kit | $6.5 \times 10^{-3}$ |
| 78 | hemoglobin | $6.5 \times 10^{-3}$ |
| 79 | simul | $6.4 \times 10^{-3}$ |
| 80 | subject | $6.4 \times 10^{-3}$ |
| 81 | tandem | $6.4 \times 10^{-3}$ |
| 82 | medicin | $6.4 \times 10^{-3}$ |
| 83 | surfac | $6.4 \times 10^{-3}$ |
| 84 | tissu | $6.3 \times 10^{-3}$ |
| 85 | antibodi | $6.3 \times 10^{-3}$ |
| 86 | rare | $6.2 \times 10^{-3}$ |
| 87 | assess | $6.2 \times 10^{-3}$ |
| 88 | valu | $6.1 \times 10^{-3}$ |
| 89 | autom | $6.1 \times 10^{-3}$ |
| 90 | diabet | $5.9 \times 10^{-3}$ |
| 91 | studi | $5.9 \times 10^{-3}$ |
| 92 | lesion | $5.9 \times 10^{-3}$ |
| 93 | total | $5.9 \times 10^{-3}$ |
| 94 | genotyp | $5.9 \times 10^{-3}$ |
| 95 | kidney | $5.8 \times 10^{-3}$ |
| 96 | measur | $5.7 \times 10^{-3}$ |
| 97 | immunohistochemistri | $5.7 \times 10^{-3}$ |
| 98 | may | $5.7 \times 10^{-3}$ |
| 99 | urinari | $5.6 \times 10^{-3}$ |
| 100 | immunosorb | $5.6 \times 10^{-3}$ |

Table D.154. The list of the top 100 words in the category Medicine, General and Internal with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | conclus | $1.4 \times 10^{-1}$ |
| 2 | patient | $1.3 \times 10^{-1}$ |
| 3 | object | $5.9 \times 10^{-2}$ |
| 4 | background | $5.3 \times 10^{-2}$ |
| 5 | year | $5 \times 10^{-2}$ |
| 6 | hospit | $5 \times 10^{-2}$ |
| 7 | clinic | $4.9 \times 10^{-2}$ |
| 8 | care | $4.8 \times 10^{-2}$ |
| 9 | medic | $4.6 \times 10^{-2}$ |
| 10 | age | $4.4 \times 10^{-2}$ |
| 11 | health | $4.3 \times 10^{-2}$ |
| 12 | outcom | $4.1 \times 10^{-2}$ |
| 13 | method | $3.9 \times 10^{-2}$ |
| 14 | diseas | $3.3 \times 10^{-2}$ |
| 15 | risk | $3.3 \times 10^{-2}$ |
| 16 | particip | $3 \times 10^{-2}$ |
| 17 | paper | $2.6 \times 10^{-2}$ |
| 18 | result | $2.5 \times 10^{-2}$ |
| 19 | primari | $2.4 \times 10^{-2}$ |
| 20 | associ | $2.4 \times 10^{-2}$ |
| 21 | treatment | $2.4 \times 10^{-2}$ |
| 22 | group | $2.3 \times 10^{-2}$ |
| 23 | diagnosi | $2.2 \times 10^{-2}$ |
| 24 | month | $2.2 \times 10^{-2}$ |
| 25 | physician | $2.2 \times 10^{-2}$ |
| 26 | aim | $2 \times 10^{-2}$ |
| 27 | intervent | $2 \times 10^{-2}$ |
| 28 | includ | $2 \times 10^{-2}$ |
| 29 | assess | $1.9 \times 10^{-2}$ |
| 30 | diagnos | $1.9 \times 10^{-2}$ |
| 31 | studi | $1.9 \times 10^{-2}$ |
| 32 | symptom | $1.8 \times 10^{-2}$ |
| 33 | receiv | $1.8 \times 10^{-2}$ |
| 34 | retrospect | $1.7 \times 10^{-2}$ |
| 35 | women | $1.7 \times 10^{-2}$ |
| 36 | propos | $1.7 \times 10^{-2}$ |
| 37 | mortal | $1.7 \times 10^{-2}$ |
| 38 | among | $1.7 \times 10^{-2}$ |
| 39 | signific | $1.7 \times 10^{-2}$ |
| 40 | therapi | $1.7 \times 10^{-2}$ |
| 41 | chronic | $1.6 \times 10^{-2}$ |
| 42 | score | $1.6 \times 10^{-2}$ |
| 43 | diabet | $1.6 \times 10^{-2}$ |
| 44 | preval | $1.6 \times 10^{-2}$ |
| 45 | pain | $1.5 \times 10^{-2}$ |
| 46 | trial | $1.5 \times 10^{-2}$ |
| 47 | total | $1.5 \times 10^{-2}$ |
| 48 | januari | $1.4 \times 10^{-2}$ |
| 49 | cohort | $1.4 \times 10^{-2}$ |
| 50 | follow | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | popul | $1.3 \times 10^{-2}$ |
| 52 | acut | $1.3 \times 10^{-2}$ |
| 53 | questionnair | $1.3 \times 10^{-2}$ |
| 54 | review | $1.3 \times 10^{-2}$ |
| 55 | blood | $1.2 \times 10^{-2}$ |
| 56 | simul | $1.2 \times 10^{-2}$ |
| 57 | old | $1.2 \times 10^{-2}$ |
| 58 | male | $1.2 \times 10^{-2}$ |
| 59 | depart | $1.2 \times 10^{-2}$ |
| 60 | random | $1.2 \times 10^{-2}$ |
| 61 | adult | $1.2 \times 10^{-2}$ |
| 62 | temperatur | $1.2 \times 10^{-2}$ |
| 63 | decemb | $1.2 \times 10^{-2}$ |
| 64 | introduct | $1.2 \times 10^{-2}$ |
| 65 | enrol | $1.1 \times 10^{-2}$ |
| 66 | report | $1.1 \times 10^{-2}$ |
| 67 | confid | $1.1 \times 10^{-2}$ |
| 68 | admiss | $1.1 \times 10^{-2}$ |
| 69 | properti | $1.1 \times 10^{-2}$ |
| 70 | healthcar | $1.1 \times 10^{-2}$ |
| 71 | cardiovascular | $1.1 \times 10^{-2}$ |
| 72 | femal | $1.1 \times 10^{-2}$ |
| 73 | adjust | $1.1 \times 10^{-2}$ |
| 74 | regress | $1.1 \times 10^{-2}$ |
| 75 | structur | $1.1 \times 10^{-2}$ |
| 76 | week | $1.1 \times 10^{-2}$ |
| 77 | day | $1.1 \times 10^{-2}$ |
| 78 | nation | $1 \times 10^{-2}$ |
| 79 | admit | $1 \times 10^{-2}$ |
| 80 | prevent | $1 \times 10^{-2}$ |
| 81 | odd | $1 \times 10^{-2}$ |
| 82 | incid | $1 \times 10^{-2}$ |
| 83 | death | $1 \times 10^{-2}$ |
| 84 | treat | $1 \times 10^{-2}$ |
| 85 | advers | $9.7 \times 10^{-3}$ |
| 86 | case | $9.6 \times 10^{-3}$ |
| 87 | medicin | $9.5 \times 10^{-3}$ |
| 88 | section | $9.5 \times 10^{-3}$ |
| 89 | surgeri | $9.3 \times 10^{-3}$ |
| 90 | prospect | $9.3 \times 10^{-3}$ |
| 91 | common | $9.3 \times 10^{-3}$ |
| 92 | complic | $9.3 \times 10^{-3}$ |
| 93 | men | $9.2 \times 10^{-3}$ |
| 94 | hypertens | $9.1 \times 10^{-3}$ |
| 95 | interv | $9.1 \times 10^{-3}$ |
| 96 | baselin | $9.1 \times 10^{-3}$ |
| 97 | older | $9 \times 10^{-3}$ |
| 98 | mean | $9 \times 10^{-3}$ |
| 99 | demograph | $9 \times 10^{-3}$ |
| 100 | heart | $8.8 \times 10^{-3}$ |

Table D.155. The list of the top 100 words in the category Medicine, Legal with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | forens | $2.5 \times 10^{-1}$ |
| 2 | autopsi | $8.6 \times 10^{-2}$ |
| 3 | postmortem | $6.2 \times 10^{-2}$ |
| 4 | death | $4.4 \times 10^{-2}$ |
| 5 | case | $3.6 \times 10^{-2}$ |
| 6 | toxicolog | $2.6 \times 10^{-2}$ |
| 7 | victim | $2.6 \times 10^{-2}$ |
| 8 | legal | $2.5 \times 10^{-2}$ |
| 9 | crime | $2.3 \times 10^{-2}$ |
| 10 | sampl | $2.2 \times 10^{-2}$ |
| 11 | crimin | $2 \times 10^{-2}$ |
| 12 | suicid | $1.8 \times 10^{-2}$ |
| 13 | dna | $1.8 \times 10^{-2}$ |
| 14 | fatal | $1.7 \times 10^{-2}$ |
| 15 | male | $1.5 \times 10^{-2}$ |
| 16 | suspect | $1.5 \times 10^{-2}$ |
| 17 | identif | $1.4 \times 10^{-2}$ |
| 18 | injuri | $1.3 \times 10^{-2}$ |
| 19 | substanc | $1.3 \times 10^{-2}$ |
| 20 | blood | $1.2 \times 10^{-2}$ |
| 21 | scene | $1.2 \times 10^{-2}$ |
| 22 | abus | $1.2 \times 10^{-2}$ |
| 23 | polic | $1.2 \times 10^{-2}$ |
| 24 | tandem | $1.1 \times 10^{-2}$ |
| 25 | femal | $1.1 \times 10^{-2}$ |
| 26 | anthropolog | $1.1 \times 10^{-2}$ |
| 27 | pathologist | $1.1 \times 10^{-2}$ |
| 28 | kit | $1.1 \times 10^{-2}$ |
| 29 | skelet | $9.8 \times 10^{-3}$ |
| 30 | court | $9.5 \times 10^{-3}$ |
| 31 | drug | $9.3 \times 10^{-3}$ |
| 32 | allel | $9.3 \times 10^{-3}$ |
| 33 | discrimin | $9 \times 10^{-3}$ |
| 34 | deceas | $8.6 \times 10^{-3}$ |
| 35 | loci | $8.4 \times 10^{-3}$ |
| 36 | urin | $8.4 \times 10^{-3}$ |
| 37 | die | $8.3 \times 10^{-3}$ |
| 38 | old | $8.1 \times 10^{-3}$ |
| 39 | bodi | $8.1 \times 10^{-3}$ |
| 40 | individu | $8 \times 10^{-3}$ |
| 41 | report | $7.9 \times 10^{-3}$ |
| 42 | sex | $7.8 \times 10^{-3}$ |
| 43 | profil | $7.6 \times 10^{-3}$ |
| 44 | cadav | $7.5 \times 10^{-3}$ |
| 45 | detect | $7.4 \times 10^{-3}$ |
| 46 | medic | $7.3 \times 10^{-3}$ |
| 47 | examin | $7.3 \times 10^{-3}$ |
| 48 | evid | $7.2 \times 10^{-3}$ |
| 49 | toxic | $7.1 \times 10^{-3}$ |
| 50 | caus | $6.8 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | human | $6.8 \times 10^{-3}$ |
| 52 | function | $6.8 \times 10^{-3}$ |
| 53 | year | $6.3 \times 10^{-3}$ |
| 54 | murder | $6.2 \times 10^{-3}$ |
| 55 | assault | $6.2 \times 10^{-3}$ |
| 56 | hair | $6.2 \times 10^{-3}$ |
| 57 | medicin | $6.1 \times 10^{-3}$ |
| 58 | exposur | $5.9 \times 10^{-3}$ |
| 59 | popul | $5.9 \times 10^{-3}$ |
| 60 | weapon | $5.8 \times 10^{-3}$ |
| 61 | autosom | $5.8 \times 10^{-3}$ |
| 62 | repeat | $5.8 \times 10^{-3}$ |
| 63 | structur | $5.8 \times 10^{-3}$ |
| 64 | skull | $5.7 \times 10^{-3}$ |
| 65 | trauma | $5.7 \times 10^{-3}$ |
| 66 | properti | $5.6 \times 10^{-3}$ |
| 67 | age | $5.6 \times 10^{-3}$ |
| 68 | multiplex | $5.5 \times 10^{-3}$ |
| 69 | spectrometri | $5.5 \times 10^{-3}$ |
| 70 | lethal | $5.5 \times 10^{-3}$ |
| 71 | blunt | $5.4 \times 10^{-3}$ |
| 72 | bone | $5.4 \times 10^{-3}$ |
| 73 | perpetr | $5.4 \times 10^{-3}$ |
| 74 | cocain | $5.3 \times 10^{-3}$ |
| 75 | interpret | $5.3 \times 10^{-3}$ |
| 76 | propos | $5.3 \times 10^{-3}$ |
| 77 | accid | $5.2 \times 10^{-3}$ |
| 78 | illicit | $5.1 \times 10^{-3}$ |
| 79 | dynam | $5.1 \times 10^{-3}$ |
| 80 | chromatographi | $5.1 \times 10^{-3}$ |
| 81 | paper | $5 \times 10^{-3}$ |
| 82 | alleg | $5 \times 10^{-3}$ |
| 83 | laboratori | $5 \times 10^{-3}$ |
| 84 | amplif | $5 \times 10^{-3}$ |
| 85 | traumat | $5 \times 10^{-3}$ |
| 86 | rare | $5 \times 10^{-3}$ |
| 87 | marker | $4.8 \times 10^{-3}$ |
| 88 | estim | $4.8 \times 10^{-3}$ |
| 89 | pcr | $4.7 \times 10^{-3}$ |
| 90 | man | $4.7 \times 10^{-3}$ |
| 91 | interact | $4.6 \times 10^{-3}$ |
| 92 | energi | $4.5 \times 10^{-3}$ |
| 93 | model | $4.5 \times 10^{-3}$ |
| 94 | inhal | $4.3 \times 10^{-3}$ |
| 95 | assess | $4.3 \times 10^{-3}$ |
| 96 | genet | $4.2 \times 10^{-3}$ |
| 97 | sexual | $4.2 \times 10^{-3}$ |
| 98 | stain | $4.1 \times 10^{-3}$ |
| 99 | ingest | $4.1 \times 10^{-3}$ |
| 100 | activ | $4.1 \times 10^{-3}$ |

Table D.156. The list of the top 100 words in the category Medicine, Research and Experimental with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | cell | $5.3 \times 10^{-2}$ |
| 2 | express | $4 \times 10^{-2}$ |
| 3 | patient | $3.9 \times 10^{-2}$ |
| 4 | diseas | $3.1 \times 10^{-2}$ |
| 5 | treatment | $2.8 \times 10^{-2}$ |
| 6 | clinic | $2.7 \times 10^{-2}$ |
| 7 | paper | $2.7 \times 10^{-2}$ |
| 8 | protein | $2.5 \times 10^{-2}$ |
| 9 | conclus | $2.5 \times 10^{-2}$ |
| 10 | induc | $2.3 \times 10^{-2}$ |
| 11 | mice | $2.3 \times 10^{-2}$ |
| 12 | therapeut | $2.2 \times 10^{-2}$ |
| 13 | therapi | $2.1 \times 10^{-2}$ |
| 14 | studi | $2.1 \times 10^{-2}$ |
| 15 | tissu | $2 \times 10^{-2}$ |
| 16 | tumor | $2 \times 10^{-2}$ |
| 17 | gene | $1.9 \times 10^{-2}$ |
| 18 | signific | $1.9 \times 10^{-2}$ |
| 19 | immun | $1.8 \times 10^{-2}$ |
| 20 | cancer | $1.8 \times 10^{-2}$ |
| 21 | inhibit | $1.8 \times 10^{-2}$ |
| 22 | human | $1.7 \times 10^{-2}$ |
| 23 | vaccin | $1.7 \times 10^{-2}$ |
| 24 | blood | $1.7 \times 10^{-2}$ |
| 25 | rat | $1.5 \times 10^{-2}$ |
| 26 | prolifer | $1.5 \times 10^{-2}$ |
| 27 | vitro | $1.5 \times 10^{-2}$ |
| 28 | receptor | $1.5 \times 10^{-2}$ |
| 29 | associ | $1.4 \times 10^{-2}$ |
| 30 | treat | $1.4 \times 10^{-2}$ |
| 31 | vivo | $1.3 \times 10^{-2}$ |
| 32 | level | $1.3 \times 10^{-2}$ |
| 33 | aim | $1.3 \times 10^{-2}$ |
| 34 | may | $1.3 \times 10^{-2}$ |
| 35 | group | $1.2 \times 10^{-2}$ |
| 36 | apoptosi | $1.2 \times 10^{-2}$ |
| 37 | blot | $1.2 \times 10^{-2}$ |
| 38 | serum | $1.2 \times 10^{-2}$ |
| 39 | antibodi | $1.2 \times 10^{-2}$ |
| 40 | dose | $1.2 \times 10^{-2}$ |
| 41 | efficaci | $1.2 \times 10^{-2}$ |
| 42 | assay | $1.2 \times 10^{-2}$ |
| 43 | activ | $1.1 \times 10^{-2}$ |
| 44 | regul | $1.1 \times 10^{-2}$ |
| 45 | propos | $1 \times 10^{-2}$ |
| 46 | inflammatori | $1 \times 10^{-2}$ |
| 47 | antigen | $1 \times 10^{-2}$ |
| 48 | pathway | $1 \times 10^{-2}$ |
| 49 | mediat | $9.9 \times 10^{-3}$ |
| 50 | cytokin | $9.8 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | trial | $9.7 \times 10^{-3}$ |
| 52 | stem | $9.7 \times 10^{-3}$ |
| 53 | background | $9.5 \times 10^{-3}$ |
| 54 | mrna | $9.4 \times 10^{-3}$ |
| 55 | temperatur | $9.3 \times 10^{-3}$ |
| 56 | target | $9.2 \times 10^{-3}$ |
| 57 | mous | $9.1 \times 10^{-3}$ |
| 58 | upregul | $9 \times 10^{-3}$ |
| 59 | week | $8.9 \times 10^{-3}$ |
| 60 | chronic | $8.8 \times 10^{-3}$ |
| 61 | mesenchym | $8.8 \times 10^{-3}$ |
| 62 | endotheli | $8.7 \times 10^{-3}$ |
| 63 | drug | $8.4 \times 10^{-3}$ |
| 64 | downregul | $8.3 \times 10^{-3}$ |
| 65 | marker | $8.1 \times 10^{-3}$ |
| 66 | liver | $7.9 \times 10^{-3}$ |
| 67 | injuri | $7.9 \times 10^{-3}$ |
| 68 | inflamm | $7.9 \times 10^{-3}$ |
| 69 | bone | $7.8 \times 10^{-3}$ |
| 70 | administr | $7.8 \times 10^{-3}$ |
| 71 | diabet | $7.7 \times 10^{-3}$ |
| 72 | control | $7.7 \times 10^{-3}$ |
| 73 | inhibitor | $7.7 \times 10^{-3}$ |
| 74 | factor | $7.7 \times 10^{-3}$ |
| 75 | increas | $7.7 \times 10^{-3}$ |
| 76 | anim | $7.6 \times 10^{-3}$ |
| 77 | simul | $7.4 \times 10^{-3}$ |
| 78 | energi | $7.3 \times 10^{-3}$ |
| 79 | progress | $7.1 \times 10^{-3}$ |
| 80 | vascular | $7 \times 10^{-3}$ |
| 81 | polymeras | $7 \times 10^{-3}$ |
| 82 | surviv | $6.9 \times 10^{-3}$ |
| 83 | interleukin | $6.8 \times 10^{-3}$ |
| 84 | inject | $6.8 \times 10^{-3}$ |
| 85 | stimul | $6.7 \times 10^{-3}$ |
| 86 | infect | $6.7 \times 10^{-3}$ |
| 87 | normal | $6.7 \times 10^{-3}$ |
| 88 | kinas | $6.7 \times 10^{-3}$ |
| 89 | transplant | $6.7 \times 10^{-3}$ |
| 90 | beta | $6.7 \times 10^{-3}$ |
| 91 | carcinoma | $6.6 \times 10^{-3}$ |
| 92 | pcr | $6.6 \times 10^{-3}$ |
| 93 | day | $6.5 \times 10^{-3}$ |
| 94 | prevent | $6.5 \times 10^{-3}$ |
| 95 | cellular | $6.4 \times 10^{-3}$ |
| 96 | marrow | $6.4 \times 10^{-3}$ |
| 97 | follow | $6.3 \times 10^{-3}$ |
| 98 | pathogenesi | $6.3 \times 10^{-3}$ |
| 99 | effect | $6.3 \times 10^{-3}$ |
| 100 | stain | $6.3 \times 10^{-3}$ |

Table D.157. The list of the top 100 words in the category Medieval and Renaissance Studies with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | mediev | $1.5 \times 10^{-1}$ |
| 2 | centuri | $1.5 \times 10^{-1}$ |
| 3 | articl | $7.8 \times 10^{-2}$ |
| 4 | text | $7.5 \times 10^{-2}$ |
| 5 | argu | $6.4 \times 10^{-2}$ |
| 6 | essay | $6.4 \times 10^{-2}$ |
| 7 | result | $4.9 \times 10^{-2}$ |
| 8 | thirteenth | $4.5 \times 10^{-2}$ |
| 9 | christian | $4.5 \times 10^{-2}$ |
| 10 | histor | $3.7 \times 10^{-2}$ |
| 11 | polit | $3.6 \times 10^{-2}$ |
| 12 | read | $3.5 \times 10^{-2}$ |
| 13 | english | $3.4 \times 10^{-2}$ |
| 14 | scholar | $3.3 \times 10^{-2}$ |
| 15 | church | $3.3 \times 10^{-2}$ |
| 16 | renaiss | $3.2 \times 10^{-2}$ |
| 17 | narrat | $3.2 \times 10^{-2}$ |
| 18 | manuscript | $3.2 \times 10^{-2}$ |
| 19 | fifteenth | $3.1 \times 10^{-2}$ |
| 20 | religi | $3.1 \times 10^{-2}$ |
| 21 | write | $3.1 \times 10^{-2}$ |
| 22 | earli | $2.7 \times 10^{-2}$ |
| 23 | poem | $2.7 \times 10^{-2}$ |
| 24 | literari | $2.7 \times 10^{-2}$ |
| 25 | roman | $2.6 \times 10^{-2}$ |
| 26 | king | $2.6 \times 10^{-2}$ |
| 27 | john | $2.6 \times 10^{-2}$ |
| 28 | contemporari | $2.5 \times 10^{-2}$ |
| 29 | sixteenth | $2.5 \times 10^{-2}$ |
| 30 | scholarship | $2.5 \times 10^{-2}$ |
| 31 | modern | $2.4 \times 10^{-2}$ |
| 32 | chaucer | $2.4 \times 10^{-2}$ |
| 33 | late | $2.3 \times 10^{-2}$ |
| 34 | figur | $2.3 \times 10^{-2}$ |
| 35 | seventeenth | $2.3 \times 10^{-2}$ |
| 36 | use | $2.3 \times 10^{-2}$ |
| 37 | latin | $2.2 \times 10^{-2}$ |
| 38 | rhetor | $2.2 \times 10^{-2}$ |
| 39 | thoma | $2.2 \times 10^{-2}$ |
| 40 | method | $2.1 \times 10^{-2}$ |
| 41 | theolog | $2.1 \times 10^{-2}$ |
| 42 | histori | $2.1 \times 10^{-2}$ |
| 43 | written | $2.1 \times 10^{-2}$ |
| 44 | book | $2 \times 10^{-2}$ |
| 45 | saint | $2 \times 10^{-2}$ |
| 46 | historian | $2 \times 10^{-2}$ |
| 47 | effect | $2 \times 10^{-2}$ |
| 48 | textual | $1.9 \times 10^{-2}$ |
| 49 | reader | $1.9 \times 10^{-2}$ |
| 50 | increas | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | chronicl | $1.7 \times 10^{-2}$ |
| 52 | data | $1.7 \times 10^{-2}$ |
| 53 | tale | $1.7 \times 10^{-2}$ |
| 54 | author | $1.6 \times 10^{-2}$ |
| 55 | base | $1.6 \times 10^{-2}$ |
| 56 | england | $1.6 \times 10^{-2}$ |
| 57 | court | $1.6 \times 10^{-2}$ |
| 58 | christ | $1.5 \times 10^{-2}$ |
| 59 | jew | $1.5 \times 10^{-2}$ |
| 60 | high | $1.5 \times 10^{-2}$ |
| 61 | measur | $1.5 \times 10^{-2}$ |
| 62 | anglo | $1.4 \times 10^{-2}$ |
| 63 | holi | $1.4 \times 10^{-2}$ |
| 64 | cultur | $1.4 \times 10^{-2}$ |
| 65 | tradit | $1.4 \times 10^{-2}$ |
| 66 | cell | $1.3 \times 10^{-2}$ |
| 67 | system | $1.3 \times 10^{-2}$ |
| 68 | rate | $1.3 \times 10^{-2}$ |
| 69 | artist | $1.3 \times 10^{-2}$ |
| 70 | discours | $1.3 \times 10^{-2}$ |
| 71 | improv | $1.3 \times 10^{-2}$ |
| 72 | obtain | $1.2 \times 10^{-2}$ |
| 73 | henri | $1.2 \times 10^{-2}$ |
| 74 | poet | $1.2 \times 10^{-2}$ |
| 75 | perform | $1.2 \times 10^{-2}$ |
| 76 | romanc | $1.2 \times 10^{-2}$ |
| 77 | god | $1.2 \times 10^{-2}$ |
| 78 | test | $1.2 \times 10^{-2}$ |
| 79 | compar | $1.2 \times 10^{-2}$ |
| 80 | audienc | $1.2 \times 10^{-2}$ |
| 81 | patient | $1.2 \times 10^{-2}$ |
| 82 | model | $1.2 \times 10^{-2}$ |
| 83 | depict | $1.2 \times 10^{-2}$ |
| 84 | middl | $1.2 \times 10^{-2}$ |
| 85 | intellectu | $1.2 \times 10^{-2}$ |
| 86 | poetri | $1.2 \times 10^{-2}$ |
| 87 | writer | $1.1 \times 10^{-2}$ |
| 88 | low | $1.1 \times 10^{-2}$ |
| 89 | reduc | $1.1 \times 10^{-2}$ |
| 90 | way | $1.1 \times 10^{-2}$ |
| 91 | studi | $1.1 \times 10^{-2}$ |
| 92 | effici | $1.1 \times 10^{-2}$ |
| 93 | royal | $1.1 \times 10^{-2}$ |
| 94 | decreas | $1.1 \times 10^{-2}$ |
| 95 | william | $1.1 \times 10^{-2}$ |
| 96 | philosoph | $1.1 \times 10^{-2}$ |
| 97 | poetic | $1.1 \times 10^{-2}$ |
| 98 | jewish | $1.1 \times 10^{-2}$ |
| 99 | muslim | $1.1 \times 10^{-2}$ |
| 100 | vernacular | $1.1 \times 10^{-2}$ |

Table D.158. The list of the top 100 words in the category Metallurgy and Metallurgical Engineering with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | alloy | $1.5 \times 10^{-1}$ |
| 2 | microstructur | $1 \times 10^{-1}$ |
| 3 | steel | $7.1 \times 10^{-2}$ |
| 4 | temperatur | $5.8 \times 10^{-2}$ |
| 5 | grain | $5.7 \times 10^{-2}$ |
| 6 | phase | $3.7 \times 10^{-2}$ |
| 7 | cast | $3.4 \times 10^{-2}$ |
| 8 | tensil | $3.4 \times 10^{-2}$ |
| 9 | corros | $3.2 \times 10^{-2}$ |
| 10 | properti | $3.1 \times 10^{-2}$ |
| 11 | diffract | $3 \times 10^{-2}$ |
| 12 | austenit | $2.9 \times 10^{-2}$ |
| 13 | strength | $2.9 \times 10^{-2}$ |
| 14 | deform | $2.8 \times 10^{-2}$ |
| 15 | electron | $2.6 \times 10^{-2}$ |
| 16 | degre | $2.6 \times 10^{-2}$ |
| 17 | composit | $2.5 \times 10^{-2}$ |
| 18 | metal | $2.4 \times 10^{-2}$ |
| 19 | microscopi | $2.4 \times 10^{-2}$ |
| 20 | martensit | $2.3 \times 10^{-2}$ |
| 21 | patient | $2.2 \times 10^{-2}$ |
| 22 | ductil | $2.2 \times 10^{-2}$ |
| 23 | mechan | $2.2 \times 10^{-2}$ |
| 24 | disloc | $2.1 \times 10^{-2}$ |
| 25 | precipit | $2.1 \times 10^{-2}$ |
| 26 | conclus | $2.1 \times 10^{-2}$ |
| 27 | powder | $2.1 \times 10^{-2}$ |
| 28 | ray | $2 \times 10^{-2}$ |
| 29 | heat | $1.9 \times 10^{-2}$ |
| 30 | scan | $1.9 \times 10^{-2}$ |
| 31 | harden | $1.9 \times 10^{-2}$ |
| 32 | ferrit | $1.9 \times 10^{-2}$ |
| 33 | weld | $1.8 \times 10^{-2}$ |
| 34 | sinter | $1.8 \times 10^{-2}$ |
| 35 | mpa | $1.7 \times 10^{-2}$ |
| 36 | sem | $1.7 \times 10^{-2}$ |
| 37 | melt | $1.7 \times 10^{-2}$ |
| 38 | anneal | $1.7 \times 10^{-2}$ |
| 39 | hard | $1.7 \times 10^{-2}$ |
| 40 | materi | $1.7 \times 10^{-2}$ |
| 41 | investig | $1.6 \times 10^{-2}$ |
| 42 | roll | $1.6 \times 10^{-2}$ |
| 43 | aluminum | $1.6 \times 10^{-2}$ |
| 44 | crack | $1.5 \times 10^{-2}$ |
| 45 | strain | $1.5 \times 10^{-2}$ |
| 46 | xrd | $1.5 \times 10^{-2}$ |
| 47 | carbid | $1.4 \times 10^{-2}$ |
| 48 | plastic | $1.4 \times 10^{-2}$ |
| 49 | hot | $1.3 \times 10^{-2}$ |
| 50 | fractur | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | clinic | $1.2 \times 10^{-2}$ |
| 52 | format | $1.2 \times 10^{-2}$ |
| 53 | particl | $1.2 \times 10^{-2}$ |
| 54 | stainless | $1.2 \times 10^{-2}$ |
| 55 | diseas | $1.2 \times 10^{-2}$ |
| 56 | microhard | $1.2 \times 10^{-2}$ |
| 57 | background | $1.2 \times 10^{-2}$ |
| 58 | process | $1.2 \times 10^{-2}$ |
| 59 | furnac | $1.2 \times 10^{-2}$ |
| 60 | refin | $1.1 \times 10^{-2}$ |
| 61 | protein | $1.1 \times 10^{-2}$ |
| 62 | boundari | $1.1 \times 10^{-2}$ |
| 63 | thermal | $1.1 \times 10^{-2}$ |
| 64 | year | $1.1 \times 10^{-2}$ |
| 65 | associ | $1.1 \times 10^{-2}$ |
| 66 | stress | $1 \times 10^{-2}$ |
| 67 | group | $1 \times 10^{-2}$ |
| 68 | size | $1 \times 10^{-2}$ |
| 69 | iron | $1 \times 10^{-2}$ |
| 70 | resist | $1 \times 10^{-2}$ |
| 71 | nucleat | $9.9 \times 10^{-3}$ |
| 72 | specimen | $9.8 \times 10^{-3}$ |
| 73 | surfac | $9.6 \times 10^{-3}$ |
| 74 | human | $9.5 \times 10^{-3}$ |
| 75 | molten | $9.5 \times 10^{-3}$ |
| 76 | coat | $9.5 \times 10^{-3}$ |
| 77 | solid | $9.4 \times 10^{-3}$ |
| 78 | magnesium | $9.4 \times 10^{-3}$ |
| 79 | room | $9.3 \times 10^{-3}$ |
| 80 | gene | $9.1 \times 10^{-3}$ |
| 81 | may | $9 \times 10^{-3}$ |
| 82 | elong | $8.9 \times 10^{-3}$ |
| 83 | titanium | $8.8 \times 10^{-3}$ |
| 84 | behavior | $8.8 \times 10^{-3}$ |
| 85 | crystal | $8.8 \times 10^{-3}$ |
| 86 | object | $8.6 \times 10^{-3}$ |
| 87 | express | $8.6 \times 10^{-3}$ |
| 88 | isotherm | $8.3 \times 10^{-3}$ |
| 89 | nickel | $8.1 \times 10^{-3}$ |
| 90 | cool | $8.1 \times 10^{-3}$ |
| 91 | structur | $8.1 \times 10^{-3}$ |
| 92 | al2o3 | $8 \times 10^{-3}$ |
| 93 | risk | $8 \times 10^{-3}$ |
| 94 | compress | $7.9 \times 10^{-3}$ |
| 95 | tough | $7.8 \times 10^{-3}$ |
| 96 | tem | $7.7 \times 10^{-3}$ |
| 97 | level | $7.6 \times 10^{-3}$ |
| 98 | content | $7.3 \times 10^{-3}$ |
| 99 | matrix | $7.3 \times 10^{-3}$ |
| 100 | find | $7.2 \times 10^{-3}$ |

Table D.159. The list of the top 100 words in the category Meteorology and Atmospheric Sciences with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | atmospher | $1.2 \times 10^{-1}$ |
| 2 | climat | $9.5 \times 10^{-2}$ |
| 3 | aerosol | $6.7 \times 10^{-2}$ |
| 4 | season | $5.8 \times 10^{-2}$ |
| 5 | precipit | $5.4 \times 10^{-2}$ |
| 6 | meteorolog | $5.2 \times 10^{-2}$ |
| 7 | wind | $5.1 \times 10^{-2}$ |
| 8 | region | $5 \times 10^{-2}$ |
| 9 | ocean | $5 \times 10^{-2}$ |
| 10 | weather | $5 \times 10^{-2}$ |
| 11 | summer | $4.9 \times 10^{-2}$ |
| 12 | air | $4.6 \times 10^{-2}$ |
| 13 | tropospher | $4.6 \times 10^{-2}$ |
| 14 | warm | $4.6 \times 10^{-2}$ |
| 15 | tropic | $4.4 \times 10^{-2}$ |
| 16 | sea | $4.4 \times 10^{-2}$ |
| 17 | forecast | $4.2 \times 10^{-2}$ |
| 18 | winter | $3.9 \times 10^{-2}$ |
| 19 | satellit | $3.7 \times 10^{-2}$ |
| 20 | rainfal | $3.7 \times 10^{-2}$ |
| 21 | cloud | $3.6 \times 10^{-2}$ |
| 22 | observ | $3.5 \times 10^{-2}$ |
| 23 | convect | $3.4 \times 10^{-2}$ |
| 24 | climatolog | $3.3 \times 10^{-2}$ |
| 25 | global | $3.1 \times 10^{-2}$ |
| 26 | north | $3.1 \times 10^{-2}$ |
| 27 | circul | $2.9 \times 10^{-2}$ |
| 28 | model | $2.9 \times 10^{-2}$ |
| 29 | cyclon | $2.9 \times 10^{-2}$ |
| 30 | station | $2.9 \times 10^{-2}$ |
| 31 | pacif | $2.7 \times 10^{-2}$ |
| 32 | period | $2.6 \times 10^{-2}$ |
| 33 | temperatur | $2.6 \times 10^{-2}$ |
| 34 | southern | $2.5 \times 10^{-2}$ |
| 35 | variabl | $2.5 \times 10^{-2}$ |
| 36 | monsoon | $2.5 \times 10^{-2}$ |
| 37 | latitud | $2.4 \times 10^{-2}$ |
| 38 | surfac | $2.4 \times 10^{-2}$ |
| 39 | flux | $2.3 \times 10^{-2}$ |
| 40 | spatial | $2.3 \times 10^{-2}$ |
| 41 | ozon | $2.2 \times 10^{-2}$ |
| 42 | northern | $2.2 \times 10^{-2}$ |
| 43 | storm | $2.2 \times 10^{-2}$ |
| 44 | emiss | $2.2 \times 10^{-2}$ |
| 45 | interannu | $2.2 \times 10^{-2}$ |
| 46 | ice | $2.2 \times 10^{-2}$ |
| 47 | anomali | $2.1 \times 10^{-2}$ |
| 48 | dure | $2.1 \times 10^{-2}$ |
| 49 | annual | $2.1 \times 10^{-2}$ |
| 50 | land | $2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | vertic | $2 \times 10^{-2}$ |
| 52 | atlant | $2 \times 10^{-2}$ |
| 53 | patient | $2 \times 10^{-2}$ |
| 54 | scale | $2 \times 10^{-2}$ |
| 55 | resolut | $2 \times 10^{-2}$ |
| 56 | ensembl | $2 \times 10^{-2}$ |
| 57 | radiat | $1.8 \times 10^{-2}$ |
| 58 | pollut | $1.7 \times 10^{-2}$ |
| 59 | event | $1.7 \times 10^{-2}$ |
| 60 | altitud | $1.7 \times 10^{-2}$ |
| 61 | anthropogen | $1.7 \times 10^{-2}$ |
| 62 | averag | $1.7 \times 10^{-2}$ |
| 63 | estim | $1.7 \times 10^{-2}$ |
| 64 | rain | $1.6 \times 10^{-2}$ |
| 65 | eastern | $1.6 \times 10^{-2}$ |
| 66 | impact | $1.6 \times 10^{-2}$ |
| 67 | diurnal | $1.6 \times 10^{-2}$ |
| 68 | east | $1.6 \times 10^{-2}$ |
| 69 | simul | $1.6 \times 10^{-2}$ |
| 70 | water | $1.6 \times 10^{-2}$ |
| 71 | data | $1.6 \times 10^{-2}$ |
| 72 | conclus | $1.6 \times 10^{-2}$ |
| 73 | variat | $1.6 \times 10^{-2}$ |
| 74 | humid | $1.6 \times 10^{-2}$ |
| 75 | south | $1.5 \times 10^{-2}$ |
| 76 | assimil | $1.4 \times 10^{-2}$ |
| 77 | eddi | $1.4 \times 10^{-2}$ |
| 78 | area | $1.4 \times 10^{-2}$ |
| 79 | hemispher | $1.4 \times 10^{-2}$ |
| 80 | uncertainti | $1.4 \times 10^{-2}$ |
| 81 | chang | $1.4 \times 10^{-2}$ |
| 82 | horizont | $1.3 \times 10^{-2}$ |
| 83 | advect | $1.3 \times 10^{-2}$ |
| 84 | moistur | $1.3 \times 10^{-2}$ |
| 85 | height | $1.3 \times 10^{-2}$ |
| 86 | tempor | $1.3 \times 10^{-2}$ |
| 87 | parameter | $1.3 \times 10^{-2}$ |
| 88 | mean | $1.3 \times 10^{-2}$ |
| 89 | concentr | $1.3 \times 10^{-2}$ |
| 90 | particul | $1.3 \times 10^{-2}$ |
| 91 | radar | $1.3 \times 10^{-2}$ |
| 92 | trend | $1.3 \times 10^{-2}$ |
| 93 | clinic | $1.2 \times 10^{-2}$ |
| 94 | bias | $1.2 \times 10^{-2}$ |
| 95 | near | $1.2 \times 10^{-2}$ |
| 96 | larg | $1.2 \times 10^{-2}$ |
| 97 | spring | $1.2 \times 10^{-2}$ |
| 98 | daili | $1.2 \times 10^{-2}$ |
| 99 | transport | $1.2 \times 10^{-2}$ |
| 100 | sourc | $1.1 \times 10^{-2}$ |

Table D.160. The list of the top 100 words in the category Microbiology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | strain | $1.1 \times 10^{-1}$ |
| 2 | infect | $9.7 \times 10^{-2}$ |
| 3 | gene | $8.8 \times 10^{-2}$ |
| 4 | isol | $8.7 \times 10^{-2}$ |
| 5 | bacteri | $8 \times 10^{-2}$ |
| 6 | bacteria | $7.4 \times 10^{-2}$ |
| 7 | pathogen | $6.4 \times 10^{-2}$ |
| 8 | rrna | $6.2 \times 10^{-2}$ |
| 9 | 16s | $6 \times 10^{-2}$ |
| 10 | sequenc | $5.6 \times 10^{-2}$ |
| 11 | virul | $3.7 \times 10^{-2}$ |
| 12 | gram | $3.7 \times 10^{-2}$ |
| 13 | antibiot | $3.4 \times 10^{-2}$ |
| 14 | paper | $3.4 \times 10^{-2}$ |
| 15 | pcr | $3.4 \times 10^{-2}$ |
| 16 | phylogenet | $3.2 \times 10^{-2}$ |
| 17 | coli | $3.2 \times 10^{-2}$ |
| 18 | escherichia | $3.2 \times 10^{-2}$ |
| 19 | resist | $3.2 \times 10^{-2}$ |
| 20 | speci | $3.1 \times 10^{-2}$ |
| 21 | bacterium | $3 \times 10^{-2}$ |
| 22 | host | $3 \times 10^{-2}$ |
| 23 | genus | $2.9 \times 10^{-2}$ |
| 24 | dna | $2.9 \times 10^{-2}$ |
| 25 | microbi | $2.8 \times 10^{-2}$ |
| 26 | genom | $2.7 \times 10^{-2}$ |
| 27 | antimicrobi | $2.7 \times 10^{-2}$ |
| 28 | virus | $2.5 \times 10^{-2}$ |
| 29 | mutant | $2.5 \times 10^{-2}$ |
| 30 | cell | $2.3 \times 10^{-2}$ |
| 31 | nov | $2.2 \times 10^{-2}$ |
| 32 | cultur | $2.1 \times 10^{-2}$ |
| 33 | staphylococcus | $2.1 \times 10^{-2}$ |
| 34 | biofilm | $2.1 \times 10^{-2}$ |
| 35 | encod | $2 \times 10^{-2}$ |
| 36 | protein | $2 \times 10^{-2}$ |
| 37 | phenotyp | $2 \times 10^{-2}$ |
| 38 | pseudomona | $2 \times 10^{-2}$ |
| 39 | suscept | $1.9 \times 10^{-2}$ |
| 40 | assay | $1.9 \times 10^{-2}$ |
| 41 | mic | $1.8 \times 10^{-2}$ |
| 42 | aureus | $1.7 \times 10^{-2}$ |
| 43 | microorgan | $1.7 \times 10^{-2}$ |
| 44 | acid | $1.7 \times 10^{-2}$ |
| 45 | plasmid | $1.6 \times 10^{-2}$ |
| 46 | belong | $1.6 \times 10^{-2}$ |
| 47 | pneumonia | $1.5 \times 10^{-2}$ |
| 48 | identifi | $1.5 \times 10^{-2}$ |
| 49 | viral | $1.4 \times 10^{-2}$ |
| 50 | type | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | clone | $1.4 \times 10^{-2}$ |
| 52 | growth | $1.4 \times 10^{-2}$ |
| 53 | mycobacterium | $1.4 \times 10^{-2}$ |
| 54 | enzym | $1.4 \times 10^{-2}$ |
| 55 | divers | $1.4 \times 10^{-2}$ |
| 56 | immun | $1.3 \times 10^{-2}$ |
| 57 | bacillus | $1.3 \times 10^{-2}$ |
| 58 | detect | $1.3 \times 10^{-2}$ |
| 59 | fungal | $1.3 \times 10^{-2}$ |
| 60 | aeruginosa | $1.2 \times 10^{-2}$ |
| 61 | multidrug | $1.2 \times 10^{-2}$ |
| 62 | spp | $1.2 \times 10^{-2}$ |
| 63 | yeast | $1.2 \times 10^{-2}$ |
| 64 | vaccin | $1.2 \times 10^{-2}$ |
| 65 | fatti | $1.2 \times 10^{-2}$ |
| 66 | aerob | $1.2 \times 10^{-2}$ |
| 67 | salmonella | $1.2 \times 10^{-2}$ |
| 68 | colon | $1.2 \times 10^{-2}$ |
| 69 | wild | $1.1 \times 10^{-2}$ |
| 70 | genotyp | $1.1 \times 10^{-2}$ |
| 71 | human | $1.1 \times 10^{-2}$ |
| 72 | streptococcus | $1.1 \times 10^{-2}$ |
| 73 | tuberculosi | $1.1 \times 10^{-2}$ |
| 74 | anaerob | $1.1 \times 10^{-2}$ |
| 75 | major | $1.1 \times 10^{-2}$ |
| 76 | genet | $1.1 \times 10^{-2}$ |
| 77 | communiti | $1.1 \times 10^{-2}$ |
| 78 | simul | $1.1 \times 10^{-2}$ |
| 79 | activ | $1 \times 10^{-2}$ |
| 80 | taxonom | $1 \times 10^{-2}$ |
| 81 | ferment | $1 \times 10^{-2}$ |
| 82 | negat | $9.9 \times 10^{-3}$ |
| 83 | delet | $9.8 \times 10^{-3}$ |
| 84 | fungi | $9.8 \times 10^{-3}$ |
| 85 | cfu | $9.7 \times 10^{-3}$ |
| 86 | agar | $9.6 \times 10^{-3}$ |
| 87 | candida | $9.6 \times 10^{-3}$ |
| 88 | transcript | $9.5 \times 10^{-3}$ |
| 89 | lactobacillus | $9.4 \times 10^{-3}$ |
| 90 | presenc | $9.4 \times 10^{-3}$ |
| 91 | produc | $9.3 \times 10^{-3}$ |
| 92 | express | $9.2 \times 10^{-3}$ |
| 93 | comput | $9.2 \times 10^{-3}$ |
| 94 | vitro | $9.1 \times 10^{-3}$ |
| 95 | rod | $9.1 \times 10^{-3}$ |
| 96 | rna | $9 \times 10^{-3}$ |
| 97 | microbiolog | $8.8 \times 10^{-3}$ |
| 98 | toxin | $8.5 \times 10^{-3}$ |
| 99 | caus | $8.4 \times 10^{-3}$ |
| 100 | serotyp | $8.3 \times 10^{-3}$ |

Table D.161. The list of the top 100 words in the category Microscopy with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | microscopi | $1.1 \times 10^{-1}$ |
| 2 | electron | $7.7 \times 10^{-2}$ |
| 3 | microscop | $6.4 \times 10^{-2}$ |
| 4 | imag | $6.3 \times 10^{-2}$ |
| 5 | scan | $5.1 \times 10^{-2}$ |
| 6 | transmiss | $3.4 \times 10^{-2}$ |
| 7 | resolut | $3.2 \times 10^{-2}$ |
| 8 | ultrastructur | $2.7 \times 10^{-2}$ |
| 9 | beam | $2.5 \times 10^{-2}$ |
| 10 | specimen | $2.1 \times 10^{-2}$ |
| 11 | atom | $1.8 \times 10^{-2}$ |
| 12 | sem | $1.7 \times 10^{-2}$ |
| 13 | tem | $1.6 \times 10^{-2}$ |
| 14 | optic | $1.5 \times 10^{-2}$ |
| 15 | morpholog | $1.4 \times 10^{-2}$ |
| 16 | fluoresc | $1.3 \times 10^{-2}$ |
| 17 | cell | $1.2 \times 10^{-2}$ |
| 18 | reconstruct | $1.2 \times 10^{-2}$ |
| 19 | light | $1.1 \times 10^{-2}$ |
| 20 | aberr | $1.1 \times 10^{-2}$ |
| 21 | sampl | $1.1 \times 10^{-2}$ |
| 22 | probe | $1 \times 10^{-2}$ |
| 23 | thick | $9.1 \times 10^{-3}$ |
| 24 | afm | $8.8 \times 10^{-3}$ |
| 25 | techniqu | $8.8 \times 10^{-3}$ |
| 26 | confoc | $8.7 \times 10^{-3}$ |
| 27 | tomographi | $8.7 \times 10^{-3}$ |
| 28 | laser | $8.6 \times 10^{-3}$ |
| 29 | tissu | $8.5 \times 10^{-3}$ |
| 30 | scatter | $8.4 \times 10^{-3}$ |
| 31 | surfac | $8.4 \times 10^{-3}$ |
| 32 | detector | $7.5 \times 10^{-3}$ |
| 33 | structur | $7.5 \times 10^{-3}$ |
| 34 | section | $7.3 \times 10^{-3}$ |
| 35 | stem | $6.8 \times 10^{-3}$ |
| 36 | thin | $6.5 \times 10^{-3}$ |
| 37 | cytoplasm | $6.3 \times 10^{-3}$ |
| 38 | contrast | $6.2 \times 10^{-3}$ |
| 39 | dark | $6.2 \times 10^{-3}$ |
| 40 | conclus | $6.1 \times 10^{-3}$ |
| 41 | stain | $6 \times 10^{-3}$ |
| 42 | patient | $5.9 \times 10^{-3}$ |
| 43 | illumin | $5.6 \times 10^{-3}$ |
| 44 | spatial | $5.4 \times 10^{-3}$ |
| 45 | len | $5.4 \times 10^{-3}$ |
| 46 | angl | $5.2 \times 10^{-3}$ |
| 47 | materi | $5.1 \times 10^{-3}$ |
| 48 | shape | $4.9 \times 10^{-3}$ |
| 49 | membran | $4.7 \times 10^{-3}$ |
| 50 | diffract | $4.7 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | situ | $4.7 \times 10^{-3}$ |
| 52 | tip | $4.6 \times 10^{-3}$ |
| 53 | nuclei | $4.5 \times 10^{-3}$ |
| 54 | backscatt | $4.5 \times 10^{-3}$ |
| 55 | collagen | $4.5 \times 10^{-3}$ |
| 56 | cellular | $4.5 \times 10^{-3}$ |
| 57 | fiber | $4.5 \times 10^{-3}$ |
| 58 | biolog | $4.3 \times 10^{-3}$ |
| 59 | quantit | $4.3 \times 10^{-3}$ |
| 60 | spectroscopi | $4.1 \times 10^{-3}$ |
| 61 | outcom | $4.1 \times 10^{-3}$ |
| 62 | rate | $4 \times 10^{-3}$ |
| 63 | paper | $3.9 \times 10^{-3}$ |
| 64 | nanoscal | $3.9 \times 10^{-3}$ |
| 65 | model | $3.9 \times 10^{-3}$ |
| 66 | correct | $3.9 \times 10^{-3}$ |
| 67 | focal | $3.8 \times 10^{-3}$ |
| 68 | allow | $3.8 \times 10^{-3}$ |
| 69 | immunoreact | $3.7 \times 10^{-3}$ |
| 70 | year | $3.7 \times 10^{-3}$ |
| 71 | dentin | $3.7 \times 10^{-3}$ |
| 72 | risk | $3.6 \times 10^{-3}$ |
| 73 | manag | $3.6 \times 10^{-3}$ |
| 74 | particip | $3.6 \times 10^{-3}$ |
| 75 | axi | $3.5 \times 10^{-3}$ |
| 76 | dimension | $3.5 \times 10^{-3}$ |
| 77 | microstructur | $3.4 \times 10^{-3}$ |
| 78 | rough | $3.4 \times 10^{-3}$ |
| 79 | age | $3.4 \times 10^{-3}$ |
| 80 | use | $3.4 \times 10^{-3}$ |
| 81 | vesicl | $3.4 \times 10^{-3}$ |
| 82 | nanoparticl | $3.3 \times 10^{-3}$ |
| 83 | observ | $3.3 \times 10^{-3}$ |
| 84 | label | $3.2 \times 10^{-3}$ |
| 85 | damag | $3.2 \times 10^{-3}$ |
| 86 | layer | $3.1 \times 10^{-3}$ |
| 87 | enabl | $3.1 \times 10^{-3}$ |
| 88 | social | $3.1 \times 10^{-3}$ |
| 89 | acquisit | $3.1 \times 10^{-3}$ |
| 90 | predict | $3 \times 10^{-3}$ |
| 91 | epitheli | $3 \times 10^{-3}$ |
| 92 | field | $3 \times 10^{-3}$ |
| 93 | coher | $2.9 \times 10^{-3}$ |
| 94 | topographi | $2.9 \times 10^{-3}$ |
| 95 | health | $2.9 \times 10^{-3}$ |
| 96 | instrument | $2.9 \times 10^{-3}$ |
| 97 | photon | $2.9 \times 10^{-3}$ |
| 98 | ray | $2.8 \times 10^{-3}$ |
| 99 | enamel | $2.8 \times 10^{-3}$ |
| 100 | assess | $2.8 \times 10^{-3}$ |

Table D.162. The list of the top 100 words in the category Mineralogy with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | miner | $1.5 \times 10^{-1}$ |
| 2 | rock | $1 \times 10^{-1}$ |
| 3 | magmat | $6.6 \times 10^{-2}$ |
| 4 | mantl | $6.5 \times 10^{-2}$ |
| 5 | magma | $6.4 \times 10^{-2}$ |
| 6 | ore | $6.3 \times 10^{-2}$ |
| 7 | crystal | $5.5 \times 10^{-2}$ |
| 8 | melt | $5.3 \times 10^{-2}$ |
| 9 | zircon | $4.8 \times 10^{-2}$ |
| 10 | composit | $4.8 \times 10^{-2}$ |
| 11 | geochem | $4.7 \times 10^{-2}$ |
| 12 | mineralog | $4.5 \times 10^{-2}$ |
| 13 | quartz | $4.5 \times 10^{-2}$ |
| 14 | mafic | $4.2 \times 10^{-2}$ |
| 15 | metamorph | $4 \times 10^{-2}$ |
| 16 | crustal | $4 \times 10^{-2}$ |
| 17 | clay | $4 \times 10^{-2}$ |
| 18 | isotop | $3.9 \times 10^{-2}$ |
| 19 | crust | $3.8 \times 10^{-2}$ |
| 20 | subduct | $3.8 \times 10^{-2}$ |
| 21 | plagioclas | $3.6 \times 10^{-2}$ |
| 22 | granit | $3.6 \times 10^{-2}$ |
| 23 | basalt | $3.4 \times 10^{-2}$ |
| 24 | zone | $3.3 \times 10^{-2}$ |
| 25 | ree | $3.1 \times 10^{-2}$ |
| 26 | olivin | $3.1 \times 10^{-2}$ |
| 27 | rich | $3.1 \times 10^{-2}$ |
| 28 | silic | $3.1 \times 10^{-2}$ |
| 29 | bear | $3 \times 10^{-2}$ |
| 30 | diffract | $2.9 \times 10^{-2}$ |
| 31 | igneous | $2.8 \times 10^{-2}$ |
| 32 | degre | $2.8 \times 10^{-2}$ |
| 33 | garnet | $2.7 \times 10^{-2}$ |
| 34 | intrus | $2.7 \times 10^{-2}$ |
| 35 | feldspar | $2.6 \times 10^{-2}$ |
| 36 | deposit | $2.6 \times 10^{-2}$ |
| 37 | form | $2.5 \times 10^{-2}$ |
| 38 | emplac | $2.5 \times 10^{-2}$ |
| 39 | pyrit | $2.4 \times 10^{-2}$ |
| 40 | enrich | $2.4 \times 10^{-2}$ |
| 41 | pluton | $2.4 \times 10^{-2}$ |
| 42 | sulfid | $2.4 \times 10^{-2}$ |
| 43 | flotat | $2.4 \times 10^{-2}$ |
| 44 | volcan | $2.4 \times 10^{-2}$ |
| 45 | hydrotherm | $2.3 \times 10^{-2}$ |
| 46 | temperatur | $2.3 \times 10^{-2}$ |
| 47 | ray | $2.3 \times 10^{-2}$ |
| 48 | chemic | $2.2 \times 10^{-2}$ |
| 49 | belt | $2.2 \times 10^{-2}$ |
| 50 | lithospher | $2.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | angstrom | $2.2 \times 10^{-2}$ |
| 52 | assemblag | $2.2 \times 10^{-2}$ |
| 53 | element | $2.1 \times 10^{-2}$ |
| 54 | fluid | $2.1 \times 10^{-2}$ |
| 55 | calcit | $2.1 \times 10^{-2}$ |
| 56 | content | $2.1 \times 10^{-2}$ |
| 57 | orogen | $2 \times 10^{-2}$ |
| 58 | trace | $2 \times 10^{-2}$ |
| 59 | host | $1.9 \times 10^{-2}$ |
| 60 | occur | $1.8 \times 10^{-2}$ |
| 61 | format | $1.8 \times 10^{-2}$ |
| 62 | h2o | $1.8 \times 10^{-2}$ |
| 63 | geolog | $1.7 \times 10^{-2}$ |
| 64 | gpa | $1.7 \times 10^{-2}$ |
| 65 | earth | $1.7 \times 10^{-2}$ |
| 66 | grain | $1.7 \times 10^{-2}$ |
| 67 | continent | $1.7 \times 10^{-2}$ |
| 68 | geochronolog | $1.7 \times 10^{-2}$ |
| 69 | craton | $1.7 \times 10^{-2}$ |
| 70 | mgo | $1.6 \times 10^{-2}$ |
| 71 | apatit | $1.6 \times 10^{-2}$ |
| 72 | similar | $1.6 \times 10^{-2}$ |
| 73 | tecton | $1.6 \times 10^{-2}$ |
| 74 | sio2 | $1.6 \times 10^{-2}$ |
| 75 | patient | $1.6 \times 10^{-2}$ |
| 76 | cation | $1.5 \times 10^{-2}$ |
| 77 | alkalin | $1.5 \times 10^{-2}$ |
| 78 | geochemistri | $1.5 \times 10^{-2}$ |
| 79 | interlay | $1.5 \times 10^{-2}$ |
| 80 | epsilon | $1.5 \times 10^{-2}$ |
| 81 | textur | $1.5 \times 10^{-2}$ |
| 82 | deplet | $1.4 \times 10^{-2}$ |
| 83 | iron | $1.4 \times 10^{-2}$ |
| 84 | mine | $1.4 \times 10^{-2}$ |
| 85 | dissolut | $1.4 \times 10^{-2}$ |
| 86 | phase | $1.4 \times 10^{-2}$ |
| 87 | arc | $1.3 \times 10^{-2}$ |
| 88 | late | $1.3 \times 10^{-2}$ |
| 89 | erupt | $1.3 \times 10^{-2}$ |
| 90 | refin | $1.3 \times 10^{-2}$ |
| 91 | precipit | $1.3 \times 10^{-2}$ |
| 92 | spinel | $1.2 \times 10^{-2}$ |
| 93 | sedimentari | $1.2 \times 10^{-2}$ |
| 94 | conclus | $1.2 \times 10^{-2}$ |
| 95 | indic | $1.2 \times 10^{-2}$ |
| 96 | cretac | $1.2 \times 10^{-2}$ |
| 97 | fraction | $1.2 \times 10^{-2}$ |
| 98 | contain | $1.2 \times 10^{-2}$ |
| 99 | leach | $1.2 \times 10^{-2}$ |
| 100 | vein | $1.1 \times 10^{-2}$ |

Table D.163. The list of the top 100 words in the category Mining and Mineral Processing with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | mine | $9.4 \times 10^{-2}$ |
| 2 | coal | $7.2 \times 10^{-2}$ |
| 3 | ore | $6.2 \times 10^{-2}$ |
| 4 | rock | $5.5 \times 10^{-2}$ |
| 5 | miner | $4.4 \times 10^{-2}$ |
| 6 | flotat | $3.8 \times 10^{-2}$ |
| 7 | geolog | $2.8 \times 10^{-2}$ |
| 8 | underground | $2.4 \times 10^{-2}$ |
| 9 | patient | $1.7 \times 10^{-2}$ |
| 10 | seismic | $1.3 \times 10^{-2}$ |
| 11 | leach | $1.3 \times 10^{-2}$ |
| 12 | conclus | $1.1 \times 10^{-2}$ |
| 13 | drill | $1.1 \times 10^{-2}$ |
| 14 | mineralog | $1.1 \times 10^{-2}$ |
| 15 | process | $1.1 \times 10^{-2}$ |
| 16 | deposit | $1.1 \times 10^{-2}$ |
| 17 | geophys | $1.1 \times 10^{-2}$ |
| 18 | pyrit | $1 \times 10^{-2}$ |
| 19 | sulfid | $1 \times 10^{-2}$ |
| 20 | clinic | $9.8 \times 10^{-3}$ |
| 21 | excav | $9.7 \times 10^{-3}$ |
| 22 | iron | $9.5 \times 10^{-3}$ |
| 23 | fractur | $9.3 \times 10^{-3}$ |
| 24 | zone | $9.3 \times 10^{-3}$ |
| 25 | borehol | $8.6 \times 10^{-3}$ |
| 26 | protein | $8.3 \times 10^{-3}$ |
| 27 | diseas | $8.3 \times 10^{-3}$ |
| 28 | quartz | $8.1 \times 10^{-3}$ |
| 29 | deform | $8 \times 10^{-3}$ |
| 30 | copper | $7.5 \times 10^{-3}$ |
| 31 | gas | $7.4 \times 10^{-3}$ |
| 32 | reservoir | $7.2 \times 10^{-3}$ |
| 33 | fine | $7.1 \times 10^{-3}$ |
| 34 | particl | $7 \times 10^{-3}$ |
| 35 | cell | $6.7 \times 10^{-3}$ |
| 36 | area | $6.7 \times 10^{-3}$ |
| 37 | gene | $6.6 \times 10^{-3}$ |
| 38 | grain | $6.2 \times 10^{-3}$ |
| 39 | alloy | $6.2 \times 10^{-3}$ |
| 40 | geotechn | $6.1 \times 10^{-3}$ |
| 41 | industri | $6 \times 10^{-3}$ |
| 42 | recoveri | $6 \times 10^{-3}$ |
| 43 | background | $6 \times 10^{-3}$ |
| 44 | depth | $5.9 \times 10^{-3}$ |
| 45 | sandston | $5.8 \times 10^{-3}$ |
| 46 | clay | $5.6 \times 10^{-3}$ |
| 47 | stress | $5.5 \times 10^{-3}$ |
| 48 | concentr | $5.4 \times 10^{-3}$ |
| 49 | particip | $5.4 \times 10^{-3}$ |
| 50 | tecton | $5.2 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | granit | $5.1 \times 10^{-3}$ |
| 52 | strength | $5.1 \times 10^{-3}$ |
| 53 | pressur | $5.1 \times 10^{-3}$ |
| 54 | microstructur | $5.1 \times 10^{-3}$ |
| 55 | cancer | $5 \times 10^{-3}$ |
| 56 | shear | $4.9 \times 10^{-3}$ |
| 57 | laboratori | $4.9 \times 10^{-3}$ |
| 58 | condit | $4.9 \times 10^{-3}$ |
| 59 | group | $4.7 \times 10^{-3}$ |
| 60 | metal | $4.7 \times 10^{-3}$ |
| 61 | wast | $4.7 \times 10^{-3}$ |
| 62 | safeti | $4.6 \times 10^{-3}$ |
| 63 | poros | $4.6 \times 10^{-3}$ |
| 64 | surfac | $4.6 \times 10^{-3}$ |
| 65 | collector | $4.5 \times 10^{-3}$ |
| 66 | cave | $4.5 \times 10^{-3}$ |
| 67 | bear | $4.5 \times 10^{-3}$ |
| 68 | precipit | $4.4 \times 10^{-3}$ |
| 69 | shale | $4.4 \times 10^{-3}$ |
| 70 | tissu | $4.4 \times 10^{-3}$ |
| 71 | horizont | $4.3 \times 10^{-3}$ |
| 72 | veloc | $4.3 \times 10^{-3}$ |
| 73 | element | $4.3 \times 10^{-3}$ |
| 74 | limeston | $4.2 \times 10^{-3}$ |
| 75 | furnac | $4.2 \times 10^{-3}$ |
| 76 | basin | $4.2 \times 10^{-3}$ |
| 77 | report | $4.1 \times 10^{-3}$ |
| 78 | express | $4.1 \times 10^{-3}$ |
| 79 | therapi | $4.1 \times 10^{-3}$ |
| 80 | steel | $4.1 \times 10^{-3}$ |
| 81 | water | $4.1 \times 10^{-3}$ |
| 82 | hydraul | $4.1 \times 10^{-3}$ |
| 83 | infect | $4.1 \times 10^{-3}$ |
| 84 | locat | $4.1 \times 10^{-3}$ |
| 85 | materi | $4 \times 10^{-3}$ |
| 86 | blood | $4 \times 10^{-3}$ |
| 87 | strata | $4 \times 10^{-3}$ |
| 88 | human | $4 \times 10^{-3}$ |
| 89 | popul | $4 \times 10^{-3}$ |
| 90 | articl | $4 \times 10^{-3}$ |
| 91 | paramet | $3.9 \times 10^{-3}$ |
| 92 | calcit | $3.9 \times 10^{-3}$ |
| 93 | crack | $3.9 \times 10^{-3}$ |
| 94 | main | $3.8 \times 10^{-3}$ |
| 95 | adult | $3.8 \times 10^{-3}$ |
| 96 | mediat | $3.8 \times 10^{-3}$ |
| 97 | grade | $3.8 \times 10^{-3}$ |
| 98 | compress | $3.7 \times 10^{-3}$ |
| 99 | tumor | $3.7 \times 10^{-3}$ |
| 100 | drug | $3.7 \times 10^{-3}$ |

Table D.164. The list of the top 100 words in the category Multidisciplinary Sciences with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | gene | $2.4 \times 10^{-2}$ |
| 2 | cell | $2.3 \times 10^{-2}$ |
| 3 | protein | $2.2 \times 10^{-2}$ |
| 4 | express | $2.1 \times 10^{-2}$ |
| 5 | regul | $1.6 \times 10^{-2}$ |
| 6 | paper | $1.4 \times 10^{-2}$ |
| 7 | suggest | $1.1 \times 10^{-2}$ |
| 8 | genom | $1.1 \times 10^{-2}$ |
| 9 | mice | $1.1 \times 10^{-2}$ |
| 10 | human | $1 \times 10^{-2}$ |
| 11 | pathway | $9.5 \times 10^{-3}$ |
| 12 | transcript | $9.3 \times 10^{-3}$ |
| 13 | induc | $9.2 \times 10^{-3}$ |
| 14 | role | $9 \times 10^{-3}$ |
| 15 | mediat | $8.9 \times 10^{-3}$ |
| 16 | associ | $8.5 \times 10^{-3}$ |
| 17 | diseas | $7.7 \times 10^{-3}$ |
| 18 | genet | $7.4 \times 10^{-3}$ |
| 19 | receptor | $7.3 \times 10^{-3}$ |
| 20 | mous | $7.2 \times 10^{-3}$ |
| 21 | bind | $7.2 \times 10^{-3}$ |
| 22 | activ | $7.1 \times 10^{-3}$ |
| 23 | sequenc | $6.7 \times 10^{-3}$ |
| 24 | howev | $6.5 \times 10^{-3}$ |
| 25 | vivo | $6.5 \times 10^{-3}$ |
| 26 | phenotyp | $6.4 \times 10^{-3}$ |
| 27 | identifi | $6.4 \times 10^{-3}$ |
| 28 | inhibit | $6.4 \times 10^{-3}$ |
| 29 | infect | $6.3 \times 10^{-3}$ |
| 30 | respons | $6.2 \times 10^{-3}$ |
| 31 | mutat | $6.1 \times 10^{-3}$ |
| 32 | cellular | $5.9 \times 10^{-3}$ |
| 33 | mutant | $5.9 \times 10^{-3}$ |
| 34 | rna | $5.7 \times 10^{-3}$ |
| 35 | tissu | $5.6 \times 10^{-3}$ |
| 36 | speci | $5.6 \times 10^{-3}$ |
| 37 | dna | $5.6 \times 10^{-3}$ |
| 38 | immun | $5.6 \times 10^{-3}$ |
| 39 | may | $5.6 \times 10^{-3}$ |
| 40 | specif | $5.5 \times 10^{-3}$ |
| 41 | target | $5.3 \times 10^{-3}$ |
| 42 | anim | $5.2 \times 10^{-3}$ |
| 43 | vitro | $5.2 \times 10^{-3}$ |
| 44 | popul | $5.1 \times 10^{-3}$ |
| 45 | molecular | $4.9 \times 10^{-3}$ |
| 46 | remain | $4.9 \times 10^{-3}$ |
| 47 | function | $4.8 \times 10^{-3}$ |
| 48 | alter | $4.6 \times 10^{-3}$ |
| 49 | biolog | $4.6 \times 10^{-3}$ |
| 50 | find | $4.6 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | mechan | $4.5 \times 10^{-3}$ |
| 52 | neuron | $4.4 \times 10^{-3}$ |
| 53 | wild | $4.4 \times 10^{-3}$ |
| 54 | pathogen | $4.3 \times 10^{-3}$ |
| 55 | metabol | $4.3 \times 10^{-3}$ |
| 56 | demonstr | $4.3 \times 10^{-3}$ |
| 57 | reveal | $4.2 \times 10^{-3}$ |
| 58 | signal | $4.2 \times 10^{-3}$ |
| 59 | level | $4.2 \times 10^{-3}$ |
| 60 | involv | $4 \times 10^{-3}$ |
| 61 | assay | $4 \times 10^{-3}$ |
| 62 | signific | $3.9 \times 10^{-3}$ |
| 63 | virus | $3.9 \times 10^{-3}$ |
| 64 | play | $3.8 \times 10^{-3}$ |
| 65 | encod | $3.8 \times 10^{-3}$ |
| 66 | known | $3.8 \times 10^{-3}$ |
| 67 | cancer | $3.7 \times 10^{-3}$ |
| 68 | mrna | $3.7 \times 10^{-3}$ |
| 69 | studi | $3.7 \times 10^{-3}$ |
| 70 | kinas | $3.6 \times 10^{-3}$ |
| 71 | marker | $3.6 \times 10^{-3}$ |
| 72 | potenti | $3.6 \times 10^{-3}$ |
| 73 | prolifer | $3.6 \times 10^{-3}$ |
| 74 | transcriptom | $3.6 \times 10^{-3}$ |
| 75 | bacteri | $3.5 \times 10^{-3}$ |
| 76 | promot | $3.5 \times 10^{-3}$ |
| 77 | pcr | $3.4 \times 10^{-3}$ |
| 78 | divers | $3.4 \times 10^{-3}$ |
| 79 | import | $3.4 \times 10^{-3}$ |
| 80 | differenti | $3.4 \times 10^{-3}$ |
| 81 | overexpress | $3.3 \times 10^{-3}$ |
| 82 | viral | $3.3 \times 10^{-3}$ |
| 83 | stimul | $3.3 \times 10^{-3}$ |
| 84 | factor | $3.2 \times 10^{-3}$ |
| 85 | therapeut | $3.2 \times 10^{-3}$ |
| 86 | beta | $3.2 \times 10^{-3}$ |
| 87 | previous | $3.2 \times 10^{-3}$ |
| 88 | articl | $3.1 \times 10^{-3}$ |
| 89 | nucleotid | $3.1 \times 10^{-3}$ |
| 90 | phosphoryl | $3.1 \times 10^{-3}$ |
| 91 | cytokin | $3.1 \times 10^{-3}$ |
| 92 | mammalian | $3.1 \times 10^{-3}$ |
| 93 | unknown | $3 \times 10^{-3}$ |
| 94 | lineag | $3 \times 10^{-3}$ |
| 95 | conserv | $3 \times 10^{-3}$ |
| 96 | physiolog | $3 \times 10^{-3}$ |
| 97 | regulatori | $3 \times 10^{-3}$ |
| 98 | host | $3 \times 10^{-3}$ |
| 99 | like | $3 \times 10^{-3}$ |
| 100 | brain | $2.9 \times 10^{-3}$ |

Table D.165. The list of the top 100 words in the category Music with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | music | $5.1 \times 10^{-1}$ |
| 2 | musician | $9.8 \times 10^{-2}$ |
| 3 | articl | $5.5 \times 10^{-2}$ |
| 4 | artist | $4.7 \times 10^{-2}$ |
| 5 | song | $3.7 \times 10^{-2}$ |
| 6 | listen | $3.7 \times 10^{-2}$ |
| 7 | centuri | $3.4 \times 10^{-2}$ |
| 8 | compos | $3.3 \times 10^{-2}$ |
| 9 | genr | $3 \times 10^{-2}$ |
| 10 | sound | $2.8 \times 10^{-2}$ |
| 11 | sing | $2.7 \times 10^{-2}$ |
| 12 | instrument | $2.7 \times 10^{-2}$ |
| 13 | creativ | $2.7 \times 10^{-2}$ |
| 14 | piec | $2.4 \times 10^{-2}$ |
| 15 | cultur | $2.2 \times 10^{-2}$ |
| 16 | style | $2.1 \times 10^{-2}$ |
| 17 | danc | $2.1 \times 10^{-2}$ |
| 18 | aesthet | $2 \times 10^{-2}$ |
| 19 | explor | $1.9 \times 10^{-2}$ |
| 20 | vocal | $1.8 \times 10^{-2}$ |
| 21 | audienc | $1.7 \times 10^{-2}$ |
| 22 | work | $1.7 \times 10^{-2}$ |
| 23 | student | $1.6 \times 10^{-2}$ |
| 24 | teacher | $1.5 \times 10^{-2}$ |
| 25 | voic | $1.5 \times 10^{-2}$ |
| 26 | school | $1.5 \times 10^{-2}$ |
| 27 | contemporari | $1.4 \times 10^{-2}$ |
| 28 | dancer | $1.4 \times 10^{-2}$ |
| 29 | practic | $1.4 \times 10^{-2}$ |
| 30 | art | $1.4 \times 10^{-2}$ |
| 31 | popular | $1.4 \times 10^{-2}$ |
| 32 | string | $1.4 \times 10^{-2}$ |
| 33 | argu | $1.4 \times 10^{-2}$ |
| 34 | educ | $1.3 \times 10^{-2}$ |
| 35 | particip | $1.3 \times 10^{-2}$ |
| 36 | text | $1.3 \times 10^{-2}$ |
| 37 | percept | $1.3 \times 10^{-2}$ |
| 38 | cell | $1.2 \times 10^{-2}$ |
| 39 | result | $1.2 \times 10^{-2}$ |
| 40 | stylist | $1.2 \times 10^{-2}$ |
| 41 | essay | $1.2 \times 10^{-2}$ |
| 42 | pitch | $1.2 \times 10^{-2}$ |
| 43 | patient | $1.1 \times 10^{-2}$ |
| 44 | lyric | $1.1 \times 10^{-2}$ |
| 45 | method | $1.1 \times 10^{-2}$ |
| 46 | idea | $1.1 \times 10^{-2}$ |
| 47 | draw | $1 \times 10^{-2}$ |
| 48 | audio | $1 \times 10^{-2}$ |
| 49 | tradit | $1 \times 10^{-2}$ |
| 50 | engag | $1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | emot | $1 \times 10^{-2}$ |
| 52 | teach | $1 \times 10^{-2}$ |
| 53 | discours | $1 \times 10^{-2}$ |
| 54 | scholar | $1 \times 10^{-2}$ |
| 55 | manuscript | $1 \times 10^{-2}$ |
| 56 | way | $1 \times 10^{-2}$ |
| 57 | theme | $9.9 \times 10^{-3}$ |
| 58 | histor | $9.8 \times 10^{-3}$ |
| 59 | temperatur | $9.7 \times 10^{-3}$ |
| 60 | eighteenth | $9.5 \times 10^{-3}$ |
| 61 | narrat | $9.5 \times 10^{-3}$ |
| 62 | context | $9.4 \times 10^{-3}$ |
| 63 | creat | $9.4 \times 10^{-3}$ |
| 64 | increas | $9.4 \times 10^{-3}$ |
| 65 | gestur | $9.3 \times 10^{-3}$ |
| 66 | question | $9.3 \times 10^{-3}$ |
| 67 | profession | $9.2 \times 10^{-3}$ |
| 68 | career | $9.1 \times 10^{-3}$ |
| 69 | folk | $9.1 \times 10^{-3}$ |
| 70 | twentieth | $8.8 \times 10^{-3}$ |
| 71 | ratio | $8.6 \times 10^{-3}$ |
| 72 | nineteenth | $8.4 \times 10^{-3}$ |
| 73 | write | $8.4 \times 10^{-3}$ |
| 74 | repertoir | $8.1 \times 10^{-3}$ |
| 75 | effect | $8.1 \times 10^{-3}$ |
| 76 | social | $8.1 \times 10^{-3}$ |
| 77 | sacr | $8.1 \times 10^{-3}$ |
| 78 | interview | $8.1 \times 10^{-3}$ |
| 79 | notion | $7.9 \times 10^{-3}$ |
| 80 | simul | $7.9 \times 10^{-3}$ |
| 81 | low | $7.8 \times 10^{-3}$ |
| 82 | examin | $7.8 \times 10^{-3}$ |
| 83 | offer | $7.6 \times 10^{-3}$ |
| 84 | effici | $7.5 \times 10^{-3}$ |
| 85 | languag | $7.5 \times 10^{-3}$ |
| 86 | obtain | $7.4 \times 10^{-3}$ |
| 87 | tone | $7.4 \times 10^{-3}$ |
| 88 | decreas | $7.3 \times 10^{-3}$ |
| 89 | recept | $7.1 \times 10^{-3}$ |
| 90 | movement | $7.1 \times 10^{-3}$ |
| 91 | note | $7.1 \times 10^{-3}$ |
| 92 | written | $7 \times 10^{-3}$ |
| 93 | polit | $6.9 \times 10^{-3}$ |
| 94 | research | $6.9 \times 10^{-3}$ |
| 95 | perceiv | $6.8 \times 10^{-3}$ |
| 96 | pari | $6.8 \times 10^{-3}$ |
| 97 | high | $6.8 \times 10^{-3}$ |
| 98 | diseas | $6.8 \times 10^{-3}$ |
| 99 | protein | $6.7 \times 10^{-3}$ |
| 100 | acid | $6.7 \times 10^{-3}$ |

Table D.166. The list of the top 100 words in the category Mycology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | speci | $1.2 \times 10^{-1}$ |
| 2 | fungal | $1.1 \times 10^{-1}$ |
| 3 | fungi | $1.1 \times 10^{-1}$ |
| 4 | phylogenet | $6.4 \times 10^{-2}$ |
| 5 | fungus | $6.2 \times 10^{-2}$ |
| 6 | genus | $4.9 \times 10^{-2}$ |
| 7 | isol | $4.7 \times 10^{-2}$ |
| 8 | yeast | $4.7 \times 10^{-2}$ |
| 9 | sequenc | $4.3 \times 10^{-2}$ |
| 10 | pathogen | $4.1 \times 10^{-2}$ |
| 11 | candida | $3.9 \times 10^{-2}$ |
| 12 | morpholog | $3.9 \times 10^{-2}$ |
| 13 | antifung | $3.6 \times 10^{-2}$ |
| 14 | spacer | $3.6 \times 10^{-2}$ |
| 15 | transcrib | $3.6 \times 10^{-2}$ |
| 16 | aspergillus | $3.1 \times 10^{-2}$ |
| 17 | strain | $2.8 \times 10^{-2}$ |
| 18 | albican | $2.7 \times 10^{-2}$ |
| 19 | clade | $2.7 \times 10^{-2}$ |
| 20 | spore | $2.7 \times 10^{-2}$ |
| 21 | gene | $2.7 \times 10^{-2}$ |
| 22 | rdna | $2.6 \times 10^{-2}$ |
| 23 | saccharomyc | $2.6 \times 10^{-2}$ |
| 24 | cerevisia | $2.5 \times 10^{-2}$ |
| 25 | nov | $2.5 \times 10^{-2}$ |
| 26 | genera | $2.4 \times 10^{-2}$ |
| 27 | taxa | $2.2 \times 10^{-2}$ |
| 28 | infect | $2.2 \times 10^{-2}$ |
| 29 | host | $2.1 \times 10^{-2}$ |
| 30 | cultur | $2.1 \times 10^{-2}$ |
| 31 | describ | $2 \times 10^{-2}$ |
| 32 | paper | $1.9 \times 10^{-2}$ |
| 33 | ribosom | $1.9 \times 10^{-2}$ |
| 34 | molecular | $1.7 \times 10^{-2}$ |
| 35 | phylogeni | $1.7 \times 10^{-2}$ |
| 36 | virul | $1.6 \times 10^{-2}$ |
| 37 | plant | $1.6 \times 10^{-2}$ |
| 38 | spp | $1.6 \times 10^{-2}$ |
| 39 | mutant | $1.5 \times 10^{-2}$ |
| 40 | belong | $1.4 \times 10^{-2}$ |
| 41 | taxonom | $1.4 \times 10^{-2}$ |
| 42 | dna | $1.4 \times 10^{-2}$ |
| 43 | subunit | $1.2 \times 10^{-2}$ |
| 44 | agar | $1.2 \times 10^{-2}$ |
| 45 | new | $1.2 \times 10^{-2}$ |
| 46 | growth | $1.1 \times 10^{-2}$ |
| 47 | fusarium | $1.1 \times 10^{-2}$ |
| 48 | measur | $1.1 \times 10^{-2}$ |
| 49 | method | $1.1 \times 10^{-2}$ |
| 50 | delet | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | simul | $1.1 \times 10^{-2}$ |
| 52 | filament | $1.1 \times 10^{-2}$ |
| 53 | charact | $1 \times 10^{-2}$ |
| 54 | model | $1 \times 10^{-2}$ |
| 55 | brown | $9.8 \times 10^{-3}$ |
| 56 | tree | $9.6 \times 10^{-3}$ |
| 57 | collect | $9.6 \times 10^{-3}$ |
| 58 | brazil | $8.8 \times 10^{-3}$ |
| 59 | forest | $8.7 \times 10^{-3}$ |
| 60 | intern | $8.3 \times 10^{-3}$ |
| 61 | identifi | $8.1 \times 10^{-3}$ |
| 62 | coloni | $8.1 \times 10^{-3}$ |
| 63 | distinct | $8 \times 10^{-3}$ |
| 64 | taxon | $8 \times 10^{-3}$ |
| 65 | conclus | $7.6 \times 10^{-3}$ |
| 66 | specimen | $7.5 \times 10^{-3}$ |
| 67 | var | $7.3 \times 10^{-3}$ |
| 68 | inocul | $7.2 \times 10^{-3}$ |
| 69 | encod | $7.2 \times 10^{-3}$ |
| 70 | divers | $7.1 \times 10^{-3}$ |
| 71 | perform | $7 \times 10^{-3}$ |
| 72 | result | $7 \times 10^{-3}$ |
| 73 | ecolog | $6.9 \times 10^{-3}$ |
| 74 | energi | $6.9 \times 10^{-3}$ |
| 75 | identif | $6.7 \times 10^{-3}$ |
| 76 | algorithm | $6.6 \times 10^{-3}$ |
| 77 | colon | $6.6 \times 10^{-3}$ |
| 78 | lineag | $6.5 \times 10^{-3}$ |
| 79 | fruit | $6.4 \times 10^{-3}$ |
| 80 | analys | $6.4 \times 10^{-3}$ |
| 81 | genom | $6.4 \times 10^{-3}$ |
| 82 | caus | $6.3 \times 10^{-3}$ |
| 83 | mate | $6.3 \times 10^{-3}$ |
| 84 | problem | $6.2 \times 10^{-3}$ |
| 85 | solut | $6.2 \times 10^{-3}$ |
| 86 | illustr | $6.1 \times 10^{-3}$ |
| 87 | phenotyp | $6 \times 10^{-3}$ |
| 88 | cultiv | $5.9 \times 10^{-3}$ |
| 89 | eukaryot | $5.9 \times 10^{-3}$ |
| 90 | known | $5.9 \times 10^{-3}$ |
| 91 | biosynthesi | $5.9 \times 10^{-3}$ |
| 92 | experiment | $5.9 \times 10^{-3}$ |
| 93 | wall | $5.9 \times 10^{-3}$ |
| 94 | comput | $5.8 \times 10^{-3}$ |
| 95 | protein | $5.8 \times 10^{-3}$ |
| 96 | behavior | $5.8 \times 10^{-3}$ |
| 97 | enzym | $5.7 \times 10^{-3}$ |
| 98 | wild | $5.6 \times 10^{-3}$ |
| 99 | calcul | $5.4 \times 10^{-3}$ |
| 100 | soil | $5.4 \times 10^{-3}$ |

Table D.167. The list of the top 100 words in the category Nanoscience and Nanotechnology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | nanoparticl | $5.2 \times 10^{-2}$ |
| 2 | electron | $4.2 \times 10^{-2}$ |
| 3 | fabric | $4.2 \times 10^{-2}$ |
| 4 | surfac | $3.9 \times 10^{-2}$ |
| 5 | film | $2.9 \times 10^{-2}$ |
| 6 | devic | $2.6 \times 10^{-2}$ |
| 7 | nanostructur | $2.5 \times 10^{-2}$ |
| 8 | layer | $2.2 \times 10^{-2}$ |
| 9 | microscopi | $2.2 \times 10^{-2}$ |
| 10 | metal | $2.2 \times 10^{-2}$ |
| 11 | graphen | $2.2 \times 10^{-2}$ |
| 12 | properti | $2.2 \times 10^{-2}$ |
| 13 | conclus | $2.1 \times 10^{-2}$ |
| 14 | patient | $2 \times 10^{-2}$ |
| 15 | materi | $1.9 \times 10^{-2}$ |
| 16 | electrod | $1.8 \times 10^{-2}$ |
| 17 | substrat | $1.8 \times 10^{-2}$ |
| 18 | oxid | $1.8 \times 10^{-2}$ |
| 19 | spectroscopi | $1.8 \times 10^{-2}$ |
| 20 | structur | $1.7 \times 10^{-2}$ |
| 21 | nanotub | $1.6 \times 10^{-2}$ |
| 22 | nanowir | $1.6 \times 10^{-2}$ |
| 23 | prepar | $1.6 \times 10^{-2}$ |
| 24 | plasmon | $1.6 \times 10^{-2}$ |
| 25 | atom | $1.5 \times 10^{-2}$ |
| 26 | charg | $1.5 \times 10^{-2}$ |
| 27 | deposit | $1.5 \times 10^{-2}$ |
| 28 | data | $1.4 \times 10^{-2}$ |
| 29 | optic | $1.4 \times 10^{-2}$ |
| 30 | year | $1.4 \times 10^{-2}$ |
| 31 | synthes | $1.4 \times 10^{-2}$ |
| 32 | silicon | $1.4 \times 10^{-2}$ |
| 33 | thin | $1.4 \times 10^{-2}$ |
| 34 | coat | $1.3 \times 10^{-2}$ |
| 35 | temperatur | $1.3 \times 10^{-2}$ |
| 36 | gold | $1.2 \times 10^{-2}$ |
| 37 | size | $1.2 \times 10^{-2}$ |
| 38 | nanoscal | $1.2 \times 10^{-2}$ |
| 39 | nano | $1.2 \times 10^{-2}$ |
| 40 | electrochem | $1.2 \times 10^{-2}$ |
| 41 | polym | $1.2 \times 10^{-2}$ |
| 42 | applic | $1.1 \times 10^{-2}$ |
| 43 | diffract | $1.1 \times 10^{-2}$ |
| 44 | associ | $1.1 \times 10^{-2}$ |
| 45 | exhibit | $1.1 \times 10^{-2}$ |
| 46 | ray | $1.1 \times 10^{-2}$ |
| 47 | electr | $1.1 \times 10^{-2}$ |
| 48 | chemic | $1.1 \times 10^{-2}$ |
| 49 | object | $1.1 \times 10^{-2}$ |
| 50 | dope | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | microfluid | $1.1 \times 10^{-2}$ |
| 52 | semiconductor | $1.1 \times 10^{-2}$ |
| 53 | enhanc | $1.1 \times 10^{-2}$ |
| 54 | high | $1 \times 10^{-2}$ |
| 55 | carbon | $1 \times 10^{-2}$ |
| 56 | background | $1 \times 10^{-2}$ |
| 57 | tio2 | $9.8 \times 10^{-3}$ |
| 58 | assess | $9.8 \times 10^{-3}$ |
| 59 | risk | $9.8 \times 10^{-3}$ |
| 60 | particl | $9.6 \times 10^{-3}$ |
| 61 | selfassembl | $9.6 \times 10^{-3}$ |
| 62 | ion | $9.2 \times 10^{-3}$ |
| 63 | densiti | $9 \times 10^{-3}$ |
| 64 | nps | $9 \times 10^{-3}$ |
| 65 | energi | $8.9 \times 10^{-3}$ |
| 66 | scan | $8.9 \times 10^{-3}$ |
| 67 | quantum | $8.9 \times 10^{-3}$ |
| 68 | zno | $8.9 \times 10^{-3}$ |
| 69 | age | $8.9 \times 10^{-3}$ |
| 70 | raman | $8.8 \times 10^{-3}$ |
| 71 | nanomateri | $8.8 \times 10^{-3}$ |
| 72 | nanocryst | $8.8 \times 10^{-3}$ |
| 73 | etch | $8.8 \times 10^{-3}$ |
| 74 | adsorpt | $8.7 \times 10^{-3}$ |
| 75 | morpholog | $8.6 \times 10^{-3}$ |
| 76 | light | $8.6 \times 10^{-3}$ |
| 77 | absorpt | $8.2 \times 10^{-3}$ |
| 78 | molecul | $8.2 \times 10^{-3}$ |
| 79 | microstructur | $8.1 \times 10^{-3}$ |
| 80 | photoluminesc | $8.1 \times 10^{-3}$ |
| 81 | tem | $8.1 \times 10^{-3}$ |
| 82 | anneal | $8.1 \times 10^{-3}$ |
| 83 | poli | $8 \times 10^{-3}$ |
| 84 | thick | $8 \times 10^{-3}$ |
| 85 | interfac | $7.9 \times 10^{-3}$ |
| 86 | nanorod | $7.9 \times 10^{-3}$ |
| 87 | aim | $7.9 \times 10^{-3}$ |
| 88 | voltag | $7.8 \times 10^{-3}$ |
| 89 | identifi | $7.7 \times 10^{-3}$ |
| 90 | diamet | $7.6 \times 10^{-3}$ |
| 91 | transistor | $7.6 \times 10^{-3}$ |
| 92 | outcom | $7.6 \times 10^{-3}$ |
| 93 | particip | $7.6 \times 10^{-3}$ |
| 94 | nanocomposit | $7.5 \times 10^{-3}$ |
| 95 | monolay | $7.4 \times 10^{-3}$ |
| 96 | mesopor | $7.4 \times 10^{-3}$ |
| 97 | promis | $7.3 \times 10^{-3}$ |
| 98 | crystallin | $7.2 \times 10^{-3}$ |
| 99 | shell | $7.1 \times 10^{-3}$ |
| 100 | excel | $7 \times 10^{-3}$ |

Table D.168. The list of the top 100 words in the category Neuroimaging with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | brain | $1.8 \times 10^{-1}$ |
| 2 | fmri | $1.2 \times 10^{-1}$ |
| 3 | imag | $1.1 \times 10^{-1}$ |
| 4 | cortex | $1 \times 10^{-1}$ |
| 5 | cortic | $8 \times 10^{-2}$ |
| 6 | frontal | $5.7 \times 10^{-2}$ |
| 7 | mri | $5.3 \times 10^{-2}$ |
| 8 | neuroimag | $5.2 \times 10^{-2}$ |
| 9 | pariet | $4.8 \times 10^{-2}$ |
| 10 | region | $4.8 \times 10^{-2}$ |
| 11 | voxel | $4.8 \times 10^{-2}$ |
| 12 | prefront | $4.6 \times 10^{-2}$ |
| 13 | healthi | $4.6 \times 10^{-2}$ |
| 14 | reson | $4.5 \times 10^{-2}$ |
| 15 | cerebr | $4.4 \times 10^{-2}$ |
| 16 | magnet | $4.3 \times 10^{-2}$ |
| 17 | neural | $4.2 \times 10^{-2}$ |
| 18 | gyrus | $4.1 \times 10^{-2}$ |
| 19 | patient | $4.1 \times 10^{-2}$ |
| 20 | anterior | $4 \times 10^{-2}$ |
| 21 | cingul | $4 \times 10^{-2}$ |
| 22 | cognit | $3.9 \times 10^{-2}$ |
| 23 | tempor | $3.9 \times 10^{-2}$ |
| 24 | task | $3.7 \times 10^{-2}$ |
| 25 | matter | $3.6 \times 10^{-2}$ |
| 26 | bold | $3.5 \times 10^{-2}$ |
| 27 | posterior | $3.4 \times 10^{-2}$ |
| 28 | left | $3.4 \times 10^{-2}$ |
| 29 | right | $3.1 \times 10^{-2}$ |
| 30 | function | $3 \times 10^{-2}$ |
| 31 | subject | $2.9 \times 10^{-2}$ |
| 32 | inferior | $2.8 \times 10^{-2}$ |
| 33 | intracrani | $2.8 \times 10^{-2}$ |
| 34 | rest | $2.8 \times 10^{-2}$ |
| 35 | connect | $2.7 \times 10^{-2}$ |
| 36 | correl | $2.7 \times 10^{-2}$ |
| 37 | bilater | $2.6 \times 10^{-2}$ |
| 38 | eeg | $2.6 \times 10^{-2}$ |
| 39 | occipit | $2.5 \times 10^{-2}$ |
| 40 | gray | $2.5 \times 10^{-2}$ |
| 41 | white | $2.4 \times 10^{-2}$ |
| 42 | subcort | $2.3 \times 10^{-2}$ |
| 43 | visual | $2.2 \times 10^{-2}$ |
| 44 | anatom | $2.2 \times 10^{-2}$ |
| 45 | motor | $2.1 \times 10^{-2}$ |
| 46 | aneurysm | $2 \times 10^{-2}$ |
| 47 | medial | $2 \times 10^{-2}$ |
| 48 | arteri | $1.9 \times 10^{-2}$ |
| 49 | endovascular | $1.9 \times 10^{-2}$ |
| 50 | volum | $1.9 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | insula | $1.8 \times 10^{-2}$ |
| 52 | diffus | $1.8 \times 10^{-2}$ |
| 53 | abnorm | $1.8 \times 10^{-2}$ |
| 54 | hemispher | $1.7 \times 10^{-2}$ |
| 55 | lobe | $1.7 \times 10^{-2}$ |
| 56 | paper | $1.7 \times 10^{-2}$ |
| 57 | relat | $1.7 \times 10^{-2}$ |
| 58 | tensor | $1.7 \times 10^{-2}$ |
| 59 | network | $1.6 \times 10^{-2}$ |
| 60 | disord | $1.6 \times 10^{-2}$ |
| 61 | purpos | $1.6 \times 10^{-2}$ |
| 62 | amygdala | $1.5 \times 10^{-2}$ |
| 63 | stimuli | $1.5 \times 10^{-2}$ |
| 64 | stimulus | $1.5 \times 10^{-2}$ |
| 65 | clinic | $1.5 \times 10^{-2}$ |
| 66 | ventral | $1.5 \times 10^{-2}$ |
| 67 | anisotropi | $1.5 \times 10^{-2}$ |
| 68 | underw | $1.5 \times 10^{-2}$ |
| 69 | embol | $1.5 \times 10^{-2}$ |
| 70 | spatial | $1.4 \times 10^{-2}$ |
| 71 | find | $1.4 \times 10^{-2}$ |
| 72 | area | $1.4 \times 10^{-2}$ |
| 73 | associ | $1.4 \times 10^{-2}$ |
| 74 | deficit | $1.3 \times 10^{-2}$ |
| 75 | age | $1.3 \times 10^{-2}$ |
| 76 | auditori | $1.3 \times 10^{-2}$ |
| 77 | activ | $1.3 \times 10^{-2}$ |
| 78 | stroke | $1.3 \times 10^{-2}$ |
| 79 | background | $1.3 \times 10^{-2}$ |
| 80 | superior | $1.2 \times 10^{-2}$ |
| 81 | hippocampus | $1.2 \times 10^{-2}$ |
| 82 | map | $1.2 \times 10^{-2}$ |
| 83 | occlus | $1.2 \times 10^{-2}$ |
| 84 | lesion | $1.2 \times 10^{-2}$ |
| 85 | contrast | $1.2 \times 10^{-2}$ |
| 86 | pattern | $1.1 \times 10^{-2}$ |
| 87 | tract | $1.1 \times 10^{-2}$ |
| 88 | across | $1.1 \times 10^{-2}$ |
| 89 | hemodynam | $1.1 \times 10^{-2}$ |
| 90 | suggest | $1.1 \times 10^{-2}$ |
| 91 | schizophrenia | $1.1 \times 10^{-2}$ |
| 92 | studi | $1.1 \times 10^{-2}$ |
| 93 | may | $1.1 \times 10^{-2}$ |
| 94 | evok | $1.1 \times 10^{-2}$ |
| 95 | temperatur | $1.1 \times 10^{-2}$ |
| 96 | impair | $1.1 \times 10^{-2}$ |
| 97 | stent | $1 \times 10^{-2}$ |
| 98 | neuron | $1 \times 10^{-2}$ |
| 99 | alzheim | $1 \times 10^{-2}$ |
| 100 | angiographi | $1 \times 10^{-2}$ |

Table D.169. The list of the top 100 words in the category Neurosciences with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | brain | $1.5 \times 10^{-1}$ |
| 2 | neuron | $1.1 \times 10^{-1}$ |
| 3 | cortex | $8.4 \times 10^{-2}$ |
| 4 | cortic | $5.2 \times 10^{-2}$ |
| 5 | rat | $4.8 \times 10^{-2}$ |
| 6 | cognit | $4.4 \times 10^{-2}$ |
| 7 | neural | $4 \times 10^{-2}$ |
| 8 | suggest | $3.8 \times 10^{-2}$ |
| 9 | hippocampus | $3.7 \times 10^{-2}$ |
| 10 | synapt | $3.4 \times 10^{-2}$ |
| 11 | motor | $3.4 \times 10^{-2}$ |
| 12 | impair | $3.3 \times 10^{-2}$ |
| 13 | receptor | $3.2 \times 10^{-2}$ |
| 14 | hippocamp | $3.2 \times 10^{-2}$ |
| 15 | disord | $3.1 \times 10^{-2}$ |
| 16 | prefront | $3.1 \times 10^{-2}$ |
| 17 | activ | $3 \times 10^{-2}$ |
| 18 | deficit | $3 \times 10^{-2}$ |
| 19 | alzheim | $2.9 \times 10^{-2}$ |
| 20 | paper | $2.9 \times 10^{-2}$ |
| 21 | task | $2.8 \times 10^{-2}$ |
| 22 | cerebr | $2.7 \times 10^{-2}$ |
| 23 | memori | $2.6 \times 10^{-2}$ |
| 24 | stimuli | $2.5 \times 10^{-2}$ |
| 25 | mice | $2.4 \times 10^{-2}$ |
| 26 | healthi | $2.4 \times 10^{-2}$ |
| 27 | evok | $2.3 \times 10^{-2}$ |
| 28 | fmri | $2.3 \times 10^{-2}$ |
| 29 | frontal | $2.3 \times 10^{-2}$ |
| 30 | stimulus | $2.3 \times 10^{-2}$ |
| 31 | induc | $2.2 \times 10^{-2}$ |
| 32 | function | $2.1 \times 10^{-2}$ |
| 33 | associ | $2.1 \times 10^{-2}$ |
| 34 | sensori | $2.1 \times 10^{-2}$ |
| 35 | gyrus | $2 \times 10^{-2}$ |
| 36 | may | $2 \times 10^{-2}$ |
| 37 | stimul | $2 \times 10^{-2}$ |
| 38 | whether | $2 \times 10^{-2}$ |
| 39 | diseas | $1.9 \times 10^{-2}$ |
| 40 | alter | $1.9 \times 10^{-2}$ |
| 41 | axon | $1.9 \times 10^{-2}$ |
| 42 | respons | $1.9 \times 10^{-2}$ |
| 43 | parkinson | $1.8 \times 10^{-2}$ |
| 44 | nervous | $1.8 \times 10^{-2}$ |
| 45 | dorsal | $1.7 \times 10^{-2}$ |
| 46 | anim | $1.7 \times 10^{-2}$ |
| 47 | nucleus | $1.7 \times 10^{-2}$ |
| 48 | express | $1.7 \times 10^{-2}$ |
| 49 | subject | $1.7 \times 10^{-2}$ |
| 50 | medial | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | dopamin | $1.7 \times 10^{-2}$ |
| 52 | pariet | $1.7 \times 10^{-2}$ |
| 53 | neurolog | $1.7 \times 10^{-2}$ |
| 54 | neuroprotect | $1.6 \times 10^{-2}$ |
| 55 | adult | $1.6 \times 10^{-2}$ |
| 56 | auditori | $1.6 \times 10^{-2}$ |
| 57 | patient | $1.6 \times 10^{-2}$ |
| 58 | amygdala | $1.6 \times 10^{-2}$ |
| 59 | role | $1.6 \times 10^{-2}$ |
| 60 | neurodegen | $1.5 \times 10^{-2}$ |
| 61 | tempor | $1.5 \times 10^{-2}$ |
| 62 | striatum | $1.5 \times 10^{-2}$ |
| 63 | nerv | $1.5 \times 10^{-2}$ |
| 64 | behavior | $1.5 \times 10^{-2}$ |
| 65 | spinal | $1.5 \times 10^{-2}$ |
| 66 | cingul | $1.5 \times 10^{-2}$ |
| 67 | ventral | $1.5 \times 10^{-2}$ |
| 68 | modul | $1.4 \times 10^{-2}$ |
| 69 | control | $1.4 \times 10^{-2}$ |
| 70 | eeg | $1.4 \times 10^{-2}$ |
| 71 | antagonist | $1.4 \times 10^{-2}$ |
| 72 | mediat | $1.4 \times 10^{-2}$ |
| 73 | find | $1.4 \times 10^{-2}$ |
| 74 | sclerosi | $1.4 \times 10^{-2}$ |
| 75 | neuroimag | $1.4 \times 10^{-2}$ |
| 76 | glutam | $1.3 \times 10^{-2}$ |
| 77 | particip | $1.3 \times 10^{-2}$ |
| 78 | stroke | $1.3 \times 10^{-2}$ |
| 79 | involv | $1.3 \times 10^{-2}$ |
| 80 | electrophysiolog | $1.3 \times 10^{-2}$ |
| 81 | temperatur | $1.3 \times 10^{-2}$ |
| 82 | later | $1.3 \times 10^{-2}$ |
| 83 | injuri | $1.3 \times 10^{-2}$ |
| 84 | visual | $1.3 \times 10^{-2}$ |
| 85 | mous | $1.3 \times 10^{-2}$ |
| 86 | signific | $1.3 \times 10^{-2}$ |
| 87 | studi | $1.3 \times 10^{-2}$ |
| 88 | onset | $1.2 \times 10^{-2}$ |
| 89 | depress | $1.2 \times 10^{-2}$ |
| 90 | amyloid | $1.2 \times 10^{-2}$ |
| 91 | anterior | $1.2 \times 10^{-2}$ |
| 92 | evid | $1.2 \times 10^{-2}$ |
| 93 | maze | $1.2 \times 10^{-2}$ |
| 94 | dysfunct | $1.2 \times 10^{-2}$ |
| 95 | increas | $1.2 \times 10^{-2}$ |
| 96 | inhibit | $1.1 \times 10^{-2}$ |
| 97 | agonist | $1.1 \times 10^{-2}$ |
| 98 | bilater | $1.1 \times 10^{-2}$ |
| 99 | glial | $1.1 \times 10^{-2}$ |
| 100 | regul | $1.1 \times 10^{-2}$ |

Table D.170. The list of the top 100 words in the category Nuclear Science and Technology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | reactor | $1.1 \times 10^{-1}$ |
| 2 | nuclear | $7.1 \times 10^{-2}$ |
| 3 | neutron | $7.1 \times 10^{-2}$ |
| 4 | detector | $4.4 \times 10^{-2}$ |
| 5 | irradi | $4.3 \times 10^{-2}$ |
| 6 | fuel | $3.3 \times 10^{-2}$ |
| 7 | radiat | $3.3 \times 10^{-2}$ |
| 8 | coolant | $3.3 \times 10^{-2}$ |
| 9 | accid | $3.1 \times 10^{-2}$ |
| 10 | code | $3 \times 10^{-2}$ |
| 11 | mev | $2.9 \times 10^{-2}$ |
| 12 | radioact | $2.7 \times 10^{-2}$ |
| 13 | gamma | $2.4 \times 10^{-2}$ |
| 14 | cool | $2.3 \times 10^{-2}$ |
| 15 | scintil | $2.2 \times 10^{-2}$ |
| 16 | energi | $2.1 \times 10^{-2}$ |
| 17 | mont | $2.1 \times 10^{-2}$ |
| 18 | carlo | $2 \times 10^{-2}$ |
| 19 | beam | $2 \times 10^{-2}$ |
| 20 | fission | $2 \times 10^{-2}$ |
| 21 | dose | $1.8 \times 10^{-2}$ |
| 22 | thermal | $1.7 \times 10^{-2}$ |
| 23 | calcul | $1.6 \times 10^{-2}$ |
| 24 | heat | $1.6 \times 10^{-2}$ |
| 25 | safeti | $1.6 \times 10^{-2}$ |
| 26 | kev | $1.6 \times 10^{-2}$ |
| 27 | ray | $1.5 \times 10^{-2}$ |
| 28 | facil | $1.3 \times 10^{-2}$ |
| 29 | power | $1.3 \times 10^{-2}$ |
| 30 | temperatur | $1.3 \times 10^{-2}$ |
| 31 | conclus | $1.2 \times 10^{-2}$ |
| 32 | core | $1.2 \times 10^{-2}$ |
| 33 | hydraul | $1.2 \times 10^{-2}$ |
| 34 | simul | $1.1 \times 10^{-2}$ |
| 35 | steam | $1.1 \times 10^{-2}$ |
| 36 | helium | $1 \times 10^{-2}$ |
| 37 | patient | $1 \times 10^{-2}$ |
| 38 | ion | $9.9 \times 10^{-3}$ |
| 39 | materi | $9.6 \times 10^{-3}$ |
| 40 | flux | $9.1 \times 10^{-3}$ |
| 41 | plant | $8.9 \times 10^{-3}$ |
| 42 | diseas | $8.9 \times 10^{-3}$ |
| 43 | rod | $8.7 \times 10^{-3}$ |
| 44 | water | $8.6 \times 10^{-3}$ |
| 45 | oper | $8.5 \times 10^{-3}$ |
| 46 | protein | $8 \times 10^{-3}$ |
| 47 | photon | $8 \times 10^{-3}$ |
| 48 | experiment | $7.8 \times 10^{-3}$ |
| 49 | measur | $7.7 \times 10^{-3}$ |
| 50 | tube | $7.6 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | gene | $7.6 \times 10^{-3}$ |
| 52 | particl | $7.5 \times 10^{-3}$ |
| 53 | associ | $7.2 \times 10^{-3}$ |
| 54 | acceler | $7.2 \times 10^{-3}$ |
| 55 | proton | $7 \times 10^{-3}$ |
| 56 | express | $6.9 \times 10^{-3}$ |
| 57 | fast | $6.9 \times 10^{-3}$ |
| 58 | find | $6.9 \times 10^{-3}$ |
| 59 | pressur | $6.8 \times 10^{-3}$ |
| 60 | phantom | $6.6 \times 10^{-3}$ |
| 61 | gas | $6.5 \times 10^{-3}$ |
| 62 | suggest | $6.1 \times 10^{-3}$ |
| 63 | fusion | $6.1 \times 10^{-3}$ |
| 64 | steel | $6.1 \times 10^{-3}$ |
| 65 | pipe | $6.1 \times 10^{-3}$ |
| 66 | sourc | $6 \times 10^{-3}$ |
| 67 | decay | $5.9 \times 10^{-3}$ |
| 68 | flow | $5.9 \times 10^{-3}$ |
| 69 | age | $5.8 \times 10^{-3}$ |
| 70 | isotop | $5.7 \times 10^{-3}$ |
| 71 | vessel | $5.6 \times 10^{-3}$ |
| 72 | cfd | $5.5 \times 10^{-3}$ |
| 73 | group | $5.3 \times 10^{-3}$ |
| 74 | design | $5.3 \times 10^{-3}$ |
| 75 | molten | $5.2 \times 10^{-3}$ |
| 76 | iter | $5.1 \times 10^{-3}$ |
| 77 | resolut | $5.1 \times 10^{-3}$ |
| 78 | geometri | $5 \times 10^{-3}$ |
| 79 | assembl | $5 \times 10^{-3}$ |
| 80 | instal | $4.9 \times 10^{-3}$ |
| 81 | pet | $4.9 \times 10^{-3}$ |
| 82 | transient | $4.9 \times 10^{-3}$ |
| 83 | clinic | $4.6 \times 10^{-3}$ |
| 84 | carri | $4.6 \times 10^{-3}$ |
| 85 | infect | $4.5 \times 10^{-3}$ |
| 86 | outcom | $4.5 \times 10^{-3}$ |
| 87 | wast | $4.5 \times 10^{-3}$ |
| 88 | perform | $4.5 \times 10^{-3}$ |
| 89 | spent | $4.4 \times 10^{-3}$ |
| 90 | cell | $4.4 \times 10^{-3}$ |
| 91 | electron | $4.4 \times 10^{-3}$ |
| 92 | particip | $4.3 \times 10^{-3}$ |
| 93 | signific | $4.3 \times 10^{-3}$ |
| 94 | experi | $4.2 \times 10^{-3}$ |
| 95 | social | $4.1 \times 10^{-3}$ |
| 96 | radiolog | $4 \times 10^{-3}$ |
| 97 | agreement | $3.9 \times 10^{-3}$ |
| 98 | mediat | $3.9 \times 10^{-3}$ |
| 99 | wall | $3.9 \times 10^{-3}$ |
| 100 | liquid | $3.8 \times 10^{-3}$ |

Table D.171. The list of the top 100 words in the category Nursing with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | nurs | $3.5 \times 10^{-1}$ |
| 2 | care | $1.5 \times 10^{-1}$ |
| 3 | health | $9.1 \times 10^{-2}$ |
| 4 | educ | $6.4 \times 10^{-2}$ |
| 5 | practic | $6.1 \times 10^{-2}$ |
| 6 | particip | $5.6 \times 10^{-2}$ |
| 7 | interview | $5.5 \times 10^{-2}$ |
| 8 | hospit | $5.1 \times 10^{-2}$ |
| 9 | profession | $4.9 \times 10^{-2}$ |
| 10 | patient | $4.9 \times 10^{-2}$ |
| 11 | conclus | $4.6 \times 10^{-2}$ |
| 12 | intervent | $4.3 \times 10^{-2}$ |
| 13 | theme | $3.8 \times 10^{-2}$ |
| 14 | qualit | $3.5 \times 10^{-2}$ |
| 15 | clinic | $3.3 \times 10^{-2}$ |
| 16 | descript | $3.2 \times 10^{-2}$ |
| 17 | staff | $3.2 \times 10^{-2}$ |
| 18 | need | $3.2 \times 10^{-2}$ |
| 19 | purpos | $3 \times 10^{-2}$ |
| 20 | healthcar | $3 \times 10^{-2}$ |
| 21 | background | $3 \times 10^{-2}$ |
| 22 | questionnair | $2.7 \times 10^{-2}$ |
| 23 | support | $2.6 \times 10^{-2}$ |
| 24 | object | $2.4 \times 10^{-2}$ |
| 25 | student | $2.4 \times 10^{-2}$ |
| 26 | medic | $2.4 \times 10^{-2}$ |
| 27 | women | $2.2 \times 10^{-2}$ |
| 28 | semistructur | $2.1 \times 10^{-2}$ |
| 29 | aim | $2.1 \times 10^{-2}$ |
| 30 | percept | $2.1 \times 10^{-2}$ |
| 31 | explor | $2 \times 10^{-2}$ |
| 32 | research | $2 \times 10^{-2}$ |
| 33 | design | $1.9 \times 10^{-2}$ |
| 34 | skill | $1.9 \times 10^{-2}$ |
| 35 | ill | $1.9 \times 10^{-2}$ |
| 36 | outcom | $1.8 \times 10^{-2}$ |
| 37 | knowledg | $1.8 \times 10^{-2}$ |
| 38 | implic | $1.8 \times 10^{-2}$ |
| 39 | survey | $1.8 \times 10^{-2}$ |
| 40 | team | $1.7 \times 10^{-2}$ |
| 41 | manag | $1.7 \times 10^{-2}$ |
| 42 | perceiv | $1.7 \times 10^{-2}$ |
| 43 | mental | $1.7 \times 10^{-2}$ |
| 44 | life | $1.6 \times 10^{-2}$ |
| 45 | unit | $1.6 \times 10^{-2}$ |
| 46 | studi | $1.6 \times 10^{-2}$ |
| 47 | experienc | $1.5 \times 10^{-2}$ |
| 48 | famili | $1.5 \times 10^{-2}$ |
| 49 | find | $1.5 \times 10^{-2}$ |
| 50 | method | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | qualiti | $1.4 \times 10^{-2}$ |
| 52 | satisfact | $1.4 \times 10^{-2}$ |
| 53 | person | $1.4 \times 10^{-2}$ |
| 54 | caregiv | $1.4 \times 10^{-2}$ |
| 55 | score | $1.4 \times 10^{-2}$ |
| 56 | experi | $1.3 \times 10^{-2}$ |
| 57 | propos | $1.3 \times 10^{-2}$ |
| 58 | themat | $1.3 \times 10^{-2}$ |
| 59 | practition | $1.3 \times 10^{-2}$ |
| 60 | cell | $1.3 \times 10^{-2}$ |
| 61 | home | $1.3 \times 10^{-2}$ |
| 62 | program | $1.3 \times 10^{-2}$ |
| 63 | collect | $1.3 \times 10^{-2}$ |
| 64 | show | $1.2 \times 10^{-2}$ |
| 65 | provid | $1.2 \times 10^{-2}$ |
| 66 | identifi | $1.2 \times 10^{-2}$ |
| 67 | symptom | $1.2 \times 10^{-2}$ |
| 68 | recommend | $1.2 \times 10^{-2}$ |
| 69 | feel | $1.2 \times 10^{-2}$ |
| 70 | articl | $1.2 \times 10^{-2}$ |
| 71 | recruit | $1.1 \times 10^{-2}$ |
| 72 | section | $1.1 \times 10^{-2}$ |
| 73 | emot | $1.1 \times 10^{-2}$ |
| 74 | pain | $1.1 \times 10^{-2}$ |
| 75 | paper | $1.1 \times 10^{-2}$ |
| 76 | teach | $1.1 \times 10^{-2}$ |
| 77 | temperatur | $1.1 \times 10^{-2}$ |
| 78 | profess | $1.1 \times 10^{-2}$ |
| 79 | attitud | $1.1 \times 10^{-2}$ |
| 80 | older | $1.1 \times 10^{-2}$ |
| 81 | learn | $1 \times 10^{-2}$ |
| 82 | surfac | $1 \times 10^{-2}$ |
| 83 | mother | $1 \times 10^{-2}$ |
| 84 | social | $1 \times 10^{-2}$ |
| 85 | depress | $9.9 \times 10^{-3}$ |
| 86 | compet | $9.9 \times 10^{-3}$ |
| 87 | understand | $9.6 \times 10^{-3}$ |
| 88 | distress | $9.5 \times 10^{-3}$ |
| 89 | paramet | $9.5 \times 10^{-3}$ |
| 90 | focus | $9.3 \times 10^{-3}$ |
| 91 | servic | $9.2 \times 10^{-3}$ |
| 92 | infant | $9.2 \times 10^{-3}$ |
| 93 | live | $9.2 \times 10^{-3}$ |
| 94 | psycholog | $9.1 \times 10^{-3}$ |
| 95 | assess | $9.1 \times 10^{-3}$ |
| 96 | conduct | $9 \times 10^{-3}$ |
| 97 | anxieti | $9 \times 10^{-3}$ |
| 98 | data | $8.9 \times 10^{-3}$ |
| 99 | set | $8.9 \times 10^{-3}$ |
| 100 | evid | $8.8 \times 10^{-3}$ |

Table D.172. The list of the top 100 words in the category Nutrition and Dietetics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | intak | $1 \times 10^{-1}$ |
| 2 | dietari | $1 \times 10^{-1}$ |
| 3 | food | $9.4 \times 10^{-2}$ |
| 4 | diet | $8.5 \times 10^{-2}$ |
| 5 | nutrit | $8 \times 10^{-2}$ |
| 6 | obes | $6.3 \times 10^{-2}$ |
| 7 | fat | $6 \times 10^{-2}$ |
| 8 | conclus | $4.5 \times 10^{-2}$ |
| 9 | bmi | $3.8 \times 10^{-2}$ |
| 10 | age | $3.8 \times 10^{-2}$ |
| 11 | weight | $3.5 \times 10^{-2}$ |
| 12 | bodi | $3.5 \times 10^{-2}$ |
| 13 | eat | $3.5 \times 10^{-2}$ |
| 14 | supplement | $3.3 \times 10^{-2}$ |
| 15 | object | $3.3 \times 10^{-2}$ |
| 16 | fatti | $3.2 \times 10^{-2}$ |
| 17 | overweight | $3.1 \times 10^{-2}$ |
| 18 | vitamin | $2.7 \times 10^{-2}$ |
| 19 | consumpt | $2.6 \times 10^{-2}$ |
| 20 | lipid | $2.6 \times 10^{-2}$ |
| 21 | metabol | $2.5 \times 10^{-2}$ |
| 22 | health | $2.5 \times 10^{-2}$ |
| 23 | consum | $2.4 \times 10^{-2}$ |
| 24 | acid | $2.3 \times 10^{-2}$ |
| 25 | women | $2.3 \times 10^{-2}$ |
| 26 | particip | $2.3 \times 10^{-2}$ |
| 27 | associ | $2.2 \times 10^{-2}$ |
| 28 | meal | $2.2 \times 10^{-2}$ |
| 29 | healthi | $2.2 \times 10^{-2}$ |
| 30 | paper | $2.1 \times 10^{-2}$ |
| 31 | children | $2.1 \times 10^{-2}$ |
| 32 | total | $2.1 \times 10^{-2}$ |
| 33 | cholesterol | $2 \times 10^{-2}$ |
| 34 | glucos | $2 \times 10^{-2}$ |
| 35 | week | $2 \times 10^{-2}$ |
| 36 | studi | $2 \times 10^{-2}$ |
| 37 | insulin | $2 \times 10^{-2}$ |
| 38 | assess | $2 \times 10^{-2}$ |
| 39 | fruit | $1.9 \times 10^{-2}$ |
| 40 | antioxid | $1.9 \times 10^{-2}$ |
| 41 | adipos | $1.8 \times 10^{-2}$ |
| 42 | risk | $1.8 \times 10^{-2}$ |
| 43 | subject | $1.7 \times 10^{-2}$ |
| 44 | serum | $1.7 \times 10^{-2}$ |
| 45 | group | $1.7 \times 10^{-2}$ |
| 46 | intervent | $1.7 \times 10^{-2}$ |
| 47 | background | $1.7 \times 10^{-2}$ |
| 48 | fed | $1.6 \times 10^{-2}$ |
| 49 | anthropometr | $1.6 \times 10^{-2}$ |
| 50 | mass | $1.6 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | signific | $1.6 \times 10^{-2}$ |
| 52 | index | $1.6 \times 10^{-2}$ |
| 53 | waist | $1.6 \times 10^{-2}$ |
| 54 | circumfer | $1.6 \times 10^{-2}$ |
| 55 | status | $1.5 \times 10^{-2}$ |
| 56 | aim | $1.5 \times 10^{-2}$ |
| 57 | triglycerid | $1.5 \times 10^{-2}$ |
| 58 | increas | $1.5 \times 10^{-2}$ |
| 59 | day | $1.4 \times 10^{-2}$ |
| 60 | milk | $1.4 \times 10^{-2}$ |
| 61 | baselin | $1.3 \times 10^{-2}$ |
| 62 | carbohydr | $1.3 \times 10^{-2}$ |
| 63 | questionnair | $1.3 \times 10^{-2}$ |
| 64 | men | $1.3 \times 10^{-2}$ |
| 65 | year | $1.3 \times 10^{-2}$ |
| 66 | adult | $1.3 \times 10^{-2}$ |
| 67 | nutrient | $1.3 \times 10^{-2}$ |
| 68 | lifestyl | $1.3 \times 10^{-2}$ |
| 69 | propos | $1.3 \times 10^{-2}$ |
| 70 | blood | $1.3 \times 10^{-2}$ |
| 71 | higher | $1.3 \times 10^{-2}$ |
| 72 | veget | $1.3 \times 10^{-2}$ |
| 73 | lower | $1.3 \times 10^{-2}$ |
| 74 | protein | $1.2 \times 10^{-2}$ |
| 75 | diabet | $1.2 \times 10^{-2}$ |
| 76 | regress | $1.2 \times 10^{-2}$ |
| 77 | sugar | $1.1 \times 10^{-2}$ |
| 78 | level | $1.1 \times 10^{-2}$ |
| 79 | adjust | $1.1 \times 10^{-2}$ |
| 80 | random | $1.1 \times 10^{-2}$ |
| 81 | simul | $1.1 \times 10^{-2}$ |
| 82 | cardiovascular | $1.1 \times 10^{-2}$ |
| 83 | plasma | $1 \times 10^{-2}$ |
| 84 | content | $1 \times 10^{-2}$ |
| 85 | lipoprotein | $1 \times 10^{-2}$ |
| 86 | trial | $1 \times 10^{-2}$ |
| 87 | concentr | $9.9 \times 10^{-3}$ |
| 88 | hdl | $9.6 \times 10^{-3}$ |
| 89 | infant | $9.4 \times 10^{-3}$ |
| 90 | effect | $9.2 \times 10^{-3}$ |
| 91 | decreas | $8.9 \times 10^{-3}$ |
| 92 | daili | $8.9 \times 10^{-3}$ |
| 93 | system | $8.9 \times 10^{-3}$ |
| 94 | oil | $8.9 \times 10^{-3}$ |
| 95 | meat | $8.9 \times 10^{-3}$ |
| 96 | preval | $8.6 \times 10^{-3}$ |
| 97 | phenol | $8.2 \times 10^{-3}$ |
| 98 | liver | $8.1 \times 10^{-3}$ |
| 99 | placebo | $8 \times 10^{-3}$ |
| 100 | may | $8 \times 10^{-3}$ |

Table D.173. The list of the top 100 words in the category Obstetrics and Gynecology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | women | $2.1 \times 10^{-1}$ |
| 2 | pregnanc | $1.6 \times 10^{-1}$ |
| 3 | conclus | $1.3 \times 10^{-1}$ |
| 4 | gestat | $1 \times 10^{-1}$ |
| 5 | object | $8.9 \times 10^{-2}$ |
| 6 | matern | $7.9 \times 10^{-2}$ |
| 7 | birth | $7.3 \times 10^{-2}$ |
| 8 | outcom | $5.9 \times 10^{-2}$ |
| 9 | fetal | $5.9 \times 10^{-2}$ |
| 10 | vagin | $4.8 \times 10^{-2}$ |
| 11 | obstetr | $4.8 \times 10^{-2}$ |
| 12 | ovarian | $4.7 \times 10^{-2}$ |
| 13 | uterin | $4.7 \times 10^{-2}$ |
| 14 | pregnant | $4.6 \times 10^{-2}$ |
| 15 | patient | $4.5 \times 10^{-2}$ |
| 16 | deliveri | $4.4 \times 10^{-2}$ |
| 17 | age | $4.3 \times 10^{-2}$ |
| 18 | preterm | $4.2 \times 10^{-2}$ |
| 19 | neonat | $4.2 \times 10^{-2}$ |
| 20 | risk | $3.9 \times 10^{-2}$ |
| 21 | week | $3.7 \times 10^{-2}$ |
| 22 | singleton | $3.7 \times 10^{-2}$ |
| 23 | gynecolog | $3.5 \times 10^{-2}$ |
| 24 | retrospect | $3.4 \times 10^{-2}$ |
| 25 | pelvic | $3.2 \times 10^{-2}$ |
| 26 | endometri | $3.1 \times 10^{-2}$ |
| 27 | trimest | $3 \times 10^{-2}$ |
| 28 | infant | $3 \times 10^{-2}$ |
| 29 | preeclampsia | $3 \times 10^{-2}$ |
| 30 | cohort | $3 \times 10^{-2}$ |
| 31 | hospit | $2.9 \times 10^{-2}$ |
| 32 | paper | $2.9 \times 10^{-2}$ |
| 33 | clinic | $2.8 \times 10^{-2}$ |
| 34 | fetus | $2.8 \times 10^{-2}$ |
| 35 | placent | $2.7 \times 10^{-2}$ |
| 36 | intrauterin | $2.6 \times 10^{-2}$ |
| 37 | infertil | $2.6 \times 10^{-2}$ |
| 38 | associ | $2.6 \times 10^{-2}$ |
| 39 | ivf | $2.5 \times 10^{-2}$ |
| 40 | group | $2.5 \times 10^{-2}$ |
| 41 | postpartum | $2.4 \times 10^{-2}$ |
| 42 | studi | $2.4 \times 10^{-2}$ |
| 43 | perinat | $2.3 \times 10^{-2}$ |
| 44 | prospect | $2.3 \times 10^{-2}$ |
| 45 | result | $2.3 \times 10^{-2}$ |
| 46 | cervic | $2.2 \times 10^{-2}$ |
| 47 | fertil | $2.2 \times 10^{-2}$ |
| 48 | signific | $2.1 \times 10^{-2}$ |
| 49 | mother | $2.1 \times 10^{-2}$ |
| 50 | reproduct | $2.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | prenat | $2 \times 10^{-2}$ |
| 52 | placenta | $1.9 \times 10^{-2}$ |
| 53 | intervent | $1.9 \times 10^{-2}$ |
| 54 | woman | $1.9 \times 10^{-2}$ |
| 55 | method | $1.9 \times 10^{-2}$ |
| 56 | ultrasound | $1.9 \times 10^{-2}$ |
| 57 | care | $1.9 \times 10^{-2}$ |
| 58 | contracept | $1.9 \times 10^{-2}$ |
| 59 | underw | $1.9 \times 10^{-2}$ |
| 60 | hormon | $1.8 \times 10^{-2}$ |
| 61 | year | $1.8 \times 10^{-2}$ |
| 62 | complic | $1.8 \times 10^{-2}$ |
| 63 | interv | $1.7 \times 10^{-2}$ |
| 64 | surgeri | $1.6 \times 10^{-2}$ |
| 65 | confid | $1.6 \times 10^{-2}$ |
| 66 | propos | $1.6 \times 10^{-2}$ |
| 67 | ovari | $1.6 \times 10^{-2}$ |
| 68 | odd | $1.5 \times 10^{-2}$ |
| 69 | cancer | $1.5 \times 10^{-2}$ |
| 70 | oocyt | $1.5 \times 10^{-2}$ |
| 71 | diagnosi | $1.5 \times 10^{-2}$ |
| 72 | regress | $1.4 \times 10^{-2}$ |
| 73 | assess | $1.4 \times 10^{-2}$ |
| 74 | diagnos | $1.4 \times 10^{-2}$ |
| 75 | newborn | $1.4 \times 10^{-2}$ |
| 76 | medic | $1.4 \times 10^{-2}$ |
| 77 | postmenopaus | $1.4 \times 10^{-2}$ |
| 78 | logist | $1.4 \times 10^{-2}$ |
| 79 | compar | $1.4 \times 10^{-2}$ |
| 80 | health | $1.4 \times 10^{-2}$ |
| 81 | month | $1.4 \times 10^{-2}$ |
| 82 | surgic | $1.3 \times 10^{-2}$ |
| 83 | embryo | $1.3 \times 10^{-2}$ |
| 84 | median | $1.3 \times 10^{-2}$ |
| 85 | includ | $1.3 \times 10^{-2}$ |
| 86 | simul | $1.3 \times 10^{-2}$ |
| 87 | abnorm | $1.2 \times 10^{-2}$ |
| 88 | case | $1.2 \times 10^{-2}$ |
| 89 | design | $1.2 \times 10^{-2}$ |
| 90 | syndrom | $1.2 \times 10^{-2}$ |
| 91 | labor | $1.2 \times 10^{-2}$ |
| 92 | properti | $1.2 \times 10^{-2}$ |
| 93 | rate | $1.2 \times 10^{-2}$ |
| 94 | recurr | $1.2 \times 10^{-2}$ |
| 95 | laparoscop | $1.2 \times 10^{-2}$ |
| 96 | aim | $1.1 \times 10^{-2}$ |
| 97 | treatment | $1.1 \times 10^{-2}$ |
| 98 | temperatur | $1.1 \times 10^{-2}$ |
| 99 | incontin | $1.1 \times 10^{-2}$ |
| 100 | sperm | $1.1 \times 10^{-2}$ |

Table D.174. The list of the top 100 words in the category Oceanography with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | sea | $1.5 \times 10^{-1}$ |
| 2 | ocean | $1.1 \times 10^{-1}$ |
| 3 | coastal | $6.7 \times 10^{-2}$ |
| 4 | water | $6.3 \times 10^{-2}$ |
| 5 | marin | $5.5 \times 10^{-2}$ |
| 6 | sediment | $4.3 \times 10^{-2}$ |
| 7 | coast | $4.3 \times 10^{-2}$ |
| 8 | depth | $3.8 \times 10^{-2}$ |
| 9 | atlant | $3.4 \times 10^{-2}$ |
| 10 | phytoplankton | $3.3 \times 10^{-2}$ |
| 11 | season | $3.3 \times 10^{-2}$ |
| 12 | shelf | $3.2 \times 10^{-2}$ |
| 13 | offshor | $3.1 \times 10^{-2}$ |
| 14 | summer | $2.9 \times 10^{-2}$ |
| 15 | bay | $2.8 \times 10^{-2}$ |
| 16 | fish | $2.8 \times 10^{-2}$ |
| 17 | bottom | $2.6 \times 10^{-2}$ |
| 18 | salin | $2.5 \times 10^{-2}$ |
| 19 | north | $2.5 \times 10^{-2}$ |
| 20 | tidal | $2.5 \times 10^{-2}$ |
| 21 | wind | $2.5 \times 10^{-2}$ |
| 22 | pacif | $2.4 \times 10^{-2}$ |
| 23 | ecosystem | $2.3 \times 10^{-2}$ |
| 24 | fisheri | $2.3 \times 10^{-2}$ |
| 25 | underwat | $2.3 \times 10^{-2}$ |
| 26 | southern | $2.3 \times 10^{-2}$ |
| 27 | benthic | $2.2 \times 10^{-2}$ |
| 28 | estuari | $2.2 \times 10^{-2}$ |
| 29 | abund | $2.2 \times 10^{-2}$ |
| 30 | tide | $2.1 \times 10^{-2}$ |
| 31 | shallow | $2.1 \times 10^{-2}$ |
| 32 | gulf | $2.1 \times 10^{-2}$ |
| 33 | winter | $2 \times 10^{-2}$ |
| 34 | speci | $2 \times 10^{-2}$ |
| 35 | wave | $1.9 \times 10^{-2}$ |
| 36 | deep | $1.9 \times 10^{-2}$ |
| 37 | patient | $1.9 \times 10^{-2}$ |
| 38 | south | $1.9 \times 10^{-2}$ |
| 39 | chlorophyl | $1.9 \times 10^{-2}$ |
| 40 | surfac | $1.9 \times 10^{-2}$ |
| 41 | vertic | $1.9 \times 10^{-2}$ |
| 42 | eddi | $1.8 \times 10^{-2}$ |
| 43 | spatial | $1.8 \times 10^{-2}$ |
| 44 | upwel | $1.8 \times 10^{-2}$ |
| 45 | river | $1.7 \times 10^{-2}$ |
| 46 | spring | $1.7 \times 10^{-2}$ |
| 47 | bloom | $1.7 \times 10^{-2}$ |
| 48 | along | $1.7 \times 10^{-2}$ |
| 49 | northern | $1.7 \times 10^{-2}$ |
| 50 | domin | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | area | $1.6 \times 10^{-2}$ |
| 52 | basin | $1.6 \times 10^{-2}$ |
| 53 | continent | $1.6 \times 10^{-2}$ |
| 54 | conclus | $1.5 \times 10^{-2}$ |
| 55 | variabl | $1.5 \times 10^{-2}$ |
| 56 | region | $1.5 \times 10^{-2}$ |
| 57 | interannu | $1.5 \times 10^{-2}$ |
| 58 | pelag | $1.5 \times 10^{-2}$ |
| 59 | reef | $1.5 \times 10^{-2}$ |
| 60 | estuarin | $1.5 \times 10^{-2}$ |
| 61 | habitat | $1.5 \times 10^{-2}$ |
| 62 | zooplankton | $1.5 \times 10^{-2}$ |
| 63 | eastern | $1.4 \times 10^{-2}$ |
| 64 | east | $1.4 \times 10^{-2}$ |
| 65 | circul | $1.4 \times 10^{-2}$ |
| 66 | ice | $1.4 \times 10^{-2}$ |
| 67 | climat | $1.4 \times 10^{-2}$ |
| 68 | plankton | $1.4 \times 10^{-2}$ |
| 69 | trophic | $1.4 \times 10^{-2}$ |
| 70 | nutrient | $1.4 \times 10^{-2}$ |
| 71 | satellit | $1.4 \times 10^{-2}$ |
| 72 | shore | $1.4 \times 10^{-2}$ |
| 73 | dure | $1.3 \times 10^{-2}$ |
| 74 | period | $1.3 \times 10^{-2}$ |
| 75 | zone | $1.3 \times 10^{-2}$ |
| 76 | advect | $1.3 \times 10^{-2}$ |
| 77 | flux | $1.3 \times 10^{-2}$ |
| 78 | dissolv | $1.3 \times 10^{-2}$ |
| 79 | island | $1.3 \times 10^{-2}$ |
| 80 | coral | $1.3 \times 10^{-2}$ |
| 81 | warm | $1.3 \times 10^{-2}$ |
| 82 | moor | $1.2 \times 10^{-2}$ |
| 83 | slope | $1.2 \times 10^{-2}$ |
| 84 | arctic | $1.2 \times 10^{-2}$ |
| 85 | freshwat | $1.2 \times 10^{-2}$ |
| 86 | seawat | $1.2 \times 10^{-2}$ |
| 87 | hydrodynam | $1.2 \times 10^{-2}$ |
| 88 | biomass | $1.2 \times 10^{-2}$ |
| 89 | variat | $1.2 \times 10^{-2}$ |
| 90 | seafloor | $1.2 \times 10^{-2}$ |
| 91 | observ | $1.2 \times 10^{-2}$ |
| 92 | clinic | $1.2 \times 10^{-2}$ |
| 93 | station | $1.2 \times 10^{-2}$ |
| 94 | mediterranean | $1.1 \times 10^{-2}$ |
| 95 | ecolog | $1.1 \times 10^{-2}$ |
| 96 | atmospher | $1.1 \times 10^{-2}$ |
| 97 | diatom | $1.1 \times 10^{-2}$ |
| 98 | tempor | $1.1 \times 10^{-2}$ |
| 99 | near | $1.1 \times 10^{-2}$ |
| 100 | assemblag | $1.1 \times 10^{-2}$ |

Table D.175. The list of the top 100 words in the category Oncology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | cancer | $3.2 \times 10^{-1}$ |
| 2 | tumor | $1.9 \times 10^{-1}$ |
| 3 | patient | $1.4 \times 10^{-1}$ |
| 4 | surviv | $1 \times 10^{-1}$ |
| 5 | cell | $1 \times 10^{-1}$ |
| 6 | carcinoma | $8 \times 10^{-2}$ |
| 7 | chemotherapi | $7.2 \times 10^{-2}$ |
| 8 | breast | $7.1 \times 10^{-2}$ |
| 9 | express | $6.6 \times 10^{-2}$ |
| 10 | treatment | $6.4 \times 10^{-2}$ |
| 11 | conclus | $5.8 \times 10^{-2}$ |
| 12 | metastasi | $5.8 \times 10^{-2}$ |
| 13 | therapi | $5.8 \times 10^{-2}$ |
| 14 | prognost | $5.2 \times 10^{-2}$ |
| 15 | malign | $5.2 \times 10^{-2}$ |
| 16 | clinic | $4.9 \times 10^{-2}$ |
| 17 | metastat | $4.7 \times 10^{-2}$ |
| 18 | progress | $4.4 \times 10^{-2}$ |
| 19 | prognosi | $4.4 \times 10^{-2}$ |
| 20 | associ | $4.2 \times 10^{-2}$ |
| 21 | invas | $4 \times 10^{-2}$ |
| 22 | paper | $4 \times 10^{-2}$ |
| 23 | median | $4 \times 10^{-2}$ |
| 24 | lung | $3.7 \times 10^{-2}$ |
| 25 | prolifer | $3.7 \times 10^{-2}$ |
| 26 | overal | $3.5 \times 10^{-2}$ |
| 27 | inhibit | $3.4 \times 10^{-2}$ |
| 28 | treat | $3.3 \times 10^{-2}$ |
| 29 | signific | $3.3 \times 10^{-2}$ |
| 30 | apoptosi | $3.3 \times 10^{-2}$ |
| 31 | radiotherapi | $3.2 \times 10^{-2}$ |
| 32 | diseas | $3.1 \times 10^{-2}$ |
| 33 | overexpress | $3.1 \times 10^{-2}$ |
| 34 | therapeut | $3 \times 10^{-2}$ |
| 35 | target | $3 \times 10^{-2}$ |
| 36 | tissu | $3 \times 10^{-2}$ |
| 37 | grade | $3 \times 10^{-2}$ |
| 38 | lymph | $2.9 \times 10^{-2}$ |
| 39 | background | $2.9 \times 10^{-2}$ |
| 40 | recurr | $2.9 \times 10^{-2}$ |
| 41 | colorect | $2.8 \times 10^{-2}$ |
| 42 | inhibitor | $2.8 \times 10^{-2}$ |
| 43 | gene | $2.8 \times 10^{-2}$ |
| 44 | metastas | $2.7 \times 10^{-2}$ |
| 45 | protein | $2.6 \times 10^{-2}$ |
| 46 | line | $2.5 \times 10^{-2}$ |
| 47 | xenograft | $2.4 \times 10^{-2}$ |
| 48 | stage | $2.4 \times 10^{-2}$ |
| 49 | factor | $2.4 \times 10^{-2}$ |
| 50 | receptor | $2.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | nonsmal | $2.3 \times 10^{-2}$ |
| 52 | multivari | $2.3 \times 10^{-2}$ |
| 53 | prostat | $2.3 \times 10^{-2}$ |
| 54 | squamous | $2.3 \times 10^{-2}$ |
| 55 | risk | $2.3 \times 10^{-2}$ |
| 56 | clinicopatholog | $2.3 \times 10^{-2}$ |
| 57 | immunohistochemistri | $2.3 \times 10^{-2}$ |
| 58 | kinas | $2.2 \times 10^{-2}$ |
| 59 | growth | $2.2 \times 10^{-2}$ |
| 60 | dose | $2.2 \times 10^{-2}$ |
| 61 | adenocarcinoma | $2.2 \times 10^{-2}$ |
| 62 | pathway | $2.2 \times 10^{-2}$ |
| 63 | resect | $2.1 \times 10^{-2}$ |
| 64 | oncolog | $2.1 \times 10^{-2}$ |
| 65 | nsclc | $2.1 \times 10^{-2}$ |
| 66 | studi | $2 \times 10^{-2}$ |
| 67 | month | $2 \times 10^{-2}$ |
| 68 | downregul | $2 \times 10^{-2}$ |
| 69 | primari | $1.9 \times 10^{-2}$ |
| 70 | oncogen | $1.9 \times 10^{-2}$ |
| 71 | diagnosi | $1.9 \times 10^{-2}$ |
| 72 | adjuv | $1.9 \times 10^{-2}$ |
| 73 | histolog | $1.9 \times 10^{-2}$ |
| 74 | may | $1.9 \times 10^{-2}$ |
| 75 | leukemia | $1.8 \times 10^{-2}$ |
| 76 | propos | $1.8 \times 10^{-2}$ |
| 77 | upregul | $1.8 \times 10^{-2}$ |
| 78 | human | $1.8 \times 10^{-2}$ |
| 79 | receiv | $1.8 \times 10^{-2}$ |
| 80 | cox | $1.8 \times 10^{-2}$ |
| 81 | antitumor | $1.7 \times 10^{-2}$ |
| 82 | poor | $1.7 \times 10^{-2}$ |
| 83 | regul | $1.7 \times 10^{-2}$ |
| 84 | assay | $1.7 \times 10^{-2}$ |
| 85 | blot | $1.7 \times 10^{-2}$ |
| 86 | biomark | $1.7 \times 10^{-2}$ |
| 87 | structur | $1.6 \times 10^{-2}$ |
| 88 | outcom | $1.6 \times 10^{-2}$ |
| 89 | marker | $1.6 \times 10^{-2}$ |
| 90 | vitro | $1.6 \times 10^{-2}$ |
| 91 | diagnos | $1.6 \times 10^{-2}$ |
| 92 | suppressor | $1.6 \times 10^{-2}$ |
| 93 | status | $1.6 \times 10^{-2}$ |
| 94 | retrospect | $1.6 \times 10^{-2}$ |
| 95 | tumour | $1.6 \times 10^{-2}$ |
| 96 | year | $1.6 \times 10^{-2}$ |
| 97 | epitheli | $1.6 \times 10^{-2}$ |
| 98 | vivo | $1.5 \times 10^{-2}$ |
| 99 | lymphoma | $1.5 \times 10^{-2}$ |
| 100 | temperatur | $1.5 \times 10^{-2}$ |

Table D.176. The list of the top 100 words in the category Operations Research and Management Science with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | problem | $6.4 \times 10^{-2}$ |
| 2 | paper | $5 \times 10^{-2}$ |
| 3 | optim | $3.7 \times 10^{-2}$ |
| 4 | propos | $3.1 \times 10^{-2}$ |
| 5 | algorithm | $3 \times 10^{-2}$ |
| 6 | solv | $2.8 \times 10^{-2}$ |
| 7 | decis | $2.6 \times 10^{-2}$ |
| 8 | heurist | $2.1 \times 10^{-2}$ |
| 9 | cost | $1.9 \times 10^{-2}$ |
| 10 | model | $1.9 \times 10^{-2}$ |
| 11 | integ | $1.7 \times 10^{-2}$ |
| 12 | custom | $1.6 \times 10^{-2}$ |
| 13 | constraint | $1.5 \times 10^{-2}$ |
| 14 | conclus | $1.5 \times 10^{-2}$ |
| 15 | schedul | $1.5 \times 10^{-2}$ |
| 16 | cell | $1.4 \times 10^{-2}$ |
| 17 | solut | $1.4 \times 10^{-2}$ |
| 18 | demand | $1.4 \times 10^{-2}$ |
| 19 | instanc | $1.4 \times 10^{-2}$ |
| 20 | price | $1.4 \times 10^{-2}$ |
| 21 | patient | $1.3 \times 10^{-2}$ |
| 22 | compani | $1.3 \times 10^{-2}$ |
| 23 | suppli | $1.3 \times 10^{-2}$ |
| 24 | manufactur | $1.3 \times 10^{-2}$ |
| 25 | program | $1.2 \times 10^{-2}$ |
| 26 | stochast | $1.2 \times 10^{-2}$ |
| 27 | supplier | $1.2 \times 10^{-2}$ |
| 28 | profit | $1.2 \times 10^{-2}$ |
| 29 | comput | $1.2 \times 10^{-2}$ |
| 30 | exampl | $1.2 \times 10^{-2}$ |
| 31 | market | $1.2 \times 10^{-2}$ |
| 32 | consid | $1.1 \times 10^{-2}$ |
| 33 | formul | $1.1 \times 10^{-2}$ |
| 34 | approach | $1.1 \times 10^{-2}$ |
| 35 | manag | $1.1 \times 10^{-2}$ |
| 36 | set | $1.1 \times 10^{-2}$ |
| 37 | inventori | $1.1 \times 10^{-2}$ |
| 38 | firm | $1 \times 10^{-2}$ |
| 39 | illustr | $1 \times 10^{-2}$ |
| 40 | treatment | $1 \times 10^{-2}$ |
| 41 | protein | $1 \times 10^{-2}$ |
| 42 | minim | $1 \times 10^{-2}$ |
| 43 | numer | $9.8 \times 10^{-3}$ |
| 44 | enterpris | $9.6 \times 10^{-3}$ |
| 45 | retail | $9.4 \times 10^{-3}$ |
| 46 | clinic | $8.8 \times 10^{-3}$ |
| 47 | diseas | $8.7 \times 10^{-3}$ |
| 48 | acid | $8.5 \times 10^{-3}$ |
| 49 | industri | $8.5 \times 10^{-3}$ |
| 50 | plan | $8.4 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | temperatur | $8.3 \times 10^{-3}$ |
| 52 | concentr | $8.2 \times 10^{-3}$ |
| 53 | base | $8 \times 10^{-3}$ |
| 54 | background | $7.7 \times 10^{-3}$ |
| 55 | convex | $7.5 \times 10^{-3}$ |
| 56 | polici | $7.4 \times 10^{-3}$ |
| 57 | speci | $7.4 \times 10^{-3}$ |
| 58 | observ | $7.3 \times 10^{-3}$ |
| 59 | make | $7.2 \times 10^{-3}$ |
| 60 | gene | $7.2 \times 10^{-3}$ |
| 61 | search | $7.2 \times 10^{-3}$ |
| 62 | uncertainti | $7.2 \times 10^{-3}$ |
| 63 | oper | $7.1 \times 10^{-3}$ |
| 64 | surfac | $7 \times 10^{-3}$ |
| 65 | bound | $6.9 \times 10^{-3}$ |
| 66 | servic | $6.8 \times 10^{-3}$ |
| 67 | oxid | $6.8 \times 10^{-3}$ |
| 68 | report | $6.8 \times 10^{-3}$ |
| 69 | competit | $6.7 \times 10^{-3}$ |
| 70 | multiobject | $6.7 \times 10^{-3}$ |
| 71 | age | $6.6 \times 10^{-3}$ |
| 72 | literatur | $6.6 \times 10^{-3}$ |
| 73 | molecular | $6.5 \times 10^{-3}$ |
| 74 | busi | $6.4 \times 10^{-3}$ |
| 75 | induc | $6.3 \times 10^{-3}$ |
| 76 | found | $6.3 \times 10^{-3}$ |
| 77 | introduc | $6.3 \times 10^{-3}$ |
| 78 | activ | $6.2 \times 10^{-3}$ |
| 79 | product | $6.2 \times 10^{-3}$ |
| 80 | signific | $6.1 \times 10^{-3}$ |
| 81 | real | $6.1 \times 10^{-3}$ |
| 82 | chain | $6.1 \times 10^{-3}$ |
| 83 | reaction | $6 \times 10^{-3}$ |
| 84 | group | $5.9 \times 10^{-3}$ |
| 85 | network | $5.9 \times 10^{-3}$ |
| 86 | given | $5.8 \times 10^{-3}$ |
| 87 | job | $5.8 \times 10^{-3}$ |
| 88 | system | $5.7 \times 10^{-3}$ |
| 89 | machin | $5.6 \times 10^{-3}$ |
| 90 | inhibit | $5.5 \times 10^{-3}$ |
| 91 | order | $5.4 \times 10^{-3}$ |
| 92 | tissu | $5.4 \times 10^{-3}$ |
| 93 | fuzzi | $5.4 \times 10^{-3}$ |
| 94 | ray | $5.4 \times 10^{-3}$ |
| 95 | high | $5.3 \times 10^{-3}$ |
| 96 | converg | $5.3 \times 10^{-3}$ |
| 97 | decreas | $5.3 \times 10^{-3}$ |
| 98 | water | $5.2 \times 10^{-3}$ |
| 99 | game | $5.1 \times 10^{-3}$ |
| 100 | alloc | $5.1 \times 10^{-3}$ |

Table D.177. The list of the top 100 words in the category Ophthalmology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | eye | $3.3 \times 10^{-1}$ |
| 2 | retin | $1.7 \times 10^{-1}$ |
| 3 | purpos | $1.6 \times 10^{-1}$ |
| 4 | acuiti | $1.5 \times 10^{-1}$ |
| 5 | conclus | $1.5 \times 10^{-1}$ |
| 6 | corneal | $1.3 \times 10^{-1}$ |
| 7 | macular | $1.2 \times 10^{-1}$ |
| 8 | visual | $1.1 \times 10^{-1}$ |
| 9 | ocular | $1.1 \times 10^{-1}$ |
| 10 | intraocular | $1 \times 10^{-1}$ |
| 11 | patient | $8.6 \times 10^{-2}$ |
| 12 | glaucoma | $7.9 \times 10^{-2}$ |
| 13 | method | $6.4 \times 10^{-2}$ |
| 14 | oct | $6 \times 10^{-2}$ |
| 15 | cataract | $5.9 \times 10^{-2}$ |
| 16 | coher | $5.6 \times 10^{-2}$ |
| 17 | retina | $5.4 \times 10^{-2}$ |
| 18 | tomographi | $5.1 \times 10^{-2}$ |
| 19 | cornea | $4.9 \times 10^{-2}$ |
| 20 | choroid | $4.8 \times 10^{-2}$ |
| 21 | optic | $4.2 \times 10^{-2}$ |
| 22 | len | $4.1 \times 10^{-2}$ |
| 23 | month | $4 \times 10^{-2}$ |
| 24 | vision | $4 \times 10^{-2}$ |
| 25 | surgeri | $3.9 \times 10^{-2}$ |
| 26 | age | $3.8 \times 10^{-2}$ |
| 27 | result | $3.8 \times 10^{-2}$ |
| 28 | anterior | $3.7 \times 10^{-2}$ |
| 29 | retrospect | $3.5 \times 10^{-2}$ |
| 30 | postop | $3.3 \times 10^{-2}$ |
| 31 | mean | $3.2 \times 10^{-2}$ |
| 32 | underw | $3.1 \times 10^{-2}$ |
| 33 | paper | $3 \times 10^{-2}$ |
| 34 | degener | $2.9 \times 10^{-2}$ |
| 35 | refract | $2.9 \times 10^{-2}$ |
| 36 | thick | $2.7 \times 10^{-2}$ |
| 37 | clinic | $2.6 \times 10^{-2}$ |
| 38 | signific | $2.6 \times 10^{-2}$ |
| 39 | outcom | $2.5 \times 10^{-2}$ |
| 40 | year | $2.4 \times 10^{-2}$ |
| 41 | nerv | $2.2 \times 10^{-2}$ |
| 42 | follow | $2.2 \times 10^{-2}$ |
| 43 | posterior | $2.2 \times 10^{-2}$ |
| 44 | correct | $2.1 \times 10^{-2}$ |
| 45 | endotheli | $2.1 \times 10^{-2}$ |
| 46 | edema | $2 \times 10^{-2}$ |
| 47 | preoper | $2 \times 10^{-2}$ |
| 48 | prospect | $2 \times 10^{-2}$ |
| 49 | pigment | $1.9 \times 10^{-2}$ |
| 50 | case | $1.9 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | measur | $1.9 \times 10^{-2}$ |
| 52 | epithelium | $1.8 \times 10^{-2}$ |
| 53 | tear | $1.8 \times 10^{-2}$ |
| 54 | evalu | $1.6 \times 10^{-2}$ |
| 55 | central | $1.6 \times 10^{-2}$ |
| 56 | consecut | $1.6 \times 10^{-2}$ |
| 57 | propos | $1.5 \times 10^{-2}$ |
| 58 | surgic | $1.5 \times 10^{-2}$ |
| 59 | bilater | $1.4 \times 10^{-2}$ |
| 60 | treatment | $1.4 \times 10^{-2}$ |
| 61 | subject | $1.4 \times 10^{-2}$ |
| 62 | ganglion | $1.4 \times 10^{-2}$ |
| 63 | examin | $1.4 \times 10^{-2}$ |
| 64 | inject | $1.3 \times 10^{-2}$ |
| 65 | chamber | $1.3 \times 10^{-2}$ |
| 66 | group | $1.2 \times 10^{-2}$ |
| 67 | treat | $1.2 \times 10^{-2}$ |
| 68 | epitheli | $1.2 \times 10^{-2}$ |
| 69 | particip | $1.2 \times 10^{-2}$ |
| 70 | fellow | $1.1 \times 10^{-2}$ |
| 71 | includ | $1.1 \times 10^{-2}$ |
| 72 | baselin | $1.1 \times 10^{-2}$ |
| 73 | visit | $1.1 \times 10^{-2}$ |
| 74 | temperatur | $1.1 \times 10^{-2}$ |
| 75 | diseas | $1 \times 10^{-2}$ |
| 76 | implant | $1 \times 10^{-2}$ |
| 77 | normal | $9.9 \times 10^{-3}$ |
| 78 | review | $9.9 \times 10^{-3}$ |
| 79 | statist | $9.9 \times 10^{-3}$ |
| 80 | imag | $9.8 \times 10^{-3}$ |
| 81 | complic | $9.7 \times 10^{-3}$ |
| 82 | spectral | $9.6 \times 10^{-3}$ |
| 83 | medic | $9.6 \times 10^{-3}$ |
| 84 | laser | $9.6 \times 10^{-3}$ |
| 85 | angiographi | $9.5 \times 10^{-3}$ |
| 86 | diabet | $9.5 \times 10^{-3}$ |
| 87 | week | $9.4 \times 10^{-3}$ |
| 88 | segment | $9.4 \times 10^{-3}$ |
| 89 | disc | $9.4 \times 10^{-3}$ |
| 90 | seri | $9.3 \times 10^{-3}$ |
| 91 | old | $9.2 \times 10^{-3}$ |
| 92 | unilater | $9 \times 10^{-3}$ |
| 93 | associ | $8.8 \times 10^{-3}$ |
| 94 | spectacl | $8.7 \times 10^{-3}$ |
| 95 | simul | $8.6 \times 10^{-3}$ |
| 96 | energi | $8.6 \times 10^{-3}$ |
| 97 | compar | $8.3 \times 10^{-3}$ |
| 98 | photographi | $8.2 \times 10^{-3}$ |
| 99 | inferior | $8 \times 10^{-3}$ |
| 100 | photograph | $7.9 \times 10^{-3}$ |

Table D.178. The list of the top 100 words in the category Optics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | optic | $1.5 \times 10^{-1}$ |
| 2 | laser | $7.6 \times 10^{-2}$ |
| 3 | wavelength | $5.4 \times 10^{-2}$ |
| 4 | photon | $4.2 \times 10^{-2}$ |
| 5 | fiber | $3.8 \times 10^{-2}$ |
| 6 | light | $2.9 \times 10^{-2}$ |
| 7 | beam | $2.8 \times 10^{-2}$ |
| 8 | conclus | $2.5 \times 10^{-2}$ |
| 9 | grate | $2.4 \times 10^{-2}$ |
| 10 | puls | $2.4 \times 10^{-2}$ |
| 11 | waveguid | $2.3 \times 10^{-2}$ |
| 12 | imag | $2.3 \times 10^{-2}$ |
| 13 | studi | $2.2 \times 10^{-2}$ |
| 14 | spectral | $2 \times 10^{-2}$ |
| 15 | mode | $1.9 \times 10^{-2}$ |
| 16 | patient | $1.8 \times 10^{-2}$ |
| 17 | refract | $1.8 \times 10^{-2}$ |
| 18 | pump | $1.6 \times 10^{-2}$ |
| 19 | quantum | $1.6 \times 10^{-2}$ |
| 20 | coher | $1.6 \times 10^{-2}$ |
| 21 | wave | $1.6 \times 10^{-2}$ |
| 22 | polar | $1.5 \times 10^{-2}$ |
| 23 | associ | $1.5 \times 10^{-2}$ |
| 24 | suggest | $1.4 \times 10^{-2}$ |
| 25 | signific | $1.3 \times 10^{-2}$ |
| 26 | bandwidth | $1.3 \times 10^{-2}$ |
| 27 | age | $1.3 \times 10^{-2}$ |
| 28 | mirror | $1.2 \times 10^{-2}$ |
| 29 | interferomet | $1.2 \times 10^{-2}$ |
| 30 | fabric | $1.2 \times 10^{-2}$ |
| 31 | caviti | $1.2 \times 10^{-2}$ |
| 32 | plasmon | $1.2 \times 10^{-2}$ |
| 33 | diod | $1.2 \times 10^{-2}$ |
| 34 | treatment | $1.1 \times 10^{-2}$ |
| 35 | experiment | $1.1 \times 10^{-2}$ |
| 36 | demonstr | $1.1 \times 10^{-2}$ |
| 37 | excit | $1.1 \times 10^{-2}$ |
| 38 | tunabl | $1.1 \times 10^{-2}$ |
| 39 | gene | $1.1 \times 10^{-2}$ |
| 40 | reson | $1.1 \times 10^{-2}$ |
| 41 | year | $1 \times 10^{-2}$ |
| 42 | group | $1 \times 10^{-2}$ |
| 43 | absorpt | $1 \times 10^{-2}$ |
| 44 | nois | $1 \times 10^{-2}$ |
| 45 | protein | $1 \times 10^{-2}$ |
| 46 | devic | $1 \times 10^{-2}$ |
| 47 | scatter | $1 \times 10^{-2}$ |
| 48 | resolut | $9.8 \times 10^{-3}$ |
| 49 | modul | $9.7 \times 10^{-3}$ |
| 50 | activ | $9.7 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | risk | $9.7 \times 10^{-3}$ |
| 52 | band | $9.5 \times 10^{-3}$ |
| 53 | telescop | $9.4 \times 10^{-3}$ |
| 54 | assess | $9.3 \times 10^{-3}$ |
| 55 | silicon | $9.2 \times 10^{-3}$ |
| 56 | aim | $9.1 \times 10^{-3}$ |
| 57 | propag | $8.9 \times 10^{-3}$ |
| 58 | may | $8.9 \times 10^{-3}$ |
| 59 | diseas | $8.9 \times 10^{-3}$ |
| 60 | emit | $8.7 \times 10^{-3}$ |
| 61 | sensor | $8.6 \times 10^{-3}$ |
| 62 | frequenc | $8.5 \times 10^{-3}$ |
| 63 | illumin | $8.4 \times 10^{-3}$ |
| 64 | crystal | $8.3 \times 10^{-3}$ |
| 65 | detector | $8.3 \times 10^{-3}$ |
| 66 | identifi | $8.3 \times 10^{-3}$ |
| 67 | infrar | $8.1 \times 10^{-3}$ |
| 68 | intens | $8 \times 10^{-3}$ |
| 69 | examin | $8 \times 10^{-3}$ |
| 70 | apertur | $7.9 \times 10^{-3}$ |
| 71 | len | $7.8 \times 10^{-3}$ |
| 72 | femtosecond | $7.7 \times 10^{-3}$ |
| 73 | multiplex | $7.7 \times 10^{-3}$ |
| 74 | outcom | $7.6 \times 10^{-3}$ |
| 75 | clinic | $7.6 \times 10^{-3}$ |
| 76 | follow | $7.5 \times 10^{-3}$ |
| 77 | dope | $7.5 \times 10^{-3}$ |
| 78 | particip | $7.4 \times 10^{-3}$ |
| 79 | field | $7.3 \times 10^{-3}$ |
| 80 | power | $7.3 \times 10^{-3}$ |
| 81 | regul | $7.3 \times 10^{-3}$ |
| 82 | realiz | $7.2 \times 10^{-3}$ |
| 83 | pixel | $7.1 \times 10^{-3}$ |
| 84 | ghz | $7 \times 10^{-3}$ |
| 85 | among | $7 \times 10^{-3}$ |
| 86 | camera | $7 \times 10^{-3}$ |
| 87 | array | $7 \times 10^{-3}$ |
| 88 | dure | $7 \times 10^{-3}$ |
| 89 | transmiss | $6.9 \times 10^{-3}$ |
| 90 | role | $6.8 \times 10^{-3}$ |
| 91 | speci | $6.8 \times 10^{-3}$ |
| 92 | nonlinear | $6.8 \times 10^{-3}$ |
| 93 | radiat | $6.7 \times 10^{-3}$ |
| 94 | express | $6.6 \times 10^{-3}$ |
| 95 | broadband | $6.6 \times 10^{-3}$ |
| 96 | day | $6.6 \times 10^{-3}$ |
| 97 | acid | $6.5 \times 10^{-3}$ |
| 98 | achiev | $6.5 \times 10^{-3}$ |
| 99 | singl | $6.3 \times 10^{-3}$ |
| 100 | filter | $6.3 \times 10^{-3}$ |

Table D.179. The list of the top 100 words in the category Ornithology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | bird | $2.8 \times 10^{-1}$ |
| 2 | breed | $1.9 \times 10^{-1}$ |
| 3 | speci | $1.5 \times 10^{-1}$ |
| 4 | nest | $1.3 \times 10^{-1}$ |
| 5 | habitat | $1.3 \times 10^{-1}$ |
| 6 | nestl | $7 \times 10^{-2}$ |
| 7 | season | $5.8 \times 10^{-2}$ |
| 8 | popul | $5.6 \times 10^{-2}$ |
| 9 | brood | $5.4 \times 10^{-2}$ |
| 10 | avian | $5.2 \times 10^{-2}$ |
| 11 | forag | $5.2 \times 10^{-2}$ |
| 12 | chick | $4.3 \times 10^{-2}$ |
| 13 | migratori | $4.2 \times 10^{-2}$ |
| 14 | winter | $3.9 \times 10^{-2}$ |
| 15 | conserv | $3.9 \times 10^{-2}$ |
| 16 | clutch | $3.8 \times 10^{-2}$ |
| 17 | prey | $3.6 \times 10^{-2}$ |
| 18 | reproduct | $3.6 \times 10^{-2}$ |
| 19 | egg | $3.5 \times 10^{-2}$ |
| 20 | site | $3.4 \times 10^{-2}$ |
| 21 | predat | $3.2 \times 10^{-2}$ |
| 22 | area | $3.2 \times 10^{-2}$ |
| 23 | territori | $3.2 \times 10^{-2}$ |
| 24 | ecolog | $3.2 \times 10^{-2}$ |
| 25 | abund | $3.1 \times 10^{-2}$ |
| 26 | forest | $3 \times 10^{-2}$ |
| 27 | male | $2.9 \times 10^{-2}$ |
| 28 | individu | $2.9 \times 10^{-2}$ |
| 29 | island | $2.7 \times 10^{-2}$ |
| 30 | femal | $2.7 \times 10^{-2}$ |
| 31 | north | $2.6 \times 10^{-2}$ |
| 32 | hatch | $2.6 \times 10^{-2}$ |
| 33 | food | $2.6 \times 10^{-2}$ |
| 34 | endang | $2.5 \times 10^{-2}$ |
| 35 | northern | $2.5 \times 10^{-2}$ |
| 36 | wing | $2.4 \times 10^{-2}$ |
| 37 | may | $2.4 \times 10^{-2}$ |
| 38 | dure | $2.3 \times 10^{-2}$ |
| 39 | suggest | $2.2 \times 10^{-2}$ |
| 40 | declin | $2.2 \times 10^{-2}$ |
| 41 | south | $2.1 \times 10^{-2}$ |
| 42 | coloni | $2 \times 10^{-2}$ |
| 43 | migrat | $2 \times 10^{-2}$ |
| 44 | migrant | $2 \times 10^{-2}$ |
| 45 | capsul | $1.9 \times 10^{-2}$ |
| 46 | adult | $1.8 \times 10^{-2}$ |
| 47 | record | $1.8 \times 10^{-2}$ |
| 48 | juvenil | $1.8 \times 10^{-2}$ |
| 49 | eastern | $1.7 \times 10^{-2}$ |
| 50 | paper | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | landscap | $1.7 \times 10^{-2}$ |
| 52 | southern | $1.7 \times 10^{-2}$ |
| 53 | endem | $1.6 \times 10^{-2}$ |
| 54 | variat | $1.5 \times 10^{-2}$ |
| 55 | patient | $1.5 \times 10^{-2}$ |
| 56 | mate | $1.5 \times 10^{-2}$ |
| 57 | sex | $1.5 \times 10^{-2}$ |
| 58 | distanc | $1.5 \times 10^{-2}$ |
| 59 | size | $1.4 \times 10^{-2}$ |
| 60 | period | $1.4 \times 10^{-2}$ |
| 61 | year | $1.4 \times 10^{-2}$ |
| 62 | america | $1.4 \times 10^{-2}$ |
| 63 | wetland | $1.4 \times 10^{-2}$ |
| 64 | grassland | $1.3 \times 10^{-2}$ |
| 65 | lay | $1.3 \times 10^{-2}$ |
| 66 | annual | $1.3 \times 10^{-2}$ |
| 67 | black | $1.3 \times 10^{-2}$ |
| 68 | vocal | $1.3 \times 10^{-2}$ |
| 69 | surviv | $1.3 \times 10^{-2}$ |
| 70 | threaten | $1.3 \times 10^{-2}$ |
| 71 | tree | $1.3 \times 10^{-2}$ |
| 72 | success | $1.3 \times 10^{-2}$ |
| 73 | veget | $1.3 \times 10^{-2}$ |
| 74 | coast | $1.2 \times 10^{-2}$ |
| 75 | song | $1.2 \times 10^{-2}$ |
| 76 | pair | $1.2 \times 10^{-2}$ |
| 77 | survey | $1.1 \times 10^{-2}$ |
| 78 | flight | $1.1 \times 10^{-2}$ |
| 79 | pattern | $1.1 \times 10^{-2}$ |
| 80 | bodi | $1.1 \times 10^{-2}$ |
| 81 | geograph | $1.1 \times 10^{-2}$ |
| 82 | feed | $1.1 \times 10^{-2}$ |
| 83 | argentina | $1.1 \times 10^{-2}$ |
| 84 | hypothesi | $1 \times 10^{-2}$ |
| 85 | probabl | $1 \times 10^{-2}$ |
| 86 | applic | $1 \times 10^{-2}$ |
| 87 | autumn | $1 \times 10^{-2}$ |
| 88 | africa | $1 \times 10^{-2}$ |
| 89 | ground | $1 \times 10^{-2}$ |
| 90 | white | $9.9 \times 10^{-3}$ |
| 91 | mark | $9.8 \times 10^{-3}$ |
| 92 | spring | $9.8 \times 10^{-3}$ |
| 93 | littl | $9.7 \times 10^{-3}$ |
| 94 | wildlif | $9.5 \times 10^{-3}$ |
| 95 | west | $9.5 \times 10^{-3}$ |
| 96 | cell | $9.4 \times 10^{-3}$ |
| 97 | within | $9.3 \times 10^{-3}$ |
| 98 | parent | $9.3 \times 10^{-3}$ |
| 99 | method | $9.2 \times 10^{-3}$ |
| 100 | lake | $9.2 \times 10^{-3}$ |

Table D.180. The list of the top 100 words in the category Orthopedics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | patient | $1.3 \times 10^{-1}$ |
| 2 | knee | $1.2 \times 10^{-1}$ |
| 3 | arthroplasti | $1 \times 10^{-1}$ |
| 4 | surgeri | $8.5 \times 10^{-2}$ |
| 5 | radiograph | $8.4 \times 10^{-2}$ |
| 6 | postop | $7.9 \times 10^{-2}$ |
| 7 | pain | $7.8 \times 10^{-2}$ |
| 8 | hip | $7.4 \times 10^{-2}$ |
| 9 | conclus | $6.6 \times 10^{-2}$ |
| 10 | surgic | $6.6 \times 10^{-2}$ |
| 11 | fractur | $6.2 \times 10^{-2}$ |
| 12 | femor | $6.2 \times 10^{-2}$ |
| 13 | background | $6.1 \times 10^{-2}$ |
| 14 | score | $5.8 \times 10^{-2}$ |
| 15 | outcom | $5.8 \times 10^{-2}$ |
| 16 | fixat | $5.6 \times 10^{-2}$ |
| 17 | clinic | $5.5 \times 10^{-2}$ |
| 18 | bone | $5.1 \times 10^{-2}$ |
| 19 | preoper | $5.1 \times 10^{-2}$ |
| 20 | anterior | $5 \times 10^{-2}$ |
| 21 | year | $5 \times 10^{-2}$ |
| 22 | flexion | $4.7 \times 10^{-2}$ |
| 23 | osteoarthr | $4.7 \times 10^{-2}$ |
| 24 | joint | $4.6 \times 10^{-2}$ |
| 25 | ligament | $4.5 \times 10^{-2}$ |
| 26 | injuri | $4.4 \times 10^{-2}$ |
| 27 | surgeon | $4.4 \times 10^{-2}$ |
| 28 | underw | $4.3 \times 10^{-2}$ |
| 29 | tibial | $4.2 \times 10^{-2}$ |
| 30 | purpos | $4.2 \times 10^{-2}$ |
| 31 | follow | $4 \times 10^{-2}$ |
| 32 | posterior | $4 \times 10^{-2}$ |
| 33 | month | $4 \times 10^{-2}$ |
| 34 | retrospect | $4 \times 10^{-2}$ |
| 35 | medial | $3.9 \times 10^{-2}$ |
| 36 | shoulder | $3.8 \times 10^{-2}$ |
| 37 | complic | $3.7 \times 10^{-2}$ |
| 38 | mean | $3.6 \times 10^{-2}$ |
| 39 | spine | $3.6 \times 10^{-2}$ |
| 40 | tendon | $3.5 \times 10^{-2}$ |
| 41 | age | $3.5 \times 10^{-2}$ |
| 42 | orthopaed | $3.4 \times 10^{-2}$ |
| 43 | ankl | $3.4 \times 10^{-2}$ |
| 44 | arthroscop | $3.1 \times 10^{-2}$ |
| 45 | lumbar | $3.1 \times 10^{-2}$ |
| 46 | revis | $3.1 \times 10^{-2}$ |
| 47 | cruciat | $3 \times 10^{-2}$ |
| 48 | screw | $2.9 \times 10^{-2}$ |
| 49 | paper | $2.9 \times 10^{-2}$ |
| 50 | spinal | $2.9 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | total | $2.8 \times 10^{-2}$ |
| 52 | implant | $2.8 \times 10^{-2}$ |
| 53 | articular | $2.7 \times 10^{-2}$ |
| 54 | biomechan | $2.7 \times 10^{-2}$ |
| 55 | studi | $2.7 \times 10^{-2}$ |
| 56 | method | $2.7 \times 10^{-2}$ |
| 57 | later | $2.6 \times 10^{-2}$ |
| 58 | distal | $2.6 \times 10^{-2}$ |
| 59 | foot | $2.5 \times 10^{-2}$ |
| 60 | group | $2.5 \times 10^{-2}$ |
| 61 | signific | $2.5 \times 10^{-2}$ |
| 62 | treat | $2.5 \times 10^{-2}$ |
| 63 | radiolog | $2.3 \times 10^{-2}$ |
| 64 | review | $2.2 \times 10^{-2}$ |
| 65 | treatment | $2.2 \times 10^{-2}$ |
| 66 | cartilag | $2.2 \times 10^{-2}$ |
| 67 | sagitt | $2.2 \times 10^{-2}$ |
| 68 | femur | $2.2 \times 10^{-2}$ |
| 69 | assess | $2.1 \times 10^{-2}$ |
| 70 | trauma | $2.1 \times 10^{-2}$ |
| 71 | prospect | $2 \times 10^{-2}$ |
| 72 | evalu | $2 \times 10^{-2}$ |
| 73 | motion | $1.9 \times 10^{-2}$ |
| 74 | limb | $1.9 \times 10^{-2}$ |
| 75 | procedur | $1.9 \times 10^{-2}$ |
| 76 | cadaver | $1.8 \times 10^{-2}$ |
| 77 | elbow | $1.8 \times 10^{-2}$ |
| 78 | reconstruct | $1.8 \times 10^{-2}$ |
| 79 | proxim | $1.8 \times 10^{-2}$ |
| 80 | heal | $1.8 \times 10^{-2}$ |
| 81 | summari | $1.6 \times 10^{-2}$ |
| 82 | rotat | $1.6 \times 10^{-2}$ |
| 83 | disloc | $1.6 \times 10^{-2}$ |
| 84 | consecut | $1.6 \times 10^{-2}$ |
| 85 | anatom | $1.6 \times 10^{-2}$ |
| 86 | tear | $1.6 \times 10^{-2}$ |
| 87 | disabl | $1.6 \times 10^{-2}$ |
| 88 | degen | $1.6 \times 10^{-2}$ |
| 89 | result | $1.5 \times 10^{-2}$ |
| 90 | compar | $1.5 \times 10^{-2}$ |
| 91 | vas | $1.5 \times 10^{-2}$ |
| 92 | intraop | $1.5 \times 10^{-2}$ |
| 93 | propos | $1.4 \times 10^{-2}$ |
| 94 | repair | $1.4 \times 10^{-2}$ |
| 95 | fusion | $1.4 \times 10^{-2}$ |
| 96 | prosthesi | $1.4 \times 10^{-2}$ |
| 97 | evid | $1.3 \times 10^{-2}$ |
| 98 | gait | $1.3 \times 10^{-2}$ |
| 99 | case | $1.3 \times 10^{-2}$ |
| 100 | cohort | $1.3 \times 10^{-2}$ |

Table D.181. The list of the top 100 words in the category Otorhinolaryngology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | conclus | $1.4 \times 10^{-1}$ |
| 2 | hear | $1.3 \times 10^{-1}$ |
| 3 | patient | $1.2 \times 10^{-1}$ |
| 4 | object | $1.1 \times 10^{-1}$ |
| 5 | ear | $8.2 \times 10^{-2}$ |
| 6 | surgeri | $6.6 \times 10^{-2}$ |
| 7 | cochlear | $6.2 \times 10^{-2}$ |
| 8 | retrospect | $5.4 \times 10^{-2}$ |
| 9 | nasal | $5.2 \times 10^{-2}$ |
| 10 | surgic | $5.1 \times 10^{-2}$ |
| 11 | neck | $4.7 \times 10^{-2}$ |
| 12 | postop | $4.5 \times 10^{-2}$ |
| 13 | auditori | $4.3 \times 10^{-2}$ |
| 14 | underw | $4.1 \times 10^{-2}$ |
| 15 | laryng | $4 \times 10^{-2}$ |
| 16 | endoscop | $3.9 \times 10^{-2}$ |
| 17 | tertiari | $3.8 \times 10^{-2}$ |
| 18 | result | $3.7 \times 10^{-2}$ |
| 19 | method | $3.6 \times 10^{-2}$ |
| 20 | outcom | $3.4 \times 10^{-2}$ |
| 21 | sinus | $3.4 \times 10^{-2}$ |
| 22 | speech | $3.3 \times 10^{-2}$ |
| 23 | year | $3 \times 10^{-2}$ |
| 24 | review | $2.9 \times 10^{-2}$ |
| 25 | clinic | $2.8 \times 10^{-2}$ |
| 26 | studi | $2.8 \times 10^{-2}$ |
| 27 | vocal | $2.8 \times 10^{-2}$ |
| 28 | head | $2.6 \times 10^{-2}$ |
| 29 | preoper | $2.6 \times 10^{-2}$ |
| 30 | canal | $2.5 \times 10^{-2}$ |
| 31 | month | $2.4 \times 10^{-2}$ |
| 32 | subject | $2.4 \times 10^{-2}$ |
| 33 | paper | $2.4 \times 10^{-2}$ |
| 34 | hypothesi | $2.3 \times 10^{-2}$ |
| 35 | signific | $2.3 \times 10^{-2}$ |
| 36 | age | $2.3 \times 10^{-2}$ |
| 37 | recurr | $2.2 \times 10^{-2}$ |
| 38 | prospect | $2.2 \times 10^{-2}$ |
| 39 | tone | $2.2 \times 10^{-2}$ |
| 40 | design | $2.2 \times 10^{-2}$ |
| 41 | implant | $2 \times 10^{-2}$ |
| 42 | case | $2 \times 10^{-2}$ |
| 43 | score | $2 \times 10^{-2}$ |
| 44 | symptom | $1.9 \times 10^{-2}$ |
| 45 | referr | $1.9 \times 10^{-2}$ |
| 46 | voic | $1.9 \times 10^{-2}$ |
| 47 | airway | $1.8 \times 10^{-2}$ |
| 48 | obstruct | $1.8 \times 10^{-2}$ |
| 49 | bilater | $1.8 \times 10^{-2}$ |
| 50 | children | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | unilater | $1.8 \times 10^{-2}$ |
| 52 | group | $1.8 \times 10^{-2}$ |
| 53 | treatment | $1.8 \times 10^{-2}$ |
| 54 | evalu | $1.7 \times 10^{-2}$ |
| 55 | squamous | $1.7 \times 10^{-2}$ |
| 56 | carcinoma | $1.7 \times 10^{-2}$ |
| 57 | nerv | $1.7 \times 10^{-2}$ |
| 58 | follow | $1.6 \times 10^{-2}$ |
| 59 | complic | $1.6 \times 10^{-2}$ |
| 60 | bone | $1.5 \times 10^{-2}$ |
| 61 | diagnosi | $1.5 \times 10^{-2}$ |
| 62 | pediatr | $1.4 \times 10^{-2}$ |
| 63 | medic | $1.4 \times 10^{-2}$ |
| 64 | chart | $1.4 \times 10^{-2}$ |
| 65 | hospit | $1.4 \times 10^{-2}$ |
| 66 | loss | $1.4 \times 10^{-2}$ |
| 67 | diseas | $1.3 \times 10^{-2}$ |
| 68 | chronic | $1.3 \times 10^{-2}$ |
| 69 | facial | $1.3 \times 10^{-2}$ |
| 70 | treat | $1.3 \times 10^{-2}$ |
| 71 | listen | $1.2 \times 10^{-2}$ |
| 72 | record | $1.2 \times 10^{-2}$ |
| 73 | assess | $1.2 \times 10^{-2}$ |
| 74 | threshold | $1.2 \times 10^{-2}$ |
| 75 | propos | $1.2 \times 10^{-2}$ |
| 76 | diagnos | $1.2 \times 10^{-2}$ |
| 77 | resect | $1.2 \times 10^{-2}$ |
| 78 | mean | $1.1 \times 10^{-2}$ |
| 79 | rhiniti | $1.1 \times 10^{-2}$ |
| 80 | middl | $1.1 \times 10^{-2}$ |
| 81 | background | $1 \times 10^{-2}$ |
| 82 | acoust | $1 \times 10^{-2}$ |
| 83 | adult | $1 \times 10^{-2}$ |
| 84 | normal | $1 \times 10^{-2}$ |
| 85 | temperatur | $1 \times 10^{-2}$ |
| 86 | dissect | $1 \times 10^{-2}$ |
| 87 | intervent | $1 \times 10^{-2}$ |
| 88 | statist | $9.9 \times 10^{-3}$ |
| 89 | flap | $9.9 \times 10^{-3}$ |
| 90 | surgeon | $9.9 \times 10^{-3}$ |
| 91 | undergo | $9.7 \times 10^{-3}$ |
| 92 | endoscopi | $9.7 \times 10^{-3}$ |
| 93 | procedur | $9.2 \times 10^{-3}$ |
| 94 | cohort | $9.1 \times 10^{-3}$ |
| 95 | sleep | $9.1 \times 10^{-3}$ |
| 96 | center | $9.1 \times 10^{-3}$ |
| 97 | patholog | $9 \times 10^{-3}$ |
| 98 | sound | $8.8 \times 10^{-3}$ |
| 99 | intraop | $8.7 \times 10^{-3}$ |
| 100 | mucosa | $8.7 \times 10^{-3}$ |

Table D.182. The list of the top 100 words in the category Paleontology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | fossil | $1.4 \times 10^{-1}$ |
| 2 | late | $9.1 \times 10^{-2}$ |
| 3 | assemblag | $8.7 \times 10^{-2}$ |
| 4 | cretac | $7.7 \times 10^{-2}$ |
| 5 | taxa | $7.3 \times 10^{-2}$ |
| 6 | speci | $7 \times 10^{-2}$ |
| 7 | sediment | $6.3 \times 10^{-2}$ |
| 8 | record | $6 \times 10^{-2}$ |
| 9 | stratigraph | $6 \times 10^{-2}$ |
| 10 | fauna | $6 \times 10^{-2}$ |
| 11 | middl | $5.8 \times 10^{-2}$ |
| 12 | basin | $5.6 \times 10^{-2}$ |
| 13 | genus | $5.3 \times 10^{-2}$ |
| 14 | upper | $5.3 \times 10^{-2}$ |
| 15 | nov | $5.3 \times 10^{-2}$ |
| 16 | earli | $5.2 \times 10^{-2}$ |
| 17 | preserv | $5.1 \times 10^{-2}$ |
| 18 | marin | $4.7 \times 10^{-2}$ |
| 19 | miocen | $4.4 \times 10^{-2}$ |
| 20 | specimen | $4.4 \times 10^{-2}$ |
| 21 | deposit | $4.3 \times 10^{-2}$ |
| 22 | jurass | $4.2 \times 10^{-2}$ |
| 23 | format | $3.7 \times 10^{-2}$ |
| 24 | gen | $3.6 \times 10^{-2}$ |
| 25 | sea | $3.6 \times 10^{-2}$ |
| 26 | genera | $3.6 \times 10^{-2}$ |
| 27 | eocen | $3.5 \times 10^{-2}$ |
| 28 | taxon | $3.3 \times 10^{-2}$ |
| 29 | north | $3.3 \times 10^{-2}$ |
| 30 | southern | $3.3 \times 10^{-2}$ |
| 31 | cambrian | $3.3 \times 10^{-2}$ |
| 32 | shallow | $3.1 \times 10^{-2}$ |
| 33 | south | $3 \times 10^{-2}$ |
| 34 | climat | $2.9 \times 10^{-2}$ |
| 35 | repres | $2.9 \times 10^{-2}$ |
| 36 | ordovician | $2.8 \times 10^{-2}$ |
| 37 | triassic | $2.8 \times 10^{-2}$ |
| 38 | taxonom | $2.8 \times 10^{-2}$ |
| 39 | sedimentari | $2.7 \times 10^{-2}$ |
| 40 | northern | $2.7 \times 10^{-2}$ |
| 41 | morpholog | $2.7 \times 10^{-2}$ |
| 42 | extant | $2.7 \times 10^{-2}$ |
| 43 | isotop | $2.7 \times 10^{-2}$ |
| 44 | describ | $2.7 \times 10^{-2}$ |
| 45 | extinct | $2.6 \times 10^{-2}$ |
| 46 | benthic | $2.5 \times 10^{-2}$ |
| 47 | ocean | $2.5 \times 10^{-2}$ |
| 48 | faunal | $2.4 \times 10^{-2}$ |
| 49 | method | $2.4 \times 10^{-2}$ |
| 50 | holocen | $2.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | earliest | $2.3 \times 10^{-2}$ |
| 52 | divers | $2.3 \times 10^{-2}$ |
| 53 | abund | $2.3 \times 10^{-2}$ |
| 54 | effect | $2.2 \times 10^{-2}$ |
| 55 | limeston | $2.2 \times 10^{-2}$ |
| 56 | faci | $2.2 \times 10^{-2}$ |
| 57 | permian | $2.1 \times 10^{-2}$ |
| 58 | pleistocen | $2.1 \times 10^{-2}$ |
| 59 | new | $2.1 \times 10^{-2}$ |
| 60 | oldest | $2.1 \times 10^{-2}$ |
| 61 | interpret | $2.1 \times 10^{-2}$ |
| 62 | eastern | $2.1 \times 10^{-2}$ |
| 63 | calcar | $2.1 \times 10^{-2}$ |
| 64 | reconstruct | $2.1 \times 10^{-2}$ |
| 65 | proxi | $2 \times 10^{-2}$ |
| 66 | strata | $1.9 \times 10^{-2}$ |
| 67 | use | $1.9 \times 10^{-2}$ |
| 68 | zone | $1.9 \times 10^{-2}$ |
| 69 | teeth | $1.9 \times 10^{-2}$ |
| 70 | occurr | $1.8 \times 10^{-2}$ |
| 71 | bivalv | $1.8 \times 10^{-2}$ |
| 72 | date | $1.8 \times 10^{-2}$ |
| 73 | western | $1.8 \times 10^{-2}$ |
| 74 | warm | $1.7 \times 10^{-2}$ |
| 75 | bed | $1.7 \times 10^{-2}$ |
| 76 | pollen | $1.7 \times 10^{-2}$ |
| 77 | skeleton | $1.7 \times 10^{-2}$ |
| 78 | sedimentolog | $1.7 \times 10^{-2}$ |
| 79 | patient | $1.6 \times 10^{-2}$ |
| 80 | shale | $1.6 \times 10^{-2}$ |
| 81 | terrestri | $1.6 \times 10^{-2}$ |
| 82 | part | $1.6 \times 10^{-2}$ |
| 83 | clade | $1.6 \times 10^{-2}$ |
| 84 | perform | $1.6 \times 10^{-2}$ |
| 85 | charact | $1.5 \times 10^{-2}$ |
| 86 | domin | $1.5 \times 10^{-2}$ |
| 87 | atlant | $1.5 \times 10^{-2}$ |
| 88 | glacial | $1.5 \times 10^{-2}$ |
| 89 | phylogenet | $1.5 \times 10^{-2}$ |
| 90 | margin | $1.5 \times 10^{-2}$ |
| 91 | carbon | $1.5 \times 10^{-2}$ |
| 92 | skull | $1.5 \times 10^{-2}$ |
| 93 | dure | $1.4 \times 10^{-2}$ |
| 94 | known | $1.4 \times 10^{-2}$ |
| 95 | america | $1.4 \times 10^{-2}$ |
| 96 | result | $1.4 \times 10^{-2}$ |
| 97 | belong | $1.3 \times 10^{-2}$ |
| 98 | continent | $1.3 \times 10^{-2}$ |
| 99 | section | $1.3 \times 10^{-2}$ |
| 100 | provinc | $1.3 \times 10^{-2}$ |

Table D.183. The list of the top 100 words in the category Parasitology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | parasit | $2 \times 10^{-1}$ |
| 2 | infect | $1.8 \times 10^{-1}$ |
| 3 | host | $8.2 \times 10^{-2}$ |
| 4 | malaria | $7.6 \times 10^{-2}$ |
| 5 | speci | $5.4 \times 10^{-2}$ |
| 6 | plasmodium | $5.2 \times 10^{-2}$ |
| 7 | mosquito | $4.9 \times 10^{-2}$ |
| 8 | tick | $3.9 \times 10^{-2}$ |
| 9 | endem | $3.6 \times 10^{-2}$ |
| 10 | pcr | $3.6 \times 10^{-2}$ |
| 11 | falciparum | $3.6 \times 10^{-2}$ |
| 12 | pathogen | $3.5 \times 10^{-2}$ |
| 13 | nematod | $3.4 \times 10^{-2}$ |
| 14 | larva | $3.2 \times 10^{-2}$ |
| 15 | diseas | $3 \times 10^{-2}$ |
| 16 | egg | $3 \times 10^{-2}$ |
| 17 | preval | $3 \times 10^{-2}$ |
| 18 | leishmania | $3 \times 10^{-2}$ |
| 19 | background | $2.8 \times 10^{-2}$ |
| 20 | immun | $2.5 \times 10^{-2}$ |
| 21 | vector | $2.5 \times 10^{-2}$ |
| 22 | leishmaniasi | $2.5 \times 10^{-2}$ |
| 23 | human | $2.4 \times 10^{-2}$ |
| 24 | collect | $2.4 \times 10^{-2}$ |
| 25 | spp | $2.3 \times 10^{-2}$ |
| 26 | dog | $2.3 \times 10^{-2}$ |
| 27 | anophel | $2.2 \times 10^{-2}$ |
| 28 | anim | $2.2 \times 10^{-2}$ |
| 29 | antibodi | $2.1 \times 10^{-2}$ |
| 30 | paper | $2.1 \times 10^{-2}$ |
| 31 | blood | $2.1 \times 10^{-2}$ |
| 32 | aed | $2.1 \times 10^{-2}$ |
| 33 | antigen | $2 \times 10^{-2}$ |
| 34 | epidemiolog | $2 \times 10^{-2}$ |
| 35 | sequenc | $2 \times 10^{-2}$ |
| 36 | virus | $1.9 \times 10^{-2}$ |
| 37 | zoonot | $1.9 \times 10^{-2}$ |
| 38 | transmiss | $1.9 \times 10^{-2}$ |
| 39 | gene | $1.9 \times 10^{-2}$ |
| 40 | larval | $1.8 \times 10^{-2}$ |
| 41 | insecticid | $1.7 \times 10^{-2}$ |
| 42 | dna | $1.6 \times 10^{-2}$ |
| 43 | detect | $1.6 \times 10^{-2}$ |
| 44 | conclus | $1.6 \times 10^{-2}$ |
| 45 | genus | $1.6 \times 10^{-2}$ |
| 46 | fever | $1.5 \times 10^{-2}$ |
| 47 | intestin | $1.5 \times 10^{-2}$ |
| 48 | adult | $1.5 \times 10^{-2}$ |
| 49 | popul | $1.5 \times 10^{-2}$ |
| 50 | brazil | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | caus | $1.4 \times 10^{-2}$ |
| 52 | born | $1.4 \times 10^{-2}$ |
| 53 | vaccin | $1.4 \times 10^{-2}$ |
| 54 | assay | $1.4 \times 10^{-2}$ |
| 55 | dengu | $1.4 \times 10^{-2}$ |
| 56 | cattl | $1.4 \times 10^{-2}$ |
| 57 | identifi | $1.3 \times 10^{-2}$ |
| 58 | virul | $1.2 \times 10^{-2}$ |
| 59 | serolog | $1.2 \times 10^{-2}$ |
| 60 | isol | $1.2 \times 10^{-2}$ |
| 61 | infest | $1.2 \times 10^{-2}$ |
| 62 | mice | $1.2 \times 10^{-2}$ |
| 63 | protein | $1.1 \times 10^{-2}$ |
| 64 | phylogenet | $1.1 \times 10^{-2}$ |
| 65 | viral | $1.1 \times 10^{-2}$ |
| 66 | molecular | $1.1 \times 10^{-2}$ |
| 67 | rdna | $1.1 \times 10^{-2}$ |
| 68 | elisa | $1 \times 10^{-2}$ |
| 69 | infecti | $1 \times 10^{-2}$ |
| 70 | femal | $1 \times 10^{-2}$ |
| 71 | princip | $1 \times 10^{-2}$ |
| 72 | health | $1 \times 10^{-2}$ |
| 73 | sampl | $9.9 \times 10^{-3}$ |
| 74 | geograph | $9.9 \times 10^{-3}$ |
| 75 | simul | $9.8 \times 10^{-3}$ |
| 76 | studi | $9.8 \times 10^{-3}$ |
| 77 | cyst | $9.8 \times 10^{-3}$ |
| 78 | sheep | $9.5 \times 10^{-3}$ |
| 79 | africa | $9.5 \times 10^{-3}$ |
| 80 | ribosom | $9.4 \times 10^{-3}$ |
| 81 | wild | $9.4 \times 10^{-3}$ |
| 82 | propos | $9.3 \times 10^{-3}$ |
| 83 | drug | $9.2 \times 10^{-3}$ |
| 84 | strain | $9.1 \times 10^{-3}$ |
| 85 | coinfect | $9 \times 10^{-3}$ |
| 86 | transmit | $8.9 \times 10^{-3}$ |
| 87 | igg | $8.9 \times 10^{-3}$ |
| 88 | sera | $8.7 \times 10^{-3}$ |
| 89 | control | $8.7 \times 10^{-3}$ |
| 90 | found | $8.6 \times 10^{-3}$ |
| 91 | canin | $8.6 \times 10^{-3}$ |
| 92 | region | $8.6 \times 10^{-3}$ |
| 93 | stage | $8.3 \times 10^{-3}$ |
| 94 | rrna | $8.2 \times 10^{-3}$ |
| 95 | report | $8.2 \times 10^{-3}$ |
| 96 | smear | $8.2 \times 10^{-3}$ |
| 97 | outbreak | $8.1 \times 10^{-3}$ |
| 98 | genet | $8.1 \times 10^{-3}$ |
| 99 | presenc | $7.9 \times 10^{-3}$ |
| 100 | insect | $7.9 \times 10^{-3}$ |

Table D.184. The list of the top 100 words in the category Pathology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | tumor | $8.7 \times 10^{-2}$ |
| 2 | immunohistochem | $7.9 \times 10^{-2}$ |
| 3 | cell | $7.7 \times 10^{-2}$ |
| 4 | carcinoma | $7.2 \times 10^{-2}$ |
| 5 | immunohistochemistri | $6.2 \times 10^{-2}$ |
| 6 | express | $5.9 \times 10^{-2}$ |
| 7 | histolog | $5.6 \times 10^{-2}$ |
| 8 | patient | $5.5 \times 10^{-2}$ |
| 9 | tissu | $5.1 \times 10^{-2}$ |
| 10 | stain | $5.1 \times 10^{-2}$ |
| 11 | case | $4.7 \times 10^{-2}$ |
| 12 | patholog | $4.2 \times 10^{-2}$ |
| 13 | malign | $4.1 \times 10^{-2}$ |
| 14 | cancer | $4 \times 10^{-2}$ |
| 15 | lesion | $3.9 \times 10^{-2}$ |
| 16 | diagnosi | $3.7 \times 10^{-2}$ |
| 17 | neoplasm | $3.6 \times 10^{-2}$ |
| 18 | clinicopatholog | $3.5 \times 10^{-2}$ |
| 19 | clinic | $3.4 \times 10^{-2}$ |
| 20 | biopsi | $3.2 \times 10^{-2}$ |
| 21 | prognost | $3.1 \times 10^{-2}$ |
| 22 | marker | $2.9 \times 10^{-2}$ |
| 23 | rare | $2.8 \times 10^{-2}$ |
| 24 | diseas | $2.8 \times 10^{-2}$ |
| 25 | paper | $2.6 \times 10^{-2}$ |
| 26 | histopatholog | $2.6 \times 10^{-2}$ |
| 27 | prognosi | $2.6 \times 10^{-2}$ |
| 28 | grade | $2.5 \times 10^{-2}$ |
| 29 | pathologist | $2.4 \times 10^{-2}$ |
| 30 | associ | $2.4 \times 10^{-2}$ |
| 31 | cytolog | $2.4 \times 10^{-2}$ |
| 32 | invas | $2.3 \times 10^{-2}$ |
| 33 | protein | $2.3 \times 10^{-2}$ |
| 34 | adenocarcinoma | $2.3 \times 10^{-2}$ |
| 35 | lymph | $2.2 \times 10^{-2}$ |
| 36 | diagnost | $2.1 \times 10^{-2}$ |
| 37 | epitheli | $2.1 \times 10^{-2}$ |
| 38 | metastasi | $2.1 \times 10^{-2}$ |
| 39 | gene | $2.1 \times 10^{-2}$ |
| 40 | specimen | $2.1 \times 10^{-2}$ |
| 41 | benign | $2.1 \times 10^{-2}$ |
| 42 | cytoplasm | $2 \times 10^{-2}$ |
| 43 | posit | $1.9 \times 10^{-2}$ |
| 44 | paraffin | $1.9 \times 10^{-2}$ |
| 45 | mutat | $1.9 \times 10^{-2}$ |
| 46 | surviv | $1.8 \times 10^{-2}$ |
| 47 | squamous | $1.8 \times 10^{-2}$ |
| 48 | differenti | $1.8 \times 10^{-2}$ |
| 49 | diagnos | $1.7 \times 10^{-2}$ |
| 50 | progress | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | tumour | $1.7 \times 10^{-2}$ |
| 52 | prolifer | $1.6 \times 10^{-2}$ |
| 53 | old | $1.6 \times 10^{-2}$ |
| 54 | immunostain | $1.6 \times 10^{-2}$ |
| 55 | conclus | $1.6 \times 10^{-2}$ |
| 56 | lymphoma | $1.5 \times 10^{-2}$ |
| 57 | pcr | $1.5 \times 10^{-2}$ |
| 58 | may | $1.5 \times 10^{-2}$ |
| 59 | featur | $1.4 \times 10^{-2}$ |
| 60 | aggress | $1.4 \times 10^{-2}$ |
| 61 | lung | $1.4 \times 10^{-2}$ |
| 62 | autopsi | $1.4 \times 10^{-2}$ |
| 63 | infiltr | $1.3 \times 10^{-2}$ |
| 64 | metastat | $1.3 \times 10^{-2}$ |
| 65 | pathogenesi | $1.3 \times 10^{-2}$ |
| 66 | overexpress | $1.3 \times 10^{-2}$ |
| 67 | negat | $1.3 \times 10^{-2}$ |
| 68 | simul | $1.2 \times 10^{-2}$ |
| 69 | detect | $1.2 \times 10^{-2}$ |
| 70 | resect | $1.2 \times 10^{-2}$ |
| 71 | metastas | $1.2 \times 10^{-2}$ |
| 72 | subtyp | $1.2 \times 10^{-2}$ |
| 73 | atyp | $1.2 \times 10^{-2}$ |
| 74 | correl | $1.2 \times 10^{-2}$ |
| 75 | signific | $1.2 \times 10^{-2}$ |
| 76 | report | $1.1 \times 10^{-2}$ |
| 77 | gland | $1.1 \times 10^{-2}$ |
| 78 | breast | $1.1 \times 10^{-2}$ |
| 79 | microarray | $1.1 \times 10^{-2}$ |
| 80 | receptor | $1.1 \times 10^{-2}$ |
| 81 | immunoreact | $1.1 \times 10^{-2}$ |
| 82 | propos | $1.1 \times 10^{-2}$ |
| 83 | needl | $1.1 \times 10^{-2}$ |
| 84 | recurr | $1.1 \times 10^{-2}$ |
| 85 | aspir | $1 \times 10^{-2}$ |
| 86 | temperatur | $1 \times 10^{-2}$ |
| 87 | stromal | $1 \times 10^{-2}$ |
| 88 | inflammatori | $1 \times 10^{-2}$ |
| 89 | energi | $1 \times 10^{-2}$ |
| 90 | antibodi | $1 \times 10^{-2}$ |
| 91 | normal | $9.8 \times 10^{-3}$ |
| 92 | therapeut | $9.6 \times 10^{-3}$ |
| 93 | biomark | $9.5 \times 10^{-3}$ |
| 94 | human | $9.4 \times 10^{-3}$ |
| 95 | poor | $8.9 \times 10^{-3}$ |
| 96 | node | $8.7 \times 10^{-3}$ |
| 97 | hyperplasia | $8.6 \times 10^{-3}$ |
| 98 | epithelium | $8.6 \times 10^{-3}$ |
| 99 | nuclear | $8.6 \times 10^{-3}$ |
| 100 | morpholog | $8.5 \times 10^{-3}$ |

Table D.185. The list of the top 100 words in the category Pediatrics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | children | $2 \times 10^{-1}$ |
| 2 | pediatr | $1.1 \times 10^{-1}$ |
| 3 | conclus | $1 \times 10^{-1}$ |
| 4 | age | $9.1 \times 10^{-2}$ |
| 5 | infant | $8.7 \times 10^{-2}$ |
| 6 | year | $6.2 \times 10^{-2}$ |
| 7 | patient | $6.2 \times 10^{-2}$ |
| 8 | child | $4.9 \times 10^{-2}$ |
| 9 | neonat | $4.8 \times 10^{-2}$ |
| 10 | clinic | $3.9 \times 10^{-2}$ |
| 11 | birth | $3.8 \times 10^{-2}$ |
| 12 | month | $3.7 \times 10^{-2}$ |
| 13 | boy | $3.6 \times 10^{-2}$ |
| 14 | adolesc | $3.4 \times 10^{-2}$ |
| 15 | girl | $3.4 \times 10^{-2}$ |
| 16 | object | $3.3 \times 10^{-2}$ |
| 17 | preterm | $3 \times 10^{-2}$ |
| 18 | gestat | $3 \times 10^{-2}$ |
| 19 | outcom | $3 \times 10^{-2}$ |
| 20 | old | $2.9 \times 10^{-2}$ |
| 21 | paper | $2.9 \times 10^{-2}$ |
| 22 | hospit | $2.9 \times 10^{-2}$ |
| 23 | diagnosi | $2.9 \times 10^{-2}$ |
| 24 | retrospect | $2.9 \times 10^{-2}$ |
| 25 | parent | $2.9 \times 10^{-2}$ |
| 26 | background | $2.9 \times 10^{-2}$ |
| 27 | care | $2.8 \times 10^{-2}$ |
| 28 | congenit | $2.8 \times 10^{-2}$ |
| 29 | childhood | $2.7 \times 10^{-2}$ |
| 30 | associ | $2.4 \times 10^{-2}$ |
| 31 | risk | $2.4 \times 10^{-2}$ |
| 32 | syndrom | $2.3 \times 10^{-2}$ |
| 33 | diagnos | $2 \times 10^{-2}$ |
| 34 | newborn | $2 \times 10^{-2}$ |
| 35 | review | $1.9 \times 10^{-2}$ |
| 36 | symptom | $1.8 \times 10^{-2}$ |
| 37 | propos | $1.8 \times 10^{-2}$ |
| 38 | method | $1.8 \times 10^{-2}$ |
| 39 | medic | $1.8 \times 10^{-2}$ |
| 40 | report | $1.8 \times 10^{-2}$ |
| 41 | cohort | $1.8 \times 10^{-2}$ |
| 42 | week | $1.7 \times 10^{-2}$ |
| 43 | intervent | $1.7 \times 10^{-2}$ |
| 44 | mother | $1.7 \times 10^{-2}$ |
| 45 | diseas | $1.7 \times 10^{-2}$ |
| 46 | median | $1.6 \times 10^{-2}$ |
| 47 | rare | $1.6 \times 10^{-2}$ |
| 48 | case | $1.5 \times 10^{-2}$ |
| 49 | disord | $1.5 \times 10^{-2}$ |
| 50 | group | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | paediatr | $1.4 \times 10^{-2}$ |
| 52 | follow | $1.4 \times 10^{-2}$ |
| 53 | born | $1.4 \times 10^{-2}$ |
| 54 | treatment | $1.4 \times 10^{-2}$ |
| 55 | matern | $1.3 \times 10^{-2}$ |
| 56 | properti | $1.3 \times 10^{-2}$ |
| 57 | assess | $1.3 \times 10^{-2}$ |
| 58 | complic | $1.3 \times 10^{-2}$ |
| 59 | prospect | $1.3 \times 10^{-2}$ |
| 60 | respiratori | $1.3 \times 10^{-2}$ |
| 61 | score | $1.3 \times 10^{-2}$ |
| 62 | simul | $1.3 \times 10^{-2}$ |
| 63 | receiv | $1.3 \times 10^{-2}$ |
| 64 | surgic | $1.3 \times 10^{-2}$ |
| 65 | earli | $1.2 \times 10^{-2}$ |
| 66 | health | $1.2 \times 10^{-2}$ |
| 67 | process | $1.2 \times 10^{-2}$ |
| 68 | abnorm | $1.2 \times 10^{-2}$ |
| 69 | includ | $1.2 \times 10^{-2}$ |
| 70 | underw | $1.2 \times 10^{-2}$ |
| 71 | result | $1.2 \times 10^{-2}$ |
| 72 | aim | $1.2 \times 10^{-2}$ |
| 73 | therapi | $1.1 \times 10^{-2}$ |
| 74 | structur | $1.1 \times 10^{-2}$ |
| 75 | temperatur | $1.1 \times 10^{-2}$ |
| 76 | effici | $1.1 \times 10^{-2}$ |
| 77 | signific | $1.1 \times 10^{-2}$ |
| 78 | prematur | $1.1 \times 10^{-2}$ |
| 79 | day | $1 \times 10^{-2}$ |
| 80 | surgeri | $1 \times 10^{-2}$ |
| 81 | infect | $1 \times 10^{-2}$ |
| 82 | enrol | $1 \times 10^{-2}$ |
| 83 | applic | $1 \times 10^{-2}$ |
| 84 | experiment | $1 \times 10^{-2}$ |
| 85 | model | $9.9 \times 10^{-3}$ |
| 86 | surfac | $9.8 \times 10^{-3}$ |
| 87 | acut | $9.6 \times 10^{-3}$ |
| 88 | preval | $9.5 \times 10^{-3}$ |
| 89 | common | $9.3 \times 10^{-3}$ |
| 90 | neurolog | $9.3 \times 10^{-3}$ |
| 91 | young | $9 \times 10^{-3}$ |
| 92 | studi | $8.9 \times 10^{-3}$ |
| 93 | male | $8.6 \times 10^{-3}$ |
| 94 | malform | $8.6 \times 10^{-3}$ |
| 95 | weight | $8.4 \times 10^{-3}$ |
| 96 | morbid | $8.4 \times 10^{-3}$ |
| 97 | treat | $8.4 \times 10^{-3}$ |
| 98 | dynam | $8.3 \times 10^{-3}$ |
| 99 | show | $8.2 \times 10^{-3}$ |
| 100 | may | $8.1 \times 10^{-3}$ |

Table D.186. The list of the top 100 words in the category Peripheral Vascular Disease with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | arteri | $1.2 \times 10^{-1}$ |
| 2 | conclus | $1.1 \times 10^{-1}$ |
| 3 | patient | $1.1 \times 10^{-1}$ |
| 4 | stroke | $7.3 \times 10^{-2}$ |
| 5 | hypertens | $7.3 \times 10^{-2}$ |
| 6 | blood | $6.2 \times 10^{-2}$ |
| 7 | vascular | $6.2 \times 10^{-2}$ |
| 8 | cardiovascular | $5.7 \times 10^{-2}$ |
| 9 | risk | $5 \times 10^{-2}$ |
| 10 | ischem | $5 \times 10^{-2}$ |
| 11 | endovascular | $4.7 \times 10^{-2}$ |
| 12 | aortic | $4.7 \times 10^{-2}$ |
| 13 | associ | $4.2 \times 10^{-2}$ |
| 14 | carotid | $4 \times 10^{-2}$ |
| 15 | diseas | $3.7 \times 10^{-2}$ |
| 16 | aneurysm | $3.7 \times 10^{-2}$ |
| 17 | coronari | $3.5 \times 10^{-2}$ |
| 18 | age | $3.5 \times 10^{-2}$ |
| 19 | systol | $3.5 \times 10^{-2}$ |
| 20 | background | $3.4 \times 10^{-2}$ |
| 21 | infarct | $3.3 \times 10^{-2}$ |
| 22 | venous | $3.2 \times 10^{-2}$ |
| 23 | thrombosi | $3.1 \times 10^{-2}$ |
| 24 | paper | $3.1 \times 10^{-2}$ |
| 25 | confid | $3 \times 10^{-2}$ |
| 26 | year | $2.9 \times 10^{-2}$ |
| 27 | clinic | $2.9 \times 10^{-2}$ |
| 28 | heart | $2.9 \times 10^{-2}$ |
| 29 | acut | $2.9 \times 10^{-2}$ |
| 30 | stent | $2.8 \times 10^{-2}$ |
| 31 | interv | $2.8 \times 10^{-2}$ |
| 32 | atherosclerosi | $2.7 \times 10^{-2}$ |
| 33 | pressur | $2.7 \times 10^{-2}$ |
| 34 | cardiac | $2.7 \times 10^{-2}$ |
| 35 | method | $2.6 \times 10^{-2}$ |
| 36 | endotheli | $2.6 \times 10^{-2}$ |
| 37 | mortal | $2.6 \times 10^{-2}$ |
| 38 | myocardi | $2.3 \times 10^{-2}$ |
| 39 | outcom | $2.3 \times 10^{-2}$ |
| 40 | diastol | $2.3 \times 10^{-2}$ |
| 41 | vein | $2.2 \times 10^{-2}$ |
| 42 | signific | $2.2 \times 10^{-2}$ |
| 43 | occlus | $2.2 \times 10^{-2}$ |
| 44 | treatment | $2.1 \times 10^{-2}$ |
| 45 | hemorrhag | $2.1 \times 10^{-2}$ |
| 46 | ischemia | $2.1 \times 10^{-2}$ |
| 47 | factor | $2 \times 10^{-2}$ |
| 48 | object | $2 \times 10^{-2}$ |
| 49 | anticoagul | $2 \times 10^{-2}$ |
| 50 | vessel | $2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | stenosi | $2 \times 10^{-2}$ |
| 52 | prospect | $1.9 \times 10^{-2}$ |
| 53 | adjust | $1.9 \times 10^{-2}$ |
| 54 | embol | $1.9 \times 10^{-2}$ |
| 55 | underw | $1.9 \times 10^{-2}$ |
| 56 | treat | $1.9 \times 10^{-2}$ |
| 57 | renal | $1.9 \times 10^{-2}$ |
| 58 | atherosclerot | $1.8 \times 10^{-2}$ |
| 59 | baselin | $1.8 \times 10^{-2}$ |
| 60 | cerebr | $1.8 \times 10^{-2}$ |
| 61 | platelet | $1.8 \times 10^{-2}$ |
| 62 | ventricular | $1.8 \times 10^{-2}$ |
| 63 | angiographi | $1.8 \times 10^{-2}$ |
| 64 | diabet | $1.8 \times 10^{-2}$ |
| 65 | complic | $1.8 \times 10^{-2}$ |
| 66 | multivari | $1.8 \times 10^{-2}$ |
| 67 | angiotensin | $1.7 \times 10^{-2}$ |
| 68 | thromboembol | $1.7 \times 10^{-2}$ |
| 69 | odd | $1.7 \times 10^{-2}$ |
| 70 | bleed | $1.7 \times 10^{-2}$ |
| 71 | assess | $1.7 \times 10^{-2}$ |
| 72 | median | $1.7 \times 10^{-2}$ |
| 73 | therapi | $1.6 \times 10^{-2}$ |
| 74 | men | $1.6 \times 10^{-2}$ |
| 75 | result | $1.6 \times 10^{-2}$ |
| 76 | month | $1.6 \times 10^{-2}$ |
| 77 | follow | $1.6 \times 10^{-2}$ |
| 78 | propos | $1.6 \times 10^{-2}$ |
| 79 | ratio | $1.6 \times 10^{-2}$ |
| 80 | day | $1.6 \times 10^{-2}$ |
| 81 | revascular | $1.6 \times 10^{-2}$ |
| 82 | cohort | $1.5 \times 10^{-2}$ |
| 83 | lipoprotein | $1.5 \times 10^{-2}$ |
| 84 | increas | $1.5 \times 10^{-2}$ |
| 85 | death | $1.5 \times 10^{-2}$ |
| 86 | event | $1.4 \times 10^{-2}$ |
| 87 | dysfunct | $1.4 \times 10^{-2}$ |
| 88 | regress | $1.4 \times 10^{-2}$ |
| 89 | left | $1.4 \times 10^{-2}$ |
| 90 | hospit | $1.4 \times 10^{-2}$ |
| 91 | symptomat | $1.4 \times 10^{-2}$ |
| 92 | independ | $1.4 \times 10^{-2}$ |
| 93 | aorta | $1.4 \times 10^{-2}$ |
| 94 | consecut | $1.3 \times 10^{-2}$ |
| 95 | predictor | $1.3 \times 10^{-2}$ |
| 96 | intervent | $1.3 \times 10^{-2}$ |
| 97 | bypass | $1.3 \times 10^{-2}$ |
| 98 | versus | $1.2 \times 10^{-2}$ |
| 99 | cholesterol | $1.2 \times 10^{-2}$ |
| 100 | group | $1.2 \times 10^{-2}$ |

Table D.187. The list of the top 100 words in the category Pharmacology and Pharmacy with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | drug | $1.1 \times 10^{-1}$ |
| 2 | dose | $5.5 \times 10^{-2}$ |
| 3 | rat | $4.3 \times 10^{-2}$ |
| 4 | pharmacokinet | $4.3 \times 10^{-2}$ |
| 5 | treatment | $4.2 \times 10^{-2}$ |
| 6 | inhibit | $4 \times 10^{-2}$ |
| 7 | activ | $3.5 \times 10^{-2}$ |
| 8 | administr | $3.5 \times 10^{-2}$ |
| 9 | induc | $3.1 \times 10^{-2}$ |
| 10 | vitro | $3.1 \times 10^{-2}$ |
| 11 | paper | $3 \times 10^{-2}$ |
| 12 | inhibitor | $3 \times 10^{-2}$ |
| 13 | oral | $2.8 \times 10^{-2}$ |
| 14 | therapeut | $2.7 \times 10^{-2}$ |
| 15 | receptor | $2.6 \times 10^{-2}$ |
| 16 | cell | $2.4 \times 10^{-2}$ |
| 17 | effect | $2.2 \times 10^{-2}$ |
| 18 | compound | $2.1 \times 10^{-2}$ |
| 19 | treat | $2.1 \times 10^{-2}$ |
| 20 | vivo | $2 \times 10^{-2}$ |
| 21 | assay | $1.9 \times 10^{-2}$ |
| 22 | pharmacolog | $1.9 \times 10^{-2}$ |
| 23 | administ | $1.9 \times 10^{-2}$ |
| 24 | mice | $1.9 \times 10^{-2}$ |
| 25 | studi | $1.8 \times 10^{-2}$ |
| 26 | efficaci | $1.8 \times 10^{-2}$ |
| 27 | clinic | $1.8 \times 10^{-2}$ |
| 28 | therapi | $1.8 \times 10^{-2}$ |
| 29 | concentr | $1.8 \times 10^{-2}$ |
| 30 | medicin | $1.7 \times 10^{-2}$ |
| 31 | toxic | $1.6 \times 10^{-2}$ |
| 32 | potent | $1.6 \times 10^{-2}$ |
| 33 | agent | $1.6 \times 10^{-2}$ |
| 34 | cytotox | $1.6 \times 10^{-2}$ |
| 35 | antagonist | $1.5 \times 10^{-2}$ |
| 36 | releas | $1.5 \times 10^{-2}$ |
| 37 | inhibitori | $1.5 \times 10^{-2}$ |
| 38 | ethnopharmacolog | $1.5 \times 10^{-2}$ |
| 39 | protein | $1.4 \times 10^{-2}$ |
| 40 | conclus | $1.4 \times 10^{-2}$ |
| 41 | signific | $1.3 \times 10^{-2}$ |
| 42 | human | $1.3 \times 10^{-2}$ |
| 43 | ic50 | $1.3 \times 10^{-2}$ |
| 44 | antiinflammatori | $1.3 \times 10^{-2}$ |
| 45 | propos | $1.3 \times 10^{-2}$ |
| 46 | day | $1.3 \times 10^{-2}$ |
| 47 | express | $1.2 \times 10^{-2}$ |
| 48 | plasma | $1.2 \times 10^{-2}$ |
| 49 | patient | $1.2 \times 10^{-2}$ |
| 50 | bioavail | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | agonist | $1.2 \times 10^{-2}$ |
| 52 | diseas | $1.2 \times 10^{-2}$ |
| 53 | blood | $1.1 \times 10^{-2}$ |
| 54 | mediat | $1.1 \times 10^{-2}$ |
| 55 | potenti | $1.1 \times 10^{-2}$ |
| 56 | acid | $1.1 \times 10^{-2}$ |
| 57 | evalu | $1.1 \times 10^{-2}$ |
| 58 | deliveri | $1.1 \times 10^{-2}$ |
| 59 | liver | $1 \times 10^{-2}$ |
| 60 | metabol | $1 \times 10^{-2}$ |
| 61 | auc | $9.9 \times 10^{-3}$ |
| 62 | beta | $9.8 \times 10^{-3}$ |
| 63 | formul | $9.7 \times 10^{-3}$ |
| 64 | isol | $9.7 \times 10^{-3}$ |
| 65 | cancer | $9.6 \times 10^{-3}$ |
| 66 | pharmaceut | $9.5 \times 10^{-3}$ |
| 67 | intraven | $9.4 \times 10^{-3}$ |
| 68 | advers | $9.3 \times 10^{-3}$ |
| 69 | enzym | $9.3 \times 10^{-3}$ |
| 70 | anticanc | $9.3 \times 10^{-3}$ |
| 71 | metabolit | $9.2 \times 10^{-3}$ |
| 72 | serum | $9.1 \times 10^{-3}$ |
| 73 | antioxid | $9 \times 10^{-3}$ |
| 74 | exposur | $9 \times 10^{-3}$ |
| 75 | decreas | $8.7 \times 10^{-3}$ |
| 76 | aim | $8.7 \times 10^{-3}$ |
| 77 | apoptosi | $8.6 \times 10^{-3}$ |
| 78 | target | $8.5 \times 10^{-3}$ |
| 79 | chromatographi | $8.5 \times 10^{-3}$ |
| 80 | pathway | $8.4 \times 10^{-3}$ |
| 81 | anim | $8.4 \times 10^{-3}$ |
| 82 | hplc | $8.2 \times 10^{-3}$ |
| 83 | inflammatori | $8.2 \times 10^{-3}$ |
| 84 | algorithm | $7.9 \times 10^{-3}$ |
| 85 | increas | $7.9 \times 10^{-3}$ |
| 86 | alpha | $7.9 \times 10^{-3}$ |
| 87 | clearanc | $7.8 \times 10^{-3}$ |
| 88 | inject | $7.7 \times 10^{-3}$ |
| 89 | energi | $7.7 \times 10^{-3}$ |
| 90 | simul | $7.6 \times 10^{-3}$ |
| 91 | action | $7.5 \times 10^{-3}$ |
| 92 | week | $7.4 \times 10^{-3}$ |
| 93 | lipid | $7.3 \times 10^{-3}$ |
| 94 | chronic | $7.3 \times 10^{-3}$ |
| 95 | kinas | $7.2 \times 10^{-3}$ |
| 96 | mic | $7.2 \times 10^{-3}$ |
| 97 | attenu | $7.1 \times 10^{-3}$ |
| 98 | suggest | $7 \times 10^{-3}$ |
| 99 | pretreat | $6.9 \times 10^{-3}$ |
| 100 | comput | $6.7 \times 10^{-3}$ |

Table D.188. The list of the top 100 words in the category Philosophy with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | argu | $1.9 \times 10^{-1}$ |
| 2 | philosoph | $1.1 \times 10^{-1}$ |
| 3 | argument | $7.8 \times 10^{-2}$ |
| 4 | philosophi | $7.4 \times 10^{-2}$ |
| 5 | claim | $6.9 \times 10^{-2}$ |
| 6 | moral | $5.1 \times 10^{-2}$ |
| 7 | result | $4.7 \times 10^{-2}$ |
| 8 | defend | $4.5 \times 10^{-2}$ |
| 9 | metaphys | $4.4 \times 10^{-2}$ |
| 10 | view | $4.3 \times 10^{-2}$ |
| 11 | epistem | $4.2 \times 10^{-2}$ |
| 12 | studi | $4 \times 10^{-2}$ |
| 13 | notion | $3.6 \times 10^{-2}$ |
| 14 | truth | $3.4 \times 10^{-2}$ |
| 15 | epistemolog | $3.4 \times 10^{-2}$ |
| 16 | use | $3.3 \times 10^{-2}$ |
| 17 | theori | $3.3 \times 10^{-2}$ |
| 18 | account | $3.2 \times 10^{-2}$ |
| 19 | essay | $3.2 \times 10^{-2}$ |
| 20 | concept | $3.1 \times 10^{-2}$ |
| 21 | logic | $2.9 \times 10^{-2}$ |
| 22 | ethic | $2.9 \times 10^{-2}$ |
| 23 | way | $2.8 \times 10^{-2}$ |
| 24 | question | $2.7 \times 10^{-2}$ |
| 25 | think | $2.7 \times 10^{-2}$ |
| 26 | method | $2.7 \times 10^{-2}$ |
| 27 | high | $2.5 \times 10^{-2}$ |
| 28 | reason | $2.4 \times 10^{-2}$ |
| 29 | belief | $2.4 \times 10^{-2}$ |
| 30 | effect | $2.4 \times 10^{-2}$ |
| 31 | thesi | $2.3 \times 10^{-2}$ |
| 32 | increas | $2.1 \times 10^{-2}$ |
| 33 | articl | $2.1 \times 10^{-2}$ |
| 34 | idea | $2 \times 10^{-2}$ |
| 35 | critiqu | $2 \times 10^{-2}$ |
| 36 | thought | $2 \times 10^{-2}$ |
| 37 | perform | $1.9 \times 10^{-2}$ |
| 38 | proposit | $1.9 \times 10^{-2}$ |
| 39 | data | $1.8 \times 10^{-2}$ |
| 40 | normat | $1.8 \times 10^{-2}$ |
| 41 | measur | $1.8 \times 10^{-2}$ |
| 42 | contemporari | $1.8 \times 10^{-2}$ |
| 43 | intuit | $1.7 \times 10^{-2}$ |
| 44 | thing | $1.7 \times 10^{-2}$ |
| 45 | someth | $1.7 \times 10^{-2}$ |
| 46 | virtu | $1.7 \times 10^{-2}$ |
| 47 | compar | $1.7 \times 10^{-2}$ |
| 48 | phenomenolog | $1.7 \times 10^{-2}$ |
| 49 | debat | $1.6 \times 10^{-2}$ |
| 50 | rate | $1.6 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | semant | $1.6 \times 10^{-2}$ |
| 52 | ontolog | $1.5 \times 10^{-2}$ |
| 53 | say | $1.5 \times 10^{-2}$ |
| 54 | cell | $1.5 \times 10^{-2}$ |
| 55 | interpret | $1.5 \times 10^{-2}$ |
| 56 | kind | $1.5 \times 10^{-2}$ |
| 57 | control | $1.5 \times 10^{-2}$ |
| 58 | appeal | $1.5 \times 10^{-2}$ |
| 59 | low | $1.4 \times 10^{-2}$ |
| 60 | reject | $1.4 \times 10^{-2}$ |
| 61 | justif | $1.4 \times 10^{-2}$ |
| 62 | mind | $1.4 \times 10^{-2}$ |
| 63 | paper | $1.4 \times 10^{-2}$ |
| 64 | test | $1.4 \times 10^{-2}$ |
| 65 | sampl | $1.4 \times 10^{-2}$ |
| 66 | patient | $1.4 \times 10^{-2}$ |
| 67 | fact | $1.4 \times 10^{-2}$ |
| 68 | attempt | $1.4 \times 10^{-2}$ |
| 69 | call | $1.3 \times 10^{-2}$ |
| 70 | polit | $1.3 \times 10^{-2}$ |
| 71 | improv | $1.3 \times 10^{-2}$ |
| 72 | doe | $1.3 \times 10^{-2}$ |
| 73 | mere | $1.3 \times 10^{-2}$ |
| 74 | conscious | $1.3 \times 10^{-2}$ |
| 75 | scienc | $1.3 \times 10^{-2}$ |
| 76 | whi | $1.2 \times 10^{-2}$ |
| 77 | temperatur | $1.2 \times 10^{-2}$ |
| 78 | decreas | $1.2 \times 10^{-2}$ |
| 79 | ration | $1.2 \times 10^{-2}$ |
| 80 | commit | $1.2 \times 10^{-2}$ |
| 81 | obtain | $1.2 \times 10^{-2}$ |
| 82 | god | $1.2 \times 10^{-2}$ |
| 83 | distinct | $1.2 \times 10^{-2}$ |
| 84 | world | $1.2 \times 10^{-2}$ |
| 85 | effici | $1.2 \times 10^{-2}$ |
| 86 | offer | $1.1 \times 10^{-2}$ |
| 87 | dure | $1.1 \times 10^{-2}$ |
| 88 | certain | $1.1 \times 10^{-2}$ |
| 89 | seem | $1.1 \times 10^{-2}$ |
| 90 | signific | $1.1 \times 10^{-2}$ |
| 91 | higher | $1.1 \times 10^{-2}$ |
| 92 | principl | $1.1 \times 10^{-2}$ |
| 93 | observ | $1.1 \times 10^{-2}$ |
| 94 | true | $1.1 \times 10^{-2}$ |
| 95 | paramet | $1.1 \times 10^{-2}$ |
| 96 | indic | $1.1 \times 10^{-2}$ |
| 97 | investig | $1.1 \times 10^{-2}$ |
| 98 | explan | $1.1 \times 10^{-2}$ |
| 99 | report | $1.1 \times 10^{-2}$ |
| 100 | doctrin | $1.1 \times 10^{-2}$ |

Table D.189. The list of the top 100 words in the category Physics, Applied with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | film | $4.5 \times 10^{-2}$ |
| 2 | optic | $3.7 \times 10^{-2}$ |
| 3 | electron | $3.1 \times 10^{-2}$ |
| 4 | conclus | $3.1 \times 10^{-2}$ |
| 5 | fabric | $3 \times 10^{-2}$ |
| 6 | patient | $2.7 \times 10^{-2}$ |
| 7 | layer | $2.6 \times 10^{-2}$ |
| 8 | devic | $2.5 \times 10^{-2}$ |
| 9 | thin | $2.5 \times 10^{-2}$ |
| 10 | laser | $2.5 \times 10^{-2}$ |
| 11 | temperatur | $2.4 \times 10^{-2}$ |
| 12 | substrat | $2.2 \times 10^{-2}$ |
| 13 | deposit | $2.1 \times 10^{-2}$ |
| 14 | dope | $2.1 \times 10^{-2}$ |
| 15 | electr | $1.8 \times 10^{-2}$ |
| 16 | magnet | $1.7 \times 10^{-2}$ |
| 17 | associ | $1.7 \times 10^{-2}$ |
| 18 | silicon | $1.7 \times 10^{-2}$ |
| 19 | surfac | $1.7 \times 10^{-2}$ |
| 20 | properti | $1.6 \times 10^{-2}$ |
| 21 | year | $1.5 \times 10^{-2}$ |
| 22 | beam | $1.5 \times 10^{-2}$ |
| 23 | assess | $1.5 \times 10^{-2}$ |
| 24 | band | $1.4 \times 10^{-2}$ |
| 25 | voltag | $1.4 \times 10^{-2}$ |
| 26 | puls | $1.4 \times 10^{-2}$ |
| 27 | ray | $1.4 \times 10^{-2}$ |
| 28 | wavelength | $1.4 \times 10^{-2}$ |
| 29 | semiconductor | $1.4 \times 10^{-2}$ |
| 30 | clinic | $1.4 \times 10^{-2}$ |
| 31 | diseas | $1.4 \times 10^{-2}$ |
| 32 | crystal | $1.4 \times 10^{-2}$ |
| 33 | dielectr | $1.4 \times 10^{-2}$ |
| 34 | metal | $1.3 \times 10^{-2}$ |
| 35 | field | $1.3 \times 10^{-2}$ |
| 36 | age | $1.3 \times 10^{-2}$ |
| 37 | diffract | $1.3 \times 10^{-2}$ |
| 38 | thick | $1.3 \times 10^{-2}$ |
| 39 | risk | $1.3 \times 10^{-2}$ |
| 40 | studi | $1.2 \times 10^{-2}$ |
| 41 | anneal | $1.2 \times 10^{-2}$ |
| 42 | group | $1.2 \times 10^{-2}$ |
| 43 | structur | $1.2 \times 10^{-2}$ |
| 44 | atom | $1.2 \times 10^{-2}$ |
| 45 | epitaxi | $1.2 \times 10^{-2}$ |
| 46 | aim | $1.2 \times 10^{-2}$ |
| 47 | background | $1.2 \times 10^{-2}$ |
| 48 | identifi | $1.1 \times 10^{-2}$ |
| 49 | spectroscopi | $1.1 \times 10^{-2}$ |
| 50 | gene | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | may | $1.1 \times 10^{-2}$ |
| 52 | transistor | $1.1 \times 10^{-2}$ |
| 53 | grown | $1.1 \times 10^{-2}$ |
| 54 | microscopi | $1.1 \times 10^{-2}$ |
| 55 | signific | $1.1 \times 10^{-2}$ |
| 56 | object | $1.1 \times 10^{-2}$ |
| 57 | quantum | $1 \times 10^{-2}$ |
| 58 | protein | $1 \times 10^{-2}$ |
| 59 | express | $1 \times 10^{-2}$ |
| 60 | outcom | $1 \times 10^{-2}$ |
| 61 | materi | $1 \times 10^{-2}$ |
| 62 | nanoparticl | $1 \times 10^{-2}$ |
| 63 | diod | $1 \times 10^{-2}$ |
| 64 | thermal | $1 \times 10^{-2}$ |
| 65 | sputter | $1 \times 10^{-2}$ |
| 66 | photon | $1 \times 10^{-2}$ |
| 67 | data | $9.8 \times 10^{-3}$ |
| 68 | energi | $9.7 \times 10^{-3}$ |
| 69 | particip | $9.7 \times 10^{-3}$ |
| 70 | nanowir | $9.5 \times 10^{-3}$ |
| 71 | coat | $9.5 \times 10^{-3}$ |
| 72 | light | $9.4 \times 10^{-3}$ |
| 73 | popul | $9.2 \times 10^{-3}$ |
| 74 | superconduct | $9 \times 10^{-3}$ |
| 75 | zno | $8.9 \times 10^{-3}$ |
| 76 | photoluminesc | $8.9 \times 10^{-3}$ |
| 77 | graphen | $8.9 \times 10^{-3}$ |
| 78 | human | $8.8 \times 10^{-3}$ |
| 79 | densiti | $8.8 \times 10^{-3}$ |
| 80 | nanostructur | $8.7 \times 10^{-3}$ |
| 81 | gan | $8.7 \times 10^{-3}$ |
| 82 | evalu | $8.7 \times 10^{-3}$ |
| 83 | suggest | $8.7 \times 10^{-3}$ |
| 84 | among | $8.5 \times 10^{-3}$ |
| 85 | whether | $8.5 \times 10^{-3}$ |
| 86 | carrier | $8.3 \times 10^{-3}$ |
| 87 | health | $8.3 \times 10^{-3}$ |
| 88 | charg | $8.2 \times 10^{-3}$ |
| 89 | absorpt | $8.2 \times 10^{-3}$ |
| 90 | crystallin | $8.2 \times 10^{-3}$ |
| 91 | manag | $8.2 \times 10^{-3}$ |
| 92 | day | $8 \times 10^{-3}$ |
| 93 | level | $7.9 \times 10^{-3}$ |
| 94 | room | $7.8 \times 10^{-3}$ |
| 95 | regul | $7.7 \times 10^{-3}$ |
| 96 | month | $7.5 \times 10^{-3}$ |
| 97 | includ | $7.5 \times 10^{-3}$ |
| 98 | polar | $7.4 \times 10^{-3}$ |
| 99 | plasmon | $7.4 \times 10^{-3}$ |
| 100 | examin | $7.3 \times 10^{-3}$ |

Table D.190. The list of the top 100 words in the category Physics, Atomic, Molecular and Chemical with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | atom | $5.2 \times 10^{-2}$ |
| 2 | energi | $5.1 \times 10^{-2}$ |
| 3 | quantum | $4.9 \times 10^{-2}$ |
| 4 | calcul | $4.5 \times 10^{-2}$ |
| 5 | molecul | $4.4 \times 10^{-2}$ |
| 6 | electron | $4.1 \times 10^{-2}$ |
| 7 | state | $3.5 \times 10^{-2}$ |
| 8 | molecular | $3.3 \times 10^{-2}$ |
| 9 | excit | $3.1 \times 10^{-2}$ |
| 10 | theori | $2.8 \times 10^{-2}$ |
| 11 | densiti | $2.5 \times 10^{-2}$ |
| 12 | initio | $2.5 \times 10^{-2}$ |
| 13 | bond | $2.4 \times 10^{-2}$ |
| 14 | ion | $2.2 \times 10^{-2}$ |
| 15 | spectra | $2.1 \times 10^{-2}$ |
| 16 | patient | $2 \times 10^{-2}$ |
| 17 | transit | $2 \times 10^{-2}$ |
| 18 | phys | $2 \times 10^{-2}$ |
| 19 | conclus | $1.9 \times 10^{-2}$ |
| 20 | interact | $1.8 \times 10^{-2}$ |
| 21 | charg | $1.8 \times 10^{-2}$ |
| 22 | dft | $1.7 \times 10^{-2}$ |
| 23 | vibrat | $1.7 \times 10^{-2}$ |
| 24 | paper | $1.6 \times 10^{-2}$ |
| 25 | dynam | $1.6 \times 10^{-2}$ |
| 26 | experiment | $1.6 \times 10^{-2}$ |
| 27 | spin | $1.6 \times 10^{-2}$ |
| 28 | orbit | $1.5 \times 10^{-2}$ |
| 29 | hydrogen | $1.5 \times 10^{-2}$ |
| 30 | spectroscopi | $1.5 \times 10^{-2}$ |
| 31 | ioniz | $1.4 \times 10^{-2}$ |
| 32 | dissoci | $1.4 \times 10^{-2}$ |
| 33 | theoret | $1.3 \times 10^{-2}$ |
| 34 | dipol | $1.3 \times 10^{-2}$ |
| 35 | coupl | $1.3 \times 10^{-2}$ |
| 36 | year | $1.2 \times 10^{-2}$ |
| 37 | agreement | $1.2 \times 10^{-2}$ |
| 38 | photon | $1.1 \times 10^{-2}$ |
| 39 | absorpt | $1.1 \times 10^{-2}$ |
| 40 | clinic | $1.1 \times 10^{-2}$ |
| 41 | age | $1.1 \times 10^{-2}$ |
| 42 | object | $1.1 \times 10^{-2}$ |
| 43 | diseas | $1 \times 10^{-2}$ |
| 44 | risk | $1 \times 10^{-2}$ |
| 45 | structur | $1 \times 10^{-2}$ |
| 46 | background | $9.7 \times 10^{-3}$ |
| 47 | hamiltonian | $9.4 \times 10^{-3}$ |
| 48 | proton | $9 \times 10^{-3}$ |
| 49 | b3lyp | $8.4 \times 10^{-3}$ |
| 50 | reson | $8.4 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | assess | $8.4 \times 10^{-3}$ |
| 52 | depend | $8.4 \times 10^{-3}$ |
| 53 | gene | $8.3 \times 10^{-3}$ |
| 54 | polar | $8.3 \times 10^{-3}$ |
| 55 | solvent | $8.2 \times 10^{-3}$ |
| 56 | ground | $8.2 \times 10^{-3}$ |
| 57 | aim | $8.1 \times 10^{-3}$ |
| 58 | human | $8.1 \times 10^{-3}$ |
| 59 | manag | $8 \times 10^{-3}$ |
| 60 | function | $7.8 \times 10^{-3}$ |
| 61 | energet | $7.7 \times 10^{-3}$ |
| 62 | ionic | $7.6 \times 10^{-3}$ |
| 63 | chemic | $7.6 \times 10^{-3}$ |
| 64 | cluster | $7.6 \times 10^{-3}$ |
| 65 | relax | $7.5 \times 10^{-3}$ |
| 66 | reaction | $7.5 \times 10^{-3}$ |
| 67 | entangl | $7.4 \times 10^{-3}$ |
| 68 | transfer | $7.3 \times 10^{-3}$ |
| 69 | research | $7.3 \times 10^{-3}$ |
| 70 | thermodynam | $7.1 \times 10^{-3}$ |
| 71 | cation | $7.1 \times 10^{-3}$ |
| 72 | perturb | $7.1 \times 10^{-3}$ |
| 73 | laser | $7 \times 10^{-3}$ |
| 74 | health | $6.8 \times 10^{-3}$ |
| 75 | scatter | $6.8 \times 10^{-3}$ |
| 76 | temperatur | $6.7 \times 10^{-3}$ |
| 77 | intermolecular | $6.7 \times 10^{-3}$ |
| 78 | anion | $6.7 \times 10^{-3}$ |
| 79 | day | $6.5 \times 10^{-3}$ |
| 80 | dure | $6.4 \times 10^{-3}$ |
| 81 | associ | $6.4 \times 10^{-3}$ |
| 82 | properti | $6.4 \times 10^{-3}$ |
| 83 | signific | $6.3 \times 10^{-3}$ |
| 84 | phase | $6.3 \times 10^{-3}$ |
| 85 | test | $6.3 \times 10^{-3}$ |
| 86 | trap | $6.1 \times 10^{-3}$ |
| 87 | symmetri | $6.1 \times 10^{-3}$ |
| 88 | evalu | $6.1 \times 10^{-3}$ |
| 89 | dimer | $6 \times 10^{-3}$ |
| 90 | outcom | $5.9 \times 10^{-3}$ |
| 91 | kinet | $5.9 \times 10^{-3}$ |
| 92 | design | $5.9 \times 10^{-3}$ |
| 93 | surfac | $5.8 \times 10^{-3}$ |
| 94 | puls | $5.8 \times 10^{-3}$ |
| 95 | decay | $5.8 \times 10^{-3}$ |
| 96 | rotat | $5.7 \times 10^{-3}$ |
| 97 | month | $5.7 \times 10^{-3}$ |
| 98 | simul | $5.6 \times 10^{-3}$ |
| 99 | collis | $5.6 \times 10^{-3}$ |
| 100 | control | $5.6 \times 10^{-3}$ |

Table D.191. The list of the top 100 words in the category Physics, Condensed Matter with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | electron | $6.4 \times 10^{-2}$ |
| 2 | temperatur | $4.6 \times 10^{-2}$ |
| 3 | film | $4.6 \times 10^{-2}$ |
| 4 | spin | $4.1 \times 10^{-2}$ |
| 5 | magnet | $4 \times 10^{-2}$ |
| 6 | properti | $3.4 \times 10^{-2}$ |
| 7 | dope | $3.2 \times 10^{-2}$ |
| 8 | structur | $2.8 \times 10^{-2}$ |
| 9 | diffract | $2.8 \times 10^{-2}$ |
| 10 | ray | $2.6 \times 10^{-2}$ |
| 11 | quantum | $2.6 \times 10^{-2}$ |
| 12 | lattic | $2.5 \times 10^{-2}$ |
| 13 | conclus | $2.4 \times 10^{-2}$ |
| 14 | atom | $2.4 \times 10^{-2}$ |
| 15 | patient | $2.3 \times 10^{-2}$ |
| 16 | thin | $2.3 \times 10^{-2}$ |
| 17 | ferromagnet | $2.2 \times 10^{-2}$ |
| 18 | crystal | $2.2 \times 10^{-2}$ |
| 19 | band | $2.2 \times 10^{-2}$ |
| 20 | deposit | $2.2 \times 10^{-2}$ |
| 21 | layer | $2.2 \times 10^{-2}$ |
| 22 | spectroscopi | $2.2 \times 10^{-2}$ |
| 23 | energi | $2.1 \times 10^{-2}$ |
| 24 | densiti | $2.1 \times 10^{-2}$ |
| 25 | transit | $2.1 \times 10^{-2}$ |
| 26 | surfac | $2.1 \times 10^{-2}$ |
| 27 | phase | $2 \times 10^{-2}$ |
| 28 | substrat | $1.9 \times 10^{-2}$ |
| 29 | superconduct | $1.8 \times 10^{-2}$ |
| 30 | microscopi | $1.8 \times 10^{-2}$ |
| 31 | electr | $1.8 \times 10^{-2}$ |
| 32 | metal | $1.7 \times 10^{-2}$ |
| 33 | charg | $1.7 \times 10^{-2}$ |
| 34 | optic | $1.6 \times 10^{-2}$ |
| 35 | year | $1.6 \times 10^{-2}$ |
| 36 | xrd | $1.5 \times 10^{-2}$ |
| 37 | field | $1.5 \times 10^{-2}$ |
| 38 | gap | $1.5 \times 10^{-2}$ |
| 39 | antiferromagnet | $1.5 \times 10^{-2}$ |
| 40 | state | $1.4 \times 10^{-2}$ |
| 41 | phonon | $1.4 \times 10^{-2}$ |
| 42 | anneal | $1.4 \times 10^{-2}$ |
| 43 | assess | $1.4 \times 10^{-2}$ |
| 44 | graphen | $1.4 \times 10^{-2}$ |
| 45 | object | $1.4 \times 10^{-2}$ |
| 46 | semiconductor | $1.3 \times 10^{-2}$ |
| 47 | fabric | $1.3 \times 10^{-2}$ |
| 48 | fermi | $1.3 \times 10^{-2}$ |
| 49 | prepar | $1.3 \times 10^{-2}$ |
| 50 | dielectr | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | clinic | $1.2 \times 10^{-2}$ |
| 52 | insul | $1.2 \times 10^{-2}$ |
| 53 | aim | $1.2 \times 10^{-2}$ |
| 54 | bulk | $1.2 \times 10^{-2}$ |
| 55 | diseas | $1.2 \times 10^{-2}$ |
| 56 | calcul | $1.2 \times 10^{-2}$ |
| 57 | spectra | $1.1 \times 10^{-2}$ |
| 58 | risk | $1.1 \times 10^{-2}$ |
| 59 | room | $1.1 \times 10^{-2}$ |
| 60 | crystallin | $1.1 \times 10^{-2}$ |
| 61 | nanoparticl | $1.1 \times 10^{-2}$ |
| 62 | scan | $1.1 \times 10^{-2}$ |
| 63 | zno | $1.1 \times 10^{-2}$ |
| 64 | age | $1.1 \times 10^{-2}$ |
| 65 | paper | $1.1 \times 10^{-2}$ |
| 66 | materi | $1.1 \times 10^{-2}$ |
| 67 | oxid | $1.1 \times 10^{-2}$ |
| 68 | photoluminesc | $1.1 \times 10^{-2}$ |
| 69 | background | $1 \times 10^{-2}$ |
| 70 | ion | $1 \times 10^{-2}$ |
| 71 | associ | $1 \times 10^{-2}$ |
| 72 | polar | $1 \times 10^{-2}$ |
| 73 | exhibit | $1 \times 10^{-2}$ |
| 74 | grown | $9.8 \times 10^{-3}$ |
| 75 | sputter | $9.8 \times 10^{-3}$ |
| 76 | symmetri | $9.5 \times 10^{-3}$ |
| 77 | impur | $9.3 \times 10^{-3}$ |
| 78 | epitaxi | $9.3 \times 10^{-3}$ |
| 79 | synthes | $9.2 \times 10^{-3}$ |
| 80 | data | $9.2 \times 10^{-3}$ |
| 81 | human | $9.2 \times 10^{-3}$ |
| 82 | nanowir | $9.2 \times 10^{-3}$ |
| 83 | coat | $9 \times 10^{-3}$ |
| 84 | evalu | $9 \times 10^{-3}$ |
| 85 | nanostructur | $9 \times 10^{-3}$ |
| 86 | thermal | $8.9 \times 10^{-3}$ |
| 87 | manag | $8.8 \times 10^{-3}$ |
| 88 | gene | $8.7 \times 10^{-3}$ |
| 89 | raman | $8.7 \times 10^{-3}$ |
| 90 | devic | $8.6 \times 10^{-3}$ |
| 91 | carrier | $8.5 \times 10^{-3}$ |
| 92 | outcom | $8.4 \times 10^{-3}$ |
| 93 | research | $8.4 \times 10^{-3}$ |
| 94 | thick | $8.3 \times 10^{-3}$ |
| 95 | ferroelectr | $8.3 \times 10^{-3}$ |
| 96 | depend | $8.3 \times 10^{-3}$ |
| 97 | vacanc | $8.3 \times 10^{-3}$ |
| 98 | signific | $8.2 \times 10^{-3}$ |
| 99 | absorpt | $8.1 \times 10^{-3}$ |
| 100 | orbit | $8.1 \times 10^{-3}$ |

Table D.192. The list of the top 100 words in the category Physics, Fluids and Plasmas with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | plasma | $8.4 \times 10^{-2}$ |
| 2 | flow | $5.1 \times 10^{-2}$ |
| 3 | fluid | $3.7 \times 10^{-2}$ |
| 4 | numer | $3.7 \times 10^{-2}$ |
| 5 | turbul | $3.7 \times 10^{-2}$ |
| 6 | veloc | $3.6 \times 10^{-2}$ |
| 7 | reynold | $2.8 \times 10^{-2}$ |
| 8 | equat | $2.8 \times 10^{-2}$ |
| 9 | particl | $2.7 \times 10^{-2}$ |
| 10 | wave | $2.6 \times 10^{-2}$ |
| 11 | instabl | $2.5 \times 10^{-2}$ |
| 12 | simul | $2.3 \times 10^{-2}$ |
| 13 | field | $2.1 \times 10^{-2}$ |
| 14 | regim | $2 \times 10^{-2}$ |
| 15 | vortic | $2 \times 10^{-2}$ |
| 16 | discharg | $2 \times 10^{-2}$ |
| 17 | patient | $1.8 \times 10^{-2}$ |
| 18 | conclus | $1.8 \times 10^{-2}$ |
| 19 | phys | $1.8 \times 10^{-2}$ |
| 20 | dimension | $1.8 \times 10^{-2}$ |
| 21 | densiti | $1.8 \times 10^{-2}$ |
| 22 | boundari | $1.6 \times 10^{-2}$ |
| 23 | dynam | $1.5 \times 10^{-2}$ |
| 24 | wall | $1.5 \times 10^{-2}$ |
| 25 | pressur | $1.5 \times 10^{-2}$ |
| 26 | mode | $1.5 \times 10^{-2}$ |
| 27 | vortex | $1.5 \times 10^{-2}$ |
| 28 | magnet | $1.4 \times 10^{-2}$ |
| 29 | jet | $1.4 \times 10^{-2}$ |
| 30 | nonlinear | $1.3 \times 10^{-2}$ |
| 31 | perturb | $1.3 \times 10^{-2}$ |
| 32 | ion | $1.3 \times 10^{-2}$ |
| 33 | shear | $1.3 \times 10^{-2}$ |
| 34 | amplitud | $1.2 \times 10^{-2}$ |
| 35 | flux | $1.2 \times 10^{-2}$ |
| 36 | confin | $1.2 \times 10^{-2}$ |
| 37 | stoke | $1.2 \times 10^{-2}$ |
| 38 | hydrodynam | $1.2 \times 10^{-2}$ |
| 39 | year | $1.2 \times 10^{-2}$ |
| 40 | oscil | $1.2 \times 10^{-2}$ |
| 41 | experiment | $1.1 \times 10^{-2}$ |
| 42 | viscous | $1.1 \times 10^{-2}$ |
| 43 | group | $1 \times 10^{-2}$ |
| 44 | gas | $1 \times 10^{-2}$ |
| 45 | fluctuat | $1 \times 10^{-2}$ |
| 46 | clinic | $1 \times 10^{-2}$ |
| 47 | puls | $1 \times 10^{-2}$ |
| 48 | heat | $1 \times 10^{-2}$ |
| 49 | age | $1 \times 10^{-2}$ |
| 50 | steadi | $9.7 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | motion | $9.6 \times 10^{-3}$ |
| 52 | energi | $9.4 \times 10^{-3}$ |
| 53 | analyt | $9.2 \times 10^{-3}$ |
| 54 | navier | $9.2 \times 10^{-3}$ |
| 55 | forc | $9.2 \times 10^{-3}$ |
| 56 | transit | $9 \times 10^{-3}$ |
| 57 | convect | $8.9 \times 10^{-3}$ |
| 58 | propag | $8.9 \times 10^{-3}$ |
| 59 | activ | $8.7 \times 10^{-3}$ |
| 60 | scale | $8.7 \times 10^{-3}$ |
| 61 | electron | $8.6 \times 10^{-3}$ |
| 62 | viscos | $8.5 \times 10^{-3}$ |
| 63 | rotat | $8.3 \times 10^{-3}$ |
| 64 | inerti | $8.2 \times 10^{-3}$ |
| 65 | risk | $8.1 \times 10^{-3}$ |
| 66 | diseas | $8.1 \times 10^{-3}$ |
| 67 | coupl | $8.1 \times 10^{-3}$ |
| 68 | assess | $8 \times 10^{-3}$ |
| 69 | evalu | $8 \times 10^{-3}$ |
| 70 | paramet | $8 \times 10^{-3}$ |
| 71 | object | $8 \times 10^{-3}$ |
| 72 | driven | $7.9 \times 10^{-3}$ |
| 73 | agreement | $7.8 \times 10^{-3}$ |
| 74 | momentum | $7.8 \times 10^{-3}$ |
| 75 | microfluid | $7.6 \times 10^{-3}$ |
| 76 | laminar | $7.5 \times 10^{-3}$ |
| 77 | radial | $7.5 \times 10^{-3}$ |
| 78 | dissip | $7.5 \times 10^{-3}$ |
| 79 | equilibrium | $7.4 \times 10^{-3}$ |
| 80 | model | $7.4 \times 10^{-3}$ |
| 81 | diffus | $7.4 \times 10^{-3}$ |
| 82 | kinet | $7.3 \times 10^{-3}$ |
| 83 | finit | $7.3 \times 10^{-3}$ |
| 84 | number | $7.3 \times 10^{-3}$ |
| 85 | layer | $7.1 \times 10^{-3}$ |
| 86 | level | $7 \times 10^{-3}$ |
| 87 | human | $6.7 \times 10^{-3}$ |
| 88 | gene | $6.6 \times 10^{-3}$ |
| 89 | frequenc | $6.5 \times 10^{-3}$ |
| 90 | aim | $6.5 \times 10^{-3}$ |
| 91 | collis | $6.5 \times 10^{-3}$ |
| 92 | transport | $6.4 \times 10^{-3}$ |
| 93 | gradient | $6.4 \times 10^{-3}$ |
| 94 | evolut | $6.3 \times 10^{-3}$ |
| 95 | shown | $6.3 \times 10^{-3}$ |
| 96 | liquid | $6.2 \times 10^{-3}$ |
| 97 | manag | $6.2 \times 10^{-3}$ |
| 98 | law | $6.2 \times 10^{-3}$ |
| 99 | health | $6.1 \times 10^{-3}$ |
| 100 | treatment | $6.1 \times 10^{-3}$ |

Table D.193. The list of the top 100 words in the category Physics, Mathematical with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | equat | $6 \times 10^{-2}$ |
| 2 | numer | $3.2 \times 10^{-2}$ |
| 3 | quantum | $3 \times 10^{-2}$ |
| 4 | dimension | $2.6 \times 10^{-2}$ |
| 5 | conclus | $2 \times 10^{-2}$ |
| 6 | patient | $1.9 \times 10^{-2}$ |
| 7 | algebra | $1.8 \times 10^{-2}$ |
| 8 | signific | $1.8 \times 10^{-2}$ |
| 9 | hamiltonian | $1.8 \times 10^{-2}$ |
| 10 | finit | $1.7 \times 10^{-2}$ |
| 11 | space | $1.6 \times 10^{-2}$ |
| 12 | solut | $1.6 \times 10^{-2}$ |
| 13 | phys | $1.6 \times 10^{-2}$ |
| 14 | dynam | $1.5 \times 10^{-2}$ |
| 15 | theori | $1.5 \times 10^{-2}$ |
| 16 | activ | $1.4 \times 10^{-2}$ |
| 17 | general | $1.4 \times 10^{-2}$ |
| 18 | nonlinear | $1.4 \times 10^{-2}$ |
| 19 | lattic | $1.3 \times 10^{-2}$ |
| 20 | symmetri | $1.2 \times 10^{-2}$ |
| 21 | assess | $1.2 \times 10^{-2}$ |
| 22 | explicit | $1.2 \times 10^{-2}$ |
| 23 | exact | $1.2 \times 10^{-2}$ |
| 24 | year | $1.2 \times 10^{-2}$ |
| 25 | asymptot | $1.2 \times 10^{-2}$ |
| 26 | boundari | $1.2 \times 10^{-2}$ |
| 27 | increas | $1.2 \times 10^{-2}$ |
| 28 | discret | $1.1 \times 10^{-2}$ |
| 29 | clinic | $1.1 \times 10^{-2}$ |
| 30 | dure | $1.1 \times 10^{-2}$ |
| 31 | schroding | $1.1 \times 10^{-2}$ |
| 32 | arbitrari | $1.1 \times 10^{-2}$ |
| 33 | particl | $1.1 \times 10^{-2}$ |
| 34 | problem | $1.1 \times 10^{-2}$ |
| 35 | invari | $1 \times 10^{-2}$ |
| 36 | classic | $1 \times 10^{-2}$ |
| 37 | infinit | $1 \times 10^{-2}$ |
| 38 | age | $1 \times 10^{-2}$ |
| 39 | analyt | $9.9 \times 10^{-3}$ |
| 40 | expon | $9.7 \times 10^{-3}$ |
| 41 | evalu | $9.7 \times 10^{-3}$ |
| 42 | treatment | $9.2 \times 10^{-3}$ |
| 43 | wave | $9.2 \times 10^{-3}$ |
| 44 | law | $9.1 \times 10^{-3}$ |
| 45 | risk | $8.8 \times 10^{-3}$ |
| 46 | diseas | $8.7 \times 10^{-3}$ |
| 47 | prove | $8.7 \times 10^{-3}$ |
| 48 | eigenvalu | $8.6 \times 10^{-3}$ |
| 49 | manifold | $8.5 \times 10^{-3}$ |
| 50 | oscil | $8.4 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | acid | $8.2 \times 10^{-3}$ |
| 52 | entangl | $8.2 \times 10^{-3}$ |
| 53 | perturb | $8.1 \times 10^{-3}$ |
| 54 | state | $8 \times 10^{-3}$ |
| 55 | comput | $8 \times 10^{-3}$ |
| 56 | high | $7.8 \times 10^{-3}$ |
| 57 | aim | $7.7 \times 10^{-3}$ |
| 58 | field | $7.7 \times 10^{-3}$ |
| 59 | dimens | $7.7 \times 10^{-3}$ |
| 60 | human | $7.6 \times 10^{-3}$ |
| 61 | solv | $7.6 \times 10^{-3}$ |
| 62 | theorem | $7.5 \times 10^{-3}$ |
| 63 | system | $7.4 \times 10^{-3}$ |
| 64 | approxim | $7.4 \times 10^{-3}$ |
| 65 | suggest | $7.4 \times 10^{-3}$ |
| 66 | converg | $7.2 \times 10^{-3}$ |
| 67 | cell | $7.2 \times 10^{-3}$ |
| 68 | day | $7.2 \times 10^{-3}$ |
| 69 | stochast | $7.1 \times 10^{-3}$ |
| 70 | design | $7 \times 10^{-3}$ |
| 71 | report | $7 \times 10^{-3}$ |
| 72 | indic | $7 \times 10^{-3}$ |
| 73 | compar | $7 \times 10^{-3}$ |
| 74 | model | $6.9 \times 10^{-3}$ |
| 75 | gene | $6.9 \times 10^{-3}$ |
| 76 | scheme | $6.9 \times 10^{-3}$ |
| 77 | research | $6.8 \times 10^{-3}$ |
| 78 | health | $6.8 \times 10^{-3}$ |
| 79 | bifurc | $6.8 \times 10^{-3}$ |
| 80 | formula | $6.8 \times 10^{-3}$ |
| 81 | protein | $6.8 \times 10^{-3}$ |
| 82 | exampl | $6.7 \times 10^{-3}$ |
| 83 | consid | $6.7 \times 10^{-3}$ |
| 84 | entropi | $6.6 \times 10^{-3}$ |
| 85 | object | $6.5 \times 10^{-3}$ |
| 86 | diffus | $6.5 \times 10^{-3}$ |
| 87 | singular | $6.5 \times 10^{-3}$ |
| 88 | polynomi | $6.5 \times 10^{-3}$ |
| 89 | deriv | $6.4 \times 10^{-3}$ |
| 90 | coupl | $6.3 \times 10^{-3}$ |
| 91 | regim | $6.3 \times 10^{-3}$ |
| 92 | level | $6.3 \times 10^{-3}$ |
| 93 | improv | $6.3 \times 10^{-3}$ |
| 94 | background | $6.2 \times 10^{-3}$ |
| 95 | month | $6.1 \times 10^{-3}$ |
| 96 | correspond | $6.1 \times 10^{-3}$ |
| 97 | sampl | $6.1 \times 10^{-3}$ |
| 98 | fluctuat | $6.1 \times 10^{-3}$ |
| 99 | data | $6 \times 10^{-3}$ |
| 100 | factor | $6 \times 10^{-3}$ |

Table D.194. The list of the top 100 words in the category Physics, Multidisciplinary with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | quantum | $4.8 \times 10^{-2}$ |
| 2 | spin | $2.2 \times 10^{-2}$ |
| 3 | patient | $2.1 \times 10^{-2}$ |
| 4 | conclus | $2.1 \times 10^{-2}$ |
| 5 | state | $1.7 \times 10^{-2}$ |
| 6 | energi | $1.7 \times 10^{-2}$ |
| 7 | equat | $1.6 \times 10^{-2}$ |
| 8 | wave | $1.5 \times 10^{-2}$ |
| 9 | signific | $1.5 \times 10^{-2}$ |
| 10 | field | $1.5 \times 10^{-2}$ |
| 11 | assess | $1.4 \times 10^{-2}$ |
| 12 | symmetri | $1.3 \times 10^{-2}$ |
| 13 | entangl | $1.3 \times 10^{-2}$ |
| 14 | theori | $1.3 \times 10^{-2}$ |
| 15 | clinic | $1.2 \times 10^{-2}$ |
| 16 | evalu | $1.2 \times 10^{-2}$ |
| 17 | transit | $1.2 \times 10^{-2}$ |
| 18 | activ | $1.2 \times 10^{-2}$ |
| 19 | diseas | $1.1 \times 10^{-2}$ |
| 20 | age | $1.1 \times 10^{-2}$ |
| 21 | lattic | $1.1 \times 10^{-2}$ |
| 22 | year | $1.1 \times 10^{-2}$ |
| 23 | magnet | $1.1 \times 10^{-2}$ |
| 24 | particl | $1 \times 10^{-2}$ |
| 25 | atom | $1 \times 10^{-2}$ |
| 26 | momentum | $9.9 \times 10^{-3}$ |
| 27 | risk | $9.9 \times 10^{-3}$ |
| 28 | electron | $9.8 \times 10^{-3}$ |
| 29 | aim | $9.6 \times 10^{-3}$ |
| 30 | treatment | $9.5 \times 10^{-3}$ |
| 31 | dimension | $8.9 \times 10^{-3}$ |
| 32 | hamiltonian | $8.7 \times 10^{-3}$ |
| 33 | develop | $8.7 \times 10^{-3}$ |
| 34 | gene | $8.6 \times 10^{-3}$ |
| 35 | object | $8.6 \times 10^{-3}$ |
| 36 | human | $8.4 \times 10^{-3}$ |
| 37 | photon | $8.2 \times 10^{-3}$ |
| 38 | dure | $8.2 \times 10^{-3}$ |
| 39 | scatter | $8 \times 10^{-3}$ |
| 40 | associ | $8 \times 10^{-3}$ |
| 41 | fermion | $8 \times 10^{-3}$ |
| 42 | improv | $8 \times 10^{-3}$ |
| 43 | protein | $7.9 \times 10^{-3}$ |
| 44 | coupl | $7.9 \times 10^{-3}$ |
| 45 | einstein | $7.8 \times 10^{-3}$ |
| 46 | test | $7.7 \times 10^{-3}$ |
| 47 | excit | $7.7 \times 10^{-3}$ |
| 48 | cell | $7.6 \times 10^{-3}$ |
| 49 | calcul | $7.5 \times 10^{-3}$ |
| 50 | health | $7.5 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | dynam | $7.3 \times 10^{-3}$ |
| 52 | phase | $7.3 \times 10^{-3}$ |
| 53 | decay | $7.2 \times 10^{-3}$ |
| 54 | manag | $7.2 \times 10^{-3}$ |
| 55 | oscil | $7.1 \times 10^{-3}$ |
| 56 | group | $7 \times 10^{-3}$ |
| 57 | dirac | $7 \times 10^{-3}$ |
| 58 | howev | $6.9 \times 10^{-3}$ |
| 59 | boson | $6.9 \times 10^{-3}$ |
| 60 | day | $6.7 \times 10^{-3}$ |
| 61 | theoret | $6.6 \times 10^{-3}$ |
| 62 | charg | $6.5 \times 10^{-3}$ |
| 63 | relativist | $6.4 \times 10^{-3}$ |
| 64 | superconduct | $6.4 \times 10^{-3}$ |
| 65 | result | $6.4 \times 10^{-3}$ |
| 66 | densiti | $6.4 \times 10^{-3}$ |
| 67 | outcom | $6.4 \times 10^{-3}$ |
| 68 | cosmolog | $6.3 \times 10^{-3}$ |
| 69 | particip | $6.3 \times 10^{-3}$ |
| 70 | month | $6.2 \times 10^{-3}$ |
| 71 | perform | $6.2 \times 10^{-3}$ |
| 72 | gravit | $6.1 \times 10^{-3}$ |
| 73 | suggest | $6.1 \times 10^{-3}$ |
| 74 | acid | $6 \times 10^{-3}$ |
| 75 | regul | $6 \times 10^{-3}$ |
| 76 | fermi | $6 \times 10^{-3}$ |
| 77 | physic | $6 \times 10^{-3}$ |
| 78 | identifi | $6 \times 10^{-3}$ |
| 79 | spacetim | $5.9 \times 10^{-3}$ |
| 80 | design | $5.9 \times 10^{-3}$ |
| 81 | schroding | $5.9 \times 10^{-3}$ |
| 82 | exact | $5.9 \times 10^{-3}$ |
| 83 | increas | $5.8 \times 10^{-3}$ |
| 84 | level | $5.7 \times 10^{-3}$ |
| 85 | studi | $5.7 \times 10^{-3}$ |
| 86 | interact | $5.6 \times 10^{-3}$ |
| 87 | entropi | $5.6 \times 10^{-3}$ |
| 88 | neutron | $5.6 \times 10^{-3}$ |
| 89 | research | $5.6 \times 10^{-3}$ |
| 90 | examin | $5.6 \times 10^{-3}$ |
| 91 | among | $5.5 \times 10^{-3}$ |
| 92 | orbit | $5.4 \times 10^{-3}$ |
| 93 | background | $5.4 \times 10^{-3}$ |
| 94 | adult | $5.3 \times 10^{-3}$ |
| 95 | compar | $5.2 \times 10^{-3}$ |
| 96 | major | $5.2 \times 10^{-3}$ |
| 97 | cancer | $5.2 \times 10^{-3}$ |
| 98 | includ | $5.2 \times 10^{-3}$ |
| 99 | may | $5.1 \times 10^{-3}$ |
| 100 | method | $5.1 \times 10^{-3}$ |

Table D.195. The list of the top 100 words in the category Physics, Nuclear with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | neutron | $7.8 \times 10^{-2}$ |
| 2 | mev | $7.1 \times 10^{-2}$ |
| 3 | energi | $6.3 \times 10^{-2}$ |
| 4 | nucleon | $5.2 \times 10^{-2}$ |
| 5 | nuclear | $4.8 \times 10^{-2}$ |
| 6 | nuclei | $4.4 \times 10^{-2}$ |
| 7 | beam | $4.2 \times 10^{-2}$ |
| 8 | proton | $4.2 \times 10^{-2}$ |
| 9 | collis | $4 \times 10^{-2}$ |
| 10 | gev | $3.9 \times 10^{-2}$ |
| 11 | hadron | $3.9 \times 10^{-2}$ |
| 12 | detector | $3.8 \times 10^{-2}$ |
| 13 | quark | $3.6 \times 10^{-2}$ |
| 14 | decay | $3.4 \times 10^{-2}$ |
| 15 | lhe | $3.1 \times 10^{-2}$ |
| 16 | heavi | $2.8 \times 10^{-2}$ |
| 17 | momentum | $2.6 \times 10^{-2}$ |
| 18 | meson | $2.6 \times 10^{-2}$ |
| 19 | particl | $2.4 \times 10^{-2}$ |
| 20 | gamma | $2.3 \times 10^{-2}$ |
| 21 | qcd | $2.3 \times 10^{-2}$ |
| 22 | kev | $2.2 \times 10^{-2}$ |
| 23 | calcul | $2.2 \times 10^{-2}$ |
| 24 | ion | $2.1 \times 10^{-2}$ |
| 25 | collid | $2.1 \times 10^{-2}$ |
| 26 | relativist | $2 \times 10^{-2}$ |
| 27 | gluon | $1.9 \times 10^{-2}$ |
| 28 | section | $1.8 \times 10^{-2}$ |
| 29 | tev | $1.8 \times 10^{-2}$ |
| 30 | scatter | $1.8 \times 10^{-2}$ |
| 31 | patient | $1.8 \times 10^{-2}$ |
| 32 | fission | $1.7 \times 10^{-2}$ |
| 33 | nucleus | $1.7 \times 10^{-2}$ |
| 34 | charg | $1.7 \times 10^{-2}$ |
| 35 | isotop | $1.6 \times 10^{-2}$ |
| 36 | excit | $1.6 \times 10^{-2}$ |
| 37 | neutrino | $1.5 \times 10^{-2}$ |
| 38 | mass | $1.4 \times 10^{-2}$ |
| 39 | baryon | $1.4 \times 10^{-2}$ |
| 40 | cross | $1.4 \times 10^{-2}$ |
| 41 | conclus | $1.4 \times 10^{-2}$ |
| 42 | symmetri | $1.4 \times 10^{-2}$ |
| 43 | matter | $1.3 \times 10^{-2}$ |
| 44 | scintil | $1.2 \times 10^{-2}$ |
| 45 | transvers | $1.2 \times 10^{-2}$ |
| 46 | signific | $1.2 \times 10^{-2}$ |
| 47 | angular | $1.1 \times 10^{-2}$ |
| 48 | cell | $1.1 \times 10^{-2}$ |
| 49 | acceler | $1.1 \times 10^{-2}$ |
| 50 | control | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | boson | $1.1 \times 10^{-2}$ |
| 52 | assess | $1 \times 10^{-2}$ |
| 53 | spin | $1 \times 10^{-2}$ |
| 54 | age | $9.8 \times 10^{-3}$ |
| 55 | diseas | $9.8 \times 10^{-3}$ |
| 56 | clinic | $9.7 \times 10^{-3}$ |
| 57 | state | $9.7 \times 10^{-3}$ |
| 58 | scalar | $9.5 \times 10^{-3}$ |
| 59 | increas | $9.5 \times 10^{-3}$ |
| 60 | protein | $9.4 \times 10^{-3}$ |
| 61 | radiat | $9.4 \times 10^{-3}$ |
| 62 | reaction | $9.4 \times 10^{-3}$ |
| 63 | experiment | $9.4 \times 10^{-3}$ |
| 64 | photon | $9.3 \times 10^{-3}$ |
| 65 | facil | $9.2 \times 10^{-3}$ |
| 66 | radioact | $9 \times 10^{-3}$ |
| 67 | ray | $8.7 \times 10^{-3}$ |
| 68 | risk | $8.4 \times 10^{-3}$ |
| 69 | human | $8.4 \times 10^{-3}$ |
| 70 | associ | $8.4 \times 10^{-3}$ |
| 71 | higg | $8.3 \times 10^{-3}$ |
| 72 | lepton | $8.2 \times 10^{-3}$ |
| 73 | coulomb | $8.2 \times 10^{-3}$ |
| 74 | treatment | $8.2 \times 10^{-3}$ |
| 75 | gene | $8.1 \times 10^{-3}$ |
| 76 | shell | $8.1 \times 10^{-3}$ |
| 77 | measur | $8.1 \times 10^{-3}$ |
| 78 | astrophys | $7.9 \times 10^{-3}$ |
| 79 | object | $7.4 \times 10^{-3}$ |
| 80 | activ | $7.4 \times 10^{-3}$ |
| 81 | carlo | $7.3 \times 10^{-3}$ |
| 82 | quadrupol | $7.3 \times 10^{-3}$ |
| 83 | group | $7.2 \times 10^{-3}$ |
| 84 | mont | $7.2 \times 10^{-3}$ |
| 85 | gaug | $7.2 \times 10^{-3}$ |
| 86 | spectromet | $6.9 \times 10^{-3}$ |
| 87 | acid | $6.9 \times 10^{-3}$ |
| 88 | examin | $6.8 \times 10^{-3}$ |
| 89 | discuss | $6.8 \times 10^{-3}$ |
| 90 | physic | $6.5 \times 10^{-3}$ |
| 91 | suggest | $6.5 \times 10^{-3}$ |
| 92 | chiral | $6.5 \times 10^{-3}$ |
| 93 | pariti | $6.4 \times 10^{-3}$ |
| 94 | howev | $6.3 \times 10^{-3}$ |
| 95 | agreement | $6.3 \times 10^{-3}$ |
| 96 | cosmic | $6.2 \times 10^{-3}$ |
| 97 | health | $6.1 \times 10^{-3}$ |
| 98 | bar | $5.9 \times 10^{-3}$ |
| 99 | experi | $5.9 \times 10^{-3}$ |
| 100 | flavor | $5.9 \times 10^{-3}$ |

Table D.196. The list of the top 100 words in the category Physics, Particles and Fields with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | scalar | $7.3 \times 10^{-2}$ |
| 2 | quark | $6.4 \times 10^{-2}$ |
| 3 | higg | $5.9 \times 10^{-2}$ |
| 4 | gaug | $5.9 \times 10^{-2}$ |
| 5 | lhc | $5.9 \times 10^{-2}$ |
| 6 | cosmolog | $5.3 \times 10^{-2}$ |
| 7 | gev | $5.2 \times 10^{-2}$ |
| 8 | boson | $5.2 \times 10^{-2}$ |
| 9 | decay | $4.8 \times 10^{-2}$ |
| 10 | neutrino | $4.5 \times 10^{-2}$ |
| 11 | qcd | $4.4 \times 10^{-2}$ |
| 12 | tev | $4.2 \times 10^{-2}$ |
| 13 | hadron | $4.2 \times 10^{-2}$ |
| 14 | symmetri | $4 \times 10^{-2}$ |
| 15 | lepton | $4 \times 10^{-2}$ |
| 16 | theori | $3.9 \times 10^{-2}$ |
| 17 | mass | $3.7 \times 10^{-2}$ |
| 18 | spacetim | $3.7 \times 10^{-2}$ |
| 19 | supersymmetr | $3.6 \times 10^{-2}$ |
| 20 | matter | $3.6 \times 10^{-2}$ |
| 21 | graviti | $3.5 \times 10^{-2}$ |
| 22 | gravit | $3.5 \times 10^{-2}$ |
| 23 | collid | $3.3 \times 10^{-2}$ |
| 24 | energi | $3.2 \times 10^{-2}$ |
| 25 | dark | $3.1 \times 10^{-2}$ |
| 26 | momentum | $3 \times 10^{-2}$ |
| 27 | meson | $2.9 \times 10^{-2}$ |
| 28 | cosmic | $2.8 \times 10^{-2}$ |
| 29 | fermion | $2.8 \times 10^{-2}$ |
| 30 | field | $2.8 \times 10^{-2}$ |
| 31 | detector | $2.8 \times 10^{-2}$ |
| 32 | perturb | $2.6 \times 10^{-2}$ |
| 33 | violat | $2.4 \times 10^{-2}$ |
| 34 | tensor | $2.3 \times 10^{-2}$ |
| 35 | gluon | $2.3 \times 10^{-2}$ |
| 36 | coupl | $2.3 \times 10^{-2}$ |
| 37 | baryon | $2.2 \times 10^{-2}$ |
| 38 | einstein | $2.1 \times 10^{-2}$ |
| 39 | quantum | $2.1 \times 10^{-2}$ |
| 40 | flavor | $2.1 \times 10^{-2}$ |
| 41 | particl | $2.1 \times 10^{-2}$ |
| 42 | patient | $2.1 \times 10^{-2}$ |
| 43 | charg | $1.9 \times 10^{-2}$ |
| 44 | invari | $1.9 \times 10^{-2}$ |
| 45 | planck | $1.9 \times 10^{-2}$ |
| 46 | collis | $1.9 \times 10^{-2}$ |
| 47 | conclus | $1.9 \times 10^{-2}$ |
| 48 | increas | $1.9 \times 10^{-2}$ |
| 49 | string | $1.9 \times 10^{-2}$ |
| 50 | black | $1.9 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | proton | $1.8 \times 10^{-2}$ |
| 52 | nucleon | $1.8 \times 10^{-2}$ |
| 53 | hole | $1.8 \times 10^{-2}$ |
| 54 | neutron | $1.7 \times 10^{-2}$ |
| 55 | relativist | $1.7 \times 10^{-2}$ |
| 56 | space | $1.6 \times 10^{-2}$ |
| 57 | cell | $1.6 \times 10^{-2}$ |
| 58 | inflat | $1.6 \times 10^{-2}$ |
| 59 | mev | $1.6 \times 10^{-2}$ |
| 60 | activ | $1.5 \times 10^{-2}$ |
| 61 | control | $1.5 \times 10^{-2}$ |
| 62 | method | $1.5 \times 10^{-2}$ |
| 63 | bar | $1.4 \times 10^{-2}$ |
| 64 | spin | $1.4 \times 10^{-2}$ |
| 65 | assess | $1.4 \times 10^{-2}$ |
| 66 | constraint | $1.4 \times 10^{-2}$ |
| 67 | vacuum | $1.4 \times 10^{-2}$ |
| 68 | luminos | $1.3 \times 10^{-2}$ |
| 69 | equat | $1.3 \times 10^{-2}$ |
| 70 | signific | $1.3 \times 10^{-2}$ |
| 71 | heavi | $1.3 \times 10^{-2}$ |
| 72 | gamma | $1.2 \times 10^{-2}$ |
| 73 | physic | $1.2 \times 10^{-2}$ |
| 74 | chiral | $1.2 \times 10^{-2}$ |
| 75 | phenomenolog | $1.2 \times 10^{-2}$ |
| 76 | diseas | $1.2 \times 10^{-2}$ |
| 77 | clinic | $1.2 \times 10^{-2}$ |
| 78 | transvers | $1.2 \times 10^{-2}$ |
| 79 | protein | $1.1 \times 10^{-2}$ |
| 80 | dirac | $1.1 \times 10^{-2}$ |
| 81 | horizon | $1.1 \times 10^{-2}$ |
| 82 | model | $1.1 \times 10^{-2}$ |
| 83 | sigma | $1.1 \times 10^{-2}$ |
| 84 | loop | $1.1 \times 10^{-2}$ |
| 85 | human | $1.1 \times 10^{-2}$ |
| 86 | age | $1.1 \times 10^{-2}$ |
| 87 | univers | $1.1 \times 10^{-2}$ |
| 88 | angular | $1.1 \times 10^{-2}$ |
| 89 | treatment | $1 \times 10^{-2}$ |
| 90 | break | $1 \times 10^{-2}$ |
| 91 | risk | $1 \times 10^{-2}$ |
| 92 | scatter | $1 \times 10^{-2}$ |
| 93 | photon | $1 \times 10^{-2}$ |
| 94 | discuss | $1 \times 10^{-2}$ |
| 95 | massiv | $9.9 \times 10^{-3}$ |
| 96 | evalu | $9.8 \times 10^{-3}$ |
| 97 | astrophys | $9.8 \times 10^{-3}$ |
| 98 | sector | $9.6 \times 10^{-3}$ |
| 99 | beam | $9.6 \times 10^{-3}$ |
| 100 | correct | $9.6 \times 10^{-3}$ |

Table D.197. The list of the top 100 words in the category Physiology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | muscl | $4.6 \times 10^{-2}$ |
| 2 | activ | $3.8 \times 10^{-2}$ |
| 3 | induc | $3.7 \times 10^{-2}$ |
| 4 | rat | $3.6 \times 10^{-2}$ |
| 5 | express | $3 \times 10^{-2}$ |
| 6 | increas | $3 \times 10^{-2}$ |
| 7 | paper | $2.7 \times 10^{-2}$ |
| 8 | receptor | $2.5 \times 10^{-2}$ |
| 9 | regul | $2.4 \times 10^{-2}$ |
| 10 | respons | $2.4 \times 10^{-2}$ |
| 11 | physiolog | $2.4 \times 10^{-2}$ |
| 12 | protein | $2.4 \times 10^{-2}$ |
| 13 | stimul | $2.4 \times 10^{-2}$ |
| 14 | exercis | $2.3 \times 10^{-2}$ |
| 15 | decreas | $2.1 \times 10^{-2}$ |
| 16 | inhibit | $2.1 \times 10^{-2}$ |
| 17 | mediat | $2.1 \times 10^{-2}$ |
| 18 | mice | $2 \times 10^{-2}$ |
| 19 | cell | $1.9 \times 10^{-2}$ |
| 20 | min | $1.9 \times 10^{-2}$ |
| 21 | suggest | $1.9 \times 10^{-2}$ |
| 22 | heart | $1.8 \times 10^{-2}$ |
| 23 | dure | $1.8 \times 10^{-2}$ |
| 24 | blood | $1.8 \times 10^{-2}$ |
| 25 | alter | $1.7 \times 10^{-2}$ |
| 26 | metabol | $1.6 \times 10^{-2}$ |
| 27 | ca2 | $1.6 \times 10^{-2}$ |
| 28 | neuron | $1.6 \times 10^{-2}$ |
| 29 | arteri | $1.4 \times 10^{-2}$ |
| 30 | level | $1.4 \times 10^{-2}$ |
| 31 | signific | $1.4 \times 10^{-2}$ |
| 32 | role | $1.3 \times 10^{-2}$ |
| 33 | tissu | $1.3 \times 10^{-2}$ |
| 34 | chang | $1.3 \times 10^{-2}$ |
| 35 | mrna | $1.3 \times 10^{-2}$ |
| 36 | male | $1.3 \times 10^{-2}$ |
| 37 | skelet | $1.3 \times 10^{-2}$ |
| 38 | day | $1.3 \times 10^{-2}$ |
| 39 | rest | $1.3 \times 10^{-2}$ |
| 40 | bodi | $1.2 \times 10^{-2}$ |
| 41 | contract | $1.2 \times 10^{-2}$ |
| 42 | whether | $1.2 \times 10^{-2}$ |
| 43 | healthi | $1.2 \times 10^{-2}$ |
| 44 | cardiac | $1.2 \times 10^{-2}$ |
| 45 | evok | $1.2 \times 10^{-2}$ |
| 46 | anim | $1.1 \times 10^{-2}$ |
| 47 | attenu | $1.1 \times 10^{-2}$ |
| 48 | effect | $1.1 \times 10^{-2}$ |
| 49 | hypoxia | $1.1 \times 10^{-2}$ |
| 50 | may | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | phosphoryl | $1.1 \times 10^{-2}$ |
| 52 | vascular | $1.1 \times 10^{-2}$ |
| 53 | pathway | $1.1 \times 10^{-2}$ |
| 54 | studi | $1 \times 10^{-2}$ |
| 55 | base | $1 \times 10^{-2}$ |
| 56 | inhibitor | $1 \times 10^{-2}$ |
| 57 | signal | $1 \times 10^{-2}$ |
| 58 | kinas | $1 \times 10^{-2}$ |
| 59 | glucos | $9.9 \times 10^{-3}$ |
| 60 | propos | $9.7 \times 10^{-3}$ |
| 61 | mechan | $9.5 \times 10^{-3}$ |
| 62 | insulin | $9.1 \times 10^{-3}$ |
| 63 | control | $9.1 \times 10^{-3}$ |
| 64 | intracellular | $9 \times 10^{-3}$ |
| 65 | impair | $9 \times 10^{-3}$ |
| 66 | alpha | $8.8 \times 10^{-3}$ |
| 67 | hypothes | $8.7 \times 10^{-3}$ |
| 68 | reduc | $8.6 \times 10^{-3}$ |
| 69 | agonist | $8.6 \times 10^{-3}$ |
| 70 | mous | $8.5 \times 10^{-3}$ |
| 71 | subject | $8.3 \times 10^{-3}$ |
| 72 | membran | $8.3 \times 10^{-3}$ |
| 73 | elev | $8.2 \times 10^{-3}$ |
| 74 | injuri | $8.2 \times 10^{-3}$ |
| 75 | acut | $8.1 \times 10^{-3}$ |
| 76 | oxygen | $7.8 \times 10^{-3}$ |
| 77 | antagonist | $7.8 \times 10^{-3}$ |
| 78 | function | $7.8 \times 10^{-3}$ |
| 79 | howev | $7.7 \times 10^{-3}$ |
| 80 | abolish | $7.6 \times 10^{-3}$ |
| 81 | diet | $7.6 \times 10^{-3}$ |
| 82 | renal | $7.6 \times 10^{-3}$ |
| 83 | record | $7.5 \times 10^{-3}$ |
| 84 | extracellular | $7.5 \times 10^{-3}$ |
| 85 | clamp | $7.4 \times 10^{-3}$ |
| 86 | problem | $7.4 \times 10^{-3}$ |
| 87 | plasma | $7.3 \times 10^{-3}$ |
| 88 | nitric | $7.3 \times 10^{-3}$ |
| 89 | kidney | $7.2 \times 10^{-3}$ |
| 90 | upregul | $7.2 \times 10^{-3}$ |
| 91 | hypothesi | $7.2 \times 10^{-3}$ |
| 92 | stress | $7.2 \times 10^{-3}$ |
| 93 | vivo | $7.2 \times 10^{-3}$ |
| 94 | blot | $7.1 \times 10^{-3}$ |
| 95 | modul | $7.1 \times 10^{-3}$ |
| 96 | materi | $7.1 \times 10^{-3}$ |
| 97 | stimulus | $7 \times 10^{-3}$ |
| 98 | stimuli | $7 \times 10^{-3}$ |
| 99 | endotheli | $7 \times 10^{-3}$ |
| 100 | cardiovascular | $7 \times 10^{-3}$ |

Table D.198. The list of the top 100 words in the category Planning and Development with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | polici | $6.7 \times 10^{-2}$ |
| 2 | econom | $5 \times 10^{-2}$ |
| 3 | govern | $4 \times 10^{-2}$ |
| 4 | countri | $4 \times 10^{-2}$ |
| 5 | market | $3.6 \times 10^{-2}$ |
| 6 | articl | $3.4 \times 10^{-2}$ |
| 7 | social | $3.4 \times 10^{-2}$ |
| 8 | polit | $3.3 \times 10^{-2}$ |
| 9 | urban | $3.1 \times 10^{-2}$ |
| 10 | economi | $3 \times 10^{-2}$ |
| 11 | sector | $2.9 \times 10^{-2}$ |
| 12 | rural | $2.5 \times 10^{-2}$ |
| 13 | argu | $2.5 \times 10^{-2}$ |
| 14 | citi | $2.3 \times 10^{-2}$ |
| 15 | develop | $2.3 \times 10^{-2}$ |
| 16 | innov | $2.2 \times 10^{-2}$ |
| 17 | institut | $2.1 \times 10^{-2}$ |
| 18 | household | $2.1 \times 10^{-2}$ |
| 19 | capit | $2.1 \times 10^{-2}$ |
| 20 | public | $2.1 \times 10^{-2}$ |
| 21 | research | $2.1 \times 10^{-2}$ |
| 22 | actor | $1.9 \times 10^{-2}$ |
| 23 | incom | $1.9 \times 10^{-2}$ |
| 24 | invest | $1.8 \times 10^{-2}$ |
| 25 | paper | $1.8 \times 10^{-2}$ |
| 26 | busi | $1.7 \times 10^{-2}$ |
| 27 | poverti | $1.7 \times 10^{-2}$ |
| 28 | empir | $1.7 \times 10^{-2}$ |
| 29 | agricultur | $1.6 \times 10^{-2}$ |
| 30 | sustain | $1.6 \times 10^{-2}$ |
| 31 | cell | $1.6 \times 10^{-2}$ |
| 32 | firm | $1.6 \times 10^{-2}$ |
| 33 | patient | $1.6 \times 10^{-2}$ |
| 34 | method | $1.5 \times 10^{-2}$ |
| 35 | nation | $1.4 \times 10^{-2}$ |
| 36 | communiti | $1.3 \times 10^{-2}$ |
| 37 | financi | $1.3 \times 10^{-2}$ |
| 38 | draw | $1.3 \times 10^{-2}$ |
| 39 | privat | $1.3 \times 10^{-2}$ |
| 40 | land | $1.3 \times 10^{-2}$ |
| 41 | impact | $1.3 \times 10^{-2}$ |
| 42 | focus | $1.2 \times 10^{-2}$ |
| 43 | context | $1.2 \times 10^{-2}$ |
| 44 | africa | $1.2 \times 10^{-2}$ |
| 45 | farmer | $1.2 \times 10^{-2}$ |
| 46 | plan | $1.2 \times 10^{-2}$ |
| 47 | resourc | $1.2 \times 10^{-2}$ |
| 48 | strateg | $1.1 \times 10^{-2}$ |
| 49 | industri | $1.1 \times 10^{-2}$ |
| 50 | debat | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | opportun | $1.1 \times 10^{-2}$ |
| 52 | agenda | $1.1 \times 10^{-2}$ |
| 53 | fund | $1.1 \times 10^{-2}$ |
| 54 | result | $1.1 \times 10^{-2}$ |
| 55 | find | $1.1 \times 10^{-2}$ |
| 56 | temperatur | $1 \times 10^{-2}$ |
| 57 | trade | $1 \times 10^{-2}$ |
| 58 | labour | $9.9 \times 10^{-3}$ |
| 59 | hous | $9.8 \times 10^{-3}$ |
| 60 | reform | $9.5 \times 10^{-3}$ |
| 61 | project | $9.5 \times 10^{-3}$ |
| 62 | clinic | $9.4 \times 10^{-3}$ |
| 63 | issu | $9.2 \times 10^{-3}$ |
| 64 | surfac | $9.1 \times 10^{-3}$ |
| 65 | livelihood | $9 \times 10^{-3}$ |
| 66 | literatur | $9 \times 10^{-3}$ |
| 67 | manag | $8.9 \times 10^{-3}$ |
| 68 | obtain | $8.8 \times 10^{-3}$ |
| 69 | local | $8.8 \times 10^{-3}$ |
| 70 | compani | $8.8 \times 10^{-3}$ |
| 71 | intern | $8.7 \times 10^{-3}$ |
| 72 | paramet | $8.7 \times 10^{-3}$ |
| 73 | organis | $8.6 \times 10^{-3}$ |
| 74 | perspect | $8.5 \times 10^{-3}$ |
| 75 | practic | $8.5 \times 10^{-3}$ |
| 76 | societi | $8.5 \times 10^{-3}$ |
| 77 | enterpris | $8.5 \times 10^{-3}$ |
| 78 | protein | $8.3 \times 10^{-3}$ |
| 79 | detect | $8.3 \times 10^{-3}$ |
| 80 | explor | $8.3 \times 10^{-3}$ |
| 81 | experiment | $8.2 \times 10^{-3}$ |
| 82 | global | $8.2 \times 10^{-3}$ |
| 83 | financ | $8.1 \times 10^{-3}$ |
| 84 | foreign | $8 \times 10^{-3}$ |
| 85 | conclus | $7.9 \times 10^{-3}$ |
| 86 | servic | $7.9 \times 10^{-3}$ |
| 87 | way | $7.8 \times 10^{-3}$ |
| 88 | discours | $7.8 \times 10^{-3}$ |
| 89 | world | $7.7 \times 10^{-3}$ |
| 90 | peopl | $7.6 \times 10^{-3}$ |
| 91 | simul | $7.6 \times 10^{-3}$ |
| 92 | territori | $7.5 \times 10^{-3}$ |
| 93 | treatment | $7.4 \times 10^{-3}$ |
| 94 | framework | $7.4 \times 10^{-3}$ |
| 95 | knowledg | $7.4 \times 10^{-3}$ |
| 96 | interview | $7.2 \times 10^{-3}$ |
| 97 | socio | $7.2 \times 10^{-3}$ |
| 98 | emerg | $7.1 \times 10^{-3}$ |
| 99 | stakehold | $7.1 \times 10^{-3}$ |
| 100 | survey | $7.1 \times 10^{-3}$ |

Table D.199. The list of the top 100 words in the category Plant Sciences with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | plant | $2.1 \times 10^{-1}$ |
| 2 | speci | $8.4 \times 10^{-2}$ |
| 3 | leaf | $6.2 \times 10^{-2}$ |
| 4 | arabidopsi | $5.7 \times 10^{-2}$ |
| 5 | cultivar | $4.7 \times 10^{-2}$ |
| 6 | leav | $4.6 \times 10^{-2}$ |
| 7 | root | $4.2 \times 10^{-2}$ |
| 8 | gene | $4 \times 10^{-2}$ |
| 9 | flower | $4 \times 10^{-2}$ |
| 10 | seed | $3.8 \times 10^{-2}$ |
| 11 | seedl | $3.7 \times 10^{-2}$ |
| 12 | crop | $3.6 \times 10^{-2}$ |
| 13 | thaliana | $3.4 \times 10^{-2}$ |
| 14 | shoot | $3.1 \times 10^{-2}$ |
| 15 | fruit | $2.8 \times 10^{-2}$ |
| 16 | trait | $2.6 \times 10^{-2}$ |
| 17 | soil | $2.5 \times 10^{-2}$ |
| 18 | paper | $2.5 \times 10^{-2}$ |
| 19 | growth | $2.4 \times 10^{-2}$ |
| 20 | germin | $2.1 \times 10^{-2}$ |
| 21 | photosynthet | $2.1 \times 10^{-2}$ |
| 22 | ethnopharmacolog | $2.1 \times 10^{-2}$ |
| 23 | patient | $2 \times 10^{-2}$ |
| 24 | breed | $1.9 \times 10^{-2}$ |
| 25 | isol | $1.9 \times 10^{-2}$ |
| 26 | genet | $1.9 \times 10^{-2}$ |
| 27 | accumul | $1.9 \times 10^{-2}$ |
| 28 | genus | $1.9 \times 10^{-2}$ |
| 29 | rice | $1.8 \times 10^{-2}$ |
| 30 | veget | $1.7 \times 10^{-2}$ |
| 31 | grown | $1.7 \times 10^{-2}$ |
| 32 | tree | $1.7 \times 10^{-2}$ |
| 33 | photosynthesi | $1.6 \times 10^{-2}$ |
| 34 | transgen | $1.6 \times 10^{-2}$ |
| 35 | drought | $1.6 \times 10^{-2}$ |
| 36 | wheat | $1.6 \times 10^{-2}$ |
| 37 | mutant | $1.5 \times 10^{-2}$ |
| 38 | transcript | $1.5 \times 10^{-2}$ |
| 39 | wild | $1.5 \times 10^{-2}$ |
| 40 | toler | $1.5 \times 10^{-2}$ |
| 41 | pollen | $1.5 \times 10^{-2}$ |
| 42 | biosynthesi | $1.5 \times 10^{-2}$ |
| 43 | phylogenet | $1.4 \times 10^{-2}$ |
| 44 | abiot | $1.4 \times 10^{-2}$ |
| 45 | chlorophyl | $1.4 \times 10^{-2}$ |
| 46 | stress | $1.4 \times 10^{-2}$ |
| 47 | acid | $1.4 \times 10^{-2}$ |
| 48 | taxa | $1.3 \times 10^{-2}$ |
| 49 | divers | $1.3 \times 10^{-2}$ |
| 50 | genotyp | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | sequenc | $1.3 \times 10^{-2}$ |
| 52 | genom | $1.3 \times 10^{-2}$ |
| 53 | content | $1.3 \times 10^{-2}$ |
| 54 | cultiv | $1.3 \times 10^{-2}$ |
| 55 | pathogen | $1.3 \times 10^{-2}$ |
| 56 | express | $1.3 \times 10^{-2}$ |
| 57 | germplasm | $1.2 \times 10^{-2}$ |
| 58 | inocul | $1.2 \times 10^{-2}$ |
| 59 | regul | $1.2 \times 10^{-2}$ |
| 60 | sativa | $1.2 \times 10^{-2}$ |
| 61 | tomato | $1.1 \times 10^{-2}$ |
| 62 | nutrient | $1.1 \times 10^{-2}$ |
| 63 | protein | $1.1 \times 10^{-2}$ |
| 64 | loci | $1 \times 10^{-2}$ |
| 65 | phenotyp | $1 \times 10^{-2}$ |
| 66 | simul | $1 \times 10^{-2}$ |
| 67 | propos | $1 \times 10^{-2}$ |
| 68 | pollin | $1 \times 10^{-2}$ |
| 69 | model | $1 \times 10^{-2}$ |
| 70 | biomass | $9.9 \times 10^{-3}$ |
| 71 | dri | $9.7 \times 10^{-3}$ |
| 72 | morpholog | $9.7 \times 10^{-3}$ |
| 73 | taxonom | $9.5 \times 10^{-3}$ |
| 74 | marker | $9.5 \times 10^{-3}$ |
| 75 | weed | $9.5 \times 10^{-3}$ |
| 76 | antioxid | $9.2 \times 10^{-3}$ |
| 77 | forest | $9.1 \times 10^{-3}$ |
| 78 | product | $9.1 \times 10^{-3}$ |
| 79 | comput | $9.1 \times 10^{-3}$ |
| 80 | maiz | $9 \times 10^{-3}$ |
| 81 | qtl | $9 \times 10^{-3}$ |
| 82 | greenhous | $8.9 \times 10^{-3}$ |
| 83 | fertil | $8.7 \times 10^{-3}$ |
| 84 | genera | $8.6 \times 10^{-3}$ |
| 85 | stem | $8.5 \times 10^{-3}$ |
| 86 | algorithm | $8.5 \times 10^{-3}$ |
| 87 | chromosom | $8.5 \times 10^{-3}$ |
| 88 | oper | $8.4 \times 10^{-3}$ |
| 89 | medicin | $8.4 \times 10^{-3}$ |
| 90 | respons | $8.3 \times 10^{-3}$ |
| 91 | fungal | $8.3 \times 10^{-3}$ |
| 92 | enzym | $8.2 \times 10^{-3}$ |
| 93 | clinic | $8.2 \times 10^{-3}$ |
| 94 | compound | $8.2 \times 10^{-3}$ |
| 95 | grow | $8.2 \times 10^{-3}$ |
| 96 | physiolog | $8.1 \times 10^{-3}$ |
| 97 | conserv | $7.8 \times 10^{-3}$ |
| 98 | method | $7.7 \times 10^{-3}$ |
| 99 | perform | $7.6 \times 10^{-3}$ |
| 100 | molecular | $7.5 \times 10^{-3}$ |

Table D.200. The list of the top 100 words in the category Poetry with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | poem | $2.9 \times 10^{-1}$ |
| 2 | poet | $2.9 \times 10^{-1}$ |
| 3 | poetri | $2.8 \times 10^{-1}$ |
| 4 | essay | $2.3 \times 10^{-1}$ |
| 5 | poetic | $2 \times 10^{-1}$ |
| 6 | dickinson | $1.8 \times 10^{-1}$ |
| 7 | argu | $9.3 \times 10^{-2}$ |
| 8 | emili | $7.9 \times 10^{-2}$ |
| 9 | literari | $7.5 \times 10^{-2}$ |
| 10 | text | $7.4 \times 10^{-2}$ |
| 11 | lyric | $6.3 \times 10^{-2}$ |
| 12 | antholog | $5.7 \times 10^{-2}$ |
| 13 | centuri | $5.5 \times 10^{-2}$ |
| 14 | epigram | $5.1 \times 10^{-2}$ |
| 15 | read | $5 \times 10^{-2}$ |
| 16 | shelley | $4.8 \times 10^{-2}$ |
| 17 | result | $4.8 \times 10^{-2}$ |
| 18 | vers | $4.4 \times 10^{-2}$ |
| 19 | write | $4.1 \times 10^{-2}$ |
| 20 | languag | $3.7 \times 10^{-2}$ |
| 21 | persona | $3.4 \times 10^{-2}$ |
| 22 | song | $3.4 \times 10^{-2}$ |
| 23 | interpret | $3.4 \times 10^{-2}$ |
| 24 | studi | $3.3 \times 10^{-2}$ |
| 25 | ancient | $3.2 \times 10^{-2}$ |
| 26 | greek | $3.1 \times 10^{-2}$ |
| 27 | john | $3.1 \times 10^{-2}$ |
| 28 | voic | $3.1 \times 10^{-2}$ |
| 29 | wine | $3 \times 10^{-2}$ |
| 30 | enact | $2.9 \times 10^{-2}$ |
| 31 | jame | $2.6 \times 10^{-2}$ |
| 32 | book | $2.4 \times 10^{-2}$ |
| 33 | moment | $2.4 \times 10^{-2}$ |
| 34 | edit | $2.4 \times 10^{-2}$ |
| 35 | corpus | $2.4 \times 10^{-2}$ |
| 36 | stori | $2.3 \times 10^{-2}$ |
| 37 | author | $2.3 \times 10^{-2}$ |
| 38 | shakespear | $2.2 \times 10^{-2}$ |
| 39 | histor | $2.2 \times 10^{-2}$ |
| 40 | american | $2.2 \times 10^{-2}$ |
| 41 | imit | $2.2 \times 10^{-2}$ |
| 42 | portray | $2.2 \times 10^{-2}$ |
| 43 | cultur | $2.2 \times 10^{-2}$ |
| 44 | theatric | $2.1 \times 10^{-2}$ |
| 45 | compar | $2.1 \times 10^{-2}$ |
| 46 | letter | $2 \times 10^{-2}$ |
| 47 | artist | $2 \times 10^{-2}$ |
| 48 | pen | $2 \times 10^{-2}$ |
| 49 | wife | $2 \times 10^{-2}$ |
| 50 | use | $1.9 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | republican | $1.9 \times 10^{-2}$ |
| 52 | audienc | $1.8 \times 10^{-2}$ |
| 53 | manuscript | $1.8 \times 10^{-2}$ |
| 54 | charact | $1.8 \times 10^{-2}$ |
| 55 | histori | $1.8 \times 10^{-2}$ |
| 56 | polit | $1.8 \times 10^{-2}$ |
| 57 | rather | $1.8 \times 10^{-2}$ |
| 58 | explor | $1.8 \times 10^{-2}$ |
| 59 | aesthet | $1.7 \times 10^{-2}$ |
| 60 | origin | $1.7 \times 10^{-2}$ |
| 61 | speaker | $1.7 \times 10^{-2}$ |
| 62 | method | $1.7 \times 10^{-2}$ |
| 63 | recept | $1.7 \times 10^{-2}$ |
| 64 | form | $1.6 \times 10^{-2}$ |
| 65 | measur | $1.6 \times 10^{-2}$ |
| 66 | music | $1.6 \times 10^{-2}$ |
| 67 | war | $1.6 \times 10^{-2}$ |
| 68 | engag | $1.6 \times 10^{-2}$ |
| 69 | way | $1.6 \times 10^{-2}$ |
| 70 | translat | $1.6 \times 10^{-2}$ |
| 71 | tension | $1.6 \times 10^{-2}$ |
| 72 | part | $1.6 \times 10^{-2}$ |
| 73 | reader | $1.5 \times 10^{-2}$ |
| 74 | life | $1.5 \times 10^{-2}$ |
| 75 | increas | $1.5 \times 10^{-2}$ |
| 76 | ritual | $1.5 \times 10^{-2}$ |
| 77 | focus | $1.5 \times 10^{-2}$ |
| 78 | dialect | $1.5 \times 10^{-2}$ |
| 79 | fiction | $1.5 \times 10^{-2}$ |
| 80 | level | $1.4 \times 10^{-2}$ |
| 81 | represent | $1.4 \times 10^{-2}$ |
| 82 | newspap | $1.4 \times 10^{-2}$ |
| 83 | journey | $1.4 \times 10^{-2}$ |
| 84 | evalu | $1.4 \times 10^{-2}$ |
| 85 | william | $1.4 \times 10^{-2}$ |
| 86 | possibl | $1.3 \times 10^{-2}$ |
| 87 | tradit | $1.3 \times 10^{-2}$ |
| 88 | genr | $1.3 \times 10^{-2}$ |
| 89 | scholar | $1.3 \times 10^{-2}$ |
| 90 | love | $1.3 \times 10^{-2}$ |
| 91 | metaphor | $1.3 \times 10^{-2}$ |
| 92 | conclus | $1.3 \times 10^{-2}$ |
| 93 | later | $1.3 \times 10^{-2}$ |
| 94 | dramat | $1.3 \times 10^{-2}$ |
| 95 | scene | $1.3 \times 10^{-2}$ |
| 96 | view | $1.3 \times 10^{-2}$ |
| 97 | tell | $1.3 \times 10^{-2}$ |
| 98 | writer | $1.3 \times 10^{-2}$ |
| 99 | theme | $1.2 \times 10^{-2}$ |
| 100 | someth | $1.2 \times 10^{-2}$ |

Table D.201. The list of the top 100 words in the category Political Science with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | polit | $2.3 \times 10^{-1}$ |
| 2 | articl | $1.2 \times 10^{-1}$ |
| 3 | parti | $8.1 \times 10^{-2}$ |
| 4 | argu | $7.5 \times 10^{-2}$ |
| 5 | polici | $7.4 \times 10^{-2}$ |
| 6 | elector | $6.7 \times 10^{-2}$ |
| 7 | govern | $6.5 \times 10^{-2}$ |
| 8 | democrat | $6.3 \times 10^{-2}$ |
| 9 | democraci | $6.2 \times 10^{-2}$ |
| 10 | elect | $6.1 \times 10^{-2}$ |
| 11 | voter | $4.6 \times 10^{-2}$ |
| 12 | vote | $4.6 \times 10^{-2}$ |
| 13 | countri | $3.7 \times 10^{-2}$ |
| 14 | nation | $3.6 \times 10^{-2}$ |
| 15 | institut | $3.5 \times 10^{-2}$ |
| 16 | citizen | $3.5 \times 10^{-2}$ |
| 17 | public | $3.4 \times 10^{-2}$ |
| 18 | actor | $3.1 \times 10^{-2}$ |
| 19 | social | $3 \times 10^{-2}$ |
| 20 | european | $3 \times 10^{-2}$ |
| 21 | econom | $2.9 \times 10^{-2}$ |
| 22 | union | $2.6 \times 10^{-2}$ |
| 23 | method | $2.6 \times 10^{-2}$ |
| 24 | state | $2.5 \times 10^{-2}$ |
| 25 | ideolog | $2.5 \times 10^{-2}$ |
| 26 | liber | $2.4 \times 10^{-2}$ |
| 27 | empir | $2.4 \times 10^{-2}$ |
| 28 | argument | $2.3 \times 10^{-2}$ |
| 29 | war | $2.2 \times 10^{-2}$ |
| 30 | scholar | $2.2 \times 10^{-2}$ |
| 31 | legisl | $2.2 \times 10^{-2}$ |
| 32 | conflict | $2.1 \times 10^{-2}$ |
| 33 | result | $2 \times 10^{-2}$ |
| 34 | debat | $2 \times 10^{-2}$ |
| 35 | reform | $1.9 \times 10^{-2}$ |
| 36 | question | $1.8 \times 10^{-2}$ |
| 37 | intern | $1.8 \times 10^{-2}$ |
| 38 | draw | $1.8 \times 10^{-2}$ |
| 39 | right | $1.7 \times 10^{-2}$ |
| 40 | patient | $1.7 \times 10^{-2}$ |
| 41 | crisi | $1.7 \times 10^{-2}$ |
| 42 | whi | $1.6 \times 10^{-2}$ |
| 43 | cell | $1.6 \times 10^{-2}$ |
| 44 | domest | $1.5 \times 10^{-2}$ |
| 45 | politician | $1.5 \times 10^{-2}$ |
| 46 | agenda | $1.5 \times 10^{-2}$ |
| 47 | find | $1.4 \times 10^{-2}$ |
| 48 | elit | $1.4 \times 10^{-2}$ |
| 49 | civil | $1.4 \times 10^{-2}$ |
| 50 | presid | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | obtain | $1.3 \times 10^{-2}$ |
| 52 | claim | $1.3 \times 10^{-2}$ |
| 53 | authoritarian | $1.3 \times 10^{-2}$ |
| 54 | foreign | $1.3 \times 10^{-2}$ |
| 55 | issu | $1.3 \times 10^{-2}$ |
| 56 | temperatur | $1.3 \times 10^{-2}$ |
| 57 | legal | $1.2 \times 10^{-2}$ |
| 58 | legitimaci | $1.2 \times 10^{-2}$ |
| 59 | economi | $1.2 \times 10^{-2}$ |
| 60 | perform | $1.2 \times 10^{-2}$ |
| 61 | violenc | $1.2 \times 10^{-2}$ |
| 62 | surfac | $1.2 \times 10^{-2}$ |
| 63 | peac | $1.2 \times 10^{-2}$ |
| 64 | justic | $1.2 \times 10^{-2}$ |
| 65 | societi | $1.2 \times 10^{-2}$ |
| 66 | rule | $1.2 \times 10^{-2}$ |
| 67 | campaign | $1.1 \times 10^{-2}$ |
| 68 | protest | $1.1 \times 10^{-2}$ |
| 69 | negoti | $1.1 \times 10^{-2}$ |
| 70 | engag | $1.1 \times 10^{-2}$ |
| 71 | simul | $1.1 \times 10^{-2}$ |
| 72 | contest | $1.1 \times 10^{-2}$ |
| 73 | militari | $1.1 \times 10^{-2}$ |
| 74 | paramet | $1.1 \times 10^{-2}$ |
| 75 | transnat | $1 \times 10^{-2}$ |
| 76 | clinic | $1 \times 10^{-2}$ |
| 77 | explain | $1 \times 10^{-2}$ |
| 78 | seek | $1 \times 10^{-2}$ |
| 79 | survey | $1 \times 10^{-2}$ |
| 80 | discours | $1 \times 10^{-2}$ |
| 81 | member | $1 \times 10^{-2}$ |
| 82 | opinion | $1 \times 10^{-2}$ |
| 83 | leader | $1 \times 10^{-2}$ |
| 84 | protein | $9.9 \times 10^{-3}$ |
| 85 | examin | $9.8 \times 10^{-3}$ |
| 86 | detect | $9.8 \times 10^{-3}$ |
| 87 | focus | $9.8 \times 10^{-3}$ |
| 88 | regim | $9.7 \times 10^{-3}$ |
| 89 | strateg | $9.6 \times 10^{-3}$ |
| 90 | literatur | $9.4 \times 10^{-3}$ |
| 91 | diseas | $9.4 \times 10^{-3}$ |
| 92 | europ | $9.4 \times 10^{-3}$ |
| 93 | treatment | $9.3 \times 10^{-3}$ |
| 94 | american | $9.3 \times 10^{-3}$ |
| 95 | secur | $9.2 \times 10^{-3}$ |
| 96 | high | $9 \times 10^{-3}$ |
| 97 | world | $9 \times 10^{-3}$ |
| 98 | ratio | $8.9 \times 10^{-3}$ |
| 99 | feder | $8.9 \times 10^{-3}$ |
| 100 | rather | $8.9 \times 10^{-3}$ |

Table D.202. The list of the top 100 words in the category Polymer Science with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | polym | $1.4 \times 10^{-1}$ |
| 2 | poli | $1.1 \times 10^{-1}$ |
| 3 | polymer | $9.3 \times 10^{-2}$ |
| 4 | copolym | $7.4 \times 10^{-2}$ |
| 5 | prepar | $6.1 \times 10^{-2}$ |
| 6 | properti | $5.5 \times 10^{-2}$ |
| 7 | monom | $4.3 \times 10^{-2}$ |
| 8 | synthes | $3.6 \times 10^{-2}$ |
| 9 | chain | $3.6 \times 10^{-2}$ |
| 10 | thermal | $3.5 \times 10^{-2}$ |
| 11 | blend | $3.2 \times 10^{-2}$ |
| 12 | tensil | $3.1 \times 10^{-2}$ |
| 13 | methacryl | $3 \times 10^{-2}$ |
| 14 | ethylen | $2.9 \times 10^{-2}$ |
| 15 | composit | $2.9 \times 10^{-2}$ |
| 16 | scan | $2.8 \times 10^{-2}$ |
| 17 | microscopi | $2.7 \times 10^{-2}$ |
| 18 | crosslink | $2.7 \times 10^{-2}$ |
| 19 | spectroscopi | $2.6 \times 10^{-2}$ |
| 20 | temperatur | $2.6 \times 10^{-2}$ |
| 21 | morpholog | $2.6 \times 10^{-2}$ |
| 22 | calorimetri | $2.6 \times 10^{-2}$ |
| 23 | ftir | $2.5 \times 10^{-2}$ |
| 24 | nanocomposit | $2.5 \times 10^{-2}$ |
| 25 | modulus | $2.4 \times 10^{-2}$ |
| 26 | melt | $2.3 \times 10^{-2}$ |
| 27 | fourier | $2.2 \times 10^{-2}$ |
| 28 | dsc | $2.2 \times 10^{-2}$ |
| 29 | cellulos | $2.1 \times 10^{-2}$ |
| 30 | nmr | $2.1 \times 10^{-2}$ |
| 31 | infrar | $2.1 \times 10^{-2}$ |
| 32 | molecular | $2.1 \times 10^{-2}$ |
| 33 | patient | $2.1 \times 10^{-2}$ |
| 34 | conclus | $2 \times 10^{-2}$ |
| 35 | film | $2 \times 10^{-2}$ |
| 36 | thermogravimetr | $2 \times 10^{-2}$ |
| 37 | solvent | $2 \times 10^{-2}$ |
| 38 | acid | $1.9 \times 10^{-2}$ |
| 39 | acryl | $1.9 \times 10^{-2}$ |
| 40 | rheolog | $1.9 \times 10^{-2}$ |
| 41 | degre | $1.9 \times 10^{-2}$ |
| 42 | strength | $1.9 \times 10^{-2}$ |
| 43 | mechan | $1.8 \times 10^{-2}$ |
| 44 | dispers | $1.8 \times 10^{-2}$ |
| 45 | tga | $1.8 \times 10^{-2}$ |
| 46 | sem | $1.7 \times 10^{-2}$ |
| 47 | crystallin | $1.7 \times 10^{-2}$ |
| 48 | polypropylen | $1.7 \times 10^{-2}$ |
| 49 | vinyl | $1.7 \times 10^{-2}$ |
| 50 | hydrophil | $1.6 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | character | $1.6 \times 10^{-2}$ |
| 52 | electron | $1.6 \times 10^{-2}$ |
| 53 | gel | $1.6 \times 10^{-2}$ |
| 54 | structur | $1.6 \times 10^{-2}$ |
| 55 | stabil | $1.6 \times 10^{-2}$ |
| 56 | glass | $1.6 \times 10^{-2}$ |
| 57 | polyethylen | $1.5 \times 10^{-2}$ |
| 58 | hydrophob | $1.5 \times 10^{-2}$ |
| 59 | glycol | $1.5 \times 10^{-2}$ |
| 60 | hydrogel | $1.5 \times 10^{-2}$ |
| 61 | graft | $1.5 \times 10^{-2}$ |
| 62 | aqueous | $1.5 \times 10^{-2}$ |
| 63 | swell | $1.5 \times 10^{-2}$ |
| 64 | matrix | $1.5 \times 10^{-2}$ |
| 65 | filler | $1.4 \times 10^{-2}$ |
| 66 | polystyren | $1.4 \times 10^{-2}$ |
| 67 | surfac | $1.4 \times 10^{-2}$ |
| 68 | paper | $1.4 \times 10^{-2}$ |
| 69 | fiber | $1.4 \times 10^{-2}$ |
| 70 | radic | $1.4 \times 10^{-2}$ |
| 71 | weight | $1.4 \times 10^{-2}$ |
| 72 | permeat | $1.4 \times 10^{-2}$ |
| 73 | viscos | $1.4 \times 10^{-2}$ |
| 74 | materi | $1.4 \times 10^{-2}$ |
| 75 | water | $1.4 \times 10^{-2}$ |
| 76 | year | $1.3 \times 10^{-2}$ |
| 77 | membran | $1.3 \times 10^{-2}$ |
| 78 | background | $1.3 \times 10^{-2}$ |
| 79 | solut | $1.3 \times 10^{-2}$ |
| 80 | chitosan | $1.2 \times 10^{-2}$ |
| 81 | content | $1.2 \times 10^{-2}$ |
| 82 | resin | $1.2 \times 10^{-2}$ |
| 83 | epoxi | $1.2 \times 10^{-2}$ |
| 84 | reaction | $1.2 \times 10^{-2}$ |
| 85 | exhibit | $1.2 \times 10^{-2}$ |
| 86 | nanoparticl | $1.2 \times 10^{-2}$ |
| 87 | selfassembl | $1.1 \times 10^{-2}$ |
| 88 | ray | $1.1 \times 10^{-2}$ |
| 89 | associ | $1.1 \times 10^{-2}$ |
| 90 | data | $1.1 \times 10^{-2}$ |
| 91 | solubl | $1.1 \times 10^{-2}$ |
| 92 | backbon | $1.1 \times 10^{-2}$ |
| 93 | chemic | $1 \times 10^{-2}$ |
| 94 | transit | $1 \times 10^{-2}$ |
| 95 | fabric | $1 \times 10^{-2}$ |
| 96 | risk | $1 \times 10^{-2}$ |
| 97 | behavior | $1 \times 10^{-2}$ |
| 98 | via | $9.9 \times 10^{-3}$ |
| 99 | micell | $9.9 \times 10^{-3}$ |
| 100 | cure | $9.8 \times 10^{-3}$ |

Table D.203. The list of the top 100 words in the category Primary Health Care with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | care | $1.8 \times 10^{-1}$ |
| 2 | background | $1.1 \times 10^{-1}$ |
| 3 | patient | $1.1 \times 10^{-1}$ |
| 4 | primari | $1.1 \times 10^{-1}$ |
| 5 | health | $9.2 \times 10^{-2}$ |
| 6 | conclus | $7.9 \times 10^{-2}$ |
| 7 | practic | $7.5 \times 10^{-2}$ |
| 8 | physician | $7.4 \times 10^{-2}$ |
| 9 | gps | $7.2 \times 10^{-2}$ |
| 10 | practition | $7.1 \times 10^{-2}$ |
| 11 | medic | $6.4 \times 10^{-2}$ |
| 12 | consult | $4.4 \times 10^{-2}$ |
| 13 | particip | $4 \times 10^{-2}$ |
| 14 | interview | $3.9 \times 10^{-2}$ |
| 15 | general | $3.4 \times 10^{-2}$ |
| 16 | clinic | $3.4 \times 10^{-2}$ |
| 17 | method | $3.2 \times 10^{-2}$ |
| 18 | famili | $3.1 \times 10^{-2}$ |
| 19 | chronic | $3.1 \times 10^{-2}$ |
| 20 | manag | $2.8 \times 10^{-2}$ |
| 21 | outcom | $2.7 \times 10^{-2}$ |
| 22 | referr | $2.6 \times 10^{-2}$ |
| 23 | year | $2.6 \times 10^{-2}$ |
| 24 | object | $2.5 \times 10^{-2}$ |
| 25 | profession | $2.5 \times 10^{-2}$ |
| 26 | guidelin | $2.5 \times 10^{-2}$ |
| 27 | medicin | $2.5 \times 10^{-2}$ |
| 28 | educ | $2.4 \times 10^{-2}$ |
| 29 | intervent | $2.4 \times 10^{-2}$ |
| 30 | doctor | $2.4 \times 10^{-2}$ |
| 31 | aim | $2.4 \times 10^{-2}$ |
| 32 | semistructur | $2.3 \times 10^{-2}$ |
| 33 | servic | $2.3 \times 10^{-2}$ |
| 34 | need | $2.3 \times 10^{-2}$ |
| 35 | qualit | $2.2 \times 10^{-2}$ |
| 36 | recommend | $2.2 \times 10^{-2}$ |
| 37 | risk | $2.2 \times 10^{-2}$ |
| 38 | prescrib | $2.2 \times 10^{-2}$ |
| 39 | diabet | $2.2 \times 10^{-2}$ |
| 40 | age | $2.1 \times 10^{-2}$ |
| 41 | visit | $2.1 \times 10^{-2}$ |
| 42 | set | $2.1 \times 10^{-2}$ |
| 43 | clinician | $2.1 \times 10^{-2}$ |
| 44 | questionnair | $2 \times 10^{-2}$ |
| 45 | symptom | $2 \times 10^{-2}$ |
| 46 | diseas | $2 \times 10^{-2}$ |
| 47 | survey | $1.9 \times 10^{-2}$ |
| 48 | nurs | $1.8 \times 10^{-2}$ |
| 49 | includ | $1.8 \times 10^{-2}$ |
| 50 | prescript | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | common | $1.7 \times 10^{-2}$ |
| 52 | themat | $1.7 \times 10^{-2}$ |
| 53 | diagnosi | $1.6 \times 10^{-2}$ |
| 54 | communiti | $1.6 \times 10^{-2}$ |
| 55 | specialist | $1.5 \times 10^{-2}$ |
| 56 | assess | $1.5 \times 10^{-2}$ |
| 57 | team | $1.5 \times 10^{-2}$ |
| 58 | perceiv | $1.5 \times 10^{-2}$ |
| 59 | healthcar | $1.4 \times 10^{-2}$ |
| 60 | advic | $1.4 \times 10^{-2}$ |
| 61 | ill | $1.4 \times 10^{-2}$ |
| 62 | show | $1.3 \times 10^{-2}$ |
| 63 | copd | $1.3 \times 10^{-2}$ |
| 64 | propos | $1.3 \times 10^{-2}$ |
| 65 | staff | $1.3 \times 10^{-2}$ |
| 66 | prevent | $1.3 \times 10^{-2}$ |
| 67 | nation | $1.3 \times 10^{-2}$ |
| 68 | result | $1.3 \times 10^{-2}$ |
| 69 | train | $1.3 \times 10^{-2}$ |
| 70 | diagnos | $1.3 \times 10^{-2}$ |
| 71 | depress | $1.3 \times 10^{-2}$ |
| 72 | australia | $1.3 \times 10^{-2}$ |
| 73 | theme | $1.3 \times 10^{-2}$ |
| 74 | support | $1.2 \times 10^{-2}$ |
| 75 | peopl | $1.2 \times 10^{-2}$ |
| 76 | receiv | $1.2 \times 10^{-2}$ |
| 77 | explor | $1.2 \times 10^{-2}$ |
| 78 | preval | $1.2 \times 10^{-2}$ |
| 79 | screen | $1.2 \times 10^{-2}$ |
| 80 | popul | $1.2 \times 10^{-2}$ |
| 81 | australian | $1.2 \times 10^{-2}$ |
| 82 | attend | $1.1 \times 10^{-2}$ |
| 83 | group | $1.1 \times 10^{-2}$ |
| 84 | identifi | $1.1 \times 10^{-2}$ |
| 85 | obstruct | $1.1 \times 10^{-2}$ |
| 86 | treatment | $1.1 \times 10^{-2}$ |
| 87 | paper | $1.1 \times 10^{-2}$ |
| 88 | pain | $1.1 \times 10^{-2}$ |
| 89 | cell | $1.1 \times 10^{-2}$ |
| 90 | simul | $1.1 \times 10^{-2}$ |
| 91 | properti | $1 \times 10^{-2}$ |
| 92 | barrier | $1 \times 10^{-2}$ |
| 93 | qualiti | $1 \times 10^{-2}$ |
| 94 | transcrib | $1 \times 10^{-2}$ |
| 95 | month | $1 \times 10^{-2}$ |
| 96 | evid | $9.9 \times 10^{-3}$ |
| 97 | improv | $9.9 \times 10^{-3}$ |
| 98 | counsel | $9.8 \times 10^{-3}$ |
| 99 | routin | $9.8 \times 10^{-3}$ |
| 100 | adult | $9.7 \times 10^{-3}$ |

Table D.204. The list of the top 100 words in the category Psychiatry with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | disord | $1.6 \times 10^{-1}$ |
| 2 | depress | $1.2 \times 10^{-1}$ |
| 3 | symptom | $9.1 \times 10^{-2}$ |
| 4 | mental | $8.7 \times 10^{-2}$ |
| 5 | psychiatr | $8.4 \times 10^{-2}$ |
| 6 | schizophrenia | $7.7 \times 10^{-2}$ |
| 7 | conclus | $5.7 \times 10^{-2}$ |
| 8 | anxieti | $5.5 \times 10^{-2}$ |
| 9 | particip | $5.3 \times 10^{-2}$ |
| 10 | cognit | $5.1 \times 10^{-2}$ |
| 11 | associ | $4.6 \times 10^{-2}$ |
| 12 | assess | $4 \times 10^{-2}$ |
| 13 | patient | $4 \times 10^{-2}$ |
| 14 | clinic | $3.8 \times 10^{-2}$ |
| 15 | health | $3.6 \times 10^{-2}$ |
| 16 | score | $3.5 \times 10^{-2}$ |
| 17 | examin | $3.3 \times 10^{-2}$ |
| 18 | psychosi | $3.3 \times 10^{-2}$ |
| 19 | age | $3.2 \times 10^{-2}$ |
| 20 | suicid | $3.2 \times 10^{-2}$ |
| 21 | ill | $3.1 \times 10^{-2}$ |
| 22 | treatment | $3 \times 10^{-2}$ |
| 23 | emot | $3 \times 10^{-2}$ |
| 24 | mood | $3 \times 10^{-2}$ |
| 25 | dsm | $3 \times 10^{-2}$ |
| 26 | studi | $3 \times 10^{-2}$ |
| 27 | deficit | $2.9 \times 10^{-2}$ |
| 28 | adolesc | $2.9 \times 10^{-2}$ |
| 29 | psychot | $2.9 \times 10^{-2}$ |
| 30 | bipolar | $2.7 \times 10^{-2}$ |
| 31 | background | $2.7 \times 10^{-2}$ |
| 32 | interview | $2.7 \times 10^{-2}$ |
| 33 | intervent | $2.6 \times 10^{-2}$ |
| 34 | psychopatholog | $2.5 \times 10^{-2}$ |
| 35 | risk | $2.5 \times 10^{-2}$ |
| 36 | individu | $2.5 \times 10^{-2}$ |
| 37 | person | $2.5 \times 10^{-2}$ |
| 38 | social | $2.4 \times 10^{-2}$ |
| 39 | adult | $2.4 \times 10^{-2}$ |
| 40 | selfreport | $2.4 \times 10^{-2}$ |
| 41 | questionnair | $2.3 \times 10^{-2}$ |
| 42 | psycholog | $2.3 \times 10^{-2}$ |
| 43 | ptsd | $2.3 \times 10^{-2}$ |
| 44 | posttraumat | $2.3 \times 10^{-2}$ |
| 45 | comorbid | $2.3 \times 10^{-2}$ |
| 46 | healthi | $2.2 \times 10^{-2}$ |
| 47 | group | $2.2 \times 10^{-2}$ |
| 48 | impair | $2.2 \times 10^{-2}$ |
| 49 | antidepress | $2.2 \times 10^{-2}$ |
| 50 | may | $2.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | medic | $2.1 \times 10^{-2}$ |
| 52 | paper | $2 \times 10^{-2}$ |
| 53 | abus | $2 \times 10^{-2}$ |
| 54 | signific | $2 \times 10^{-2}$ |
| 55 | object | $1.9 \times 10^{-2}$ |
| 56 | adhd | $1.9 \times 10^{-2}$ |
| 57 | find | $1.8 \times 10^{-2}$ |
| 58 | year | $1.8 \times 10^{-2}$ |
| 59 | hyperact | $1.8 \times 10^{-2}$ |
| 60 | behavior | $1.7 \times 10^{-2}$ |
| 61 | episod | $1.7 \times 10^{-2}$ |
| 62 | whether | $1.7 \times 10^{-2}$ |
| 63 | brain | $1.7 \times 10^{-2}$ |
| 64 | baselin | $1.7 \times 10^{-2}$ |
| 65 | outcom | $1.6 \times 10^{-2}$ |
| 66 | children | $1.5 \times 10^{-2}$ |
| 67 | suggest | $1.5 \times 10^{-2}$ |
| 68 | control | $1.5 \times 10^{-2}$ |
| 69 | aim | $1.5 \times 10^{-2}$ |
| 70 | prefront | $1.5 \times 10^{-2}$ |
| 71 | relat | $1.5 \times 10^{-2}$ |
| 72 | sampl | $1.5 \times 10^{-2}$ |
| 73 | method | $1.5 \times 10^{-2}$ |
| 74 | inventori | $1.5 \times 10^{-2}$ |
| 75 | simul | $1.4 \times 10^{-2}$ |
| 76 | scale | $1.4 \times 10^{-2}$ |
| 77 | distress | $1.4 \times 10^{-2}$ |
| 78 | temperatur | $1.4 \times 10^{-2}$ |
| 79 | outpati | $1.4 \times 10^{-2}$ |
| 80 | relationship | $1.4 \times 10^{-2}$ |
| 81 | regress | $1.4 \times 10^{-2}$ |
| 82 | among | $1.4 \times 10^{-2}$ |
| 83 | diagnos | $1.4 \times 10^{-2}$ |
| 84 | subject | $1.3 \times 10^{-2}$ |
| 85 | alcohol | $1.3 \times 10^{-2}$ |
| 86 | surfac | $1.3 \times 10^{-2}$ |
| 87 | addict | $1.3 \times 10^{-2}$ |
| 88 | substanc | $1.3 \times 10^{-2}$ |
| 89 | cortex | $1.3 \times 10^{-2}$ |
| 90 | care | $1.3 \times 10^{-2}$ |
| 91 | peopl | $1.3 \times 10^{-2}$ |
| 92 | preval | $1.3 \times 10^{-2}$ |
| 93 | negat | $1.3 \times 10^{-2}$ |
| 94 | gender | $1.3 \times 10^{-2}$ |
| 95 | propos | $1.2 \times 10^{-2}$ |
| 96 | psychosoci | $1.2 \times 10^{-2}$ |
| 97 | parent | $1.2 \times 10^{-2}$ |
| 98 | child | $1.2 \times 10^{-2}$ |
| 99 | drug | $1.2 \times 10^{-2}$ |
| 100 | childhood | $1.2 \times 10^{-2}$ |

Table D.205. The list of the top 100 words in the category Psychology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | particip | $6.9 \times 10^{-2}$ |
| 2 | task | $5.9 \times 10^{-2}$ |
| 3 | cognit | $5.5 \times 10^{-2}$ |
| 4 | memori | $3.1 \times 10^{-2}$ |
| 5 | emot | $2.9 \times 10^{-2}$ |
| 6 | disord | $2.9 \times 10^{-2}$ |
| 7 | stimuli | $2.8 \times 10^{-2}$ |
| 8 | examin | $2.4 \times 10^{-2}$ |
| 9 | brain | $2.4 \times 10^{-2}$ |
| 10 | stimulus | $2.4 \times 10^{-2}$ |
| 11 | depress | $2.3 \times 10^{-2}$ |
| 12 | whether | $2.3 \times 10^{-2}$ |
| 13 | neuropsycholog | $2.1 \times 10^{-2}$ |
| 14 | adult | $2.1 \times 10^{-2}$ |
| 15 | suggest | $2 \times 10^{-2}$ |
| 16 | cortex | $2 \times 10^{-2}$ |
| 17 | age | $1.9 \times 10^{-2}$ |
| 18 | mental | $1.9 \times 10^{-2}$ |
| 19 | psycholog | $1.9 \times 10^{-2}$ |
| 20 | perceptu | $1.9 \times 10^{-2}$ |
| 21 | visual | $1.9 \times 10^{-2}$ |
| 22 | attent | $1.9 \times 10^{-2}$ |
| 23 | individu | $1.8 \times 10^{-2}$ |
| 24 | symptom | $1.8 \times 10^{-2}$ |
| 25 | associ | $1.8 \times 10^{-2}$ |
| 26 | anxieti | $1.8 \times 10^{-2}$ |
| 27 | object | $1.7 \times 10^{-2}$ |
| 28 | relat | $1.7 \times 10^{-2}$ |
| 29 | studi | $1.7 \times 10^{-2}$ |
| 30 | find | $1.7 \times 10^{-2}$ |
| 31 | impair | $1.6 \times 10^{-2}$ |
| 32 | deficit | $1.6 \times 10^{-2}$ |
| 33 | healthi | $1.6 \times 10^{-2}$ |
| 34 | social | $1.6 \times 10^{-2}$ |
| 35 | percept | $1.5 \times 10^{-2}$ |
| 36 | assess | $1.5 \times 10^{-2}$ |
| 37 | paper | $1.5 \times 10^{-2}$ |
| 38 | person | $1.5 \times 10^{-2}$ |
| 39 | cue | $1.4 \times 10^{-2}$ |
| 40 | prefront | $1.4 \times 10^{-2}$ |
| 41 | behavior | $1.4 \times 10^{-2}$ |
| 42 | verbal | $1.3 \times 10^{-2}$ |
| 43 | adolesc | $1.3 \times 10^{-2}$ |
| 44 | cell | $1.3 \times 10^{-2}$ |
| 45 | neural | $1.3 \times 10^{-2}$ |
| 46 | perceiv | $1.3 \times 10^{-2}$ |
| 47 | across | $1.3 \times 10^{-2}$ |
| 48 | children | $1.2 \times 10^{-2}$ |
| 49 | word | $1.2 \times 10^{-2}$ |
| 50 | frontal | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | temperatur | $1.2 \times 10^{-2}$ |
| 52 | paradigm | $1.2 \times 10^{-2}$ |
| 53 | conclus | $1.1 \times 10^{-2}$ |
| 54 | score | $1.1 \times 10^{-2}$ |
| 55 | auditori | $1.1 \times 10^{-2}$ |
| 56 | research | $1.1 \times 10^{-2}$ |
| 57 | item | $1 \times 10^{-2}$ |
| 58 | subject | $1 \times 10^{-2}$ |
| 59 | learn | $1 \times 10^{-2}$ |
| 60 | selfreport | $1 \times 10^{-2}$ |
| 61 | fmri | $1 \times 10^{-2}$ |
| 62 | may | $1 \times 10^{-2}$ |
| 63 | older | $9.8 \times 10^{-3}$ |
| 64 | evid | $9.8 \times 10^{-3}$ |
| 65 | group | $9.7 \times 10^{-3}$ |
| 66 | result | $9.7 \times 10^{-3}$ |
| 67 | test | $9.4 \times 10^{-3}$ |
| 68 | pariet | $9.3 \times 10^{-3}$ |
| 69 | questionnair | $9.2 \times 10^{-3}$ |
| 70 | motor | $9.1 \times 10^{-3}$ |
| 71 | cingul | $9 \times 10^{-3}$ |
| 72 | relationship | $8.8 \times 10^{-3}$ |
| 73 | energi | $8.7 \times 10^{-3}$ |
| 74 | execut | $8.5 \times 10^{-3}$ |
| 75 | eeg | $8.4 \times 10^{-3}$ |
| 76 | erp | $8.3 \times 10^{-3}$ |
| 77 | experi | $8.2 \times 10^{-3}$ |
| 78 | trial | $8.2 \times 10^{-3}$ |
| 79 | session | $8 \times 10^{-3}$ |
| 80 | negat | $7.9 \times 10^{-3}$ |
| 81 | control | $7.8 \times 10^{-3}$ |
| 82 | left | $7.7 \times 10^{-3}$ |
| 83 | cortic | $7.7 \times 10^{-3}$ |
| 84 | greater | $7.6 \times 10^{-3}$ |
| 85 | amygdala | $7.6 \times 10^{-3}$ |
| 86 | fear | $7.6 \times 10^{-3}$ |
| 87 | electron | $7.6 \times 10^{-3}$ |
| 88 | support | $7.6 \times 10^{-3}$ |
| 89 | intervent | $7.3 \times 10^{-3}$ |
| 90 | judgment | $7.3 \times 10^{-3}$ |
| 91 | psychiatr | $7.3 \times 10^{-3}$ |
| 92 | surfac | $7.3 \times 10^{-3}$ |
| 93 | peopl | $7.1 \times 10^{-3}$ |
| 94 | dure | $7 \times 10^{-3}$ |
| 95 | respons | $7 \times 10^{-3}$ |
| 96 | acid | $6.9 \times 10^{-3}$ |
| 97 | gyrus | $6.9 \times 10^{-3}$ |
| 98 | tempor | $6.9 \times 10^{-3}$ |
| 99 | eat | $6.8 \times 10^{-3}$ |
| 100 | skill | $6.8 \times 10^{-3}$ |

Table D.206. The list of the top 100 words in the category Psychology, Applied with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | employe | $6.3 \times 10^{-2}$ |
| 2 | research | $5.8 \times 10^{-2}$ |
| 3 | organiz | $5.1 \times 10^{-2}$ |
| 4 | job | $4.3 \times 10^{-2}$ |
| 5 | implic | $3.9 \times 10^{-2}$ |
| 6 | psycholog | $3.4 \times 10^{-2}$ |
| 7 | examin | $3.4 \times 10^{-2}$ |
| 8 | perceiv | $3.2 \times 10^{-2}$ |
| 9 | relationship | $3.2 \times 10^{-2}$ |
| 10 | particip | $3.1 \times 10^{-2}$ |
| 11 | career | $3.1 \times 10^{-2}$ |
| 12 | person | $2.6 \times 10^{-2}$ |
| 13 | find | $2.5 \times 10^{-2}$ |
| 14 | social | $2.3 \times 10^{-2}$ |
| 15 | percept | $2.1 \times 10^{-2}$ |
| 16 | practic | $2 \times 10^{-2}$ |
| 17 | theori | $1.9 \times 10^{-2}$ |
| 18 | discuss | $1.9 \times 10^{-2}$ |
| 19 | leadership | $1.8 \times 10^{-2}$ |
| 20 | individu | $1.8 \times 10^{-2}$ |
| 21 | studi | $1.7 \times 10^{-2}$ |
| 22 | satisfact | $1.7 \times 10^{-2}$ |
| 23 | support | $1.6 \times 10^{-2}$ |
| 24 | task | $1.6 \times 10^{-2}$ |
| 25 | emot | $1.5 \times 10^{-2}$ |
| 26 | moder | $1.5 \times 10^{-2}$ |
| 27 | cell | $1.5 \times 10^{-2}$ |
| 28 | supervisor | $1.5 \times 10^{-2}$ |
| 29 | practition | $1.5 \times 10^{-2}$ |
| 30 | workplac | $1.5 \times 10^{-2}$ |
| 31 | work | $1.4 \times 10^{-2}$ |
| 32 | student | $1.4 \times 10^{-2}$ |
| 33 | leader | $1.4 \times 10^{-2}$ |
| 34 | relat | $1.4 \times 10^{-2}$ |
| 35 | sport | $1.3 \times 10^{-2}$ |
| 36 | team | $1.3 \times 10^{-2}$ |
| 37 | cognit | $1.3 \times 10^{-2}$ |
| 38 | athlet | $1.3 \times 10^{-2}$ |
| 39 | engag | $1.3 \times 10^{-2}$ |
| 40 | behavior | $1.2 \times 10^{-2}$ |
| 41 | worker | $1.2 \times 10^{-2}$ |
| 42 | manag | $1.2 \times 10^{-2}$ |
| 43 | futur | $1.2 \times 10^{-2}$ |
| 44 | interview | $1.2 \times 10^{-2}$ |
| 45 | posit | $1.1 \times 10^{-2}$ |
| 46 | motiv | $1.1 \times 10^{-2}$ |
| 47 | hypothes | $1.1 \times 10^{-2}$ |
| 48 | selfefficaci | $1.1 \times 10^{-2}$ |
| 49 | literatur | $1.1 \times 10^{-2}$ |
| 50 | counsel | $1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | conceptu | $1 \times 10^{-2}$ |
| 52 | anteced | $1 \times 10^{-2}$ |
| 53 | patient | $1 \times 10^{-2}$ |
| 54 | coach | $9.6 \times 10^{-3}$ |
| 55 | perspect | $9.6 \times 10^{-3}$ |
| 56 | negat | $9.3 \times 10^{-3}$ |
| 57 | offend | $9.1 \times 10^{-3}$ |
| 58 | temperatur | $9 \times 10^{-3}$ |
| 59 | context | $9 \times 10^{-3}$ |
| 60 | selfreport | $9 \times 10^{-3}$ |
| 61 | skill | $8.9 \times 10^{-3}$ |
| 62 | empir | $8.7 \times 10^{-3}$ |
| 63 | commit | $8.6 \times 10^{-3}$ |
| 64 | profession | $8.6 \times 10^{-3}$ |
| 65 | survey | $8.5 \times 10^{-3}$ |
| 66 | intent | $8.5 \times 10^{-3}$ |
| 67 | victim | $8.4 \times 10^{-3}$ |
| 68 | across | $8.4 \times 10^{-3}$ |
| 69 | colleg | $8.3 \times 10^{-3}$ |
| 70 | gender | $8.3 \times 10^{-3}$ |
| 71 | protein | $8.3 \times 10^{-3}$ |
| 72 | decis | $8.3 \times 10^{-3}$ |
| 73 | peopl | $8.2 \times 10^{-3}$ |
| 74 | mediat | $8.2 \times 10^{-3}$ |
| 75 | attitud | $8.2 \times 10^{-3}$ |
| 76 | focus | $8.2 \times 10^{-3}$ |
| 77 | surfac | $8.1 \times 10^{-3}$ |
| 78 | knowledg | $7.9 \times 10^{-3}$ |
| 79 | violenc | $7.9 \times 10^{-3}$ |
| 80 | interperson | $7.9 \times 10^{-3}$ |
| 81 | questionnair | $7.9 \times 10^{-3}$ |
| 82 | driver | $7.8 \times 10^{-3}$ |
| 83 | articl | $7.7 \times 10^{-3}$ |
| 84 | understand | $7.7 \times 10^{-3}$ |
| 85 | acid | $7.7 \times 10^{-3}$ |
| 86 | outcom | $7.6 \times 10^{-3}$ |
| 87 | energi | $7.5 \times 10^{-3}$ |
| 88 | ergonom | $7.5 \times 10^{-3}$ |
| 89 | train | $7.4 \times 10^{-3}$ |
| 90 | purpos | $7.3 \times 10^{-3}$ |
| 91 | justic | $7.3 \times 10^{-3}$ |
| 92 | mental | $7.2 \times 10^{-3}$ |
| 93 | compani | $7.1 \times 10^{-3}$ |
| 94 | speci | $7 \times 10^{-3}$ |
| 95 | resourc | $7 \times 10^{-3}$ |
| 96 | materi | $6.9 \times 10^{-3}$ |
| 97 | conflict | $6.9 \times 10^{-3}$ |
| 98 | paramet | $6.8 \times 10^{-3}$ |
| 99 | organ | $6.8 \times 10^{-3}$ |
| 100 | busi | $6.7 \times 10^{-3}$ |

Table D.207. The list of the top 100 words in the category Psychology, Biological with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | task | $4.8 \times 10^{-2}$ |
| 2 | stimulus | $4.6 \times 10^{-2}$ |
| 3 | stimuli | $4.2 \times 10^{-2}$ |
| 4 | cue | $3.6 \times 10^{-2}$ |
| 5 | behavior | $3.5 \times 10^{-2}$ |
| 6 | suggest | $3 \times 10^{-2}$ |
| 7 | respons | $2.9 \times 10^{-2}$ |
| 8 | particip | $2.8 \times 10^{-2}$ |
| 9 | cognit | $2.6 \times 10^{-2}$ |
| 10 | whether | $2.3 \times 10^{-2}$ |
| 11 | erp | $2.1 \times 10^{-2}$ |
| 12 | anim | $2.1 \times 10^{-2}$ |
| 13 | male | $2 \times 10^{-2}$ |
| 14 | method | $1.9 \times 10^{-2}$ |
| 15 | individu | $1.9 \times 10^{-2}$ |
| 16 | rat | $1.8 \times 10^{-2}$ |
| 17 | food | $1.7 \times 10^{-2}$ |
| 18 | femal | $1.7 \times 10^{-2}$ |
| 19 | paper | $1.7 \times 10^{-2}$ |
| 20 | relat | $1.7 \times 10^{-2}$ |
| 21 | emot | $1.7 \times 10^{-2}$ |
| 22 | eeg | $1.7 \times 10^{-2}$ |
| 23 | learn | $1.6 \times 10^{-2}$ |
| 24 | mate | $1.6 \times 10^{-2}$ |
| 25 | maze | $1.6 \times 10^{-2}$ |
| 26 | test | $1.4 \times 10^{-2}$ |
| 27 | respond | $1.4 \times 10^{-2}$ |
| 28 | adult | $1.4 \times 10^{-2}$ |
| 29 | dure | $1.4 \times 10^{-2}$ |
| 30 | memori | $1.4 \times 10^{-2}$ |
| 31 | reward | $1.3 \times 10^{-2}$ |
| 32 | paradigm | $1.3 \times 10^{-2}$ |
| 33 | social | $1.3 \times 10^{-2}$ |
| 34 | brain | $1.3 \times 10^{-2}$ |
| 35 | trial | $1.3 \times 10^{-2}$ |
| 36 | attent | $1.2 \times 10^{-2}$ |
| 37 | may | $1.2 \times 10^{-2}$ |
| 38 | behaviour | $1.2 \times 10^{-2}$ |
| 39 | session | $1.2 \times 10^{-2}$ |
| 40 | choic | $1.2 \times 10^{-2}$ |
| 41 | experi | $1.2 \times 10^{-2}$ |
| 42 | hypothesi | $1.2 \times 10^{-2}$ |
| 43 | manipul | $1.2 \times 10^{-2}$ |
| 44 | examin | $1.2 \times 10^{-2}$ |
| 45 | anxieti | $1.1 \times 10^{-2}$ |
| 46 | discrimin | $1.1 \times 10^{-2}$ |
| 47 | either | $1 \times 10^{-2}$ |
| 48 | prefer | $1 \times 10^{-2}$ |
| 49 | differ | $1 \times 10^{-2}$ |
| 50 | physiolog | $1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | conspecif | $1 \times 10^{-2}$ |
| 52 | entitl | $1 \times 10^{-2}$ |
| 53 | cell | $9.8 \times 10^{-3}$ |
| 54 | evid | $9.7 \times 10^{-3}$ |
| 55 | train | $9.7 \times 10^{-3}$ |
| 56 | reinforc | $9.6 \times 10^{-3}$ |
| 57 | elicit | $9.6 \times 10^{-3}$ |
| 58 | cortisol | $9.5 \times 10^{-3}$ |
| 59 | auditori | $9.3 \times 10^{-3}$ |
| 60 | avers | $9.3 \times 10^{-3}$ |
| 61 | associ | $9.3 \times 10^{-3}$ |
| 62 | intak | $9.1 \times 10^{-3}$ |
| 63 | latenc | $8.9 \times 10^{-3}$ |
| 64 | bird | $8.9 \times 10^{-3}$ |
| 65 | find | $8.9 \times 10^{-3}$ |
| 66 | applic | $8.4 \times 10^{-3}$ |
| 67 | forag | $8.4 \times 10^{-3}$ |
| 68 | trait | $8.4 \times 10^{-3}$ |
| 69 | amplitud | $8.4 \times 10^{-3}$ |
| 70 | subject | $8.4 \times 10^{-3}$ |
| 71 | predat | $8.2 \times 10^{-3}$ |
| 72 | spent | $8.2 \times 10^{-3}$ |
| 73 | psycholog | $8.1 \times 10^{-3}$ |
| 74 | surfac | $8.1 \times 10^{-3}$ |
| 75 | visual | $8.1 \times 10^{-3}$ |
| 76 | arous | $7.9 \times 10^{-3}$ |
| 77 | condit | $7.6 \times 10^{-3}$ |
| 78 | effect | $7.5 \times 10^{-3}$ |
| 79 | electron | $7.1 \times 10^{-3}$ |
| 80 | negat | $7 \times 10^{-3}$ |
| 81 | aggress | $7 \times 10^{-3}$ |
| 82 | propos | $6.9 \times 10^{-3}$ |
| 83 | howev | $6.9 \times 10^{-3}$ |
| 84 | greater | $6.9 \times 10^{-3}$ |
| 85 | perceptu | $6.8 \times 10^{-3}$ |
| 86 | across | $6.7 \times 10^{-3}$ |
| 87 | affect | $6.5 \times 10^{-3}$ |
| 88 | sex | $6.5 \times 10^{-3}$ |
| 89 | conting | $6.4 \times 10^{-3}$ |
| 90 | materi | $6.4 \times 10^{-3}$ |
| 91 | word | $6.3 \times 10^{-3}$ |
| 92 | base | $6.3 \times 10^{-3}$ |
| 93 | indic | $6.2 \times 10^{-3}$ |
| 94 | studi | $6.1 \times 10^{-3}$ |
| 95 | stressor | $6 \times 10^{-3}$ |
| 96 | cortex | $6 \times 10^{-3}$ |
| 97 | tempor | $5.9 \times 10^{-3}$ |
| 98 | healthi | $5.9 \times 10^{-3}$ |
| 99 | sexual | $5.9 \times 10^{-3}$ |
| 100 | conclus | $5.8 \times 10^{-3}$ |

Table D.208. The list of the top 100 words in the category Psychology, Clinical with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | disord | $8.4 \times 10^{-2}$ |
| 2 | particip | $7.4 \times 10^{-2}$ |
| 3 | depress | $6.8 \times 10^{-2}$ |
| 4 | symptom | $6.7 \times 10^{-2}$ |
| 5 | anxieti | $5.7 \times 10^{-2}$ |
| 6 | cognit | $5.2 \times 10^{-2}$ |
| 7 | examin | $4.9 \times 10^{-2}$ |
| 8 | intervent | $4.4 \times 10^{-2}$ |
| 9 | emot | $4 \times 10^{-2}$ |
| 10 | psycholog | $3.9 \times 10^{-2}$ |
| 11 | mental | $3.7 \times 10^{-2}$ |
| 12 | selfreport | $3.6 \times 10^{-2}$ |
| 13 | adolesc | $3.5 \times 10^{-2}$ |
| 14 | posttraumat | $3.3 \times 10^{-2}$ |
| 15 | behavior | $3.2 \times 10^{-2}$ |
| 16 | ptsd | $3.1 \times 10^{-2}$ |
| 17 | assess | $3 \times 10^{-2}$ |
| 18 | studi | $2.8 \times 10^{-2}$ |
| 19 | research | $2.8 \times 10^{-2}$ |
| 20 | associ | $2.8 \times 10^{-2}$ |
| 21 | social | $2.6 \times 10^{-2}$ |
| 22 | person | $2.6 \times 10^{-2}$ |
| 23 | health | $2.6 \times 10^{-2}$ |
| 24 | relationship | $2.6 \times 10^{-2}$ |
| 25 | individu | $2.4 \times 10^{-2}$ |
| 26 | sexual | $2.3 \times 10^{-2}$ |
| 27 | questionnair | $2.3 \times 10^{-2}$ |
| 28 | abus | $2.3 \times 10^{-2}$ |
| 29 | eat | $2.2 \times 10^{-2}$ |
| 30 | complet | $2.2 \times 10^{-2}$ |
| 31 | clinic | $2.2 \times 10^{-2}$ |
| 32 | age | $2.2 \times 10^{-2}$ |
| 33 | find | $2.2 \times 10^{-2}$ |
| 34 | sampl | $2.1 \times 10^{-2}$ |
| 35 | treatment | $2 \times 10^{-2}$ |
| 36 | adult | $2 \times 10^{-2}$ |
| 37 | parent | $2 \times 10^{-2}$ |
| 38 | session | $2 \times 10^{-2}$ |
| 39 | interview | $2 \times 10^{-2}$ |
| 40 | child | $2 \times 10^{-2}$ |
| 41 | distress | $1.9 \times 10^{-2}$ |
| 42 | outcom | $1.9 \times 10^{-2}$ |
| 43 | score | $1.9 \times 10^{-2}$ |
| 44 | therapist | $1.9 \times 10^{-2}$ |
| 45 | children | $1.9 \times 10^{-2}$ |
| 46 | women | $1.9 \times 10^{-2}$ |
| 47 | psychopatholog | $1.9 \times 10^{-2}$ |
| 48 | psychotherapi | $1.8 \times 10^{-2}$ |
| 49 | psychiatr | $1.8 \times 10^{-2}$ |
| 50 | implic | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | dsm | $1.8 \times 10^{-2}$ |
| 52 | among | $1.7 \times 10^{-2}$ |
| 53 | paper | $1.7 \times 10^{-2}$ |
| 54 | youth | $1.7 \times 10^{-2}$ |
| 55 | trauma | $1.6 \times 10^{-2}$ |
| 56 | cell | $1.6 \times 10^{-2}$ |
| 57 | relat | $1.6 \times 10^{-2}$ |
| 58 | substanc | $1.5 \times 10^{-2}$ |
| 59 | negat | $1.5 \times 10^{-2}$ |
| 60 | femal | $1.5 \times 10^{-2}$ |
| 61 | moder | $1.5 \times 10^{-2}$ |
| 62 | whether | $1.5 \times 10^{-2}$ |
| 63 | therapi | $1.5 \times 10^{-2}$ |
| 64 | suggest | $1.5 \times 10^{-2}$ |
| 65 | interperson | $1.4 \times 10^{-2}$ |
| 66 | conclus | $1.4 \times 10^{-2}$ |
| 67 | psychometr | $1.4 \times 10^{-2}$ |
| 68 | inventori | $1.3 \times 10^{-2}$ |
| 69 | temperatur | $1.3 \times 10^{-2}$ |
| 70 | group | $1.3 \times 10^{-2}$ |
| 71 | baselin | $1.3 \times 10^{-2}$ |
| 72 | surfac | $1.3 \times 10^{-2}$ |
| 73 | across | $1.3 \times 10^{-2}$ |
| 74 | risk | $1.3 \times 10^{-2}$ |
| 75 | year | $1.2 \times 10^{-2}$ |
| 76 | may | $1.2 \times 10^{-2}$ |
| 77 | support | $1.2 \times 10^{-2}$ |
| 78 | alcohol | $1.2 \times 10^{-2}$ |
| 79 | partner | $1.2 \times 10^{-2}$ |
| 80 | mood | $1.2 \times 10^{-2}$ |
| 81 | gender | $1.2 \times 10^{-2}$ |
| 82 | perceiv | $1.2 \times 10^{-2}$ |
| 83 | subscal | $1.2 \times 10^{-2}$ |
| 84 | simul | $1.2 \times 10^{-2}$ |
| 85 | student | $1.2 \times 10^{-2}$ |
| 86 | item | $1.2 \times 10^{-2}$ |
| 87 | childhood | $1.1 \times 10^{-2}$ |
| 88 | predictor | $1.1 \times 10^{-2}$ |
| 89 | system | $1.1 \times 10^{-2}$ |
| 90 | engag | $1.1 \times 10^{-2}$ |
| 91 | posttreat | $1.1 \times 10^{-2}$ |
| 92 | psychosoci | $1.1 \times 10^{-2}$ |
| 93 | object | $1 \times 10^{-2}$ |
| 94 | clinician | $1 \times 10^{-2}$ |
| 95 | violenc | $1 \times 10^{-2}$ |
| 96 | stress | $1 \times 10^{-2}$ |
| 97 | traumat | $1 \times 10^{-2}$ |
| 98 | confirmatori | $1 \times 10^{-2}$ |
| 99 | longitudin | $1 \times 10^{-2}$ |
| 100 | comorbid | $1 \times 10^{-2}$ |

Table D.209. The list of the top 100 words in the category Psychology, Developmental with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | children | $1.8 \times 10^{-1}$ |
| 2 | adolesc | $1.2 \times 10^{-1}$ |
| 3 | parent | $9.7 \times 10^{-2}$ |
| 4 | age | $8.7 \times 10^{-2}$ |
| 5 | child | $8.7 \times 10^{-2}$ |
| 6 | autism | $8.3 \times 10^{-2}$ |
| 7 | examin | $5.6 \times 10^{-2}$ |
| 8 | youth | $5.6 \times 10^{-2}$ |
| 9 | asd | $5.4 \times 10^{-2}$ |
| 10 | social | $5 \times 10^{-2}$ |
| 11 | year | $4.9 \times 10^{-2}$ |
| 12 | development | $4.9 \times 10^{-2}$ |
| 13 | school | $4.8 \times 10^{-2}$ |
| 14 | disord | $4.7 \times 10^{-2}$ |
| 15 | particip | $4.3 \times 10^{-2}$ |
| 16 | behavior | $4.1 \times 10^{-2}$ |
| 17 | peer | $4 \times 10^{-2}$ |
| 18 | mother | $4 \times 10^{-2}$ |
| 19 | emot | $3.7 \times 10^{-2}$ |
| 20 | old | $3.5 \times 10^{-2}$ |
| 21 | preschool | $3.5 \times 10^{-2}$ |
| 22 | childhood | $3.2 \times 10^{-2}$ |
| 23 | girl | $3.2 \times 10^{-2}$ |
| 24 | boy | $3.1 \times 10^{-2}$ |
| 25 | longitudin | $3.1 \times 10^{-2}$ |
| 26 | cognit | $3 \times 10^{-2}$ |
| 27 | intervent | $3 \times 10^{-2}$ |
| 28 | symptom | $2.9 \times 10^{-2}$ |
| 29 | young | $2.8 \times 10^{-2}$ |
| 30 | find | $2.6 \times 10^{-2}$ |
| 31 | adult | $2.6 \times 10^{-2}$ |
| 32 | earli | $2.6 \times 10^{-2}$ |
| 33 | skill | $2.5 \times 10^{-2}$ |
| 34 | famili | $2.4 \times 10^{-2}$ |
| 35 | depress | $2.4 \times 10^{-2}$ |
| 36 | gender | $2.3 \times 10^{-2}$ |
| 37 | adhd | $2.3 \times 10^{-2}$ |
| 38 | infant | $2.3 \times 10^{-2}$ |
| 39 | studi | $2.2 \times 10^{-2}$ |
| 40 | paper | $2.2 \times 10^{-2}$ |
| 41 | spectrum | $2.1 \times 10^{-2}$ |
| 42 | associ | $2.1 \times 10^{-2}$ |
| 43 | research | $2 \times 10^{-2}$ |
| 44 | task | $2 \times 10^{-2}$ |
| 45 | matern | $1.9 \times 10^{-2}$ |
| 46 | across | $1.9 \times 10^{-2}$ |
| 47 | implic | $1.9 \times 10^{-2}$ |
| 48 | mental | $1.9 \times 10^{-2}$ |
| 49 | selfreport | $1.9 \times 10^{-2}$ |
| 50 | teacher | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | assess | $1.8 \times 10^{-2}$ |
| 52 | whether | $1.8 \times 10^{-2}$ |
| 53 | relat | $1.7 \times 10^{-2}$ |
| 54 | hyperact | $1.6 \times 10^{-2}$ |
| 55 | anxieti | $1.6 \times 10^{-2}$ |
| 56 | relationship | $1.6 \times 10^{-2}$ |
| 57 | cell | $1.6 \times 10^{-2}$ |
| 58 | languag | $1.5 \times 10^{-2}$ |
| 59 | month | $1.5 \times 10^{-2}$ |
| 60 | suggest | $1.4 \times 10^{-2}$ |
| 61 | deficit | $1.4 \times 10^{-2}$ |
| 62 | attent | $1.4 \times 10^{-2}$ |
| 63 | adulthood | $1.4 \times 10^{-2}$ |
| 64 | father | $1.4 \times 10^{-2}$ |
| 65 | caregiv | $1.4 \times 10^{-2}$ |
| 66 | support | $1.3 \times 10^{-2}$ |
| 67 | verbal | $1.3 \times 10^{-2}$ |
| 68 | engag | $1.3 \times 10^{-2}$ |
| 69 | temperatur | $1.3 \times 10^{-2}$ |
| 70 | moder | $1.3 \times 10^{-2}$ |
| 71 | psycholog | $1.2 \times 10^{-2}$ |
| 72 | predict | $1.2 \times 10^{-2}$ |
| 73 | risk | $1.1 \times 10^{-2}$ |
| 74 | psychopatholog | $1.1 \times 10^{-2}$ |
| 75 | group | $1.1 \times 10^{-2}$ |
| 76 | older | $1.1 \times 10^{-2}$ |
| 77 | questionnair | $1.1 \times 10^{-2}$ |
| 78 | sampl | $1.1 \times 10^{-2}$ |
| 79 | simul | $1.1 \times 10^{-2}$ |
| 80 | health | $1.1 \times 10^{-2}$ |
| 81 | surfac | $1.1 \times 10^{-2}$ |
| 82 | energi | $1.1 \times 10^{-2}$ |
| 83 | system | $1.1 \times 10^{-2}$ |
| 84 | individu | $1.1 \times 10^{-2}$ |
| 85 | ethnic | $1 \times 10^{-2}$ |
| 86 | propos | $1 \times 10^{-2}$ |
| 87 | dyad | $1 \times 10^{-2}$ |
| 88 | difficulti | $9.8 \times 10^{-3}$ |
| 89 | student | $9.5 \times 10^{-3}$ |
| 90 | femal | $9.5 \times 10^{-3}$ |
| 91 | discuss | $9.4 \times 10^{-3}$ |
| 92 | educ | $9.4 \times 10^{-3}$ |
| 93 | outcom | $9.3 \times 10^{-3}$ |
| 94 | among | $9.3 \times 10^{-3}$ |
| 95 | report | $9.2 \times 10^{-3}$ |
| 96 | applic | $9.2 \times 10^{-3}$ |
| 97 | victim | $9.1 \times 10^{-3}$ |
| 98 | score | $9 \times 10^{-3}$ |
| 99 | paramet | $9 \times 10^{-3}$ |
| 100 | interview | $8.7 \times 10^{-3}$ |

Table D.210. The list of the top 100 words in the category Psychology, Educational with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | student | $1.4 \times 10^{-1}$ |
| 2 | school | $1.2 \times 10^{-1}$ |
| 3 | teacher | $7.3 \times 10^{-2}$ |
| 4 | children | $6.2 \times 10^{-2}$ |
| 5 | educ | $5.5 \times 10^{-2}$ |
| 6 | learn | $5 \times 10^{-2}$ |
| 7 | read | $4.3 \times 10^{-2}$ |
| 8 | grade | $4.3 \times 10^{-2}$ |
| 9 | academ | $4 \times 10^{-2}$ |
| 10 | skill | $3.9 \times 10^{-2}$ |
| 11 | classroom | $3.8 \times 10^{-2}$ |
| 12 | research | $3.8 \times 10^{-2}$ |
| 13 | implic | $3.5 \times 10^{-2}$ |
| 14 | particip | $3.3 \times 10^{-2}$ |
| 15 | examin | $3.1 \times 10^{-2}$ |
| 16 | instruct | $3 \times 10^{-2}$ |
| 17 | discuss | $2.3 \times 10^{-2}$ |
| 18 | studi | $2.3 \times 10^{-2}$ |
| 19 | cognit | $2.3 \times 10^{-2}$ |
| 20 | literaci | $2.2 \times 10^{-2}$ |
| 21 | languag | $2.1 \times 10^{-2}$ |
| 22 | find | $2.1 \times 10^{-2}$ |
| 23 | social | $1.9 \times 10^{-2}$ |
| 24 | preschool | $1.9 \times 10^{-2}$ |
| 25 | emot | $1.9 \times 10^{-2}$ |
| 26 | peer | $1.8 \times 10^{-2}$ |
| 27 | word | $1.8 \times 10^{-2}$ |
| 28 | psycholog | $1.8 \times 10^{-2}$ |
| 29 | intervent | $1.6 \times 10^{-2}$ |
| 30 | support | $1.6 \times 10^{-2}$ |
| 31 | practic | $1.6 \times 10^{-2}$ |
| 32 | adolesc | $1.6 \times 10^{-2}$ |
| 33 | item | $1.5 \times 10^{-2}$ |
| 34 | cell | $1.5 \times 10^{-2}$ |
| 35 | motiv | $1.5 \times 10^{-2}$ |
| 36 | phonolog | $1.5 \times 10^{-2}$ |
| 37 | learner | $1.5 \times 10^{-2}$ |
| 38 | teach | $1.5 \times 10^{-2}$ |
| 39 | psychologist | $1.5 \times 10^{-2}$ |
| 40 | child | $1.4 \times 10^{-2}$ |
| 41 | parent | $1.4 \times 10^{-2}$ |
| 42 | score | $1.4 \times 10^{-2}$ |
| 43 | vocabulari | $1.4 \times 10^{-2}$ |
| 44 | patient | $1.4 \times 10^{-2}$ |
| 45 | elementari | $1.3 \times 10^{-2}$ |
| 46 | verbal | $1.3 \times 10^{-2}$ |
| 47 | engag | $1.3 \times 10^{-2}$ |
| 48 | selfefficaci | $1.3 \times 10^{-2}$ |
| 49 | across | $1.3 \times 10^{-2}$ |
| 50 | paper | $1.3 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | english | $1.2 \times 10^{-2}$ |
| 52 | fluenci | $1.2 \times 10^{-2}$ |
| 53 | text | $1.2 \times 10^{-2}$ |
| 54 | boy | $1.2 \times 10^{-2}$ |
| 55 | temperatur | $1.2 \times 10^{-2}$ |
| 56 | task | $1.1 \times 10^{-2}$ |
| 57 | girl | $1.1 \times 10^{-2}$ |
| 58 | compet | $1.1 \times 10^{-2}$ |
| 59 | confirmatori | $1.1 \times 10^{-2}$ |
| 60 | perceiv | $1.1 \times 10^{-2}$ |
| 61 | knowledg | $1.1 \times 10^{-2}$ |
| 62 | abil | $1.1 \times 10^{-2}$ |
| 63 | math | $1.1 \times 10^{-2}$ |
| 64 | system | $1 \times 10^{-2}$ |
| 65 | creativ | $1 \times 10^{-2}$ |
| 66 | gender | $1 \times 10^{-2}$ |
| 67 | assess | $1 \times 10^{-2}$ |
| 68 | longitudin | $9.8 \times 10^{-3}$ |
| 69 | energi | $9.7 \times 10^{-3}$ |
| 70 | reader | $9.6 \times 10^{-3}$ |
| 71 | predictor | $9.5 \times 10^{-3}$ |
| 72 | profession | $9.4 \times 10^{-3}$ |
| 73 | person | $9.3 \times 10^{-3}$ |
| 74 | psychometr | $9.2 \times 10^{-3}$ |
| 75 | relationship | $9 \times 10^{-3}$ |
| 76 | context | $8.9 \times 10^{-3}$ |
| 77 | method | $8.8 \times 10^{-3}$ |
| 78 | protein | $8.8 \times 10^{-3}$ |
| 79 | age | $8.8 \times 10^{-3}$ |
| 80 | undergradu | $8.7 \times 10^{-3}$ |
| 81 | percept | $8.6 \times 10^{-3}$ |
| 82 | latent | $8.5 \times 10^{-3}$ |
| 83 | relat | $8.3 \times 10^{-3}$ |
| 84 | belief | $8.3 \times 10^{-3}$ |
| 85 | think | $8.3 \times 10^{-3}$ |
| 86 | questionnair | $8.2 \times 10^{-3}$ |
| 87 | varianc | $8.2 \times 10^{-3}$ |
| 88 | youth | $8.1 \times 10^{-3}$ |
| 89 | articl | $8.1 \times 10^{-3}$ |
| 90 | comprehens | $8 \times 10^{-3}$ |
| 91 | selfreport | $7.9 \times 10^{-3}$ |
| 92 | surfac | $7.9 \times 10^{-3}$ |
| 93 | write | $7.8 \times 10^{-3}$ |
| 94 | year | $7.7 \times 10^{-3}$ |
| 95 | analys | $7.7 \times 10^{-3}$ |
| 96 | concentr | $7.7 \times 10^{-3}$ |
| 97 | conceptu | $7.7 \times 10^{-3}$ |
| 98 | water | $7.7 \times 10^{-3}$ |
| 99 | multilevel | $7.4 \times 10^{-3}$ |
| 100 | whether | $7.3 \times 10^{-3}$ |

Table D.211. The list of the top 100 words in the category Psychology, Experimental with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | task | $9.7 \times 10^{-2}$ |
| 2 | particip | $8 \times 10^{-2}$ |
| 3 | cognit | $5 \times 10^{-2}$ |
| 4 | stimuli | $4.8 \times 10^{-2}$ |
| 5 | memori | $4.5 \times 10^{-2}$ |
| 6 | word | $3.9 \times 10^{-2}$ |
| 7 | stimulus | $3.9 \times 10^{-2}$ |
| 8 | visual | $3.5 \times 10^{-2}$ |
| 9 | experi | $3.3 \times 10^{-2}$ |
| 10 | perceptu | $3.3 \times 10^{-2}$ |
| 11 | whether | $3.2 \times 10^{-2}$ |
| 12 | suggest | $3.2 \times 10^{-2}$ |
| 13 | cue | $3.1 \times 10^{-2}$ |
| 14 | emot | $2.9 \times 10^{-2}$ |
| 15 | method | $2.5 \times 10^{-2}$ |
| 16 | percept | $2.3 \times 10^{-2}$ |
| 17 | paradigm | $2.2 \times 10^{-2}$ |
| 18 | attent | $2.2 \times 10^{-2}$ |
| 19 | lexic | $2.2 \times 10^{-2}$ |
| 20 | learn | $2.2 \times 10^{-2}$ |
| 21 | find | $2.2 \times 10^{-2}$ |
| 22 | judgment | $2 \times 10^{-2}$ |
| 23 | manipul | $1.9 \times 10^{-2}$ |
| 24 | erp | $1.9 \times 10^{-2}$ |
| 25 | represent | $1.8 \times 10^{-2}$ |
| 26 | languag | $1.8 \times 10^{-2}$ |
| 27 | examin | $1.8 \times 10^{-2}$ |
| 28 | process | $1.7 \times 10^{-2}$ |
| 29 | auditori | $1.6 \times 10^{-2}$ |
| 30 | paper | $1.5 \times 10^{-2}$ |
| 31 | item | $1.5 \times 10^{-2}$ |
| 32 | cell | $1.5 \times 10^{-2}$ |
| 33 | neural | $1.5 \times 10^{-2}$ |
| 34 | cortex | $1.5 \times 10^{-2}$ |
| 35 | ask | $1.4 \times 10^{-2}$ |
| 36 | semant | $1.4 \times 10^{-2}$ |
| 37 | perceiv | $1.4 \times 10^{-2}$ |
| 38 | children | $1.4 \times 10^{-2}$ |
| 39 | recal | $1.4 \times 10^{-2}$ |
| 40 | brain | $1.4 \times 10^{-2}$ |
| 41 | sentenc | $1.4 \times 10^{-2}$ |
| 42 | relat | $1.4 \times 10^{-2}$ |
| 43 | temperatur | $1.3 \times 10^{-2}$ |
| 44 | across | $1.3 \times 10^{-2}$ |
| 45 | individu | $1.2 \times 10^{-2}$ |
| 46 | social | $1.2 \times 10^{-2}$ |
| 47 | phonolog | $1.2 \times 10^{-2}$ |
| 48 | verbal | $1.2 \times 10^{-2}$ |
| 49 | evid | $1.2 \times 10^{-2}$ |
| 50 | either | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | inform | $1.2 \times 10^{-2}$ |
| 52 | elicit | $1.2 \times 10^{-2}$ |
| 53 | peopl | $1.2 \times 10^{-2}$ |
| 54 | research | $1.1 \times 10^{-2}$ |
| 55 | psycholog | $1.1 \times 10^{-2}$ |
| 56 | left | $1.1 \times 10^{-2}$ |
| 57 | rememb | $1.1 \times 10^{-2}$ |
| 58 | adult | $1.1 \times 10^{-2}$ |
| 59 | listen | $1.1 \times 10^{-2}$ |
| 60 | hypothesi | $1.1 \times 10^{-2}$ |
| 61 | movement | $1.1 \times 10^{-2}$ |
| 62 | respons | $1.1 \times 10^{-2}$ |
| 63 | context | $1 \times 10^{-2}$ |
| 64 | conclus | $1 \times 10^{-2}$ |
| 65 | tempor | $1 \times 10^{-2}$ |
| 66 | frontal | $1 \times 10^{-2}$ |
| 67 | read | $9.9 \times 10^{-3}$ |
| 68 | fmri | $9.6 \times 10^{-3}$ |
| 69 | energi | $9.6 \times 10^{-3}$ |
| 70 | speech | $9.5 \times 10^{-3}$ |
| 71 | motor | $9.5 \times 10^{-3}$ |
| 72 | right | $9.4 \times 10^{-3}$ |
| 73 | linguist | $9.2 \times 10^{-3}$ |
| 74 | treatment | $9.2 \times 10^{-3}$ |
| 75 | prefront | $9.2 \times 10^{-3}$ |
| 76 | instruct | $9.2 \times 10^{-3}$ |
| 77 | recognit | $9.1 \times 10^{-3}$ |
| 78 | speaker | $9.1 \times 10^{-3}$ |
| 79 | pictur | $9.1 \times 10^{-3}$ |
| 80 | implic | $9.1 \times 10^{-3}$ |
| 81 | pariet | $9 \times 10^{-3}$ |
| 82 | eye | $8.9 \times 10^{-3}$ |
| 83 | trial | $8.8 \times 10^{-3}$ |
| 84 | prime | $8.7 \times 10^{-3}$ |
| 85 | concentr | $8.7 \times 10^{-3}$ |
| 86 | protein | $8.5 \times 10^{-3}$ |
| 87 | bias | $8.4 \times 10^{-3}$ |
| 88 | behavior | $8.2 \times 10^{-3}$ |
| 89 | acid | $8.2 \times 10^{-3}$ |
| 90 | gyrus | $8.1 \times 10^{-3}$ |
| 91 | applic | $8.1 \times 10^{-3}$ |
| 92 | test | $8 \times 10^{-3}$ |
| 93 | familiar | $8 \times 10^{-3}$ |
| 94 | music | $7.8 \times 10^{-3}$ |
| 95 | view | $7.7 \times 10^{-3}$ |
| 96 | noun | $7.6 \times 10^{-3}$ |
| 97 | electron | $7.6 \times 10^{-3}$ |
| 98 | person | $7.5 \times 10^{-3}$ |
| 99 | spoken | $7.3 \times 10^{-3}$ |
| 100 | abil | $7.3 \times 10^{-3}$ |

Table D.212. The list of the top 100 words in the category Psychology, Mathematical with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | item | $8.1 \times 10^{-2}$ |
| 2 | latent | $3.2 \times 10^{-2}$ |
| 3 | stimulus | $2.3 \times 10^{-2}$ |
| 4 | task | $2.2 \times 10^{-2}$ |
| 5 | cognit | $2.1 \times 10^{-2}$ |
| 6 | visual | $1.9 \times 10^{-2}$ |
| 7 | particip | $1.9 \times 10^{-2}$ |
| 8 | articl | $1.9 \times 10^{-2}$ |
| 9 | estim | $1.8 \times 10^{-2}$ |
| 10 | research | $1.7 \times 10^{-2}$ |
| 11 | word | $1.7 \times 10^{-2}$ |
| 12 | respons | $1.6 \times 10^{-2}$ |
| 13 | psycholog | $1.5 \times 10^{-2}$ |
| 14 | simul | $1.5 \times 10^{-2}$ |
| 15 | empir | $1.4 \times 10^{-2}$ |
| 16 | bias | $1.4 \times 10^{-2}$ |
| 17 | procedur | $1.3 \times 10^{-2}$ |
| 18 | lexic | $1.3 \times 10^{-2}$ |
| 19 | stimuli | $1.3 \times 10^{-2}$ |
| 20 | test | $1.3 \times 10^{-2}$ |
| 21 | perceptu | $1.2 \times 10^{-2}$ |
| 22 | across | $1.2 \times 10^{-2}$ |
| 23 | likelihood | $1.2 \times 10^{-2}$ |
| 24 | cell | $1.2 \times 10^{-2}$ |
| 25 | memori | $1.1 \times 10^{-2}$ |
| 26 | model | $1.1 \times 10^{-2}$ |
| 27 | covari | $1.1 \times 10^{-2}$ |
| 28 | error | $1.1 \times 10^{-2}$ |
| 29 | paradigm | $1 \times 10^{-2}$ |
| 30 | temperatur | $9.8 \times 10^{-3}$ |
| 31 | patient | $9.6 \times 10^{-3}$ |
| 32 | score | $9.5 \times 10^{-3}$ |
| 33 | data | $9.4 \times 10^{-3}$ |
| 34 | theori | $9.2 \times 10^{-3}$ |
| 35 | multilevel | $9 \times 10^{-3}$ |
| 36 | bayesian | $8.8 \times 10^{-3}$ |
| 37 | illustr | $8.6 \times 10^{-3}$ |
| 38 | journal | $8.4 \times 10^{-3}$ |
| 39 | energi | $8.3 \times 10^{-3}$ |
| 40 | fit | $8.1 \times 10^{-3}$ |
| 41 | exampl | $8 \times 10^{-3}$ |
| 42 | assumpt | $8 \times 10^{-3}$ |
| 43 | conclus | $7.9 \times 10^{-3}$ |
| 44 | hierarch | $7.8 \times 10^{-3}$ |
| 45 | judgment | $7.8 \times 10^{-3}$ |
| 46 | general | $7.7 \times 10^{-3}$ |
| 47 | carlo | $7.5 \times 10^{-3}$ |
| 48 | protein | $7.4 \times 10^{-3}$ |
| 49 | mont | $7.4 \times 10^{-3}$ |
| 50 | student | $7.4 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | experi | $7.4 \times 10^{-3}$ |
| 52 | manipul | $7.2 \times 10^{-3}$ |
| 53 | english | $7.2 \times 10^{-3}$ |
| 54 | concentr | $7.1 \times 10^{-3}$ |
| 55 | individu | $7.1 \times 10^{-3}$ |
| 56 | varianc | $6.8 \times 10^{-3}$ |
| 57 | variabl | $6.7 \times 10^{-3}$ |
| 58 | inform | $6.7 \times 10^{-3}$ |
| 59 | surfac | $6.6 \times 10^{-3}$ |
| 60 | acid | $6.3 \times 10^{-3}$ |
| 61 | electron | $6.3 \times 10^{-3}$ |
| 62 | diseas | $6.3 \times 10^{-3}$ |
| 63 | present | $6.2 \times 10^{-3}$ |
| 64 | abil | $6.1 \times 10^{-3}$ |
| 65 | statist | $6 \times 10^{-3}$ |
| 66 | languag | $6 \times 10^{-3}$ |
| 67 | two | $6 \times 10^{-3}$ |
| 68 | categori | $5.9 \times 10^{-3}$ |
| 69 | gene | $5.9 \times 10^{-3}$ |
| 70 | set | $5.7 \times 10^{-3}$ |
| 71 | instruct | $5.6 \times 10^{-3}$ |
| 72 | psychometr | $5.6 \times 10^{-3}$ |
| 73 | assum | $5.5 \times 10^{-3}$ |
| 74 | discuss | $5.5 \times 10^{-3}$ |
| 75 | mass | $5.4 \times 10^{-3}$ |
| 76 | learn | $5.3 \times 10^{-3}$ |
| 77 | semant | $5.3 \times 10^{-3}$ |
| 78 | water | $5.2 \times 10^{-3}$ |
| 79 | often | $5.1 \times 10^{-3}$ |
| 80 | whether | $5.1 \times 10^{-3}$ |
| 81 | verbal | $5.1 \times 10^{-3}$ |
| 82 | oxid | $5 \times 10^{-3}$ |
| 83 | molecular | $4.9 \times 10^{-3}$ |
| 84 | behavior | $4.9 \times 10^{-3}$ |
| 85 | infer | $4.8 \times 10^{-3}$ |
| 86 | size | $4.8 \times 10^{-3}$ |
| 87 | scienc | $4.7 \times 10^{-3}$ |
| 88 | reliabl | $4.7 \times 10^{-3}$ |
| 89 | context | $4.7 \times 10^{-3}$ |
| 90 | activ | $4.7 \times 10^{-3}$ |
| 91 | percept | $4.6 \times 10^{-3}$ |
| 92 | trial | $4.6 \times 10^{-3}$ |
| 93 | high | $4.5 \times 10^{-3}$ |
| 94 | attent | $4.5 \times 10^{-3}$ |
| 95 | paper | $4.5 \times 10^{-3}$ |
| 96 | cue | $4.5 \times 10^{-3}$ |
| 97 | account | $4.5 \times 10^{-3}$ |
| 98 | read | $4.5 \times 10^{-3}$ |
| 99 | familiar | $4.5 \times 10^{-3}$ |
| 100 | chemic | $4.4 \times 10^{-3}$ |

Table D.213. The list of the top 100 words in the category Psychology, Multidisciplinary with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | psycholog | $6.1 \times 10^{-2}$ |
| 2 | particip | $5.1 \times 10^{-2}$ |
| 3 | social | $4.3 \times 10^{-2}$ |
| 4 | research | $3.6 \times 10^{-2}$ |
| 5 | emot | $3.5 \times 10^{-2}$ |
| 6 | cognit | $3.1 \times 10^{-2}$ |
| 7 | person | $3 \times 10^{-2}$ |
| 8 | student | $2.7 \times 10^{-2}$ |
| 9 | examin | $2.2 \times 10^{-2}$ |
| 10 | perceiv | $2 \times 10^{-2}$ |
| 11 | individu | $1.9 \times 10^{-2}$ |
| 12 | mental | $1.9 \times 10^{-2}$ |
| 13 | relationship | $1.9 \times 10^{-2}$ |
| 14 | peopl | $1.8 \times 10^{-2}$ |
| 15 | behavior | $1.6 \times 10^{-2}$ |
| 16 | percept | $1.6 \times 10^{-2}$ |
| 17 | find | $1.5 \times 10^{-2}$ |
| 18 | task | $1.5 \times 10^{-2}$ |
| 19 | implic | $1.5 \times 10^{-2}$ |
| 20 | questionnair | $1.5 \times 10^{-2}$ |
| 21 | cell | $1.5 \times 10^{-2}$ |
| 22 | studi | $1.4 \times 10^{-2}$ |
| 23 | children | $1.3 \times 10^{-2}$ |
| 24 | temperatur | $1.2 \times 10^{-2}$ |
| 25 | depress | $1.2 \times 10^{-2}$ |
| 26 | anxieti | $1.2 \times 10^{-2}$ |
| 27 | support | $1.2 \times 10^{-2}$ |
| 28 | relat | $1.2 \times 10^{-2}$ |
| 29 | whether | $1.2 \times 10^{-2}$ |
| 30 | health | $1.2 \times 10^{-2}$ |
| 31 | psychologist | $1.1 \times 10^{-2}$ |
| 32 | surfac | $1.1 \times 10^{-2}$ |
| 33 | discuss | $1.1 \times 10^{-2}$ |
| 34 | engag | $1.1 \times 10^{-2}$ |
| 35 | attitud | $1.1 \times 10^{-2}$ |
| 36 | adolesc | $1.1 \times 10^{-2}$ |
| 37 | school | $1.1 \times 10^{-2}$ |
| 38 | suggest | $1.1 \times 10^{-2}$ |
| 39 | feel | $1.1 \times 10^{-2}$ |
| 40 | selfreport | $1.1 \times 10^{-2}$ |
| 41 | adult | $1.1 \times 10^{-2}$ |
| 42 | age | $1.1 \times 10^{-2}$ |
| 43 | context | $1 \times 10^{-2}$ |
| 44 | educ | $1 \times 10^{-2}$ |
| 45 | energi | $1 \times 10^{-2}$ |
| 46 | gender | $1 \times 10^{-2}$ |
| 47 | intervent | $1 \times 10^{-2}$ |
| 48 | learn | $9.9 \times 10^{-3}$ |
| 49 | women | $9.8 \times 10^{-3}$ |
| 50 | negat | $9.6 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | experi | $9.5 \times 10^{-3}$ |
| 52 | motiv | $9.1 \times 10^{-3}$ |
| 53 | interview | $9.1 \times 10^{-3}$ |
| 54 | memori | $8.9 \times 10^{-3}$ |
| 55 | child | $8.8 \times 10^{-3}$ |
| 56 | life | $8.8 \times 10^{-3}$ |
| 57 | belief | $8.8 \times 10^{-3}$ |
| 58 | interperson | $8.6 \times 10^{-3}$ |
| 59 | item | $8.5 \times 10^{-3}$ |
| 60 | men | $8.1 \times 10^{-3}$ |
| 61 | suicid | $8 \times 10^{-3}$ |
| 62 | concentr | $8 \times 10^{-3}$ |
| 63 | simul | $8 \times 10^{-3}$ |
| 64 | paramet | $8 \times 10^{-3}$ |
| 65 | protein | $7.9 \times 10^{-3}$ |
| 66 | psychometr | $7.9 \times 10^{-3}$ |
| 67 | acid | $7.9 \times 10^{-3}$ |
| 68 | parent | $7.7 \times 10^{-3}$ |
| 69 | posit | $7.7 \times 10^{-3}$ |
| 70 | undergradu | $7.7 \times 10^{-3}$ |
| 71 | satisfact | $7.7 \times 10^{-3}$ |
| 72 | sexual | $7.5 \times 10^{-3}$ |
| 73 | skill | $7.5 \times 10^{-3}$ |
| 74 | stimuli | $7.4 \times 10^{-3}$ |
| 75 | method | $7.4 \times 10^{-3}$ |
| 76 | onlin | $7.3 \times 10^{-3}$ |
| 77 | distress | $7.2 \times 10^{-3}$ |
| 78 | cope | $7.2 \times 10^{-3}$ |
| 79 | water | $7.1 \times 10^{-3}$ |
| 80 | explor | $7 \times 10^{-3}$ |
| 81 | system | $6.8 \times 10^{-3}$ |
| 82 | effici | $6.8 \times 10^{-3}$ |
| 83 | word | $6.8 \times 10^{-3}$ |
| 84 | algorithm | $6.6 \times 10^{-3}$ |
| 85 | ask | $6.6 \times 10^{-3}$ |
| 86 | survey | $6.6 \times 10^{-3}$ |
| 87 | attent | $6.5 \times 10^{-3}$ |
| 88 | electron | $6.5 \times 10^{-3}$ |
| 89 | densiti | $6.3 \times 10^{-3}$ |
| 90 | oxid | $6.3 \times 10^{-3}$ |
| 91 | resili | $6.2 \times 10^{-3}$ |
| 92 | across | $6.2 \times 10^{-3}$ |
| 93 | among | $6.2 \times 10^{-3}$ |
| 94 | associ | $6.2 \times 10^{-3}$ |
| 95 | selfesteem | $6.2 \times 10^{-3}$ |
| 96 | calcul | $6.1 \times 10^{-3}$ |
| 97 | colleg | $6.1 \times 10^{-3}$ |
| 98 | evid | $6 \times 10^{-3}$ |
| 99 | assess | $6 \times 10^{-3}$ |
| 100 | chemic | $5.9 \times 10^{-3}$ |

Table D.214. The list of the top 100 words in the category Psychology, Psychoanalysis with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | psychoanalyt | $2.3 \times 10^{-1}$ |
| 2 | psychoanalysi | $1.9 \times 10^{-1}$ |
| 3 | freud | $1.2 \times 10^{-1}$ |
| 4 | analyst | $1.1 \times 10^{-1}$ |
| 5 | unconsci | $6 \times 10^{-2}$ |
| 6 | psychoanalyst | $5.8 \times 10^{-2}$ |
| 7 | psychic | $5.6 \times 10^{-2}$ |
| 8 | psychotherapi | $4.2 \times 10^{-2}$ |
| 9 | therapist | $4 \times 10^{-2}$ |
| 10 | author | $4 \times 10^{-2}$ |
| 11 | result | $3.8 \times 10^{-2}$ |
| 12 | psycholog | $3.6 \times 10^{-2}$ |
| 13 | trauma | $3.4 \times 10^{-2}$ |
| 14 | clinic | $2.9 \times 10^{-2}$ |
| 15 | theori | $2.9 \times 10^{-2}$ |
| 16 | vignett | $2.9 \times 10^{-2}$ |
| 17 | self | $2.9 \times 10^{-2}$ |
| 18 | patient | $2.5 \times 10^{-2}$ |
| 19 | emot | $2.5 \times 10^{-2}$ |
| 20 | think | $2.4 \times 10^{-2}$ |
| 21 | person | $2.3 \times 10^{-2}$ |
| 22 | concept | $2.3 \times 10^{-2}$ |
| 23 | method | $2.3 \times 10^{-2}$ |
| 24 | contemporari | $2.2 \times 10^{-2}$ |
| 25 | development | $2.2 \times 10^{-2}$ |
| 26 | traumat | $2.2 \times 10^{-2}$ |
| 27 | mind | $2.1 \times 10^{-2}$ |
| 28 | articl | $2.1 \times 10^{-2}$ |
| 29 | mental | $2.1 \times 10^{-2}$ |
| 30 | dream | $2 \times 10^{-2}$ |
| 31 | fantasi | $2 \times 10^{-2}$ |
| 32 | work | $1.9 \times 10^{-2}$ |
| 33 | analyt | $1.9 \times 10^{-2}$ |
| 34 | interperson | $1.8 \times 10^{-2}$ |
| 35 | perform | $1.8 \times 10^{-2}$ |
| 36 | studi | $1.8 \times 10^{-2}$ |
| 37 | argu | $1.8 \times 10^{-2}$ |
| 38 | discuss | $1.7 \times 10^{-2}$ |
| 39 | mourn | $1.7 \times 10^{-2}$ |
| 40 | perspect | $1.7 \times 10^{-2}$ |
| 41 | feel | $1.6 \times 10^{-2}$ |
| 42 | experi | $1.6 \times 10^{-2}$ |
| 43 | show | $1.5 \times 10^{-2}$ |
| 44 | use | $1.5 \times 10^{-2}$ |
| 45 | idea | $1.5 \times 10^{-2}$ |
| 46 | enact | $1.5 \times 10^{-2}$ |
| 47 | realiti | $1.5 \times 10^{-2}$ |
| 48 | metaphor | $1.4 \times 10^{-2}$ |
| 49 | increas | $1.4 \times 10^{-2}$ |
| 50 | therapeut | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | understand | $1.3 \times 10^{-2}$ |
| 52 | child | $1.3 \times 10^{-2}$ |
| 53 | relationship | $1.3 \times 10^{-2}$ |
| 54 | effect | $1.3 \times 10^{-2}$ |
| 55 | attempt | $1.3 \times 10^{-2}$ |
| 56 | cell | $1.3 \times 10^{-2}$ |
| 57 | sexual | $1.2 \times 10^{-2}$ |
| 58 | anxieti | $1.2 \times 10^{-2}$ |
| 59 | high | $1.2 \times 10^{-2}$ |
| 60 | obtain | $1.2 \times 10^{-2}$ |
| 61 | conflict | $1.2 \times 10^{-2}$ |
| 62 | explor | $1.2 \times 10^{-2}$ |
| 63 | conscious | $1.2 \times 10^{-2}$ |
| 64 | question | $1.2 \times 10^{-2}$ |
| 65 | illustr | $1.2 \times 10^{-2}$ |
| 66 | attach | $1.2 \times 10^{-2}$ |
| 67 | way | $1.1 \times 10^{-2}$ |
| 68 | jew | $1.1 \times 10^{-2}$ |
| 69 | write | $1.1 \times 10^{-2}$ |
| 70 | simul | $1.1 \times 10^{-2}$ |
| 71 | essay | $1.1 \times 10^{-2}$ |
| 72 | effici | $1.1 \times 10^{-2}$ |
| 73 | notion | $1.1 \times 10^{-2}$ |
| 74 | commentari | $1 \times 10^{-2}$ |
| 75 | psychopatholog | $1 \times 10^{-2}$ |
| 76 | dialogu | $1 \times 10^{-2}$ |
| 77 | investig | $1 \times 10^{-2}$ |
| 78 | data | $9.9 \times 10^{-3}$ |
| 79 | view | $9.9 \times 10^{-3}$ |
| 80 | symbol | $9.8 \times 10^{-3}$ |
| 81 | conceptu | $9.6 \times 10^{-3}$ |
| 82 | low | $9.4 \times 10^{-3}$ |
| 83 | temperatur | $9.4 \times 10^{-3}$ |
| 84 | childhood | $9.4 \times 10^{-3}$ |
| 85 | interpret | $9.4 \times 10^{-3}$ |
| 86 | neurosci | $9.3 \times 10^{-3}$ |
| 87 | life | $9.2 \times 10^{-3}$ |
| 88 | test | $9.2 \times 10^{-3}$ |
| 89 | relat | $9 \times 10^{-3}$ |
| 90 | base | $8.9 \times 10^{-3}$ |
| 91 | struggl | $8.9 \times 10^{-3}$ |
| 92 | narrat | $8.9 \times 10^{-3}$ |
| 93 | autobiograph | $8.9 \times 10^{-3}$ |
| 94 | distribut | $8.9 \times 10^{-3}$ |
| 95 | adolesc | $8.7 \times 10^{-3}$ |
| 96 | confus | $8.6 \times 10^{-3}$ |
| 97 | experiment | $8.6 \times 10^{-3}$ |
| 98 | paramet | $8.5 \times 10^{-3}$ |
| 99 | defens | $8.3 \times 10^{-3}$ |
| 100 | dyad | $8.2 \times 10^{-3}$ |

Table D.215. The list of the top 100 words in the category Psychology, Social with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | social | $6.6 \times 10^{-2}$ |
| 2 | particip | $5.9 \times 10^{-2}$ |
| 3 | person | $5.3 \times 10^{-2}$ |
| 4 | research | $4.7 \times 10^{-2}$ |
| 5 | examin | $4.4 \times 10^{-2}$ |
| 6 | psycholog | $4.2 \times 10^{-2}$ |
| 7 | perceiv | $4.1 \times 10^{-2}$ |
| 8 | emot | $3.9 \times 10^{-2}$ |
| 9 | peopl | $3.7 \times 10^{-2}$ |
| 10 | relationship | $3.3 \times 10^{-2}$ |
| 11 | implic | $3.3 \times 10^{-2}$ |
| 12 | individu | $3 \times 10^{-2}$ |
| 13 | method | $2.7 \times 10^{-2}$ |
| 14 | find | $2.7 \times 10^{-2}$ |
| 15 | trait | $2.5 \times 10^{-2}$ |
| 16 | discuss | $2.3 \times 10^{-2}$ |
| 17 | interperson | $2.3 \times 10^{-2}$ |
| 18 | negat | $2.1 \times 10^{-2}$ |
| 19 | behavior | $2.1 \times 10^{-2}$ |
| 20 | percept | $2 \times 10^{-2}$ |
| 21 | attitud | $2 \times 10^{-2}$ |
| 22 | motiv | $2 \times 10^{-2}$ |
| 23 | student | $1.9 \times 10^{-2}$ |
| 24 | mediat | $1.9 \times 10^{-2}$ |
| 25 | studi | $1.8 \times 10^{-2}$ |
| 26 | selfreport | $1.8 \times 10^{-2}$ |
| 27 | predict | $1.7 \times 10^{-2}$ |
| 28 | gender | $1.7 \times 10^{-2}$ |
| 29 | cell | $1.6 \times 10^{-2}$ |
| 30 | romant | $1.6 \times 10^{-2}$ |
| 31 | paper | $1.6 \times 10^{-2}$ |
| 32 | feel | $1.6 \times 10^{-2}$ |
| 33 | whether | $1.5 \times 10^{-2}$ |
| 34 | moder | $1.5 \times 10^{-2}$ |
| 35 | belief | $1.5 \times 10^{-2}$ |
| 36 | partner | $1.5 \times 10^{-2}$ |
| 37 | selfesteem | $1.4 \times 10^{-2}$ |
| 38 | posit | $1.4 \times 10^{-2}$ |
| 39 | undergradu | $1.4 \times 10^{-2}$ |
| 40 | stereotyp | $1.3 \times 10^{-2}$ |
| 41 | cognit | $1.3 \times 10^{-2}$ |
| 42 | relat | $1.3 \times 10^{-2}$ |
| 43 | support | $1.3 \times 10^{-2}$ |
| 44 | theori | $1.3 \times 10^{-2}$ |
| 45 | hypothes | $1.2 \times 10^{-2}$ |
| 46 | prejudic | $1.2 \times 10^{-2}$ |
| 47 | adolesc | $1.2 \times 10^{-2}$ |
| 48 | conclus | $1.2 \times 10^{-2}$ |
| 49 | men | $1.2 \times 10^{-2}$ |
| 50 | system | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | moral | $1.2 \times 10^{-2}$ |
| 52 | temperatur | $1.2 \times 10^{-2}$ |
| 53 | experi | $1.2 \times 10^{-2}$ |
| 54 | self | $1.2 \times 10^{-2}$ |
| 55 | endors | $1.1 \times 10^{-2}$ |
| 56 | paramet | $1.1 \times 10^{-2}$ |
| 57 | victim | $1.1 \times 10^{-2}$ |
| 58 | across | $1.1 \times 10^{-2}$ |
| 59 | cultur | $1.1 \times 10^{-2}$ |
| 60 | engag | $1.1 \times 10^{-2}$ |
| 61 | surfac | $1.1 \times 10^{-2}$ |
| 62 | sexual | $1.1 \times 10^{-2}$ |
| 63 | context | $1.1 \times 10^{-2}$ |
| 64 | suggest | $1.1 \times 10^{-2}$ |
| 65 | satisfact | $1 \times 10^{-2}$ |
| 66 | judgment | $1 \times 10^{-2}$ |
| 67 | effici | $1 \times 10^{-2}$ |
| 68 | member | $1 \times 10^{-2}$ |
| 69 | abus | $9.8 \times 10^{-3}$ |
| 70 | mental | $9.8 \times 10^{-3}$ |
| 71 | energi | $9.7 \times 10^{-3}$ |
| 72 | obtain | $9.6 \times 10^{-3}$ |
| 73 | anxieti | $9.5 \times 10^{-3}$ |
| 74 | women | $9.4 \times 10^{-3}$ |
| 75 | child | $9.4 \times 10^{-3}$ |
| 76 | concentr | $9.3 \times 10^{-3}$ |
| 77 | maltreat | $9.1 \times 10^{-3}$ |
| 78 | simul | $8.6 \times 10^{-3}$ |
| 79 | protein | $8.6 \times 10^{-3}$ |
| 80 | questionnair | $8.4 \times 10^{-3}$ |
| 81 | water | $8.4 \times 10^{-3}$ |
| 82 | tendenc | $8.1 \times 10^{-3}$ |
| 83 | prime | $8 \times 10^{-3}$ |
| 84 | sampl | $8 \times 10^{-3}$ |
| 85 | acid | $8 \times 10^{-3}$ |
| 86 | manipul | $8 \times 10^{-3}$ |
| 87 | properti | $7.8 \times 10^{-3}$ |
| 88 | parent | $7.8 \times 10^{-3}$ |
| 89 | colleg | $7.7 \times 10^{-3}$ |
| 90 | patient | $7.7 \times 10^{-3}$ |
| 91 | calcul | $7.6 \times 10^{-3}$ |
| 92 | threat | $7.6 \times 10^{-3}$ |
| 93 | associ | $7.5 \times 10^{-3}$ |
| 94 | american | $7.4 \times 10^{-3}$ |
| 95 | applic | $7.4 \times 10^{-3}$ |
| 96 | depress | $7.4 \times 10^{-3}$ |
| 97 | perform | $7.2 \times 10^{-3}$ |
| 98 | phase | $7.2 \times 10^{-3}$ |
| 99 | techniqu | $7.2 \times 10^{-3}$ |
| 100 | violenc | $7.1 \times 10^{-3}$ |

Table D.216. The list of the top 100 words in the category Public Administration with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | govern | $1.3 \times 10^{-1}$ |
| 2 | public | $1.1 \times 10^{-1}$ |
| 3 | polici | $9.7 \times 10^{-2}$ |
| 4 | articl | $5.3 \times 10^{-2}$ |
| 5 | polit | $4.7 \times 10^{-2}$ |
| 6 | reform | $3.7 \times 10^{-2}$ |
| 7 | sector | $3.7 \times 10^{-2}$ |
| 8 | social | $3.6 \times 10^{-2}$ |
| 9 | servic | $3.4 \times 10^{-2}$ |
| 10 | institut | $2.8 \times 10^{-2}$ |
| 11 | administr | $2.6 \times 10^{-2}$ |
| 12 | manag | $2.6 \times 10^{-2}$ |
| 13 | argu | $2.4 \times 10^{-2}$ |
| 14 | citizen | $2.4 \times 10^{-2}$ |
| 15 | countri | $2.4 \times 10^{-2}$ |
| 16 | actor | $2.1 \times 10^{-2}$ |
| 17 | econom | $2 \times 10^{-2}$ |
| 18 | organiz | $1.8 \times 10^{-2}$ |
| 19 | nation | $1.8 \times 10^{-2}$ |
| 20 | agenc | $1.8 \times 10^{-2}$ |
| 21 | method | $1.7 \times 10^{-2}$ |
| 22 | financi | $1.7 \times 10^{-2}$ |
| 23 | china | $1.7 \times 10^{-2}$ |
| 24 | empir | $1.6 \times 10^{-2}$ |
| 25 | welfar | $1.5 \times 10^{-2}$ |
| 26 | market | $1.5 \times 10^{-2}$ |
| 27 | research | $1.5 \times 10^{-2}$ |
| 28 | privat | $1.5 \times 10^{-2}$ |
| 29 | cell | $1.5 \times 10^{-2}$ |
| 30 | result | $1.3 \times 10^{-2}$ |
| 31 | patient | $1.3 \times 10^{-2}$ |
| 32 | tax | $1.3 \times 10^{-2}$ |
| 33 | democrat | $1.2 \times 10^{-2}$ |
| 34 | crisi | $1.2 \times 10^{-2}$ |
| 35 | union | $1.2 \times 10^{-2}$ |
| 36 | perspect | $1.2 \times 10^{-2}$ |
| 37 | innov | $1.2 \times 10^{-2}$ |
| 38 | employe | $1.2 \times 10^{-2}$ |
| 39 | fiscal | $1.1 \times 10^{-2}$ |
| 40 | draw | $1.1 \times 10^{-2}$ |
| 41 | european | $1.1 \times 10^{-2}$ |
| 42 | financ | $1.1 \times 10^{-2}$ |
| 43 | surfac | $1.1 \times 10^{-2}$ |
| 44 | fund | $1.1 \times 10^{-2}$ |
| 45 | societi | $1 \times 10^{-2}$ |
| 46 | temperatur | $1 \times 10^{-2}$ |
| 47 | economi | $1 \times 10^{-2}$ |
| 48 | agenda | $1 \times 10^{-2}$ |
| 49 | bureaucrat | $1 \times 10^{-2}$ |
| 50 | focus | $9.9 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | make | $9.8 \times 10^{-3}$ |
| 52 | author | $9.7 \times 10^{-3}$ |
| 53 | issu | $9.6 \times 10^{-3}$ |
| 54 | government | $9.6 \times 10^{-3}$ |
| 55 | civil | $9.2 \times 10^{-3}$ |
| 56 | explor | $9.1 \times 10^{-3}$ |
| 57 | paramet | $8.9 \times 10^{-3}$ |
| 58 | protein | $8.8 \times 10^{-3}$ |
| 59 | conclus | $8.7 \times 10^{-3}$ |
| 60 | literatur | $8.7 \times 10^{-3}$ |
| 61 | municip | $8.6 \times 10^{-3}$ |
| 62 | organ | $8.4 \times 10^{-3}$ |
| 63 | strateg | $8.4 \times 10^{-3}$ |
| 64 | resourc | $8.3 \times 10^{-3}$ |
| 65 | debat | $8.2 \times 10^{-3}$ |
| 66 | find | $8.2 \times 10^{-3}$ |
| 67 | feder | $8.1 \times 10^{-3}$ |
| 68 | obtain | $8.1 \times 10^{-3}$ |
| 69 | legitimaci | $8 \times 10^{-3}$ |
| 70 | observ | $8 \times 10^{-3}$ |
| 71 | scholar | $7.9 \times 10^{-3}$ |
| 72 | detect | $7.9 \times 10^{-3}$ |
| 73 | democraci | $7.8 \times 10^{-3}$ |
| 74 | treatment | $7.8 \times 10^{-3}$ |
| 75 | clinic | $7.7 \times 10^{-3}$ |
| 76 | induc | $7.6 \times 10^{-3}$ |
| 77 | offici | $7.6 \times 10^{-3}$ |
| 78 | council | $7.5 \times 10^{-3}$ |
| 79 | acid | $7.5 \times 10^{-3}$ |
| 80 | use | $7.4 \times 10^{-3}$ |
| 81 | simul | $7.4 \times 10^{-3}$ |
| 82 | practic | $7.3 \times 10^{-3}$ |
| 83 | way | $7.3 \times 10^{-3}$ |
| 84 | citi | $7.2 \times 10^{-3}$ |
| 85 | stakehold | $7.2 \times 10^{-3}$ |
| 86 | decis | $7.1 \times 10^{-3}$ |
| 87 | experiment | $7.1 \times 10^{-3}$ |
| 88 | properti | $7 \times 10^{-3}$ |
| 89 | incom | $7 \times 10^{-3}$ |
| 90 | provis | $7 \times 10^{-3}$ |
| 91 | gene | $7 \times 10^{-3}$ |
| 92 | survey | $7 \times 10^{-3}$ |
| 93 | examin | $7 \times 10^{-3}$ |
| 94 | state | $6.9 \times 10^{-3}$ |
| 95 | policymak | $6.9 \times 10^{-3}$ |
| 96 | ratio | $6.9 \times 10^{-3}$ |
| 97 | capit | $6.8 \times 10^{-3}$ |
| 98 | high | $6.7 \times 10^{-3}$ |
| 99 | manageri | $6.7 \times 10^{-3}$ |
| 100 | legal | $6.6 \times 10^{-3}$ |

Table D.217. The list of the top 100 words in the category Public, Environmental and Occupational Health with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | health | $1.5 \times 10^{-1}$ |
| 2 | conclus | $6.6 \times 10^{-2}$ |
| 3 | risk | $5 \times 10^{-2}$ |
| 4 | among | $4.6 \times 10^{-2}$ |
| 5 | age | $4.4 \times 10^{-2}$ |
| 6 | survey | $4.3 \times 10^{-2}$ |
| 7 | particip | $4.3 \times 10^{-2}$ |
| 8 | women | $3.7 \times 10^{-2}$ |
| 9 | regress | $3.6 \times 10^{-2}$ |
| 10 | associ | $3.5 \times 10^{-2}$ |
| 11 | intervent | $3.5 \times 10^{-2}$ |
| 12 | year | $3.5 \times 10^{-2}$ |
| 13 | care | $3.3 \times 10^{-2}$ |
| 14 | popul | $3.2 \times 10^{-2}$ |
| 15 | background | $3 \times 10^{-2}$ |
| 16 | interview | $2.9 \times 10^{-2}$ |
| 17 | preval | $2.7 \times 10^{-2}$ |
| 18 | public | $2.7 \times 10^{-2}$ |
| 19 | object | $2.7 \times 10^{-2}$ |
| 20 | nation | $2.7 \times 10^{-2}$ |
| 21 | logist | $2.5 \times 10^{-2}$ |
| 22 | questionnair | $2.5 \times 10^{-2}$ |
| 23 | educ | $2.5 \times 10^{-2}$ |
| 24 | assess | $2.3 \times 10^{-2}$ |
| 25 | exposur | $2.3 \times 10^{-2}$ |
| 26 | prevent | $2.2 \times 10^{-2}$ |
| 27 | communiti | $2.2 \times 10^{-2}$ |
| 28 | worker | $2.2 \times 10^{-2}$ |
| 29 | examin | $2.1 \times 10^{-2}$ |
| 30 | smoke | $2.1 \times 10^{-2}$ |
| 31 | method | $2.1 \times 10^{-2}$ |
| 32 | adjust | $2 \times 10^{-2}$ |
| 33 | children | $2 \times 10^{-2}$ |
| 34 | studi | $1.9 \times 10^{-2}$ |
| 35 | hiv | $1.9 \times 10^{-2}$ |
| 36 | men | $1.8 \times 10^{-2}$ |
| 37 | data | $1.8 \times 10^{-2}$ |
| 38 | odd | $1.8 \times 10^{-2}$ |
| 39 | demograph | $1.7 \times 10^{-2}$ |
| 40 | status | $1.7 \times 10^{-2}$ |
| 41 | social | $1.7 \times 10^{-2}$ |
| 42 | medic | $1.6 \times 10^{-2}$ |
| 43 | need | $1.6 \times 10^{-2}$ |
| 44 | confid | $1.6 \times 10^{-2}$ |
| 45 | selfreport | $1.6 \times 10^{-2}$ |
| 46 | adult | $1.5 \times 10^{-2}$ |
| 47 | occup | $1.5 \times 10^{-2}$ |
| 48 | incom | $1.5 \times 10^{-2}$ |
| 49 | conduct | $1.5 \times 10^{-2}$ |
| 50 | servic | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | mental | $1.5 \times 10^{-2}$ |
| 52 | sex | $1.4 \times 10^{-2}$ |
| 53 | peopl | $1.4 \times 10^{-2}$ |
| 54 | countri | $1.4 \times 10^{-2}$ |
| 55 | socioeconom | $1.4 \times 10^{-2}$ |
| 56 | live | $1.4 \times 10^{-2}$ |
| 57 | school | $1.4 \times 10^{-2}$ |
| 58 | factor | $1.4 \times 10^{-2}$ |
| 59 | person | $1.4 \times 10^{-2}$ |
| 60 | rural | $1.4 \times 10^{-2}$ |
| 61 | polici | $1.3 \times 10^{-2}$ |
| 62 | outcom | $1.3 \times 10^{-2}$ |
| 63 | individu | $1.3 \times 10^{-2}$ |
| 64 | hospit | $1.2 \times 10^{-2}$ |
| 65 | cohort | $1.2 \times 10^{-2}$ |
| 66 | sexual | $1.2 \times 10^{-2}$ |
| 67 | adolesc | $1.2 \times 10^{-2}$ |
| 68 | resid | $1.2 \times 10^{-2}$ |
| 69 | section | $1.2 \times 10^{-2}$ |
| 70 | gender | $1.2 \times 10^{-2}$ |
| 71 | epidemiolog | $1.2 \times 10^{-2}$ |
| 72 | child | $1.1 \times 10^{-2}$ |
| 73 | propos | $1.1 \times 10^{-2}$ |
| 74 | paper | $1.1 \times 10^{-2}$ |
| 75 | report | $1.1 \times 10^{-2}$ |
| 76 | household | $1.1 \times 10^{-2}$ |
| 77 | older | $1.1 \times 10^{-2}$ |
| 78 | interv | $1.1 \times 10^{-2}$ |
| 79 | program | $1.1 \times 10^{-2}$ |
| 80 | tobacco | $1.1 \times 10^{-2}$ |
| 81 | ethnic | $1.1 \times 10^{-2}$ |
| 82 | obes | $1 \times 10^{-2}$ |
| 83 | perceiv | $1 \times 10^{-2}$ |
| 84 | includ | $1 \times 10^{-2}$ |
| 85 | smoker | $1 \times 10^{-2}$ |
| 86 | group | $1 \times 10^{-2}$ |
| 87 | healthcar | $1 \times 10^{-2}$ |
| 88 | sampl | $9.8 \times 10^{-3}$ |
| 89 | collect | $9.7 \times 10^{-3}$ |
| 90 | properti | $9.7 \times 10^{-3}$ |
| 91 | birth | $9.6 \times 10^{-3}$ |
| 92 | cross | $9.6 \times 10^{-3}$ |
| 93 | surveil | $9.5 \times 10^{-3}$ |
| 94 | infect | $9.2 \times 10^{-3}$ |
| 95 | youth | $9.1 \times 10^{-3}$ |
| 96 | diseas | $9 \times 10^{-3}$ |
| 97 | multivari | $9 \times 10^{-3}$ |
| 98 | result | $9 \times 10^{-3}$ |
| 99 | identifi | $9 \times 10^{-3}$ |
| 100 | research | $8.9 \times 10^{-3}$ |

Table D.218. The list of the top 100 words in the category Radiology, Nuclear Medicine and Medical Imaging with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | imag | $1.6 \times 10^{-1}$ |
| 2 | patient | $6.2 \times 10^{-2}$ |
| 3 | mri | $5.4 \times 10^{-2}$ |
| 4 | purpos | $4.9 \times 10^{-2}$ |
| 5 | phantom | $4.9 \times 10^{-2}$ |
| 6 | tomographi | $4.7 \times 10^{-2}$ |
| 7 | conclus | $3.6 \times 10^{-2}$ |
| 8 | dose | $3.4 \times 10^{-2}$ |
| 9 | pet | $3.3 \times 10^{-2}$ |
| 10 | radiologist | $3.2 \times 10^{-2}$ |
| 11 | radiat | $3.1 \times 10^{-2}$ |
| 12 | method | $3.1 \times 10^{-2}$ |
| 13 | clinic | $3 \times 10^{-2}$ |
| 14 | lesion | $2.7 \times 10^{-2}$ |
| 15 | reson | $2.6 \times 10^{-2}$ |
| 16 | tissu | $2.4 \times 10^{-2}$ |
| 17 | brain | $2.3 \times 10^{-2}$ |
| 18 | ultrasound | $2.3 \times 10^{-2}$ |
| 19 | volum | $2.2 \times 10^{-2}$ |
| 20 | radiotherapi | $2.2 \times 10^{-2}$ |
| 21 | underw | $2.2 \times 10^{-2}$ |
| 22 | magnet | $2.1 \times 10^{-2}$ |
| 23 | contrast | $2 \times 10^{-2}$ |
| 24 | tumor | $2 \times 10^{-2}$ |
| 25 | evalu | $1.9 \times 10^{-2}$ |
| 26 | diagnost | $1.9 \times 10^{-2}$ |
| 27 | arteri | $1.9 \times 10^{-2}$ |
| 28 | scan | $1.8 \times 10^{-2}$ |
| 29 | cancer | $1.8 \times 10^{-2}$ |
| 30 | radiolog | $1.7 \times 10^{-2}$ |
| 31 | scanner | $1.7 \times 10^{-2}$ |
| 32 | retrospect | $1.7 \times 10^{-2}$ |
| 33 | materi | $1.6 \times 10^{-2}$ |
| 34 | voxel | $1.6 \times 10^{-2}$ |
| 35 | anatom | $1.6 \times 10^{-2}$ |
| 36 | acquir | $1.6 \times 10^{-2}$ |
| 37 | assess | $1.5 \times 10^{-2}$ |
| 38 | reconstruct | $1.5 \times 10^{-2}$ |
| 39 | acquisit | $1.5 \times 10^{-2}$ |
| 40 | angiographi | $1.4 \times 10^{-2}$ |
| 41 | segment | $1.3 \times 10^{-2}$ |
| 42 | diagnosi | $1.3 \times 10^{-2}$ |
| 43 | mean | $1.3 \times 10^{-2}$ |
| 44 | echo | $1.3 \times 10^{-2}$ |
| 45 | perfus | $1.3 \times 10^{-2}$ |
| 46 | noninvas | $1.3 \times 10^{-2}$ |
| 47 | comput | $1.2 \times 10^{-2}$ |
| 48 | positron | $1.2 \times 10^{-2}$ |
| 49 | therapi | $1.2 \times 10^{-2}$ |
| 50 | modal | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | accuraci | $1.2 \times 10^{-2}$ |
| 52 | compar | $1.1 \times 10^{-2}$ |
| 53 | perform | $1.1 \times 10^{-2}$ |
| 54 | measur | $1.1 \times 10^{-2}$ |
| 55 | standard | $1.1 \times 10^{-2}$ |
| 56 | resolut | $1.1 \times 10^{-2}$ |
| 57 | left | $1.1 \times 10^{-2}$ |
| 58 | fmri | $1 \times 10^{-2}$ |
| 59 | detect | $1 \times 10^{-2}$ |
| 60 | use | $1 \times 10^{-2}$ |
| 61 | artifact | $1 \times 10^{-2}$ |
| 62 | paper | $1 \times 10^{-2}$ |
| 63 | detector | $9.8 \times 10^{-3}$ |
| 64 | breast | $9.8 \times 10^{-3}$ |
| 65 | prostat | $9.7 \times 10^{-3}$ |
| 66 | beam | $9.6 \times 10^{-3}$ |
| 67 | registr | $9.4 \times 10^{-3}$ |
| 68 | review | $9.2 \times 10^{-3}$ |
| 69 | vivo | $9.1 \times 10^{-3}$ |
| 70 | patholog | $9 \times 10^{-3}$ |
| 71 | malign | $9 \times 10^{-3}$ |
| 72 | approv | $8.9 \times 10^{-3}$ |
| 73 | visual | $8.8 \times 10^{-3}$ |
| 74 | lung | $8.7 \times 10^{-3}$ |
| 75 | uptak | $8.5 \times 10^{-3}$ |
| 76 | correl | $8.5 \times 10^{-3}$ |
| 77 | median | $8.4 \times 10^{-3}$ |
| 78 | cortic | $8.2 \times 10^{-3}$ |
| 79 | plan | $8.1 \times 10^{-3}$ |
| 80 | irradi | $7.9 \times 10^{-3}$ |
| 81 | accur | $7.9 \times 10^{-3}$ |
| 82 | normal | $7.6 \times 10^{-3}$ |
| 83 | valu | $7.6 \times 10^{-3}$ |
| 84 | anatomi | $7.6 \times 10^{-3}$ |
| 85 | result | $7.5 \times 10^{-3}$ |
| 86 | cortex | $7.5 \times 10^{-3}$ |
| 87 | temperatur | $7.4 \times 10^{-3}$ |
| 88 | cardiac | $7.4 \times 10^{-3}$ |
| 89 | sensit | $7.4 \times 10^{-3}$ |
| 90 | nois | $7.4 \times 10^{-3}$ |
| 91 | vessel | $7.3 \times 10^{-3}$ |
| 92 | signific | $7.3 \times 10^{-3}$ |
| 93 | benign | $7.2 \times 10^{-3}$ |
| 94 | diffus | $7.2 \times 10^{-3}$ |
| 95 | consecut | $7.2 \times 10^{-3}$ |
| 96 | healthi | $7.1 \times 10^{-3}$ |
| 97 | liver | $7.1 \times 10^{-3}$ |
| 98 | guid | $7.1 \times 10^{-3}$ |
| 99 | feasibl | $7 \times 10^{-3}$ |
| 100 | quantit | $7 \times 10^{-3}$ |

Table D.219. The list of the top 100 words in the category Rehabilitation with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | particip | $9 \times 10^{-2}$ |
| 2 | rehabilit | $8.2 \times 10^{-2}$ |
| 3 | disabl | $8 \times 10^{-2}$ |
| 4 | conclus | $7.1 \times 10^{-2}$ |
| 5 | intervent | $5.7 \times 10^{-2}$ |
| 6 | purpos | $4 \times 10^{-2}$ |
| 7 | children | $3.6 \times 10^{-2}$ |
| 8 | object | $3.5 \times 10^{-2}$ |
| 9 | outcom | $3.1 \times 10^{-2}$ |
| 10 | score | $3.1 \times 10^{-2}$ |
| 11 | age | $3 \times 10^{-2}$ |
| 12 | assess | $2.9 \times 10^{-2}$ |
| 13 | therapist | $2.8 \times 10^{-2}$ |
| 14 | studi | $2.7 \times 10^{-2}$ |
| 15 | exercis | $2.7 \times 10^{-2}$ |
| 16 | pain | $2.6 \times 10^{-2}$ |
| 17 | group | $2.5 \times 10^{-2}$ |
| 18 | injuri | $2.5 \times 10^{-2}$ |
| 19 | muscl | $2.4 \times 10^{-2}$ |
| 20 | peopl | $2.3 \times 10^{-2}$ |
| 21 | impair | $2.3 \times 10^{-2}$ |
| 22 | stroke | $2.3 \times 10^{-2}$ |
| 23 | subject | $2.2 \times 10^{-2}$ |
| 24 | walk | $2.2 \times 10^{-2}$ |
| 25 | session | $2.2 \times 10^{-2}$ |
| 26 | motor | $2.2 \times 10^{-2}$ |
| 27 | measur | $2.2 \times 10^{-2}$ |
| 28 | autism | $2.1 \times 10^{-2}$ |
| 29 | patient | $2.1 \times 10^{-2}$ |
| 30 | individu | $2 \times 10^{-2}$ |
| 31 | clinic | $2 \times 10^{-2}$ |
| 32 | gait | $2 \times 10^{-2}$ |
| 33 | intellectu | $2 \times 10^{-2}$ |
| 34 | train | $1.9 \times 10^{-2}$ |
| 35 | limb | $1.9 \times 10^{-2}$ |
| 36 | questionnair | $1.9 \times 10^{-2}$ |
| 37 | skill | $1.9 \times 10^{-2}$ |
| 38 | week | $1.7 \times 10^{-2}$ |
| 39 | person | $1.7 \times 10^{-2}$ |
| 40 | result | $1.7 \times 10^{-2}$ |
| 41 | spinal | $1.6 \times 10^{-2}$ |
| 42 | signific | $1.6 \times 10^{-2}$ |
| 43 | adult | $1.6 \times 10^{-2}$ |
| 44 | method | $1.6 \times 10^{-2}$ |
| 45 | traumat | $1.6 \times 10^{-2}$ |
| 46 | physic | $1.5 \times 10^{-2}$ |
| 47 | health | $1.5 \times 10^{-2}$ |
| 48 | year | $1.4 \times 10^{-2}$ |
| 49 | languag | $1.4 \times 10^{-2}$ |
| 50 | flexion | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | asd | $1.4 \times 10^{-2}$ |
| 52 | interview | $1.4 \times 10^{-2}$ |
| 53 | cell | $1.3 \times 10^{-2}$ |
| 54 | disord | $1.3 \times 10^{-2}$ |
| 55 | examin | $1.3 \times 10^{-2}$ |
| 56 | knee | $1.3 \times 10^{-2}$ |
| 57 | research | $1.3 \times 10^{-2}$ |
| 58 | speech | $1.3 \times 10^{-2}$ |
| 59 | paper | $1.2 \times 10^{-2}$ |
| 60 | item | $1.2 \times 10^{-2}$ |
| 61 | design | $1.2 \times 10^{-2}$ |
| 62 | movement | $1.2 \times 10^{-2}$ |
| 63 | therapi | $1.2 \times 10^{-2}$ |
| 64 | task | $1.2 \times 10^{-2}$ |
| 65 | temperatur | $1.2 \times 10^{-2}$ |
| 66 | cognit | $1.2 \times 10^{-2}$ |
| 67 | cord | $1.1 \times 10^{-2}$ |
| 68 | postur | $1.1 \times 10^{-2}$ |
| 69 | occup | $1.1 \times 10^{-2}$ |
| 70 | palsi | $1.1 \times 10^{-2}$ |
| 71 | educ | $1.1 \times 10^{-2}$ |
| 72 | background | $1.1 \times 10^{-2}$ |
| 73 | difficulti | $1 \times 10^{-2}$ |
| 74 | life | $1 \times 10^{-2}$ |
| 75 | scale | $1 \times 10^{-2}$ |
| 76 | aim | $1 \times 10^{-2}$ |
| 77 | shoulder | $1 \times 10^{-2}$ |
| 78 | support | $1 \times 10^{-2}$ |
| 79 | symptom | $1 \times 10^{-2}$ |
| 80 | month | $1 \times 10^{-2}$ |
| 81 | healthi | $1 \times 10^{-2}$ |
| 82 | trial | $9.9 \times 10^{-3}$ |
| 83 | propos | $9.8 \times 10^{-3}$ |
| 84 | care | $9.7 \times 10^{-3}$ |
| 85 | ankl | $9.5 \times 10^{-3}$ |
| 86 | need | $9.3 \times 10^{-3}$ |
| 87 | development | $9.3 \times 10^{-3}$ |
| 88 | simul | $9.2 \times 10^{-3}$ |
| 89 | complet | $9 \times 10^{-3}$ |
| 90 | inpati | $9 \times 10^{-3}$ |
| 91 | child | $9 \times 10^{-3}$ |
| 92 | social | $8.8 \times 10^{-3}$ |
| 93 | mental | $8.7 \times 10^{-3}$ |
| 94 | program | $8.7 \times 10^{-3}$ |
| 95 | clinician | $8.6 \times 10^{-3}$ |
| 96 | deficit | $8.4 \times 10^{-3}$ |
| 97 | profession | $8.3 \times 10^{-3}$ |
| 98 | moder | $8.2 \times 10^{-3}$ |
| 99 | function | $8.2 \times 10^{-3}$ |
| 100 | baselin | $8 \times 10^{-3}$ |

Table D.220. The list of the top 100 words in the category Religion with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | religi | $1.8 \times 10^{-1}$ |
| 2 | christian | $1.3 \times 10^{-1}$ |
| 3 | religion | $1.2 \times 10^{-1}$ |
| 4 | theolog | $1.1 \times 10^{-1}$ |
| 5 | god | $9.7 \times 10^{-2}$ |
| 6 | church | $7.9 \times 10^{-2}$ |
| 7 | articl | $7.7 \times 10^{-2}$ |
| 8 | spiritu | $6 \times 10^{-2}$ |
| 9 | argu | $5.6 \times 10^{-2}$ |
| 10 | islam | $4.7 \times 10^{-2}$ |
| 11 | biblic | $4.6 \times 10^{-2}$ |
| 12 | faith | $4.5 \times 10^{-2}$ |
| 13 | divin | $4.1 \times 10^{-2}$ |
| 14 | result | $3.9 \times 10^{-2}$ |
| 15 | scholar | $3.7 \times 10^{-2}$ |
| 16 | muslim | $3.6 \times 10^{-2}$ |
| 17 | christ | $3.5 \times 10^{-2}$ |
| 18 | text | $3.3 \times 10^{-2}$ |
| 19 | essay | $3 \times 10^{-2}$ |
| 20 | secular | $3 \times 10^{-2}$ |
| 21 | centuri | $2.9 \times 10^{-2}$ |
| 22 | cathol | $2.8 \times 10^{-2}$ |
| 23 | contemporari | $2.6 \times 10^{-2}$ |
| 24 | method | $2.4 \times 10^{-2}$ |
| 25 | moral | $2.4 \times 10^{-2}$ |
| 26 | doctrin | $2.3 \times 10^{-2}$ |
| 27 | belief | $2.2 \times 10^{-2}$ |
| 28 | jewish | $2.2 \times 10^{-2}$ |
| 29 | tradit | $2.1 \times 10^{-2}$ |
| 30 | book | $2.1 \times 10^{-2}$ |
| 31 | narrat | $2.1 \times 10^{-2}$ |
| 32 | question | $2 \times 10^{-2}$ |
| 33 | polit | $2 \times 10^{-2}$ |
| 34 | use | $1.9 \times 10^{-2}$ |
| 35 | author | $1.8 \times 10^{-2}$ |
| 36 | john | $1.8 \times 10^{-2}$ |
| 37 | buddhist | $1.7 \times 10^{-2}$ |
| 38 | protest | $1.7 \times 10^{-2}$ |
| 39 | social | $1.7 \times 10^{-2}$ |
| 40 | way | $1.7 \times 10^{-2}$ |
| 41 | effect | $1.7 \times 10^{-2}$ |
| 42 | societi | $1.6 \times 10^{-2}$ |
| 43 | ethic | $1.6 \times 10^{-2}$ |
| 44 | perform | $1.6 \times 10^{-2}$ |
| 45 | high | $1.6 \times 10^{-2}$ |
| 46 | argument | $1.6 \times 10^{-2}$ |
| 47 | histor | $1.5 \times 10^{-2}$ |
| 48 | claim | $1.5 \times 10^{-2}$ |
| 49 | paul | $1.5 \times 10^{-2}$ |
| 50 | holi | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | discours | $1.4 \times 10^{-2}$ |
| 52 | roman | $1.4 \times 10^{-2}$ |
| 53 | cell | $1.4 \times 10^{-2}$ |
| 54 | interpret | $1.4 \times 10^{-2}$ |
| 55 | philosoph | $1.4 \times 10^{-2}$ |
| 56 | world | $1.4 \times 10^{-2}$ |
| 57 | ritual | $1.4 \times 10^{-2}$ |
| 58 | scholarship | $1.4 \times 10^{-2}$ |
| 59 | read | $1.3 \times 10^{-2}$ |
| 60 | context | $1.3 \times 10^{-2}$ |
| 61 | critiqu | $1.3 \times 10^{-2}$ |
| 62 | increas | $1.3 \times 10^{-2}$ |
| 63 | system | $1.3 \times 10^{-2}$ |
| 64 | low | $1.3 \times 10^{-2}$ |
| 65 | obtain | $1.3 \times 10^{-2}$ |
| 66 | peopl | $1.3 \times 10^{-2}$ |
| 67 | simul | $1.2 \times 10^{-2}$ |
| 68 | spirit | $1.2 \times 10^{-2}$ |
| 69 | literari | $1.2 \times 10^{-2}$ |
| 70 | view | $1.2 \times 10^{-2}$ |
| 71 | love | $1.2 \times 10^{-2}$ |
| 72 | ancient | $1.1 \times 10^{-2}$ |
| 73 | improv | $1.1 \times 10^{-2}$ |
| 74 | compar | $1.1 \times 10^{-2}$ |
| 75 | temperatur | $1.1 \times 10^{-2}$ |
| 76 | understand | $1.1 \times 10^{-2}$ |
| 77 | debat | $1.1 \times 10^{-2}$ |
| 78 | life | $1.1 \times 10^{-2}$ |
| 79 | stori | $1.1 \times 10^{-2}$ |
| 80 | sacr | $1.1 \times 10^{-2}$ |
| 81 | perspect | $1.1 \times 10^{-2}$ |
| 82 | communiti | $1 \times 10^{-2}$ |
| 83 | paramet | $1 \times 10^{-2}$ |
| 84 | cultur | $1 \times 10^{-2}$ |
| 85 | draw | $1 \times 10^{-2}$ |
| 86 | rate | $1 \times 10^{-2}$ |
| 87 | effici | $1 \times 10^{-2}$ |
| 88 | hermeneut | $1 \times 10^{-2}$ |
| 89 | induc | $9.9 \times 10^{-3}$ |
| 90 | reduc | $9.9 \times 10^{-3}$ |
| 91 | modern | $9.8 \times 10^{-3}$ |
| 92 | person | $9.7 \times 10^{-3}$ |
| 93 | show | $9.7 \times 10^{-3}$ |
| 94 | detect | $9.7 \times 10^{-3}$ |
| 95 | surfac | $9.7 \times 10^{-3}$ |
| 96 | mystic | $9.5 \times 10^{-3}$ |
| 97 | histori | $9.4 \times 10^{-3}$ |
| 98 | dialogu | $9.3 \times 10^{-3}$ |
| 99 | control | $9.3 \times 10^{-3}$ |
| 100 | decreas | $9.2 \times 10^{-3}$ |

Table D.221. The list of the top 100 words in the category Remote Sensing with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | satellit | $9.6 \times 10^{-2}$ |
| 2 | remot | $8 \times 10^{-2}$ |
| 3 | imag | $6.8 \times 10^{-2}$ |
| 4 | sens | $6.2 \times 10^{-2}$ |
| 5 | sar | $5.8 \times 10^{-2}$ |
| 6 | radar | $5.5 \times 10^{-2}$ |
| 7 | resolut | $5.3 \times 10^{-2}$ |
| 8 | imageri | $4.5 \times 10^{-2}$ |
| 9 | land | $4.5 \times 10^{-2}$ |
| 10 | spatial | $4.3 \times 10^{-2}$ |
| 11 | data | $4.3 \times 10^{-2}$ |
| 12 | modi | $4.3 \times 10^{-2}$ |
| 13 | sensor | $4.2 \times 10^{-2}$ |
| 14 | accuraci | $3.9 \times 10^{-2}$ |
| 15 | landsat | $3.6 \times 10^{-2}$ |
| 16 | hyperspectr | $3.6 \times 10^{-2}$ |
| 17 | apertur | $3.6 \times 10^{-2}$ |
| 18 | map | $3.6 \times 10^{-2}$ |
| 19 | veget | $3.4 \times 10^{-2}$ |
| 20 | pixel | $3.1 \times 10^{-2}$ |
| 21 | area | $2.7 \times 10^{-2}$ |
| 22 | algorithm | $2.7 \times 10^{-2}$ |
| 23 | airborn | $2.6 \times 10^{-2}$ |
| 24 | spectral | $2.6 \times 10^{-2}$ |
| 25 | ground | $2.4 \times 10^{-2}$ |
| 26 | cover | $2.3 \times 10^{-2}$ |
| 27 | band | $2.2 \times 10^{-2}$ |
| 28 | classif | $2.2 \times 10^{-2}$ |
| 29 | estim | $2.2 \times 10^{-2}$ |
| 30 | retriev | $2.1 \times 10^{-2}$ |
| 31 | paper | $2 \times 10^{-2}$ |
| 32 | synthet | $2 \times 10^{-2}$ |
| 33 | lidar | $2 \times 10^{-2}$ |
| 34 | error | $1.9 \times 10^{-2}$ |
| 35 | forest | $1.9 \times 10^{-2}$ |
| 36 | base | $1.9 \times 10^{-2}$ |
| 37 | patient | $1.9 \times 10^{-2}$ |
| 38 | monitor | $1.8 \times 10^{-2}$ |
| 39 | conclus | $1.8 \times 10^{-2}$ |
| 40 | earth | $1.7 \times 10^{-2}$ |
| 41 | mission | $1.6 \times 10^{-2}$ |
| 42 | inform | $1.5 \times 10^{-2}$ |
| 43 | gps | $1.4 \times 10^{-2}$ |
| 44 | tempor | $1.4 \times 10^{-2}$ |
| 45 | acquir | $1.3 \times 10^{-2}$ |
| 46 | use | $1.3 \times 10^{-2}$ |
| 47 | treatment | $1.3 \times 10^{-2}$ |
| 48 | propos | $1.2 \times 10^{-2}$ |
| 49 | backscatt | $1.2 \times 10^{-2}$ |
| 50 | cloud | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | calibr | $1.1 \times 10^{-2}$ |
| 52 | aerial | $1.1 \times 10^{-2}$ |
| 53 | clinic | $1.1 \times 10^{-2}$ |
| 54 | cell | $1.1 \times 10^{-2}$ |
| 55 | canopi | $1.1 \times 10^{-2}$ |
| 56 | navig | $1 \times 10^{-2}$ |
| 57 | global | $1 \times 10^{-2}$ |
| 58 | atmospher | $1 \times 10^{-2}$ |
| 59 | dem | $1 \times 10^{-2}$ |
| 60 | scene | $1 \times 10^{-2}$ |
| 61 | accur | $1 \times 10^{-2}$ |
| 62 | terrain | $9.9 \times 10^{-3}$ |
| 63 | ocean | $9.6 \times 10^{-3}$ |
| 64 | soil | $9.4 \times 10^{-3}$ |
| 65 | gis | $9.3 \times 10^{-3}$ |
| 66 | group | $9.2 \times 10^{-3}$ |
| 67 | detect | $9.2 \times 10^{-3}$ |
| 68 | protein | $9.1 \times 10^{-3}$ |
| 69 | valid | $9.1 \times 10^{-3}$ |
| 70 | dataset | $9 \times 10^{-3}$ |
| 71 | age | $8.9 \times 10^{-3}$ |
| 72 | surfac | $8.8 \times 10^{-3}$ |
| 73 | season | $8.3 \times 10^{-3}$ |
| 74 | gene | $8.3 \times 10^{-3}$ |
| 75 | digit | $8.3 \times 10^{-3}$ |
| 76 | urban | $8.2 \times 10^{-3}$ |
| 77 | sea | $8.1 \times 10^{-3}$ |
| 78 | region | $7.9 \times 10^{-3}$ |
| 79 | measur | $7.8 \times 10^{-3}$ |
| 80 | reflect | $7.7 \times 10^{-3}$ |
| 81 | deriv | $7.7 \times 10^{-3}$ |
| 82 | extract | $7.5 \times 10^{-3}$ |
| 83 | meteorolog | $7.3 \times 10^{-3}$ |
| 84 | applic | $7.3 \times 10^{-3}$ |
| 85 | letter | $7.2 \times 10^{-3}$ |
| 86 | diseas | $7.1 \times 10^{-3}$ |
| 87 | height | $7 \times 10^{-3}$ |
| 88 | classifi | $6.9 \times 10^{-3}$ |
| 89 | associ | $6.9 \times 10^{-3}$ |
| 90 | acid | $6.8 \times 10^{-3}$ |
| 91 | reaction | $6.8 \times 10^{-3}$ |
| 92 | squar | $6.8 \times 10^{-3}$ |
| 93 | moistur | $6.7 \times 10^{-3}$ |
| 94 | agricultur | $6.7 \times 10^{-3}$ |
| 95 | filter | $6.6 \times 10^{-3}$ |
| 96 | scatter | $6.6 \times 10^{-3}$ |
| 97 | snow | $6.5 \times 10^{-3}$ |
| 98 | nois | $6.5 \times 10^{-3}$ |
| 99 | acquisit | $6.5 \times 10^{-3}$ |
| 100 | climat | $6.3 \times 10^{-3}$ |

Table D.222. The list of the top 100 words in the category Reproductive Biology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | pregnanc | $1.1 \times 10^{-1}$ |
| 2 | sperm | $9.3 \times 10^{-2}$ |
| 3 | oocyt | $8.8 \times 10^{-2}$ |
| 4 | fertil | $8.7 \times 10^{-2}$ |
| 5 | embryo | $8.5 \times 10^{-2}$ |
| 6 | reproduct | $8.1 \times 10^{-2}$ |
| 7 | ovarian | $7.6 \times 10^{-2}$ |
| 8 | ivf | $6.7 \times 10^{-2}$ |
| 9 | infertil | $6.1 \times 10^{-2}$ |
| 10 | follicl | $5.9 \times 10^{-2}$ |
| 11 | women | $5.7 \times 10^{-2}$ |
| 12 | blastocyst | $5.5 \times 10^{-2}$ |
| 13 | semen | $4.8 \times 10^{-2}$ |
| 14 | ovari | $4.5 \times 10^{-2}$ |
| 15 | hormon | $3.8 \times 10^{-2}$ |
| 16 | progesteron | $3.7 \times 10^{-2}$ |
| 17 | uterin | $3.7 \times 10^{-2}$ |
| 18 | placent | $3.6 \times 10^{-2}$ |
| 19 | spermatozoa | $3.5 \times 10^{-2}$ |
| 20 | placenta | $3.4 \times 10^{-2}$ |
| 21 | matern | $3.4 \times 10^{-2}$ |
| 22 | ovul | $3.3 \times 10^{-2}$ |
| 23 | gestat | $3.3 \times 10^{-2}$ |
| 24 | express | $3.2 \times 10^{-2}$ |
| 25 | fetal | $3 \times 10^{-2}$ |
| 26 | follicular | $3 \times 10^{-2}$ |
| 27 | birth | $3 \times 10^{-2}$ |
| 28 | insemin | $3 \times 10^{-2}$ |
| 29 | conclus | $3 \times 10^{-2}$ |
| 30 | cell | $2.9 \times 10^{-2}$ |
| 31 | endometri | $2.9 \times 10^{-2}$ |
| 32 | vitro | $2.9 \times 10^{-2}$ |
| 33 | paper | $2.7 \times 10^{-2}$ |
| 34 | matur | $2.6 \times 10^{-2}$ |
| 35 | day | $2.5 \times 10^{-2}$ |
| 36 | studi | $2.5 \times 10^{-2}$ |
| 37 | outcom | $2.5 \times 10^{-2}$ |
| 38 | motil | $2.5 \times 10^{-2}$ |
| 39 | pregnant | $2.4 \times 10^{-2}$ |
| 40 | cryopreserv | $2.3 \times 10^{-2}$ |
| 41 | signific | $2.1 \times 10^{-2}$ |
| 42 | mrna | $2.1 \times 10^{-2}$ |
| 43 | object | $2 \times 10^{-2}$ |
| 44 | estradiol | $1.9 \times 10^{-2}$ |
| 45 | testicular | $1.9 \times 10^{-2}$ |
| 46 | spermatogenesi | $1.8 \times 10^{-2}$ |
| 47 | protein | $1.8 \times 10^{-2}$ |
| 48 | gene | $1.8 \times 10^{-2}$ |
| 49 | acrosom | $1.8 \times 10^{-2}$ |
| 50 | cycl | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | group | $1.8 \times 10^{-2}$ |
| 52 | embryon | $1.8 \times 10^{-2}$ |
| 53 | testi | $1.7 \times 10^{-2}$ |
| 54 | femal | $1.6 \times 10^{-2}$ |
| 55 | dure | $1.6 \times 10^{-2}$ |
| 56 | ejacul | $1.5 \times 10^{-2}$ |
| 57 | intrauterin | $1.5 \times 10^{-2}$ |
| 58 | germ | $1.5 \times 10^{-2}$ |
| 59 | intervent | $1.5 \times 10^{-2}$ |
| 60 | preeclampsia | $1.5 \times 10^{-2}$ |
| 61 | treatment | $1.4 \times 10^{-2}$ |
| 62 | thaw | $1.4 \times 10^{-2}$ |
| 63 | implant | $1.4 \times 10^{-2}$ |
| 64 | bovin | $1.4 \times 10^{-2}$ |
| 65 | patient | $1.4 \times 10^{-2}$ |
| 66 | regul | $1.4 \times 10^{-2}$ |
| 67 | serum | $1.3 \times 10^{-2}$ |
| 68 | stimul | $1.3 \times 10^{-2}$ |
| 69 | cow | $1.3 \times 10^{-2}$ |
| 70 | simul | $1.3 \times 10^{-2}$ |
| 71 | male | $1.2 \times 10^{-2}$ |
| 72 | control | $1.2 \times 10^{-2}$ |
| 73 | receptor | $1.2 \times 10^{-2}$ |
| 74 | human | $1.2 \times 10^{-2}$ |
| 75 | development | $1.2 \times 10^{-2}$ |
| 76 | associ | $1.2 \times 10^{-2}$ |
| 77 | normal | $1.1 \times 10^{-2}$ |
| 78 | cultur | $1.1 \times 10^{-2}$ |
| 79 | undergo | $1.1 \times 10^{-2}$ |
| 80 | vagin | $1.1 \times 10^{-2}$ |
| 81 | propos | $1.1 \times 10^{-2}$ |
| 82 | testosteron | $1.1 \times 10^{-2}$ |
| 83 | earli | $1.1 \times 10^{-2}$ |
| 84 | compar | $1.1 \times 10^{-2}$ |
| 85 | pcr | $1.1 \times 10^{-2}$ |
| 86 | fetus | $1.1 \times 10^{-2}$ |
| 87 | increas | $1.1 \times 10^{-2}$ |
| 88 | tissu | $1.1 \times 10^{-2}$ |
| 89 | frozen | $1.1 \times 10^{-2}$ |
| 90 | abnorm | $1.1 \times 10^{-2}$ |
| 91 | trimest | $1.1 \times 10^{-2}$ |
| 92 | may | $1.1 \times 10^{-2}$ |
| 93 | offspr | $1 \times 10^{-2}$ |
| 94 | level | $1 \times 10^{-2}$ |
| 95 | higher | $1 \times 10^{-2}$ |
| 96 | stage | $1 \times 10^{-2}$ |
| 97 | estrogen | $9.9 \times 10^{-3}$ |
| 98 | none | $9.8 \times 10^{-3}$ |
| 99 | anim | $9.4 \times 10^{-3}$ |
| 100 | retrospect | $9.4 \times 10^{-3}$ |

Table D.223. The list of the top 100 words in the category Respiratory System with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | lung | $1.5 \times 10^{-1}$ |
| 2 | pulmonari | $1.5 \times 10^{-1}$ |
| 3 | patient | $1.4 \times 10^{-1}$ |
| 4 | conclus | $1.1 \times 10^{-1}$ |
| 5 | copd | $6.9 \times 10^{-2}$ |
| 6 | obstruct | $6.1 \times 10^{-2}$ |
| 7 | respiratori | $5.3 \times 10^{-2}$ |
| 8 | diseas | $5.2 \times 10^{-2}$ |
| 9 | airway | $5.1 \times 10^{-2}$ |
| 10 | background | $4.9 \times 10^{-2}$ |
| 11 | mortal | $4.4 \times 10^{-2}$ |
| 12 | fev1 | $4.1 \times 10^{-2}$ |
| 13 | asthma | $4 \times 10^{-2}$ |
| 14 | clinic | $4 \times 10^{-2}$ |
| 15 | method | $3.9 \times 10^{-2}$ |
| 16 | year | $3.8 \times 10^{-2}$ |
| 17 | chronic | $3.4 \times 10^{-2}$ |
| 18 | object | $3.4 \times 10^{-2}$ |
| 19 | surgeri | $3.3 \times 10^{-2}$ |
| 20 | expiratori | $3.3 \times 10^{-2}$ |
| 21 | outcom | $3.3 \times 10^{-2}$ |
| 22 | underw | $3.3 \times 10^{-2}$ |
| 23 | age | $3.1 \times 10^{-2}$ |
| 24 | hospit | $3.1 \times 10^{-2}$ |
| 25 | thorac | $3.1 \times 10^{-2}$ |
| 26 | arteri | $3 \times 10^{-2}$ |
| 27 | associ | $3 \times 10^{-2}$ |
| 28 | cardiac | $2.8 \times 10^{-2}$ |
| 29 | ventil | $2.7 \times 10^{-2}$ |
| 30 | aortic | $2.7 \times 10^{-2}$ |
| 31 | paper | $2.6 \times 10^{-2}$ |
| 32 | postop | $2.6 \times 10^{-2}$ |
| 33 | surviv | $2.6 \times 10^{-2}$ |
| 34 | valv | $2.6 \times 10^{-2}$ |
| 35 | median | $2.5 \times 10^{-2}$ |
| 36 | risk | $2.5 \times 10^{-2}$ |
| 37 | surgic | $2.5 \times 10^{-2}$ |
| 38 | bypass | $2.4 \times 10^{-2}$ |
| 39 | heart | $2.2 \times 10^{-2}$ |
| 40 | chest | $2.2 \times 10^{-2}$ |
| 41 | nonsmal | $2.2 \times 10^{-2}$ |
| 42 | fibrosi | $2.2 \times 10^{-2}$ |
| 43 | retrospect | $2.1 \times 10^{-2}$ |
| 44 | result | $2 \times 10^{-2}$ |
| 45 | month | $2 \times 10^{-2}$ |
| 46 | ventricular | $2 \times 10^{-2}$ |
| 47 | exacerb | $2 \times 10^{-2}$ |
| 48 | signific | $2 \times 10^{-2}$ |
| 49 | cardiopulmonari | $1.9 \times 10^{-2}$ |
| 50 | inhal | $1.9 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | nsclc | $1.8 \times 10^{-2}$ |
| 52 | breath | $1.8 \times 10^{-2}$ |
| 53 | preoper | $1.8 \times 10^{-2}$ |
| 54 | treatment | $1.7 \times 10^{-2}$ |
| 55 | resect | $1.7 \times 10^{-2}$ |
| 56 | alveolar | $1.7 \times 10^{-2}$ |
| 57 | group | $1.7 \times 10^{-2}$ |
| 58 | tuberculosi | $1.7 \times 10^{-2}$ |
| 59 | smoke | $1.6 \times 10^{-2}$ |
| 60 | cohort | $1.6 \times 10^{-2}$ |
| 61 | therapi | $1.6 \times 10^{-2}$ |
| 62 | undergo | $1.6 \times 10^{-2}$ |
| 63 | day | $1.6 \times 10^{-2}$ |
| 64 | morbid | $1.6 \times 10^{-2}$ |
| 65 | left | $1.6 \times 10^{-2}$ |
| 66 | multivari | $1.6 \times 10^{-2}$ |
| 67 | follow | $1.6 \times 10^{-2}$ |
| 68 | bronchial | $1.5 \times 10^{-2}$ |
| 69 | care | $1.5 \times 10^{-2}$ |
| 70 | propos | $1.5 \times 10^{-2}$ |
| 71 | assess | $1.5 \times 10^{-2}$ |
| 72 | death | $1.5 \times 10^{-2}$ |
| 73 | acut | $1.4 \times 10^{-2}$ |
| 74 | prospect | $1.4 \times 10^{-2}$ |
| 75 | coronari | $1.3 \times 10^{-2}$ |
| 76 | diagnosi | $1.3 \times 10^{-2}$ |
| 77 | smoker | $1.3 \times 10^{-2}$ |
| 78 | regurgit | $1.3 \times 10^{-2}$ |
| 79 | mitral | $1.3 \times 10^{-2}$ |
| 80 | pneumonia | $1.3 \times 10^{-2}$ |
| 81 | inflamm | $1.3 \times 10^{-2}$ |
| 82 | reoper | $1.2 \times 10^{-2}$ |
| 83 | receiv | $1.2 \times 10^{-2}$ |
| 84 | consecut | $1.2 \times 10^{-2}$ |
| 85 | score | $1.2 \times 10^{-2}$ |
| 86 | cystic | $1.2 \times 10^{-2}$ |
| 87 | complic | $1.2 \times 10^{-2}$ |
| 88 | baselin | $1.2 \times 10^{-2}$ |
| 89 | lavag | $1.2 \times 10^{-2}$ |
| 90 | includ | $1.2 \times 10^{-2}$ |
| 91 | stay | $1.2 \times 10^{-2}$ |
| 92 | medic | $1.1 \times 10^{-2}$ |
| 93 | diagnos | $1.1 \times 10^{-2}$ |
| 94 | symptom | $1.1 \times 10^{-2}$ |
| 95 | repair | $1.1 \times 10^{-2}$ |
| 96 | predictor | $1.1 \times 10^{-2}$ |
| 97 | review | $1.1 \times 10^{-2}$ |
| 98 | periop | $1.1 \times 10^{-2}$ |
| 99 | asthmat | $1 \times 10^{-2}$ |
| 100 | regress | $1 \times 10^{-2}$ |

Table D.224. The list of the top 100 words in the category Rheumatology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | arthriti | $2.1 \times 10^{-1}$ |
| 2 | patient | $1.5 \times 10^{-1}$ |
| 3 | rheumatoid | $1.5 \times 10^{-1}$ |
| 4 | conclus | $1.3 \times 10^{-1}$ |
| 5 | diseas | $1.1 \times 10^{-1}$ |
| 6 | object | $1 \times 10^{-1}$ |
| 7 | rheumatolog | $7.8 \times 10^{-2}$ |
| 8 | lupus | $7.6 \times 10^{-2}$ |
| 9 | osteoarthr | $7.4 \times 10^{-2}$ |
| 10 | erythematosus | $6.8 \times 10^{-2}$ |
| 11 | sle | $6.6 \times 10^{-2}$ |
| 12 | joint | $6.5 \times 10^{-2}$ |
| 13 | clinic | $6.4 \times 10^{-2}$ |
| 14 | method | $5.8 \times 10^{-2}$ |
| 15 | score | $5.6 \times 10^{-2}$ |
| 16 | pain | $5 \times 10^{-2}$ |
| 17 | knee | $4.4 \times 10^{-2}$ |
| 18 | assess | $3.8 \times 10^{-2}$ |
| 19 | inflammatori | $3.7 \times 10^{-2}$ |
| 20 | age | $3.5 \times 10^{-2}$ |
| 21 | associ | $3.4 \times 10^{-2}$ |
| 22 | year | $3.3 \times 10^{-2}$ |
| 23 | cartilag | $3.1 \times 10^{-2}$ |
| 24 | treatment | $3.1 \times 10^{-2}$ |
| 25 | antibodi | $3 \times 10^{-2}$ |
| 26 | cohort | $2.9 \times 10^{-2}$ |
| 27 | result | $2.8 \times 10^{-2}$ |
| 28 | autoimmun | $2.5 \times 10^{-2}$ |
| 29 | radiograph | $2.5 \times 10^{-2}$ |
| 30 | baselin | $2.4 \times 10^{-2}$ |
| 31 | paper | $2.2 \times 10^{-2}$ |
| 32 | therapi | $2.2 \times 10^{-2}$ |
| 33 | remiss | $2.1 \times 10^{-2}$ |
| 34 | criteria | $2.1 \times 10^{-2}$ |
| 35 | healthi | $2.1 \times 10^{-2}$ |
| 36 | signific | $2 \times 10^{-2}$ |
| 37 | inflamm | $2 \times 10^{-2}$ |
| 38 | index | $2 \times 10^{-2}$ |
| 39 | diagnosi | $1.8 \times 10^{-2}$ |
| 40 | studi | $1.8 \times 10^{-2}$ |
| 41 | bone | $1.8 \times 10^{-2}$ |
| 42 | articular | $1.8 \times 10^{-2}$ |
| 43 | hip | $1.7 \times 10^{-2}$ |
| 44 | month | $1.7 \times 10^{-2}$ |
| 45 | serum | $1.7 \times 10^{-2}$ |
| 46 | activ | $1.7 \times 10^{-2}$ |
| 47 | musculoskelet | $1.7 \times 10^{-2}$ |
| 48 | syndrom | $1.7 \times 10^{-2}$ |
| 49 | symptom | $1.7 \times 10^{-2}$ |
| 50 | questionnair | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | outcom | $1.7 \times 10^{-2}$ |
| 52 | factor | $1.7 \times 10^{-2}$ |
| 53 | crp | $1.6 \times 10^{-2}$ |
| 54 | disabl | $1.6 \times 10^{-2}$ |
| 55 | durat | $1.6 \times 10^{-2}$ |
| 56 | necrosi | $1.6 \times 10^{-2}$ |
| 57 | risk | $1.5 \times 10^{-2}$ |
| 58 | aim | $1.5 \times 10^{-2}$ |
| 59 | sclerosi | $1.5 \times 10^{-2}$ |
| 60 | includ | $1.4 \times 10^{-2}$ |
| 61 | femal | $1.4 \times 10^{-2}$ |
| 62 | group | $1.4 \times 10^{-2}$ |
| 63 | tnf | $1.4 \times 10^{-2}$ |
| 64 | diagnos | $1.4 \times 10^{-2}$ |
| 65 | sex | $1.4 \times 10^{-2}$ |
| 66 | idiopath | $1.3 \times 10^{-2}$ |
| 67 | erythrocyt | $1.3 \times 10^{-2}$ |
| 68 | week | $1.3 \times 10^{-2}$ |
| 69 | interleukin | $1.3 \times 10^{-2}$ |
| 70 | evalu | $1.3 \times 10^{-2}$ |
| 71 | pathogenesi | $1.3 \times 10^{-2}$ |
| 72 | propos | $1.3 \times 10^{-2}$ |
| 73 | regress | $1.3 \times 10^{-2}$ |
| 74 | mean | $1.3 \times 10^{-2}$ |
| 75 | juvenil | $1.2 \times 10^{-2}$ |
| 76 | manifest | $1.2 \times 10^{-2}$ |
| 77 | compar | $1.2 \times 10^{-2}$ |
| 78 | preval | $1.2 \times 10^{-2}$ |
| 79 | trial | $1.2 \times 10^{-2}$ |
| 80 | treat | $1.2 \times 10^{-2}$ |
| 81 | corticosteroid | $1.2 \times 10^{-2}$ |
| 82 | follow | $1.2 \times 10^{-2}$ |
| 83 | control | $1.2 \times 10^{-2}$ |
| 84 | onset | $1.2 \times 10^{-2}$ |
| 85 | temperatur | $1.1 \times 10^{-2}$ |
| 86 | colleg | $1.1 \times 10^{-2}$ |
| 87 | simul | $1.1 \times 10^{-2}$ |
| 88 | chronic | $1.1 \times 10^{-2}$ |
| 89 | chondrocyt | $1.1 \times 10^{-2}$ |
| 90 | health | $1.1 \times 10^{-2}$ |
| 91 | higher | $1.1 \times 10^{-2}$ |
| 92 | total | $1 \times 10^{-2}$ |
| 93 | correl | $1 \times 10^{-2}$ |
| 94 | peripher | $9.9 \times 10^{-3}$ |
| 95 | american | $9.8 \times 10^{-3}$ |
| 96 | physician | $9.7 \times 10^{-3}$ |
| 97 | immunosuppress | $9.7 \times 10^{-3}$ |
| 98 | elisa | $9.7 \times 10^{-3}$ |
| 99 | cytokin | $9.6 \times 10^{-3}$ |
| 100 | enrol | $9.5 \times 10^{-3}$ |

Table D.225. The list of the top 100 words in the category Robotics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | robot | $2.8 \times 10^{-1}$ |
| 2 | paper | $7.6 \times 10^{-2}$ |
| 3 | motion | $5.1 \times 10^{-2}$ |
| 4 | propos | $4.2 \times 10^{-2}$ |
| 5 | actuat | $3.4 \times 10^{-2}$ |
| 6 | manipul | $3.1 \times 10^{-2}$ |
| 7 | algorithm | $3 \times 10^{-2}$ |
| 8 | kinemat | $2.9 \times 10^{-2}$ |
| 9 | task | $2.9 \times 10^{-2}$ |
| 10 | sensor | $2.5 \times 10^{-2}$ |
| 11 | trajectori | $2.5 \times 10^{-2}$ |
| 12 | system | $2.3 \times 10^{-2}$ |
| 13 | dof | $2.3 \times 10^{-2}$ |
| 14 | autonom | $2.2 \times 10^{-2}$ |
| 15 | control | $2.2 \times 10^{-2}$ |
| 16 | studi | $2 \times 10^{-2}$ |
| 17 | environ | $2 \times 10^{-2}$ |
| 18 | navig | $1.8 \times 10^{-2}$ |
| 19 | conclus | $1.8 \times 10^{-2}$ |
| 20 | camera | $1.8 \times 10^{-2}$ |
| 21 | track | $1.7 \times 10^{-2}$ |
| 22 | simul | $1.6 \times 10^{-2}$ |
| 23 | real | $1.5 \times 10^{-2}$ |
| 24 | joint | $1.5 \times 10^{-2}$ |
| 25 | design | $1.5 \times 10^{-2}$ |
| 26 | vehicl | $1.5 \times 10^{-2}$ |
| 27 | freedom | $1.5 \times 10^{-2}$ |
| 28 | present | $1.4 \times 10^{-2}$ |
| 29 | approach | $1.4 \times 10^{-2}$ |
| 30 | mobil | $1.3 \times 10^{-2}$ |
| 31 | forc | $1.3 \times 10^{-2}$ |
| 32 | torqu | $1.3 \times 10^{-2}$ |
| 33 | base | $1.2 \times 10^{-2}$ |
| 34 | movement | $1.2 \times 10^{-2}$ |
| 35 | vision | $1.2 \times 10^{-2}$ |
| 36 | robust | $1.2 \times 10^{-2}$ |
| 37 | problem | $1.1 \times 10^{-2}$ |
| 38 | signific | $1.1 \times 10^{-2}$ |
| 39 | gait | $1.1 \times 10^{-2}$ |
| 40 | plan | $1.1 \times 10^{-2}$ |
| 41 | arm | $1.1 \times 10^{-2}$ |
| 42 | feedback | $1.1 \times 10^{-2}$ |
| 43 | dynam | $1.1 \times 10^{-2}$ |
| 44 | move | $1 \times 10^{-2}$ |
| 45 | experi | $1 \times 10^{-2}$ |
| 46 | implement | $1 \times 10^{-2}$ |
| 47 | cell | $1 \times 10^{-2}$ |
| 48 | motor | $9.8 \times 10^{-3}$ |
| 49 | treatment | $9.6 \times 10^{-3}$ |
| 50 | protein | $9.6 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | wheel | $9.5 \times 10^{-3}$ |
| 52 | suggest | $9.4 \times 10^{-3}$ |
| 53 | associ | $9.3 \times 10^{-3}$ |
| 54 | unman | $9.2 \times 10^{-3}$ |
| 55 | walk | $9.2 \times 10^{-3}$ |
| 56 | path | $9.1 \times 10^{-3}$ |
| 57 | leg | $9 \times 10^{-3}$ |
| 58 | increas | $8.9 \times 10^{-3}$ |
| 59 | temperatur | $8.4 \times 10^{-3}$ |
| 60 | age | $8.3 \times 10^{-3}$ |
| 61 | perform | $8.3 \times 10^{-3}$ |
| 62 | found | $8.3 \times 10^{-3}$ |
| 63 | comput | $8.3 \times 10^{-3}$ |
| 64 | acid | $8.3 \times 10^{-3}$ |
| 65 | inspir | $8.2 \times 10^{-3}$ |
| 66 | platform | $8.1 \times 10^{-3}$ |
| 67 | capabl | $8 \times 10^{-3}$ |
| 68 | human | $7.9 \times 10^{-3}$ |
| 69 | gene | $7.8 \times 10^{-3}$ |
| 70 | visual | $7.8 \times 10^{-3}$ |
| 71 | constraint | $7.7 \times 10^{-3}$ |
| 72 | desir | $7.6 \times 10^{-3}$ |
| 73 | accuraci | $7.6 \times 10^{-3}$ |
| 74 | experiment | $7.5 \times 10^{-3}$ |
| 75 | pose | $7.5 \times 10^{-3}$ |
| 76 | can | $7.5 \times 10^{-3}$ |
| 77 | indic | $7.4 \times 10^{-3}$ |
| 78 | group | $7.3 \times 10^{-3}$ |
| 79 | year | $7.1 \times 10^{-3}$ |
| 80 | error | $7.1 \times 10^{-3}$ |
| 81 | diseas | $7.1 \times 10^{-3}$ |
| 82 | investig | $7 \times 10^{-3}$ |
| 83 | terrain | $7 \times 10^{-3}$ |
| 84 | aerial | $6.9 \times 10^{-3}$ |
| 85 | loop | $6.8 \times 10^{-3}$ |
| 86 | reveal | $6.7 \times 10^{-3}$ |
| 87 | prototyp | $6.7 \times 10^{-3}$ |
| 88 | higher | $6.7 \times 10^{-3}$ |
| 89 | planner | $6.7 \times 10^{-3}$ |
| 90 | speci | $6.6 \times 10^{-3}$ |
| 91 | learn | $6.4 \times 10^{-3}$ |
| 92 | concentr | $6.4 \times 10^{-3}$ |
| 93 | factor | $6.3 \times 10^{-3}$ |
| 94 | background | $6.3 \times 10^{-3}$ |
| 95 | map | $6.1 \times 10^{-3}$ |
| 96 | report | $6 \times 10^{-3}$ |
| 97 | decreas | $6 \times 10^{-3}$ |
| 98 | patient | $6 \times 10^{-3}$ |
| 99 | verifi | $6 \times 10^{-3}$ |
| 100 | total | $6 \times 10^{-3}$ |

Table D.226. The list of the top 100 words in the category Social Issues with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | articl | $5.5 \times 10^{-2}$ |
| 2 | argu | $5.3 \times 10^{-2}$ |
| 3 | ethic | $4.8 \times 10^{-2}$ |
| 4 | social | $4.2 \times 10^{-2}$ |
| 5 | polici | $3.9 \times 10^{-2}$ |
| 6 | polit | $2.9 \times 10^{-2}$ |
| 7 | moral | $2.8 \times 10^{-2}$ |
| 8 | welfar | $2.6 \times 10^{-2}$ |
| 9 | public | $2.1 \times 10^{-2}$ |
| 10 | peopl | $1.9 \times 10^{-2}$ |
| 11 | govern | $1.8 \times 10^{-2}$ |
| 12 | health | $1.8 \times 10^{-2}$ |
| 13 | bioethic | $1.8 \times 10^{-2}$ |
| 14 | author | $1.6 \times 10^{-2}$ |
| 15 | legal | $1.6 \times 10^{-2}$ |
| 16 | result | $1.6 \times 10^{-2}$ |
| 17 | question | $1.5 \times 10^{-2}$ |
| 18 | debat | $1.5 \times 10^{-2}$ |
| 19 | right | $1.5 \times 10^{-2}$ |
| 20 | argument | $1.4 \times 10^{-2}$ |
| 21 | claim | $1.4 \times 10^{-2}$ |
| 22 | research | $1.4 \times 10^{-2}$ |
| 23 | countri | $1.4 \times 10^{-2}$ |
| 24 | reform | $1.4 \times 10^{-2}$ |
| 25 | draw | $1.3 \times 10^{-2}$ |
| 26 | interview | $1.3 \times 10^{-2}$ |
| 27 | perform | $1.3 \times 10^{-2}$ |
| 28 | profession | $1.2 \times 10^{-2}$ |
| 29 | religi | $1.2 \times 10^{-2}$ |
| 30 | nation | $1.2 \times 10^{-2}$ |
| 31 | societi | $1.2 \times 10^{-2}$ |
| 32 | engag | $1.1 \times 10^{-2}$ |
| 33 | autonomi | $1.1 \times 10^{-2}$ |
| 34 | simul | $1.1 \times 10^{-2}$ |
| 35 | concern | $1.1 \times 10^{-2}$ |
| 36 | cell | $1.1 \times 10^{-2}$ |
| 37 | temperatur | $1.1 \times 10^{-2}$ |
| 38 | explor | $1.1 \times 10^{-2}$ |
| 39 | focus | $1.1 \times 10^{-2}$ |
| 40 | practic | $1 \times 10^{-2}$ |
| 41 | worker | $1 \times 10^{-2}$ |
| 42 | examin | $1 \times 10^{-2}$ |
| 43 | particip | $1 \times 10^{-2}$ |
| 44 | care | $1 \times 10^{-2}$ |
| 45 | attitud | $9.9 \times 10^{-3}$ |
| 46 | discuss | $9.9 \times 10^{-3}$ |
| 47 | method | $9.8 \times 10^{-3}$ |
| 48 | justic | $9.8 \times 10^{-3}$ |
| 49 | religion | $9.6 \times 10^{-3}$ |
| 50 | issu | $9.6 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | paramet | $9.5 \times 10^{-3}$ |
| 52 | oblig | $9.4 \times 10^{-3}$ |
| 53 | surfac | $9.4 \times 10^{-3}$ |
| 54 | individu | $9.3 \times 10^{-3}$ |
| 55 | way | $9.2 \times 10^{-3}$ |
| 56 | make | $9.1 \times 10^{-3}$ |
| 57 | weapon | $9 \times 10^{-3}$ |
| 58 | decis | $8.9 \times 10^{-3}$ |
| 59 | consent | $8.8 \times 10^{-3}$ |
| 60 | person | $8.6 \times 10^{-3}$ |
| 61 | discours | $8.5 \times 10^{-3}$ |
| 62 | justif | $8.5 \times 10^{-3}$ |
| 63 | organis | $8.3 \times 10^{-3}$ |
| 64 | context | $8.3 \times 10^{-3}$ |
| 65 | implic | $8.1 \times 10^{-3}$ |
| 66 | institut | $8 \times 10^{-3}$ |
| 67 | fund | $8 \times 10^{-3}$ |
| 68 | observ | $7.9 \times 10^{-3}$ |
| 69 | ideolog | $7.9 \times 10^{-3}$ |
| 70 | state | $7.8 \times 10^{-3}$ |
| 71 | gender | $7.8 \times 10^{-3}$ |
| 72 | medic | $7.8 \times 10^{-3}$ |
| 73 | sector | $7.7 \times 10^{-3}$ |
| 74 | obtain | $7.6 \times 10^{-3}$ |
| 75 | servic | $7.4 \times 10^{-3}$ |
| 76 | support | $7.4 \times 10^{-3}$ |
| 77 | law | $7.4 \times 10^{-3}$ |
| 78 | protein | $7.3 \times 10^{-3}$ |
| 79 | women | $7.3 \times 10^{-3}$ |
| 80 | liber | $7.2 \times 10^{-3}$ |
| 81 | seek | $7.2 \times 10^{-3}$ |
| 82 | scholar | $7.2 \times 10^{-3}$ |
| 83 | normat | $7.1 \times 10^{-3}$ |
| 84 | undermin | $7.1 \times 10^{-3}$ |
| 85 | high | $7.1 \times 10^{-3}$ |
| 86 | harm | $7 \times 10^{-3}$ |
| 87 | effici | $7 \times 10^{-3}$ |
| 88 | detect | $7 \times 10^{-3}$ |
| 89 | view | $7 \times 10^{-3}$ |
| 90 | provis | $6.9 \times 10^{-3}$ |
| 91 | theme | $6.9 \times 10^{-3}$ |
| 92 | crisi | $6.8 \times 10^{-3}$ |
| 93 | electron | $6.8 \times 10^{-3}$ |
| 94 | parti | $6.7 \times 10^{-3}$ |
| 95 | experiment | $6.5 \times 10^{-3}$ |
| 96 | agenda | $6.5 \times 10^{-3}$ |
| 97 | disabl | $6.3 \times 10^{-3}$ |
| 98 | perceiv | $6.3 \times 10^{-3}$ |
| 99 | actor | $6.2 \times 10^{-3}$ |
| 100 | properti | $6.2 \times 10^{-3}$ |

Table D.227. The list of the top 100 words in the category Social Sciences, Biomedical with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | health | $9.8 \times 10^{-2}$ |
| 2 | hiv | $7.6 \times 10^{-2}$ |
| 3 | social | $5 \times 10^{-2}$ |
| 4 | interview | $4.9 \times 10^{-2}$ |
| 5 | care | $4.3 \times 10^{-2}$ |
| 6 | ethic | $4.3 \times 10^{-2}$ |
| 7 | particip | $3.4 \times 10^{-2}$ |
| 8 | women | $3.2 \times 10^{-2}$ |
| 9 | sexual | $3 \times 10^{-2}$ |
| 10 | medic | $3 \times 10^{-2}$ |
| 11 | moral | $2.7 \times 10^{-2}$ |
| 12 | intervent | $2.5 \times 10^{-2}$ |
| 13 | men | $2.4 \times 10^{-2}$ |
| 14 | peopl | $2.3 \times 10^{-2}$ |
| 15 | sex | $2.3 \times 10^{-2}$ |
| 16 | risk | $2.3 \times 10^{-2}$ |
| 17 | live | $2.2 \times 10^{-2}$ |
| 18 | individu | $2.2 \times 10^{-2}$ |
| 19 | among | $2.2 \times 10^{-2}$ |
| 20 | argu | $2.1 \times 10^{-2}$ |
| 21 | partner | $2 \times 10^{-2}$ |
| 22 | research | $1.9 \times 10^{-2}$ |
| 23 | survey | $1.9 \times 10^{-2}$ |
| 24 | public | $1.9 \times 10^{-2}$ |
| 25 | articl | $1.8 \times 10^{-2}$ |
| 26 | explor | $1.7 \times 10^{-2}$ |
| 27 | draw | $1.7 \times 10^{-2}$ |
| 28 | examin | $1.7 \times 10^{-2}$ |
| 29 | stigma | $1.6 \times 10^{-2}$ |
| 30 | profession | $1.6 \times 10^{-2}$ |
| 31 | person | $1.6 \times 10^{-2}$ |
| 32 | qualit | $1.6 \times 10^{-2}$ |
| 33 | polici | $1.6 \times 10^{-2}$ |
| 34 | counsel | $1.6 \times 10^{-2}$ |
| 35 | mental | $1.5 \times 10^{-2}$ |
| 36 | antiretrovir | $1.5 \times 10^{-2}$ |
| 37 | ill | $1.5 \times 10^{-2}$ |
| 38 | bioethic | $1.5 \times 10^{-2}$ |
| 39 | ethnograph | $1.5 \times 10^{-2}$ |
| 40 | life | $1.5 \times 10^{-2}$ |
| 41 | indepth | $1.4 \times 10^{-2}$ |
| 42 | need | $1.4 \times 10^{-2}$ |
| 43 | famili | $1.4 \times 10^{-2}$ |
| 44 | context | $1.4 \times 10^{-2}$ |
| 45 | educ | $1.4 \times 10^{-2}$ |
| 46 | engag | $1.3 \times 10^{-2}$ |
| 47 | practic | $1.3 \times 10^{-2}$ |
| 48 | concern | $1.3 \times 10^{-2}$ |
| 49 | servic | $1.3 \times 10^{-2}$ |
| 50 | perceiv | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | status | $1.2 \times 10^{-2}$ |
| 52 | theme | $1.2 \times 10^{-2}$ |
| 53 | simul | $1.2 \times 10^{-2}$ |
| 54 | healthcar | $1.1 \times 10^{-2}$ |
| 55 | relationship | $1.1 \times 10^{-2}$ |
| 56 | survivor | $1.1 \times 10^{-2}$ |
| 57 | communiti | $1.1 \times 10^{-2}$ |
| 58 | nation | $1.1 \times 10^{-2}$ |
| 59 | consent | $1.1 \times 10^{-2}$ |
| 60 | autonomi | $1.1 \times 10^{-2}$ |
| 61 | decis | $1.1 \times 10^{-2}$ |
| 62 | temperatur | $1.1 \times 10^{-2}$ |
| 63 | child | $1.1 \times 10^{-2}$ |
| 64 | age | $1 \times 10^{-2}$ |
| 65 | focus | $1 \times 10^{-2}$ |
| 66 | understand | $1 \times 10^{-2}$ |
| 67 | semistructur | $1 \times 10^{-2}$ |
| 68 | perform | $1 \times 10^{-2}$ |
| 69 | socioeconom | $1 \times 10^{-2}$ |
| 70 | surfac | $1 \times 10^{-2}$ |
| 71 | prevent | $1 \times 10^{-2}$ |
| 72 | associ | $9.7 \times 10^{-3}$ |
| 73 | support | $9.7 \times 10^{-3}$ |
| 74 | physician | $9.6 \times 10^{-3}$ |
| 75 | paramet | $9.6 \times 10^{-3}$ |
| 76 | attitud | $9.6 \times 10^{-3}$ |
| 77 | incom | $9.5 \times 10^{-3}$ |
| 78 | discours | $9.4 \times 10^{-3}$ |
| 79 | energi | $9.4 \times 10^{-3}$ |
| 80 | popul | $9.3 \times 10^{-3}$ |
| 81 | debat | $9.3 \times 10^{-3}$ |
| 82 | respond | $9.3 \times 10^{-3}$ |
| 83 | parent | $9.2 \times 10^{-3}$ |
| 84 | seek | $9.2 \times 10^{-3}$ |
| 85 | psychosoci | $9.2 \times 10^{-3}$ |
| 86 | properti | $9.1 \times 10^{-3}$ |
| 87 | experienc | $9.1 \times 10^{-3}$ |
| 88 | children | $9 \times 10^{-3}$ |
| 89 | emot | $8.9 \times 10^{-3}$ |
| 90 | question | $8.9 \times 10^{-3}$ |
| 91 | doctor | $8.8 \times 10^{-3}$ |
| 92 | narrat | $8.7 \times 10^{-3}$ |
| 93 | psycholog | $8.7 \times 10^{-3}$ |
| 94 | address | $8.5 \times 10^{-3}$ |
| 95 | inform | $8.4 \times 10^{-3}$ |
| 96 | regress | $8.4 \times 10^{-3}$ |
| 97 | distress | $8.4 \times 10^{-3}$ |
| 98 | implic | $8.3 \times 10^{-3}$ |
| 99 | find | $8.3 \times 10^{-3}$ |
| 100 | countri | $8.3 \times 10^{-3}$ |

Table D.228. The list of the top 100 words in the category Social Sciences, Interdisciplinary with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | social | $4.3 \times 10^{-2}$ |
| 2 | educ | $3.7 \times 10^{-2}$ |
| 3 | student | $3.3 \times 10^{-2}$ |
| 4 | teach | $3.1 \times 10^{-2}$ |
| 5 | colleg | $3 \times 10^{-2}$ |
| 6 | research | $2.9 \times 10^{-2}$ |
| 7 | peopl | $2.2 \times 10^{-2}$ |
| 8 | practic | $2.1 \times 10^{-2}$ |
| 9 | societi | $1.9 \times 10^{-2}$ |
| 10 | articl | $1.9 \times 10^{-2}$ |
| 11 | talent | $1.8 \times 10^{-2}$ |
| 12 | reform | $1.8 \times 10^{-2}$ |
| 13 | cell | $1.8 \times 10^{-2}$ |
| 14 | china | $1.8 \times 10^{-2}$ |
| 15 | polit | $1.7 \times 10^{-2}$ |
| 16 | cultur | $1.7 \times 10^{-2}$ |
| 17 | econom | $1.6 \times 10^{-2}$ |
| 18 | put | $1.5 \times 10^{-2}$ |
| 19 | result | $1.4 \times 10^{-2}$ |
| 20 | teacher | $1.4 \times 10^{-2}$ |
| 21 | countri | $1.3 \times 10^{-2}$ |
| 22 | enterpris | $1.3 \times 10^{-2}$ |
| 23 | chines | $1.3 \times 10^{-2}$ |
| 24 | univers | $1.3 \times 10^{-2}$ |
| 25 | temperatur | $1.3 \times 10^{-2}$ |
| 26 | polici | $1.2 \times 10^{-2}$ |
| 27 | innov | $1.2 \times 10^{-2}$ |
| 28 | perspect | $1.2 \times 10^{-2}$ |
| 29 | explor | $1.1 \times 10^{-2}$ |
| 30 | school | $1.1 \times 10^{-2}$ |
| 31 | economi | $1.1 \times 10^{-2}$ |
| 32 | surfac | $1.1 \times 10^{-2}$ |
| 33 | situat | $1.1 \times 10^{-2}$ |
| 34 | paper | $1.1 \times 10^{-2}$ |
| 35 | nation | $1.1 \times 10^{-2}$ |
| 36 | develop | $1.1 \times 10^{-2}$ |
| 37 | protein | $1.1 \times 10^{-2}$ |
| 38 | english | $1.1 \times 10^{-2}$ |
| 39 | think | $1 \times 10^{-2}$ |
| 40 | induc | $1 \times 10^{-2}$ |
| 41 | interview | $9.9 \times 10^{-3}$ |
| 42 | learn | $9.6 \times 10^{-3}$ |
| 43 | patient | $9.5 \times 10^{-3}$ |
| 44 | way | $9.4 \times 10^{-3}$ |
| 45 | market | $9.3 \times 10^{-3}$ |
| 46 | vocat | $9.3 \times 10^{-3}$ |
| 47 | make | $9.2 \times 10^{-3}$ |
| 48 | detect | $9 \times 10^{-3}$ |
| 49 | paramet | $8.8 \times 10^{-3}$ |
| 50 | profession | $8.8 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | person | $8.7 \times 10^{-3}$ |
| 52 | acid | $8.7 \times 10^{-3}$ |
| 53 | modern | $8.5 \times 10^{-3}$ |
| 54 | treatment | $8.4 \times 10^{-3}$ |
| 55 | focus | $8.2 \times 10^{-3}$ |
| 56 | high | $8.1 \times 10^{-3}$ |
| 57 | ideolog | $8.1 \times 10^{-3}$ |
| 58 | govern | $8 \times 10^{-3}$ |
| 59 | perform | $8 \times 10^{-3}$ |
| 60 | busi | $8 \times 10^{-3}$ |
| 61 | forward | $8 \times 10^{-3}$ |
| 62 | observ | $8 \times 10^{-3}$ |
| 63 | gene | $7.9 \times 10^{-3}$ |
| 64 | psycholog | $7.9 \times 10^{-3}$ |
| 65 | aspect | $7.8 \times 10^{-3}$ |
| 66 | discuss | $7.8 \times 10^{-3}$ |
| 67 | compar | $7.7 \times 10^{-3}$ |
| 68 | properti | $7.7 \times 10^{-3}$ |
| 69 | obtain | $7.6 \times 10^{-3}$ |
| 70 | survey | $7.6 \times 10^{-3}$ |
| 71 | concept | $7.5 \times 10^{-3}$ |
| 72 | manag | $7.5 \times 10^{-3}$ |
| 73 | life | $7.5 \times 10^{-3}$ |
| 74 | becom | $7.5 \times 10^{-3}$ |
| 75 | author | $7.5 \times 10^{-3}$ |
| 76 | languag | $7.4 \times 10^{-3}$ |
| 77 | simul | $7.4 \times 10^{-3}$ |
| 78 | decreas | $7.4 \times 10^{-3}$ |
| 79 | speci | $7.3 \times 10^{-3}$ |
| 80 | public | $7.3 \times 10^{-3}$ |
| 81 | oxid | $7.2 \times 10^{-3}$ |
| 82 | show | $7.2 \times 10^{-3}$ |
| 83 | foreign | $7.2 \times 10^{-3}$ |
| 84 | use | $7.1 \times 10^{-3}$ |
| 85 | cultiv | $7.1 \times 10^{-3}$ |
| 86 | theori | $7.1 \times 10^{-3}$ |
| 87 | molecular | $7 \times 10^{-3}$ |
| 88 | concentr | $7 \times 10^{-3}$ |
| 89 | issu | $6.9 \times 10^{-3}$ |
| 90 | rang | $6.8 \times 10^{-3}$ |
| 91 | knowledg | $6.8 \times 10^{-3}$ |
| 92 | particip | $6.7 \times 10^{-3}$ |
| 93 | curriculum | $6.7 \times 10^{-3}$ |
| 94 | experiment | $6.7 \times 10^{-3}$ |
| 95 | relationship | $6.7 \times 10^{-3}$ |
| 96 | densiti | $6.6 \times 10^{-3}$ |
| 97 | implic | $6.5 \times 10^{-3}$ |
| 98 | energi | $6.5 \times 10^{-3}$ |
| 99 | promot | $6.5 \times 10^{-3}$ |
| 100 | ratio | $6.4 \times 10^{-3}$ |

Table D.229. The list of the top 100 words in the category Social Sciences, Mathematical Methods with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | price | $3.3 \times 10^{-2}$ |
| 2 | market | $2.9 \times 10^{-2}$ |
| 3 | model | $2.6 \times 10^{-2}$ |
| 4 | estim | $2.4 \times 10^{-2}$ |
| 5 | financi | $2.3 \times 10^{-2}$ |
| 6 | empir | $2.3 \times 10^{-2}$ |
| 7 | paper | $1.9 \times 10^{-2}$ |
| 8 | econom | $1.7 \times 10^{-2}$ |
| 9 | asset | $1.5 \times 10^{-2}$ |
| 10 | cell | $1.4 \times 10^{-2}$ |
| 11 | stochast | $1.4 \times 10^{-2}$ |
| 12 | czech | $1.4 \times 10^{-2}$ |
| 13 | portfolio | $1.3 \times 10^{-2}$ |
| 14 | patient | $1.3 \times 10^{-2}$ |
| 15 | insur | $1.2 \times 10^{-2}$ |
| 16 | economi | $1.2 \times 10^{-2}$ |
| 17 | conclus | $1.1 \times 10^{-2}$ |
| 18 | stock | $1.1 \times 10^{-2}$ |
| 19 | asymptot | $1.1 \times 10^{-2}$ |
| 20 | nonparametr | $1.1 \times 10^{-2}$ |
| 21 | econometr | $1 \times 10^{-2}$ |
| 22 | forecast | $1 \times 10^{-2}$ |
| 23 | articl | $1 \times 10^{-2}$ |
| 24 | carlo | $9.3 \times 10^{-3}$ |
| 25 | high | $9.2 \times 10^{-3}$ |
| 26 | mont | $9.2 \times 10^{-3}$ |
| 27 | temperatur | $9.1 \times 10^{-3}$ |
| 28 | surfac | $9 \times 10^{-3}$ |
| 29 | protein | $8.9 \times 10^{-3}$ |
| 30 | invest | $8.8 \times 10^{-3}$ |
| 31 | volatil | $8.7 \times 10^{-3}$ |
| 32 | macroeconom | $8.5 \times 10^{-3}$ |
| 33 | bayesian | $8.3 \times 10^{-3}$ |
| 34 | capit | $8.3 \times 10^{-3}$ |
| 35 | polici | $8.1 \times 10^{-3}$ |
| 36 | clinic | $8 \times 10^{-3}$ |
| 37 | risk | $8 \times 10^{-3}$ |
| 38 | background | $7.9 \times 10^{-3}$ |
| 39 | illustr | $7.8 \times 10^{-3}$ |
| 40 | compani | $7.7 \times 10^{-3}$ |
| 41 | republ | $7.7 \times 10^{-3}$ |
| 42 | variabl | $7.6 \times 10^{-3}$ |
| 43 | return | $7.5 \times 10^{-3}$ |
| 44 | data | $7.4 \times 10^{-3}$ |
| 45 | electron | $7.4 \times 10^{-3}$ |
| 46 | acid | $7.3 \times 10^{-3}$ |
| 47 | activ | $7.2 \times 10^{-3}$ |
| 48 | pedestrian | $7.1 \times 10^{-3}$ |
| 49 | countri | $7 \times 10^{-3}$ |
| 50 | assumpt | $7 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | likelihood | $6.9 \times 10^{-3}$ |
| 52 | materi | $6.9 \times 10^{-3}$ |
| 53 | decis | $6.8 \times 10^{-3}$ |
| 54 | diseas | $6.7 \times 10^{-3}$ |
| 55 | statist | $6.7 \times 10^{-3}$ |
| 56 | crisi | $6.7 \times 10^{-3}$ |
| 57 | trade | $6.7 \times 10^{-3}$ |
| 58 | premium | $6.6 \times 10^{-3}$ |
| 59 | investor | $6.5 \times 10^{-3}$ |
| 60 | gene | $6.5 \times 10^{-3}$ |
| 61 | probabl | $6.5 \times 10^{-3}$ |
| 62 | panel | $6.4 \times 10^{-3}$ |
| 63 | speci | $6.3 \times 10^{-3}$ |
| 64 | molecular | $6.2 \times 10^{-3}$ |
| 65 | game | $6.1 \times 10^{-3}$ |
| 66 | general | $6 \times 10^{-3}$ |
| 67 | problem | $5.9 \times 10^{-3}$ |
| 68 | firm | $5.9 \times 10^{-3}$ |
| 69 | energi | $5.9 \times 10^{-3}$ |
| 70 | found | $5.8 \times 10^{-3}$ |
| 71 | choic | $5.6 \times 10^{-3}$ |
| 72 | avers | $5.6 \times 10^{-3}$ |
| 73 | treatment | $5.6 \times 10^{-3}$ |
| 74 | varianc | $5.6 \times 10^{-3}$ |
| 75 | exampl | $5.5 \times 10^{-3}$ |
| 76 | oxid | $5.5 \times 10^{-3}$ |
| 77 | set | $5.5 \times 10^{-3}$ |
| 78 | markov | $5.5 \times 10^{-3}$ |
| 79 | prefer | $5.4 \times 10^{-3}$ |
| 80 | low | $5.4 \times 10^{-3}$ |
| 81 | phase | $5.3 \times 10^{-3}$ |
| 82 | signific | $5.2 \times 10^{-3}$ |
| 83 | imag | $5.2 \times 10^{-3}$ |
| 84 | report | $5.2 \times 10^{-3}$ |
| 85 | induc | $5.1 \times 10^{-3}$ |
| 86 | financ | $5.1 \times 10^{-3}$ |
| 87 | studi | $5 \times 10^{-3}$ |
| 88 | tissu | $5 \times 10^{-3}$ |
| 89 | credit | $5 \times 10^{-3}$ |
| 90 | control | $4.9 \times 10^{-3}$ |
| 91 | gdp | $4.8 \times 10^{-3}$ |
| 92 | monetari | $4.8 \times 10^{-3}$ |
| 93 | latent | $4.7 \times 10^{-3}$ |
| 94 | ray | $4.7 \times 10^{-3}$ |
| 95 | profit | $4.7 \times 10^{-3}$ |
| 96 | optic | $4.7 \times 10^{-3}$ |
| 97 | mechan | $4.7 \times 10^{-3}$ |
| 98 | concentr | $4.6 \times 10^{-3}$ |
| 99 | resist | $4.6 \times 10^{-3}$ |
| 100 | incom | $4.6 \times 10^{-3}$ |

Table D.230. The list of the top 100 words in the category Social Work with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | social | $1.4 \times 10^{-1}$ |
| 2 | child | $9.8 \times 10^{-2}$ |
| 3 | children | $6.8 \times 10^{-2}$ |
| 4 | worker | $6 \times 10^{-2}$ |
| 5 | welfar | $5.5 \times 10^{-2}$ |
| 6 | servic | $5.1 \times 10^{-2}$ |
| 7 | famili | $5.1 \times 10^{-2}$ |
| 8 | abus | $4.9 \times 10^{-2}$ |
| 9 | parent | $4.5 \times 10^{-2}$ |
| 10 | articl | $4.2 \times 10^{-2}$ |
| 11 | maltreat | $4.1 \times 10^{-2}$ |
| 12 | research | $4.1 \times 10^{-2}$ |
| 13 | youth | $4.1 \times 10^{-2}$ |
| 14 | practic | $4 \times 10^{-2}$ |
| 15 | polici | $3.4 \times 10^{-2}$ |
| 16 | care | $3.4 \times 10^{-2}$ |
| 17 | interview | $3.3 \times 10^{-2}$ |
| 18 | health | $3.1 \times 10^{-2}$ |
| 19 | mental | $3.1 \times 10^{-2}$ |
| 20 | implic | $3 \times 10^{-2}$ |
| 21 | communiti | $2.9 \times 10^{-2}$ |
| 22 | examin | $2.8 \times 10^{-2}$ |
| 23 | intervent | $2.8 \times 10^{-2}$ |
| 24 | find | $2.7 \times 10^{-2}$ |
| 25 | support | $2.7 \times 10^{-2}$ |
| 26 | work | $2.5 \times 10^{-2}$ |
| 27 | educ | $2.4 \times 10^{-2}$ |
| 28 | violenc | $2.4 \times 10^{-2}$ |
| 29 | adolesc | $2.4 \times 10^{-2}$ |
| 30 | profession | $2.3 \times 10^{-2}$ |
| 31 | particip | $2.2 \times 10^{-2}$ |
| 32 | discuss | $2.2 \times 10^{-2}$ |
| 33 | relationship | $2.1 \times 10^{-2}$ |
| 34 | victim | $2.1 \times 10^{-2}$ |
| 35 | caregiv | $2 \times 10^{-2}$ |
| 36 | explor | $2 \times 10^{-2}$ |
| 37 | foster | $2 \times 10^{-2}$ |
| 38 | practition | $1.9 \times 10^{-2}$ |
| 39 | engag | $1.9 \times 10^{-2}$ |
| 40 | school | $1.9 \times 10^{-2}$ |
| 41 | client | $1.9 \times 10^{-2}$ |
| 42 | qualit | $1.9 \times 10^{-2}$ |
| 43 | need | $1.8 \times 10^{-2}$ |
| 44 | emot | $1.8 \times 10^{-2}$ |
| 45 | sexual | $1.8 \times 10^{-2}$ |
| 46 | agenc | $1.8 \times 10^{-2}$ |
| 47 | peopl | $1.7 \times 10^{-2}$ |
| 48 | live | $1.6 \times 10^{-2}$ |
| 49 | home | $1.6 \times 10^{-2}$ |
| 50 | childhood | $1.5 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | experienc | $1.5 \times 10^{-2}$ |
| 52 | cell | $1.5 \times 10^{-2}$ |
| 53 | psycholog | $1.4 \times 10^{-2}$ |
| 54 | mother | $1.4 \times 10^{-2}$ |
| 55 | context | $1.4 \times 10^{-2}$ |
| 56 | perform | $1.3 \times 10^{-2}$ |
| 57 | perceiv | $1.3 \times 10^{-2}$ |
| 58 | focus | $1.3 \times 10^{-2}$ |
| 59 | method | $1.3 \times 10^{-2}$ |
| 60 | draw | $1.3 \times 10^{-2}$ |
| 61 | perspect | $1.2 \times 10^{-2}$ |
| 62 | poverti | $1.2 \times 10^{-2}$ |
| 63 | program | $1.2 \times 10^{-2}$ |
| 64 | profess | $1.2 \times 10^{-2}$ |
| 65 | young | $1.2 \times 10^{-2}$ |
| 66 | simul | $1.2 \times 10^{-2}$ |
| 67 | outcom | $1.2 \times 10^{-2}$ |
| 68 | temperatur | $1.2 \times 10^{-2}$ |
| 69 | address | $1.2 \times 10^{-2}$ |
| 70 | neglect | $1.1 \times 10^{-2}$ |
| 71 | risk | $1.1 \times 10^{-2}$ |
| 72 | paramet | $1.1 \times 10^{-2}$ |
| 73 | incom | $1.1 \times 10^{-2}$ |
| 74 | properti | $1.1 \times 10^{-2}$ |
| 75 | surfac | $1.1 \times 10^{-2}$ |
| 76 | experi | $1.1 \times 10^{-2}$ |
| 77 | survey | $1.1 \times 10^{-2}$ |
| 78 | nation | $1.1 \times 10^{-2}$ |
| 79 | percept | $1.1 \times 10^{-2}$ |
| 80 | theme | $1 \times 10^{-2}$ |
| 81 | trauma | $1 \times 10^{-2}$ |
| 82 | among | $1 \times 10^{-2}$ |
| 83 | energi | $1 \times 10^{-2}$ |
| 84 | person | $9.8 \times 10^{-3}$ |
| 85 | peer | $9.6 \times 10^{-3}$ |
| 86 | student | $9.4 \times 10^{-3}$ |
| 87 | induc | $9.2 \times 10^{-3}$ |
| 88 | psychosoci | $9.2 \times 10^{-3}$ |
| 89 | provis | $9.1 \times 10^{-3}$ |
| 90 | organis | $9 \times 10^{-3}$ |
| 91 | gender | $8.9 \times 10^{-3}$ |
| 92 | empower | $8.6 \times 10^{-3}$ |
| 93 | challeng | $8.5 \times 10^{-3}$ |
| 94 | protein | $8.4 \times 10^{-3}$ |
| 95 | show | $8.3 \times 10^{-3}$ |
| 96 | seek | $8.3 \times 10^{-3}$ |
| 97 | indepth | $8.2 \times 10^{-3}$ |
| 98 | result | $8.2 \times 10^{-3}$ |
| 99 | protect | $8.2 \times 10^{-3}$ |
| 100 | issu | $8.2 \times 10^{-3}$ |

Table D.231. The list of the top 100 words in the category Sociology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | social | $1.2 \times 10^{-1}$ |
| 2 | articl | $8.1 \times 10^{-2}$ |
| 3 | polit | $5.5 \times 10^{-2}$ |
| 4 | sociolog | $5.5 \times 10^{-2}$ |
| 5 | argu | $4.3 \times 10^{-2}$ |
| 6 | draw | $3.5 \times 10^{-2}$ |
| 7 | cultur | $2.7 \times 10^{-2}$ |
| 8 | research | $2.7 \times 10^{-2}$ |
| 9 | nation | $2.6 \times 10^{-2}$ |
| 10 | examin | $2.5 \times 10^{-2}$ |
| 11 | societi | $2.5 \times 10^{-2}$ |
| 12 | interview | $2.3 \times 10^{-2}$ |
| 13 | peopl | $2.2 \times 10^{-2}$ |
| 14 | survey | $2.2 \times 10^{-2}$ |
| 15 | discours | $2.1 \times 10^{-2}$ |
| 16 | religi | $2.1 \times 10^{-2}$ |
| 17 | econom | $2 \times 10^{-2}$ |
| 18 | polici | $1.9 \times 10^{-2}$ |
| 19 | gender | $1.8 \times 10^{-2}$ |
| 20 | context | $1.8 \times 10^{-2}$ |
| 21 | immigr | $1.7 \times 10^{-2}$ |
| 22 | ethnograph | $1.7 \times 10^{-2}$ |
| 23 | method | $1.7 \times 10^{-2}$ |
| 24 | racial | $1.7 \times 10^{-2}$ |
| 25 | public | $1.7 \times 10^{-2}$ |
| 26 | cell | $1.6 \times 10^{-2}$ |
| 27 | educ | $1.5 \times 10^{-2}$ |
| 28 | focus | $1.5 \times 10^{-2}$ |
| 29 | contemporari | $1.5 \times 10^{-2}$ |
| 30 | way | $1.5 \times 10^{-2}$ |
| 31 | engag | $1.5 \times 10^{-2}$ |
| 32 | countri | $1.5 \times 10^{-2}$ |
| 33 | inequ | $1.5 \times 10^{-2}$ |
| 34 | find | $1.4 \times 10^{-2}$ |
| 35 | question | $1.4 \times 10^{-2}$ |
| 36 | scholar | $1.4 \times 10^{-2}$ |
| 37 | ident | $1.4 \times 10^{-2}$ |
| 38 | religion | $1.3 \times 10^{-2}$ |
| 39 | capit | $1.3 \times 10^{-2}$ |
| 40 | ethnic | $1.3 \times 10^{-2}$ |
| 41 | empir | $1.3 \times 10^{-2}$ |
| 42 | result | $1.3 \times 10^{-2}$ |
| 43 | explor | $1.3 \times 10^{-2}$ |
| 44 | institut | $1.3 \times 10^{-2}$ |
| 45 | ideolog | $1.3 \times 10^{-2}$ |
| 46 | temperatur | $1.2 \times 10^{-2}$ |
| 47 | perspect | $1.2 \times 10^{-2}$ |
| 48 | debat | $1.2 \times 10^{-2}$ |
| 49 | relationship | $1.2 \times 10^{-2}$ |
| 50 | life | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | communiti | $1.2 \times 10^{-2}$ |
| 52 | perform | $1.1 \times 10^{-2}$ |
| 53 | actor | $1.1 \times 10^{-2}$ |
| 54 | migrant | $1.1 \times 10^{-2}$ |
| 55 | obtain | $1.1 \times 10^{-2}$ |
| 56 | patient | $1.1 \times 10^{-2}$ |
| 57 | simul | $1.1 \times 10^{-2}$ |
| 58 | surfac | $1.1 \times 10^{-2}$ |
| 59 | understand | $1.1 \times 10^{-2}$ |
| 60 | practic | $1 \times 10^{-2}$ |
| 61 | individu | $1 \times 10^{-2}$ |
| 62 | attitud | $9.9 \times 10^{-3}$ |
| 63 | theori | $9.8 \times 10^{-3}$ |
| 64 | concept | $9.7 \times 10^{-3}$ |
| 65 | market | $9.6 \times 10^{-3}$ |
| 66 | school | $9.6 \times 10^{-3}$ |
| 67 | paramet | $9.6 \times 10^{-3}$ |
| 68 | live | $9.5 \times 10^{-3}$ |
| 69 | american | $9.4 \times 10^{-3}$ |
| 70 | particip | $9.3 \times 10^{-3}$ |
| 71 | protest | $9.2 \times 10^{-3}$ |
| 72 | claim | $9.1 \times 10^{-3}$ |
| 73 | narrat | $9 \times 10^{-3}$ |
| 74 | conceptu | $8.9 \times 10^{-3}$ |
| 75 | socio | $8.9 \times 10^{-3}$ |
| 76 | detect | $8.8 \times 10^{-3}$ |
| 77 | protein | $8.8 \times 10^{-3}$ |
| 78 | women | $8.7 \times 10^{-3}$ |
| 79 | author | $8.6 \times 10^{-3}$ |
| 80 | moral | $8.6 \times 10^{-3}$ |
| 81 | govern | $8.4 \times 10^{-3}$ |
| 82 | incom | $8.3 \times 10^{-3}$ |
| 83 | implic | $8.3 \times 10^{-3}$ |
| 84 | youth | $8.2 \times 10^{-3}$ |
| 85 | induc | $8.1 \times 10^{-3}$ |
| 86 | person | $8.1 \times 10^{-3}$ |
| 87 | energi | $8 \times 10^{-3}$ |
| 88 | ratio | $7.9 \times 10^{-3}$ |
| 89 | effici | $7.9 \times 10^{-3}$ |
| 90 | electron | $7.9 \times 10^{-3}$ |
| 91 | liber | $7.8 \times 10^{-3}$ |
| 92 | discurs | $7.8 \times 10^{-3}$ |
| 93 | whi | $7.8 \times 10^{-3}$ |
| 94 | qualit | $7.8 \times 10^{-3}$ |
| 95 | histor | $7.8 \times 10^{-3}$ |
| 96 | algorithm | $7.8 \times 10^{-3}$ |
| 97 | discuss | $7.8 \times 10^{-3}$ |
| 98 | labour | $7.8 \times 10^{-3}$ |
| 99 | function | $7.7 \times 10^{-3}$ |
| 100 | labor | $7.6 \times 10^{-3}$ |

Table D.232. The list of the top 100 words in the category Soil Science with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | soil | $4.1 \times 10^{-1}$ |
| 2 | plant | $6.5 \times 10^{-2}$ |
| 3 | crop | $6.5 \times 10^{-2}$ |
| 4 | fertil | $5.5 \times 10^{-2}$ |
| 5 | organ | $5.4 \times 10^{-2}$ |
| 6 | content | $4.7 \times 10^{-2}$ |
| 7 | microbi | $4.7 \times 10^{-2}$ |
| 8 | agricultur | $4.2 \times 10^{-2}$ |
| 9 | nutrient | $4.2 \times 10^{-2}$ |
| 10 | water | $4.2 \times 10^{-2}$ |
| 11 | biomass | $4.1 \times 10^{-2}$ |
| 12 | carbon | $3.9 \times 10^{-2}$ |
| 13 | nitrogen | $3.9 \times 10^{-2}$ |
| 14 | clay | $3.8 \times 10^{-2}$ |
| 15 | miner | $3.6 \times 10^{-2}$ |
| 16 | root | $3.5 \times 10^{-2}$ |
| 17 | amend | $3.4 \times 10^{-2}$ |
| 18 | tillag | $3.3 \times 10^{-2}$ |
| 19 | forest | $3.2 \times 10^{-2}$ |
| 20 | matter | $3.2 \times 10^{-2}$ |
| 21 | land | $3 \times 10^{-2}$ |
| 22 | ecosystem | $2.6 \times 10^{-2}$ |
| 23 | dri | $2.5 \times 10^{-2}$ |
| 24 | depth | $2.5 \times 10^{-2}$ |
| 25 | veget | $2.4 \times 10^{-2}$ |
| 26 | phosphorus | $2.4 \times 10^{-2}$ |
| 27 | moistur | $2.2 \times 10^{-2}$ |
| 28 | manur | $2.1 \times 10^{-2}$ |
| 29 | litter | $2 \times 10^{-2}$ |
| 30 | sandi | $1.9 \times 10^{-2}$ |
| 31 | increas | $1.9 \times 10^{-2}$ |
| 32 | wheat | $1.9 \times 10^{-2}$ |
| 33 | patient | $1.8 \times 10^{-2}$ |
| 34 | season | $1.8 \times 10^{-2}$ |
| 35 | plot | $1.8 \times 10^{-2}$ |
| 36 | concentr | $1.8 \times 10^{-2}$ |
| 37 | grassland | $1.7 \times 10^{-2}$ |
| 38 | incub | $1.7 \times 10^{-2}$ |
| 39 | eros | $1.7 \times 10^{-2}$ |
| 40 | field | $1.6 \times 10^{-2}$ |
| 41 | total | $1.6 \times 10^{-2}$ |
| 42 | differ | $1.6 \times 10^{-2}$ |
| 43 | sand | $1.6 \times 10^{-2}$ |
| 44 | horizon | $1.5 \times 10^{-2}$ |
| 45 | cultiv | $1.5 \times 10^{-2}$ |
| 46 | climat | $1.5 \times 10^{-2}$ |
| 47 | uptak | $1.4 \times 10^{-2}$ |
| 48 | affect | $1.4 \times 10^{-2}$ |
| 49 | respir | $1.4 \times 10^{-2}$ |
| 50 | compost | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | greenhous | $1.4 \times 10^{-2}$ |
| 52 | decreas | $1.3 \times 10^{-2}$ |
| 53 | fungi | $1.3 \times 10^{-2}$ |
| 54 | shoot | $1.3 \times 10^{-2}$ |
| 55 | maiz | $1.3 \times 10^{-2}$ |
| 56 | experi | $1.3 \times 10^{-2}$ |
| 57 | unsatur | $1.2 \times 10^{-2}$ |
| 58 | avail | $1.2 \times 10^{-2}$ |
| 59 | irrig | $1.2 \times 10^{-2}$ |
| 60 | suction | $1.2 \times 10^{-2}$ |
| 61 | site | $1.2 \times 10^{-2}$ |
| 62 | accumul | $1.2 \times 10^{-2}$ |
| 63 | rainfal | $1.2 \times 10^{-2}$ |
| 64 | communiti | $1.2 \times 10^{-2}$ |
| 65 | indic | $1.1 \times 10^{-2}$ |
| 66 | sampl | $1.1 \times 10^{-2}$ |
| 67 | manag | $1.1 \times 10^{-2}$ |
| 68 | semiarid | $1.1 \times 10^{-2}$ |
| 69 | leaf | $1.1 \times 10^{-2}$ |
| 70 | area | $1.1 \times 10^{-2}$ |
| 71 | cover | $1.1 \times 10^{-2}$ |
| 72 | yield | $1.1 \times 10^{-2}$ |
| 73 | leach | $1.1 \times 10^{-2}$ |
| 74 | clinic | $1.1 \times 10^{-2}$ |
| 75 | rice | $1.1 \times 10^{-2}$ |
| 76 | effect | $1 \times 10^{-2}$ |
| 77 | wet | $1 \times 10^{-2}$ |
| 78 | fraction | $1 \times 10^{-2}$ |
| 79 | signific | $1 \times 10^{-2}$ |
| 80 | bulk | $1 \times 10^{-2}$ |
| 81 | textur | $1 \times 10^{-2}$ |
| 82 | straw | $1 \times 10^{-2}$ |
| 83 | grown | $1 \times 10^{-2}$ |
| 84 | slope | $1 \times 10^{-2}$ |
| 85 | environment | $1 \times 10^{-2}$ |
| 86 | satur | $9.9 \times 10^{-3}$ |
| 87 | greater | $9.8 \times 10^{-3}$ |
| 88 | chemic | $9.6 \times 10^{-3}$ |
| 89 | no3 | $9.6 \times 10^{-3}$ |
| 90 | nh4 | $9.6 \times 10^{-3}$ |
| 91 | product | $9.5 \times 10^{-3}$ |
| 92 | growth | $9.2 \times 10^{-3}$ |
| 93 | studi | $9.1 \times 10^{-3}$ |
| 94 | grass | $9.1 \times 10^{-3}$ |
| 95 | chang | $9 \times 10^{-3}$ |
| 96 | cell | $9 \times 10^{-3}$ |
| 97 | influenc | $9 \times 10^{-3}$ |
| 98 | nitrat | $8.9 \times 10^{-3}$ |
| 99 | conduct | $8.9 \times 10^{-3}$ |
| 100 | co2 | $8.9 \times 10^{-3}$ |

Table D.233. The list of the top 100 words in the category Spectroscopy with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | spectra | $6.9 \times 10^{-2}$ |
| 2 | spectrometri | $4.4 \times 10^{-2}$ |
| 3 | spectroscopi | $3.9 \times 10^{-2}$ |
| 4 | raman | $3.3 \times 10^{-2}$ |
| 5 | ion | $3.2 \times 10^{-2}$ |
| 6 | spectral | $2.6 \times 10^{-2}$ |
| 7 | nmr | $2.4 \times 10^{-2}$ |
| 8 | ioniz | $2.3 \times 10^{-2}$ |
| 9 | sampl | $2.3 \times 10^{-2}$ |
| 10 | spectromet | $2.3 \times 10^{-2}$ |
| 11 | infrar | $2.2 \times 10^{-2}$ |
| 12 | absorpt | $2.1 \times 10^{-2}$ |
| 13 | mass | $2.1 \times 10^{-2}$ |
| 14 | detect | $2 \times 10^{-2}$ |
| 15 | vibrat | $2 \times 10^{-2}$ |
| 16 | b3lyp | $1.8 \times 10^{-2}$ |
| 17 | chromatographi | $1.8 \times 10^{-2}$ |
| 18 | compound | $1.8 \times 10^{-2}$ |
| 19 | molecul | $1.7 \times 10^{-2}$ |
| 20 | analyt | $1.6 \times 10^{-2}$ |
| 21 | electrospray | $1.6 \times 10^{-2}$ |
| 22 | dft | $1.5 \times 10^{-2}$ |
| 23 | fluoresc | $1.5 \times 10^{-2}$ |
| 24 | chemic | $1.4 \times 10^{-2}$ |
| 25 | spectroscop | $1.4 \times 10^{-2}$ |
| 26 | band | $1.3 \times 10^{-2}$ |
| 27 | calcul | $1.3 \times 10^{-2}$ |
| 28 | determin | $1.3 \times 10^{-2}$ |
| 29 | excit | $1.2 \times 10^{-2}$ |
| 30 | laser | $1.2 \times 10^{-2}$ |
| 31 | bond | $1.2 \times 10^{-2}$ |
| 32 | patient | $1.2 \times 10^{-2}$ |
| 33 | vis | $1.2 \times 10^{-2}$ |
| 34 | liquid | $1.1 \times 10^{-2}$ |
| 35 | rational | $1.1 \times 10^{-2}$ |
| 36 | fourier | $1.1 \times 10^{-2}$ |
| 37 | electron | $1.1 \times 10^{-2}$ |
| 38 | reson | $1.1 \times 10^{-2}$ |
| 39 | atom | $1.1 \times 10^{-2}$ |
| 40 | calibr | $1.1 \times 10^{-2}$ |
| 41 | rang | $1.1 \times 10^{-2}$ |
| 42 | assign | $1.1 \times 10^{-2}$ |
| 43 | intens | $1.1 \times 10^{-2}$ |
| 44 | esi | $1 \times 10^{-2}$ |
| 45 | obtain | $9.5 \times 10^{-3}$ |
| 46 | solvent | $9.4 \times 10^{-3}$ |
| 47 | quadrupol | $9.4 \times 10^{-3}$ |
| 48 | spectrum | $9.3 \times 10^{-3}$ |
| 49 | quantif | $9.1 \times 10^{-3}$ |
| 50 | acid | $9 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | proton | $8.9 \times 10^{-3}$ |
| 52 | molecular | $8.9 \times 10^{-3}$ |
| 53 | concentr | $8.8 \times 10^{-3}$ |
| 54 | year | $8.6 \times 10^{-3}$ |
| 55 | lod | $8.5 \times 10^{-3}$ |
| 56 | paper | $8.4 \times 10^{-3}$ |
| 57 | linear | $8.4 \times 10^{-3}$ |
| 58 | sensit | $8.3 \times 10^{-3}$ |
| 59 | method | $8.3 \times 10^{-3}$ |
| 60 | optic | $8 \times 10^{-3}$ |
| 61 | tandem | $8 \times 10^{-3}$ |
| 62 | coupl | $8 \times 10^{-3}$ |
| 63 | recoveri | $8 \times 10^{-3}$ |
| 64 | icp | $7.8 \times 10^{-3}$ |
| 65 | limit | $7.7 \times 10^{-3}$ |
| 66 | ray | $7.6 \times 10^{-3}$ |
| 67 | gas | $7.4 \times 10^{-3}$ |
| 68 | analysi | $7.2 \times 10^{-3}$ |
| 69 | solid | $7.1 \times 10^{-3}$ |
| 70 | character | $7.1 \times 10^{-3}$ |
| 71 | pyrolysi | $7.1 \times 10^{-3}$ |
| 72 | rsd | $7 \times 10^{-3}$ |
| 73 | emiss | $7 \times 10^{-3}$ |
| 74 | techniqu | $7 \times 10^{-3}$ |
| 75 | deviat | $6.8 \times 10^{-3}$ |
| 76 | hplc | $6.7 \times 10^{-3}$ |
| 77 | extract | $6.6 \times 10^{-3}$ |
| 78 | peak | $6.6 \times 10^{-3}$ |
| 79 | conclus | $6.5 \times 10^{-3}$ |
| 80 | isotop | $6.4 \times 10^{-3}$ |
| 81 | associ | $6.4 \times 10^{-3}$ |
| 82 | wavelength | $6.4 \times 10^{-3}$ |
| 83 | dissoci | $6.4 \times 10^{-3}$ |
| 84 | ftir | $6.3 \times 10^{-3}$ |
| 85 | hydrogen | $6.3 \times 10^{-3}$ |
| 86 | risk | $6.3 \times 10^{-3}$ |
| 87 | resolut | $6.3 \times 10^{-3}$ |
| 88 | synthes | $6.3 \times 10^{-3}$ |
| 89 | use | $6.2 \times 10^{-3}$ |
| 90 | age | $6.2 \times 10^{-3}$ |
| 91 | energi | $6.2 \times 10^{-3}$ |
| 92 | control | $6.1 \times 10^{-3}$ |
| 93 | manag | $6.1 \times 10^{-3}$ |
| 94 | crystal | $6.1 \times 10^{-3}$ |
| 95 | shift | $6.1 \times 10^{-3}$ |
| 96 | fragment | $5.8 \times 10^{-3}$ |
| 97 | outcom | $5.8 \times 10^{-3}$ |
| 98 | appli | $5.7 \times 10^{-3}$ |
| 99 | object | $5.7 \times 10^{-3}$ |
| 100 | prepar | $5.7 \times 10^{-3}$ |

Table D.234. The list of the top 100 words in the category Sport Sciences with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | athlet | $9.2 \times 10^{-2}$ |
| 2 | exercis | $7.9 \times 10^{-2}$ |
| 3 | knee | $7.8 \times 10^{-2}$ |
| 4 | sport | $7.7 \times 10^{-2}$ |
| 5 | particip | $5.4 \times 10^{-2}$ |
| 6 | train | $4.9 \times 10^{-2}$ |
| 7 | muscl | $4.9 \times 10^{-2}$ |
| 8 | purpos | $4.1 \times 10^{-2}$ |
| 9 | player | $4 \times 10^{-2}$ |
| 10 | conclus | $4 \times 10^{-2}$ |
| 11 | flexion | $3.5 \times 10^{-2}$ |
| 12 | injuri | $3.3 \times 10^{-2}$ |
| 13 | dure | $3.2 \times 10^{-2}$ |
| 14 | age | $3.2 \times 10^{-2}$ |
| 15 | male | $3.1 \times 10^{-2}$ |
| 16 | studi | $2.9 \times 10^{-2}$ |
| 17 | signific | $2.8 \times 10^{-2}$ |
| 18 | leg | $2.8 \times 10^{-2}$ |
| 19 | measur | $2.8 \times 10^{-2}$ |
| 20 | bodi | $2.7 \times 10^{-2}$ |
| 21 | anterior | $2.7 \times 10^{-2}$ |
| 22 | shoulder | $2.6 \times 10^{-2}$ |
| 23 | ligament | $2.4 \times 10^{-2}$ |
| 24 | elit | $2.4 \times 10^{-2}$ |
| 25 | cruciat | $2.4 \times 10^{-2}$ |
| 26 | coach | $2.3 \times 10^{-2}$ |
| 27 | ankl | $2.3 \times 10^{-2}$ |
| 28 | session | $2.3 \times 10^{-2}$ |
| 29 | men | $2.3 \times 10^{-2}$ |
| 30 | outcom | $2.2 \times 10^{-2}$ |
| 31 | year | $2.2 \times 10^{-2}$ |
| 32 | medial | $2.2 \times 10^{-2}$ |
| 33 | hip | $2.1 \times 10^{-2}$ |
| 34 | rehabilit | $2.1 \times 10^{-2}$ |
| 35 | walk | $2.1 \times 10^{-2}$ |
| 36 | group | $2.1 \times 10^{-2}$ |
| 37 | min | $2.1 \times 10^{-2}$ |
| 38 | assess | $2.1 \times 10^{-2}$ |
| 39 | pain | $2 \times 10^{-2}$ |
| 40 | physic | $2 \times 10^{-2}$ |
| 41 | paper | $2 \times 10^{-2}$ |
| 42 | limb | $2 \times 10^{-2}$ |
| 43 | subject | $2 \times 10^{-2}$ |
| 44 | greater | $2 \times 10^{-2}$ |
| 45 | perform | $2 \times 10^{-2}$ |
| 46 | arthroscop | $2 \times 10^{-2}$ |
| 47 | kinemat | $1.9 \times 10^{-2}$ |
| 48 | score | $1.9 \times 10^{-2}$ |
| 49 | intervent | $1.8 \times 10^{-2}$ |
| 50 | healthi | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | mean | $1.8 \times 10^{-2}$ |
| 52 | arthroplasti | $1.8 \times 10^{-2}$ |
| 53 | biomechan | $1.8 \times 10^{-2}$ |
| 54 | joint | $1.7 \times 10^{-2}$ |
| 55 | week | $1.7 \times 10^{-2}$ |
| 56 | maxim | $1.7 \times 10^{-2}$ |
| 57 | tibial | $1.7 \times 10^{-2}$ |
| 58 | tendon | $1.7 \times 10^{-2}$ |
| 59 | gait | $1.7 \times 10^{-2}$ |
| 60 | footbal | $1.6 \times 10^{-2}$ |
| 61 | strength | $1.6 \times 10^{-2}$ |
| 62 | jump | $1.5 \times 10^{-2}$ |
| 63 | endur | $1.5 \times 10^{-2}$ |
| 64 | femor | $1.5 \times 10^{-2}$ |
| 65 | aerob | $1.4 \times 10^{-2}$ |
| 66 | peak | $1.4 \times 10^{-2}$ |
| 67 | motion | $1.3 \times 10^{-2}$ |
| 68 | befor | $1.3 \times 10^{-2}$ |
| 69 | lower | $1.3 \times 10^{-2}$ |
| 70 | elbow | $1.3 \times 10^{-2}$ |
| 71 | differ | $1.3 \times 10^{-2}$ |
| 72 | rest | $1.3 \times 10^{-2}$ |
| 73 | test | $1.2 \times 10^{-2}$ |
| 74 | movement | $1.2 \times 10^{-2}$ |
| 75 | trial | $1.2 \times 10^{-2}$ |
| 76 | femal | $1.2 \times 10^{-2}$ |
| 77 | compar | $1.2 \times 10^{-2}$ |
| 78 | propos | $1.2 \times 10^{-2}$ |
| 79 | osteoarthr | $1.2 \times 10^{-2}$ |
| 80 | follow | $1.2 \times 10^{-2}$ |
| 81 | postur | $1.2 \times 10^{-2}$ |
| 82 | height | $1.1 \times 10^{-2}$ |
| 83 | minut | $1.1 \times 10^{-2}$ |
| 84 | foot | $1.1 \times 10^{-2}$ |
| 85 | posterior | $1.1 \times 10^{-2}$ |
| 86 | object | $1.1 \times 10^{-2}$ |
| 87 | voluntari | $1.1 \times 10^{-2}$ |
| 88 | aim | $1.1 \times 10^{-2}$ |
| 89 | young | $1.1 \times 10^{-2}$ |
| 90 | examin | $1.1 \times 10^{-2}$ |
| 91 | patient | $1.1 \times 10^{-2}$ |
| 92 | stanc | $1.1 \times 10^{-2}$ |
| 93 | twenti | $1.1 \times 10^{-2}$ |
| 94 | run | $1.1 \times 10^{-2}$ |
| 95 | later | $1.1 \times 10^{-2}$ |
| 96 | team | $1 \times 10^{-2}$ |
| 97 | complet | $1 \times 10^{-2}$ |
| 98 | repetit | $1 \times 10^{-2}$ |
| 99 | total | $9.9 \times 10^{-3}$ |
| 100 | rotat | $9.7 \times 10^{-3}$ |

Table D.235. The list of the top 100 words in the category Statistics and Probability with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | estim | $5.3 \times 10^{-2}$ |
| 2 | asymptot | $4.9 \times 10^{-2}$ |
| 3 | illustr | $3.3 \times 10^{-2}$ |
| 4 | likelihood | $3.3 \times 10^{-2}$ |
| 5 | random | $2.9 \times 10^{-2}$ |
| 6 | bayesian | $2.8 \times 10^{-2}$ |
| 7 | nonparametr | $2.7 \times 10^{-2}$ |
| 8 | distribut | $2.7 \times 10^{-2}$ |
| 9 | covari | $2.7 \times 10^{-2}$ |
| 10 | model | $2.6 \times 10^{-2}$ |
| 11 | statist | $2.4 \times 10^{-2}$ |
| 12 | simul | $2.1 \times 10^{-2}$ |
| 13 | infer | $2.1 \times 10^{-2}$ |
| 14 | markov | $2 \times 10^{-2}$ |
| 15 | data | $2 \times 10^{-2}$ |
| 16 | stochast | $1.9 \times 10^{-2}$ |
| 17 | propos | $1.9 \times 10^{-2}$ |
| 18 | probabl | $1.9 \times 10^{-2}$ |
| 19 | motiv | $1.8 \times 10^{-2}$ |
| 20 | general | $1.6 \times 10^{-2}$ |
| 21 | conclus | $1.6 \times 10^{-2}$ |
| 22 | variabl | $1.5 \times 10^{-2}$ |
| 23 | exampl | $1.5 \times 10^{-2}$ |
| 24 | carlo | $1.5 \times 10^{-2}$ |
| 25 | mont | $1.5 \times 10^{-2}$ |
| 26 | activ | $1.4 \times 10^{-2}$ |
| 27 | regress | $1.4 \times 10^{-2}$ |
| 28 | varianc | $1.3 \times 10^{-2}$ |
| 29 | assumpt | $1.3 \times 10^{-2}$ |
| 30 | set | $1.3 \times 10^{-2}$ |
| 31 | converg | $1.2 \times 10^{-2}$ |
| 32 | signific | $1.2 \times 10^{-2}$ |
| 33 | increas | $1.2 \times 10^{-2}$ |
| 34 | error | $1.2 \times 10^{-2}$ |
| 35 | articl | $1.1 \times 10^{-2}$ |
| 36 | consid | $1.1 \times 10^{-2}$ |
| 37 | gaussian | $1.1 \times 10^{-2}$ |
| 38 | dure | $1.1 \times 10^{-2}$ |
| 39 | approach | $1 \times 10^{-2}$ |
| 40 | class | $9.6 \times 10^{-3}$ |
| 41 | finit | $9.5 \times 10^{-3}$ |
| 42 | background | $9.1 \times 10^{-3}$ |
| 43 | sampl | $9 \times 10^{-3}$ |
| 44 | problem | $9 \times 10^{-3}$ |
| 45 | paramet | $9 \times 10^{-3}$ |
| 46 | cell | $8.9 \times 10^{-3}$ |
| 47 | exponenti | $8.7 \times 10^{-3}$ |
| 48 | empir | $8.5 \times 10^{-3}$ |
| 49 | real | $8.5 \times 10^{-3}$ |
| 50 | dataset | $8.5 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | procedur | $8.4 \times 10^{-3}$ |
| 52 | energi | $8.3 \times 10^{-3}$ |
| 53 | report | $8.3 \times 10^{-3}$ |
| 54 | given | $8.2 \times 10^{-3}$ |
| 55 | squar | $8.2 \times 10^{-3}$ |
| 56 | electron | $8.2 \times 10^{-3}$ |
| 57 | surfac | $8.1 \times 10^{-3}$ |
| 58 | temperatur | $8 \times 10^{-3}$ |
| 59 | patient | $8 \times 10^{-3}$ |
| 60 | found | $8 \times 10^{-3}$ |
| 61 | parametr | $7.9 \times 10^{-3}$ |
| 62 | theorem | $7.9 \times 10^{-3}$ |
| 63 | function | $7.8 \times 10^{-3}$ |
| 64 | low | $7.7 \times 10^{-3}$ |
| 65 | prove | $7.7 \times 10^{-3}$ |
| 66 | decreas | $7.5 \times 10^{-3}$ |
| 67 | algorithm | $7.5 \times 10^{-3}$ |
| 68 | system | $7.4 \times 10^{-3}$ |
| 69 | linear | $7.3 \times 10^{-3}$ |
| 70 | infin | $7.3 \times 10^{-3}$ |
| 71 | higher | $7.2 \times 10^{-3}$ |
| 72 | mechan | $7.1 \times 10^{-3}$ |
| 73 | high | $7 \times 10^{-3}$ |
| 74 | comput | $6.9 \times 10^{-3}$ |
| 75 | assum | $6.8 \times 10^{-3}$ |
| 76 | multivari | $6.3 \times 10^{-3}$ |
| 77 | moment | $6.3 \times 10^{-3}$ |
| 78 | enhanc | $6.2 \times 10^{-3}$ |
| 79 | oxid | $6.2 \times 10^{-3}$ |
| 80 | kernel | $6.1 \times 10^{-3}$ |
| 81 | prepar | $6 \times 10^{-3}$ |
| 82 | deriv | $5.9 \times 10^{-3}$ |
| 83 | introduc | $5.8 \times 10^{-3}$ |
| 84 | acid | $5.6 \times 10^{-3}$ |
| 85 | appli | $5.5 \times 10^{-3}$ |
| 86 | induc | $5.5 \times 10^{-3}$ |
| 87 | bound | $5.3 \times 10^{-3}$ |
| 88 | thermal | $5.3 \times 10^{-3}$ |
| 89 | posterior | $5.3 \times 10^{-3}$ |
| 90 | day | $5.3 \times 10^{-3}$ |
| 91 | age | $5.3 \times 10^{-3}$ |
| 92 | optic | $5.3 \times 10^{-3}$ |
| 93 | year | $5.2 \times 10^{-3}$ |
| 94 | bias | $5.1 \times 10^{-3}$ |
| 95 | layer | $5.1 \times 10^{-3}$ |
| 96 | water | $5 \times 10^{-3}$ |
| 97 | fit | $4.9 \times 10^{-3}$ |
| 98 | explicit | $4.9 \times 10^{-3}$ |
| 99 | ray | $4.8 \times 10^{-3}$ |
| 100 | resist | $4.8 \times 10^{-3}$ |

Table D.236. The list of the top 100 words in the category Substance Abuse with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | alcohol | $2.1 \times 10^{-1}$ |
| 2 | drink | $1.1 \times 10^{-1}$ |
| 3 | substanc | $9.2 \times 10^{-2}$ |
| 4 | conclus | $7.5 \times 10^{-2}$ |
| 5 | addict | $6.7 \times 10^{-2}$ |
| 6 | drug | $6.7 \times 10^{-2}$ |
| 7 | smoke | $6.5 \times 10^{-2}$ |
| 8 | particip | $6.2 \times 10^{-2}$ |
| 9 | abus | $6.1 \times 10^{-2}$ |
| 10 | abstin | $5.8 \times 10^{-2}$ |
| 11 | smoker | $5.3 \times 10^{-2}$ |
| 12 | background | $4.7 \times 10^{-2}$ |
| 13 | cigarett | $4.6 \times 10^{-2}$ |
| 14 | drinker | $4.6 \times 10^{-2}$ |
| 15 | among | $4.6 \times 10^{-2}$ |
| 16 | tobacco | $4.4 \times 10^{-2}$ |
| 17 | examin | $4.3 \times 10^{-2}$ |
| 18 | associ | $4.2 \times 10^{-2}$ |
| 19 | cocain | $3.8 \times 10^{-2}$ |
| 20 | intervent | $3.8 \times 10^{-2}$ |
| 21 | adolesc | $3.8 \times 10^{-2}$ |
| 22 | cessat | $3.7 \times 10^{-2}$ |
| 23 | disord | $3.6 \times 10^{-2}$ |
| 24 | nicotin | $3.5 \times 10^{-2}$ |
| 25 | risk | $3.3 \times 10^{-2}$ |
| 26 | illicit | $3.2 \times 10^{-2}$ |
| 27 | opioid | $3.1 \times 10^{-2}$ |
| 28 | health | $3.1 \times 10^{-2}$ |
| 29 | gambl | $3.1 \times 10^{-2}$ |
| 30 | consumpt | $3 \times 10^{-2}$ |
| 31 | survey | $2.9 \times 10^{-2}$ |
| 32 | interview | $2.8 \times 10^{-2}$ |
| 33 | treatment | $2.6 \times 10^{-2}$ |
| 34 | behavior | $2.6 \times 10^{-2}$ |
| 35 | age | $2.5 \times 10^{-2}$ |
| 36 | selfreport | $2.5 \times 10^{-2}$ |
| 37 | find | $2.4 \times 10^{-2}$ |
| 38 | heroin | $2.4 \times 10^{-2}$ |
| 39 | assess | $2.4 \times 10^{-2}$ |
| 40 | studi | $2.3 \times 10^{-2}$ |
| 41 | adult | $2.3 \times 10^{-2}$ |
| 42 | preval | $2.2 \times 10^{-2}$ |
| 43 | individu | $2.2 \times 10^{-2}$ |
| 44 | method | $2.2 \times 10^{-2}$ |
| 45 | regress | $2.1 \times 10^{-2}$ |
| 46 | harm | $2 \times 10^{-2}$ |
| 47 | seek | $2 \times 10^{-2}$ |
| 48 | user | $2 \times 10^{-2}$ |
| 49 | relat | $2 \times 10^{-2}$ |
| 50 | month | $2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | male | $1.9 \times 10^{-2}$ |
| 52 | youth | $1.9 \times 10^{-2}$ |
| 53 | report | $1.9 \times 10^{-2}$ |
| 54 | social | $1.9 \times 10^{-2}$ |
| 55 | sampl | $1.8 \times 10^{-2}$ |
| 56 | demograph | $1.8 \times 10^{-2}$ |
| 57 | motiv | $1.8 \times 10^{-2}$ |
| 58 | year | $1.7 \times 10^{-2}$ |
| 59 | may | $1.7 \times 10^{-2}$ |
| 60 | use | $1.7 \times 10^{-2}$ |
| 61 | logist | $1.6 \times 10^{-2}$ |
| 62 | outcom | $1.6 \times 10^{-2}$ |
| 63 | past | $1.6 \times 10^{-2}$ |
| 64 | whether | $1.5 \times 10^{-2}$ |
| 65 | gender | $1.5 \times 10^{-2}$ |
| 66 | nation | $1.5 \times 10^{-2}$ |
| 67 | student | $1.5 \times 10^{-2}$ |
| 68 | depend | $1.4 \times 10^{-2}$ |
| 69 | men | $1.4 \times 10^{-2}$ |
| 70 | femal | $1.4 \times 10^{-2}$ |
| 71 | research | $1.4 \times 10^{-2}$ |
| 72 | women | $1.4 \times 10^{-2}$ |
| 73 | heavi | $1.4 \times 10^{-2}$ |
| 74 | greater | $1.4 \times 10^{-2}$ |
| 75 | recruit | $1.4 \times 10^{-2}$ |
| 76 | aim | $1.3 \times 10^{-2}$ |
| 77 | propos | $1.3 \times 10^{-2}$ |
| 78 | ethanol | $1.3 \times 10^{-2}$ |
| 79 | young | $1.3 \times 10^{-2}$ |
| 80 | baselin | $1.3 \times 10^{-2}$ |
| 81 | mental | $1.3 \times 10^{-2}$ |
| 82 | colleg | $1.3 \times 10^{-2}$ |
| 83 | odd | $1.3 \times 10^{-2}$ |
| 84 | suggest | $1.3 \times 10^{-2}$ |
| 85 | day | $1.3 \times 10^{-2}$ |
| 86 | paper | $1.3 \times 10^{-2}$ |
| 87 | prevent | $1.2 \times 10^{-2}$ |
| 88 | withdraw | $1.2 \times 10^{-2}$ |
| 89 | riski | $1.2 \times 10^{-2}$ |
| 90 | person | $1.2 \times 10^{-2}$ |
| 91 | negat | $1.2 \times 10^{-2}$ |
| 92 | complet | $1.2 \times 10^{-2}$ |
| 93 | psychiatr | $1.2 \times 10^{-2}$ |
| 94 | result | $1.2 \times 10^{-2}$ |
| 95 | temperatur | $1.2 \times 10^{-2}$ |
| 96 | questionnair | $1.1 \times 10^{-2}$ |
| 97 | relaps | $1.1 \times 10^{-2}$ |
| 98 | surfac | $1.1 \times 10^{-2}$ |
| 99 | group | $1.1 \times 10^{-2}$ |
| 100 | relationship | $1.1 \times 10^{-2}$ |

Table D.237. The list of the top 100 words in the category Surgery with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | patient | $2.2 \times 10^{-1}$ |
| 2 | surgeri | $1.5 \times 10^{-1}$ |
| 3 | surgic | $1.3 \times 10^{-1}$ |
| 4 | postop | $1.2 \times 10^{-1}$ |
| 5 | conclus | $1.2 \times 10^{-1}$ |
| 6 | underw | $1 \times 10^{-1}$ |
| 7 | complic | $8 \times 10^{-2}$ |
| 8 | outcom | $7.1 \times 10^{-2}$ |
| 9 | retrospect | $6.9 \times 10^{-2}$ |
| 10 | preoper | $6.4 \times 10^{-2}$ |
| 11 | resect | $6.2 \times 10^{-2}$ |
| 12 | background | $6.2 \times 10^{-2}$ |
| 13 | year | $6 \times 10^{-2}$ |
| 14 | surgeon | $5.7 \times 10^{-2}$ |
| 15 | month | $4.9 \times 10^{-2}$ |
| 16 | clinic | $4.6 \times 10^{-2}$ |
| 17 | follow | $4.3 \times 10^{-2}$ |
| 18 | procedur | $4.2 \times 10^{-2}$ |
| 19 | method | $3.8 \times 10^{-2}$ |
| 20 | review | $3.8 \times 10^{-2}$ |
| 21 | hospit | $3.5 \times 10^{-2}$ |
| 22 | paper | $3.5 \times 10^{-2}$ |
| 23 | laparoscop | $3.4 \times 10^{-2}$ |
| 24 | graft | $3.4 \times 10^{-2}$ |
| 25 | treatment | $3.2 \times 10^{-2}$ |
| 26 | undergo | $3.2 \times 10^{-2}$ |
| 27 | morbid | $3.1 \times 10^{-2}$ |
| 28 | mortal | $3.1 \times 10^{-2}$ |
| 29 | recurr | $3.1 \times 10^{-2}$ |
| 30 | intraop | $3.1 \times 10^{-2}$ |
| 31 | median | $3.1 \times 10^{-2}$ |
| 32 | treat | $3 \times 10^{-2}$ |
| 33 | age | $3 \times 10^{-2}$ |
| 34 | transplant | $2.9 \times 10^{-2}$ |
| 35 | surviv | $2.8 \times 10^{-2}$ |
| 36 | group | $2.6 \times 10^{-2}$ |
| 37 | arteri | $2.6 \times 10^{-2}$ |
| 38 | prospect | $2.6 \times 10^{-2}$ |
| 39 | injuri | $2.6 \times 10^{-2}$ |
| 40 | safe | $2.5 \times 10^{-2}$ |
| 41 | stay | $2.5 \times 10^{-2}$ |
| 42 | case | $2.5 \times 10^{-2}$ |
| 43 | score | $2.4 \times 10^{-2}$ |
| 44 | signific | $2.3 \times 10^{-2}$ |
| 45 | consecut | $2.3 \times 10^{-2}$ |
| 46 | risk | $2.3 \times 10^{-2}$ |
| 47 | repair | $2.3 \times 10^{-2}$ |
| 48 | mean | $2.2 \times 10^{-2}$ |
| 49 | periop | $2.1 \times 10^{-2}$ |
| 50 | day | $2.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | pain | $2 \times 10^{-2}$ |
| 52 | tumor | $2 \times 10^{-2}$ |
| 53 | total | $2 \times 10^{-2}$ |
| 54 | result | $2 \times 10^{-2}$ |
| 55 | januari | $2 \times 10^{-2}$ |
| 56 | aneurysm | $1.9 \times 10^{-2}$ |
| 57 | wound | $1.9 \times 10^{-2}$ |
| 58 | rate | $1.9 \times 10^{-2}$ |
| 59 | endoscop | $1.8 \times 10^{-2}$ |
| 60 | evalu | $1.8 \times 10^{-2}$ |
| 61 | endovascular | $1.8 \times 10^{-2}$ |
| 62 | flap | $1.8 \times 10^{-2}$ |
| 63 | abdomin | $1.8 \times 10^{-2}$ |
| 64 | oper | $1.8 \times 10^{-2}$ |
| 65 | anterior | $1.7 \times 10^{-2}$ |
| 66 | propos | $1.7 \times 10^{-2}$ |
| 67 | trauma | $1.7 \times 10^{-2}$ |
| 68 | dissect | $1.7 \times 10^{-2}$ |
| 69 | multivari | $1.7 \times 10^{-2}$ |
| 70 | object | $1.6 \times 10^{-2}$ |
| 71 | bypass | $1.6 \times 10^{-2}$ |
| 72 | lesion | $1.6 \times 10^{-2}$ |
| 73 | recipi | $1.6 \times 10^{-2}$ |
| 74 | reoper | $1.6 \times 10^{-2}$ |
| 75 | aortic | $1.6 \times 10^{-2}$ |
| 76 | associ | $1.5 \times 10^{-2}$ |
| 77 | includ | $1.5 \times 10^{-2}$ |
| 78 | reconstruct | $1.5 \times 10^{-2}$ |
| 79 | incid | $1.4 \times 10^{-2}$ |
| 80 | primari | $1.4 \times 10^{-2}$ |
| 81 | anatom | $1.4 \times 10^{-2}$ |
| 82 | distal | $1.4 \times 10^{-2}$ |
| 83 | diseas | $1.4 \times 10^{-2}$ |
| 84 | implant | $1.4 \times 10^{-2}$ |
| 85 | aim | $1.3 \times 10^{-2}$ |
| 86 | medic | $1.3 \times 10^{-2}$ |
| 87 | temperatur | $1.3 \times 10^{-2}$ |
| 88 | process | $1.3 \times 10^{-2}$ |
| 89 | perform | $1.3 \times 10^{-2}$ |
| 90 | properti | $1.3 \times 10^{-2}$ |
| 91 | invas | $1.3 \times 10^{-2}$ |
| 92 | overal | $1.3 \times 10^{-2}$ |
| 93 | posterior | $1.3 \times 10^{-2}$ |
| 94 | incis | $1.3 \times 10^{-2}$ |
| 95 | studi | $1.3 \times 10^{-2}$ |
| 96 | cohort | $1.2 \times 10^{-2}$ |
| 97 | institut | $1.2 \times 10^{-2}$ |
| 98 | diagnosi | $1.2 \times 10^{-2}$ |
| 99 | histolog | $1.2 \times 10^{-2}$ |
| 100 | left | $1.2 \times 10^{-2}$ |

Table D.238. The list of the top 100 words in the category Telecommunications with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | network | $9.9 \times 10^{-2}$ |
| 2 | propos | $9.3 \times 10^{-2}$ |
| 3 | paper | $8.7 \times 10^{-2}$ |
| 4 | wireless | $8 \times 10^{-2}$ |
| 5 | antenna | $6.5 \times 10^{-2}$ |
| 6 | communic | $4.7 \times 10^{-2}$ |
| 7 | simul | $4.5 \times 10^{-2}$ |
| 8 | user | $4.3 \times 10^{-2}$ |
| 9 | scheme | $4.3 \times 10^{-2}$ |
| 10 | algorithm | $4.1 \times 10^{-2}$ |
| 11 | channel | $3.9 \times 10^{-2}$ |
| 12 | radio | $3.2 \times 10^{-2}$ |
| 13 | bandwidth | $3.1 \times 10^{-2}$ |
| 14 | studi | $3.1 \times 10^{-2}$ |
| 15 | node | $3 \times 10^{-2}$ |
| 16 | packet | $2.7 \times 10^{-2}$ |
| 17 | conclus | $2.6 \times 10^{-2}$ |
| 18 | transmiss | $2.5 \times 10^{-2}$ |
| 19 | transmit | $2.5 \times 10^{-2}$ |
| 20 | traffic | $2.4 \times 10^{-2}$ |
| 21 | perform | $2.2 \times 10^{-2}$ |
| 22 | mobil | $2.2 \times 10^{-2}$ |
| 23 | interfer | $2.1 \times 10^{-2}$ |
| 24 | patient | $2.1 \times 10^{-2}$ |
| 25 | relay | $2 \times 10^{-2}$ |
| 26 | base | $2 \times 10^{-2}$ |
| 27 | servic | $1.9 \times 10^{-2}$ |
| 28 | mimo | $1.9 \times 10^{-2}$ |
| 29 | throughput | $1.9 \times 10^{-2}$ |
| 30 | ghz | $1.8 \times 10^{-2}$ |
| 31 | treatment | $1.8 \times 10^{-2}$ |
| 32 | signal | $1.8 \times 10^{-2}$ |
| 33 | frequenc | $1.8 \times 10^{-2}$ |
| 34 | effici | $1.7 \times 10^{-2}$ |
| 35 | system | $1.7 \times 10^{-2}$ |
| 36 | achiev | $1.7 \times 10^{-2}$ |
| 37 | suggest | $1.7 \times 10^{-2}$ |
| 38 | deploy | $1.7 \times 10^{-2}$ |
| 39 | fade | $1.7 \times 10^{-2}$ |
| 40 | power | $1.6 \times 10^{-2}$ |
| 41 | sensor | $1.5 \times 10^{-2}$ |
| 42 | problem | $1.5 \times 10^{-2}$ |
| 43 | bit | $1.5 \times 10^{-2}$ |
| 44 | access | $1.5 \times 10^{-2}$ |
| 45 | alloc | $1.5 \times 10^{-2}$ |
| 46 | lte | $1.4 \times 10^{-2}$ |
| 47 | associ | $1.4 \times 10^{-2}$ |
| 48 | scenario | $1.4 \times 10^{-2}$ |
| 49 | protocol | $1.4 \times 10^{-2}$ |
| 50 | nois | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | found | $1.4 \times 10^{-2}$ |
| 52 | clinic | $1.4 \times 10^{-2}$ |
| 53 | protein | $1.3 \times 10^{-2}$ |
| 54 | age | $1.3 \times 10^{-2}$ |
| 55 | optim | $1.3 \times 10^{-2}$ |
| 56 | error | $1.3 \times 10^{-2}$ |
| 57 | qos | $1.2 \times 10^{-2}$ |
| 58 | slot | $1.2 \times 10^{-2}$ |
| 59 | secur | $1.2 \times 10^{-2}$ |
| 60 | diseas | $1.2 \times 10^{-2}$ |
| 61 | acid | $1.1 \times 10^{-2}$ |
| 62 | receiv | $1.1 \times 10^{-2}$ |
| 63 | gain | $1.1 \times 10^{-2}$ |
| 64 | station | $1.1 \times 10^{-2}$ |
| 65 | can | $1.1 \times 10^{-2}$ |
| 66 | internet | $1.1 \times 10^{-2}$ |
| 67 | decod | $1.1 \times 10^{-2}$ |
| 68 | gene | $1.1 \times 10^{-2}$ |
| 69 | concentr | $1.1 \times 10^{-2}$ |
| 70 | transmitt | $1.1 \times 10^{-2}$ |
| 71 | delay | $1 \times 10^{-2}$ |
| 72 | design | $1 \times 10^{-2}$ |
| 73 | divis | $1 \times 10^{-2}$ |
| 74 | implement | $1 \times 10^{-2}$ |
| 75 | band | $1 \times 10^{-2}$ |
| 76 | temperatur | $1 \times 10^{-2}$ |
| 77 | speci | $1 \times 10^{-2}$ |
| 78 | dure | $1 \times 10^{-2}$ |
| 79 | overhead | $1 \times 10^{-2}$ |
| 80 | multiplex | $9.9 \times 10^{-3}$ |
| 81 | radar | $9.9 \times 10^{-3}$ |
| 82 | background | $9.8 \times 10^{-3}$ |
| 83 | architectur | $9.5 \times 10^{-3}$ |
| 84 | observ | $9.5 \times 10^{-3}$ |
| 85 | reaction | $9.4 \times 10^{-3}$ |
| 86 | group | $9.4 \times 10^{-3}$ |
| 87 | examin | $9.3 \times 10^{-3}$ |
| 88 | orthogon | $9.3 \times 10^{-3}$ |
| 89 | activ | $9.3 \times 10^{-3}$ |
| 90 | assess | $9.3 \times 10^{-3}$ |
| 91 | induc | $9.2 \times 10^{-3}$ |
| 92 | multipl | $9.1 \times 10^{-3}$ |
| 93 | indic | $9.1 \times 10^{-3}$ |
| 94 | resourc | $9 \times 10^{-3}$ |
| 95 | comput | $8.9 \times 10^{-3}$ |
| 96 | applic | $8.8 \times 10^{-3}$ |
| 97 | outperform | $8.6 \times 10^{-3}$ |
| 98 | report | $8.6 \times 10^{-3}$ |
| 99 | maxim | $8.3 \times 10^{-3}$ |
| 100 | code | $8.2 \times 10^{-3}$ |

Table D.239. The list of the top 100 words in the category Theater with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | theatr | $3.6 \times 10^{-1}$ |
| 2 | theatric | $1.3 \times 10^{-1}$ |
| 3 | drama | $1.2 \times 10^{-1}$ |
| 4 | articl | $1 \times 10^{-1}$ |
| 5 | audienc | $8.9 \times 10^{-2}$ |
| 6 | artist | $8.5 \times 10^{-2}$ |
| 7 | contemporari | $5.9 \times 10^{-2}$ |
| 8 | spectat | $5.8 \times 10^{-2}$ |
| 9 | shakespear | $5.3 \times 10^{-2}$ |
| 10 | essay | $5.1 \times 10^{-2}$ |
| 11 | playwright | $5 \times 10^{-2}$ |
| 12 | play | $4.9 \times 10^{-2}$ |
| 13 | result | $4.8 \times 10^{-2}$ |
| 14 | argu | $4.7 \times 10^{-2}$ |
| 15 | danc | $4.2 \times 10^{-2}$ |
| 16 | cultur | $4.2 \times 10^{-2}$ |
| 17 | aesthet | $4.1 \times 10^{-2}$ |
| 18 | professor | $4 \times 10^{-2}$ |
| 19 | polit | $4 \times 10^{-2}$ |
| 20 | perform | $3.9 \times 10^{-2}$ |
| 21 | art | $3.8 \times 10^{-2}$ |
| 22 | music | $3.6 \times 10^{-2}$ |
| 23 | royal | $3.3 \times 10^{-2}$ |
| 24 | embodi | $3.1 \times 10^{-2}$ |
| 25 | actor | $2.9 \times 10^{-2}$ |
| 26 | beckett | $2.9 \times 10^{-2}$ |
| 27 | univers | $2.9 \times 10^{-2}$ |
| 28 | work | $2.8 \times 10^{-2}$ |
| 29 | stage | $2.8 \times 10^{-2}$ |
| 30 | british | $2.7 \times 10^{-2}$ |
| 31 | way | $2.7 \times 10^{-2}$ |
| 32 | entertain | $2.7 \times 10^{-2}$ |
| 33 | world | $2.6 \times 10^{-2}$ |
| 34 | draw | $2.6 \times 10^{-2}$ |
| 35 | narrat | $2.6 \times 10^{-2}$ |
| 36 | festiv | $2.5 \times 10^{-2}$ |
| 37 | director | $2.4 \times 10^{-2}$ |
| 38 | method | $2.4 \times 10^{-2}$ |
| 39 | london | $2.4 \times 10^{-2}$ |
| 40 | explor | $2.2 \times 10^{-2}$ |
| 41 | histor | $2.2 \times 10^{-2}$ |
| 42 | modern | $2.1 \times 10^{-2}$ |
| 43 | war | $2.1 \times 10^{-2}$ |
| 44 | samuel | $2.1 \times 10^{-2}$ |
| 45 | centuri | $2.1 \times 10^{-2}$ |
| 46 | histori | $2 \times 10^{-2}$ |
| 47 | notion | $2 \times 10^{-2}$ |
| 48 | use | $1.9 \times 10^{-2}$ |
| 49 | genr | $1.9 \times 10^{-2}$ |
| 50 | product | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | lectur | $1.8 \times 10^{-2}$ |
| 52 | engag | $1.8 \times 10^{-2}$ |
| 53 | compani | $1.8 \times 10^{-2}$ |
| 54 | queer | $1.7 \times 10^{-2}$ |
| 55 | effect | $1.7 \times 10^{-2}$ |
| 56 | book | $1.7 \times 10^{-2}$ |
| 57 | measur | $1.7 \times 10^{-2}$ |
| 58 | enact | $1.6 \times 10^{-2}$ |
| 59 | critiqu | $1.6 \times 10^{-2}$ |
| 60 | write | $1.6 \times 10^{-2}$ |
| 61 | social | $1.6 \times 10^{-2}$ |
| 62 | text | $1.6 \times 10^{-2}$ |
| 63 | high | $1.5 \times 10^{-2}$ |
| 64 | celebr | $1.5 \times 10^{-2}$ |
| 65 | choreograph | $1.5 \times 10^{-2}$ |
| 66 | obtain | $1.5 \times 10^{-2}$ |
| 67 | data | $1.4 \times 10^{-2}$ |
| 68 | act | $1.4 \times 10^{-2}$ |
| 69 | project | $1.4 \times 10^{-2}$ |
| 70 | nation | $1.4 \times 10^{-2}$ |
| 71 | increas | $1.4 \times 10^{-2}$ |
| 72 | show | $1.4 \times 10^{-2}$ |
| 73 | realiti | $1.4 \times 10^{-2}$ |
| 74 | piec | $1.4 \times 10^{-2}$ |
| 75 | satir | $1.3 \times 10^{-2}$ |
| 76 | evalu | $1.3 \times 10^{-2}$ |
| 77 | poetic | $1.3 \times 10^{-2}$ |
| 78 | theater | $1.3 \times 10^{-2}$ |
| 79 | charact | $1.3 \times 10^{-2}$ |
| 80 | patient | $1.3 \times 10^{-2}$ |
| 81 | popular | $1.3 \times 10^{-2}$ |
| 82 | examin | $1.3 \times 10^{-2}$ |
| 83 | compar | $1.3 \times 10^{-2}$ |
| 84 | conclus | $1.3 \times 10^{-2}$ |
| 85 | model | $1.3 \times 10^{-2}$ |
| 86 | test | $1.3 \times 10^{-2}$ |
| 87 | cell | $1.3 \times 10^{-2}$ |
| 88 | practic | $1.3 \times 10^{-2}$ |
| 89 | fiction | $1.3 \times 10^{-2}$ |
| 90 | improv | $1.3 \times 10^{-2}$ |
| 91 | dancer | $1.2 \times 10^{-2}$ |
| 92 | style | $1.2 \times 10^{-2}$ |
| 93 | system | $1.2 \times 10^{-2}$ |
| 94 | choreographi | $1.2 \times 10^{-2}$ |
| 95 | rate | $1.2 \times 10^{-2}$ |
| 96 | tragedi | $1.2 \times 10^{-2}$ |
| 97 | represent | $1.2 \times 10^{-2}$ |
| 98 | read | $1.1 \times 10^{-2}$ |
| 99 | thing | $1.1 \times 10^{-2}$ |
| 100 | seek | $1.1 \times 10^{-2}$ |

Table D.240. The list of the top 100 words in the category Thermodynamics with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | heat | $1.6 \times 10^{-1}$ |
| 2 | temperatur | $8.8 \times 10^{-2}$ |
| 3 | thermal | $7.3 \times 10^{-2}$ |
| 4 | flow | $6 \times 10^{-2}$ |
| 5 | transfer | $5.1 \times 10^{-2}$ |
| 6 | cool | $4.3 \times 10^{-2}$ |
| 7 | fluid | $4.1 \times 10^{-2}$ |
| 8 | pressur | $4 \times 10^{-2}$ |
| 9 | experiment | $3.7 \times 10^{-2}$ |
| 10 | convect | $3.5 \times 10^{-2}$ |
| 11 | refriger | $2.9 \times 10^{-2}$ |
| 12 | energi | $2.6 \times 10^{-2}$ |
| 13 | air | $2.6 \times 10^{-2}$ |
| 14 | reynold | $2.6 \times 10^{-2}$ |
| 15 | liquid | $2.6 \times 10^{-2}$ |
| 16 | combust | $2.5 \times 10^{-2}$ |
| 17 | gas | $2.5 \times 10^{-2}$ |
| 18 | numer | $2.4 \times 10^{-2}$ |
| 19 | equat | $2.2 \times 10^{-2}$ |
| 20 | inlet | $2.2 \times 10^{-2}$ |
| 21 | thermodynam | $2.1 \times 10^{-2}$ |
| 22 | patient | $2 \times 10^{-2}$ |
| 23 | fuel | $2 \times 10^{-2}$ |
| 24 | coeffici | $2 \times 10^{-2}$ |
| 25 | turbul | $1.8 \times 10^{-2}$ |
| 26 | conclus | $1.8 \times 10^{-2}$ |
| 27 | veloc | $1.8 \times 10^{-2}$ |
| 28 | wall | $1.8 \times 10^{-2}$ |
| 29 | enthalpi | $1.7 \times 10^{-2}$ |
| 30 | tube | $1.6 \times 10^{-2}$ |
| 31 | laminar | $1.6 \times 10^{-2}$ |
| 32 | flux | $1.5 \times 10^{-2}$ |
| 33 | cfd | $1.5 \times 10^{-2}$ |
| 34 | mixtur | $1.5 \times 10^{-2}$ |
| 35 | vapor | $1.4 \times 10^{-2}$ |
| 36 | evapor | $1.4 \times 10^{-2}$ |
| 37 | paramet | $1.4 \times 10^{-2}$ |
| 38 | water | $1.3 \times 10^{-2}$ |
| 39 | model | $1.3 \times 10^{-2}$ |
| 40 | turbin | $1.3 \times 10^{-2}$ |
| 41 | flame | $1.3 \times 10^{-2}$ |
| 42 | clinic | $1.2 \times 10^{-2}$ |
| 43 | simul | $1.2 \times 10^{-2}$ |
| 44 | diseas | $1.1 \times 10^{-2}$ |
| 45 | background | $1.1 \times 10^{-2}$ |
| 46 | condit | $1 \times 10^{-2}$ |
| 47 | pipe | $9.9 \times 10^{-3}$ |
| 48 | calcul | $9.8 \times 10^{-3}$ |
| 49 | mass | $9.6 \times 10^{-3}$ |
| 50 | age | $9.6 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | obtain | $9.5 \times 10^{-3}$ |
| 52 | protein | $9.5 \times 10^{-3}$ |
| 53 | isotherm | $9.5 \times 10^{-3}$ |
| 54 | drop | $9.5 \times 10^{-3}$ |
| 55 | condens | $9.4 \times 10^{-3}$ |
| 56 | hot | $9 \times 10^{-3}$ |
| 57 | perform | $8.9 \times 10^{-3}$ |
| 58 | oper | $8.8 \times 10^{-3}$ |
| 59 | steadi | $8.8 \times 10^{-3}$ |
| 60 | pump | $8.7 \times 10^{-3}$ |
| 61 | gene | $8.6 \times 10^{-3}$ |
| 62 | phase | $8.6 \times 10^{-3}$ |
| 63 | exchang | $8.6 \times 10^{-3}$ |
| 64 | volum | $8.4 \times 10^{-3}$ |
| 65 | calorimetri | $8.3 \times 10^{-3}$ |
| 66 | boundari | $8.1 \times 10^{-3}$ |
| 67 | investig | $8 \times 10^{-3}$ |
| 68 | agreement | $7.9 \times 10^{-3}$ |
| 69 | jet | $7.9 \times 10^{-3}$ |
| 70 | conduct | $7.8 \times 10^{-3}$ |
| 71 | human | $7.8 \times 10^{-3}$ |
| 72 | group | $7.7 \times 10^{-3}$ |
| 73 | diamet | $7.6 \times 10^{-3}$ |
| 74 | treatment | $7.6 \times 10^{-3}$ |
| 75 | work | $7.5 \times 10^{-3}$ |
| 76 | cylind | $7.5 \times 10^{-3}$ |
| 77 | unsteadi | $7.4 \times 10^{-3}$ |
| 78 | power | $7.3 \times 10^{-3}$ |
| 79 | co2 | $7.2 \times 10^{-3}$ |
| 80 | associ | $7.2 \times 10^{-3}$ |
| 81 | steam | $7 \times 10^{-3}$ |
| 82 | suggest | $7 \times 10^{-3}$ |
| 83 | viscos | $7 \times 10^{-3}$ |
| 84 | risk | $6.9 \times 10^{-3}$ |
| 85 | predict | $6.7 \times 10^{-3}$ |
| 86 | system | $6.7 \times 10^{-3}$ |
| 87 | rang | $6.6 \times 10^{-3}$ |
| 88 | molar | $6.5 \times 10^{-3}$ |
| 89 | diesel | $6.5 \times 10^{-3}$ |
| 90 | may | $6.4 \times 10^{-3}$ |
| 91 | engin | $6.4 \times 10^{-3}$ |
| 92 | solid | $6.4 \times 10^{-3}$ |
| 93 | popul | $6.3 \times 10^{-3}$ |
| 94 | detect | $6.3 \times 10^{-3}$ |
| 95 | constant | $6.2 \times 10^{-3}$ |
| 96 | coolant | $6.2 \times 10^{-3}$ |
| 97 | dsc | $6.1 \times 10^{-3}$ |
| 98 | cancer | $6.1 \times 10^{-3}$ |
| 99 | binari | $6.1 \times 10^{-3}$ |
| 100 | equilibrium | $6 \times 10^{-3}$ |

Table D.241. The list of the top 100 words in the category Toxicology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | exposur | $1.1 \times 10^{-1}$ |
| 2 | toxic | $9.9 \times 10^{-2}$ |
| 3 | concentr | $5.3 \times 10^{-2}$ |
| 4 | expos | $5 \times 10^{-2}$ |
| 5 | dose | $5 \times 10^{-2}$ |
| 6 | induc | $4.6 \times 10^{-2}$ |
| 7 | rat | $3.9 \times 10^{-2}$ |
| 8 | toxicolog | $2.8 \times 10^{-2}$ |
| 9 | liver | $2.8 \times 10^{-2}$ |
| 10 | cell | $2.7 \times 10^{-2}$ |
| 11 | level | $2.7 \times 10^{-2}$ |
| 12 | contamin | $2.5 \times 10^{-2}$ |
| 13 | human | $2.5 \times 10^{-2}$ |
| 14 | paper | $2.4 \times 10^{-2}$ |
| 15 | glutathion | $2.3 \times 10^{-2}$ |
| 16 | activ | $2.3 \times 10^{-2}$ |
| 17 | effect | $2.2 \times 10^{-2}$ |
| 18 | assay | $2.2 \times 10^{-2}$ |
| 19 | damag | $2.1 \times 10^{-2}$ |
| 20 | studi | $2.1 \times 10^{-2}$ |
| 21 | day | $2 \times 10^{-2}$ |
| 22 | antioxid | $2 \times 10^{-2}$ |
| 23 | inhibit | $1.9 \times 10^{-2}$ |
| 24 | anim | $1.8 \times 10^{-2}$ |
| 25 | increas | $1.7 \times 10^{-2}$ |
| 26 | oxid | $1.7 \times 10^{-2}$ |
| 27 | dna | $1.6 \times 10^{-2}$ |
| 28 | vitro | $1.6 \times 10^{-2}$ |
| 29 | metabolit | $1.6 \times 10^{-2}$ |
| 30 | decreas | $1.6 \times 10^{-2}$ |
| 31 | enzym | $1.6 \times 10^{-2}$ |
| 32 | protein | $1.5 \times 10^{-2}$ |
| 33 | cytotox | $1.5 \times 10^{-2}$ |
| 34 | signific | $1.5 \times 10^{-2}$ |
| 35 | apoptosi | $1.4 \times 10^{-2}$ |
| 36 | aquat | $1.4 \times 10^{-2}$ |
| 37 | metabol | $1.4 \times 10^{-2}$ |
| 38 | express | $1.4 \times 10^{-2}$ |
| 39 | advers | $1.4 \times 10^{-2}$ |
| 40 | ros | $1.4 \times 10^{-2}$ |
| 41 | pollut | $1.3 \times 10^{-2}$ |
| 42 | alter | $1.3 \times 10^{-2}$ |
| 43 | mice | $1.3 \times 10^{-2}$ |
| 44 | pesticid | $1.3 \times 10^{-2}$ |
| 45 | fish | $1.3 \times 10^{-2}$ |
| 46 | drug | $1.3 \times 10^{-2}$ |
| 47 | treatment | $1.2 \times 10^{-2}$ |
| 48 | potenti | $1.2 \times 10^{-2}$ |
| 49 | suggest | $1.2 \times 10^{-2}$ |
| 50 | compound | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | environment | $1.2 \times 10^{-2}$ |
| 52 | toxin | $1.2 \times 10^{-2}$ |
| 53 | superoxid | $1.1 \times 10^{-2}$ |
| 54 | biomark | $1.1 \times 10^{-2}$ |
| 55 | propos | $1.1 \times 10^{-2}$ |
| 56 | oral | $1.1 \times 10^{-2}$ |
| 57 | treat | $1.1 \times 10^{-2}$ |
| 58 | stress | $1.1 \times 10^{-2}$ |
| 59 | pathway | $1.1 \times 10^{-2}$ |
| 60 | assess | $1.1 \times 10^{-2}$ |
| 61 | speci | $1.1 \times 10^{-2}$ |
| 62 | blood | $1.1 \times 10^{-2}$ |
| 63 | caus | $1.1 \times 10^{-2}$ |
| 64 | dismutas | $1.1 \times 10^{-2}$ |
| 65 | peroxid | $1.1 \times 10^{-2}$ |
| 66 | catalas | $1.1 \times 10^{-2}$ |
| 67 | food | $1.1 \times 10^{-2}$ |
| 68 | tissu | $1 \times 10^{-2}$ |
| 69 | accumul | $1 \times 10^{-2}$ |
| 70 | histopatholog | $1 \times 10^{-2}$ |
| 71 | administr | $1 \times 10^{-2}$ |
| 72 | chemic | $9.7 \times 10^{-3}$ |
| 73 | lipid | $9.6 \times 10^{-3}$ |
| 74 | vivo | $9.5 \times 10^{-3}$ |
| 75 | caspas | $9.2 \times 10^{-3}$ |
| 76 | indic | $9.1 \times 10^{-3}$ |
| 77 | male | $9.1 \times 10^{-3}$ |
| 78 | acut | $9.1 \times 10^{-3}$ |
| 79 | reactiv | $9 \times 10^{-3}$ |
| 80 | serum | $8.9 \times 10^{-3}$ |
| 81 | respons | $8.9 \times 10^{-3}$ |
| 82 | observ | $8.8 \times 10^{-3}$ |
| 83 | kidney | $8.8 \times 10^{-3}$ |
| 84 | inhal | $8.8 \times 10^{-3}$ |
| 85 | endocrin | $8.8 \times 10^{-3}$ |
| 86 | may | $8.7 \times 10^{-3}$ |
| 87 | cytochrom | $8.5 \times 10^{-3}$ |
| 88 | inhibitor | $8.2 \times 10^{-3}$ |
| 89 | administ | $8.2 \times 10^{-3}$ |
| 90 | transferas | $8.2 \times 10^{-3}$ |
| 91 | induct | $8.1 \times 10^{-3}$ |
| 92 | organ | $8.1 \times 10^{-3}$ |
| 93 | urin | $7.9 \times 10^{-3}$ |
| 94 | mrna | $7.8 \times 10^{-3}$ |
| 95 | risk | $7.8 \times 10^{-3}$ |
| 96 | sod | $7.7 \times 10^{-3}$ |
| 97 | gene | $7.7 \times 10^{-3}$ |
| 98 | chromatographi | $7.5 \times 10^{-3}$ |
| 99 | substanc | $7.5 \times 10^{-3}$ |
| 100 | apoptot | $7.4 \times 10^{-3}$ |

Table D.242. The list of the top 100 words in the category Transplantation with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | transplant | $4.4 \times 10^{-1}$ |
| 2 | recipi | $2 \times 10^{-1}$ |
| 3 | graft | $1.3 \times 10^{-1}$ |
| 4 | donor | $1.2 \times 10^{-1}$ |
| 5 | patient | $1.2 \times 10^{-1}$ |
| 6 | kidney | $1 \times 10^{-1}$ |
| 7 | renal | $7.3 \times 10^{-2}$ |
| 8 | allograft | $6.6 \times 10^{-2}$ |
| 9 | surviv | $6.5 \times 10^{-2}$ |
| 10 | liver | $6.1 \times 10^{-2}$ |
| 11 | immunosuppress | $6 \times 10^{-2}$ |
| 12 | reject | $6 \times 10^{-2}$ |
| 13 | posttranspl | $5.8 \times 10^{-2}$ |
| 14 | conclus | $4.5 \times 10^{-2}$ |
| 15 | allogen | $4.5 \times 10^{-2}$ |
| 16 | hematopoiet | $4.2 \times 10^{-2}$ |
| 17 | acut | $4 \times 10^{-2}$ |
| 18 | outcom | $3.5 \times 10^{-2}$ |
| 19 | year | $3.2 \times 10^{-2}$ |
| 20 | retrospect | $3.2 \times 10^{-2}$ |
| 21 | therapi | $3.2 \times 10^{-2}$ |
| 22 | risk | $3.2 \times 10^{-2}$ |
| 23 | mortal | $3.2 \times 10^{-2}$ |
| 24 | diseas | $3.1 \times 10^{-2}$ |
| 25 | stem | $3.1 \times 10^{-2}$ |
| 26 | month | $2.9 \times 10^{-2}$ |
| 27 | gvhd | $2.9 \times 10^{-2}$ |
| 28 | background | $2.9 \times 10^{-2}$ |
| 29 | blood | $2.9 \times 10^{-2}$ |
| 30 | paper | $2.9 \times 10^{-2}$ |
| 31 | deceas | $2.9 \times 10^{-2}$ |
| 32 | receiv | $2.9 \times 10^{-2}$ |
| 33 | underw | $2.8 \times 10^{-2}$ |
| 34 | complic | $2.7 \times 10^{-2}$ |
| 35 | median | $2.6 \times 10^{-2}$ |
| 36 | cell | $2.5 \times 10^{-2}$ |
| 37 | day | $2.4 \times 10^{-2}$ |
| 38 | creatinin | $2.4 \times 10^{-2}$ |
| 39 | clinic | $2.3 \times 10^{-2}$ |
| 40 | donat | $2.3 \times 10^{-2}$ |
| 41 | chronic | $2.2 \times 10^{-2}$ |
| 42 | hla | $2.2 \times 10^{-2}$ |
| 43 | death | $2.2 \times 10^{-2}$ |
| 44 | biopsi | $2.1 \times 10^{-2}$ |
| 45 | heart | $2 \times 10^{-2}$ |
| 46 | incid | $1.9 \times 10^{-2}$ |
| 47 | failur | $1.9 \times 10^{-2}$ |
| 48 | associ | $1.9 \times 10^{-2}$ |
| 49 | dialysi | $1.9 \times 10^{-2}$ |
| 50 | hepat | $1.8 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | regimen | $1.8 \times 10^{-2}$ |
| 52 | signific | $1.8 \times 10^{-2}$ |
| 53 | versus | $1.8 \times 10^{-2}$ |
| 54 | glomerular | $1.7 \times 10^{-2}$ |
| 55 | multivari | $1.7 \times 10^{-2}$ |
| 56 | follow | $1.7 \times 10^{-2}$ |
| 57 | engraft | $1.6 \times 10^{-2}$ |
| 58 | ventricular | $1.6 \times 10^{-2}$ |
| 59 | infect | $1.6 \times 10^{-2}$ |
| 60 | serum | $1.5 \times 10^{-2}$ |
| 61 | age | $1.5 \times 10^{-2}$ |
| 62 | befor | $1.5 \times 10^{-2}$ |
| 63 | pediatr | $1.5 \times 10^{-2}$ |
| 64 | group | $1.5 \times 10^{-2}$ |
| 65 | antibodi | $1.4 \times 10^{-2}$ |
| 66 | marrow | $1.4 \times 10^{-2}$ |
| 67 | organ | $1.3 \times 10^{-2}$ |
| 68 | cardiac | $1.3 \times 10^{-2}$ |
| 69 | treatment | $1.3 \times 10^{-2}$ |
| 70 | live | $1.3 \times 10^{-2}$ |
| 71 | propos | $1.3 \times 10^{-2}$ |
| 72 | cohort | $1.3 \times 10^{-2}$ |
| 73 | postop | $1.2 \times 10^{-2}$ |
| 74 | factor | $1.2 \times 10^{-2}$ |
| 75 | structur | $1.2 \times 10^{-2}$ |
| 76 | ischemia | $1.2 \times 10^{-2}$ |
| 77 | earli | $1.1 \times 10^{-2}$ |
| 78 | autolog | $1.1 \times 10^{-2}$ |
| 79 | treat | $1.1 \times 10^{-2}$ |
| 80 | filtrat | $1.1 \times 10^{-2}$ |
| 81 | relaps | $1.1 \times 10^{-2}$ |
| 82 | prophylaxi | $1.1 \times 10^{-2}$ |
| 83 | center | $1.1 \times 10^{-2}$ |
| 84 | undergo | $1.1 \times 10^{-2}$ |
| 85 | adult | $1.1 \times 10^{-2}$ |
| 86 | end | $1.1 \times 10^{-2}$ |
| 87 | dysfunct | $1.1 \times 10^{-2}$ |
| 88 | may | $1 \times 10^{-2}$ |
| 89 | rate | $1 \times 10^{-2}$ |
| 90 | left | $1 \times 10^{-2}$ |
| 91 | dose | $1 \times 10^{-2}$ |
| 92 | injuri | $1 \times 10^{-2}$ |
| 93 | remain | $9.8 \times 10^{-3}$ |
| 94 | lung | $9.7 \times 10^{-3}$ |
| 95 | temperatur | $9.6 \times 10^{-3}$ |
| 96 | die | $9.6 \times 10^{-3}$ |
| 97 | reperfus | $9.6 \times 10^{-3}$ |
| 98 | morbid | $9.3 \times 10^{-3}$ |
| 99 | arteri | $9.2 \times 10^{-3}$ |
| 100 | order | $9.1 \times 10^{-3}$ |

Table D.243. The list of the top 100 words in the category Transportation with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | traffic | $1.1 \times 10^{-1}$ |
| 2 | transport | $9.3 \times 10^{-2}$ |
| 3 | travel | $9.1 \times 10^{-2}$ |
| 4 | road | $8.8 \times 10^{-2}$ |
| 5 | vehicl | $7.8 \times 10^{-2}$ |
| 6 | driver | $6 \times 10^{-2}$ |
| 7 | passeng | $5 \times 10^{-2}$ |
| 8 | crash | $4.7 \times 10^{-2}$ |
| 9 | car | $4.1 \times 10^{-2}$ |
| 10 | citi | $3.6 \times 10^{-2}$ |
| 11 | trip | $3.5 \times 10^{-2}$ |
| 12 | urban | $3.4 \times 10^{-2}$ |
| 13 | lane | $3.1 \times 10^{-2}$ |
| 14 | safeti | $3 \times 10^{-2}$ |
| 15 | pedestrian | $3 \times 10^{-2}$ |
| 16 | polici | $2.8 \times 10^{-2}$ |
| 17 | congest | $2.7 \times 10^{-2}$ |
| 18 | highway | $2.6 \times 10^{-2}$ |
| 19 | drive | $2.6 \times 10^{-2}$ |
| 20 | rail | $2.4 \times 10^{-2}$ |
| 21 | plan | $2.3 \times 10^{-2}$ |
| 22 | rout | $2.3 \times 10^{-2}$ |
| 23 | paper | $2.3 \times 10^{-2}$ |
| 24 | infrastructur | $2.2 \times 10^{-2}$ |
| 25 | cost | $2.1 \times 10^{-2}$ |
| 26 | servic | $2.1 \times 10^{-2}$ |
| 27 | public | $1.9 \times 10^{-2}$ |
| 28 | bus | $1.9 \times 10^{-2}$ |
| 29 | choic | $1.9 \times 10^{-2}$ |
| 30 | model | $1.9 \times 10^{-2}$ |
| 31 | demand | $1.8 \times 10^{-2}$ |
| 32 | speed | $1.8 \times 10^{-2}$ |
| 33 | impact | $1.7 \times 10^{-2}$ |
| 34 | accid | $1.7 \times 10^{-2}$ |
| 35 | pavement | $1.7 \times 10^{-2}$ |
| 36 | research | $1.6 \times 10^{-2}$ |
| 37 | commut | $1.6 \times 10^{-2}$ |
| 38 | decis | $1.5 \times 10^{-2}$ |
| 39 | patient | $1.4 \times 10^{-2}$ |
| 40 | network | $1.3 \times 10^{-2}$ |
| 41 | price | $1.3 \times 10^{-2}$ |
| 42 | survey | $1.3 \times 10^{-2}$ |
| 43 | metropolitan | $1.3 \times 10^{-2}$ |
| 44 | fatal | $1.2 \times 10^{-2}$ |
| 45 | destin | $1.2 \times 10^{-2}$ |
| 46 | data | $1.2 \times 10^{-2}$ |
| 47 | estim | $1.2 \times 10^{-2}$ |
| 48 | cell | $1.1 \times 10^{-2}$ |
| 49 | user | $1.1 \times 10^{-2}$ |
| 50 | intersect | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | oper | $9.9 \times 10^{-3}$ |
| 52 | econom | $9.7 \times 10^{-3}$ |
| 53 | protein | $9.6 \times 10^{-3}$ |
| 54 | agenc | $9.5 \times 10^{-3}$ |
| 55 | methodolog | $9.4 \times 10^{-3}$ |
| 56 | benefit | $9.4 \times 10^{-3}$ |
| 57 | clinic | $9.2 \times 10^{-3}$ |
| 58 | invest | $9.2 \times 10^{-3}$ |
| 59 | street | $9.1 \times 10^{-3}$ |
| 60 | develop | $9.1 \times 10^{-3}$ |
| 61 | market | $9 \times 10^{-3}$ |
| 62 | maker | $8.8 \times 10^{-3}$ |
| 63 | scenario | $8.8 \times 10^{-3}$ |
| 64 | ship | $8.6 \times 10^{-3}$ |
| 65 | asphalt | $8.4 \times 10^{-3}$ |
| 66 | railway | $8.2 \times 10^{-3}$ |
| 67 | privat | $8.2 \times 10^{-3}$ |
| 68 | planner | $8.1 \times 10^{-3}$ |
| 69 | diseas | $7.8 \times 10^{-3}$ |
| 70 | locat | $7.6 \times 10^{-3}$ |
| 71 | treatment | $7.6 \times 10^{-3}$ |
| 72 | gene | $7.6 \times 10^{-3}$ |
| 73 | empir | $7.4 \times 10^{-3}$ |
| 74 | household | $7.3 \times 10^{-3}$ |
| 75 | acid | $7.3 \times 10^{-3}$ |
| 76 | implement | $7.2 \times 10^{-3}$ |
| 77 | injuri | $6.8 \times 10^{-3}$ |
| 78 | walk | $6.6 \times 10^{-3}$ |
| 79 | speci | $6.6 \times 10^{-3}$ |
| 80 | variabl | $6.5 \times 10^{-3}$ |
| 81 | transit | $6.5 \times 10^{-3}$ |
| 82 | sustain | $6.4 \times 10^{-3}$ |
| 83 | time | $6.3 \times 10^{-3}$ |
| 84 | ownership | $6.2 \times 10^{-3}$ |
| 85 | area | $6.2 \times 10^{-3}$ |
| 86 | project | $6.2 \times 10^{-3}$ |
| 87 | distanc | $6.2 \times 10^{-3}$ |
| 88 | park | $6.1 \times 10^{-3}$ |
| 89 | electron | $6.1 \times 10^{-3}$ |
| 90 | temperatur | $6.1 \times 10^{-3}$ |
| 91 | logist | $6.1 \times 10^{-3}$ |
| 92 | compani | $6.1 \times 10^{-3}$ |
| 93 | occup | $6 \times 10^{-3}$ |
| 94 | molecular | $6 \times 10^{-3}$ |
| 95 | behavior | $5.9 \times 10^{-3}$ |
| 96 | access | $5.9 \times 10^{-3}$ |
| 97 | mobil | $5.9 \times 10^{-3}$ |
| 98 | need | $5.8 \times 10^{-3}$ |
| 99 | focus | $5.7 \times 10^{-3}$ |
| 100 | revenu | $5.7 \times 10^{-3}$ |

Table D.244. The list of the top 100 words in the category Transportation Science and Technology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | vehicl | $1.3 \times 10^{-1}$ |
| 2 | traffic | $8.4 \times 10^{-2}$ |
| 3 | paper | $6.4 \times 10^{-2}$ |
| 4 | road | $5.8 \times 10^{-2}$ |
| 5 | travel | $4 \times 10^{-2}$ |
| 6 | transport | $3.3 \times 10^{-2}$ |
| 7 | propos | $2.9 \times 10^{-2}$ |
| 8 | car | $2.9 \times 10^{-2}$ |
| 9 | driver | $2.7 \times 10^{-2}$ |
| 10 | passeng | $2.7 \times 10^{-2}$ |
| 11 | network | $2.7 \times 10^{-2}$ |
| 12 | simul | $2.7 \times 10^{-2}$ |
| 13 | drive | $2.5 \times 10^{-2}$ |
| 14 | lane | $2.3 \times 10^{-2}$ |
| 15 | rail | $2.3 \times 10^{-2}$ |
| 16 | speed | $2 \times 10^{-2}$ |
| 17 | patient | $1.9 \times 10^{-2}$ |
| 18 | system | $1.9 \times 10^{-2}$ |
| 19 | highway | $1.9 \times 10^{-2}$ |
| 20 | congest | $1.8 \times 10^{-2}$ |
| 21 | railway | $1.7 \times 10^{-2}$ |
| 22 | urban | $1.7 \times 10^{-2}$ |
| 23 | model | $1.6 \times 10^{-2}$ |
| 24 | pavement | $1.5 \times 10^{-2}$ |
| 25 | pedestrian | $1.5 \times 10^{-2}$ |
| 26 | trip | $1.5 \times 10^{-2}$ |
| 27 | infrastructur | $1.5 \times 10^{-2}$ |
| 28 | safeti | $1.4 \times 10^{-2}$ |
| 29 | algorithm | $1.4 \times 10^{-2}$ |
| 30 | user | $1.3 \times 10^{-2}$ |
| 31 | scenario | $1.3 \times 10^{-2}$ |
| 32 | conclus | $1.2 \times 10^{-2}$ |
| 33 | rout | $1.2 \times 10^{-2}$ |
| 34 | base | $1.2 \times 10^{-2}$ |
| 35 | bus | $1.2 \times 10^{-2}$ |
| 36 | clinic | $1.1 \times 10^{-2}$ |
| 37 | citi | $1.1 \times 10^{-2}$ |
| 38 | oper | $1.1 \times 10^{-2}$ |
| 39 | optim | $1.1 \times 10^{-2}$ |
| 40 | treatment | $1.1 \times 10^{-2}$ |
| 41 | protein | $1.1 \times 10^{-2}$ |
| 42 | real | $1.1 \times 10^{-2}$ |
| 43 | cost | $1.1 \times 10^{-2}$ |
| 44 | electr | $1.1 \times 10^{-2}$ |
| 45 | diseas | $1.1 \times 10^{-2}$ |
| 46 | wheel | $1 \times 10^{-2}$ |
| 47 | servic | $1 \times 10^{-2}$ |
| 48 | batteri | $9.7 \times 10^{-3}$ |
| 49 | demand | $9.6 \times 10^{-3}$ |
| 50 | plan | $9.1 \times 10^{-3}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | scheme | $9 \times 10^{-3}$ |
| 52 | asphalt | $9 \times 10^{-3}$ |
| 53 | intersect | $8.9 \times 10^{-3}$ |
| 54 | crash | $8.8 \times 10^{-3}$ |
| 55 | perform | $8.6 \times 10^{-3}$ |
| 56 | fuel | $8.6 \times 10^{-3}$ |
| 57 | station | $8.5 \times 10^{-3}$ |
| 58 | problem | $8.5 \times 10^{-3}$ |
| 59 | gene | $8.4 \times 10^{-3}$ |
| 60 | destin | $8.1 \times 10^{-3}$ |
| 61 | acid | $7.8 \times 10^{-3}$ |
| 62 | power | $7.6 \times 10^{-3}$ |
| 63 | effici | $7.4 \times 10^{-3}$ |
| 64 | background | $7.4 \times 10^{-3}$ |
| 65 | design | $7.4 \times 10^{-3}$ |
| 66 | speci | $7.3 \times 10^{-3}$ |
| 67 | wireless | $7.1 \times 10^{-3}$ |
| 68 | estim | $6.9 \times 10^{-3}$ |
| 69 | molecular | $6.7 \times 10^{-3}$ |
| 70 | induc | $6.7 \times 10^{-3}$ |
| 71 | communic | $6.6 \times 10^{-3}$ |
| 72 | can | $6.4 \times 10^{-3}$ |
| 73 | concentr | $6.2 \times 10^{-3}$ |
| 74 | relay | $6.1 \times 10^{-3}$ |
| 75 | decis | $6 \times 10^{-3}$ |
| 76 | cancer | $6 \times 10^{-3}$ |
| 77 | accid | $5.9 \times 10^{-3}$ |
| 78 | group | $5.9 \times 10^{-3}$ |
| 79 | motor | $5.9 \times 10^{-3}$ |
| 80 | associ | $5.9 \times 10^{-3}$ |
| 81 | track | $5.9 \times 10^{-3}$ |
| 82 | tissu | $5.9 \times 10^{-3}$ |
| 83 | time | $5.7 \times 10^{-3}$ |
| 84 | intellig | $5.5 \times 10^{-3}$ |
| 85 | implement | $5.4 \times 10^{-3}$ |
| 86 | mobil | $5.4 \times 10^{-3}$ |
| 87 | consid | $5.4 \times 10^{-3}$ |
| 88 | report | $5.3 \times 10^{-3}$ |
| 89 | torqu | $5.2 \times 10^{-3}$ |
| 90 | improv | $5.2 \times 10^{-3}$ |
| 91 | automot | $5.2 \times 10^{-3}$ |
| 92 | therapi | $5.1 \times 10^{-3}$ |
| 93 | schedul | $5.1 \times 10^{-3}$ |
| 94 | suggest | $5 \times 10^{-3}$ |
| 95 | engin | $4.9 \times 10^{-3}$ |
| 96 | inhibit | $4.9 \times 10^{-3}$ |
| 97 | age | $4.9 \times 10^{-3}$ |
| 98 | strategi | $4.8 \times 10^{-3}$ |
| 99 | capac | $4.8 \times 10^{-3}$ |
| 100 | drug | $4.8 \times 10^{-3}$ |

Table D.245. The list of the top 100 words in the category Tropical Medicine with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | infect | $1.3 \times 10^{-1}$ |
| 2 | malaria | $1.2 \times 10^{-1}$ |
| 3 | parasit | $9.4 \times 10^{-2}$ |
| 4 | conclus | $7.7 \times 10^{-2}$ |
| 5 | mosquito | $6.8 \times 10^{-2}$ |
| 6 | background | $6.8 \times 10^{-2}$ |
| 7 | plasmodium | $6.5 \times 10^{-2}$ |
| 8 | endem | $5.6 \times 10^{-2}$ |
| 9 | falciparum | $5 \times 10^{-2}$ |
| 10 | diseas | $3.8 \times 10^{-2}$ |
| 11 | preval | $3.6 \times 10^{-2}$ |
| 12 | vector | $3.5 \times 10^{-2}$ |
| 13 | pcr | $3.5 \times 10^{-2}$ |
| 14 | anophel | $3.2 \times 10^{-2}$ |
| 15 | leishmaniasi | $3.1 \times 10^{-2}$ |
| 16 | epidemiolog | $3 \times 10^{-2}$ |
| 17 | fever | $2.9 \times 10^{-2}$ |
| 18 | dengu | $2.9 \times 10^{-2}$ |
| 19 | aed | $2.8 \times 10^{-2}$ |
| 20 | leishmania | $2.6 \times 10^{-2}$ |
| 21 | insecticid | $2.5 \times 10^{-2}$ |
| 22 | health | $2.5 \times 10^{-2}$ |
| 23 | transmiss | $2.5 \times 10^{-2}$ |
| 24 | blood | $2.4 \times 10^{-2}$ |
| 25 | popul | $2.1 \times 10^{-2}$ |
| 26 | human | $2.1 \times 10^{-2}$ |
| 27 | host | $2.1 \times 10^{-2}$ |
| 28 | speci | $2 \times 10^{-2}$ |
| 29 | virus | $2 \times 10^{-2}$ |
| 30 | collect | $2 \times 10^{-2}$ |
| 31 | method | $2 \times 10^{-2}$ |
| 32 | princip | $1.9 \times 10^{-2}$ |
| 33 | paper | $1.8 \times 10^{-2}$ |
| 34 | africa | $1.8 \times 10^{-2}$ |
| 35 | brazil | $1.8 \times 10^{-2}$ |
| 36 | tick | $1.7 \times 10^{-2}$ |
| 37 | detect | $1.7 \times 10^{-2}$ |
| 38 | surveil | $1.6 \times 10^{-2}$ |
| 39 | pathogen | $1.5 \times 10^{-2}$ |
| 40 | countri | $1.5 \times 10^{-2}$ |
| 41 | area | $1.5 \times 10^{-2}$ |
| 42 | antibodi | $1.5 \times 10^{-2}$ |
| 43 | antigen | $1.5 \times 10^{-2}$ |
| 44 | assay | $1.5 \times 10^{-2}$ |
| 45 | outbreak | $1.4 \times 10^{-2}$ |
| 46 | district | $1.4 \times 10^{-2}$ |
| 47 | born | $1.4 \times 10^{-2}$ |
| 48 | serolog | $1.4 \times 10^{-2}$ |
| 49 | children | $1.4 \times 10^{-2}$ |
| 50 | villag | $1.4 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | zoonot | $1.3 \times 10^{-2}$ |
| 52 | larva | $1.3 \times 10^{-2}$ |
| 53 | vaccin | $1.3 \times 10^{-2}$ |
| 54 | clinic | $1.3 \times 10^{-2}$ |
| 55 | control | $1.2 \times 10^{-2}$ |
| 56 | spp | $1.2 \times 10^{-2}$ |
| 57 | caus | $1.2 \times 10^{-2}$ |
| 58 | propos | $1.2 \times 10^{-2}$ |
| 59 | dog | $1.2 \times 10^{-2}$ |
| 60 | among | $1.2 \times 10^{-2}$ |
| 61 | elisa | $1.1 \times 10^{-2}$ |
| 62 | isol | $1.1 \times 10^{-2}$ |
| 63 | drug | $1.1 \times 10^{-2}$ |
| 64 | infecti | $1.1 \times 10^{-2}$ |
| 65 | smear | $1.1 \times 10^{-2}$ |
| 66 | tropic | $1.1 \times 10^{-2}$ |
| 67 | sampl | $1.1 \times 10^{-2}$ |
| 68 | household | $1.1 \times 10^{-2}$ |
| 69 | studi | $1 \times 10^{-2}$ |
| 70 | geograph | $1 \times 10^{-2}$ |
| 71 | signific | $1 \times 10^{-2}$ |
| 72 | immun | $1 \times 10^{-2}$ |
| 73 | polymeras | $1 \times 10^{-2}$ |
| 74 | region | $1 \times 10^{-2}$ |
| 75 | rural | $1 \times 10^{-2}$ |
| 76 | year | $1 \times 10^{-2}$ |
| 77 | egg | $1 \times 10^{-2}$ |
| 78 | coinfect | $9.9 \times 10^{-3}$ |
| 79 | larval | $9.9 \times 10^{-3}$ |
| 80 | diagnosi | $9.7 \times 10^{-3}$ |
| 81 | identifi | $9.6 \times 10^{-3}$ |
| 82 | mortal | $9.5 \times 10^{-3}$ |
| 83 | femal | $9.5 \times 10^{-3}$ |
| 84 | adult | $9.3 \times 10^{-3}$ |
| 85 | dna | $9.2 \times 10^{-3}$ |
| 86 | transmit | $9.2 \times 10^{-3}$ |
| 87 | risk | $9.1 \times 10^{-3}$ |
| 88 | treatment | $9 \times 10^{-3}$ |
| 89 | simul | $8.9 \times 10^{-3}$ |
| 90 | viscer | $8.9 \times 10^{-3}$ |
| 91 | posit | $8.9 \times 10^{-3}$ |
| 92 | subsaharan | $8.8 \times 10^{-3}$ |
| 93 | provinc | $8.7 \times 10^{-3}$ |
| 94 | case | $8.6 \times 10^{-3}$ |
| 95 | insect | $8.5 \times 10^{-3}$ |
| 96 | programm | $8.5 \times 10^{-3}$ |
| 97 | energi | $8.3 \times 10^{-3}$ |
| 98 | associ | $8.2 \times 10^{-3}$ |
| 99 | burden | $8.2 \times 10^{-3}$ |
| 100 | sequenc | $8.1 \times 10^{-3}$ |

Table D.246. The list of the top 100 words in the category Urban Studies with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | urban | $2 \times 10^{-1}$ |
| 2 | citi | $1.5 \times 10^{-1}$ |
| 3 | hous | $7.2 \times 10^{-2}$ |
| 4 | polici | $6.1 \times 10^{-2}$ |
| 5 | plan | $4.4 \times 10^{-2}$ |
| 6 | econom | $4.2 \times 10^{-2}$ |
| 7 | govern | $3.8 \times 10^{-2}$ |
| 8 | land | $3.8 \times 10^{-2}$ |
| 9 | social | $3.5 \times 10^{-2}$ |
| 10 | metropolitan | $3.4 \times 10^{-2}$ |
| 11 | polit | $3.1 \times 10^{-2}$ |
| 12 | articl | $2.8 \times 10^{-2}$ |
| 13 | residenti | $2.7 \times 10^{-2}$ |
| 14 | area | $2.7 \times 10^{-2}$ |
| 15 | market | $2.6 \times 10^{-2}$ |
| 16 | neighborhood | $2.6 \times 10^{-2}$ |
| 17 | public | $2.6 \times 10^{-2}$ |
| 18 | local | $2.5 \times 10^{-2}$ |
| 19 | spatial | $2.5 \times 10^{-2}$ |
| 20 | landscap | $2.4 \times 10^{-2}$ |
| 21 | communiti | $2.3 \times 10^{-2}$ |
| 22 | resid | $2.3 \times 10^{-2}$ |
| 23 | capit | $2.1 \times 10^{-2}$ |
| 24 | planner | $2 \times 10^{-2}$ |
| 25 | household | $1.9 \times 10^{-2}$ |
| 26 | neighbourhood | $1.8 \times 10^{-2}$ |
| 27 | estat | $1.8 \times 10^{-2}$ |
| 28 | argu | $1.8 \times 10^{-2}$ |
| 29 | sustain | $1.7 \times 10^{-2}$ |
| 30 | research | $1.7 \times 10^{-2}$ |
| 31 | develop | $1.7 \times 10^{-2}$ |
| 32 | territori | $1.6 \times 10^{-2}$ |
| 33 | incom | $1.6 \times 10^{-2}$ |
| 34 | municip | $1.5 \times 10^{-2}$ |
| 35 | economi | $1.5 \times 10^{-2}$ |
| 36 | patient | $1.4 \times 10^{-2}$ |
| 37 | method | $1.4 \times 10^{-2}$ |
| 38 | cell | $1.4 \times 10^{-2}$ |
| 39 | privat | $1.4 \times 10^{-2}$ |
| 40 | build | $1.3 \times 10^{-2}$ |
| 41 | price | $1.3 \times 10^{-2}$ |
| 42 | focus | $1.3 \times 10^{-2}$ |
| 43 | space | $1.3 \times 10^{-2}$ |
| 44 | empir | $1.3 \times 10^{-2}$ |
| 45 | sector | $1.2 \times 10^{-2}$ |
| 46 | institut | $1.2 \times 10^{-2}$ |
| 47 | socio | $1.2 \times 10^{-2}$ |
| 48 | actor | $1.2 \times 10^{-2}$ |
| 49 | context | $1.2 \times 10^{-2}$ |
| 50 | street | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | place | $1.1 \times 10^{-2}$ |
| 52 | infrastructur | $1.1 \times 10^{-2}$ |
| 53 | district | $1.1 \times 10^{-2}$ |
| 54 | settlement | $1.1 \times 10^{-2}$ |
| 55 | examin | $1.1 \times 10^{-2}$ |
| 56 | park | $1.1 \times 10^{-2}$ |
| 57 | draw | $1 \times 10^{-2}$ |
| 58 | rural | $1 \times 10^{-2}$ |
| 59 | project | $9.6 \times 10^{-3}$ |
| 60 | conclus | $9.6 \times 10^{-3}$ |
| 61 | clinic | $9.5 \times 10^{-3}$ |
| 62 | town | $9.5 \times 10^{-3}$ |
| 63 | interview | $9.1 \times 10^{-3}$ |
| 64 | paper | $9 \times 10^{-3}$ |
| 65 | find | $8.8 \times 10^{-3}$ |
| 66 | obtain | $8.7 \times 10^{-3}$ |
| 67 | impact | $8.6 \times 10^{-3}$ |
| 68 | histor | $8.6 \times 10^{-3}$ |
| 69 | protein | $8.5 \times 10^{-3}$ |
| 70 | innov | $8.4 \times 10^{-3}$ |
| 71 | perform | $8.3 \times 10^{-3}$ |
| 72 | invest | $8.2 \times 10^{-3}$ |
| 73 | home | $8.1 \times 10^{-3}$ |
| 74 | nation | $8.1 \times 10^{-3}$ |
| 75 | green | $8 \times 10^{-3}$ |
| 76 | region | $7.9 \times 10^{-3}$ |
| 77 | census | $7.9 \times 10^{-3}$ |
| 78 | ecolog | $7.8 \times 10^{-3}$ |
| 79 | countri | $7.8 \times 10^{-3}$ |
| 80 | treatment | $7.7 \times 10^{-3}$ |
| 81 | servic | $7.6 \times 10^{-3}$ |
| 82 | electron | $7.6 \times 10^{-3}$ |
| 83 | geographi | $7.5 \times 10^{-3}$ |
| 84 | peopl | $7.4 \times 10^{-3}$ |
| 85 | decad | $7.3 \times 10^{-3}$ |
| 86 | poverti | $7.3 \times 10^{-3}$ |
| 87 | experiment | $7.3 \times 10^{-3}$ |
| 88 | live | $7.2 \times 10^{-3}$ |
| 89 | acid | $7.2 \times 10^{-3}$ |
| 90 | strateg | $7.2 \times 10^{-3}$ |
| 91 | creat | $7.1 \times 10^{-3}$ |
| 92 | china | $7.1 \times 10^{-3}$ |
| 93 | environment | $7.1 \times 10^{-3}$ |
| 94 | locat | $7.1 \times 10^{-3}$ |
| 95 | perspect | $7.1 \times 10^{-3}$ |
| 96 | citizen | $7.1 \times 10^{-3}$ |
| 97 | practic | $7 \times 10^{-3}$ |
| 98 | neoliber | $6.9 \times 10^{-3}$ |
| 99 | cultur | $6.9 \times 10^{-3}$ |
| 100 | european | $6.9 \times 10^{-3}$ |

Table D.247. The list of the top 100 words in the category Urology and Nephrology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | patient | $1.5 \times 10^{-1}$ |
| 2 | renal | $1.5 \times 10^{-1}$ |
| 3 | kidney | $1.2 \times 10^{-1}$ |
| 4 | conclus | $9.9 \times 10^{-2}$ |
| 5 | urinari | $8.7 \times 10^{-2}$ |
| 6 | prostat | $7.4 \times 10^{-2}$ |
| 7 | bladder | $6.6 \times 10^{-2}$ |
| 8 | dialysi | $5.9 \times 10^{-2}$ |
| 9 | outcom | $5.3 \times 10^{-2}$ |
| 10 | glomerular | $4.9 \times 10^{-2}$ |
| 11 | hemodialysi | $4.7 \times 10^{-2}$ |
| 12 | diseas | $4.5 \times 10^{-2}$ |
| 13 | ckd | $4.4 \times 10^{-2}$ |
| 14 | underw | $4 \times 10^{-2}$ |
| 15 | prostatectomi | $3.9 \times 10^{-2}$ |
| 16 | year | $3.8 \times 10^{-2}$ |
| 17 | month | $3.8 \times 10^{-2}$ |
| 18 | age | $3.6 \times 10^{-2}$ |
| 19 | clinic | $3.5 \times 10^{-2}$ |
| 20 | men | $3.4 \times 10^{-2}$ |
| 21 | median | $3.4 \times 10^{-2}$ |
| 22 | associ | $3.3 \times 10^{-2}$ |
| 23 | risk | $3.2 \times 10^{-2}$ |
| 24 | creatinin | $3.2 \times 10^{-2}$ |
| 25 | treatment | $3.1 \times 10^{-2}$ |
| 26 | retrospect | $3 \times 10^{-2}$ |
| 27 | paper | $3 \times 10^{-2}$ |
| 28 | incontin | $2.9 \times 10^{-2}$ |
| 29 | urin | $2.8 \times 10^{-2}$ |
| 30 | tract | $2.7 \times 10^{-2}$ |
| 31 | cancer | $2.7 \times 10^{-2}$ |
| 32 | serum | $2.7 \times 10^{-2}$ |
| 33 | signific | $2.6 \times 10^{-2}$ |
| 34 | method | $2.6 \times 10^{-2}$ |
| 35 | surgeri | $2.6 \times 10^{-2}$ |
| 36 | complic | $2.6 \times 10^{-2}$ |
| 37 | cohort | $2.5 \times 10^{-2}$ |
| 38 | chronic | $2.5 \times 10^{-2}$ |
| 39 | multivari | $2.5 \times 10^{-2}$ |
| 40 | radic | $2.5 \times 10^{-2}$ |
| 41 | postop | $2.5 \times 10^{-2}$ |
| 42 | surgic | $2.5 \times 10^{-2}$ |
| 43 | score | $2.4 \times 10^{-2}$ |
| 44 | follow | $2.4 \times 10^{-2}$ |
| 45 | therapi | $2.4 \times 10^{-2}$ |
| 46 | object | $2.3 \times 10^{-2}$ |
| 47 | filtrat | $2.3 \times 10^{-2}$ |
| 48 | biopsi | $2.2 \times 10^{-2}$ |
| 49 | erectil | $2.1 \times 10^{-2}$ |
| 50 | prospect | $2.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | treat | $2 \times 10^{-2}$ |
| 52 | nephropathi | $2 \times 10^{-2}$ |
| 53 | dysfunct | $2 \times 10^{-2}$ |
| 54 | group | $1.8 \times 10^{-2}$ |
| 55 | stone | $1.8 \times 10^{-2}$ |
| 56 | regress | $1.8 \times 10^{-2}$ |
| 57 | recurr | $1.8 \times 10^{-2}$ |
| 58 | pelvic | $1.7 \times 10^{-2}$ |
| 59 | rate | $1.7 \times 10^{-2}$ |
| 60 | preoper | $1.7 \times 10^{-2}$ |
| 61 | propos | $1.6 \times 10^{-2}$ |
| 62 | stage | $1.6 \times 10^{-2}$ |
| 63 | result | $1.6 \times 10^{-2}$ |
| 64 | review | $1.6 \times 10^{-2}$ |
| 65 | assess | $1.6 \times 10^{-2}$ |
| 66 | cox | $1.6 \times 10^{-2}$ |
| 67 | egfr | $1.6 \times 10^{-2}$ |
| 68 | injuri | $1.5 \times 10^{-2}$ |
| 69 | surviv | $1.5 \times 10^{-2}$ |
| 70 | hospit | $1.5 \times 10^{-2}$ |
| 71 | introduct | $1.5 \times 10^{-2}$ |
| 72 | undergo | $1.5 \times 10^{-2}$ |
| 73 | patholog | $1.5 \times 10^{-2}$ |
| 74 | background | $1.5 \times 10^{-2}$ |
| 75 | includ | $1.5 \times 10^{-2}$ |
| 76 | symptom | $1.5 \times 10^{-2}$ |
| 77 | predictor | $1.5 \times 10^{-2}$ |
| 78 | baselin | $1.5 \times 10^{-2}$ |
| 79 | void | $1.5 \times 10^{-2}$ |
| 80 | laparoscop | $1.5 \times 10^{-2}$ |
| 81 | mortal | $1.4 \times 10^{-2}$ |
| 82 | diabet | $1.4 \times 10^{-2}$ |
| 83 | tubular | $1.4 \times 10^{-2}$ |
| 84 | evalu | $1.4 \times 10^{-2}$ |
| 85 | blood | $1.4 \times 10^{-2}$ |
| 86 | total | $1.3 \times 10^{-2}$ |
| 87 | mean | $1.3 \times 10^{-2}$ |
| 88 | periton | $1.3 \times 10^{-2}$ |
| 89 | receiv | $1.2 \times 10^{-2}$ |
| 90 | hazard | $1.2 \times 10^{-2}$ |
| 91 | structur | $1.2 \times 10^{-2}$ |
| 92 | carcinoma | $1.1 \times 10^{-2}$ |
| 93 | periop | $1.1 \times 10^{-2}$ |
| 94 | transplant | $1.1 \times 10^{-2}$ |
| 95 | temperatur | $1.1 \times 10^{-2}$ |
| 96 | simul | $1.1 \times 10^{-2}$ |
| 97 | grade | $1.1 \times 10^{-2}$ |
| 98 | progress | $1.1 \times 10^{-2}$ |
| 99 | confid | $1.1 \times 10^{-2}$ |
| 100 | male | $1.1 \times 10^{-2}$ |

Table D.248. The list of the top 100 words in the category Veterinary Sciences with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | dog | $1 \times 10^{-1}$ |
| 2 | anim | $9.5 \times 10^{-2}$ |
| 3 | infect | $4.8 \times 10^{-2}$ |
| 4 | hors | $4.7 \times 10^{-2}$ |
| 5 | veterinari | $4.4 \times 10^{-2}$ |
| 6 | canin | $3.8 \times 10^{-2}$ |
| 7 | cattl | $3.6 \times 10^{-2}$ |
| 8 | breed | $3 \times 10^{-2}$ |
| 9 | farm | $2.7 \times 10^{-2}$ |
| 10 | cat | $2.7 \times 10^{-2}$ |
| 11 | paper | $2.6 \times 10^{-2}$ |
| 12 | day | $2.5 \times 10^{-2}$ |
| 13 | herd | $2.4 \times 10^{-2}$ |
| 14 | cow | $2.4 \times 10^{-2}$ |
| 15 | clinic | $2.3 \times 10^{-2}$ |
| 16 | diseas | $2.3 \times 10^{-2}$ |
| 17 | pcr | $2.1 \times 10^{-2}$ |
| 18 | virus | $2.1 \times 10^{-2}$ |
| 19 | pig | $2.1 \times 10^{-2}$ |
| 20 | pathogen | $2 \times 10^{-2}$ |
| 21 | sheep | $2 \times 10^{-2}$ |
| 22 | blood | $2 \times 10^{-2}$ |
| 23 | sign | $1.9 \times 10^{-2}$ |
| 24 | dairi | $1.9 \times 10^{-2}$ |
| 25 | calv | $1.9 \times 10^{-2}$ |
| 26 | propos | $1.8 \times 10^{-2}$ |
| 27 | bovin | $1.6 \times 10^{-2}$ |
| 28 | sampl | $1.6 \times 10^{-2}$ |
| 29 | collect | $1.6 \times 10^{-2}$ |
| 30 | studi | $1.5 \times 10^{-2}$ |
| 31 | antibodi | $1.4 \times 10^{-2}$ |
| 32 | serum | $1.4 \times 10^{-2}$ |
| 33 | immun | $1.4 \times 10^{-2}$ |
| 34 | vaccin | $1.4 \times 10^{-2}$ |
| 35 | isol | $1.3 \times 10^{-2}$ |
| 36 | old | $1.3 \times 10^{-2}$ |
| 37 | speci | $1.3 \times 10^{-2}$ |
| 38 | chicken | $1.3 \times 10^{-2}$ |
| 39 | goat | $1.3 \times 10^{-2}$ |
| 40 | rumin | $1.3 \times 10^{-2}$ |
| 41 | parasit | $1.2 \times 10^{-2}$ |
| 42 | feed | $1.2 \times 10^{-2}$ |
| 43 | histopatholog | $1.2 \times 10^{-2}$ |
| 44 | milk | $1.2 \times 10^{-2}$ |
| 45 | simul | $1.1 \times 10^{-2}$ |
| 46 | preval | $1.1 \times 10^{-2}$ |
| 47 | outbreak | $1.1 \times 10^{-2}$ |
| 48 | detect | $1.1 \times 10^{-2}$ |
| 49 | slaughter | $1.1 \times 10^{-2}$ |
| 50 | signific | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | bird | $1.1 \times 10^{-2}$ |
| 52 | owner | $1 \times 10^{-2}$ |
| 53 | lesion | $1 \times 10^{-2}$ |
| 54 | livestock | $1 \times 10^{-2}$ |
| 55 | infecti | $9.9 \times 10^{-3}$ |
| 56 | group | $9.9 \times 10^{-3}$ |
| 57 | evalu | $9.8 \times 10^{-3}$ |
| 58 | diet | $9.8 \times 10^{-3}$ |
| 59 | spp | $9.6 \times 10^{-3}$ |
| 60 | domest | $9.6 \times 10^{-3}$ |
| 61 | healthi | $9.5 \times 10^{-3}$ |
| 62 | zoonot | $9.5 \times 10^{-3}$ |
| 63 | week | $9.4 \times 10^{-3}$ |
| 64 | fed | $9.4 \times 10^{-3}$ |
| 65 | egg | $9.4 \times 10^{-3}$ |
| 66 | tissu | $9.4 \times 10^{-3}$ |
| 67 | model | $9.2 \times 10^{-3}$ |
| 68 | intestin | $9.1 \times 10^{-3}$ |
| 69 | avian | $8.9 \times 10^{-3}$ |
| 70 | respiratori | $8.6 \times 10^{-3}$ |
| 71 | holstein | $8.3 \times 10^{-3}$ |
| 72 | process | $8.3 \times 10^{-3}$ |
| 73 | welfar | $8.2 \times 10^{-3}$ |
| 74 | structur | $8.1 \times 10^{-3}$ |
| 75 | treatment | $8 \times 10^{-3}$ |
| 76 | properti | $8 \times 10^{-3}$ |
| 77 | algorithm | $8 \times 10^{-3}$ |
| 78 | fish | $7.9 \times 10^{-3}$ |
| 79 | serolog | $7.9 \times 10^{-3}$ |
| 80 | caus | $7.8 \times 10^{-3}$ |
| 81 | broiler | $7.7 \times 10^{-3}$ |
| 82 | elisa | $7.7 \times 10^{-3}$ |
| 83 | femal | $7.7 \times 10^{-3}$ |
| 84 | histolog | $7.6 \times 10^{-3}$ |
| 85 | porcin | $7.6 \times 10^{-3}$ |
| 86 | lactat | $7.5 \times 10^{-3}$ |
| 87 | insemin | $7.5 \times 10^{-3}$ |
| 88 | object | $7.3 \times 10^{-3}$ |
| 89 | spleen | $7.3 \times 10^{-3}$ |
| 90 | strain | $7.1 \times 10^{-3}$ |
| 91 | semen | $7.1 \times 10^{-3}$ |
| 92 | viral | $7 \times 10^{-3}$ |
| 93 | supplement | $7 \times 10^{-3}$ |
| 94 | reproduct | $7 \times 10^{-3}$ |
| 95 | power | $6.9 \times 10^{-3}$ |
| 96 | gene | $6.9 \times 10^{-3}$ |
| 97 | virul | $6.8 \times 10^{-3}$ |
| 98 | concentr | $6.7 \times 10^{-3}$ |
| 99 | polymeras | $6.7 \times 10^{-3}$ |
| 100 | fecal | $6.7 \times 10^{-3}$ |

Table D.249. The list of the top 100 words in the category Virology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | virus | $3.6 \times 10^{-1}$ |
| 2 | infect | $2.6 \times 10^{-1}$ |
| 3 | viral | $2.3 \times 10^{-1}$ |
| 4 | replic | $8.7 \times 10^{-2}$ |
| 5 | hiv | $8.7 \times 10^{-2}$ |
| 6 | host | $6.6 \times 10^{-2}$ |
| 7 | protein | $6.5 \times 10^{-2}$ |
| 8 | rna | $6.3 \times 10^{-2}$ |
| 9 | cell | $6.1 \times 10^{-2}$ |
| 10 | antivir | $5.8 \times 10^{-2}$ |
| 11 | genom | $5.5 \times 10^{-2}$ |
| 12 | immun | $5.1 \times 10^{-2}$ |
| 13 | vaccin | $4.6 \times 10^{-2}$ |
| 14 | pathogen | $4.5 \times 10^{-2}$ |
| 15 | influenza | $4.2 \times 10^{-2}$ |
| 16 | sequenc | $4.1 \times 10^{-2}$ |
| 17 | human | $4 \times 10^{-2}$ |
| 18 | gene | $3.6 \times 10^{-2}$ |
| 19 | strain | $3.2 \times 10^{-2}$ |
| 20 | cd4 | $3.2 \times 10^{-2}$ |
| 21 | hepat | $3.1 \times 10^{-2}$ |
| 22 | antiretrovir | $3.1 \times 10^{-2}$ |
| 23 | interferon | $3.1 \times 10^{-2}$ |
| 24 | antibodi | $2.9 \times 10^{-2}$ |
| 25 | infecti | $2.9 \times 10^{-2}$ |
| 26 | paper | $2.8 \times 10^{-2}$ |
| 27 | express | $2.7 \times 10^{-2}$ |
| 28 | pcr | $2.7 \times 10^{-2}$ |
| 29 | antigen | $2.6 \times 10^{-2}$ |
| 30 | assay | $2.6 \times 10^{-2}$ |
| 31 | mutat | $2.6 \times 10^{-2}$ |
| 32 | hcv | $2.4 \times 10^{-2}$ |
| 33 | ifn | $2.3 \times 10^{-2}$ |
| 34 | diseas | $2.3 \times 10^{-2}$ |
| 35 | dna | $2.2 \times 10^{-2}$ |
| 36 | phylogenet | $2.2 \times 10^{-2}$ |
| 37 | recombin | $2.2 \times 10^{-2}$ |
| 38 | genotyp | $2.1 \times 10^{-2}$ |
| 39 | isol | $2.1 \times 10^{-2}$ |
| 40 | virul | $2 \times 10^{-2}$ |
| 41 | virolog | $2 \times 10^{-2}$ |
| 42 | mutant | $2 \times 10^{-2}$ |
| 43 | bind | $1.9 \times 10^{-2}$ |
| 44 | encod | $1.9 \times 10^{-2}$ |
| 45 | transcript | $1.9 \times 10^{-2}$ |
| 46 | cellular | $1.8 \times 10^{-2}$ |
| 47 | glycoprotein | $1.8 \times 10^{-2}$ |
| 48 | innat | $1.7 \times 10^{-2}$ |
| 49 | amino | $1.7 \times 10^{-2}$ |
| 50 | envelop | $1.7 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | entri | $1.6 \times 10^{-2}$ |
| 52 | nucleotid | $1.6 \times 10^{-2}$ |
| 53 | immunodefici | $1.6 \times 10^{-2}$ |
| 54 | titer | $1.6 \times 10^{-2}$ |
| 55 | inhibit | $1.6 \times 10^{-2}$ |
| 56 | mediat | $1.6 \times 10^{-2}$ |
| 57 | epitop | $1.6 \times 10^{-2}$ |
| 58 | hbv | $1.6 \times 10^{-2}$ |
| 59 | respiratori | $1.6 \times 10^{-2}$ |
| 60 | associ | $1.5 \times 10^{-2}$ |
| 61 | specif | $1.5 \times 10^{-2}$ |
| 62 | mice | $1.5 \times 10^{-2}$ |
| 63 | avian | $1.4 \times 10^{-2}$ |
| 64 | detect | $1.4 \times 10^{-2}$ |
| 65 | genet | $1.4 \times 10^{-2}$ |
| 66 | polymeras | $1.3 \times 10^{-2}$ |
| 67 | respons | $1.3 \times 10^{-2}$ |
| 68 | caus | $1.3 \times 10^{-2}$ |
| 69 | suggest | $1.3 \times 10^{-2}$ |
| 70 | target | $1.3 \times 10^{-2}$ |
| 71 | cd8 | $1.3 \times 10^{-2}$ |
| 72 | pathogenesi | $1.3 \times 10^{-2}$ |
| 73 | coinfect | $1.3 \times 10^{-2}$ |
| 74 | wild | $1.3 \times 10^{-2}$ |
| 75 | identifi | $1.2 \times 10^{-2}$ |
| 76 | strand | $1.2 \times 10^{-2}$ |
| 77 | induc | $1.2 \times 10^{-2}$ |
| 78 | simul | $1.2 \times 10^{-2}$ |
| 79 | inhibitor | $1.2 \times 10^{-2}$ |
| 80 | vitro | $1.1 \times 10^{-2}$ |
| 81 | therapi | $1.1 \times 10^{-2}$ |
| 82 | outbreak | $1.1 \times 10^{-2}$ |
| 83 | fever | $1.1 \times 10^{-2}$ |
| 84 | subtyp | $1.1 \times 10^{-2}$ |
| 85 | receptor | $1.1 \times 10^{-2}$ |
| 86 | copi | $1 \times 10^{-2}$ |
| 87 | role | $1 \times 10^{-2}$ |
| 88 | import | $1 \times 10^{-2}$ |
| 89 | inocul | $9.7 \times 10^{-3}$ |
| 90 | variant | $9.7 \times 10^{-3}$ |
| 91 | neutral | $9.7 \times 10^{-3}$ |
| 92 | clone | $9.2 \times 10^{-3}$ |
| 93 | cytokin | $9.1 \times 10^{-3}$ |
| 94 | dengu | $9.1 \times 10^{-3}$ |
| 95 | epidem | $8.9 \times 10^{-3}$ |
| 96 | energi | $8.9 \times 10^{-3}$ |
| 97 | conserv | $8.9 \times 10^{-3}$ |
| 98 | revers | $8.7 \times 10^{-3}$ |
| 99 | delet | $8.7 \times 10^{-3}$ |
| 100 | circul | $8.7 \times 10^{-3}$ |

Table D. 250 . The list of the top 100 words in the category Water Resources with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | water | $1.4 \times 10^{-1}$ |
| 2 | hydrolog | $6.9 \times 10^{-2}$ |
| 3 | river | $6.8 \times 10^{-2}$ |
| 4 | groundwat | $6 \times 10^{-2}$ |
| 5 | soil | $3.8 \times 10^{-2}$ |
| 6 | rainfal | $3.8 \times 10^{-2}$ |
| 7 | runoff | $3.8 \times 10^{-2}$ |
| 8 | flow | $3.7 \times 10^{-2}$ |
| 9 | flood | $3.5 \times 10^{-2}$ |
| 10 | catchment | $3.4 \times 10^{-2}$ |
| 11 | hydraul | $3.4 \times 10^{-2}$ |
| 12 | aquif | $3.4 \times 10^{-2}$ |
| 13 | basin | $3.4 \times 10^{-2}$ |
| 14 | wastewat | $3.1 \times 10^{-2}$ |
| 15 | climat | $2.7 \times 10^{-2}$ |
| 16 | sediment | $2.7 \times 10^{-2}$ |
| 17 | area | $2.4 \times 10^{-2}$ |
| 18 | irrig | $2.2 \times 10^{-2}$ |
| 19 | watersh | $2.2 \times 10^{-2}$ |
| 20 | patient | $2.1 \times 10^{-2}$ |
| 21 | remov | $1.9 \times 10^{-2}$ |
| 22 | precipit | $1.9 \times 10^{-2}$ |
| 23 | land | $1.9 \times 10^{-2}$ |
| 24 | discharg | $1.9 \times 10^{-2}$ |
| 25 | concentr | $1.8 \times 10^{-2}$ |
| 26 | season | $1.8 \times 10^{-2}$ |
| 27 | manag | $1.8 \times 10^{-2}$ |
| 28 | pollut | $1.7 \times 10^{-2}$ |
| 29 | model | $1.7 \times 10^{-2}$ |
| 30 | conclus | $1.6 \times 10^{-2}$ |
| 31 | evapotranspir | $1.6 \times 10^{-2}$ |
| 32 | agricultur | $1.6 \times 10^{-2}$ |
| 33 | contamin | $1.5 \times 10^{-2}$ |
| 34 | effluent | $1.5 \times 10^{-2}$ |
| 35 | spatial | $1.4 \times 10^{-2}$ |
| 36 | annual | $1.3 \times 10^{-2}$ |
| 37 | depth | $1.3 \times 10^{-2}$ |
| 38 | scale | $1.3 \times 10^{-2}$ |
| 39 | drainag | $1.3 \times 10^{-2}$ |
| 40 | clinic | $1.3 \times 10^{-2}$ |
| 41 | stream | $1.2 \times 10^{-2}$ |
| 42 | reservoir | $1.1 \times 10^{-2}$ |
| 43 | dissolv | $1.1 \times 10^{-2}$ |
| 44 | dam | $1.1 \times 10^{-2}$ |
| 45 | sludg | $1.1 \times 10^{-2}$ |
| 46 | environment | $1.1 \times 10^{-2}$ |
| 47 | urban | $1.1 \times 10^{-2}$ |
| 48 | lake | $1.1 \times 10^{-2}$ |
| 49 | zone | $1.1 \times 10^{-2}$ |
| 50 | drink | $1.1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | eros | $1.1 \times 10^{-2}$ |
| 52 | coastal | $1.1 \times 10^{-2}$ |
| 53 | storm | $1 \times 10^{-2}$ |
| 54 | ecosystem | $1 \times 10^{-2}$ |
| 55 | estim | $1 \times 10^{-2}$ |
| 56 | impact | $1 \times 10^{-2}$ |
| 57 | resourc | $1 \times 10^{-2}$ |
| 58 | region | $9.8 \times 10^{-3}$ |
| 59 | calibr | $9.8 \times 10^{-3}$ |
| 60 | indic | $9.4 \times 10^{-3}$ |
| 61 | bed | $9.3 \times 10^{-3}$ |
| 62 | condit | $9.1 \times 10^{-3}$ |
| 63 | slope | $9.1 \times 10^{-3}$ |
| 64 | period | $9 \times 10^{-3}$ |
| 65 | flux | $9 \times 10^{-3}$ |
| 66 | suspend | $8.9 \times 10^{-3}$ |
| 67 | sand | $8.9 \times 10^{-3}$ |
| 68 | variabl | $8.9 \times 10^{-3}$ |
| 69 | surfac | $8.7 \times 10^{-3}$ |
| 70 | locat | $8.7 \times 10^{-3}$ |
| 71 | suppli | $8.7 \times 10^{-3}$ |
| 72 | subsurfac | $8.5 \times 10^{-3}$ |
| 73 | station | $8.3 \times 10^{-3}$ |
| 74 | diseas | $8.3 \times 10^{-3}$ |
| 75 | drought | $8.3 \times 10^{-3}$ |
| 76 | shallow | $8.2 \times 10^{-3}$ |
| 77 | distribut | $8.1 \times 10^{-3}$ |
| 78 | veget | $8.1 \times 10^{-3}$ |
| 79 | weather | $7.8 \times 10^{-3}$ |
| 80 | background | $7.8 \times 10^{-3}$ |
| 81 | semiarid | $7.8 \times 10^{-3}$ |
| 82 | meteorolog | $7.5 \times 10^{-3}$ |
| 83 | cell | $7.5 \times 10^{-3}$ |
| 84 | batch | $7.5 \times 10^{-3}$ |
| 85 | tempor | $7.4 \times 10^{-3}$ |
| 86 | downstream | $7.4 \times 10^{-3}$ |
| 87 | cod | $7.3 \times 10^{-3}$ |
| 88 | sourc | $7.2 \times 10^{-3}$ |
| 89 | uncertainti | $7.2 \times 10^{-3}$ |
| 90 | studi | $7 \times 10^{-3}$ |
| 91 | wetland | $6.9 \times 10^{-3}$ |
| 92 | plant | $6.9 \times 10^{-3}$ |
| 93 | rain | $6.8 \times 10^{-3}$ |
| 94 | use | $6.8 \times 10^{-3}$ |
| 95 | transport | $6.7 \times 10^{-3}$ |
| 96 | upstream | $6.7 \times 10^{-3}$ |
| 97 | event | $6.7 \times 10^{-3}$ |
| 98 | adsorpt | $6.6 \times 10^{-3}$ |
| 99 | anthropogen | $6.6 \times 10^{-3}$ |
| 100 | demand | $6.6 \times 10^{-3}$ |

Table D.251. The list of the top 100 words in the category Women's Studies with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | women | $2.4 \times 10^{-1}$ |
| 2 | gender | $1.3 \times 10^{-1}$ |
| 3 | feminist | $1.2 \times 10^{-1}$ |
| 4 | sexual | $5.3 \times 10^{-2}$ |
| 5 | violenc | $5.1 \times 10^{-2}$ |
| 6 | articl | $5 \times 10^{-2}$ |
| 7 | social | $4.9 \times 10^{-2}$ |
| 8 | men | $3.7 \times 10^{-2}$ |
| 9 | femal | $3.6 \times 10^{-2}$ |
| 10 | femin | $3.4 \times 10^{-2}$ |
| 11 | argu | $3.3 \times 10^{-2}$ |
| 12 | polit | $3.3 \times 10^{-2}$ |
| 13 | masculin | $2.8 \times 10^{-2}$ |
| 14 | interview | $2.6 \times 10^{-2}$ |
| 15 | discours | $2.3 \times 10^{-2}$ |
| 16 | health | $2.3 \times 10^{-2}$ |
| 17 | draw | $2.1 \times 10^{-2}$ |
| 18 | intim | $2.1 \times 10^{-2}$ |
| 19 | explor | $2.1 \times 10^{-2}$ |
| 20 | partner | $2 \times 10^{-2}$ |
| 21 | victim | $2 \times 10^{-2}$ |
| 22 | examin | $1.9 \times 10^{-2}$ |
| 23 | narrat | $1.9 \times 10^{-2}$ |
| 24 | particip | $1.8 \times 10^{-2}$ |
| 25 | woman | $1.7 \times 10^{-2}$ |
| 26 | feminin | $1.7 \times 10^{-2}$ |
| 27 | cultur | $1.7 \times 10^{-2}$ |
| 28 | research | $1.5 \times 10^{-2}$ |
| 29 | result | $1.5 \times 10^{-2}$ |
| 30 | engag | $1.5 \times 10^{-2}$ |
| 31 | famili | $1.5 \times 10^{-2}$ |
| 32 | stereotyp | $1.5 \times 10^{-2}$ |
| 33 | ipv | $1.4 \times 10^{-2}$ |
| 34 | cell | $1.4 \times 10^{-2}$ |
| 35 | societi | $1.3 \times 10^{-2}$ |
| 36 | nation | $1.3 \times 10^{-2}$ |
| 37 | ident | $1.3 \times 10^{-2}$ |
| 38 | oppress | $1.3 \times 10^{-2}$ |
| 39 | critiqu | $1.2 \times 10^{-2}$ |
| 40 | mother | $1.2 \times 10^{-2}$ |
| 41 | context | $1.2 \times 10^{-2}$ |
| 42 | queer | $1.2 \times 10^{-2}$ |
| 43 | male | $1.2 \times 10^{-2}$ |
| 44 | heterosexu | $1.2 \times 10^{-2}$ |
| 45 | negoti | $1.2 \times 10^{-2}$ |
| 46 | discurs | $1.2 \times 10^{-2}$ |
| 47 | sex | $1.2 \times 10^{-2}$ |
| 48 | educ | $1.2 \times 10^{-2}$ |
| 49 | race | $1.2 \times 10^{-2}$ |
| 50 | live | $1.2 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | intersect | $1.2 \times 10^{-2}$ |
| 52 | care | $1.1 \times 10^{-2}$ |
| 53 | relationship | $1.1 \times 10^{-2}$ |
| 54 | way | $1.1 \times 10^{-2}$ |
| 55 | temperatur | $1.1 \times 10^{-2}$ |
| 56 | domest | $1.1 \times 10^{-2}$ |
| 57 | simul | $1.1 \times 10^{-2}$ |
| 58 | empower | $1.1 \times 10^{-2}$ |
| 59 | polici | $1.1 \times 10^{-2}$ |
| 60 | practic | $1.1 \times 10^{-2}$ |
| 61 | american | $1.1 \times 10^{-2}$ |
| 62 | activist | $1 \times 10^{-2}$ |
| 63 | effici | $1 \times 10^{-2}$ |
| 64 | among | $1 \times 10^{-2}$ |
| 65 | obtain | $1 \times 10^{-2}$ |
| 66 | seek | $1 \times 10^{-2}$ |
| 67 | scholar | $1 \times 10^{-2}$ |
| 68 | transnat | $1 \times 10^{-2}$ |
| 69 | perform | $9.9 \times 10^{-3}$ |
| 70 | norm | $9.9 \times 10^{-3}$ |
| 71 | perpetr | $9.8 \times 10^{-3}$ |
| 72 | focus | $9.8 \times 10^{-3}$ |
| 73 | lesbian | $9.7 \times 10^{-3}$ |
| 74 | paramet | $9.6 \times 10^{-3}$ |
| 75 | public | $9.5 \times 10^{-3}$ |
| 76 | properti | $9.5 \times 10^{-3}$ |
| 77 | pregnanc | $9.3 \times 10^{-3}$ |
| 78 | racial | $9.3 \times 10^{-3}$ |
| 79 | ideolog | $9.2 \times 10^{-3}$ |
| 80 | surfac | $9.2 \times 10^{-3}$ |
| 81 | patriarch | $9.1 \times 10^{-3}$ |
| 82 | psycholog | $9 \times 10^{-3}$ |
| 83 | survey | $8.9 \times 10^{-3}$ |
| 84 | qualit | $8.9 \times 10^{-3}$ |
| 85 | marriag | $8.8 \times 10^{-3}$ |
| 86 | debat | $8.8 \times 10^{-3}$ |
| 87 | labor | $8.8 \times 10^{-3}$ |
| 88 | abus | $8.8 \times 10^{-3}$ |
| 89 | show | $8.7 \times 10^{-3}$ |
| 90 | communiti | $8.6 \times 10^{-3}$ |
| 91 | work | $8.6 \times 10^{-3}$ |
| 92 | inequ | $8.6 \times 10^{-3}$ |
| 93 | energi | $8.4 \times 10^{-3}$ |
| 94 | right | $8.3 \times 10^{-3}$ |
| 95 | reproduct | $8.3 \times 10^{-3}$ |
| 96 | question | $8.1 \times 10^{-3}$ |
| 97 | ethnic | $8.1 \times 10^{-3}$ |
| 98 | system | $8.1 \times 10^{-3}$ |
| 99 | propos | $8.1 \times 10^{-3}$ |
| 100 | hegemon | $8.1 \times 10^{-3}$ |

Table D.252. The list of the top 100 words in the category Zoology with RIGs

| No. | Word | RIG |
| :---: | :---: | :---: |
| 1 | speci | $1.9 \times 10^{-1}$ |
| 2 | genus | $7.2 \times 10^{-2}$ |
| 3 | nov | $4 \times 10^{-2}$ |
| 4 | habitat | $3.9 \times 10^{-2}$ |
| 5 | femal | $3.9 \times 10^{-2}$ |
| 6 | male | $3.8 \times 10^{-2}$ |
| 7 | describ | $2.6 \times 10^{-2}$ |
| 8 | anim | $2.5 \times 10^{-2}$ |
| 9 | predat | $2.4 \times 10^{-2}$ |
| 10 | genera | $2.3 \times 10^{-2}$ |
| 11 | method | $2.2 \times 10^{-2}$ |
| 12 | reproduct | $2.1 \times 10^{-2}$ |
| 13 | morpholog | $2.1 \times 10^{-2}$ |
| 14 | record | $2 \times 10^{-2}$ |
| 15 | bird | $1.9 \times 10^{-2}$ |
| 16 | paper | $1.9 \times 10^{-2}$ |
| 17 | taxonom | $1.8 \times 10^{-2}$ |
| 18 | charact | $1.8 \times 10^{-2}$ |
| 19 | patient | $1.8 \times 10^{-2}$ |
| 20 | fish | $1.8 \times 10^{-2}$ |
| 21 | ecolog | $1.8 \times 10^{-2}$ |
| 22 | taxa | $1.7 \times 10^{-2}$ |
| 23 | specimen | $1.7 \times 10^{-2}$ |
| 24 | forag | $1.7 \times 10^{-2}$ |
| 25 | popul | $1.7 \times 10^{-2}$ |
| 26 | phylogenet | $1.7 \times 10^{-2}$ |
| 27 | mate | $1.7 \times 10^{-2}$ |
| 28 | mammal | $1.6 \times 10^{-2}$ |
| 29 | prey | $1.5 \times 10^{-2}$ |
| 30 | egg | $1.4 \times 10^{-2}$ |
| 31 | bodi | $1.4 \times 10^{-2}$ |
| 32 | fauna | $1.4 \times 10^{-2}$ |
| 33 | conspecif | $1.3 \times 10^{-2}$ |
| 34 | larva | $1.3 \times 10^{-2}$ |
| 35 | dorsal | $1.3 \times 10^{-2}$ |
| 36 | endem | $1.3 \times 10^{-2}$ |
| 37 | new | $1.3 \times 10^{-2}$ |
| 38 | breed | $1.2 \times 10^{-2}$ |
| 39 | primat | $1.2 \times 10^{-2}$ |
| 40 | season | $1.2 \times 10^{-2}$ |
| 41 | juvenil | $1.2 \times 10^{-2}$ |
| 42 | forest | $1.2 \times 10^{-2}$ |
| 43 | adult | $1.1 \times 10^{-2}$ |
| 44 | individu | $1.1 \times 10^{-2}$ |
| 45 | known | $1.1 \times 10^{-2}$ |
| 46 | brazil | $1.1 \times 10^{-2}$ |
| 47 | southern | $1.1 \times 10^{-2}$ |
| 48 | island | $1.1 \times 10^{-2}$ |
| 49 | collect | $1 \times 10^{-2}$ |
| 50 | abund | $1 \times 10^{-2}$ |


| No. | Word | RIG |
| :---: | :---: | :---: |
| 51 | conserv | $1 \times 10^{-2}$ |
| 52 | applic | $1 \times 10^{-2}$ |
| 53 | insect | $1 \times 10^{-2}$ |
| 54 | simul | $9.9 \times 10^{-3}$ |
| 55 | sex | $9.9 \times 10^{-3}$ |
| 56 | south | $9.8 \times 10^{-3}$ |
| 57 | perform | $9.7 \times 10^{-3}$ |
| 58 | pattern | $9.7 \times 10^{-3}$ |
| 59 | nest | $9.6 \times 10^{-3}$ |
| 60 | suggest | $9.4 \times 10^{-3}$ |
| 61 | gen | $9.4 \times 10^{-3}$ |
| 62 | clade | $9.3 \times 10^{-3}$ |
| 63 | sexual | $9.2 \times 10^{-3}$ |
| 64 | food | $9 \times 10^{-3}$ |
| 65 | ventral | $9 \times 10^{-3}$ |
| 66 | mitochondri | $8.9 \times 10^{-3}$ |
| 67 | trait | $8.9 \times 10^{-3}$ |
| 68 | properti | $8.7 \times 10^{-3}$ |
| 69 | improv | $8.7 \times 10^{-3}$ |
| 70 | solut | $8.5 \times 10^{-3}$ |
| 71 | eastern | $8.5 \times 10^{-3}$ |
| 72 | larval | $8.4 \times 10^{-3}$ |
| 73 | algorithm | $8.2 \times 10^{-3}$ |
| 74 | northern | $8.2 \times 10^{-3}$ |
| 75 | divers | $8.2 \times 10^{-3}$ |
| 76 | nematod | $8 \times 10^{-3}$ |
| 77 | propos | $8 \times 10^{-3}$ |
| 78 | distinguish | $8 \times 10^{-3}$ |
| 79 | taxon | $7.9 \times 10^{-3}$ |
| 80 | morphometr | $7.6 \times 10^{-3}$ |
| 81 | wildlif | $7.6 \times 10^{-3}$ |
| 82 | behaviour | $7.6 \times 10^{-3}$ |
| 83 | feed | $7.5 \times 10^{-3}$ |
| 84 | north | $7.4 \times 10^{-3}$ |
| 85 | offspr | $7.3 \times 10^{-3}$ |
| 86 | model | $7.2 \times 10^{-3}$ |
| 87 | inhabit | $7.2 \times 10^{-3}$ |
| 88 | comput | $7.1 \times 10^{-3}$ |
| 89 | geograph | $7.1 \times 10^{-3}$ |
| 90 | oper | $7.1 \times 10^{-3}$ |
| 91 | vertebr | $7.1 \times 10^{-3}$ |
| 92 | evolutionari | $7 \times 10^{-3}$ |
| 93 | conclus | $6.9 \times 10^{-3}$ |
| 94 | freshwat | $6.8 \times 10^{-3}$ |
| 95 | parasit | $6.7 \times 10^{-3}$ |
| 96 | wild | $6.7 \times 10^{-3}$ |
| 97 | use | $6.7 \times 10^{-3}$ |
| 98 | design | $6.4 \times 10^{-3}$ |
| 99 | hatch | $6.3 \times 10^{-3}$ |
| 100 | endang | $6.2 \times 10^{-3}$ |

## D.2. Number of Words for Each Category

Table D.253. Number of words for each category

| No. | Category | Number of <br> Words |
| :---: | :--- | ---: |
| 1 | Acoustics | 4198 |
| 2 | Agricultural Economics \& Policy | 2788 |
| 3 | Agricultural Engineering | 3727 |
| 4 | Agriculture, Dairy \& Animal Science | 4080 |
| 5 | Agriculture, Multidisciplinary | 4359 |
| 6 | Agronomy | 4180 |
| 7 | Allergy | 3466 |
| 8 | Anatomy \& Morphology | 3849 |
| 9 | Andrology | 2456 |
| 10 | Anesthesiology | 3695 |
| 11 | Anthropology | 4104 |
| 12 | Archaeology | 3689 |
| 13 | Architecture | 3243 |
| 14 | Area Studies | 3193 |
| 15 | Art | 3071 |
| 16 | Asian Studies | 2841 |
| 17 | Astronomy \& Astrophysics | 3768 |
| 18 | Audiology \& Speech-Language Pathology | 3467 |
| 19 | Automation \& Control Systems | 4365 |
| 20 | Behavioral Sciences | 4195 |
| 21 | Biochemical Research Methods | 4582 |
| 22 | Biochemistry \& Molecular Biology | 4755 |
| 23 | Biodiversity Conservation | 3915 |
| 24 | Biology | 4735 |
| 25 | Biophysics | 4501 |
| 26 | Biotechnology \& Applied Microbiology | 4737 |
| 27 | Business | 3649 |
| 28 | Business, Finance | 3392 |
| 29 | Cardiac \& Cardiovascular Systems | 4259 |
| 30 | Cell \& Tissue Engineering | 3686 |
| 31 | Cell Biology | 4525 |
| 32 | Chemistry, Analytical | 4622 |
| 33 | Chemistry, Applied | 4348 |
| 34 | Chemistry, Inorganic \& Nuclear |  |
|  |  | \begin{tabular}{l}
\end{tabular} |


| No. | Category | Number of Words |
| :---: | :---: | :---: |
| 35 | Chemistry, Medicinal | 4292 |
| 36 | Chemistry, Multidisciplinary | 4694 |
| 37 | Chemistry, Organic | 3904 |
| 38 | Chemistry, Physical | 4480 |
| 39 | Classics | 2114 |
| 40 | Clinical Neurology | 4483 |
| 41 | Communication | 3323 |
| 42 | Computer Science, Artificial Intelligence | 4600 |
| 43 | Computer Science, Cybernetics | 3518 |
| 44 | Computer Science, Hardware \& Architecture | 3983 |
| 45 | Computer Science, Information Systems | 4656 |
| 46 | Computer Science, Interdisciplinary Applications | 4834 |
| 47 | Computer Science, Software Engineering | 4100 |
| 48 | Computer Science, Theory \& Methods | 4662 |
| 49 | Construction \& Building Technology | 4060 |
| 50 | Criminology \& Penology | 3055 |
| 51 | Critical Care Medicine | 3972 |
| 52 | Crystallography | 3593 |
| 53 | Cultural Studies | 3018 |
| 54 | Dance | 1295 |
| 55 | Demography | 2719 |
| 56 | Dentistry, Oral Surgery \& Medicine | 4228 |
| 57 | Dermatology | 4150 |
| 58 | Developmental Biology | 3904 |
| 59 | Ecology | 4476 |
| 60 | Economics | 4027 |
| 61 | Education \& Educational Research | 4218 |
| 62 | Education, Scientific Disciplines | 4299 |
| 63 | Education, Special | 2885 |
| 64 | Electrochemistry | 4126 |
| 65 | Emergency Medicine | 3596 |
| 66 | Endocrinology \& Metabolism | 4436 |
| 67 | Energy \& Fuels | 4473 |
| 68 | Engineering, Aerospace | 3525 |
| 69 | Engineering, Biomedical | 4571 |
| 70 | Engineering, Chemical | 4379 |
| 71 | Engineering, Civil | 4266 |


| No. | Category | Number of Words |
| :---: | :---: | :---: |
| 72 | Engineering, Electrical \& Electronic | 4864 |
| 73 | Engineering, Environmental | 4439 |
| 74 | Engineering, Geological | 3345 |
| 75 | Engineering, Industrial | 4040 |
| 76 | Engineering, Manufacturing | 4155 |
| 77 | Engineering, Marine | 3027 |
| 78 | Engineering, Mechanical | 4577 |
| 79 | Engineering, Multidisciplinary | 4504 |
| 80 | Engineering, Ocean | 3028 |
| 81 | Engineering, Petroleum | 3164 |
| 82 | Entomology | 3874 |
| 83 | Environmental Sciences | 4865 |
| 84 | Environmental Studies | 3963 |
| 85 | Ergonomics | 3099 |
| 86 | Ethics | 3235 |
| 87 | Ethnic Studies | 2626 |
| 88 | Evolutionary Biology | 4123 |
| 89 | Family Studies | 2938 |
| 90 | Film, Radio, Television | 2457 |
| 91 | Fisheries | 3926 |
| 92 | Folklore | 1675 |
| 93 | Food Science \& Technology | 4569 |
| 94 | Forestry | 3864 |
| 95 | Gastroenterology \& Hepatology | 4138 |
| 96 | Genetics \& Heredity | 4610 |
| 97 | Geochemistry \& Geophysics | 3869 |
| 98 | Geography | 3691 |
| 99 | Geography, Physical | 3964 |
| 100 | Geology | 3302 |
| 101 | Geosciences, Multidisciplinary | 4395 |
| 102 | Geriatrics \& Gerontology | 4012 |
| 103 | Gerontology | 3511 |
| 104 | Green \& Sustainable Science \& Technology | 4018 |
| 105 | Health Care Sciences \& Services | 4119 |
| 106 | Health Policy \& Services | 3716 |
| 107 | Hematology | 4082 |
| 108 | History | 3497 |


| No. | Category | Number of Words |
| :---: | :---: | :---: |
| 109 | History \& Philosophy Of Science | 3698 |
| 110 | History Of Social Sciences | 2879 |
| 111 | Horticulture | 3864 |
| 112 | Hospitality, Leisure, Sport \& Tourism | 3383 |
| 113 | Humanities, Multidisciplinary | 3579 |
| 114 | Imaging Science \& Photographic Technology | 4090 |
| 115 | Immunology | 4421 |
| 116 | Industrial Relations \& Labor | 2676 |
| 117 | Infectious Diseases | 4358 |
| 118 | Information Science \& Library Science | 3672 |
| 119 | Instruments \& Instrumentation | 4420 |
| 120 | Integrative \& Complementary Medicine | 4060 |
| 121 | International Relations | 3260 |
| 122 | Language \& Linguistics | 3456 |
| 123 | Law | 3415 |
| 124 | Limnology | 3436 |
| 125 | Linguistics | 3593 |
| 126 | Literary Reviews | 953 |
| 127 | Literary Theory \& Criticism | 2473 |
| 128 | Literature | 3140 |
| 129 | Literature, African, Australian, Canadian | 1240 |
| 130 | Literature, American | 1380 |
| 131 | Literature, British Isles | 1895 |
| 132 | Literature, German, Dutch, Scandinavian | 1671 |
| 133 | Literature, Romance | 2145 |
| 134 | Literature, Slavic | 733 |
| 135 | Logic | 2450 |
| 136 | Management | 3860 |
| 137 | Marine \& Freshwater Biology | 4328 |
| 138 | Materials Science, Biomaterials | 4165 |
| 139 | Materials Science, Ceramics | 3301 |
| 140 | Materials Science, Characterization \& Testing | 3620 |
| 141 | Materials Science, Coatings \& Films | 3336 |
| 142 | Materials Science, Composites | 3129 |
| 143 | Materials Science, Multidisciplinary | 4798 |
| 144 | Materials Science, Paper \& Wood | 3144 |
| 145 | Materials Science, Textiles | 3353 |


| No. | Category | Number of Words |
| :---: | :---: | :---: |
| 146 | Mathematical \& Computational Biology | 4412 |
| 147 | Mathematics | 3341 |
| 148 | Mathematics, Applied | 4221 |
| 149 | Mathematics, Interdisciplinary Applications | 4241 |
| 150 | Mechanics | 4458 |
| 151 | Medical Ethics | 2795 |
| 152 | Medical Informatics | 4057 |
| 153 | Medical Laboratory Technology | 3799 |
| 154 | Medicine, General \& Internal | 4535 |
| 155 | Medicine, Legal | 3926 |
| 156 | Medicine, Research \& Experimental | 4639 |
| 157 | Medieval \& Renaissance Studies | 2445 |
| 158 | Metallurgy \& Metallurgical Engineering | 3820 |
| 159 | Meteorology \& Atmospheric Sciences | 4188 |
| 160 | Microbiology | 4480 |
| 161 | Microscopy | 3567 |
| 162 | Mineralogy | 3354 |
| 163 | Mining \& Mineral Processing | 3468 |
| 164 | Multidisciplinary Sciences | 4956 |
| 165 | Music | 2933 |
| 166 | Mycology | 3441 |
| 167 | Nanoscience \& Nanotechnology | 4470 |
| 168 | Neuroimaging | 3389 |
| 169 | Neurosciences | 4652 |
| 170 | Nuclear Science \& Technology | 4283 |
| 171 | Nursing | 3891 |
| 172 | Nutrition \& Dietetics | 4460 |
| 173 | Obstetrics \& Gynecology | 4175 |
| 174 | Oceanography | 4053 |
| 175 | Oncology | 4461 |
| 176 | Operations Research \& Management Science | 3940 |
| 177 | Ophthalmology | 4172 |
| 178 | Optics | 4674 |
| 179 | Ornithology | 2771 |
| 180 | Orthopedics | 4126 |
| 181 | Otorhinolaryngology | 3962 |
| 182 | Paleontology | 3388 |


| No. | Category | Number of Words |
| :---: | :---: | :---: |
| 183 | Parasitology | 4141 |
| 184 | Pathology | 4161 |
| 185 | Pediatrics | 4369 |
| 186 | Peripheral Vascular Disease | 4071 |
| 187 | Pharmacology \& Pharmacy | 4690 |
| 188 | Philosophy | 3258 |
| 189 | Physics, Applied | 4659 |
| 190 | Physics, Atomic, Molecular \& Chemical | 4041 |
| 191 | Physics, Condensed Matter | 4065 |
| 192 | Physics, Fluids \& Plasmas | 3895 |
| 193 | Physics, Mathematical | 3743 |
| 194 | Physics, Multidisciplinary | 4284 |
| 195 | Physics, Nuclear | 3478 |
| 196 | Physics, Particles \& Fields | 3248 |
| 197 | Physiology | 4480 |
| 198 | Planning \& Development | 3594 |
| 199 | Plant Sciences | 4531 |
| 200 | Poetry | 982 |
| 201 | Political Science | 3282 |
| 202 | Polymer Science | 4052 |
| 203 | Primary Health Care | 3134 |
| 204 | Psychiatry | 4296 |
| 205 | Psychology | 4029 |
| 206 | Psychology, Applied | 3412 |
| 207 | Psychology, Biological | 3396 |
| 208 | Psychology, Clinical | 3700 |
| 209 | Psychology, Developmental | 3379 |
| 210 | Psychology, Educational | 2853 |
| 211 | Psychology, Experimental | 3680 |
| 212 | Psychology, Mathematical | 2222 |
| 213 | Psychology, Multidisciplinary | 3998 |
| 214 | Psychology, Psychoanalysis | 2119 |
| 215 | Psychology, Social | 3188 |
| 216 | Public Administration | 2958 |
| 217 | Public, Environmental \& Occupational Health | 4805 |
| 218 | Radiology, Nuclear Medicine \& Medical Imaging | 4635 |
| 219 | Rehabilitation | 4025 |


| No. | Category | Number of <br> Words |
| :--- | :--- | ---: |
| 220 | Religion | 3317 |
| 221 | Remote Sensing | 4168 |
| 222 | Reproductive Biology | 3898 |
| 223 | Respiratory System | 4190 |
| 224 | Rheumatology | 3779 |
| 225 | Robotics | 3852 |
| 226 | Social Issues | 3064 |
| 227 | Social Sciences, Biomedical | 3655 |
| 228 | Social Sciences, Interdisciplinary | 4170 |
| 229 | Social Sciences, Mathematical Methods | 3339 |
| 230 | Social Work | 2947 |
| 231 | Sociology | 3715 |
| 232 | Soil Science | 3760 |
| 233 | Spectroscopy | 4267 |
| 234 | Sport Sciences | 4204 |
| 235 | Statistics \& Probability | 4152 |
| 236 | Substance Abuse | 3717 |
| 237 | Surgery | 4548 |
| 238 | Telecommunications | 4282 |
| 239 | Theater | 2336 |
| 240 | Thermodynamics | 3997 |
| 241 | Toxicology | 4476 |
| 242 | Transplantation | 3852 |
| 243 | Transportation | 3420 |
| 244 | Transportation Science \& Technology | 3578 |
| 245 | Tropical Medicine | 4054 |
| 246 | Urban Studies | 3385 |
| 247 | Urology \& Nephrology | 4102 |
| 248 | Veterinary Sciences | 4446 |
| 249 | Virology | 3953 |
| 250 | Water Resources | 4384 |
| 251 | Women's Studies | 3145 |
| 252 | Zoology |  |
|  |  | ( |

## D.3. List of Original Attributes (Categories) in Groups of Positive, Negative and Zero on the Principal Components

Table D.254. List of original attributes (categories) in group of positive on the $1^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC1) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Engineering, Multidisciplinary | 0.1294 |
| 2 | Engineering, Electrical \& Electronic | 0.1177 |
| 3 | Computer Science, Theory \& Methods | 0.1161 |
| 4 | Medicine, General \& Internal | 0.1155 |
| 5 | Computer Science, Interdisciplinary Applications | 0.1145 |
| 6 | Medicine, Research \& Experimental | 0.1125 |
| 7 | Engineering, Industrial | 0.1102 |
| 8 | Computer Science, Software Engineering | 0.1092 |
| 9 | Computer Science, Information Systems | 0.1081 |
| 10 | Engineering, Mechanical | 0.1065 |
| 11 | Automation \& Control Systems | 0.1058 |
| 12 | Computer Science, Cybernetics | 0.1049 |
| 13 | Materials Science, Multidisciplinary | 0.1045 |
| 14 | Computer Science, Artificial Intelligence | 0.1033 |
| 15 | Mechanics | 0.1027 |
| 16 | Physics, Applied | 0.1020 |
| 17 | Clinical Neurology | 0.1014 |
| 18 | Chemistry, Multidisciplinary | 0.1001 |
| 19 | Mathematics, Interdisciplinary Applications | 0.0999 |
| 20 | Physics, Multidisciplinary | 0.0990 |
| 21 | Computer Science, Hardware \& Architecture | 0.0983 |
| 22 | Operations Research \& Management Science | 0.0979 |
| 23 | Chemistry, Physical | 0.0968 |
| 24 | Engineering, Manufacturing | 0.0959 |
| 25 | Instruments \& Instrumentation | 0.0925 |
| 26 | Medical Laboratory Technology | 0.0924 |
| 27 | Mathematics, Applied | 0.0905 |
| 28 | Social Sciences, Interdisciplinary | 0.0897 |
| 29 | Physics, Condensed Matter | 0.0891 |
|  |  |  |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 30 | Medical Informatics | 0.0879 |
| 31 | Telecommunications | 0.0867 |
| 32 | Health Care Sciences \& Services | 0.0867 |
| 33 | Gastroenterology \& Hepatology | 0.0864 |
| 34 | Physics, Mathematical | 0.0854 |
| 35 | Public, Environmental \& Occupational Health | 0.0854 |
| 36 | Social Sciences, Mathematical Methods | 0.0853 |
| 37 | Multidisciplinary Sciences | 0.0834 |
| 38 | Surgery | 0.0832 |
| 39 | Rehabilitation | 0.0827 |
| 40 | Nanoscience \& Nanotechnology | 0.0825 |
| 41 | Chemistry, Applied | 0.0825 |
| 42 | Endocrinology \& Metabolism | 0.0820 |
| 43 | Hematology | 0.0810 |
| 44 | Critical Care Medicine | 0.0809 |
| 45 | Engineering, Chemical | 0.0808 |
| 46 | Peripheral Vascular Disease | 0.0808 |
| 47 | Mathematics | 0.0801 |
| 48 | Biology | 0.0798 |
| 49 | Engineering, Civil | 0.0786 |
| 50 | Primary Health Care | 0.0786 |
| 51 | Urology \& Nephrology | 0.0784 |
| 52 | Psychology, Multidisciplinary | 0.0782 |
| 53 | Respiratory System | 0.0781 |
| 54 | Planning \& Development | 0.0779 |
| 55 | Psychology, Social | 0.0778 |
| 56 | Pediatrics | 0.0776 |
| 57 | Energy \& Fuels | 0.0771 |
| 58 | Humanities, Multidisciplinary | 0.0765 |
| 59 | Psychology, Clinical | 0.0764 |
| 60 | Otorhinolaryngology | 0.0760 |
| 61 | Biochemistry \& Molecular Biology | 0.0752 |
| 62 | Sociology | 0.0749 |
| 63 | Physics, Atomic, Molecular \& Chemical | 0.0746 |
| 64 | Psychiatry | 0.0739 |
| 65 | Psychology | 0.0737 |
| 66 | Health Policy \& Services | 0.0735 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 67 | Social Issues | 0.0727 |
| 68 | Anesthesiology | 0.0719 |
| 69 | Emergency Medicine | 0.0719 |
| 70 | Oncology | 0.0718 |
| 71 | Rheumatology | 0.0716 |
| 72 | Physiology | 0.0707 |
| 73 | Management | 0.0706 |
| 74 | Social Sciences, Biomedical | 0.0704 |
| 75 | Cell Biology | 0.0701 |
| 76 | Environmental Studies | 0.0697 |
| 77 | Materials Science, Characterization \& Testing | 0.0695 |
| 78 | Information Science \& Library Science | 0.0691 |
| 79 | Biophysics | 0.0687 |
| 80 | Cardiac \& Cardiovascular Systems | 0.0684 |
| 81 | Geriatrics \& Gerontology | 0.0684 |
| 82 | Pharmacology \& Pharmacy | 0.0684 |
| 83 | Immunology | 0.0674 |
| 84 | Pathology | 0.0666 |
| 85 | Cultural Studies | 0.0665 |
| 86 | Green \& Sustainable Science \& Technology | 0.0657 |
| 87 | Logic | 0.0655 |
| 88 | Social Work | 0.0649 |
| 89 | Area Studies | 0.0648 |
| 90 | Infectious Diseases | 0.0617 |
| 91 | Statistics \& Probability | 0.0614 |
| 92 | Geography | 0.0646 |
| 93 | Chemistry, Organic | 0.0643 |
| 94 | Business | 0.0641 |
| 95 | Psychology, Applied | 0.0639 |
| 96 | Orthopedics | 0.0637 |
| 97 | Economics | 0.0635 |
| 98 | Psychology, Mathematical | 0.0634 |
| 99 | Asian Studies | 0.0628 |
| 100 | History Of Social Sciences | 0.0627 |
| 101 | Communication | 0.0626 |
| 102 | Materials Science, Coatings \& Films | 0.0623 |
| 103 | Biotechnology \& Applied Microbiology | 0 |
|  |  | 0 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 104 | Dermatology | 0.0611 |
| 105 | Transportation Science \& Technology | 0.0611 |
| 106 | Psychology, Biological | 0.0607 |
| 107 | Physics, Fluids \& Plasmas | 0.0604 |
| 108 | Public Administration | 0.0604 |
| 109 | Obstetrics \& Gynecology | 0.0602 |
| 110 | Gerontology | 0.0597 |
| 111 | History | 0.0595 |
| 112 | International Relations | 0.0594 |
| 113 | Mathematical \& Computational Biology | 0.0590 |
| 114 | Psychology, Experimental | 0.0590 |
| 115 | Integrative \& Complementary Medicine | 0.0584 |
| 116 | Literary Theory \& Criticism | 0.0582 |
| 117 | Optics | 0.0577 |
| 118 | Behavioral Sciences | 0.0572 |
| 119 | Psychology, Developmental | 0.0561 |
| 120 | History \& Philosophy Of Science | 0.0561 |
| 121 | Metallurgy \& Metallurgical Engineering | 0.0558 |
| 122 | Substance Abuse | 0.0556 |
| 123 | Materials Science, Ceramics | 0.0556 |
| 124 | Engineering, Aerospace | 0.0554 |
| 125 | Engineering, Environmental | 0.0554 |
| 126 | Spectroscopy | 0.0554 |
| 127 | Family Studies | 0.0551 |
| 128 | Imaging Science \& Photographic Technology | 0.0551 |
| 129 | Psychology, Educational | 0.0546 |
| 130 | Construction \& Building Technology | 0.0540 |
| 131 | Nursing | 0.0537 |
| 132 | Toxicology | 0.0536 |
| 133 | Demography | 0.0535 |
| 134 | Developmental Biology | 0.0533 |
| 135 | Sport Sciences | 0.0532 |
| 136 | Radiology, Nuclear Medicine \& Medical Imaging | 0.0532 |
| 137 | Tropical Medicine | 0.0529 |
| 138 | Ethnic Studies | 0.0524 |
| 139 | Chemistry, Inorganic \& Nuclear | 0.0521 |
| 140 | Literature, Romance | 0.0519 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 141 | Thermodynamics | 0.0517 |
| 142 | Political Science | 0.0517 |
| 143 | Anthropology | 0.0516 |
| 144 | Nutrition \& Dietetics | 0.0515 |
| 145 | Crystallography | 0.0513 |
| 146 | Philosophy | 0.0510 |
| 147 | Literature | 0.0503 |
| 148 | Polymer Science | 0.0498 |
| 149 | Neurosciences | 0.0497 |
| 150 | Allergy | 0.0494 |
| 151 | Robotics | 0.0485 |
| 152 | Engineering, Marine | 0.0483 |
| 153 | Dentistry, Oral Surgery \& Medicine | 0.0482 |
| 154 | Classics | 0.0481 |
| 155 | Engineering, Ocean | 0.0476 |
| 156 | Environmental Sciences | 0.0474 |
| 157 | Business, Finance | 0.0473 |
| 158 | Ergonomics | 0.0473 |
| 159 | Materials Science, Biomaterials | 0.0471 |
| 160 | Film, Radio, Television | 0.0470 |
| 161 | Engineering, Biomedical | 0.0469 |
| 162 | Genetics \& Heredity | 0.0425 |
| 163 | Industrial Relations \& Labor | 0.0423 |
| 164 | Literature, British Isles | 0.0463 |
| 165 | Education, Special | 0.0463 |
| 166 | Chemistry, Medicinal | 0.0460 |
| 167 | Veterinary Sciences | 0.0453 |
| 168 | Electrochemistry | 0.0452 |
| 169 | Food Science \& Technology | 0.0451 |
| 170 | Medieval \& Renaissance Studies | 0.0448 |
| 171 | Remote Sensing | 0.0445 |
| 172 | Zoology | 0.0437 |
| 173 | Physics, Nuclear | 0.0437 |
| 174 | Women's Studies | 0.0436 |
| 175 | Biochemical Research Methods | 0.0426 |
| 176 | Agricultural Engineering | 0.0426 |
| 177 | Folklore | 0 |
|  |  | 0 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 178 | Engineering, Geological | 0.0422 |
| 179 | Urban Studies | 0.0420 |
| 180 | Art | 0.0420 |
| 181 | Ecology | 0.0419 |
| 182 | Materials Science, Composites | 0.0418 |
| 183 | Microbiology | 0.0415 |
| 184 | Physics, Particles \& Fields | 0.0414 |
| 185 | Chemistry, Analytical | 0.0414 |
| 186 | Materials Science, Textiles | 0.0408 |
| 187 | Hospitality, Leisure, Sport \& Tourism | 0.0407 |
| 188 | Ethics | 0.0406 |
| 189 | Architecture | 0.0403 |
| 190 | Reproductive Biology | 0.0400 |
| 191 | Ophthalmology | 0.0399 |
| 192 | Plant Sciences | 0.0395 |
| 193 | Medical Ethics | 0.0390 |
| 194 | Transplantation | 0.0389 |
| 195 | Agriculture, Multidisciplinary | 0.0386 |
| 196 | Acoustics | 0.0382 |
| 197 | Evolutionary Biology | 0.0382 |
| 198 | Anatomy \& Morphology | 0.0380 |
| 199 | Education \& Educational Research | 0.0378 |
| 200 | Marine \& Freshwater Biology | 0.0377 |
| 201 | Literature, Slavic | 0.0374 |
| 202 | Language \& Linguistics | 0.0369 |
| 203 | Biodiversity Conservation | 0.0366 |
| 204 | Cell \& Tissue Engineering | 0.0362 |
| 205 | Religion | 0.0362 |
| 206 | Agricultural Economics \& Policy | 0.0359 |
| 207 | Nuclear Science \& Technology | 0.0357 |
| 208 | Water Resources | 0.0352 |
| 209 | Parasitology | 0.0351 |
| 210 | Neuroimaging | 0.0348 |
| 211 | Transportation | 0.0344 |
| 212 | Literature, African, Australian, Canadian | 0.0342 |
| 213 | Microscopy | 0.0340 |
| 214 | Geosciences, Multidisciplinary | 0.0339 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 215 | Agronomy | 0.0329 |
| 216 | Criminology \& Penology | 0.0329 |
| 217 | Law | 0.0327 |
| 218 | Entomology | 0.0327 |
| 219 | Mining \& Mineral Processing | 0.0325 |
| 220 | Literature, German, Dutch, Scandinavian | 0.0324 |
| 221 | Limnology | 0.0320 |

TABLE D.255. List of original attributes (categories) in group of zero on the $1^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Zero (PC1) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Virology | 0.0314 |
| 2 | Mycology | 0.0311 |
| 3 | Literature, American | 0.0306 |
| 4 | Literary Reviews | 0.0302 |
| 5 | Theater | 0.0301 |
| 6 | Astronomy \& Astrophysics | 0.0296 |
| 7 | Meteorology \& Atmospheric Sciences | 0.0294 |
| 8 | Linguistics | 0.0294 |
| 9 | Materials Science, Paper \& Wood | 0.0291 |
| 10 | Psychology, Psychoanalysis | 0.0282 |
| 11 | Engineering, Petroleum | 0.0278 |
| 12 | Geography, Physical | 0.0277 |
| 13 | Paleontology | 0.0271 |
| 14 | Agriculture, Dairy \& Animal Science | 0.0266 |
| 15 | Horticulture | 0.0266 |
| 16 | Andrology | 0.0260 |
| 17 | Fisheries | 0.0259 |
| 18 | Education, Scientific Disciplines | 0.0258 |
| 19 | Oceanography | 0.0253 |
| 20 | Geochemistry \& Geophysics | 0.0251 |
| 21 | Audiology \& Speech-Language Pathology | 0.0242 |
| 22 | Ornithology | 0.0239 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| ---: | :--- | ---: |
| 23 | Soil Science | 0.0225 |
| 24 | Mineralogy | 0.0223 |
| 25 | Archaeology | 0.0220 |
| 26 | Forestry | 0.0206 |
| 27 | Geology | 0.0206 |
| 28 | Poetry | 0.0204 |
| 29 | Music | 0.0172 |
| 30 | Dance | 0.0136 |
| 31 | Medicine, Legal | 0.0125 |

TABLE D.256. List of original attributes (categories) in group of positive on the $2^{t h}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC2) |  |  |
| :---: | :--- | ---: |
| No. Attribute | Component <br> Coefficient |  |
| 1 | Cultural Studies | 0.2044 |
| 2 | Humanities, Multidisciplinary | 0.1905 |
| 3 | Asian Studies | 0.1887 |
| 4 | History | 0.1877 |
| 5 | Area Studies | 0.1831 |
| 6 | Literature | 0.1765 |
| 7 | History Of Social Sciences | 0.1736 |
| 8 | Sociology | 0.1704 |
| 9 | Social Issues | 0.1688 |
| 10 | Literature, Romance | 0.1666 |
| 11 | International Relations | 0.1541 |
| 12 | Political Science | 0.1452 |
| 13 | Medieval \& Renaissance Studies | 0.1451 |
| 14 | Literary Theory \& Criticism | 0.1437 |
| 15 | Ethnic Studies | 0.1436 |
| 16 | History \& Philosophy Of Science | 0.1376 |
| 17 | Film, Radio, Television | 0.1367 |
| 18 | Communication | 0.1311 |
| 19 | Literature, African, Australian, Canadian | 0.1304 |
| 20 | Literature, British Isles | 0.1286 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 21 | Folklore | 0.1222 |
| 22 | Classics | 0.1200 |
| 23 | Literature, American | 0.1199 |
| 24 | Geography | 0.1196 |
| 25 | Literature, German, Dutch, Scandinavian | 0.1192 |
| 26 | Planning \& Development | 0.1180 |
| 27 | Art | 0.1165 |
| 28 | Anthropology | 0.1162 |
| 29 | Social Sciences, Interdisciplinary | 0.1150 |
| 30 | Religion | 0.1118 |
| 31 | Public Administration | 0.1090 |
| 32 | Philosophy | 0.1058 |
| 33 | Theater | 0.1000 |
| 34 | Ethics | 0.0982 |
| 35 | Literary Reviews | 0.0924 |
| 36 | Law | 0.0905 |
| 37 | Literature, Slavic | 0.0884 |
| 38 | Poetry | 0.0856 |
| 39 | Industrial Relations \& Labor | 0.0797 |
| 40 | Women's Studies | 0.0762 |
| 41 | Environmental Studies | 0.0755 |
| 42 | Social Work | 0.0733 |
| 43 | Demography | 0.0722 |
| 44 | Urban Studies | 0.0420 |
| 45 | Medical Ethics | 0.0418 |
| 46 | Social Sciences, Biomedical | 0.0675 |
| 47 | Language \& Linguistics | 0.0661 |
| 48 | Business | 0.0603 |
| 49 | Information Science \& Library Science | 0.0544 |
| 50 | Management | 0.0521 |
| 51 | Linguistics | 0.0475 |
| 52 | Music | 0.0462 |
| 53 | Economics | 0.0457 |
| 54 | Psychology, Applied | 0.0433 |
| 55 | Hospitality, Leisure, Sport \& Tourism | 0.0430 |
| 56 | Psychology, Social | 0.0429 |
| 57 | Psychology, Multidisciplinary | 0 |
|  |  | 0 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 58 | Education \& Educational Research | 0.0418 |
| 59 | Criminology \& Penology | 0.0412 |
| 60 | Architecture | 0.0411 |
| 61 | Psychology, Psychoanalysis | 0.0363 |
| 62 | Archaeology | 0.0362 |
| 63 | Dance | 0.0349 |

TABLE D.257. List of original attributes (categories) in group of zero on the $2^{t h}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.

| Zero (PC2) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Family Studies | 0.0279 |
| 2 | Psychology, Educational | 0.0255 |
| 3 | Business, Finance | 0.0236 |
| 4 | Agricultural Economics \& Policy | 0.0226 |
| 5 | Education, Scientific Disciplines | 0.0175 |
| 6 | Education, Special | 0.0087 |
| 7 | Psychology, Mathematical | 0.0083 |
| 8 | Health Policy \& Services | 0.0038 |
| 9 | Social Sciences, Mathematical Methods | 0.0014 |
| 10 | Chemistry, Analytical | 0.0012 |
| 11 | Psychology, Experimental | 0.0010 |
| 12 | Transportation | 0.0003 |
| 13 | Veterinary Sciences | -0.0314 |
| 14 | Instruments \& Instrumentation | -0.0314 |
| 15 | Mathematics, Applied | -0.0313 |
| 16 | Physics, Mathematical | -0.0305 |
| 17 | Dentistry, Oral Surgery \& Medicine | -0.0302 |
| 18 | Nutrition \& Dietetics | -0.0302 |
| 19 | Physiology | -0.0300 |
| 20 | Engineering, Marine | -0.0299 |
| 21 | Neurosciences | -0.0292 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 22 | Robotics | -0.0286 |
| 23 | Geosciences, Multidisciplinary | -0.0282 |
| 24 | Rehabilitation | -0.0276 |
| 25 | Engineering, Ocean | -0.0275 |
| 26 | Psychiatry | -0.0273 |
| 27 | Marine \& Freshwater Biology | -0.0272 |
| 28 | Reproductive Biology | -0.0270 |
| 29 | Engineering, Environmental | -0.0267 |
| 30 | Primary Health Care | -0.0266 |
| 31 | Ecology | -0.0259 |
| 32 | Engineering, Geological | -0.0258 |
| 33 | Agriculture, Multidisciplinary | -0.0250 |
| 34 | Chemistry, Multidisciplinary | -0.0248 |
| 35 | Ophthalmology | -0.0247 |
| 36 | Imaging Science \& Photographic Technology | -0.0245 |
| 37 | Plant Sciences | -0.0242 |
| 38 | Engineering, Chemical | -0.0242 |
| 39 | Parasitology | -0.0241 |
| 40 | Physics, Applied | -0.0240 |
| 41 | Radiology, Nuclear Medicine \& Medical Imaging | -0.0239 |
| 42 | Chemistry, Applied | -0.0237 |
| 43 | Limnology | -0.0235 |
| 44 | Zoology | -0.0230 |
| 45 | Agricultural Engineering | -0.0228 |
| 46 | Integrative \& Complementary Medicine | -0.0227 |
| 47 | Oceanography | -0.0227 |
| 48 | Chemistry, Physical | -0.0225 |
| 49 | Environmental Sciences | -0.0225 |
| 50 | Anatomy \& Morphology | -0.0224 |
| 51 | Entomology | -0.0223 |
| 52 | Agronomy | -0.0222 |
| 53 | Neuroimaging | -0.0220 |
| 54 | Green \& Sustainable Science \& Technology | -0.0217 |
| 55 | Genetics \& Heredity | -0.0212 |
| 56 | Evolutionary Biology | -0.0208 |
| 57 | Remote Sensing | -0.0207 |
| 58 | Mining \& Mineral Processing | -0.0207 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 59 | Physics, Fluids \& Plasmas | -0.0202 |
| 60 | Water Resources | -0.0200 |
| 61 | Biochemistry \& Molecular Biology | -0.0200 |
| 62 | Behavioral Sciences | -0.0199 |
| 63 | Geochemistry \& Geophysics | -0.0197 |
| 64 | Biodiversity Conservation | -0.0196 |
| 65 | Medical Informatics | -0.0196 |
| 66 | Horticulture | -0.0194 |
| 67 | Fisheries | -0.0192 |
| 68 | Toxicology | -0.0192 |
| 69 | Developmental Biology | -0.0182 |
| 70 | Geography, Physical | -0.0179 |
| 71 | Metallurgy \& Metallurgical Engineering | -0.0178 |
| 72 | Materials Science, Textiles | -0.0177 |
| 73 | Physics, Condensed Matter | -0.0175 |
| 74 | Cell Biology | -0.0171 |
| 75 | Agriculture, Dairy \& Animal Science | -0.0171 |
| 76 | Andrology | -0.0170 |
| 77 | Ornithology | -0.0169 |
| 78 | Physics, Atomic, Molecular \& Chemical | -0.0169 |
| 79 | Food Science \& Technology | -0.0168 |
| 80 | Engineering, Petroleum | -0.0165 |
| 81 | Psychology, Biological | -0.0164 |
| 82 | Geology | -0.0163 |
| 83 | Mineralogy | -0.0163 |
| 84 | Meteorology \& Atmospheric Sciences | -0.0162 |
| 85 | Microbiology | -0.0161 |
| 86 | Virology | -0.0161 |
| 87 | Physics, Nuclear | -0.0161 |
| 88 | Optics | -0.0156 |
| 89 | Forestry | -0.0156 |
| 90 | Health Care Sciences \& Services | -0.0156 |
| 91 | Physics, Particles \& Fields | -0.0153 |
| 92 | Nanoscience \& Nanotechnology | -0.0151 |
| 93 | Gerontology | -0.0149 |
| 94 | Materials Science, Composites | -0.0148 |
| 95 | Biotechnology \& Applied Microbiology | -0.0144 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 96 | Materials Science, Paper \& Wood | -0.0143 |
| 97 | Soil Science | -0.0141 |
| 98 | Nuclear Science \& Technology | -0.0133 |
| 99 | Thermodynamics | -0.0133 |
| 100 | Polymer Science | -0.0132 |
| 101 | Substance Abuse | -0.0130 |
| 102 | Paleontology | -0.0125 |
| 103 | Chemistry, Inorganic \& Nuclear | -0.0124 |
| 104 | Psychology | -0.0123 |
| 105 | Materials Science, Ceramics | -0.0123 |
| 106 | Statistics \& Probability | -0.0122 |
| 107 | Chemistry, Medicinal | -0.0122 |
| 108 | Mathematical \& Computational Biology | -0.0117 |
| 109 | Crystallography | -0.0114 |
| 110 | Biophysics | -0.0109 |
| 111 | Materials Science, Coatings \& Films | -0.0109 |
| 112 | Mathematics | -0.0107 |
| 113 | Chemistry, Organic | -0.0103 |
| 114 | Mycology | -0.0101 |
| 115 | Cell \& Tissue Engineering | -0.0099 |
| 116 | Astronomy \& Astrophysics | -0.0095 |
| 117 | Acoustics | -0.0093 |
| 118 | Public, Environmental \& Occupational Health | -0.0091 |
| 119 | Electrochemistry | -0.0087 |
| 120 | Logic | -0.0087 |
| 121 | Engineering, Biomedical | -0.0066 |
| 122 | Materials Science, Biomaterials | -0.0066 |
| 123 | Psychology, Clinical | -0.0064 |
| 124 | Spectroscopy | -0.0047 |
| 125 | Medicine, Legal | -0.0041 |
| 126 | Biochemical Research Methods | -0.0028 |
| 127 | Nursing | -0.0025 |
| 128 | Audiology \& Speech-Language Pathology | -0.0025 |
| 129 | Microscopy | -0.0019 |
| 130 | Ergonomics | -0.014 |
| 131 | Psychology, Developmental | -1 |

Table D.258. List of original attributes (categories) in group of negative on the $2^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC2) |  |  |
| :---: | :--- | ---: |
| No. Attribute | Component <br> Coefficient |  |
| 1 | Engineering, Multidisciplinary | -0.0759 |
| 2 | Clinical Neurology | -0.0686 |
| 3 | Medicine, General \& Internal | -0.0677 |
| 4 | Engineering, Electrical \& Electronic | -0.0655 |
| 5 | Computer Science, Theory \& Methods | -0.0621 |
| 6 | Gastroenterology \& Hepatology | -0.0612 |
| 7 | Surgery | -0.0605 |
| 8 | Medicine, Research \& Experimental | -0.0579 |
| 9 | Critical Care Medicine | -0.0574 |
| 10 | Computer Science, Interdisciplinary Applications | -0.0573 |
| 11 | Peripheral Vascular Disease | -0.0573 |
| 12 | Respiratory System | -0.0570 |
| 13 | Engineering, Industrial | -0.0570 |
| 14 | Automation \& Control Systems | -0.0556 |
| 15 | Computer Science, Information Systems | -0.0555 |
| 16 | Urology \& Nephrology | -0.0554 |
| 17 | Computer Science, Hardware \& Architecture | -0.0550 |
| 18 | Engineering, Manufacturing | -0.0546 |
| 19 | Computer Science, Artificial Intelligence | -0.0540 |
| 20 | Engineering, Mechanical | -0.0532 |
| 21 | Mathematics, Interdisciplinary Applications | -0.0524 |
| 22 | Computer Science, Software Engineering | -0.0524 |
| 23 | Cardiac \& Cardiovascular Systems | -0.0516 |
| 24 | Computer Science, Cybernetics | -0.0512 |
| 25 | Anesthesiology | -0.0510 |
| 26 | Hematology | -0.0506 |
| 27 | Otorhinolaryngology | -0.0503 |
| 28 | Pediatrics | -0.0502 |
| 29 | Mechanics | -0.0497 |
| 30 | Telecommunications | -0.0493 |
| 31 | Orthopedics | -0.0486 |
|  |  |  |
| 1 |  |  |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 32 | Emergency Medicine | -0.0477 |
| 33 | Rheumatology | -0.0464 |
| 34 | Endocrinology \& Metabolism | -0.0458 |
| 35 | Engineering, Civil | -0.0449 |
| 36 | Operations Research \& Management Science | -0.0447 |
| 37 | Dermatology | -0.0429 |
| 38 | Medical Laboratory Technology | -0.0426 |
| 39 | Oncology | -0.0412 |
| 40 | Infectious Diseases | -0.0403 |
| 41 | Immunology | -0.0392 |
| 42 | Obstetrics \& Gynecology | -0.0391 |
| 43 | Biology | -0.0386 |
| 44 | Pathology | -0.0365 |
| 45 | Geriatrics \& Gerontology | -0.0360 |
| 46 | Transportation Science \& Technology | -0.0352 |
| 47 | Energy \& Fuels | -0.0348 |
| 48 | Materials Science, Multidisciplinary | -0.0334 |
| 49 | Allergy | -0.0332 |
| 50 | Pharmacology \& Pharmacy | -0.0328 |
| 51 | Engineering, Aerospace | -0.0328 |
| 52 | Transplantation | -0.0326 |
| 53 | Materials Science, Characterization \& Testing | -0.0323 |
| 54 | Sport Sciences | -0.0317 |
| 55 | Tropical Medicine | -0.0317 |
| 56 | Construction \& Building Technology | -0.0317 |
| 57 | Physics, Multidisciplinary | -0.0316 |
| 58 | Multidisciplinary Sciences | -0.0316 |

TABLE D.259. List of original attributes (categories) in group of positive on the $3^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC3) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Multidisciplinary Sciences | 0.1711 |
| 2 | Biochemistry \& Molecular Biology | 0.1628 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 3 | Cell Biology | 0.1570 |
| 4 | Biology | 0.1392 |
| 5 | Computer Science, Information Systems | 0.1324 |
| 6 | Computer Science, Theory \& Methods | 0.1320 |
| 7 | Computer Science, Interdisciplinary Applications | 0.1303 |
| 8 | Computer Science, Artificial Intelligence | 0.1296 |
| 9 | Biotechnology \& Applied Microbiology | 0.1262 |
| 10 | Biophysics | 0.1261 |
| 11 | Developmental Biology | 0.1226 |
| 12 | Computer Science, Software Engineering | 0.1199 |
| 13 | Computer Science, Cybernetics | 0.1183 |
| 14 | Automation \& Control Systems | 0.1140 |
| 15 | Computer Science, Hardware \& Architecture | 0.1122 |
| 16 | Engineering, Industrial | 0.1109 |
| 17 | Physiology | 0.1104 |
| 18 | Operations Research \& Management Science | 0.1079 |
| 19 | Engineering, Electrical \& Electronic | 0.1044 |
| 20 | Engineering, Multidisciplinary | 0.0991 |
| 21 | Telecommunications | 0.0950 |
| 22 | Genetics \& Heredity | 0.0941 |
| 23 | Microbiology | 0.0938 |
| 24 | Toxicology | 0.0914 |
| 25 | Cell \& Tissue Engineering | 0.0880 |
| 26 | Pharmacology \& Pharmacy | 0.0880 |
| 27 | Medicine, Research \& Experimental | 0.0777 |
| 28 | Mathematics, Interdisciplinary Applications | 0.0746 |
| 29 | Mathematical \& Computational Biology | 0.0726 |
| 30 | Immunology | 0.0723 |
| 31 | Transportation Science \& Technology | 0.0718 |
| 32 | Plant Sciences | 0.0652 |
| 33 | Robotics | 0.0647 |
| 34 | Virology | 0.0634 |
| 35 | Chemistry, Medicinal | 0.0630 |
| 36 | Mycology | 0.0614 |
| 37 | Evolutionary Biology | 0.0601 |
| 38 | Imaging Science \& Photographic Technology | 0.0596 |
| 39 | Ecology | 0.0526 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 40 | Zoology | 0.0521 |
| 41 | Biochemical Research Methods | 0.0506 |
| 42 | Biodiversity Conservation | 0.0485 |
| 43 | Engineering, Manufacturing | 0.0469 |
| 44 | Social Sciences, Mathematical Methods | 0.0467 |
| 45 | Parasitology | 0.0435 |
| 46 | Anatomy \& Morphology | 0.0430 |
| 47 | Veterinary Sciences | 0.0428 |
| 48 | Marine \& Freshwater Biology | 0.0418 |
| 49 | Engineering, Aerospace | 0.0412 |
| 50 | Engineering, Civil | 0.0406 |
| 51 | Pathology | 0.0399 |
| 52 | Engineering, Marine | 0.0373 |
| 53 | Acoustics | 0.0369 |
| 54 | Entomology | 0.0364 |
| 55 | Ornithology | 0.0350 |
| 56 | Engineering, Mechanical | 0.0342 |
| 57 | Food Science \& Technology | 0.0339 |
| 58 | Mathematics, Applied | 0.0337 |
| 59 | Engineering, Ocean | 0.0329 |
| 60 | Fisheries | 0.0325 |

TABLE D.260. List of original attributes (categories) in group of zero on the $3^{\text {th }}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.

| Zero (PC3) |  |  |
| ---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Remote Sensing | 0.0305 |
| 2 | Agronomy | 0.0303 |
| 3 | Horticulture | 0.0295 |
| 4 | Logic | 0.0293 |
| 5 | Materials Science, Biomaterials | 0.0292 |
| 6 | Transportation | 0.0290 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 7 | Agriculture, Dairy \& Animal Science | 0.0283 |
| 8 | Literature, Romance | 0.0279 |
| 9 | Agriculture, Multidisciplinary | 0.0276 |
| 10 | Statistics \& Probability | 0.0273 |
| 11 | Literary Theory \& Criticism | 0.0273 |
| 12 | Reproductive Biology | 0.0267 |
| 13 | Literature, British Isles | 0.0259 |
| 14 | Engineering, Biomedical | 0.0258 |
| 15 | Medieval \& Renaissance Studies | 0.0255 |
| 16 | Architecture | 0.0248 |
| 17 | Economics | 0.0244 |
| 18 | Forestry | 0.0242 |
| 19 | Paleontology | 0.0236 |
| 20 | Literature | 0.0232 |
| 21 | Construction \& Building Technology | 0.0227 |
| 22 | Literary Reviews | 0.0209 |
| 23 | Classics | 0.0209 |
| 24 | Mathematics | 0.0203 |
| 25 | Geography, Physical | 0.0202 |
| 26 | Humanities, Multidisciplinary | 0.0198 |
| 27 | Literature, American | 0.0198 |
| 28 | Integrative \& Complementary Medicine | 0.0196 |
| 29 | Literature, Slavic | 0.0149 |
| 30 | Asian Studies | 0.0145 |
| 31 | Neurosciences | 0.0188 |
| 32 | History | 0.0184 |
| 33 | Oncology | 0.0181 |
| 34 | Literature, German, Dutch, Scandinavian | 0.0181 |
| 35 | Art | 0.0177 |
| 36 | Business, Finance | 0.0176 |
| 37 | Information Science \& Library Science | 0.0175 |
| 38 | Andrology | 0.0173 |
| 39 | History Of Social Sciences | 0.0173 |
| 40 | Philosophy | 0.0167 |
| 41 | Engineering, Geological | 0.0167 |
| 42 | Poetry | 0.0 |
| 43 | Mechanics | 0 |
|  |  | 0 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 44 | Folklore | 0.0142 |
| 45 | Soil Science | 0.0141 |
| 46 | Environmental Sciences | 0.0140 |
| 47 | Literature, African, Australian, Canadian | 0.0137 |
| 48 | History \& Philosophy Of Science | 0.0136 |
| 49 | Limnology | 0.0135 |
| 50 | Archaeology | 0.0131 |
| 51 | Language \& Linguistics | 0.0131 |
| 52 | Management | 0.0125 |
| 53 | Religion | 0.0117 |
| 54 | Theater | 0.0116 |
| 55 | Hematology | 0.0099 |
| 56 | Agricultural Economics \& Policy | 0.0099 |
| 57 | Meteorology \& Atmospheric Sciences | 0.0096 |
| 58 | Oceanography | 0.0083 |
| 59 | Cultural Studies | 0.0082 |
| 60 | Linguistics | 0.0081 |
| 61 | Planning \& Development | 0.0078 |
| 62 | Environmental Studies | 0.0076 |
| 63 | Area Studies | 0.0072 |
| 64 | Instruments \& Instrumentation | 0.0066 |
| 65 | Behavioral Sciences | 0.0066 |
| 66 | Business | 0.0066 |
| 67 | Geosciences, Multidisciplinary | 0.0064 |
| 68 | Film, Radio, Television | 0.0063 |
| 69 | Anthropology | 0.0061 |
| 70 | Geology | 0.0053 |
| 71 | International Relations | 0.0053 |
| 72 | Geography | 0.0047 |
| 73 | Endocrinology \& Metabolism | 0.0032 |
| 74 | Urban Studies | 0.0032 |
| 75 | Law | 0.0028 |
| 76 | Dance | 0.0022 |
| 77 | Music | 0.0022 |
| 78 | Political Science | 0.0019 |
| 79 | Agricultural Engineering | 0.0009 |
| 80 | Geochemistry \& Geophysics | 0.0006 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 81 | Medicine, Legal | 0.0002 |
| 82 | Water Resources | 0.0002 |
| 83 | Transplantation | -0.0307 |
| 84 | Psychology, Experimental | -0.0304 |
| 85 | Metallurgy \& Metallurgical Engineering | -0.0300 |
| 86 | Materials Science, Textiles | -0.0294 |
| 87 | Crystallography | -0.0293 |
| 88 | Social Issues | -0.0276 |
| 89 | Sociology | -0.0273 |
| 90 | Physics, Fluids \& Plasmas | -0.0268 |
| 91 | Criminology \& Penology | -0.0262 |
| 92 | Nutrition \& Dietetics | -0.0258 |
| 93 | Spectroscopy | -0.0246 |
| 94 | Optics | -0.0242 |
| 95 | Education \& Educational Research | -0.0239 |
| 96 | Infectious Diseases | -0.0219 |
| 97 | Energy \& Fuels | -0.0218 |
| 98 | Audiology \& Speech-Language Pathology | -0.0216 |
| 99 | Materials Science, Composites | -0.0202 |
| 100 | Education, Scientific Disciplines | -0.0197 |
| 101 | Thermodynamics | -0.0195 |
| 102 | Neuroimaging | -0.0191 |
| 103 | Physics, Nuclear | -0.0166 |
| 104 | Microscopy | -0.0163 |
| 105 | Chemistry, Inorganic \& Nuclear | -0.0158 |
| 106 | Materials Science, Characterization \& Testing | -0.0145 |
| 107 | Engineering, Environmental | -0.0136 |
| 108 | Industrial Relations \& Labor | -0.0136 |
| 109 | Materials Science, Paper \& Wood | -0.0135 |
| 110 | Tropical Medicine | -0.0134 |
| 111 | Hospitality, Leisure, Sport \& Tourism | -0.0116 |
| 112 | Physics, Mathematical | -0.0116 |
| 113 | Physics, Particles \& Fields | -0.0115 |
| 114 | Green \& Sustainable Science \& Technology | -0.0113 |
| 115 | Ethics | -0.0112 |
| 116 | Ethnic Studies | -0.0110 |
| 117 | Mineralogy | -0.0105 |


| No. | Attribute | Component <br> Coefficient |
| ---: | :--- | ---: |
| 118 | Chemistry, Applied | -0.0104 |
| 119 | Mining \& Mineral Processing | -0.0102 |
| 120 | Engineering, Petroleum | -0.0092 |
| 121 | Nuclear Science \& Technology | -0.0085 |
| 122 | Psychology, Mathematical | -0.0074 |
| 123 | Ergonomics | -0.0073 |
| 124 | Communication | -0.0071 |
| 125 | Psychology, Psychoanalysis | -0.0070 |
| 126 | Psychology, Biological | -0.0064 |
| 127 | Chemistry, Organic | -0.0046 |
| 128 | Chemistry, Analytical | -0.0032 |
| 129 | Public Administration | -0.0020 |
| 130 | Astronomy \& Astrophysics | -0.0019 |
| 131 | Social Sciences, Interdisciplinary | -0.0017 |

TABLE D.261. List of original attributes (categories) in group of negative on the $3^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC3) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Medicine, General \& Internal | -0.1713 |
| 2 | Health Care Sciences \& Services | -0.1592 |
| 3 | Primary Health Care | -0.1449 |
| 4 | Public, Environmental \& Occupational Health | -0.1448 |
| 5 | Health Policy \& Services | -0.1363 |
| 6 | Critical Care Medicine | -0.1320 |
| 7 | Clinical Neurology | -0.1303 |
| 8 | Rehabilitation | -0.1201 |
| 9 | Gerontology | -0.1180 |
| 10 | Emergency Medicine | -0.1167 |
| 11 | Geriatrics \& Gerontology | -0.1161 |
| 12 | Pediatrics | -0.1160 |
| 13 | Psychiatry | -0.1143 |
| 14 | Surgery | -0.1109 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 15 | Otorhinolaryngology | -0.1095 |
| 16 | Social Sciences, Biomedical | -0.1085 |
| 17 | Anesthesiology | -0.1066 |
| 18 | Respiratory System | -0.1051 |
| 19 | Psychology, Clinical | -0.1026 |
| 20 | Nursing | -0.1003 |
| 21 | Cardiac \& Cardiovascular Systems | -0.0977 |
| 22 | Urology \& Nephrology | -0.0928 |
| 23 | Materials Science, Multidisciplinary | -0.0923 |
| 24 | Rheumatology | -0.0885 |
| 25 | Orthopedics | -0.0883 |
| 26 | Gastroenterology \& Hepatology | -0.0880 |
| 27 | Peripheral Vascular Disease | -0.0865 |
| 28 | Physics, Applied | -0.0844 |
| 29 | Obstetrics \& Gynecology | -0.0822 |
| 30 | Social Work | -0.0822 |
| 31 | Nanoscience \& Nanotechnology | -0.0817 |
| 32 | Psychology, Multidisciplinary | -0.0805 |
| 33 | Psychology, Developmental | -0.0801 |
| 34 | Substance Abuse | -0.0768 |
| 35 | Family Studies | -0.0766 |
| 36 | Psychology | -0.0763 |
| 37 | Physics, Condensed Matter | -0.0713 |
| 38 | Chemistry, Physical | -0.0708 |
| 39 | Medical Laboratory Technology | -0.0677 |
| 40 | Education, Special | -0.0629 |
| 41 | Allergy | -0.0629 |
| 42 | Psychology, Social | -0.0580 |
| 43 | Chemistry, Multidisciplinary | -0.0559 |
| 44 | Physics, Multidisciplinary | -0.0513 |
| 45 | Ophthalmology | -0.0508 |
| 46 | Sport Sciences | -0.0506 |
| 47 | Dentistry, Oral Surgery \& Medicine | -0.0495 |
| 48 | Materials Science, Coatings \& Films | -0.0489 |
| 49 | Engineering, Chemical | -0.0485 |
| 50 | Dermatology | -0.0482 |
| 51 | Psychology, Educational | -0.0472 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 52 | Psychology, Applied | -0.0464 |
| 53 | Physics, Atomic, Molecular \& Chemical | -0.0439 |
| 54 | Medical Ethics | -0.0419 |
| 55 | Medical Informatics | -0.0412 |
| 56 | Demography | -0.0353 |
| 57 | Materials Science, Ceramics | -0.0344 |
| 58 | Electrochemistry | -0.0339 |
| 59 | Women's Studies | -0.0339 |
| 60 | Radiology, Nuclear Medicine \& Medical Imaging | -0.0336 |
| 61 | Polymer Science | -0.0329 |

TABLE D.262. List of original attributes (categories) in group of positive on the $4^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC4) |  |  |
| :---: | :--- | :---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Psychology, Multidisciplinary | 0.1975 |
| 2 | Psychology, Applied | 0.1690 |
| 3 | Psychology, Social | 0.1638 |
| 4 | Social Work | 0.1593 |
| 5 | Psychology | 0.1373 |
| 6 | Family Studies | 0.1363 |
| 7 | Psychology, Clinical | 0.1331 |
| 8 | Social Sciences, Biomedical | 0.1265 |
| 9 | Management | 0.1221 |
| 10 | Psychology, Developmental | 0.1195 |
| 11 | Psychology, Educational | 0.1174 |
| 12 | Business | 0.1161 |
| 13 | Psychology, Experimental | 0.1103 |
| 14 | Social Sciences, Interdisciplinary | 0.1088 |
| 15 | Education, Special | 0.1052 |
| 16 | Behavioral Sciences | 0.0976 |
| 17 | Information Science \& Library Science | 0.0974 |
| 18 | Psychology, Biological | 0.0963 |
| 19 | Planning \& Development | 0.0947 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 20 | Industrial Relations \& Labor | 0.0946 |
| 21 | Demography | 0.0924 |
| 22 | Environmental Studies | 0.0923 |
| 23 | Education \& Educational Research | 0.0910 |
| 24 | Social Issues | 0.0861 |
| 25 | Economics | 0.0855 |
| 26 | Sociology | 0.0827 |
| 27 | Health Policy \& Services | 0.0786 |
| 28 | Criminology \& Penology | 0.0782 |
| 29 | Ergonomics | 0.0760 |
| 30 | Education, Scientific Disciplines | 0.0757 |
| 31 | Public Administration | 0.0742 |
| 32 | Hospitality, Leisure, Sport \& Tourism | 0.0742 |
| 33 | Business, Finance | 0.0700 |
| 34 | Psychology, Mathematical | 0.0637 |
| 35 | Public, Environmental \& Occupational Health | 0.0611 |
| 36 | Agricultural Economics \& Policy | 0.0600 |
| 37 | Biophysics | 0.0559 |
| 38 | Urban Studies | 0.0558 |
| 39 | Gerontology | 0.0552 |
| 40 | Psychiatry | 0.0550 |
| 41 | Biology | 0.0543 |
| 42 | Biochemistry \& Molecular Biology | 0.0524 |
| 43 | Women's Studies | 0.0510 |
| 44 | Geography | 0.0491 |
| 45 | Nursing | 0.0465 |
| 46 | Biotechnology \& Applied Microbiology | 0.0459 |
| 47 | Multidisciplinary Sciences | 0.0439 |
| 48 | Substance Abuse | 0.0421 |
| 49 | Materials Science, Coatings \& Films | 0.0418 |
| 50 | Medical Ethics | 0.0418 |
| 51 | Genetics \& Heredity | 0.0411 |
| 52 | Nanoscience \& Nanotechnology | 0.0405 |
| 53 | Cell Biology | 0.0404 |
| 54 | Evolutionary Biology | 0.0400 |
| 55 | Developmental Biology | 0.0399 |
| 56 | Ecology | 0.0396 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 57 | Ethics | 0.0390 |
| 58 | Chemistry, Physical | 0.0386 |
| 59 | Neurosciences | 0.0382 |
| 60 | Biodiversity Conservation | 0.0374 |
| 61 | Transportation | 0.0370 |
| 62 | Materials Science, Biomaterials | 0.0355 |
| 63 | Physics, Condensed Matter | 0.0344 |
| 64 | Rehabilitation | 0.0341 |
| 65 | Social Sciences, Mathematical Methods | 0.0338 |
| 66 | Materials Science, Ceramics | 0.0321 |
| 67 | Microbiology | 0.0318 |

TABLE D.263. List of original attributes (categories) in group of zero on the $4^{\text {th }}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.

| Zero (PC4) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Biochemical Research Methods | 0.0313 |
| 2 | Communication | 0.0309 |
| 3 | Ethnic Studies | 0.0307 |
| 4 | Microscopy | 0.0300 |
| 5 | Spectroscopy | 0.0284 |
| 6 | Zoology | 0.0280 |
| 7 | Polymer Science | 0.0279 |
| 8 | Mycology | 0.0272 |
| 9 | Plant Sciences | 0.0268 |
| 10 | Ornithology | 0.0261 |
| 11 | Materials Science, Multidisciplinary | 0.0259 |
| 12 | Physics, Applied | 0.0253 |
| 13 | Electrochemistry | 0.0249 |
| 14 | Chemistry, Multidisciplinary | 0.0223 |
| 15 | Health Care Sciences \& Services | 0.0218 |
| 16 | Chemistry, Applied | 0.0216 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 17 | Audiology \& Speech-Language Pathology | 0.0200 |
| 18 | Metallurgy \& Metallurgical Engineering | 0.0199 |
| 19 | Chemistry, Inorganic \& Nuclear | 0.0186 |
| 20 | Chemistry, Analytical | 0.0179 |
| 21 | Marine \& Freshwater Biology | 0.0171 |
| 22 | Mathematical \& Computational Biology | 0.0167 |
| 23 | Chemistry, Medicinal | 0.0167 |
| 24 | Entomology | 0.0164 |
| 25 | Cell \& Tissue Engineering | 0.0163 |
| 26 | Anatomy \& Morphology | 0.0161 |
| 27 | Forestry | 0.0159 |
| 28 | Materials Science, Composites | 0.0156 |
| 29 | Engineering, Chemical | 0.0153 |
| 30 | Crystallography | 0.0152 |
| 31 | Physics, Atomic, Molecular \& Chemical | 0.0148 |
| 32 | Virology | 0.0140 |
| 33 | Political Science | 0.0134 |
| 34 | International Relations | 0.0130 |
| 35 | Neuroimaging | 0.0129 |
| 36 | Physiology | 0.0123 |
| 37 | Agronomy | 0.0120 |
| 38 | Geriatrics \& Gerontology | 0.0111 |
| 39 | Law | 0.00710 |
| 40 | Horticulture | 0.0109 |
| 41 | Toxicology | 0.0106 |
| 42 | Nuclear Science \& Technology | 0.0096 |
| 43 | Acoustics | 0.0094 |
| 44 | Materials Science, Textiles | 0.0093 |
| 45 | Medical Informatics | 0.0083 |
| 46 | Optics | 0.0082 |
| 47 | Fisheries | 0.0082 |
| 48 | Astronomy \& Astrophysics | 0.0082 |
| 49 | Agriculture, Multidisciplinary | 0.0079 |
| 50 | Food Science \& Technology | 0.0079 |
| 51 | Environmental Sciences | 0.0078 |
| 52 | Soil Science |  |
| 53 | Limnology | 0 |
|  |  | 0 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 54 | Physics, Nuclear | 0.0063 |
| 55 | Materials Science, Paper \& Wood | 0.0060 |
| 56 | Medicine, Legal | 0.0058 |
| 57 | Mineralogy | 0.0050 |
| 58 | Green \& Sustainable Science \& Technology | 0.0045 |
| 59 | Parasitology | 0.0044 |
| 60 | Engineering, Biomedical | 0.0043 |
| 61 | Operations Research \& Management Science | 0.0042 |
| 62 | Materials Science, Characterization \& Testing | 0.0038 |
| 63 | Anthropology | 0.0029 |
| 64 | Geography, Physical | 0.0012 |
| 65 | Oceanography | 0.0011 |
| 66 | Thermodynamics | 0.0011 |
| 67 | Physics, Particles \& Fields | 0.0010 |
| 68 | Agricultural Engineering | 0.0000 |
| 69 | Pathology | -0.0305 |
| 70 | Tropical Medicine | -0.0293 |
| 71 | Automation \& Control Systems | -0.0289 |
| 72 | Archaeology | -0.0279 |
| 73 | Language \& Linguistics | -0.0262 |
| 74 | Physics, Mathematical | -0.0259 |
| 75 | Computer Science, Interdisciplinary Applications | -0.0242 |
| 76 | Engineering, Mechanical | -0.0228 |
| 77 | Architecture | -0.0227 |
| 78 | Mechanics | -0.0219 |
| 79 | Computer Science, Theory \& Methods | -0.0217 |
| 80 | Mathematics, Applied | -0.0196 |
| 81 | Pharmacology \& Pharmacy | -0.0191 |
| 82 | Computer Science, Hardware \& Architecture | -0.0191 |
| 83 | Engineering, Aerospace | -0.0187 |
| 84 | Area Studies | -0.0186 |
| 85 | Computer Science, Software Engineering | -0.0182 |
| 86 | Engineering, Manufacturing | -0.0181 |
| 87 | Engineering, Civil | -0.0178 |
| 88 | Computer Science, Artificial Intelligence | -0.0178 |
| 89 | Telecommunications | -0.0175 |
| 90 | Immunology | -0.0174 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 91 | Physics, Multidisciplinary | -0.0171 |
| 92 | Music | -0.0167 |
| 93 | Dance | -0.0165 |
| 94 | Logic | -0.0164 |
| 95 | Reproductive Biology | -0.0131 |
| 96 | Primary Health Care | -0.0129 |
| 97 | Mathematics | -0.0128 |
| 98 | Statistics \& Probability | -0.0127 |
| 99 | Psychology, Psychoanalysis | -0.0124 |
| 100 | Instruments \& Instrumentation | -0.0117 |
| 101 | Construction \& Building Technology | -0.0112 |
| 102 | Sport Sciences | -0.0106 |
| 103 | Energy \& Fuels | -0.0106 |
| 104 | Computer Science, Information Systems | -0.0104 |
| 105 | Geosciences, Multidisciplinary | -0.0100 |
| 106 | Engineering, Ocean | -0.0100 |
| 107 | Engineering, Marine | -0.0100 |
| 108 | Veterinary Sciences | -0.0091 |
| 109 | Nutrition \& Dietetics | -0.0083 |
| 110 | Robotics | -0.0082 |
| 111 | Andrology | -0.0080 |
| 112 | Geology | -0.0076 |
| 113 | Mining \& Mineral Processing | -0.0071 |
| 114 | Remote Sensing | -0.0066 |
| 115 | Engineering, Industrial | -0.0066 |
| 116 | Physics, Fluids \& Plasmas | -0.0062 |
| 117 | Imaging Science \& Photographic Technology | -0.0061 |
| 118 | Geochemistry \& Geophysics | -0.0059 |
| 119 | Transportation Science \& Technology | -0.0047 |
| 120 | Engineering, Geological | -0.0030 |
| 121 | Agriculture, Dairy \& Animal Science | -0.0027 |
| 122 | Linguistics | -0.0025 |
| 123 | Computer Science, Cybernetics | -0.0020 |
| 124 | Meteorology \& Atmospheric Sciences | -0.0019 |
| 125 | Chemistry, Organic | -0019 |
| 126 | Paleontology | -1 |
| 127 | Engineering, Environmental |  |


| No. | Attribute | Component <br> Coefficient |
| ---: | :--- | ---: |
| 128 | Engineering, Petroleum | -0.0015 |
| 129 | Water Resources | -0.0011 |

TABLE D.264. List of original attributes (categories) in group of negative on the $4^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC4) |  |  |
| :---: | :--- | ---: |
| No. Attribute | Component <br> Coefficient |  |
| 1 | Literature | -0.1482 |
| 2 | Surgery | -0.1389 |
| 3 | Literature, Romance | -0.1364 |
| 4 | Literature, British Isles | -0.1318 |
| 5 | Literary Theory \& Criticism | -0.1295 |
| 6 | Gastroenterology \& Hepatology | -0.1279 |
| 7 | Medieval \& Renaissance Studies | -0.1242 |
| 8 | Critical Care Medicine | -0.1241 |
| 9 | Respiratory System | -0.1227 |
| 10 | Literature, American | -0.1203 |
| 11 | Medicine, General \& Internal | -0.1171 |
| 12 | Cardiac \& Cardiovascular Systems | -0.1162 |
| 13 | Peripheral Vascular Disease | -0.1155 |
| 14 | Urology \& Nephrology | -0.1152 |
| 15 | Classics | -0.1145 |
| 16 | Otorhinolaryngology | -0.1128 |
| 17 | Literature, German, Dutch, Scandinavian | -0.1118 |
| 18 | Anesthesiology | -0.1118 |
| 19 | Medical Laboratory Technology | -0.1088 |
| 20 | Literature, African, Australian, Canadian | -0.1088 |
| 21 | Clinical Neurology | -0.1087 |
| 22 | Poetry | -0.1041 |
| 23 | Asian Studies | -0.1015 |
| 24 | Rheumatology | -0.0990 |
| 25 | Orthopedics | -0.0990 |
| 26 | Emergency Medicine | -0.0988 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 27 | Literature, Slavic | -0.0953 |
| 28 | Literary Reviews | -0.0949 |
| 29 | Humanities, Multidisciplinary | -0.0907 |
| 30 | Art | -0.0857 |
| 31 | History | -0.0835 |
| 32 | Dermatology | -0.0807 |
| 33 | Folklore | -0.0704 |
| 34 | Cultural Studies | -0.0703 |
| 35 | Hematology | -0.0687 |
| 36 | Theater | -0.0670 |
| 37 | Dentistry, Oral Surgery \& Medicine | -0.0656 |
| 38 | Allergy | -0.0646 |
| 39 | Transplantation | -0.0628 |
| 40 | Film, Radio, Television | -0.0614 |
| 41 | Obstetrics \& Gynecology | -0.0606 |
| 42 | Oncology | -0.0573 |
| 43 | Ophthalmology | -0.0564 |
| 44 | Medicine, Research \& Experimental | -0.0563 |
| 45 | Philosophy | -0.0560 |
| 46 | Religion | -0.0559 |
| 47 | Radiology, Nuclear Medicine \& Medical Imaging | -0.0507 |
| 48 | History \& Philosophy Of Science | -0.0495 |
| 49 | Integrative \& Complementary Medicine | -0.0472 |
| 50 | Pediatrics | -0.0467 |
| 51 | Endocrinology \& Metabolism | -0.0448 |
| 52 | Engineering, Multidisciplinary | -0.0419 |
| 53 | History Of Social Sciences | -0.0415 |
| 54 | Infectious Diseases | -0.0387 |
| 55 | Mathematics, Interdisciplinary Applications | -0.0366 |
| 56 | Engineering, Electrical \& Electronic | -0.0319 |
|  |  |  |

Table D.265. List of original attributes (categories) in group of positive on the $5^{t h}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC5) |  |  |
| :---: | :---: | :---: |
| No. | Attribute | Component Coefficient |
| 1 | Ecology | 0.2341 |
| 2 | Biodiversity Conservation | 0.2128 |
| 3 | Environmental Sciences | 0.2122 |
| 4 | Marine \& Freshwater Biology | 0.2103 |
| 5 | Geosciences, Multidisciplinary | 0.2101 |
| 6 | Limnology | 0.2056 |
| 7 | Geography, Physical | 0.1976 |
| 8 | Oceanography | 0.1783 |
| 9 | Water Resources | 0.1724 |
| 10 | Zoology | 0.1493 |
| 11 | Paleontology | 0.1397 |
| 12 | Forestry | 0.1384 |
| 13 | Agronomy | 0.1314 |
| 14 | Evolutionary Biology | 0.1306 |
| 15 | Geology | 0.1298 |
| 16 | Environmental Studies | 0.1263 |
| 17 | Agriculture, Multidisciplinary | 0.1263 |
| 18 | Soil Science | 0.1261 |
| 19 | Meteorology \& Atmospheric Sciences | 0.1226 |
| 20 | Plant Sciences | 0.1203 |
| 21 | Ornithology | 0.1189 |
| 22 | Engineering, Environmental | 0.1185 |
| 23 | Geochemistry \& Geophysics | 0.1127 |
| 24 | Fisheries | 0.1028 |
| 25 | Entomology | 0.1019 |
| 26 | Horticulture | 0.0994 |
| 27 | Geography | 0.0923 |
| 28 | Planning \& Development | 0.0888 |
| 29 | Agricultural Economics \& Policy | 0.0876 |
| 30 | Green \& Sustainable Science \& Technology | 0.0835 |
| 31 | Biology | 0.0835 |
| 32 | Agricultural Engineering | 0.0830 |


| No. | Attribute | Component <br> Coefficient |
| :--- | :--- | ---: |
| 33 | Urban Studies | 0.0820 |
| 34 | Mycology | 0.0784 |
| 35 | Economics | 0.0761 |
| 36 | Engineering, Geological | 0.0698 |
| 37 | Public Administration | 0.0661 |
| 38 | International Relations | 0.0635 |
| 39 | Mineralogy | 0.0610 |
| 40 | Business, Finance | 0.0595 |
| 41 | Political Science | 0.0518 |
| 42 | Engineering, Ocean | 0.0501 |
| 43 | Area Studies | 0.0501 |
| 44 | Mining \& Mineral Processing | 0.0475 |
| 45 | Business | 0.0442 |
| 46 | Social Sciences, Mathematical Methods | 0.0441 |
| 47 | Engineering, Petroleum | 0.0433 |
| 48 | Archaeology | 0.0395 |
| 49 | Remote Sensing | 0.0393 |
| 50 | Surgery | 0.0389 |
| 51 | Engineering, Chemical | 0.0385 |
| 52 | Anthropology | 0.0379 |
| 53 | Radiology, Nuclear Medicine \& Medical Imaging | 0.0369 |
| 54 | Parasitology | 0.0357 |
| 55 | Management | 0.0351 |
|  |  |  |

TABLE D.266. List of original attributes (categories) in group of zero on the $5^{t h}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.

| Zero (PC5) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Engineering, Marine | 0.0307 |
| 2 | History Of Social Sciences | 0.0301 |
| 3 | Genetics \& Heredity | 0.0294 |
| 4 | Medical Laboratory Technology | 0.0290 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 5 | Gastroenterology \& Hepatology | 0.0286 |
| 6 | Industrial Relations \& Labor | 0.0258 |
| 7 | Tropical Medicine | 0.0257 |
| 8 | Physics, Multidisciplinary | 0.0251 |
| 9 | Physics, Applied | 0.0245 |
| 10 | Engineering, Biomedical | 0.0243 |
| 11 | Emergency Medicine | 0.0236 |
| 12 | Materials Science, Multidisciplinary | 0.0232 |
| 13 | Demography | 0.0227 |
| 14 | Cardiac \& Cardiovascular Systems | 0.0226 |
| 15 | Engineering, Civil | 0.0215 |
| 16 | Respiratory System | 0.0210 |
| 17 | Anesthesiology | 0.0209 |
| 18 | Materials Science, Paper \& Wood | 0.0209 |
| 19 | Microbiology | 0.0198 |
| 20 | Critical Care Medicine | 0.0194 |
| 21 | Orthopedics | 0.0193 |
| 22 | Food Science \& Technology | 0.0183 |
| 23 | Physics, Condensed Matter | 0.0182 |
| 24 | Agriculture, Dairy \& Animal Science | 0.0179 |
| 25 | History | 0.0172 |
| 26 | Materials Science, Characterization \& Testing | 0.0172 |
| 27 | Energy \& Fuels | 0.0170 |
| 28 | Law | 0.0170 |
| 29 | Nanoscience \& Nanotechnology | 0.0169 |
| 30 | Urology \& Nephrology | 0.0168 |
| 31 | Dermatology | 0.0154 |
| 32 | Rheumatology | 0.0153 |
| 33 | Ethnic Studies | 0.0152 |
| 34 | Otorhinolaryngology | 0.0150 |
| 35 | Materials Science, Composites | 0.0147 |
| 36 | Sociology | 0.0146 |
| 37 | Transportation | 0.0143 |
| 38 | Materials Science, Coatings \& Films | 0.0140 |
| 39 | Architecture | 0.0139 |
| 40 | Physics, Fluids \& Plasmas | 0.0137 |
| 41 | Biotechnology \& Applied Microbiology | 0.0136 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 42 | Social Issues | 0.0128 |
| 43 | Oncology | 0.0127 |
| 44 | Metallurgy \& Metallurgical Engineering | 0.0127 |
| 45 | Clinical Neurology | 0.0122 |
| 46 | Materials Science, Textiles | 0.0122 |
| 47 | Chemistry, Physical | 0.0120 |
| 48 | Medicine, General \& Internal | 0.0113 |
| 49 | Astronomy \& Astrophysics | 0.0106 |
| 50 | Microscopy | 0.0102 |
| 51 | Optics | 0.0100 |
| 52 | Physics, Atomic, Molecular \& Chemical | 0.0098 |
| 53 | Construction \& Building Technology | 0.0096 |
| 54 | Transplantation | 0.0096 |
| 55 | Peripheral Vascular Disease | 0.0085 |
| 56 | Electrochemistry | 0.0085 |
| 57 | Nuclear Science \& Technology | 0.0084 |
| 58 | Physics, Particles \& Fields | 0.0083 |
| 59 | Cultural Studies | 0.0079 |
| 60 | Hospitality, Leisure, Sport \& Tourism | 0.0077 |
| 61 | Thermodynamics | 0.0072 |
| 62 | Hematology | 0.0071 |
| 63 | Infectious Diseases | 0.0071 |
| 64 | Physics, Nuclear | 0.0069 |
| 65 | Physics, Mathematical | 0.0058 |
| 66 | Dentistry, Oral Surgery \& Medicine | 0.0052 |
| 67 | Veterinary Sciences | 0.0049 |
| 68 | Asian Studies | 0.0047 |
| 69 | Materials Science, Ceramics | 0.0045 |
| 70 | Pathology | 0.0045 |
| 71 | Social Sciences, Interdisciplinary | 0.0041 |
| 72 | Ophthalmology | 0.0036 |
| 73 | Polymer Science | 0.0031 |
| 74 | Chemistry, Applied | 0.0018 |
| 75 | Allergy | 0.0014 |
| 76 | Virology | 0.0007 |
| 77 | Literature, German, Dutch, Scandinavian | -0.0301 |
| 78 | Sport Sciences | -0.0292 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 79 | Literature, Slavic | -0.0280 |
| 80 | Mathematical \& Computational Biology | -0.0271 |
| 81 | Psychology, Mathematical | -0.0270 |
| 82 | Chemistry, Medicinal | -0.0259 |
| 83 | Nutrition \& Dietetics | -0.0243 |
| 84 | Literature, African, Australian, Canadian | -0.0243 |
| 85 | Literature, Romance | -0.0239 |
| 86 | Classics | -0.0222 |
| 87 | Nursing | -0.0221 |
| 88 | Imaging Science \& Photographic Technology | -0.0208 |
| 89 | Pediatrics | -0.0208 |
| 90 | Criminology \& Penology | -0.0207 |
| 91 | Information Science \& Library Science | -0.0199 |
| 92 | Instruments \& Instrumentation | -0.0199 |
| 93 | Mathematics, Applied | -0.0195 |
| 94 | Engineering, Aerospace | -0.0188 |
| 95 | Medical Informatics | -0.0182 |
| 96 | Integrative \& Complementary Medicine | -0.0177 |
| 97 | Immunology | -0.0176 |
| 98 | Developmental Biology | -0.0175 |
| 99 | Women's Studies | -0.0175 |
| 100 | Engineering, Mechanical | -0.0172 |
| 101 | Chemistry, Organic | -0.0172 |
| 102 | Health Policy \& Services | -0.0170 |
| 103 | Engineering, Manufacturing | -0.0170 |
| 104 | Toxicology | -0.0166 |
| 105 | Medieval \& Renaissance Studies | -0.0158 |
| 106 | Reproductive Biology | -0.0157 |
| 107 | Logic | -0.0153 |
| 108 | Medicine, Research \& Experimental | -0.0144 |
| 109 | Acoustics | -0.0142 |
| 110 | Cell \& Tissue Engineering | -0.0141 |
| 111 | Andrology | -0.0140 |
| 112 | Theater | -0.0136 |
| 113 | Philosophy | -0.0131 |
| 114 | Music | -0.0121 |
| 115 | Multidisciplinary Sciences | -0.0118 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 116 | Biochemical Research Methods | -0.0117 |
| 117 | Chemistry, Inorganic \& Nuclear | -0.0116 |
| 118 | Psychology, Psychoanalysis | -0.0112 |
| 119 | History \& Philosophy Of Science | -0.0111 |
| 120 | Statistics \& Probability | -0.0107 |
| 121 | Chemistry, Multidisciplinary | -0.0106 |
| 122 | Mechanics | -0.0102 |
| 123 | Art | -0.0100 |
| 124 | Humanities, Multidisciplinary | -0.0099 |
| 125 | Religion | -0.0090 |
| 126 | Obstetrics \& Gynecology | -0.0090 |
| 127 | Dance | -0.0089 |
| 128 | Medicine, Legal | -0.0086 |
| 129 | Medical Ethics | -0.0079 |
| 130 | Neuroimaging | -0.0078 |
| 131 | Anatomy \& Morphology | -0.0067 |
| 132 | Spectroscopy | -0.0054 |
| 133 | Ethics | -0.0054 |
| 134 | Mathematics | -0.0053 |
| 135 | Folklore | -0.0049 |
| 136 | Health Care Sciences \& Services | -0.0048 |
| 137 | Materials Science, Biomaterials | -0.0040 |
| 138 | Chemistry, Analytical | -0.0037 |
| 139 | Crystallography | -0.0032 |
| 140 | Film, Radio, Television | -0.0031 |
| 141 | Primary Health Care | -0.0020 |
| 142 | Communication | -0.0002 |
|  |  |  |

TABLE D.267. List of original attributes (categories) in group of negative on the $5^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC5) |  |  |
| :---: | :---: | :---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Computer Science, Interdisciplinary Applications | -0.1071 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 2 | Computer Science, Artificial Intelligence | -0.1066 |
| 3 | Computer Science, Information Systems | -0.1022 |
| 4 | Computer Science, Theory \& Methods | -0.1016 |
| 5 | Computer Science, Cybernetics | -0.0991 |
| 6 | Psychology | -0.0978 |
| 7 | Computer Science, Software Engineering | -0.0934 |
| 8 | Computer Science, Hardware \& Architecture | -0.0922 |
| 9 | Automation \& Control Systems | -0.0921 |
| 10 | Psychology, Clinical | -0.0865 |
| 11 | Psychology, Multidisciplinary | -0.0830 |
| 12 | Engineering, Electrical \& Electronic | -0.0817 |
| 13 | Psychology, Developmental | -0.0813 |
| 14 | Telecommunications | -0.0807 |
| 15 | Psychology, Experimental | -0.0757 |
| 16 | Engineering, Multidisciplinary | -0.0717 |
| 17 | Psychology, Educational | -0.0651 |
| 18 | Education, Special | -0.0650 |
| 19 | Psychiatry | -0.0617 |
| 20 | Behavioral Sciences | -0.0608 |
| 21 | Family Studies | -0.0602 |
| 22 | Psychology, Social | -0.0597 |
| 23 | Psychology, Biological | -0.0590 |
| 24 | Gerontology | -0.0549 |
| 25 | Robotics | -0.0536 |
| 26 | Physiology | -0.0532 |
| 27 | Geriatrics \& Gerontology | -0.0524 |
| 28 | Mathematics, Interdisciplinary Applications | -0.0515 |
| 29 | Rehabilitation | -0.0511 |
| 30 | Operations Research \& Management Science | -0.0500 |
| 31 | Substance Abuse | -0.0480 |
| 32 | Neurosciences | -0.0445 |
| 33 | Literary Theory \& Criticism | -0.0419 |
| 34 | Public, Environmental \& Occupational Health | -0.0417 |
| 35 | Education, Scientific Disciplines | -0.0396 |
| 36 | Audiology \& Speech-Language Pathology | -0.0395 |
| 37 | Linguistics | -0.0393 |
| 38 | Literature, British Isles | -0.0379 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 39 | Education \& Educational Research | -0.0378 |
| 40 | Engineering, Industrial | -0.0377 |
| 41 | Transportation Science \& Technology | -0.0375 |
| 42 | Language \& Linguistics | -0.0375 |
| 43 | Social Work | -0.0366 |
| 44 | Literature, American | -0.0363 |
| 45 | Ergonomics | -0.0354 |
| 46 | Social Sciences, Biomedical | -0.0349 |
| 47 | Psychology, Applied | -0.0346 |
| 48 | Literature | -0.0341 |
| 49 | Biophysics | -0.0339 |
| 50 | Pharmacology \& Pharmacy | -0.0328 |
| 51 | Biochemistry \& Molecular Biology | -0.0328 |
| 52 | Poetry | -0.0326 |
| 53 | Cell Biology | -0.0325 |
| 54 | Literary Reviews | -0.0322 |
| 55 | Endocrinology \& Metabolism | -0.0319 |

TABLE D.268. List of original attributes (categories) in group of positive on the $6^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC6) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Psychology | 0.1652 |
| 2 | Ecology | 0.1549 |
| 3 | Marine \& Freshwater Biology | 0.1460 |
| 4 | Psychology, Experimental | 0.1365 |
| 5 | Zoology | 0.1343 |
| 6 | Psychology, Clinical | 0.1327 |
| 7 | Psychology, Multidisciplinary | 0.1308 |
| 8 | Behavioral Sciences | 0.1294 |
| 9 | Biodiversity Conservation | 0.1275 |
| 10 | Psychology, Biological | 0.1245 |
| 11 | Literary Theory \& Criticism | 0.1176 |
| 12 | Psychology, Developmental | 0.1138 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 13 | Literature | 0.1104 |
| 14 | Limnology | 0.1090 |
| 15 | Evolutionary Biology | 0.1075 |
| 16 | Education, Special | 0.1025 |
| 17 | Literature, American | 0.1016 |
| 18 | Literature, British Isles | 0.1007 |
| 19 | Ornithology | 0.0991 |
| 20 | Psychiatry | 0.0973 |
| 21 | Psychology, Educational | 0.0941 |
| 22 | Psychology, Social | 0.0936 |
| 23 | Literature, Romance | 0.0931 |
| 24 | Poetry | 0.0926 |
| 25 | Entomology | 0.0908 |
| 26 | Oceanography | 0.0896 |
| 27 | Paleontology | 0.0882 |
| 28 | Literature, African, Australian, Canadian | 0.0876 |
| 29 | Literature, German, Dutch, Scandinavian | 0.0854 |
| 30 | Rehabilitation | 0.0845 |
| 31 | Plant Sciences | 0.0845 |
| 32 | Geosciences, Multidisciplinary | 0.0830 |
| 33 | Literary Reviews | 0.0802 |
| 34 | Geography, Physical | 0.0798 |
| 35 | Classics | 0.0791 |
| 36 | Literature, Slavic | 0.0788 |
| 37 | Gerontology | 0.0784 |
| 38 | Agronomy | 0.0776 |
| 39 | Linguistics | 0.0775 |
| 40 | Medieval \& Renaissance Studies | 0.0773 |
| 41 | Family Studies | 0.0767 |
| 42 | Forestry | 0.0760 |
| 43 | Language \& Linguistics | 0.0759 |
| 44 | Environmental Sciences | 0.0743 |
| 45 | Fisheries | 0.0724 |
| 46 | Geriatrics \& Gerontology | 0.0687 |
| 47 | Biology | 0.0684 |
| 48 | Mycology | 0.0674 |
| 49 | Audiology \& Speech-Language Pathology | 0.0669 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 50 | Geology | 0.0669 |
| 51 | Soil Science | 0.0646 |
| 52 | Water Resources | 0.0637 |
| 53 | Agriculture, Multidisciplinary | 0.0622 |
| 54 | Psychology, Mathematical | 0.0588 |
| 55 | Horticulture | 0.0570 |
| 56 | Substance Abuse | 0.0561 |
| 57 | Neurosciences | 0.0502 |
| 58 | Meteorology \& Atmospheric Sciences | 0.0474 |
| 59 | Geochemistry \& Geophysics | 0.0430 |
| 60 | Humanities, Multidisciplinary | 0.0410 |
| 61 | Neuroimaging | 0.0393 |
| 62 | Art | 0.0392 |
| 63 | Computer Science, Artificial Intelligence | 0.0387 |
| 64 | Education \& Educational Research | 0.0373 |
| 65 | Theater | 0.0372 |
| 66 | Education, Scientific Disciplines | 0.0369 |
| 67 | Asian Studies | 0.0360 |
| 68 | Public, Environmental \& Occupational Health | 0.0350 |
| 69 | Folklore | 0.0349 |
| 70 | Computer Science, Cybernetics | 0.0345 |
| 71 | Nutrition \& Dietetics | 0.0342 |
| 72 | Sport Sciences | 0.0337 |
| 73 | Agricultural Engineering | 0.0326 |
| 74 | Religion | 0.0321 |
| 75 | Social Sciences, Biomedical | 0.0317 |
| 76 | Ergonomics | 0.0315 |

TABLE D.269. List of original attributes (categories) in group of negative on the $6^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC6) |  |  |
| :---: | :---: | :---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Economics | -0.2028 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 2 | Planning \& Development | -0.1995 |
| 3 | Business, Finance | -0.1672 |
| 4 | Environmental Studies | -0.1599 |
| 5 | Public Administration | -0.1541 |
| 6 | Business | -0.1538 |
| 7 | Management | -0.1420 |
| 8 | Social Sciences, Mathematical Methods | -0.1284 |
| 9 | International Relations | -0.1257 |
| 10 | Urban Studies | -0.1174 |
| 11 | Agricultural Economics \& Policy | -0.1164 |
| 12 | Geography | -0.1120 |
| 13 | Political Science | -0.1068 |
| 14 | Medicine, Research \& Experimental | -0.0884 |
| 15 | Industrial Relations \& Labor | -0.0882 |
| 16 | Area Studies | -0.0802 |
| 17 | Hematology | -0.0761 |
| 18 | Cell Biology | -0.0703 |
| 19 | Oncology | -0.0697 |
| 20 | Pathology | -0.0685 |
| 21 | Gastroenterology \& Hepatology | -0.0677 |
| 22 | Immunology | -0.0616 |
| 23 | Surgery | -0.0608 |
| 24 | Biophysics | -0.0593 |
| 25 | Transportation | -0.0585 |
| 26 | Biochemistry \& Molecular Biology | -0.0574 |
| 27 | Social Issues | -0.0573 |
| 28 | Medical Laboratory Technology | -0.0561 |
| 29 | Law | -0.0556 |
| 30 | Hospitality, Leisure, Sport \& Tourism | -0.0527 |
| 31 | Sociology | -0.0514 |
| 32 | Respiratory System | -0.0511 |
| 33 | Green \& Sustainable Science \& Technology | -0.0507 |
| 34 | Peripheral Vascular Disease | -0.0499 |
| 35 | Social Sciences, Interdisciplinary | -0.0496 |
| 36 | Demography | -0.0492 |
| 37 | Cardiac \& Cardiovascular Systems | -0.0490 |
| 38 | Urology \& Nephrology | -0.0485 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 39 | Cell \& Tissue Engineering | -0.0485 |
| 40 | Dermatology | -0.0465 |
| 41 | Engineering, Industrial | -0.0463 |
| 42 | Operations Research \& Management Science | -0.0454 |
| 43 | Transplantation | -0.0443 |
| 44 | Pharmacology \& Pharmacy | -0.0434 |
| 45 | Emergency Medicine | -0.0400 |
| 46 | Developmental Biology | -0.0395 |
| 47 | Critical Care Medicine | -0.0379 |
| 48 | History Of Social Sciences | -0.0377 |
| 49 | Information Science \& Library Science | -0.0366 |
| 50 | Materials Science, Biomaterials | -0.0359 |
| 51 | Multidisciplinary Sciences | -0.0357 |
| 52 | Anesthesiology | -0.0351 |
| 53 | Rheumatology | -0.0324 |
| 54 | Orthopedics | -0.0318 |

Table D.270. List of original attributes (categories) in group of positive on the $7^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC7) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Cell Biology | 0.2339 |
| 2 | Multidisciplinary Sciences | 0.2313 |
| 3 | Biochemistry \& Molecular Biology | 0.1986 |
| 4 | Developmental Biology | 0.1826 |
| 5 | Medicine, Research \& Experimental | 0.1784 |
| 6 | Cell \& Tissue Engineering | 0.1582 |
| 7 | Immunology | 0.1435 |
| 8 | Biophysics | 0.1386 |
| 9 | Genetics \& Heredity | 0.1238 |
| 10 | Physiology | 0.1219 |
| 11 | Biotechnology \& Applied Microbiology | 0.1180 |
| 12 | Virology | 0.1080 |
| 13 | Pathology | 0.1068 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 14 | Materials Science, Characterization \& Testing | 0.1001 |
| 15 | Oncology | 0.0976 |
| 16 | Biology | 0.0958 |
| 17 | Mechanics | 0.0957 |
| 18 | Hematology | 0.0953 |
| 19 | Physics, Multidisciplinary | 0.0948 |
| 20 | Microbiology | 0.0912 |
| 21 | Engineering, Mechanical | 0.0858 |
| 22 | Pharmacology \& Pharmacy | 0.0793 |
| 23 | Neurosciences | 0.0788 |
| 24 | Construction \& Building Technology | 0.0680 |
| 25 | Physics, Mathematical | 0.0661 |
| 26 | Endocrinology \& Metabolism | 0.0657 |
| 27 | Engineering, Civil | 0.0641 |
| 28 | Parasitology | 0.0605 |
| 29 | Physics, Fluids \& Plasmas | 0.0598 |
| 30 | Toxicology | 0.0595 |
| 31 | Physics, Nuclear | 0.0590 |
| 32 | Reproductive Biology | 0.0562 |
| 33 | Thermodynamics | 0.0553 |
| 34 | Infectious Diseases | 0.0536 |
| 35 | Physics, Particles \& Fields | 0.0531 |
| 36 | Energy \& Fuels | 0.0481 |
| 37 | Psychology | 0.0481 |
| 38 | Psychology, Multidisciplinary | 0.0475 |
| 39 | Behavioral Sciences | 0.0469 |
| 40 | Materials Science, Biomaterials | 0.0467 |
| 41 | Engineering, Geological | 0.0456 |
| 42 | Integrative \& Complementary Medicine | 0.0454 |
| 43 | Nuclear Science \& Technology | 0.0452 |
| 44 | Mining \& Mineral Processing | 0.0444 |
| 45 | Psychology, Clinical | 0.0431 |
| 46 | Education, Special | 0.0404 |
| 47 | Materials Science, Composites | 0.0401 |
| 48 | Psychology, Experimental | 0.0384 |
| 49 | Psychology, Educational | 0 |
| 50 | Optics | 0 |
|  |  | 0 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 51 | Tropical Medicine | 0.0371 |
| 52 | Psychology, Social | 0.0369 |
| 53 | Rehabilitation | 0.0366 |
| 54 | Psychology, Biological | 0.0351 |
| 55 | Biochemical Research Methods | 0.0337 |
| 56 | Psychology, Developmental | 0.0335 |
| 57 | Medical Laboratory Technology | 0.0334 |
| 58 | Literary Theory \& Criticism | 0.0333 |
| 59 | Literature | 0.0329 |
| 60 | Anatomy \& Morphology | 0.0328 |
| 61 | Astronomy \& Astrophysics | 0.0318 |
| 62 | Engineering, Petroleum | 0.0317 |

TABLE D.271. List of original attributes (categories) in group of negative on the $7^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC7) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Computer Science, Information Systems | -0.1967 |
| 2 | Computer Science, Artificial Intelligence | -0.1877 |
| 3 | Computer Science, Interdisciplinary Applications | -0.1855 |
| 4 | Computer Science, Theory \& Methods | -0.1831 |
| 5 | Computer Science, Hardware \& Architecture | -0.1729 |
| 6 | Computer Science, Software Engineering | -0.1705 |
| 7 | Computer Science, Cybernetics | -0.1646 |
| 8 | Telecommunications | -0.1446 |
| 9 | Operations Research \& Management Science | -0.1274 |
| 10 | Automation \& Control Systems | -0.1236 |
| 11 | Chemistry, Multidisciplinary | -0.1137 |
| 12 | Engineering, Electrical \& Electronic | -0.1082 |
| 13 | Chemistry, Applied | -0.1059 |
| 14 | Medical Informatics | -0.1012 |
| 15 | Imaging Science \& Photographic Technology | -0.0976 |
| 16 | Mathematical \& Computational Biology | -0.0928 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 17 | Transportation Science \& Technology | -0.0897 |
| 18 | Robotics | -0.0799 |
| 19 | Chemistry, Organic | -0.0770 |
| 20 | Chemistry, Inorganic \& Nuclear | -0.0674 |
| 21 | Chemistry, Physical | -0.0668 |
| 22 | Planning \& Development | -0.0667 |
| 23 | Environmental Studies | -0.0663 |
| 24 | Engineering, Industrial | -0.0655 |
| 25 | Food Science \& Technology | -0.0622 |
| 26 | Economics | -0.0594 |
| 27 | Information Science \& Library Science | -0.0579 |
| 28 | Agricultural Economics \& Policy | -0.0576 |
| 29 | Agriculture, Multidisciplinary | -0.0565 |
| 30 | Transportation | -0.0524 |
| 31 | Business, Finance | -0.0523 |
| 32 | Polymer Science | -0.0521 |
| 33 | Management | -0.0504 |
| 34 | Business | -0.0504 |
| 35 | Crystallography | -0.0500 |
| 36 | Nanoscience \& Nanotechnology | -0.0494 |
| 37 | Mathematics, Interdisciplinary Applications | -0.0485 |
| 38 | Public Administration | -0.0471 |
| 39 | Remote Sensing | -0.0471 |
| 40 | Materials Science, Coatings \& Films | -0.0458 |
| 41 | Geography | -0.0440 |
| 42 | Urban Studies | -0.0429 |
| 43 | Statistics \& Probability | -0.0421 |
| 44 | Marine \& Freshwater Biology | -0.0407 |
| 45 | Environmental Sciences | -0.0403 |
| 46 | Social Sciences, Mathematical Methods | -0.0398 |
| 47 | International Relations | -0.0394 |
| 48 | Agronomy | -0.0376 |
| 49 | Materials Science, Ceramics | -0.0373 |
| 50 | Chemistry, Analytical | -0.0342 |
| 51 | Spectroscopy | -0.0341 |
| 52 | Limnology | -1 |

Table D.272. List of original attributes (categories) in group of positive on the $8^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC8) |  |  |
| :---: | :--- | ---: |
| No. Attribute | Component <br> Coefficient |  |
| 1 | Materials Science, Coatings \& Films | 0.2693 |
| 2 | Chemistry, Physical | 0.2641 |
| 3 | Materials Science, Multidisciplinary | 0.2636 |
| 4 | Nanoscience \& Nanotechnology | 0.2627 |
| 5 | Physics, Condensed Matter | 0.2369 |
| 6 | Materials Science, Ceramics | 0.2214 |
| 7 | Chemistry, Multidisciplinary | 0.1869 |
| 8 | Physics, Applied | 0.1779 |
| 9 | Polymer Science | 0.1733 |
| 10 | Electrochemistry | 0.1727 |
| 11 | Metallurgy \& Metallurgical Engineering | 0.1637 |
| 12 | Chemistry, Inorganic \& Nuclear | 0.1479 |
| 13 | Crystallography | 0.1437 |
| 14 | Materials Science, Textiles | 0.1260 |
| 15 | Engineering, Chemical | 0.1238 |
| 16 | Materials Science, Composites | 0.1237 |
| 17 | Microscopy | 0.1209 |
| 18 | Materials Science, Biomaterials | 0.1104 |
| 19 | Spectroscopy | 0.1057 |
| 20 | Chemistry, Applied | 0.1039 |
| 21 | Physics, Atomic, Molecular \& Chemical | 0.0962 |
| 22 | Materials Science, Characterization \& Testing | 0.0801 |
| 23 | Mineralogy | 0.0796 |
| 24 | Materials Science, Paper \& Wood | 0.0723 |
| 25 | Literary Theory \& Criticism | 0.0643 |
| 26 | Chemistry, Analytical | 0.0635 |
| 27 | Mathematical \& Computational Biology | 0.0634 |
| 28 | Statistics \& Probability | 0.0580 |
| 29 | Chemistry, Organic | 0.0536 |
| 30 | Literature | 0.0493 |
| 31 | Language \& Linguistics | 0.0456 |
| 32 | Linguistics | 0.0438 |
|  |  |  |
| 1 |  |  |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 33 | Psychology, Mathematical | 0.0435 |
| 34 | Social Sciences, Mathematical Methods | 0.0432 |
| 35 | Poetry | 0.0431 |
| 36 | Literature, British Isles | 0.0427 |
| 37 | Classics | 0.0412 |
| 38 | Literature, Romance | 0.0387 |
| 39 | Literature, American | 0.0379 |
| 40 | Medieval \& Renaissance Studies | 0.0368 |
| 41 | Literature, German, Dutch, Scandinavian | 0.0360 |
| 42 | Logic | 0.0358 |
| 43 | Literature, Slavic | 0.0326 |
| 44 | Genetics \& Heredity | 0.0321 |
| 45 | Thermodynamics | 0.0315 |

TABLE D.273. List of original attributes (categories) in group of negative on the $8^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC8) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Social Work | -0.0908 |
| 2 | Health Policy \& Services | -0.0897 |
| 3 | Engineering, Electrical \& Electronic | -0.0865 |
| 4 | Health Care Sciences \& Services | -0.0851 |
| 5 | Primary Health Care | -0.0836 |
| 6 | Engineering, Multidisciplinary | -0.0835 |
| 7 | Social Sciences, Biomedical | -0.0830 |
| 8 | Family Studies | -0.0761 |
| 9 | Public, Environmental \& Occupational Health | -0.0750 |
| 10 | Medicine, General \& Internal | -0.0734 |
| 11 | Automation \& Control Systems | -0.0666 |
| 12 | Critical Care Medicine | -0.0656 |
| 13 | Gerontology | -0.0653 |
| 14 | Psychology, Clinical | -0.0650 |
| 15 | Nursing | -0.0650 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 16 | Planning \& Development | -0.0648 |
| 17 | Psychiatry | -0.0644 |
| 18 | Environmental Studies | -0.0627 |
| 19 | Geography | -0.0613 |
| 20 | Sociology | -0.0582 |
| 21 | Social Issues | -0.0577 |
| 22 | Pediatrics | -0.0576 |
| 23 | Emergency Medicine | -0.0573 |
| 24 | Psychology, Developmental | -0.0572 |
| 25 | Engineering, Industrial | -0.0567 |
| 26 | Geriatrics \& Gerontology | -0.0552 |
| 27 | Public Administration | -0.0544 |
| 28 | Anesthesiology | -0.0542 |
| 29 | Clinical Neurology | -0.0538 |
| 30 | Surgery | -0.0529 |
| 31 | Respiratory System | -0.0516 |
| 32 | Demography | -0.0512 |
| 33 | International Relations | -0.0507 |
| 34 | Political Science | -0.0502 |
| 35 | Urban Studies | -0.0501 |
| 36 | Marine \& Freshwater Biology | -0.0499 |
| 37 | Computer Science, Hardware \& Architecture | -0.0487 |
| 38 | Ethnic Studies | -0.0482 |
| 39 | Telecommunications | -0.0478 |
| 40 | Substance Abuse | -0.0477 |
| 41 | Peripheral Vascular Disease | -0.0472 |
| 42 | Otorhinolaryngology | -0.0455 |
| 43 | Rehabilitation | -0.0452 |
| 44 | Area Studies | -0.0449 |
| 45 | Ecology | -0.0448 |
| 46 | Cardiac \& Cardiovascular Systems | -0.0445 |
| 47 | Urology \& Nephrology | -0.0444 |
| 48 | Orthopedics | -0.0443 |
| 49 | Psychology, Social | -0.0437 |
| 50 | Engineering, Aerospace | -0.0431 |
| 51 | Industrial Relations \& Labor | -0.0430 |
| 52 | Zoology | -0.0416 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 53 | Engineering, Mechanical | -0.0406 |
| 54 | Gastroenterology \& Hepatology | -0.0404 |
| 55 | Rheumatology | -0.0403 |
| 56 | Medical Ethics | -0.0402 |
| 57 | Women's Studies | -0.0395 |
| 58 | Obstetrics \& Gynecology | -0.0394 |
| 59 | Entomology | -0.0384 |
| 60 | Biodiversity Conservation | -0.0383 |
| 61 | Allergy | -0.0371 |
| 62 | Mechanics | -0.0363 |
| 63 | Criminology \& Penology | -0.0324 |
| 64 | Dermatology | -0.0321 |
| 65 | Mathematics, Interdisciplinary Applications | -0.0318 |
| 66 | Transportation Science \& Technology | -0.0316 |

TABLE D.274. List of original attributes (categories) in group of positive on the $9^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC9) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Geosciences, Multidisciplinary | 0.2756 |
| 2 | Geochemistry \& Geophysics | 0.2152 |
| 3 | Geology | 0.2057 |
| 4 | Water Resources | 0.1901 |
| 5 | Geography, Physical | 0.1767 |
| 6 | Oceanography | 0.1379 |
| 7 | Mineralogy | 0.1360 |
| 8 | Meteorology \& Atmospheric Sciences | 0.1345 |
| 9 | Environmental Sciences | 0.1321 |
| 10 | Engineering, Environmental | 0.1310 |
| 11 | Engineering, Ocean | 0.1294 |
| 12 | Engineering, Geological | 0.1213 |
| 13 | Limnology | 0.1206 |
| 14 | Mining \& Mineral Processing | 0.1080 |
| 15 | Engineering, Marine | 0.1064 |


| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 16 | Engineering, Petroleum | 0.1002 |
| 17 | Engineering, Civil | 0.0783 |
| 18 | Remote Sensing | 0.0767 |
| 19 | Psychology, Experimental | 0.0657 |
| 20 | Engineering, Chemical | 0.0616 |
| 21 | Psychology, Educational | 0.0609 |
| 22 | Psychology | 0.0596 |
| 23 | Pharmacology \& Pharmacy | 0.0595 |
| 24 | Psychology, Multidisciplinary | 0.0536 |
| 25 | Green \& Sustainable Science \& Technology | 0.0533 |
| 26 | Thermodynamics | 0.0526 |
| 27 | Paleontology | 0.0518 |
| 28 | Psychology, Mathematical | 0.0516 |
| 29 | Neurosciences | 0.0512 |
| 30 | Soil Science | 0.0512 |
| 31 | Engineering, Mechanical | 0.0474 |
| 32 | Archaeology | 0.0463 |
| 33 | Physics, Fluids \& Plasmas | 0.0462 |
| 34 | Imaging Science \& Photographic Technology | 0.0459 |
| 35 | Neuroimaging | 0.0452 |
| 36 | Education \& Educational Research | 0.0444 |
| 37 | Education, Special | 0.0443 |
| 38 | Construction \& Building Technology | 0.0423 |
| 39 | Mechanics | 0.0408 |
| 40 | Chemistry, Medicinal | 0.0405 |
| 41 | Cell Biology | 0.0385 |
| 42 | Psychology, Social | 0.0378 |
| 43 | Engineering, Aerospace | 0.0378 |
| 44 | Linguistics | 0.0378 |
| 45 | Psychology, Developmental | 0.0367 |
| 46 | Education, Scientific Disciplines | 0.0355 |
| 47 | Medicine, Research \& Experimental | 0.0350 |
| 48 | Oncology | 0.0347 |
| 49 | Biophysics | 0.0343 |
| 50 | Language \& Linguistics | 0.0340 |
| 51 | Engineering, Biomedical | 0.0333 |
| 52 | Psychology, Clinical | 0.0330 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 53 | Audiology \& Speech-Language Pathology | 0.0323 |
| 54 | Chemistry, Applied | 0.0319 |

TABLE D.275. List of original attributes (categories) in group of negative on the $9^{t h}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC9) |  |  |
| :---: | :--- | ---: |
| No. Attribute | Component <br> Coefficient |  |
| 1 | Zoology | -0.2252 |
| 2 | Evolutionary Biology | -0.2095 |
| 3 | Biology | -0.1865 |
| 4 | Entomology | -0.1826 |
| 5 | Mycology | -0.1805 |
| 6 | Biodiversity Conservation | -0.1613 |
| 7 | Parasitology | -0.1577 |
| 8 | Plant Sciences | -0.1575 |
| 9 | Ecology | -0.1550 |
| 10 | Ornithology | -0.1430 |
| 11 | Tropical Medicine | -0.1297 |
| 12 | Microbiology | -0.1226 |
| 13 | Infectious Diseases | -0.1096 |
| 14 | Genetics \& Heredity | -0.1053 |
| 15 | Veterinary Sciences | -0.0989 |
| 16 | Horticulture | -0.0970 |
| 17 | Physics, Applied | -0.0831 |
| 18 | Agronomy | -0.0778 |
| 19 | Materials Science, Multidisciplinary | -0.0767 |
| 20 | Physics, Condensed Matter | -0.0765 |
| 21 | Virology | -0.0741 |
| 22 | Fisheries | -0.0715 |
| 23 | Forestry | -0.0705 |
| 24 | Nanoscience \& Nanotechnology | -0.0695 |
| 25 | Public, Environmental \& Occupational Health | -0.0650 |
| 26 | Agriculture, Dairy \& Animal Science | -0.0564 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 27 | Health Policy \& Services | -0.0562 |
| 28 | Marine \& Freshwater Biology | -0.0560 |
| 29 | Health Care Sciences \& Services | -0.0548 |
| 30 | Multidisciplinary Sciences | -0.0548 |
| 31 | Biotechnology \& Applied Microbiology | -0.0511 |
| 32 | Agriculture, Multidisciplinary | -0.0504 |
| 33 | Primary Health Care | -0.0499 |
| 34 | Materials Science, Coatings \& Films | -0.0495 |
| 35 | Social Sciences, Biomedical | -0.0446 |
| 36 | Medicine, General \& Internal | -0.0419 |
| 37 | Chemistry, Physical | -0.0400 |
| 38 | Materials Science, Ceramics | -0.0399 |
| 39 | Optics | -0.0342 |
| 40 | Emergency Medicine | -0.0328 |
| 41 | Critical Care Medicine | -0.0326 |
| 42 | Obstetrics \& Gynecology | -0.0325 |
| 43 | Physics, Atomic, Molecular \& Chemical | -0.0322 |

Table D.276. List of original attributes (categories) in group of positive on the $10^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC10) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Agriculture, Multidisciplinary | 0.3288 |
| 2 | Agronomy | 0.2928 |
| 3 | Agricultural Engineering | 0.2720 |
| 4 | Horticulture | 0.2497 |
| 5 | Food Science \& Technology | 0.2079 |
| 6 | Plant Sciences | 0.1762 |
| 7 | Soil Science | 0.1735 |
| 8 | Engineering, Environmental | 0.1523 |
| 9 | Chemistry, Applied | 0.1429 |
| 10 | Green \& Sustainable Science \& Technology | 0.1343 |
| 11 | Agricultural Economics \& Policy | 0.1335 |
| 12 | Environmental Sciences | 0.1178 |


| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 13 | Agriculture, Dairy \& Animal Science | 0.1068 |
| 14 | Engineering, Chemical | 0.1004 |
| 15 | Biotechnology \& Applied Microbiology | 0.0938 |
| 16 | Psychology, Experimental | 0.0799 |
| 17 | Nutrition \& Dietetics | 0.0674 |
| 18 | Chemistry, Analytical | 0.0659 |
| 19 | Psychology | 0.0653 |
| 20 | Linguistics | 0.0646 |
| 21 | Language \& Linguistics | 0.0625 |
| 22 | Energy \& Fuels | 0.0605 |
| 23 | Neurosciences | 0.0563 |
| 24 | Psychology, Biological | 0.0553 |
| 25 | Psychology, Educational | 0.0552 |
| 26 | Neuroimaging | 0.0549 |
| 27 | Audiology \& Speech-Language Pathology | 0.0536 |
| 28 | Behavioral Sciences | 0.0536 |
| 29 | Materials Science, Paper \& Wood | 0.0522 |
| 30 | Economics | 0.0507 |
| 31 | Psychology, Mathematical | 0.0503 |
| 32 | Business | 0.0500 |
| 33 | Business, Finance | 0.0493 |
| 34 | Forestry | 0.0469 |
| 35 | Integrative \& Complementary Medicine | 0.0442 |
| 36 | Literary Theory \& Criticism | 0.0438 |
| 37 | Clinical Neurology | 0.0431 |
| 38 | Management | 0.0424 |
| 39 | Biochemical Research Methods | 0.0421 |
| 40 | Water Resources | 0.0401 |
| 41 | Toxicology | 0.0381 |
| 42 | Education, Special | 0.0377 |
| 43 | Education \& Educational Research | 0.0372 |
| 44 | Physics, Particles \& Fields | 0.0369 |
| 45 | Surgery | 0.0353 |
| 46 | Orthopedics | 0.0352 |
| 47 | Chemistry, Medicinal | 0.0344 |
| 48 | Psychology, Multidisciplinary | 0.0342 |
| 49 | Social Sciences, Mathematical Methods | 0.0320 |

Table D.277. List of original attributes (categories) in group of negative on the $10^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC10) |  |  |
| :---: | :---: | :---: |
| No. | Attribute | Component Coefficient |
| 1 | Geology | -0.1763 |
| 2 | Paleontology | -0.1562 |
| 3 | Geosciences, Multidisciplinary | -0.1480 |
| 4 | Geochemistry \& Geophysics | -0.1418 |
| 5 | Geography, Physical | -0.1236 |
| 6 | Oceanography | -0.1195 |
| 7 | Marine \& Freshwater Biology | -0.1040 |
| 8 | Zoology | -0.1021 |
| 9 | Mineralogy | -0.0980 |
| 10 | Social Sciences, Biomedical | -0.0953 |
| 11 | Public, Environmental \& Occupational Health | -0.0943 |
| 12 | Health Policy \& Services | -0.0936 |
| 13 | Biodiversity Conservation | -0.0857 |
| 14 | Evolutionary Biology | -0.0799 |
| 15 | Parasitology | -0.0781 |
| 16 | Health Care Sciences \& Services | -0.0781 |
| 17 | Tropical Medicine | -0.0745 |
| 18 | Medical Informatics | -0.0702 |
| 19 | Primary Health Care | -0.0666 |
| 20 | Anthropology | -0.0656 |
| 21 | Infectious Diseases | -0.0639 |
| 22 | Materials Science, Multidisciplinary | -0.0628 |
| 23 | Materials Science, Coatings \& Films | -0.0601 |
| 24 | Archaeology | -0.0590 |
| 25 | Engineering, Ocean | -0.0574 |
| 26 | Engineering, Marine | -0.0572 |
| 27 | Meteorology \& Atmospheric Sciences | -0.0553 |
| 28 | Ornithology | -0.0535 |
| 29 | Medical Ethics | -0.0534 |
| 30 | Nursing | -0.0531 |
| 31 | Nanoscience \& Nanotechnology | -0.0512 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 32 | Fisheries | -0.0488 |
| 33 | Social Issues | -0.0479 |
| 34 | Materials Science, Characterization \& Testing | -0.0475 |
| 35 | Metallurgy \& Metallurgical Engineering | -0.0471 |
| 36 | Biology | -0.0466 |
| 37 | Computer Science, Interdisciplinary Applications | -0.0465 |
| 38 | Virology | -0.0442 |
| 39 | Ecology | -0.0442 |
| 40 | Mining \& Mineral Processing | -0.0435 |
| 41 | Computer Science, Information Systems | -0.0422 |
| 42 | Physics, Condensed Matter | -0.0420 |
| 43 | Women's Studies | -0.0396 |
| 44 | Computer Science, Hardware \& Architecture | -0.0387 |
| 45 | Automation \& Control Systems | -0.0384 |
| 46 | Mycology | -0.0378 |
| 47 | Materials Science, Ceramics | -0.0377 |
| 48 | Remote Sensing | -0.0375 |
| 49 | Physics, Applied | -0.0373 |
| 50 | Limnology | -0.0372 |
| 51 | Materials Science, Composites | -0.0364 |
| 52 | Computer Science, Artificial Intelligence | -0.0360 |
| 53 | Gerontology | -0.0359 |
| 54 | Computer Science, Theory \& Methods | -0.0358 |
| 55 | Mathematical \& Computational Biology | -0.0354 |
| 56 | Imaging Science \& Photographic Technology | -0.0348 |
| 57 | Ethics | -0.0346 |
| 58 | Social Work | -0.0335 |
| 59 | Immunology | -0.0335 |
| 60 | Multidisciplinary Sciences | -0.0325 |
| 61 | Engineering, Mechanical | -0.0321 |
| 62 | Telecommunications | -0.0318 |
|  |  |  |

Table D.278. List of original attributes (categories) in group of positive on the $11^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC11) |  |  |
| :---: | :--- | ---: |
| No. Attribute | Component <br> Coefficient |  |
| 1 | Health Policy \& Services | 0.2125 |
| 2 | Health Care Sciences \& Services | 0.1977 |
| 3 | Social Sciences, Biomedical | 0.1841 |
| 4 | Primary Health Care | 0.1571 |
| 5 | Medical Informatics | 0.1571 |
| 6 | Nursing | 0.1566 |
| 7 | Public, Environmental \& Occupational Health | 0.1558 |
| 8 | Biotechnology \& Applied Microbiology | 0.1341 |
| 9 | Medical Ethics | 0.1316 |
| 10 | Agricultural Engineering | 0.1183 |
| 11 | Food Science \& Technology | 0.1102 |
| 12 | Agriculture, Multidisciplinary | 0.1097 |
| 13 | Agronomy | 0.1074 |
| 14 | Chemistry, Applied | 0.0981 |
| 15 | Biochemical Research Methods | 0.0952 |
| 16 | Horticulture | 0.0934 |
| 17 | Infectious Diseases | 0.0841 |
| 18 | Microbiology | 0.0840 |
| 19 | Ethics | 0.0834 |
| 20 | Soil Science | 0.0807 |
| 21 | Biochemistry \& Molecular Biology | 0.0770 |
| 22 | Social Work | 0.0751 |
| 23 | Virology | 0.0717 |
| 24 | Plant Sciences | 0.0710 |
| 25 | Chemistry, Analytical | 0.0668 |
| 26 | Engineering, Environmental | 0.0653 |
| 27 | Biophysics | 0.0650 |
| 28 | Engineering, Chemical | 0.0619 |
| 29 | Chemistry, Medicinal | 0.0611 |
| 30 | Education, Scientific Disciplines | 0.0608 |
| 31 | Social Issues | 0.0579 |
| 32 | Water Resources | 0.0562 |
|  |  |  |
| 1 |  |  |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 33 | Engineering, Geological | 0.0554 |
| 34 | Mathematical \& Computational Biology | 0.0535 |
| 35 | Women's Studies | 0.0534 |
| 36 | Environmental Sciences | 0.0529 |
| 37 | Education \& Educational Research | 0.0522 |
| 38 | Family Studies | 0.0517 |
| 39 | Genetics \& Heredity | 0.0504 |
| 40 | Tropical Medicine | 0.0485 |
| 41 | Engineering, Ocean | 0.0484 |
| 42 | Engineering, Petroleum | 0.0480 |
| 43 | Physics, Mathematical | 0.0466 |
| 44 | Gerontology | 0.0458 |
| 45 | Physics, Fluids \& Plasmas | 0.0443 |
| 46 | Information Science \& Library Science | 0.0431 |
| 47 | Mechanics | 0.0405 |
| 48 | Parasitology | 0.0403 |
| 49 | Chemistry, Organic | 0.0394 |
| 50 | Spectroscopy | 0.0384 |
| 51 | Medicine, General \& Internal | 0.0383 |
| 52 | Cell Biology | 0.0382 |
| 53 | Engineering, Marine | 0.0373 |
| 54 | Geochemistry \& Geophysics | 0.0357 |
| 55 | Mineralogy | 0.0352 |
| 56 | Materials Science, Paper \& Wood | 0.0349 |
| 57 | Geosciences, Multidisciplinary | 0.0331 |
| 58 | Immunology | 0.0331 |
| 59 | History \& Philosophy Of Science | 0.0328 |
|  |  |  |

Table D.279. List of original attributes (categories) in group of negative on the $11^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC11) |  |  |
| :---: | :---: | :---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Behavioral Sciences | -0.2509 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 2 | Psychology, Biological | -0.2311 |
| 3 | Neurosciences | -0.2232 |
| 4 | Neuroimaging | -0.2048 |
| 5 | Psychology | -0.1966 |
| 6 | Psychology, Experimental | -0.1948 |
| 7 | Clinical Neurology | -0.1311 |
| 8 | Economics | -0.1061 |
| 9 | Anatomy \& Morphology | -0.1047 |
| 10 | Zoology | -0.1036 |
| 11 | Radiology, Nuclear Medicine \& Medical Imaging | -0.0971 |
| 12 | Business, Finance | -0.0961 |
| 13 | Orthopedics | -0.0820 |
| 14 | Planning \& Development | -0.0799 |
| 15 | Audiology \& Speech-Language Pathology | -0.0784 |
| 16 | Psychology, Mathematical | -0.0784 |
| 17 | Ornithology | -0.0760 |
| 18 | Biodiversity Conservation | -0.0759 |
| 19 | Surgery | -0.0743 |
| 20 | Sport Sciences | -0.0740 |
| 21 | Physiology | -0.0737 |
| 22 | Ecology | -0.0734 |
| 23 | Otorhinolaryngology | -0.0721 |
| 24 | International Relations | -0.0711 |
| 25 | Environmental Studies | -0.0660 |
| 26 | Psychiatry | -0.0636 |
| 27 | Peripheral Vascular Disease | -0.0635 |
| 28 | Business | -0.0634 |
| 29 | Political Science | -0.0606 |
| 30 | Cardiac \& Cardiovascular Systems | -0.0597 |
| 31 | Engineering, Biomedical | -0.0593 |
| 32 | Ophthalmology | -0.0587 |
| 33 | Biology | -0.0584 |
| 34 | Social Sciences, Mathematical Methods | -0.0581 |
| 35 | Evolutionary Biology | -0.0577 |
| 36 | Geography | -0.0573 |
| 37 | Marine \& Freshwater Biology | -1 |
| 38 | Urban Studies | -1 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 39 | Area Studies | -0.0553 |
| 40 | Anesthesiology | -0.0499 |
| 41 | Urology \& Nephrology | -0.0498 |
| 42 | Management | -0.0498 |
| 43 | Public Administration | -0.0481 |
| 44 | Dentistry, Oral Surgery \& Medicine | -0.0448 |
| 45 | Entomology | -0.0435 |
| 46 | Gastroenterology \& Hepatology | -0.0426 |
| 47 | Respiratory System | -0.0413 |
| 48 | Psychology, Clinical | -0.0412 |
| 49 | History Of Social Sciences | -0.0396 |
| 50 | Fisheries | -0.0376 |
| 51 | Microscopy | -0.0374 |
| 52 | Rheumatology | -0.0371 |
| 53 | Psychology, Social | -0.0345 |
| 54 | Agricultural Economics \& Policy | -0.0338 |
| 55 | Physics, Applied | -0.0335 |
| 56 | Rehabilitation | -0.0326 |
| 57 | Psychology, Multidisciplinary | -0.0323 |

TABLE D.280. List of original attributes (categories) in group of positive on the $12^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC12) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Education \& Educational Research | 0.2070 |
| 2 | Education, Scientific Disciplines | 0.1871 |
| 3 | Psychology, Educational | 0.1697 |
| 4 | Language \& Linguistics | 0.1529 |
| 5 | Linguistics | 0.1479 |
| 6 | Management | 0.1459 |
| 7 | Business | 0.1344 |
| 8 | Information Science \& Library Science | 0.1208 |
| 9 | Medical Informatics | 0.1173 |
| 10 | Cell Biology | 0.1147 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 11 | Social Sciences, Interdisciplinary | 0.1125 |
| 12 | Literary Theory \& Criticism | 0.1077 |
| 13 | Health Care Sciences \& Services | 0.1038 |
| 14 | Cell \& Tissue Engineering | 0.1037 |
| 15 | Biophysics | 0.1027 |
| 16 | Nursing | 0.0925 |
| 17 | Psychology, Applied | 0.0886 |
| 18 | Primary Health Care | 0.0879 |
| 19 | Biochemistry \& Molecular Biology | 0.0863 |
| 20 | Business, Finance | 0.0845 |
| 21 | Poetry | 0.0836 |
| 22 | Developmental Biology | 0.0833 |
| 23 | Education, Special | 0.0817 |
| 24 | Hematology | 0.0757 |
| 25 | Medicine, Research \& Experimental | 0.0723 |
| 26 | Oncology | 0.0689 |
| 27 | Pathology | 0.0689 |
| 28 | Emergency Medicine | 0.0686 |
| 29 | Hospitality, Leisure, Sport \& Tourism | 0.0666 |
| 30 | Health Policy \& Services | 0.0648 |
| 31 | Geography, Physical | 0.0629 |
| 32 | Multidisciplinary Sciences | 0.0624 |
| 33 | Literature | 0.0619 |
| 34 | Surgery | 0.0613 |
| 35 | Economics | 0.0593 |
| 36 | Audiology \& Speech-Language Pathology | 0.0589 |
| 37 | Literature, American | 0.0585 |
| 38 | Critical Care Medicine | 0.0582 |
| 39 | Biodiversity Conservation | 0.0554 |
| 40 | Ergonomics | 0.0552 |
| 41 | Otorhinolaryngology | 0.0545 |
| 42 | Literature, Slavic | 0.0537 |
| 43 | Radiology, Nuclear Medicine \& Medical Imaging | 0.0533 |
| 44 | Literature, German, Dutch, Scandinavian | 0.0519 |
| 45 | Literature, British Isles | 0.0504 |
| 46 | Literary Reviews | 0.0503 |
| 47 | Limnology | 0.0482 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 48 | Anesthesiology | 0.0469 |
| 49 | Remote Sensing | 0.0441 |
| 50 | Materials Science, Biomaterials | 0.0434 |
| 51 | Respiratory System | 0.0430 |
| 52 | Literature, African, Australian, Canadian | 0.0430 |
| 53 | Ecology | 0.0430 |
| 54 | Rehabilitation | 0.0419 |
| 55 | Environmental Sciences | 0.0416 |
| 56 | Imaging Science \& Photographic Technology | 0.0414 |
| 57 | Biology | 0.0409 |
| 58 | Marine \& Freshwater Biology | 0.0405 |
| 59 | Gastroenterology \& Hepatology | 0.0403 |
| 60 | Orthopedics | 0.0402 |
| 61 | Computer Science, Software Engineering | 0.0399 |
| 62 | Transplantation | 0.0391 |
| 63 | Humanities, Multidisciplinary | 0.0376 |
| 64 | Computer Science, Information Systems | 0.0374 |
| 65 | Medicine, General \& Internal | 0.0372 |
| 66 | Geosciences, Multidisciplinary | 0.0353 |
| 67 | Social Sciences, Mathematical Methods | 0.0347 |
| 68 | Paleontology | 0.0347 |
| 69 | Cardiac \& Cardiovascular Systems | 0.0343 |
| 70 | Transportation | 0.0334 |
| 71 | Literature, Romance | 0.0330 |
| 72 | Environmental Studies | 0.0327 |
| 73 | Industrial Relations \& Labor | 0.0325 |
| 74 | Computer Science, Cybernetics | 0.0321 |
|  |  |  |

TABLE D.281. List of original attributes (categories) in group of negative on the $12^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC12) |  |  |
| :---: | :---: | :---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Mechanics | -0.2128 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 2 | Engineering, Mechanical | -0.1907 |
| 3 | Engineering, Civil | -0.1439 |
| 4 | Materials Science, Characterization \& Testing | -0.1426 |
| 5 | Physics, Fluids \& Plasmas | -0.1424 |
| 6 | Engineering, Ocean | -0.1421 |
| 7 | Engineering, Geological | -0.1305 |
| 8 | Construction \& Building Technology | -0.1292 |
| 9 | Mathematics, Interdisciplinary Applications | -0.1253 |
| 10 | Physics, Mathematical | -0.1246 |
| 11 | Political Science | -0.1235 |
| 12 | Thermodynamics | -0.1196 |
| 13 | Engineering, Marine | -0.1195 |
| 14 | Area Studies | -0.1177 |
| 15 | Materials Science, Composites | -0.1168 |
| 16 | International Relations | -0.1058 |
| 17 | Behavioral Sciences | -0.1044 |
| 18 | Mathematics, Applied | -0.1025 |
| 19 | Ethnic Studies | -0.0948 |
| 20 | History | -0.0830 |
| 21 | Nutrition \& Dietetics | -0.0824 |
| 22 | Social Issues | -0.0811 |
| 23 | Law | -0.0787 |
| 24 | Women's Studies | -0.0749 |
| 25 | Engineering, Aerospace | -0.0746 |
| 26 | Psychology, Biological | -0.0733 |
| 27 | Food Science \& Technology | -0.0720 |
| 28 | Veterinary Sciences | -0.0709 |
| 29 | Sociology | -0.0701 |
| 30 | Agriculture, Dairy \& Animal Science | -0.0694 |
| 31 | Psychiatry | -0.0664 |
| 32 | Demography | -0.0653 |
| 33 | Agriculture, Multidisciplinary | -0.0627 |
| 34 | Anthropology | -0.0606 |
| 35 | Geriatrics \& Gerontology | -0.0600 |
| 36 | Mathematics | -0.0592 |
| 37 | Psychology, Clinical | -0.0585 |
| 38 | Metallurgy \& Metallurgical Engineering | -0.0583 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 39 | Cultural Studies | -0.0581 |
| 40 | Psychology | -0.0562 |
| 41 | Statistics \& Probability | -0.0557 |
| 42 | Neurosciences | -0.0544 |
| 43 | Automation \& Control Systems | -0.0526 |
| 44 | Asian Studies | -0.0496 |
| 45 | Substance Abuse | -0.0484 |
| 46 | Engineering, Manufacturing | -0.0479 |
| 47 | Parasitology | -0.0477 |
| 48 | Infectious Diseases | -0.0476 |
| 49 | Tropical Medicine | -0.0462 |
| 50 | Engineering, Petroleum | -0.0460 |
| 51 | Agronomy | -0.0434 |
| 52 | Engineering, Multidisciplinary | -0.0431 |
| 53 | Criminology \& Penology | -0.0423 |
| 54 | History Of Social Sciences | -0.0418 |
| 55 | Agricultural Engineering | -0.0413 |
| 56 | Chemistry, Applied | -0.0413 |
| 57 | Horticulture | -0.0411 |
| 58 | Gerontology | -0.0405 |
| 59 | Energy \& Fuels | -0.0391 |
| 60 | Philosophy | -0.0389 |
| 61 | Engineering, Chemical | -0.0370 |
| 62 | Family Studies | -0.0350 |
| 63 | Materials Science, Paper \& Wood | -0.0349 |
| 64 | Public Administration | -0.0335 |
|  |  |  |

Table D.282. List of original attributes (categories) in group of positive on the $13^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC13) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Parasitology | 0.2090 |
| 2 | Infectious Diseases | 0.2047 |
| 3 | Education \& Educational Research | 0.1851 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 4 | Tropical Medicine | 0.1850 |
| 5 | Psychology, Educational | 0.1814 |
| 6 | Education, Scientific Disciplines | 0.1586 |
| 7 | Microbiology | 0.1520 |
| 8 | Virology | 0.1503 |
| 9 | Engineering, Civil | 0.1463 |
| 10 | Engineering, Mechanical | 0.1452 |
| 11 | Construction \& Building Technology | 0.1349 |
| 12 | Linguistics | 0.1344 |
| 13 | Language \& Linguistics | 0.1336 |
| 14 | Materials Science, Characterization \& Testing | 0.1277 |
| 15 | Mechanics | 0.1191 |
| 16 | Management | 0.1163 |
| 17 | Business | 0.1144 |
| 18 | Engineering, Ocean | 0.1127 |
| 19 | Social Sciences, Interdisciplinary | 0.1088 |
| 20 | Thermodynamics | 0.1070 |
| 21 | Engineering, Marine | 0.1009 |
| 22 | Education, Special | 0.0994 |
| 23 | Veterinary Sciences | 0.0991 |
| 24 | Materials Science, Composites | 0.0938 |
| 25 | Engineering, Geological | 0.0900 |
| 26 | Mycology | 0.0868 |
| 27 | Psychology, Applied | 0.0771 |
| 28 | Physics, Fluids \& Plasmas | 0.0768 |
| 29 | Business, Finance | 0.0760 |
| 30 | Immunology | 0.0735 |
| 31 | Literary Theory \& Criticism | 0.0735 |
| 32 | Engineering, Industrial | 0.0734 |
| 33 | Engineering, Manufacturing | 0.0698 |
| 34 | Energy \& Fuels | 0.0642 |
| 35 | Engineering, Multidisciplinary | 0.0636 |
| 36 | Information Science \& Library Science | 0.0613 |
| 37 | Economics | 0.0603 |
| 38 | Audiology \& Speech-Language Pathology | 0.0598 |
| 39 | Gastroenterology \& Hepatology | 0.0564 |
| 40 | Hospitality, Leisure, Sport \& Tourism | 0.0547 |


| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 41 | Psychology, Multidisciplinary | 0.0538 |
| 42 | Metallurgy \& Metallurgical Engineering | 0.0503 |
| 43 | Transportation Science \& Technology | 0.0496 |
| 44 | Engineering, Aerospace | 0.0476 |
| 45 | Psychology, Developmental | 0.0465 |
| 46 | Green \& Sustainable Science \& Technology | 0.0445 |
| 47 | Transportation | 0.0431 |
| 48 | Engineering, Petroleum | 0.0425 |
| 49 | Psychology, Social | 0.0425 |
| 50 | Psychology, Mathematical | 0.0416 |
| 51 | Zoology | 0.0400 |
| 52 | Entomology | 0.0398 |
| 53 | Poetry | 0.0396 |
| 54 | Social Sciences, Mathematical Methods | 0.0391 |
| 55 | Dermatology | 0.0390 |
| 56 | Engineering, Chemical | 0.0379 |
| 57 | Medical Laboratory Technology | 0.0373 |
| 58 | Humanities, Multidisciplinary | 0.0368 |
| 59 | Literature | 0.0336 |
| 60 | Industrial Relations \& Labor | 0.0325 |
| 61 | Mining \& Mineral Processing | 0.0322 |
| 62 | Acoustics | 0.0319 |

Table D.283. List of original attributes (categories) in group of negative on the $13^{\text {th }}$ principal component. Categories are sorted by absolute values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC13) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Physiology | -0.1588 |
| 2 | Cell Biology | -0.1469 |
| 3 | Developmental Biology | -0.1407 |
| 4 | Biochemistry \& Molecular Biology | -0.1145 |
| 5 | Neurosciences | -0.1113 |
| 6 | Cell \& Tissue Engineering | -0.1080 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 7 | Health Policy \& Services | -0.1061 |
| 8 | Biophysics | -0.1059 |
| 9 | Reproductive Biology | -0.0992 |
| 10 | Endocrinology \& Metabolism | -0.0916 |
| 11 | Gerontology | -0.0904 |
| 12 | Public, Environmental \& Occupational Health | -0.0890 |
| 13 | Health Care Sciences \& Services | -0.0880 |
| 14 | Toxicology | -0.0871 |
| 15 | Social Sciences, Biomedical | -0.0869 |
| 16 | Geriatrics \& Gerontology | -0.0847 |
| 17 | Medical Ethics | -0.0817 |
| 18 | Neuroimaging | -0.0798 |
| 19 | Anatomy \& Morphology | -0.0783 |
| 20 | Imaging Science \& Photographic Technology | -0.0770 |
| 21 | Integrative \& Complementary Medicine | -0.0759 |
| 22 | Remote Sensing | -0.0745 |
| 23 | Multidisciplinary Sciences | -0.0734 |
| 24 | Nutrition \& Dietetics | -0.0732 |
| 25 | Pharmacology \& Pharmacy | -0.0722 |
| 26 | Medical Informatics | -0.0719 |
| 27 | Geography, Physical | -0.0717 |
| 28 | Social Issues | -0.0713 |
| 29 | Chemistry, Medicinal | -0.0676 |
| 30 | Materials Science, Biomaterials | -0.0666 |
| 31 | Engineering, Biomedical | -0.0651 |
| 32 | Ethics | -0.0633 |
| 33 | Andrology | -0.0625 |
| 34 | Biology | -0.0616 |
| 35 | Obstetrics \& Gynecology | -0.0616 |
| 36 | Medicine, Research \& Experimental | -0.0615 |
| 37 | Primary Health Care | -0.0614 |
| 38 | Behavioral Sciences | -0.0605 |
| 39 | Agriculture, Multidisciplinary | -0.0547 |
| 40 | Political Science | -0.0530 |
| 41 | Mathematics | -0.0527 |
| 42 | Area Studies | -0.0521 |
| 43 | Sport Sciences | -0.0501 |

D.3. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN GROUPS OF POSITIVE, NEGATIVE AND ZERO ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 44 | Chemistry, Multidisciplinary | -0.0500 |
| 45 | Agronomy | -0.0494 |
| 46 | International Relations | -0.0485 |
| 47 | Philosophy | -0.0477 |
| 48 | Women's Studies | -0.0465 |
| 49 | Law | -0.0462 |
| 50 | History | -0.0454 |
| 51 | Physics, Applied | -0.0450 |
| 52 | Anthropology | -0.0450 |
| 53 | Chemistry, Organic | -0.0443 |
| 54 | Physics, Multidisciplinary | -0.0436 |
| 55 | Nursing | -0.0430 |
| 56 | Nanoscience \& Nanotechnology | -0.0418 |
| 57 | Microscopy | -0.0406 |
| 58 | Optics | -0.0398 |
| 59 | Horticulture | -0.0397 |
| 60 | Crystallography | -0.0393 |
| 61 | Chemistry, Inorganic \& Nuclear | -0.0392 |
| 62 | Psychiatry | -0.0387 |
| 63 | Mathematics, Applied | -0.0385 |
| 64 | Psychology, Biological | -0.0380 |
| 65 | Environmental Sciences | -0.0376 |
| 66 | History \& Philosophy Of Science | -0.0363 |
| 67 | Radiology, Nuclear Medicine \& Medical Imaging | -0.0362 |
| 68 | Soil Science | -0.0360 |
| 69 | Geosciences, Multidisciplinary | -0.0345 |
| 70 | Agriculture, Dairy \& Animal Science | -0.0339 |
| 71 | Physics, Condensed Matter | -0.0339 |
|  |  |  |

D.4. LIST OF CATEGORIES ON THE LEFT WING, RIGHT WING AND THE BODY OF THE BIRD SHAPE, OBTAINED IN THE FIRST THREE PCS, WITH PROJECTION ONTO THE FIRST PRINCIPAL COMPONENT
D.4. List of Categories on the Left Wing, Right Wing and the Body of the Bird Shape, Obtained in the First Three PCs, with Projection onto the First Principal Component

Table D.284. List of categories on the left wing (green) with projection onto the first principal component. Categories are sorted by absolute values of their component score in descending order.

| Left (Green) Wing |  |  |
| :---: | :--- | ---: |
| No. | Category | PC1 |
| 1 | Poetry | -0.3080 |
| 2 | Literature, African, Australian, Canadian | -0.2620 |
| 3 | Literature, American | -0.2530 |
| 4 | Literature | -0.2300 |
| 5 | Literature, German, Dutch, Scandinavian | -0.1950 |
| 6 | Literary Reviews | -0.1910 |
| 7 | Theater | -0.1830 |
| 8 | History | -0.1770 |
| 9 | Literature, Romance | -0.1700 |
| 10 | Medieval \& Renaissance Studies | -0.1670 |
| 11 | Cultural Studies | -0.1560 |
| 12 | Literature, British Isles | -0.1550 |
| 13 | Asian Studies | -0.1430 |
| 14 | Dance | -0.1360 |
| 15 | Area Studies | -0.1310 |
| 16 | Religion | -0.1300 |
| 17 | Film, Radio, Television | -0.1280 |
| 18 | Classics | -0.1270 |
| 19 | Political Science | -0.1250 |
| 20 | Folklore | -0.1240 |
| 21 | Literary Theory \& Criticism | -0.1220 |
| 22 | Literature, Slavic | -0.1200 |
| 23 | Ethnic Studies | -0.1080 |
| 24 | Philosophy | -0.1080 |
| 25 | History Of Social Sciences | -0.1080 |
| 26 | Music | -0.1010 |
| 27 | Law | -0.1000 |
| 28 | International Relations | -0.0990 |
| 29 | Humanities, Multidisciplinary | -0.0970 |
| 30 | Art | -0.0860 |

D.4. LIST OF CATEGORIES ON THE LEFT WING, RIGHT WING AND THE BODY OF THE BIRD SHAPE, OBTAINED IN THE FIRST THREE PCS, WITH PROJECTION ONTO THE FIRST PRINCIPAL COMPONENT

| No. | Category | PC1 |
| :---: | :--- | ---: |
| 31 | Sociology | -0.0860 |
| 32 | Language \& Linguistics | -0.0790 |
| 33 | Communication | -0.0770 |
| 34 | History \& Philosophy Of Science | -0.0760 |
| 35 | Ethics | -0.0730 |
| 36 | Linguistics | -0.0680 |
| 37 | Social Issues | -0.0650 |
| 38 | Women's Studies | -0.0640 |
| 39 | Geography | -0.0560 |
| 40 | Anthropology | -0.0530 |
| 41 | Public Administration | -0.0510 |
| 42 | Education \& Educational Research | -0.0470 |
| 43 | Industrial Relations \& Labor | -0.0400 |
| 44 | Medical Ethics | -0.0400 |
| 45 | Psychology, Psychoanalysis | -0.0390 |
| 46 | Planning \& Development | -0.0390 |
| 47 | Urban Studies | -0.0380 |
| 48 | Archaeology | -0.0350 |
| 49 | Social Sciences, Interdisciplinary | -0.0350 |
| 50 | Criminology \& Penology | -0.0300 |
| 51 | Demography | -0.0290 |
| 52 | Social Work | -0.0260 |
| 53 | Architecture | -0.0240 |
| 54 | Environmental Studies | -0.0200 |
| 55 | Hospitality, Leisure, Sport \& Tourism | -0.0180 |
| 56 | Education, Scientific Disciplines | -0.0170 |
| 57 | Information Science \& Library Science | -0.0160 |
| 58 | Business | -0.0140 |
| 59 | Social Sciences, Biomedical | -0.0130 |
| 60 | Management | -0.0090 |
| 61 | Psychology, Educational | -0.0090 |
| 62 | Psychology, Applied | -0.0080 |
| 63 | Psychology, Multidisciplinary | -0.0060 |
| 64 | Psychology, Social | -0.0060 |
| 65 | Economics | -0.0060 |
|  |  |  |
| 3 |  |  |

D.4. LIST OF CATEGORIES ON THE LEFT WING, RIGHT WING AND THE BODY OF THE BIRD SHAPE, OBTAINED IN THE FIRST THREE PCS, WITH PROJECTION ONTO THE FIRST PRINCIPAL COMPONENT

Table D.285. List of categories on the body (blue) with projection onto the first principal component. Categories are sorted by absolute values of their component score in descending order.

| Body |  |  |
| :---: | :--- | ---: |
| No. | Category | PC1 |
| 1 | Agricultural Economics \& Policy | -0.0020 |
| 2 | Mathematical \& Computational Biology | 0.0000 |
| 3 | Biochemical Research Methods | 0.0000 |
| 4 | Biotechnology \& Applied Microbiology | 0.0000 |
| 5 | Family Studies | 0.0000 |
| 6 | Biophysics | 0.0010 |
| 7 | Psychology, Mathematical | 0.0010 |
| 8 | Business, Finance | 0.0020 |
| 9 | Mycology | 0.0020 |
| 10 | Acoustics | 0.0030 |
| 11 | Transportation | 0.0040 |
| 12 | Engineering, Biomedical | 0.0040 |
| 13 | Multidisciplinary Sciences | 0.0040 |
| 14 | Medicine, Legal | 0.0040 |
| 15 | Biochemistry \& Molecular Biology | 0.0040 |
| 16 | Chemistry, Analytical | 0.0040 |
| 17 | Audiology \& Speech-Language Pathology | 0.0040 |
| 18 | Biology | 0.0050 |
| 19 | Developmental Biology | 0.0050 |
| 20 | Microbiology | 0.0050 |
| 21 | Psychology, Experimental | 0.0050 |
| 22 | Ergonomics | 0.0050 |
| 23 | Microscopy | 0.0050 |
| 24 | Materials Science, Biomaterials | 0.0060 |
| 25 | Cell Biology | 0.0060 |
| 26 | Toxicology | 0.0070 |
| 27 | Social Sciences, Mathematical Methods | 0.0070 |
| 28 | Chemistry, Medicinal | 0.0070 |
| 29 | Education, Special | 0.0080 |
| 30 | Statistics \& Probability | 0.0080 |
| 31 | Logic | 0.0080 |
| 32 | Cell \& Tissue Engineering | 0.0090 |
| 33 | Food Science \& Technology | 0.0090 |
| 34 | Spectroscopy | 0.0100 |
|  |  |  |

D.4. LIST OF CATEGORIES ON THE LEFT WING, RIGHT WING AND THE BODY OF THE BIRD SHAPE, OBTAINED IN THE FIRST THREE PCS, WITH PROJECTION ONTO THE FIRST PRINCIPAL COMPONENT

| No. | Category | PC1 |
| ---: | :--- | ---: |
| 35 | Psychology, Biological | 0.0100 |
| 36 | Anatomy \& Morphology | 0.0110 |
| 37 | Behavioral Sciences | 0.0110 |
| 38 | Physiology | 0.0110 |
| 39 | Genetics \& Heredity | 0.0120 |
| 40 | Paleontology | 0.0120 |
| 41 | Agriculture, Multidisciplinary | 0.0120 |
| 42 | Geography, Physical | 0.0120 |
| 43 | Nuclear Science \& Technology | 0.0130 |
| 44 | Chemistry, Applied | 0.0140 |
| 45 | Evolutionary Biology | 0.0150 |
| 46 | Environmental Sciences | 0.0150 |
| 47 | Geology | 0.0160 |
| 48 | Zoology | 0.0160 |
| 49 | Agricultural Engineering | 0.0160 |
| 50 | Mining \& Mineral Processing | 0.0160 |
| 51 | Agriculture, Dairy \& Animal Science | 0.0160 |
| 52 | Astronomy \& Astrophysics | 0.0160 |
| 53 | Engineering, Environmental | 0.0160 |
| 54 | Computer Science, Cybernetics | 0.0170 |
| 55 | Engineering, Petroleum | 0.0170 |
| 56 | Imaging Science \& Photographic Technology | 0.0170 |
| 57 | Biodiversity Conservation | 0.0170 |
| 58 | Meteorology \& Atmospheric Sciences | 0.0190 |
| 59 | Plant Sciences | 0.0190 |
| 60 | Materials Science, Paper \& Wood | 0.0170 |
| 61 | Computer Science, Interdisciplinary Applications | 0.0170 |
| 62 | Limnology | 0.0170 |
| 63 | Green \& Sustainable Science \& Technology | 0.0170 |
| 64 | Geochemistry \& Geophysics | 0.0170 |
| 65 | Materials Science, Characterization \& Testing | 0.0170 |
| 66 | Forestry | 0.0170 |
| 67 | Engineering, Ocean | 0.0180 |
| 68 | Materials Science, Textiles | 0.0180 |
| 69 | Medical Informatics | 0.0180 |
| 70 | Mineralogy | 0.0190 |
| 71 | Chemistry, Organic | 0.0190 |
| 72 | Ornithology | 0 |
|  |  | 0 |

D.4. LIST OF CATEGORIES ON THE LEFT WING, RIGHT WING AND THE BODY OF THE BIRD SHAPE, OBTAINED IN THE FIRST THREE PCS, WITH PROJECTION ONTO THE FIRST PRINCIPAL COMPONENT

| No. | Category | PC1 |
| :---: | :--- | ---: |
| 73 | Mathematics | 0.0190 |
| 74 | Water Resources | 0.0190 |
| 75 | Horticulture | 0.0190 |
| 76 | Engineering, Marine | 0.0190 |
| 77 | Agronomy | 0.0190 |
| 78 | Remote Sensing | 0.0190 |
| 79 | Instruments \& Instrumentation | 0.0200 |
| 80 | Engineering, Industrial | 0.0200 |
| 81 | Psychology | 0.0200 |
| 82 | Soil Science | 0.0200 |
| 83 | Engineering, Geological | 0.0200 |
| 84 | Physics, Nuclear | 0.0200 |
| 85 | Engineering, Aerospace | 0.0200 |
| 86 | Materials Science, Composites | 0.0210 |
| 87 | Entomology | 0.0210 |
| 88 | Fisheries | 0.0210 |
| 89 | Physics, Fluids \& Plasmas | 0.0210 |
| 90 | Veterinary Sciences | 0.0210 |
| 91 | Operations Research \& Management Science | 0.0210 |
| 92 | Oceanography | 0.0210 |
| 93 | Marine \& Freshwater Biology | 0.0210 |
| 94 | Thermodynamics | 0.0210 |
| 95 | Ecology | 0.0210 |
| 96 | Geosciences, Multidisciplinary | 0.0240 |
| 97 | Construction \& Building Technology | 0.0240 |
| 98 | Pharmacology \& Pharmacy | 0.0220 |
| 99 | Electrochemistry | 0.0220 |
| 100 | Physics, Mathematical | 0.0220 |
| 101 | Physics, Particles \& Fields | 0.0220 |
| 102 | Mathematics, Interdisciplinary Applications | 0.0220 |
| 103 | Virology | 0.0230 |
| 104 | Nanoscience \& Nanotechnology | 0.0230 |
| 105 | Computer Science, Software Engineering | 0.0230 |
| 106 | Transportation Science \& Technology | 0.0240 |
| 107 | Materials Science, Coatings \& Films | 0.0240 |
| 108 | Robotics | 0.0240 |
| 109 | Engineering, Manufacturing | 0.0 . |
| 110 | Engineering, Chemical | 0 |
|  |  | 0 |

D.4. LIST OF CATEGORIES ON THE LEFT WING, RIGHT WING AND THE BODY OF THE BIRD SHAPE, OBTAINED IN THE FIRST THREE PCS, WITH PROJECTION ONTO THE FIRST PRINCIPAL COMPONENT

| No. | Category | PC1 |
| ---: | :--- | ---: |
| 111 | Materials Science, Ceramics | 0.0240 |
| 112 | Engineering, Civil | 0.0240 |
| 113 | Physics, Atomic, Molecular \& Chemical | 0.0240 |
| 114 | Engineering, Multidisciplinary | 0.0250 |
| 115 | Polymer Science | 0.0260 |
| 116 | Crystallography | 0.0260 |
| 117 | Optics | 0.0260 |
| 118 | Physics, Multidisciplinary | 0.0260 |
| 119 | Parasitology | 0.0260 |
| 120 | Chemistry, Multidisciplinary | 0.0260 |
| 121 | Chemistry, Inorganic \& Nuclear | 0.0270 |
| 122 | Mathematics, Applied | 0.0280 |
| 123 | Metallurgy \& Metallurgical Engineering | 0.0280 |
| 124 | Andrology | 0.0280 |
| 125 | Computer Science, Information Systems | 0.0290 |
| 126 | Mechanics | 0.0290 |
| 127 | Neurosciences | 0.0290 |
| 128 | Engineering, Mechanical | 0.0300 |
| 129 | Computer Science, Artificial Intelligence | 0.0300 |
| 130 | Physics, Condensed Matter | 0.0300 |
| 131 | Energy \& Fuels | 0.0310 |
| 132 | Psychology, Developmental | 0.0320 |
| 133 | Computer Science, Hardware \& Architecture | 0.0330 |
| 134 | Chemistry, Physical | 0.0340 |
| 135 | Psychology, Clinical | 0.0340 |
| 136 | Computer Science, Theory \& Methods | 0.0350 |
| 137 | Automation \& Control Systems | 0.0350 |
| 138 | Physics, Applied | 0.0350 |
|  |  |  |

Table D.286. List of categories on the right wing (red) with projection onto the first principal component. Categories are sorted by absolute values of their component score in descending order.

| Right (red) Wing |  |  |
| :---: | :--- | ---: |
| No. | Category | PC1 |
| 1 | Reproductive Biology | 0.0380 |
| 2 | Materials Science, Multidisciplinary | 0.0400 |
| 3 | Neuroimaging | 0.0410 |
| 4 | Telecommunications | 0.0420 |

D.4. LIST OF CATEGORIES ON THE LEFT WING, RIGHT WING AND THE BODY OF THE BIRD SHAPE, OBTAINED IN THE FIRST THREE PCS, WITH PROJECTION ONTO THE FIRST PRINCIPAL COMPONENT

| No. | Category | PC1 |
| :---: | :--- | ---: |
| 5 | Nutrition \& Dietetics | 0.0430 |
| 6 | Integrative \& Complementary Medicine | 0.0430 |
| 7 | Medicine, Research \& Experimental | 0.0450 |
| 8 | Radiology, Nuclear Medicine \& Medical Imaging | 0.0490 |
| 9 | Sport Sciences | 0.0510 |
| 10 | Immunology | 0.0510 |
| 11 | Health Policy \& Services | 0.0520 |
| 12 | Pathology | 0.0530 |
| 13 | Tropical Medicine | 0.0530 |
| 14 | Substance Abuse | 0.0540 |
| 15 | Engineering, Electrical \& Electronic | 0.0540 |
| 16 | Public, Environmental \& Occupational Health | 0.0590 |
| 17 | Rehabilitation | 0.0610 |
| 18 | Endocrinology \& Metabolism | 0.0630 |
| 19 | Nursing | 0.0650 |
| 20 | Medical Laboratory Technology | 0.0680 |
| 21 | Dentistry, Oral Surgery \& Medicine | 0.0740 |
| 22 | Infectious Diseases | 0.0760 |
| 23 | Gerontology | 0.0770 |
| 24 | Psychiatry | 0.0820 |
| 25 | Hematology | 0.0820 |
| 26 | Dermatology | 0.0830 |
| 27 | Health Care Sciences \& Services | 0.0890 |
| 28 | Geriatrics \& Gerontology | 0.0940 |
| 29 | Primary Health Care | 0.1160 |
| 30 | Obstetrics \& Gynecology | 0.1180 |
| 31 | Ophthalmology | 0.1270 |
| 32 | Pediatrics | 0.1270 |
| 33 | Anesthesiology | 0.1320 |
| 34 | Oncology | 0.1330 |
| 35 | Otorhinolaryngology | 0.1380 |
| 36 | Allergy | 0.1400 |
| 37 | Peripheral Vascular Disease | 0.1400 |
| 38 | Transplantation | 0.1460 |
| 39 | Clinical Neurology | 0.1470 |
| 40 | Emergency Medicine | 0.140 |
| 41 | Orthopedics | 0 |
| 42 | Urology \& Nephrology | 0 |
|  |  | 0 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Category | PC1 |
| ---: | :--- | ---: |
| 43 | Medicine, General \& Internal | 0.1560 |
| 44 | Rheumatology | 0.1560 |
| 45 | Respiratory System | 0.1600 |
| 46 | Gastroenterology \& Hepatology | 0.1650 |
| 47 | Critical Care Medicine | 0.1740 |
| 48 | Cardiac \& Cardiovascular Systems | 0.2160 |
| 49 | Surgery | 0.2200 |

## D.5. List of Original Attributes (Categories) in Positive, Negative and Zero Groups Identified by Vector Approximation on the Principal Components

Table D.287. List of original attributes (categories) in positive group identified by vector approximation on the $2^{\text {nd }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC2) |  |  |
| :---: | :--- | ---: |
| No. Attribute | Component <br> Coefficient |  |
| 1 | Cultural Studies | 0.2044 |
| 2 | Humanities, Multidisciplinary | 0.1905 |
| 3 | Asian Studies | 0.1887 |
| 4 | History | 0.1877 |
| 5 | Area Studies | 0.1831 |
| 6 | Literature | 0.1765 |
| 7 | History Of Social Sciences | 0.1736 |
| 8 | Sociology | 0.1704 |
| 9 | Social Issues | 0.1688 |
| 10 | Literature, Romance | 0.1666 |
| 11 | International Relations | 0.1541 |
| 12 | Political Science | 0.1452 |
| 13 | Medieval \& Renaissance Studies | 0.1451 |
| 14 | Literary Theory \& Criticism | 0.1437 |
| 15 | Ethnic Studies | 0.1436 |
| 16 | History \& Philosophy Of Science | 0.1376 |
| 17 | Film, Radio, Television | 0.1367 |
| 18 | Communication | 0.1311 |
| 19 | Literature, African, Australian, Canadian | 0.1304 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 20 | Literature, British Isles | 0.1286 |
| 21 | Folklore | 0.1222 |
| 22 | Classics | 0.1200 |
| 23 | Literature, American | 0.1199 |
| 24 | Geography | 0.1196 |
| 25 | Literature, German, Dutch, Scandinavian | 0.1192 |
| 26 | Planning \& Development | 0.1180 |
| 27 | Art | 0.1165 |
| 28 | Anthropology | 0.1162 |
| 29 | Social Sciences, Interdisciplinary | 0.1150 |
| 30 | Religion | 0.1118 |
| 31 | Public Administration | 0.1090 |
| 32 | Philosophy | 0.1058 |
| 33 | Theater | 0.1000 |
| 34 | Ethics | 0.0982 |
| 35 | Literary Reviews | 0.0924 |
| 36 | Law | 0.0905 |
| 37 | Literature, Slavic | 0.0884 |
| 38 | Poetry | 0.0856 |
| 39 | Industrial Relations \& Labor | 0.0797 |
| 40 | Women's Studies | 0.0762 |
| 41 | Environmental Studies | 0.0755 |
| 42 | Social Work | 0.0733 |
| 43 | Demography | 0.0722 |
| 44 | Urban Studies | 0.0684 |
| 45 | Medical Ethics | 0.0675 |
| 46 | Social Sciences, Biomedical | 0.0661 |
|  |  |  |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

Table D.288. List of original attributes (categories) in zero group identified by vector approximation on the $2^{\text {nd }}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.

| Zero (PC2) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Language \& Linguistics | 0.0603 |
| 2 | Business | 0.0544 |
| 3 | Information Science \& Library Science | 0.0521 |
| 4 | Management | 0.0475 |
| 5 | Linguistics | 0.0462 |
| 6 | Music | 0.0457 |
| 7 | Economics | 0.0433 |
| 8 | Psychology, Applied | 0.0430 |
| 9 | Hospitality, Leisure, Sport \& Tourism | 0.0429 |
| 10 | Psychology, Social | 0.0420 |
| 11 | Psychology, Multidisciplinary | 0.0418 |
| 12 | Education \& Educational Research | 0.0418 |
| 13 | Criminology \& Penology | 0.0412 |
| 14 | Architecture | 0.0411 |
| 15 | Psychology, Psychoanalysis | 0.0363 |
| 16 | Archaeology | 0.0362 |
| 17 | Dance | 0.0349 |
| 18 | Family Studies | 0.0279 |
| 19 | Psychology, Educational | 0.0255 |
| 20 | Business, Finance | 0.0236 |
| 21 | Agricultural Economics \& Policy | 0.0226 |
| 22 | Education, Scientific Disciplines | 0.0175 |
| 23 | Education, Special | 0.0087 |
| 24 | Psychology, Mathematical | 0.0083 |
| 25 | Health Policy \& Services | 0.0038 |
| 26 | Social Sciences, Mathematical Methods | 0.0014 |
| 27 | Chemistry, Analytical | 0.0012 |
| 28 | Psychology, Experimental | 0.0010 |
| 29 | Transportation | 0.0003 |
|  |  |  |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 30 | Geography, Physical | -0.0179 |
| 31 | Metallurgy \& Metallurgical Engineering | -0.0178 |
| 32 | Materials Science, Textiles | -0.0177 |
| 33 | Physics, Condensed Matter | -0.0175 |
| 34 | Cell Biology | -0.0171 |
| 35 | Agriculture, Dairy \& Animal Science | -0.0171 |
| 36 | Andrology | -0.0170 |
| 37 | Ornithology | -0.0169 |
| 38 | Physics, Atomic, Molecular \& Chemical | -0.0169 |
| 39 | Food Science \& Technology | -0.0168 |
| 40 | Engineering, Petroleum | -0.0165 |
| 41 | Psychology, Biological | -0.0164 |
| 42 | Geology | -0.0163 |
| 43 | Mineralogy | -0.0163 |
| 44 | Meteorology \& Atmospheric Sciences | -0.0162 |
| 45 | Microbiology | -0.0161 |
| 46 | Virology | -0.0161 |
| 47 | Physics, Nuclear | -0.0161 |
| 48 | Optics | -0.0156 |
| 49 | Forestry | -0.0156 |
| 50 | Health Care Sciences \& Services | -0.0156 |
| 51 | Physics, Particles \& Fields | -0.0153 |
| 52 | Nanoscience \& Nanotechnology | -0.0151 |
| 53 | Gerontology | -0.0149 |
| 54 | Materials Science, Composites | -0.0148 |
| 55 | Biotechnology \& Applied Microbiology | -0.0144 |
| 56 | Materials Science, Paper \& Wood | -0.0143 |
| 57 | Soil Science | -0.0141 |
| 58 | Nuclear Science \& Technology | -0.0133 |
| 59 | Thermodynamics | -0.0133 |
| 60 | Polymer Science | -0.0132 |
| 61 | Substance Abuse | -0.0130 |
| 62 | Paleontology | -0.0125 |
| 63 | Chemistry, Inorganic \& Nuclear | -0.0124 |
| 64 | Psychology | -0.0123 |
| 65 | Materials Science, Ceramics |  |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 67 | Chemistry, Medicinal | -0.0122 |
| 68 | Mathematical \& Computational Biology | -0.0117 |
| 69 | Crystallography | -0.0114 |
| 70 | Biophysics | -0.0109 |
| 71 | Materials Science, Coatings \& Films | -0.0109 |
| 72 | Mathematics | -0.0107 |
| 73 | Chemistry, Organic | -0.0103 |
| 74 | Mycology | -0.0101 |
| 75 | Cell \& Tissue Engineering | -0.0099 |
| 76 | Astronomy \& Astrophysics | -0.0095 |
| 77 | Acoustics | -0.0093 |
| 78 | Public, Environmental \& Occupational Health | -0.0091 |
| 79 | Electrochemistry | -0.0087 |
| 80 | Logic | -0.0087 |
| 81 | Engineering, Biomedical | -0.0066 |
| 82 | Materials Science, Biomaterials | -0.0066 |
| 83 | Psychology, Clinical | -0.0064 |
| 84 | Spectroscopy | -0.0047 |
| 85 | Medicine, Legal | -0.0041 |
| 86 | Biochemical Research Methods | -0.0028 |
| 87 | Nursing | -0.0025 |
| 88 | Audiology \& Speech-Language Pathology | -0.0025 |
| 89 | Microscopy | -0.0019 |
| 90 | Ergonomics | -0.0014 |
| 91 | Psychology, Developmental | -0.0011 |

Table D.289. List of original attributes (categories) in negative group identified by vector approximation o the $2^{\text {nd }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC2) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Engineering, Multidisciplinary | -0.0759 |
| 2 | Clinical Neurology | -0.0686 |
| 3 | Medicine, General \& Internal | -0.0677 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 4 | Engineering, Electrical \& Electronic | -0.0655 |
| 5 | Computer Science, Theory \& Methods | -0.0621 |
| 6 | Gastroenterology \& Hepatology | -0.0612 |
| 7 | Surgery | -0.0605 |
| 8 | Medicine, Research \& Experimental | -0.0579 |
| 9 | Critical Care Medicine | -0.0574 |
| 10 | Computer Science, Interdisciplinary Applications | -0.0573 |
| 11 | Peripheral Vascular Disease | -0.0573 |
| 12 | Respiratory System | -0.0570 |
| 13 | Engineering, Industrial | -0.0570 |
| 14 | Automation \& Control Systems | -0.0556 |
| 15 | Computer Science, Information Systems | -0.0555 |
| 16 | Urology \& Nephrology | -0.0554 |
| 17 | Computer Science, Hardware \& Architecture | -0.0550 |
| 18 | Engineering, Manufacturing | -0.0546 |
| 19 | Computer Science, Artificial Intelligence | -0.0540 |
| 20 | Engineering, Mechanical | -0.0532 |
| 21 | Mathematics, Interdisciplinary Applications | -0.0524 |
| 22 | Computer Science, Software Engineering | -0.0524 |
| 23 | Cardiac \& Cardiovascular Systems | -0.0516 |
| 24 | Computer Science, Cybernetics | -0.0512 |
| 25 | Anesthesiology | -0.0510 |
| 26 | Hematology | -0.0506 |
| 27 | Otorhinolaryngology | -0.0503 |
| 28 | Pediatrics | -0.0502 |
| 29 | Mechanics | -0.0497 |
| 30 | Telecommunications | -0.0493 |
| 31 | Orthopedics | -0.0486 |
| 32 | Emergency Medicine | -0.0477 |
| 33 | Rheumatology | -0.0464 |
| 34 | Endocrinology \& Metabolism | -0.0458 |
| 35 | Engineering, Civil | -0.0449 |
| 36 | Operations Research \& Management Science | -0.0447 |
| 37 | Dermatology | -0.0429 |
| 38 | Medical Laboratory Technology | -0.0426 |
| 39 | Oncology | -0.0412 |
| 40 | Infectious Diseases | -0.0403 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 41 | Immunology | -0.0392 |
| 42 | Obstetrics \& Gynecology | -0.0391 |
| 43 | Biology | -0.0386 |
| 44 | Pathology | -0.0365 |
| 45 | Geriatrics \& Gerontology | -0.0360 |
| 46 | Transportation Science \& Technology | -0.0352 |
| 47 | Energy \& Fuels | -0.0348 |
| 48 | Materials Science, Multidisciplinary | -0.0334 |
| 49 | Allergy | -0.0332 |
| 50 | Pharmacology \& Pharmacy | -0.0328 |
| 51 | Engineering, Aerospace | -0.0328 |
| 52 | Transplantation | -0.0326 |
| 53 | Materials Science, Characterization \& Testing | -0.0323 |
| 54 | Sport Sciences | -0.0317 |
| 55 | Tropical Medicine | -0.0317 |
| 56 | Construction \& Building Technology | -0.0317 |
| 57 | Physics, Multidisciplinary | -0.0316 |
| 58 | Multidisciplinary Sciences | -0.0316 |
| 59 | Veterinary Sciences | -0.0314 |
| 60 | Instruments \& Instrumentation | -0.0314 |
| 61 | Mathematics, Applied | -0.0313 |
| 62 | Physics, Mathematical | -0.0305 |
| 63 | Dentistry, Oral Surgery \& Medicine | -0.0302 |
| 64 | Nutrition \& Dietetics | -0.0302 |
| 65 | Physiology | -0.0300 |
| 66 | Engineering, Marine | -0.0299 |
| 67 | Neurosciences | -0.0292 |
| 68 | Robotics | -0.0286 |
| 69 | Geosciences, Multidisciplinary | -0.0282 |
| 70 | Rehabilitation | -0.0276 |
| 71 | Engineering, Ocean | -0.0275 |
| 72 | Psychiatry | -0.0273 |
| 73 | Marine \& Freshwater Biology | -0.0272 |
| 74 | Reproductive Biology | -0.0270 |
| 75 | Engineering, Environmental | -0.0267 |
| 76 | Primary Health Care | -0.0266 |
| 77 | Ecology | -0.0259 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 78 | Engineering, Geological | -0.0258 |
| 79 | Agriculture, Multidisciplinary | -0.0250 |
| 80 | Chemistry, Multidisciplinary | -0.0248 |
| 81 | Ophthalmology | -0.0247 |
| 82 | Imaging Science \& Photographic Technology | -0.0245 |
| 83 | Plant Sciences | -0.0242 |
| 84 | Engineering, Chemical | -0.0242 |
| 85 | Parasitology | -0.0241 |
| 86 | Physics, Applied | -0.0240 |
| 87 | Radiology, Nuclear Medicine \& Medical Imaging | -0.0239 |
| 88 | Chemistry, Applied | -0.0237 |
| 89 | Limnology | -0.0235 |
| 90 | Zoology | -0.0230 |
| 91 | Agricultural Engineering | -0.0228 |
| 92 | Integrative \& Complementary Medicine | -0.0227 |
| 93 | Oceanography | -0.0227 |
| 94 | Chemistry, Physical | -0.0225 |
| 95 | Environmental Sciences | -0.0225 |
| 96 | Anatomy \& Morphology | -0.0224 |
| 97 | Entomology | -0.0223 |
| 98 | Agronomy | -0.0222 |
| 99 | Neuroimaging | -0.0220 |
| 100 | Green \& Sustainable Science \& Technology | -0.0217 |
| 101 | Genetics \& Heredity | -0.0212 |
| 102 | Evolutionary Biology | -0.0208 |
| 103 | Remote Sensing | -0.0207 |
| 104 | Mining \& Mineral Processing | -0.0207 |
| 105 | Physics, Fluids \& Plasmas | -0.0202 |
| 106 | Water Resources | -0.0200 |
| 107 | Biochemistry \& Molecular Biology | -0.0200 |
| 108 | Behavioral Sciences | -0.0199 |
| 109 | Geochemistry \& Geophysics | -0.0197 |
| 110 | Biodiversity Conservation | -0.0196 |
| 111 | Medical Informatics | -0.0196 |
| 112 | Horticulture | -0.0194 |
| 113 | Fisheries | -0.0192 |
| 114 | Toxicology | -0.0192 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 115 | Developmental Biology | -0.0182 |

TABLE D.290. List of original attributes (categories) in positive group identified by vector approximation o the $3^{\text {rd }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC3) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Multidisciplinary Sciences | 0.1711 |
| 2 | Biochemistry \& Molecular Biology | 0.1628 |
| 3 | Cell Biology | 0.1570 |
| 4 | Biology | 0.1392 |
| 5 | Computer Science, Information Systems | 0.1324 |
| 6 | Computer Science, Theory \& Methods | 0.1320 |
| 7 | Computer Science, Interdisciplinary Applications | 0.1303 |
| 8 | Computer Science, Artificial Intelligence | 0.1296 |
| 9 | Biotechnology \& Applied Microbiology | 0.1262 |
| 10 | Biophysics | 0.1261 |
| 11 | Developmental Biology | 0.1226 |
| 12 | Computer Science, Software Engineering | 0.1199 |
| 13 | Computer Science, Cybernetics | 0.1183 |
| 14 | Automation \& Control Systems | 0.1140 |
| 15 | Computer Science, Hardware \& Architecture | 0.1122 |
| 16 | Engineering, Industrial | 0.1109 |
| 17 | Physiology | 0.1104 |
| 18 | Operations Research \& Management Science | 0.1079 |
| 19 | Engineering, Electrical \& Electronic | 0.1044 |
| 20 | Engineering, Multidisciplinary | 0.0991 |
| 21 | Telecommunications | 0.0950 |
| 22 | Genetics \& Heredity | 0.0941 |
| 23 | Microbiology | 0.0938 |
| 24 | Toxicology | 0.0914 |
| 25 | Cell \& Tissue Engineering | 0.0880 |
| 26 | Pharmacology \& Pharmacy | 0.0880 |
| 27 | Medicine, Research \& Experimental | 0.0777 |
|  |  |  |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| ---: | :--- | ---: |
| 28 | Mathematics, Interdisciplinary Applications | 0.0746 |
| 29 | Mathematical \& Computational Biology | 0.0726 |
| 30 | Immunology | 0.0723 |
| 31 | Transportation Science \& Technology | 0.0718 |
| 32 | Plant Sciences | 0.0652 |
| 33 | Robotics | 0.0647 |
| 34 | Virology | 0.0634 |
| 35 | Chemistry, Medicinal | 0.0630 |
| 36 | Mycology | 0.0614 |
| 37 | Evolutionary Biology | 0.0601 |
| 38 | Imaging Science \& Photographic Technology | 0.0596 |
| 39 | Ecology | 0.0526 |
| 40 | Zoology | 0.0521 |
| 41 | Biochemical Research Methods | 0.0506 |

Table D.291. List of original attributes (categories) in zero group identified by vector approximation o the $3^{r d}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.

| Zero (PC3) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Biodiversity Conservation | 0.0485 |
| 2 | Engineering, Manufacturing | 0.0469 |
| 3 | Social Sciences, Mathematical Methods | 0.0467 |
| 4 | Parasitology | 0.0435 |
| 5 | Anatomy \& Morphology | 0.0430 |
| 6 | Veterinary Sciences | 0.0428 |
| 7 | Marine \& Freshwater Biology | 0.0418 |
| 8 | Engineering, Aerospace | 0.0412 |
| 9 | Engineering, Civil | 0.0406 |
| 10 | Pathology | 0.0399 |
| 11 | Engineering, Marine | 0.0373 |
| 12 | Acoustics | 0.0369 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 13 | Entomology | 0.0364 |
| 14 | Ornithology | 0.0350 |
| 15 | Engineering, Mechanical | 0.0342 |
| 16 | Food Science \& Technology | 0.0339 |
| 17 | Mathematics, Applied | 0.0337 |
| 18 | Engineering, Ocean | 0.0329 |
| 19 | Fisheries | 0.0325 |
| 20 | Remote Sensing | 0.0305 |
| 21 | Agronomy | 0.0303 |
| 22 | Horticulture | 0.0295 |
| 23 | Logic | 0.0293 |
| 24 | Materials Science, Biomaterials | 0.0292 |
| 25 | Transportation | 0.0290 |
| 26 | Agriculture, Dairy \& Animal Science | 0.0283 |
| 27 | Literature, Romance | 0.0279 |
| 28 | Agriculture, Multidisciplinary | 0.0276 |
| 29 | Statistics \& Probability | 0.0273 |
| 30 | Literary Theory \& Criticism | 0.0273 |
| 31 | Reproductive Biology | 0.0267 |
| 32 | Literature, British Isles | 0.0259 |
| 33 | Engineering, Biomedical | 0.0258 |
| 34 | Medieval \& Renaissance Studies | 0.0255 |
| 35 | Architecture | 0.0191 |
| 36 | Economics | 0.0248 |
| 37 | Forestry | 0.0244 |
| 38 | Paleontology | 0.0242 |
| 39 | Literature | 0.0236 |
| 40 | Construction \& Building Technology | 0.0232 |
| 41 | Literary Reviews | 0.0227 |
| 42 | Classics | 0.0209 |
| 43 | Mathematics | 0.0209 |
| 44 | Geography, Physical | 0.0203 |
| 45 | Humanities, Multidisciplinary | 0.0202 |
| 46 | Literature, American | 0.0198 |
| 47 | Integrative \& Complementary Medicine | 0.0198 |
| 48 | Literature, Slavic | 0.0196 |
| 49 | Asian Studies | 0 |
|  |  | 0 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 50 | Neurosciences | 0.0184 |
| 51 | History | 0.0181 |
| 52 | Oncology | 0.0181 |
| 53 | Literature, German, Dutch, Scandinavian | 0.0177 |
| 54 | Art | 0.0176 |
| 55 | Business, Finance | 0.0175 |
| 56 | Information Science \& Library Science | 0.0173 |
| 57 | Andrology | 0.0173 |
| 58 | History Of Social Sciences | 0.0167 |
| 59 | Philosophy | 0.0167 |
| 60 | Engineering, Geological | 0.0159 |
| 61 | Poetry | 0.0149 |
| 62 | Mechanics | 0.0145 |
| 63 | Folklore | 0.0142 |
| 64 | Soil Science | 0.0141 |
| 65 | Environmental Sciences | 0.0140 |
| 66 | Literature, African, Australian, Canadian | 0.0137 |
| 67 | History \& Philosophy Of Science | 0.0136 |
| 68 | Limnology | 0.0135 |
| 69 | Archaeology | 0.0131 |
| 70 | Language \& Linguistics | 0.0131 |
| 71 | Management | 0.0125 |
| 72 | Religion | 0.0117 |
| 73 | Theater | 0.0116 |
| 74 | Hematology | 0.0099 |
| 75 | Agricultural Economics \& Policy | 0.0099 |
| 76 | Meteorology \& Atmospheric Sciences | 0.0096 |
| 77 | Oceanography | 0.0083 |
| 78 | Cultural Studies | 0.0082 |
| 79 | Linguistics | 0.0081 |
| 80 | Planning \& Development | 0.0078 |
| 81 | Environmental Studies | 0.0076 |
| 82 | Area Studies | 0.0072 |
| 83 | Instruments \& Instrumentation | 0.0066 |
| 84 | Behavioral Sciences | 0.0066 |
| 85 | Business | 0.0066 |
| 86 | Geosciences, Multidisciplinary | 0.0064 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 87 | Film, Radio, Television | 0.0063 |
| 88 | Anthropology | 0.0061 |
| 89 | Geology | 0.0053 |
| 90 | International Relations | 0.0053 |
| 91 | Geography | 0.0047 |
| 92 | Endocrinology \& Metabolism | 0.0032 |
| 93 | Urban Studies | 0.0032 |
| 94 | Law | 0.0028 |
| 95 | Dance | 0.0022 |
| 96 | Music | 0.0022 |
| 97 | Political Science | 0.0019 |
| 98 | Agricultural Engineering | 0.0009 |
| 99 | Geochemistry \& Geophysics | 0.0006 |
| 100 | Medicine, Legal | 0.0002 |
| 101 | Water Resources | 0.0002 |
| 102 | Physics, Atomic, Molecular \& Chemical | -0.0439 |
| 103 | Medical Ethics | -0.0419 |
| 104 | Medical Informatics | -0.0412 |
| 105 | Demography | -0.0353 |
| 106 | Materials Science, Ceramics | -0.0344 |
| 107 | Electrochemistry | -0.0339 |
| 108 | Women's Studies | -0.0339 |
| 109 | Radiology, Nuclear Medicine \& Medical Imaging | -0.0336 |
| 110 | Polymer Science | -0.0329 |
| 111 | Transplantation | -0.0307 |
| 112 | Psychology, Experimental | -0.0304 |
| 113 | Metallurgy \& Metallurgical Engineering | -0.0300 |
| 114 | Materials Science, Textiles | -0.0294 |
| 115 | Crystallography | -0.0293 |
| 116 | Social Issues | -0.0276 |
| 117 | Sociology | -0.0273 |
| 118 | Physics, Fluids \& Plasmas | -0.0268 |
| 119 | Criminology \& Penology | -0.0262 |
| 120 | Nutrition \& Dietetics | -0.0258 |
| 121 | Spectroscopy | -0.0246 |
| 122 | Optics | -0.0242 |
| 123 | Education \& Educational Research | -0.0239 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :--- | :--- | ---: |
| 124 | Infectious Diseases | -0.0219 |
| 125 | Energy \& Fuels | -0.0218 |
| 126 | Audiology \& Speech-Language Pathology | -0.0216 |
| 127 | Materials Science, Composites | -0.0202 |
| 128 | Education, Scientific Disciplines | -0.0197 |
| 129 | Thermodynamics | -0.0195 |
| 130 | Neuroimaging | -0.0191 |
| 131 | Physics, Nuclear | -0.0166 |
| 132 | Microscopy | -0.0163 |
| 133 | Chemistry, Inorganic \& Nuclear | -0.0158 |
| 134 | Materials Science, Characterization \& Testing | -0.0145 |
| 135 | Engineering, Environmental | -0.0136 |
| 136 | Industrial Relations \& Labor | -0.0136 |
| 137 | Materials Science, Paper \& Wood | -0.0135 |
| 138 | Tropical Medicine | -0.0134 |
| 139 | Hospitality, Leisure, Sport \& Tourism | -0.0116 |
| 140 | Physics, Mathematical | -0.0116 |
| 141 | Physics, Particles \& Fields | -0.0115 |
| 142 | Green \& Sustainable Science \& Technology | -0.0113 |
| 143 | Ethics | -0.0112 |
| 144 | Ethnic Studies | -0.0110 |
| 145 | Mineralogy | -0.0105 |
| 146 | Chemistry, Applied | -0.0104 |
| 147 | Mining \& Mineral Processing | -0.0102 |
| 148 | Engineering, Petroleum | -0.0092 |
| 149 | Nuclear Science \& Technology | -0.0085 |
| 150 | Psychology, Mathematical | -0.0074 |
| 151 | Ergonomics | -0.0073 |
| 152 | Communication | -0.0071 |
| 153 | Psychology, Psychoanalysis | -0.0070 |
| 154 | Psychology, Biological | -0.0064 |
| 155 | Chemistry, Organic | -0.0046 |
| 156 | Chemistry, Analytical | -0.0032 |
| 157 | Public Administration | -0.0020 |
| 158 | Astronomy \& Astrophysics | -0.019 |
| 159 | Social Sciences, Interdisciplinary |  |
|  |  | a |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

TABLE D.292. List of original attributes (categories) in negative group identified by vector approximation o the $3^{\text {rd }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC3) |  |  |
| :---: | :--- | :---: |
| No. Attribute | Component <br> Coefficient |  |
| 1 | Medicine, General \& Internal | -0.1713 |
| 2 | Health Care Sciences \& Services | -0.1592 |
| 3 | Primary Health Care | -0.1449 |
| 4 | Public, Environmental \& Occupational Health | -0.1448 |
| 5 | Health Policy \& Services | -0.1363 |
| 6 | Critical Care Medicine | -0.1320 |
| 7 | Clinical Neurology | -0.1303 |
| 8 | Rehabilitation | -0.1201 |
| 9 | Gerontology | -0.1180 |
| 10 | Emergency Medicine | -0.1167 |
| 11 | Geriatrics \& Gerontology | -0.1161 |
| 12 | Pediatrics | -0.1160 |
| 13 | Psychiatry | -0.1143 |
| 14 | Surgery | -0.1109 |
| 15 | Otorhinolaryngology | -0.1095 |
| 16 | Social Sciences, Biomedical | -0.1085 |
| 17 | Anesthesiology | -0.1066 |
| 18 | Respiratory System | -0.1051 |
| 19 | Psychology, Clinical | -0.1026 |
| 20 | Nursing | -0.1003 |
| 21 | Cardiac \& Cardiovascular Systems | -0.0977 |
| 22 | Urology \& Nephrology | -0.0928 |
| 23 | Materials Science, Multidisciplinary | -0.0923 |
| 24 | Rheumatology | -0.0885 |
| 25 | Orthopedics | -0.0883 |
| 26 | Gastroenterology \& Hepatology | -0.0880 |
| 27 | Peripheral Vascular Disease | -0.0865 |
| 28 | Physics, Applied | -0.0844 |
| 29 | Obstetrics \& Gynecology | -0.0822 |
| 30 | Social Work | -0.0822 |
| 31 | Nanoscience \& Nanotechnology | -0.0817 |
|  |  |  |
| 1 |  |  |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 32 | Psychology, Multidisciplinary | -0.0805 |
| 33 | Psychology, Developmental | -0.0801 |
| 34 | Substance Abuse | -0.0768 |
| 35 | Family Studies | -0.0766 |
| 36 | Psychology | -0.0763 |
| 37 | Physics, Condensed Matter | -0.0713 |
| 38 | Chemistry, Physical | -0.0708 |
| 39 | Medical Laboratory Technology | -0.0677 |
| 40 | Education, Special | -0.0629 |
| 41 | Allergy | -0.0629 |
| 42 | Psychology, Social | -0.0580 |
| 43 | Chemistry, Multidisciplinary | -0.0559 |
| 44 | Physics, Multidisciplinary | -0.0513 |
| 45 | Ophthalmology | -0.0508 |
| 46 | Sport Sciences | -0.0506 |
| 47 | Dentistry, Oral Surgery \& Medicine | -0.0495 |
| 48 | Materials Science, Coatings \& Films | -0.0489 |
| 49 | Engineering, Chemical | -0.0485 |
| 50 | Dermatology | -0.0482 |
| 51 | Psychology, Educational | -0.0472 |
| 52 | Psychology, Applied | -0.0464 |

Table D.293. List of original attributes (categories) in positive group identified by vector approximation o the $4^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC4) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Psychology, Multidisciplinary | 0.1975 |
| 2 | Psychology, Applied | 0.1690 |
| 3 | Psychology, Social | 0.1638 |
| 4 | Social Work | 0.1593 |
| 5 | Psychology | 0.1373 |
| 6 | Family Studies | 0.1363 |
| 7 | Psychology, Clinical | 0.1331 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 8 | Social Sciences, Biomedical | 0.1265 |
| 9 | Management | 0.1221 |
| 10 | Psychology, Developmental | 0.1195 |
| 11 | Psychology, Educational | 0.1174 |
| 12 | Business | 0.1161 |
| 13 | Psychology, Experimental | 0.1103 |
| 14 | Social Sciences, Interdisciplinary | 0.1088 |
| 15 | Education, Special | 0.1052 |
| 16 | Behavioral Sciences | 0.0976 |
| 17 | Information Science \& Library Science | 0.0974 |
| 18 | Psychology, Biological | 0.0963 |
| 19 | Planning \& Development | 0.0947 |
| 20 | Industrial Relations \& Labor | 0.0946 |
| 21 | Demography | 0.0924 |
| 22 | Environmental Studies | 0.0923 |
| 23 | Education \& Educational Research | 0.0910 |
| 24 | Social Issues | 0.0861 |
| 25 | Economics | 0.0855 |
| 26 | Sociology | 0.0827 |
| 27 | Health Policy \& Services | 0.0786 |
| 28 | Criminology \& Penology | 0.0782 |
| 29 | Ergonomics | 0.0760 |
| 30 | Education, Scientific Disciplines | 0.0757 |
| 31 | Public Administration | 0.0742 |
| 32 | Hospitality, Leisure, Sport \& Tourism | 0.0742 |
| 33 | Business, Finance | 0.0700 |
| 34 | Psychology, Mathematical | 0.0637 |
| 35 | Public, Environmental \& Occupational Health | 0.0611 |
| 36 | Agricultural Economics \& Policy | 0.0600 |
| 37 | Biophysics | 0.0559 |
| 38 | Urban Studies | 0.0558 |
| 39 | Gerontology | 0.0552 |
| 40 | Psychiatry | 0.0550 |
| 41 | Biology | 0.0543 |
| 42 | Biochemistry \& Molecular Biology | 0.0524 |
| 43 | Women's Studies | 0.0510 |
| 44 | Geography | 0.0491 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

Table D.294. List of original attributes (categories) in zero group identified by vector approximation o the $4^{t h}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.

| Zero (PC4) |  |  |
| :---: | :--- | ---: |
| No. Attribute | Component <br> Coefficient |  |
| 1 | Nursing | 0.04648 |
| 2 | Biotechnology \& Applied Microbiology | 0.04589 |
| 3 | Multidisciplinary Sciences | 0.04389 |
| 4 | Substance Abuse | 0.04214 |
| 5 | Materials Science, Coatings \& Films | 0.04184 |
| 6 | Medical Ethics | 0.04176 |
| 7 | Genetics \& Heredity | 0.04107 |
| 8 | Nanoscience \& Nanotechnology | 0.04048 |
| 9 | Cell Biology | 0.04041 |
| 10 | Evolutionary Biology | 0.04001 |
| 11 | Developmental Biology | 0.03994 |
| 12 | Ecology | 0.03957 |
| 13 | Ethics | 0.03898 |
| 14 | Chemistry, Physical | 0.03862 |
| 15 | Neurosciences | 0.03823 |
| 16 | Biodiversity Conservation | 0.03741 |
| 17 | Transportation | 0.03695 |
| 18 | Materials Science, Biomaterials | 0.03552 |
| 19 | Physics, Condensed Matter | 0.03445 |
| 20 | Rehabilitation | 0.03412 |
| 21 | Social Sciences, Mathematical Methods | 0.03378 |
| 22 | Materials Science, Ceramics | 0.03213 |
| 23 | Microbiology | 0.03182 |
| 24 | Biochemical Research Methods | 0.03135 |
| 25 | Communication | 0.03085 |
| 26 | Ethnic Studies | 0.03068 |
| 27 | Microscopy | 0.02999 |
| 28 | Spectroscopy | 0.02837 |
| 29 | Zoology | 0.02801 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 30 | Polymer Science | 0.02792 |
| 31 | Mycology | 0.02721 |
| 32 | Plant Sciences | 0.02681 |
| 33 | Ornithology | 0.02608 |
| 34 | Materials Science, Multidisciplinary | 0.02593 |
| 35 | Physics, Applied | 0.02525 |
| 36 | Electrochemistry | 0.02495 |
| 37 | Chemistry, Multidisciplinary | 0.02231 |
| 38 | Health Care Sciences \& Services | 0.02183 |
| 39 | Chemistry, Applied | 0.02157 |
| 40 | Audiology \& Speech-Language Pathology | 0.02000 |
| 41 | Metallurgy \& Metallurgical Engineering | 0.01990 |
| 42 | Chemistry, Inorganic \& Nuclear | 0.01859 |
| 43 | Chemistry, Analytical | 0.01793 |
| 44 | Marine \& Freshwater Biology | 0.01708 |
| 45 | Mathematical \& Computational Biology | 0.01674 |
| 46 | Chemistry, Medicinal | 0.01671 |
| 47 | Entomology | 0.01642 |
| 48 | Cell \& Tissue Engineering | 0.01630 |
| 49 | Anatomy \& Morphology | 0.01606 |
| 50 | Forestry | 0.01589 |
| 51 | Materials Science, Composites | 0.01556 |
| 52 | Engineering, Chemical | 0.01534 |
| 53 | Crystallography | 0.01524 |
| 54 | Physics, Atomic, Molecular \& Chemical | 0.01482 |
| 55 | Virology | 0.01396 |
| 56 | Political Science | 0.01342 |
| 57 | International Relations | 0.01296 |
| 58 | Neuroimaging | 0.01286 |
| 59 | Physiology | 0.01233 |
| 60 | Agronomy | 0.01204 |
| 61 | Geriatrics \& Gerontology | 0.01113 |
| 62 | Law | 0.01097 |
| 63 | Horticulture | 0.01089 |
| 64 | Toxicology | 0.01060 |
| 65 | Nuclear Science \& Technology | 0.00955 |
| 66 | Acoustics | 0.00939 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 67 | Materials Science, Textiles | 0.00926 |
| 68 | Medical Informatics | 0.00833 |
| 69 | Optics | 0.00825 |
| 70 | Fisheries | 0.00817 |
| 71 | Astronomy \& Astrophysics | 0.00816 |
| 72 | Agriculture, Multidisciplinary | 0.00790 |
| 73 | Food Science \& Technology | 0.00790 |
| 74 | Environmental Sciences | 0.00778 |
| 75 | Soil Science | 0.00776 |
| 76 | Limnology | 0.00704 |
| 77 | Physics, Nuclear | 0.00627 |
| 78 | Materials Science, Paper \& Wood | 0.00604 |
| 79 | Medicine, Legal | 0.00584 |
| 80 | Mineralogy | 0.00500 |
| 81 | Green \& Sustainable Science \& Technology | 0.00449 |
| 82 | Parasitology | 0.00438 |
| 83 | Engineering, Biomedical | 0.00425 |
| 84 | Operations Research \& Management Science | 0.00420 |
| 85 | Materials Science, Characterization \& Testing | 0.00384 |
| 86 | Anthropology | 0.00288 |
| 87 | Geography, Physical | 0.00116 |
| 88 | Oceanography | 0.00114 |
| 89 | Thermodynamics | 0.00112 |
| 90 | Physics, Particles \& Fields | 0.00096 |
| 91 | Integrative \& Complementary Medicine | -0.04716 |
| 92 | Pediatrics | -0.04666 |
| 93 | Endocrinology \& Metabolism | -0.04477 |
| 94 | Engineering, Multidisciplinary | -0.04188 |
| 95 | History Of Social Sciences | -0.04154 |
| 96 | Infectious Diseases | -0.03875 |
| 97 | Mathematics, Interdisciplinary Applications | -0.03662 |
| 98 | Engineering, Electrical \& Electronic | -0.03188 |
| 99 | Pathology | -0.03050 |
| 100 | Tropical Medicine | -0.02927 |
| 101 | Automation \& Control Systems | -0.02893 |
| 102 | Archaeology | -0.02788 |
| 103 | Language \& Linguistics | -0.02619 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 104 | Physics, Mathematical | -0.02588 |
| 105 | Computer Science, Interdisciplinary Applications | -0.02418 |
| 106 | Engineering, Mechanical | -0.02278 |
| 107 | Architecture | -0.02272 |
| 108 | Mechanics | -0.02194 |
| 109 | Computer Science, Theory \& Methods | -0.02168 |
| 110 | Mathematics, Applied | -0.01957 |
| 111 | Pharmacology \& Pharmacy | -0.01910 |
| 112 | Computer Science, Hardware \& Architecture | -0.01910 |
| 113 | Engineering, Aerospace | -0.01871 |
| 114 | Area Studies | -0.01860 |
| 115 | Computer Science, Software Engineering | -0.01823 |
| 116 | Engineering, Manufacturing | -0.01806 |
| 117 | Engineering, Civil | -0.01778 |
| 118 | Computer Science, Artificial Intelligence | -0.01776 |
| 119 | Telecommunications | -0.01753 |
| 120 | Immunology | -0.01737 |
| 121 | Physics, Multidisciplinary | -0.01712 |
| 122 | Music | -0.01672 |
| 123 | Dance | -0.01654 |
| 124 | Logic | -0.01641 |
| 125 | Reproductive Biology | -0.01305 |
| 126 | Primary Health Care | -0.01291 |
| 127 | Mathematics | -0.01283 |
| 128 | Statistics \& Probability | -0.01270 |
| 129 | Psychology, Psychoanalysis | -0.01236 |
| 130 | Instruments \& Instrumentation | -0.01165 |
| 131 | Construction \& Building Technology | -0.01116 |
| 132 | Sport Sciences | -0.01064 |
| 133 | Energy \& Fuels | -0.01060 |
| 134 | Computer Science, Information Systems | -0.01037 |
| 135 | Geosciences, Multidisciplinary | -0.01004 |
| 136 | Engineering, Ocean | -0.01001 |
| 137 | Engineering, Marine | -0.00997 |
| 138 | Veterinary Sciences | -0.00907 |
| 139 | Nutrition \& Dietetics | -0.00826 |
| 140 | Robotics | -0.00819 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 141 | Andrology | -0.00798 |
| 142 | Geology | -0.00756 |
| 143 | Mining \& Mineral Processing | -0.00711 |
| 144 | Remote Sensing | -0.00661 |
| 145 | Engineering, Industrial | -0.00660 |
| 146 | Physics, Fluids \& Plasmas | -0.00621 |
| 147 | Imaging Science \& Photographic Technology | -0.00612 |
| 148 | Geochemistry \& Geophysics | -0.00589 |
| 149 | Transportation Science \& Technology | -0.00467 |
| 150 | Engineering, Geological | -0.00304 |
| 151 | Agriculture, Dairy \& Animal Science | -0.00266 |
| 152 | Linguistics | -0.00255 |
| 153 | Computer Science, Cybernetics | -0.00201 |
| 154 | Meteorology \& Atmospheric Sciences | -0.00191 |
| 155 | Chemistry, Organic | -0.00190 |
| 156 | Paleontology | -0.00164 |
| 157 | Engineering, Environmental | -0.00151 |
| 158 | Engineering, Petroleum | -0.00147 |
| 159 | Water Resources | -0.00112 |
| 160 | Agricultural Engineering | -0.00001 |
|  |  |  |

Table D.295. List of original attributes (categories) in negative group identified by vector approximation o the $4^{t h}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC4) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Literature | -0.1482 |
| 2 | Surgery | -0.1389 |
| 3 | Literature, Romance | -0.1364 |
| 4 | Literature, British Isles | -0.1318 |
| 5 | Literary Theory \& Criticism | -0.1295 |
| 6 | Gastroenterology \& Hepatology | -0.1279 |
| 7 | Medieval \& Renaissance Studies | -0.1242 |
| 8 | Critical Care Medicine | -0.1241 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 9 | Respiratory System | -0.1227 |
| 10 | Literature, American | -0.1203 |
| 11 | Medicine, General \& Internal | -0.1171 |
| 12 | Cardiac \& Cardiovascular Systems | -0.1162 |
| 13 | Peripheral Vascular Disease | -0.1155 |
| 14 | Urology \& Nephrology | -0.1152 |
| 15 | Classics | -0.1145 |
| 16 | Otorhinolaryngology | -0.1128 |
| 17 | Literature, German, Dutch, Scandinavian | -0.1118 |
| 18 | Anesthesiology | -0.1118 |
| 19 | Medical Laboratory Technology | -0.1088 |
| 20 | Literature, African, Australian, Canadian | -0.1088 |
| 21 | Clinical Neurology | -0.1087 |
| 22 | Poetry | -0.1041 |
| 23 | Asian Studies | -0.1015 |
| 24 | Rheumatology | -0.0990 |
| 25 | Orthopedics | -0.0990 |
| 26 | Emergency Medicine | -0.0988 |
| 27 | Literature, Slavic | -0.0953 |
| 28 | Literary Reviews | -0.0949 |
| 29 | Humanities, Multidisciplinary | -0.0907 |
| 30 | Art | -0.0857 |
| 31 | History | -0.0835 |
| 32 | Dermatology | -0.05053 |
| 33 | Folklore | -0.0704 |
| 34 | Cultural Studies | -0.0703 |
| 35 | Hematology | -0.0687 |
| 36 | Theater | -0.0670 |
| 37 | Dentistry, Oral Surgery \& Medicine | -0.0656 |
| 38 | Allergy | -0.0646 |
| 39 | Transplantation | -0.0628 |
| 40 | Film, Radio, Television | -0.0614 |
| 41 | Obstetrics \& Gynecology | -0.0606 |
| 42 | Oncology | -0.0573 |
| 43 | Ophthalmology | -0.0564 |
| 44 | Medicine, Research \& Experimental |  |
| 45 | Philosophy | -1 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 46 | Religion | -0.0559 |
| 47 | Radiology, Nuclear Medicine \& Medical Imaging | -0.0507 |
| 48 | History \& Philosophy Of Science | -0.0495 |

Table D.296. List of original attributes (categories) in positive group identified by vector approximation o the $5^{\text {th }}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Positive (PC5) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | Ecology | 0.2341 |
| 2 | Biodiversity Conservation | 0.2128 |
| 3 | Environmental Sciences | 0.2122 |
| 4 | Marine \& Freshwater Biology | 0.2103 |
| 5 | Geosciences, Multidisciplinary | 0.2101 |
| 6 | Limnology | 0.2056 |
| 7 | Geography, Physical | 0.1976 |
| 8 | Oceanography | 0.1783 |
| 9 | Water Resources | 0.1724 |
| 10 | Zoology | 0.1493 |
| 11 | Paleontology | 0.1397 |
| 12 | Forestry | 0.1384 |
| 13 | Agronomy | 0.1314 |
| 14 | Evolutionary Biology | 0.1306 |
| 15 | Geology | 0.1298 |
| 16 | Environmental Studies | 0.1263 |
| 17 | Agriculture, Multidisciplinary | 0.1263 |
| 18 | Soil Science | 0.1261 |
| 19 | Meteorology \& Atmospheric Sciences | 0.1226 |
| 20 | Plant Sciences | 0.1203 |
| 21 | Ornithology | 0.1189 |
| 22 | Engineering, Environmental | 0.1185 |
| 23 | Geochemistry \& Geophysics | 0.1127 |
| 24 | Fisheries | 0.1028 |
| 25 | Entomology | 0.1019 |
|  |  |  |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| ---: | :--- | ---: |
| 26 | Horticulture | 0.0994 |
| 27 | Geography | 0.0923 |
| 28 | Planning \& Development | 0.0888 |
| 29 | Agricultural Economics \& Policy | 0.0876 |
| 30 | Green \& Sustainable Science \& Technology | 0.0835 |
| 31 | Biology | 0.0835 |
| 32 | Agricultural Engineering | 0.0830 |
| 33 | Urban Studies | 0.0820 |
| 34 | Mycology | 0.0784 |
| 35 | Economics | 0.0761 |
| 36 | Engineering, Geological | 0.0698 |
| 37 | Public Administration | 0.0661 |

Table D.297. List of original attributes (categories) in zero group identified by vector approximation o the $5^{t h}$ principal component. Categories with positive component coefficients are sorted by values of their component coefficients in descending order. Categories with negative component coefficients are sorted by absolute values of their component coefficients in descending order. That is, categories in two directions are sorted from the greatest contribution to lowest contribution to the component.

| Zero (PC5) |  |  |
| :---: | :--- | ---: |
| No. | Attribute | Component <br> Coefficient |
| 1 | International Relations | 0.0635 |
| 2 | Mineralogy | 0.0610 |
| 3 | Business, Finance | 0.0595 |
| 4 | Political Science | 0.0518 |
| 5 | Engineering, Ocean | 0.0501 |
| 6 | Area Studies | 0.0501 |
| 7 | Mining \& Mineral Processing | 0.0475 |
| 8 | Business | 0.0442 |
| 9 | Social Sciences, Mathematical Methods | 0.0441 |
| 10 | Engineering, Petroleum | 0.0433 |
| 11 | Archaeology | 0.0395 |
| 12 | Remote Sensing | 0.0393 |
| 13 | Surgery | 0.0389 |
| 14 | Engineering, Chemical | 0.0385 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 15 | Anthropology | 0.0379 |
| 16 | Radiology, Nuclear Medicine \& Medical Imaging | 0.0369 |
| 17 | Parasitology | 0.0357 |
| 18 | Management | 0.0351 |
| 19 | Engineering, Marine | 0.0307 |
| 20 | History Of Social Sciences | 0.0301 |
| 21 | Genetics \& Heredity | 0.0294 |
| 22 | Medical Laboratory Technology | 0.0290 |
| 23 | Gastroenterology \& Hepatology | 0.0286 |
| 24 | Industrial Relations \& Labor | 0.0258 |
| 25 | Tropical Medicine | 0.0257 |
| 26 | Physics, Multidisciplinary | 0.0251 |
| 27 | Physics, Applied | 0.0245 |
| 28 | Engineering, Biomedical | 0.0243 |
| 29 | Emergency Medicine | 0.0236 |
| 30 | Materials Science, Multidisciplinary | 0.0232 |
| 31 | Demography | 0.0227 |
| 32 | Cardiac \& Cardiovascular Systems | 0.0226 |
| 33 | Engineering, Civil | 0.0215 |
| 34 | Respiratory System | 0.0210 |
| 35 | Anesthesiology | 0.0209 |
| 36 | Materials Science, Paper \& Wood | 0.0209 |
| 37 | Microbiology | 0.0198 |
| 38 | Critical Care Medicine | 0.0153 |
| 39 | Orthopedics | 0.0193 |
| 40 | Food Science \& Technology | 0.0183 |
| 41 | Physics, Condensed Matter | 0.0182 |
| 42 | Agriculture, Dairy \& Animal Science | 0.0179 |
| 43 | History | 0.0172 |
| 44 | Materials Science, Characterization \& Testing | 0.0172 |
| 45 | Energy \& Fuels | 0.0170 |
| 46 | Law | 0.0170 |
| 47 | Nanoscience \& Nanotechnology | 0.0169 |
| 48 | Urology \& Nephrology | 0.0168 |
| 49 | Dermatology | 0.0154 |
| 50 | Rheumatology | 0. |
| 51 | Ethnic Studies | 0. |
|  |  | 0 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. Attribute | Component <br> Coefficient |  |
| :---: | :--- | ---: |
| 52 | Otorhinolaryngology | 0.0150 |
| 53 | Materials Science, Composites | 0.0147 |
| 54 | Sociology | 0.0146 |
| 55 | Transportation | 0.0143 |
| 56 | Materials Science, Coatings \& Films | 0.0140 |
| 57 | Architecture | 0.0139 |
| 58 | Physics, Fluids \& Plasmas | 0.0137 |
| 59 | Biotechnology \& Applied Microbiology | 0.0136 |
| 60 | Social Issues | 0.0128 |
| 61 | Oncology | 0.0127 |
| 62 | Metallurgy \& Metallurgical Engineering | 0.0127 |
| 63 | Clinical Neurology | 0.0122 |
| 64 | Materials Science, Textiles | 0.0122 |
| 65 | Chemistry, Physical | 0.0120 |
| 66 | Medicine, General \& Internal | 0.0113 |
| 67 | Astronomy \& Astrophysics | 0.0106 |
| 68 | Microscopy | 0.0102 |
| 69 | Optics | 0.0100 |
| 70 | Physics, Atomic, Molecular \& Chemical | 0.0098 |
| 71 | Construction \& Building Technology | 0.0096 |
| 72 | Transplantation | 0.0096 |
| 73 | Peripheral Vascular Disease | 0.0085 |
| 74 | Electrochemistry | 0.0085 |
| 75 | Nuclear Science \& Technology | 0.00044 |
| 76 | Physics, Particles \& Fields | 0.0083 |
| 77 | Cultural Studies | 0.0079 |
| 78 | Hospitality, Leisure, Sport \& Tourism | 0.0077 |
| 79 | Thermodynamics | 0.0072 |
| 80 | Hematology | 0.0071 |
| 81 | Infectious Diseases | 0.0071 |
| 82 | Physics, Nuclear | 0.0069 |
| 83 | Physics, Mathematical | 0.0058 |
| 84 | Dentistry, Oral Surgery \& Medicine | 0.0052 |
| 85 | Veterinary Sciences | 0.0049 |
| 86 | Asian Studies | 0.0047 |
| 87 | Materials Science, Ceramics | 0 |
| 88 | Pathology | 0 |
|  |  | 0 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component Coefficient |
| :---: | :---: | :---: |
| 89 | Social Sciences, Interdisciplinary | 0.0041 |
| 90 | Ophthalmology | 0.0036 |
| 91 | Polymer Science | 0.0031 |
| 92 | Chemistry, Applied | 0.0018 |
| 93 | Allergy | 0.0014 |
| 94 | Virology | 0.0007 |
| 95 | Literature, Slavic | -0.0280 |
| 96 | Mathematical \& Computational Biology | -0.0271 |
| 97 | Psychology, Mathematical | -0.0270 |
| 98 | Chemistry, Medicinal | -0.0259 |
| 99 | Nutrition \& Dietetics | -0.0243 |
| 100 | Literature, African, Australian, Canadian | -0.0243 |
| 101 | Literature, Romance | -0.0239 |
| 102 | Classics | -0.0222 |
| 103 | Nursing | -0.0221 |
| 104 | Imaging Science \& Photographic Technology | -0.0208 |
| 105 | Pediatrics | -0.0208 |
| 106 | Criminology \& Penology | -0.0207 |
| 107 | Information Science \& Library Science | -0.0199 |
| 108 | Instruments \& Instrumentation | -0.0199 |
| 109 | Mathematics, Applied | -0.0195 |
| 110 | Engineering, Aerospace | -0.0188 |
| 111 | Medical Informatics | -0.0182 |
| 112 | Integrative \& Complementary Medicine | -0.0177 |
| 113 | Immunology | -0.0176 |
| 114 | Developmental Biology | -0.0175 |
| 115 | Women's Studies | -0.0175 |
| 116 | Engineering, Mechanical | -0.0172 |
| 117 | Chemistry, Organic | -0.0172 |
| 118 | Health Policy \& Services | -0.0170 |
| 119 | Engineering, Manufacturing | -0.0170 |
| 120 | Toxicology | -0.0166 |
| 121 | Medieval \& Renaissance Studies | -0.0158 |
| 122 | Reproductive Biology | -0.0157 |
| 123 | Logic | -0.0153 |
| 124 | Medicine, Research \& Experimental | -0.0144 |
| 125 | Acoustics | -0.0142 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 126 | Cell \& Tissue Engineering | -0.0141 |
| 127 | Andrology | -0.0140 |
| 128 | Theater | -0.0136 |
| 129 | Philosophy | -0.0131 |
| 130 | Music | -0.0121 |
| 131 | Multidisciplinary Sciences | -0.0118 |
| 132 | Biochemical Research Methods | -0.0117 |
| 133 | Chemistry, Inorganic \& Nuclear | -0.0116 |
| 134 | Psychology, Psychoanalysis | -0.0112 |
| 135 | History \& Philosophy Of Science | -0.0111 |
| 136 | Statistics \& Probability | -0.0107 |
| 137 | Chemistry, Multidisciplinary | -0.0106 |
| 138 | Mechanics | -0.0102 |
| 139 | Art | -0.0100 |
| 140 | Humanities, Multidisciplinary | -0.0099 |
| 141 | Religion | -0.0090 |
| 142 | Obstetrics \& Gynecology | -0.0090 |
| 143 | Dance | -0.0089 |
| 144 | Medicine, Legal | -0.0086 |
| 145 | Medical Ethics | -0.0079 |
| 146 | Neuroimaging | -0.0078 |
| 147 | Anatomy \& Morphology | -0.0067 |
| 148 | Spectroscopy | -0.0054 |
| 149 | Ethics | -0.0054 |
| 150 | Mathematics | -0.0053 |
| 151 | Folklore | -0.0049 |
| 152 | Health Care Sciences \& Services | -0.0048 |
| 153 | Materials Science, Biomaterials | -0.0040 |
| 154 | Chemistry, Analytical | -0.0037 |
| 155 | Crystallography | -0.0032 |
| 156 | Film, Radio, Television | -0.0031 |
| 157 | Primary Health Care | -0.0020 |
| 158 | Communication | -0.0002 |
|  |  |  |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

Table D.298. List of original attributes (categories) in negative group identified by vector approximation o the $5^{t h}$ principal component. Categories are sorted by values of their component coefficients in descending order, that is, from the greatest contribution to lowest contribution to the component.

| Negative (PC5) |  |  |
| :---: | :---: | :---: |
| No. | Attribute | Component Coefficient |
| 1 | Computer Science, Interdisciplinary Applications | -0.1071 |
| 2 | Computer Science, Artificial Intelligence | -0.1066 |
| 3 | Computer Science, Information Systems | -0.1022 |
| 4 | Computer Science, Theory \& Methods | -0.1016 |
| 5 | Computer Science, Cybernetics | -0.0991 |
| 6 | Psychology | -0.0978 |
| 7 | Computer Science, Software Engineering | -0.0934 |
| 8 | Computer Science, Hardware \& Architecture | -0.0922 |
| 9 | Automation \& Control Systems | -0.0921 |
| 10 | Psychology, Clinical | -0.0865 |
| 11 | Psychology, Multidisciplinary | -0.0830 |
| 12 | Engineering, Electrical \& Electronic | -0.0817 |
| 13 | Psychology, Developmental | -0.0813 |
| 14 | Telecommunications | -0.0807 |
| 15 | Psychology, Experimental | -0.0757 |
| 16 | Engineering, Multidisciplinary | -0.0717 |
| 17 | Psychology, Educational | -0.0651 |
| 18 | Education, Special | -0.0650 |
| 19 | Psychiatry | -0.0617 |
| 20 | Behavioral Sciences | -0.0608 |
| 21 | Family Studies | -0.0602 |
| 22 | Psychology, Social | -0.0597 |
| 23 | Psychology, Biological | -0.0590 |
| 24 | Gerontology | -0.0549 |
| 25 | Robotics | -0.0536 |
| 26 | Physiology | -0.0532 |
| 27 | Geriatrics \& Gerontology | -0.0524 |
| 28 | Mathematics, Interdisciplinary Applications | -0.0515 |
| 29 | Rehabilitation | -0.0511 |
| 30 | Operations Research \& Management Science | -0.0500 |
| 31 | Substance Abuse | -0.0480 |

D.5. LIST OF ORIGINAL ATTRIBUTES (CATEGORIES) IN POSITIVE, NEGATIVE AND ZERO GROUPS IDENTIFIED BY VECTOR
APPROXIMATION ON THE PRINCIPAL COMPONENTS

| No. | Attribute | Component <br> Coefficient |
| :---: | :--- | ---: |
| 32 | Neurosciences | -0.0445 |
| 33 | Literary Theory \& Criticism | -0.0419 |
| 34 | Public, Environmental \& Occupational Health | -0.0417 |
| 35 | Education, Scientific Disciplines | -0.0396 |
| 36 | Audiology \& Speech-Language Pathology | -0.0395 |
| 37 | Linguistics | -0.0393 |
| 38 | Literature, British Isles | -0.0379 |
| 39 | Education \& Educational Research | -0.0378 |
| 40 | Engineering, Industrial | -0.0377 |
| 41 | Transportation Science \& Technology | -0.0375 |
| 42 | Language \& Linguistics | -0.0375 |
| 43 | Social Work | -0.0366 |
| 44 | Literature, American | -0.0363 |
| 45 | Ergonomics | -0.0354 |
| 46 | Social Sciences, Biomedical | -0.0349 |
| 47 | Psychology, Applied | -0.0346 |
| 48 | Literature | -0.0341 |
| 49 | Biophysics | -0.0339 |
| 50 | Pharmacology \& Pharmacy | -0.0328 |
| 51 | Biochemistry \& Molecular Biology | -0.0328 |
| 52 | Poetry | -0.0326 |
| 53 | Cell Biology | -0.0325 |
| 54 | Literary Reviews | -0.0322 |
| 55 | Endocrinology \& Metabolism | -0.0319 |
| 56 | Literature, German, Dutch, Scandinavian | -0.0301 |
| 57 | Sport Sciences | -0.0292 |
|  |  |  |

## APPENDIX E

# Appendix of Chapter 6: Descriptive Statistics for Citation Counts 

## E.1. List of Categories with the Descriptive Statistics Obtained for the Number of Citation for Each of Categories. Categories are Sorted by the Average Citation Count Assigned to the Category.

Table E.1. List of categories with the descriptive statistics obtained for the number of citation

| Set | $N$ | Max | Min | $\mu$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ | $\sigma$ | SE |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| Cell Biology | 23,108 | 978 | 0 | 20.67 | 6 | 12 | 24 | 32.37 | 0.213 |
| Chemistry, Multidisciplinary | 55,907 | 2,210 | 0 | 18.90 | 3 | 9 | 21 | 37.29 | 0.158 |
| Multidisciplinary Sciences | 53,140 | 3,004 | 0 | 18.32 | 4 | 9 | 18 | 44.42 | 0.193 |
| Chemistry, Physical | 58,065 | 2,288 | 0 | 18.11 | 5 | 10 | 20 | 32.86 | 0.136 |
| Nanoscience \& Nanotechnology | 35,050 | 2,464 | 0 | 18.11 | 2 | 8 | 20 | 40.29 | 0.215 |
| Critical Care Medicine | 3,982 | 320 | 0 | 17.53 | 5 | 11 | 21 | 22.63 | 0.359 |
| Allergy | 1,765 | 488 | 0 | 17.41 | 4 | 10 | 20 | 26.99 | 0.642 |
| Neuroimaging | 2,702 | 527 | 0 | 17.24 | 6 | 12 | 22 | 23.59 | 0.454 |
| Cell \& Tissue Engineering | 2,455 | 261 | 0 | 16.81 | 4 | 10 | 20 | 24.64 | 0.497 |
| Medicine, General \& Internal | 16,179 | 3,908 | 0 | 16.01 | 2 | 4 | 10 | 68.91 | 0.542 |
| Gastroenterology \& Hepatology | 10,943 | 667 | 0 | 15.50 | 4 | 9 | 18 | 24.99 | 0.239 |
| Oncology | 34,339 | 8,234 | 0 | 15.24 | 4 | 9 | 17 | 52.34 | 0.282 |
| Hematology | 9,096 | 399 | 0 | 15.17 | 4 | 9 | 18 | 22.19 | 0.233 |
| Endocrinology \& Metabolism | 14,622 | 1,388 | 0 | 14.95 | 5 | 10 | 18 | 22.18 | 0.183 |
| Genetics \& Heredity | 19,512 | 6,756 | 0 | 14.94 | 4 | 8 | 17 | 59.04 | 0.423 |
| Materials Science, Biomaterials | 8,040 | 280 | 0 | 14.74 | 4 | 10 | 19 | 17.46 | 0.195 |
| Electrochemistry | 15,663 | 290 | 0 | 14.56 | 4 | 10 | 19 | 16.46 | 0.132 |
| Biochemistry \& Molecular Biology | 47,490 | 1,829 | 0 | 14.56 | 4 | 9 | 16 | 30.65 | 0.141 |
| Immunology | 18,270 | 515 | 0 | 14.52 | 4 | 9 | 17 | 21.29 | 0.157 |
| Peripheral Vascular Disease | 8,700 | 1,104 | 0 | 14.19 | 4 | 9 | 16 | 24.90 | 0.267 |
| Rheumatology | 3,942 | 481 | 0 | 14.16 | 4 | 9 | 17 | 19.92 | 0.317 |
| Neurosciences | 32,972 | 808 | 0 | 14.15 | 5 | 9 | 17 | 18.72 | 0.103 |
| Green \& Sustainable Science \& | 6,412 | 304 | 0 | 14.10 | 3 | 9 | 19 | 17.12 | 0.214 |
| Technology |  |  |  |  |  |  |  |  |  |
| Respiratory System | 7,666 | 800 | 0 | 14.08 | 4 | 9 | 17 | 21.08 | 0.241 |
| Virology | 6,270 | 680 | 0 | 14.06 | 5 | 9 | 17 | 17.98 | 0.227 |
| Cardiac \& Cardiovascular Systems | 16,369 | 813 | 0 | 14.02 | 3 | 8 | 16 | 22.63 | 0.177 |
| Evolutionary Biology | 5,742 | 1,085 | 0 | 13.96 | 5 | 9 | 17 | 21.70 | 0.286 |
| Engineering, Environmental | 14,614 | 367 | 0 | 13.87 | 2 | 8 | 19 | 18.81 | 0.156 |
| Physics, Condensed Matter | 27,316 | 2,288 | 0 | 13.83 | 2 | 6 | 14 | 35.28 | 0.213 |
| Microbiology | 17,252 | 680 | 0 | 13.73 | 4 | 9 | 17 | 18.98 | 0.145 |
| Biochemical Research Methods | 15,050 | 4,744 | 0 | 13.56 | 3 | 8 | 15 | 65.25 | 0.532 |
| Agricultural Engineering | 3,727 | 496 | 0 | 13.50 | 3 | 9 | 19 | 16.76 | 0.274 |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |


| Set | $N$ | Max | Min | $\mu$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ | $\sigma$ | SE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Astronomy \& Astrophysics | 22,825 | 1,243 | 0 | 13.24 | 2 | 7 | 16 | 24.20 | 0.160 |
| Nutrition \& Dietetics | 9,416 | 244 | 0 | 13.11 | 4 | 9 | 17 | 14.13 | 0.146 |
| Engineering, Chemical | 29,171 | 1,105 | 0 | 13.06 | 3 | 7 | 16 | 22.10 | 0.129 |
| Developmental Biology | 3,593 | 217 | 0 | 13.04 | 4 | 8 | 16 | 15.59 | 0.260 |
| Infectious Diseases | 12,521 | 515 | 0 | 12.74 | 4 | 8 | 15 | 18.28 | 0.163 |
| Biotechnology \& Applied Microbiology | 26,286 | 4,744 | 0 | 12.70 | 3 | 7 | 14 | 49.30 | 0.304 |
| Ecology | 16,760 | 392 | 0 | 12.55 | 4 | 8 | 16 | 15.76 | 0.122 |
| Meteorology \& Atmospheric Sciences | 12,318 | 1,659 | 0 | 12.42 | 3 | 8 | 15 | 24.22 | 0.218 |
| Clinical Neurology | 22,127 | 1,104 | 0 | 12.32 | 4 | 8 | 15 | 18.68 | 0.126 |
| Environmental Sciences | 42,082 | 1,105 | 0 | 12.28 | 3 | 7 | 15 | 21.18 | 0.103 |
| Chemistry, Analytical | 21,490 | 290 | 0 | 12.14 | 4 | 8 | 15 | 14.68 | 0.100 |
| Geriatrics \& Gerontology | 4,742 | 513 | 0 | 12.13 | 4 | 8 | 15 | 15.78 | 0.229 |
| Psychiatry | 16,055 | 317 | 0 | 12.11 | 3 | 8 | 15 | 15.51 | 0.122 |
| Psychology, Developmental | 4,390 | 306 | 0 | 11.83 | 4 | 8 | 15 | 13.60 | 0.205 |
| Anesthesiology | 2,943 | 326 | 0 | 11.82 | 4 | 8 | 15 | 14.57 | 0.269 |
| Energy \& Fuels | 44,202 | 1,105 | 0 | 11.81 | 0 | 5 | 16 | 22.14 | 0.105 |
| Parasitology | 5,683 | 680 | 0 | 11.79 | 4 | 8 | 14 | 17.54 | 0.233 |
| Urology \& Nephrology | 8,264 | 994 | 0 | 11.75 | 3 | 7 | 14 | 19.56 | 0.215 |
| Physics, Particles \& Fields | 13,203 | 1,508 | 0 | 11.72 | 2 | 6 | 14 | 22.81 | 0.199 |
| Chemistry, Organic | 17,941 | 210 | 0 | 11.61 | 3 | 8 | 15 | 13.11 | 0.098 |
| Chemistry, Applied | 14,058 | 174 | 0 | 11.50 | 3 | 8 | 15 | 12.27 | 0.104 |
| Physics, Atomic, Molecular \& Chemical | 17,010 | 1,143 | 0 | 11.46 | 3 | 7 | 14 | 21.09 | 0.162 |
| Environmental Studies | 7,811 | 775 | 0 | 11.30 | 2 | 6 | 13 | 21.16 | 0.239 |
| Medicine, Research \& Experimental | 19,744 | 978 | 0 | 11.24 | 2 | 6 | 13 | 21.63 | 0.154 |
| Toxicology | 9,613 | 338 | 0 | 11.17 | 4 | 8 | 14 | 12.80 | 0.131 |
| Polymer Science | 18,017 | 358 | 0 | 11.15 | 3 | 7 | 15 | 14.02 | 0.104 |
| Materials Science, Multidisciplinary | 112,912 | 2,464 | 0 | 10.99 | 0 | 4 | 12 | 27.89 | 0.083 |
| Biophysics | 12,630 | 488 | 0 | 10.97 | 3 | 7 | 14 | 13.87 | 0.123 |
| Geochemistry \& Geophysics | 10,023 | 213 | 0 | 10.92 | 3 | 7 | 14 | 13.30 | 0.133 |
| Psychology, Experimental | 6,784 | 572 | 0 | 10.75 | 3 | 7 | 14 | 14.55 | 0.177 |
| Psychology, Clinical | 6,860 | 282 | 0 | 10.57 | 3 | 7 | 14 | 13.03 | 0.157 |
| Psychology | 6,989 | 300 | 0 | 10.56 | 3 | 7 | 14 | 14.75 | 0.176 |
| Transplantation | 4,105 | 559 | 0 | 10.47 | 3 | 6 | 13 | 17.34 | 0.271 |
| Physiology | 9,009 | 231 | 0 | 10.47 | 4 | 8 | 13 | 11.12 | 0.117 |
| Pharmacology \& Pharmacy | 30,713 | 323 | 0 | 10.47 | 3 | 7 | 14 | 11.92 | 0.068 |
| Gerontology | 2,531 | 513 | 0 | 10.42 | 3 | 7 | 13 | 17.23 | 0.342 |
| Reproductive Biology | 3,984 | 454 | 0 | 10.40 | 4 | 7 | 13 | 13.95 | 0.221 |
| Behavioral Sciences | 5,922 | 186 | 0 | 10.37 | 4 | 8 | 14 | 9.92 | 0.129 |
| Biology | 9,917 | 517 | 0 | 10.36 | 2 | 6 | 13 | 16.08 | 0.162 |
| Biodiversity Conservation | 4,705 | 352 | 0 | 10.31 | 2 | 6 | 13 | 14.79 | 0.216 |
| Chemistry, Medicinal | 12,456 | 530 | 0 | 10.31 | 4 | 7 | 13 | 12.84 | 0.115 |
| Substance Abuse | 3,433 | 226 | 0 | 10.29 | 3 | 7 | 13 | 12.62 | 0.215 |
| Geography | 3,908 | 775 | 0 | 10.27 | 2 | 6 | 13 | 18.95 | 0.303 |
| Psychology, Mathematical | 538 | 572 | 0 | 10.25 | 2 | 5 | 10 | 31.19 | 1.345 |
| Materials Science, Composites | 4,277 | 357 | 0 | 10.11 | 2 | 5 | 13 | 15.48 | 0.237 |
| Geography, Physical | 6,806 | 378 | 0 | 10.09 | 2 | 6 | 13 | 16.09 | 0.195 |
| Food Science \& Technology | 20,414 | 499 | 0 | 9.86 | 3 | 7 | 13 | 11.06 | 0.077 |
| Materials Science, Coatings \& Films | 7,226 | 129 | 0 | 9.78 | 3 | 7 | 13 | 10.76 | 0.127 |
| Orthopedics | 10,538 | 234 | 0 | 9.76 | 3 | 7 | 13 | 11.35 | 0.111 |
| Pathology | 7,217 | 373 | 0 | 9.76 | 3 | 6 | 12 | 13.98 | 0.165 |


| Set | $N$ | Max | Min | $\mu$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ | $\sigma$ | SE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ophthalmology | 7,830 | 615 | 0 | 9.75 | 3 | 6 | 12 | 15.19 | 0.172 |
| Sport Sciences | 8,368 | 184 | 0 | 9.69 | 3 | 7 | 13 | 11.48 | 0.126 |
| Radiology, Nuclear Medicine \& Medical Imaging | 21,014 | 527 | 0 | 9.69 | 2 | 6 | 12 | 14.58 | 0.101 |
| Psychology, Biological | 1,527 | 294 | 0 | 9.67 | 3 | 7 | 12 | 13.22 | 0.338 |
| Mathematical \& Computational Biology | 8,015 | 4,744 | 0 | 9.67 | 1 | 4 | 9 | 76.31 | 0.852 |
| Mycology | 1,829 | 232 | 0 | 9.58 | 3 | 6 | 12 | 13.51 | 0.316 |
| Plant Sciences | 21,321 | 449 | 0 | 9.54 | 2 | 6 | 12 | 12.81 | 0.088 |
| Tropical Medicine | 3,696 | 318 | 0 | 9.36 | 3 | 6 | 12 | 12.96 | 0.213 |
| Surgery | 30,805 | 559 | 0 | 9.35 | 2 | 6 | 12 | 12.95 | 0.074 |
| Limnology | 1,941 | 217 | 0 | 9.35 | 3 | 6 | 12 | 12.16 | 0.276 |
| Thermodynamics | 13,852 | 238 | 0 | 9.33 | 1 | 5 | 13 | 12.56 | 0.107 |
| Obstetrics \& Gynecology | 9,883 | 454 | 0 | 9.32 | 3 | 6 | 12 | 12.25 | 0.123 |
| Psychology, Applied | 3,523 | 404 | 0 | 9.27 | 2 | 6 | 12 | 15.31 | 0.258 |
| Geosciences, Multidisciplinary | 24,644 | 383 | 0 | 9.26 | 2 | 6 | 12 | 13.90 | 0.089 |
| Mineralogy | 2,550 | 139 | 0 | 9.24 | 3 | 6 | 12 | 10.52 | 0.208 |
| Physics, Multidisciplinary | 22,930 | 1,178 | 0 | 9.21 | 1 | 3 | 9 | 23.95 | 0.158 |
| Health Care Sciences \& Services | 7,999 | 288 | 0 | 9.21 | 3 | 6 | 12 | 12.78 | 0.143 |
| Chemistry, Inorganic \& Nuclear | 12,591 | 173 | 0 | 9.19 | 2 | 6 | 12 | 11.15 | 0.099 |
| Psychology, Social | 3,548 | 193 | 0 | 9.15 | 3 | 6 | 11 | 11.46 | 0.192 |
| Psychology, Educational | 2,112 | 151 | 0 | 9.09 | 2 | 6 | 12 | 12.17 | 0.265 |
| Soil Science | 4,800 | 149 | 0 | 9.04 | 2 | 5 | 12 | 11.85 | 0.171 |
| Psychology, Multidisciplinary | 8,332 | 717 | 0 | 8.84 | 1 | 5 | 10 | 17.32 | 0.190 |
| Public, Environmental \& Occupational Health | 25,493 | 655 | 0 | 8.77 | 2 | 5 | 11 | 13.79 | 0.086 |
| Water Resources | 13,997 | 367 | 0 | 8.76 | 2 | 5 | 11 | 11.81 | 0.100 |
| Physics, Applied | 78,796 | 2,288 | 0 | 8.73 | 0 | 3 | 9 | 24.73 | 0.088 |
| Dermatology | 5,793 | 249 | 0 | 8.58 | 2 | 5 | 11 | 11.86 | 0.156 |
| Marine \& Freshwater Biology | 10,124 | 157 | 0 | 8.53 | 3 | 6 | 11 | 9.66 | 0.096 |
| Instruments \& Instrumentation | 17,090 | 419 | 0 | 8.48 | 1 | 4 | 10 | 14.16 | 0.108 |
| Pediatrics | 13,364 | 309 | 0 | 8.43 | 2 | 5 | 10 | 12.32 | 0.107 |
| Health Policy \& Services | 5,318 | 159 | 0 | 8.42 | 2 | 6 | 11 | 10.38 | 0.142 |
| Social Sciences, Biomedical | 3,003 | 132 | 0 | 8.40 | 3 | 6 | 11 | 9.50 | 0.173 |
| Urban Studies | 2,309 | 334 | 0 | 8.11 | 1 | 4 | 10 | 14.43 | 0.300 |
| Medical Laboratory Technology | 2,598 | 337 | 0 | 8.05 | 2 | 5 | 10 | 11.81 | 0.232 |
| Ergonomics | 1,431 | 109 | 0 | 7.94 | 3 | 6 | 10 | 8.76 | 0.232 |
| Metallurgy \& Metallurgical Engineering | 16,898 | 209 | 0 | 7.92 | 1 | 4 | 10 | 11.09 | 0.085 |
| Integrative \& Complementary Medicine | 3,453 | 88 | 0 | 7.91 | 2 | 6 | 11 | 7.80 | 0.133 |
| Geology | 2,153 | 108 | 0 | 7.86 | 2 | 5 | 10 | 9.18 | 0.198 |
| Emergency Medicine | 2,627 | 143 | 0 | 7.82 | 2 | 5 | 10 | 10.49 | 0.205 |
| Engineering, Biomedical | 17,786 | 368 | 0 | 7.82 | 0 | 3 | 10 | 13.45 | 0.101 |
| Dentistry, Oral Surgery \& Medicine | 8,502 | 445 | 0 | 7.80 | 2 | 5 | 10 | 10.12 | 0.110 |
| Spectroscopy | 7,388 | 173 | 0 | 7.75 | 2 | 5 | 10 | 9.13 | 0.106 |
| Forestry | 4,472 | 148 | 0 | 7.72 | 2 | 5 | 10 | 8.95 | 0.134 |
| Crystallography | 6,932 | 743 | 0 | 7.71 | 2 | 5 | 10 | 13.28 | 0.160 |
| Materials Science, Ceramics | 6,222 | 257 | 0 | 7.69 | 1 | 5 | 11 | 9.85 | 0.125 |
| Statistics \& Probability | 9,532 | 4,744 | 0 | 7.65 | 1 | 3 | 7 | 68.73 | 0.704 |
| Physics, Fluids \& Plasmas | 9,704 | 229 | 0 | 7.64 | 2 | 5 | 10 | 10.26 | 0.104 |
| Fisheries | 4,702 | 152 | 0 | 7.61 | 2 | 5 | 10 | 9.42 | 0.137 |
| Demography | 948 | 197 | 0 | 7.46 | 2 | 5 | 10 | 10.29 | 0.334 |


| Set | $N$ | Max | Min | $\mu$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ | $\sigma$ | SE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Andrology | 391 | 36 | 0 | 7.35 | 3 | 6 | 10 | 6.00 | 0.303 |
| Oceanography | 7,417 | 200 | 0 | 7.33 | 1 | 5 | 10 | 9.74 | 0.113 |
| Primary Health Care | 1,269 | 253 | 0 | 7.29 | 2 | 5 | 10 | 10.76 | 0.302 |
| Audiology \& Speech-Language Pathology | 2,052 | 95 | 0 | 7.23 | 3 | 5 | 9 | 7.64 | 0.169 |
| Medicine, Legal | 1,711 | 139 | 0 | 7.21 | 2 | 5 | 9 | 9.62 | 0.233 |
| Business | 9,394 | 404 | 0 | 7.19 | 0 | 2 | 9 | 14.92 | 0.154 |
| Agriculture, Multidisciplinary | 6,406 | 203 | 0 | 7.16 | 1 | 4 | 10 | 9.49 | 0.119 |
| Paleontology | 2,503 | 92 | 0 | 7.09 | 2 | 5 | 9 | 7.31 | 0.146 |
| Family Studies | 2,229 | 80 | 0 | 7.05 | 2 | 5 | 9 | 7.59 | 0.161 |
| Political Science | 5,106 | 293 | 0 | 7.04 | 1 | 4 | 9 | 10.89 | 0.152 |
| Operations Research \& Management Science | 11,879 | 271 | 0 | 6.99 | 0 | 3 | 9 | 12.09 | 0.111 |
| Agronomy | 8,651 | 148 | 0 | 6.98 | 1 | 4 | 9 | 9.42 | 0.101 |
| Otorhinolaryngology | 4,797 | 432 | 0 | 6.96 | 2 | 5 | 9 | 9.65 | 0.139 |
| Management | 14,339 | 304 | 0 | 6.92 | 0 | 2 | 8 | 13.30 | 0.111 |
| Imaging Science \& Photographic Technology | 9,353 | 737 | 0 | 6.91 | 0 | 2 | 7 | 17.96 | 0.186 |
| Anthropology | 3,149 | 84 | 0 | 6.86 | 1 | 4 | 9 | 8.92 | 0.159 |
| Planning \& Development | 4,115 | 147 | 0 | 6.81 | 0 | 3 | 9 | 11.38 | 0.177 |
| Transportation | 4,035 | 113 | 0 | 6.80 | 1 | 4 | 9 | 8.93 | 0.141 |
| Hospitality, Leisure, Sport \& Tourism | 2,998 | 144 | 0 | 6.80 | 0 | 4 | 9 | 10.55 | 0.193 |
| Physics, Mathematical | 10,426 | 412 | 0 | 6.79 | 1 | 4 | 8 | 11.69 | 0.114 |
| Rehabilitation | 7,791 | 182 | 0 | 6.78 | 2 | 5 | 9 | 7.84 | 0.089 |
| Information Science \& Library Science | 4,565 | 162 | 0 | 6.62 | 0 | 3 | 8 | 11.35 | 0.168 |
| Agricultural Economics \& Policy | 880 | 143 | 0 | 6.62 | 1 | 3 | 8 | 11.32 | 0.382 |
| Criminology \& Penology | 2,015 | 91 | 0 | 6.60 | 2 | 4 | 9 | 8.41 | 0.187 |
| Physics, Nuclear | 7,876 | 324 | 0 | 6.58 | 1 | 3 | 8 | 12.36 | 0.139 |
| Communication | 3,200 | 169 | 0 | 6.55 | 1 | 3 | 8 | 10.80 | 0.191 |
| Sociology | 4,725 | 192 | 0 | 6.54 | 1 | 4 | 8 | 9.17 | 0.133 |
| Medical Informatics | 3,991 | 368 | 0 | 6.54 | 0 | 3 | 8 | 12.07 | 0.191 |
| Materials Science, Paper \& Wood | 1,963 | 358 | 0 | 6.51 | 2 | 4 | 8 | 10.92 | 0.247 |
| Materials Science, Textiles | 2,548 | 358 | 0 | 6.19 | 1 | 3 | 8 | 10.78 | 0.214 |
| Economics | 22,338 | 217 | 0 | 6.11 | 1 | 3 | 7 | 10.78 | 0.072 |
| Social Issues | 1,296 | 72 | 0 | 6.04 | 2 | 4 | 8 | 7.09 | 0.197 |
| Engineering, Geological | 4,573 | 222 | 0 | 6.00 | 0 | 2 | 8 | 10.39 | 0.154 |
| Zoology | 11,218 | 234 | 0 | 6.00 | 2 | 4 | 8 | 7.50 | 0.071 |
| Anatomy \& Morphology | 1,889 | 62 | 0 | 5.97 | 2 | 4 | 8 | 6.95 | 0.160 |
| Agriculture, Dairy \& Animal Science | 6,163 | 289 | 0 | 5.96 | 1 | 4 | 8 | 7.58 | 0.097 |
| Education, Special | 1,666 | 56 | 0 | 5.95 | 1 | 4 | 8 | 6.71 | 0.164 |
| Remote Sensing | 11,388 | 469 | 0 | 5.94 | 0 | 1 | 6 | 13.97 | 0.131 |
| Mathematics, Interdisciplinary Applications | 10,072 | 572 | 0 | 5.89 | 1 | 2 | 7 | 13.36 | 0.133 |
| International Relations | 2,941 | 125 | 0 | 5.88 | 1 | 3 | 7 | 8.70 | 0.160 |
| Entomology | 5,704 | 116 | 0 | 5.88 | 2 | 4 | 8 | 7.38 | 0.098 |
| Engineering, Civil | 22,127 | 222 | 0 | 5.83 | 0 | 2 | 8 | 9.93 | 0.067 |
| Social Work | 2,114 | 78 | 0 | 5.82 | 2 | 4 | 8 | 6.69 | 0.145 |
| Nursing | 6,637 | 101 | 0 | 5.72 | 2 | 4 | 8 | 6.42 | 0.079 |
| Computer Science, Interdisciplinary Applications | 29,153 | 4,744 | 0 | 5.67 | 0 | 1 | 6 | 40.84 | 0.239 |
| Construction \& Building Technology | 12,078 | 167 | 0 | 5.64 | 0 | 1 | 7 | 9.91 | 0.090 |


| Set | $N$ | Max | Min | $\mu$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ | $\sigma$ | SE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acoustics | 6,935 | 236 | 0 | 5.60 | 0 | 2 | 7 | 10.04 | 0.121 |
| Industrial Relations \& Labor | 879 | 57 | 0 | 5.59 | 1 | 3 | 7 | 7.48 | 0.252 |
| Women's Studies | 1,341 | 81 | 0 | 5.50 | 1 | 3 | 7 | 7.26 | 0.198 |
| Ethics | 1,928 | 61 | 0 | 5.46 | 1 | 3 | 7 | 7.49 | 0.170 |
| Optics | 47,737 | 1,277 | 0 | 5.44 | 0 | 2 | 6 | 14.16 | 0.065 |
| Veterinary Sciences | 11,502 | 289 | 0 | 5.42 | 1 | 3 | 7 | 7.17 | 0.067 |
| Archaeology | 2,118 | 89 | 0 | 5.41 | 1 | 3 | 7 | 7.45 | 0.162 |
| Engineering, Industrial | 10,362 | 532 | 0 | 5.36 | 0 | 1 | 6 | 11.99 | 0.118 |
| Public Administration | 2,204 | 81 | 0 | 5.34 | 0 | 2 | 7 | 8.54 | 0.182 |
| Mechanics | 33,545 | 229 | 0 | 5.33 | 0 | 1 | 7 | 9.77 | 0.053 |
| Computer Science, Artificial Intelligence | 41,210 | 2,100 | 0 | 5.31 | 0 | 1 | 5 | 20.59 | 0.101 |
| Microscopy | 1,319 | 129 | 0 | 5.16 | 1 | 3 | 7 | 7.98 | 0.220 |
| Ethnic Studies | 675 | 42 | 0 | 5.14 | 1 | 3 | 7 | 5.76 | 0.222 |
| Medical Ethics | 674 | 57 | 0 | 5.08 | 1 | 3 | 7 | 6.05 | 0.233 |
| Automation \& Control Systems | 29,427 | 2,100 | 0 | 5.02 | 0 | 1 | 4 | 18.32 | 0.107 |
| Ornithology | 1,008 | 70 | 0 | 4.92 | 1 | 4 | 7 | 5.54 | 0.175 |
| Computer Science, Cybernetics | 3,652 | 205 | 0 | 4.88 | 0 | 1 | 25 | 12.22 | 0.202 |
| Mining \& Mineral Processing | 2,687 | 81 | 0 | 4.70 | 0 | 2 | 6 | 7.39 | 0.143 |
| Telecommunications | 40,550 | 2,028 | 0 | 4.50 | 0 | 1 | 3 | 21.47 | 0.107 |
| Engineering, Manufacturing | 13,102 | 236 | 0 | 4.48 | 0 | 1 | 6 | 8.88 | 0.078 |
| Business, Finance | 7,214 | 162 | 0 | 4.48 | 0 | 1 | 5 | 9.24 | 0.109 |
| Transportation Science \& Technology | 8,411 | 201 | 0 | 4.39 | 0 | 1 | 5 | 9.97 | 0.109 |
| Mathematics, Applied | 27,982 | 253 | 0 | 4.33 | 0 | 2 | 5 | 8.03 | 0.048 |
| Engineering, Multidisciplinary | 21,144 | 696 | 0 | 4.26 | 0 | 1 | 4 | 10.58 | 0.073 |
| Social Sciences, Mathematical Methods | 3,496 | 225 | 0 | 4.21 | 0 | 1 | 5 | 9.46 | 0.160 |
| Horticulture | 5,338 | 105 | 0 | 4.19 | 0 | 2 | 5 | 6.75 | 0.092 |
| Law | 3,574 | 77 | 0 | 4.03 | 0 | 2 | 5 | 6.55 | 0.110 |
| Computer Science, Software Engineering | 17,103 | 696 | 0 | 4.00 | 0 | 1 | 4 | 10.52 | 0.080 |
| Nuclear Science \& Technology | 11,359 | 229 | 0 | 4.00 | 0 | 2 | 5 | 6.72 | 0.063 |
| Linguistics | 5,921 | 112 | 0 | 3.96 | 0 | 2 | 5 | 6.47 | 0.084 |
| Engineering, Ocean | 2,352 | 200 | 0 | 3.83 | 0 | 0 | 5 | 8.62 | 0.178 |
| Materials Science, Characterization \& Testing | 3,878 | 246 | 0 | 3.82 | 0 | 1 | 5 | 7.44 | 0.119 |
| Engineering, Electrical \& Electronic | 174,272 | 2,028 | 0 | 3.80 | 0 | 0 | 3 | 13.96 | 0.033 |
| Engineering, Aerospace | 4,435 | 270 | 0 | 3.74 | 0 | 1 | 5 | 7.92 | 0.119 |
| Education, Scientific Disciplines | 6,308 | 238 | 0 | 3.72 | 0 | 1 | 5 | 8.72 | 0.110 |
| Computer Science, Information Systems | 45,865 | 715 | 0 | 3.63 | 0 | 1 | 3 | 12.79 | 0.060 |
| Cultural Studies | 945 | 190 | 0 | 3.55 | 0 | 1 | 4 | 9.13 | 0.297 |
| Engineering, Petroleum | 1,930 | 120 | 0 | 3.53 | 0 | 1 | 4 | 6.63 | 0.151 |
| Robotics | 8,491 | 175 | 0 | 3.38 | 0 | 1 | 4 | 7.58 | 0.082 |
| History \& Philosophy Of Science | 2,199 | 104 | 0 | 3.35 | 0 | 2 | 4 | 5.96 | 0.127 |
| Computer Science, Hardware \& Architecture | 18,489 | 532 | 0 | 3.34 | 0 | 1 | 3 | 10.96 | 0.081 |
| Mathematics | 25,450 | 253 | 0 | 3.19 | 0 | 2 | 4 | 5.54 | 0.035 |
| Education \& Educational Research | 20,087 | 149 | 0 | 3.14 | 0 | 1 | 4 | 6.85 | 0.048 |
| Area Studies | 2,046 | 44 | 0 | 2.92 | 0 | 1 | 4 | 4.44 | 0.098 |
| Engineering, Mechanical | 50,972 | 262 | 0 | 2.90 | 0 | 0 | 2 | 7.27 | 0.032 |
| Social Sciences, Interdisciplinary | 11,035 | 92 | 0 | 2.73 | 0 | 0 | 3 | 5.62 | 0.053 |
| Film, Radio, Television | 398 | 31 | 0 | 2.59 | 0 | 1 | 3 | 4.58 | 0.229 |


| Set | $N$ | Max | Min | $\mu$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ | $\sigma$ | SE |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| History Of Social Sciences | 879 | 97 | 0 | 2.49 | 0 | 1 | 3 | 4.24 | 0.143 |
| Computer Science, Theory \& Methods | 55,591 | 737 | 0 | 2.45 | 0 | 1 | 2 | 8.79 | 0.037 |
| Art | 725 | 89 | 0 | 2.33 | 0 | 1 | 3 | 5.55 | 0.206 |
| Logic | 1,786 | 38 | 0 | 2.33 | 0 | 1 | 3 | 3.28 | 0.078 |
| Engineering, Marine | 2,110 | 101 | 0 | 2.27 | 0 | 0 | 2 | 5.12 | 0.112 |
| Philosophy | 3,657 | 61 | 0 | 2.22 | 0 | 1 | 3 | 4.06 | 0.067 |
| Language \& Linguistics | 5,174 | 112 | 0 | 2.20 | 0 | 1 | 3 | 4.25 | 0.059 |
| Psychology, Psychoanalysis | 345 | 40 | 0 | 2.17 | 0 | 1 | 3 | 4.04 | 0.218 |
| Music | 888 | 28 | 0 | 2.06 | 0 | 1 | 3 | 3.10 | 0.104 |
| Religion | 2,335 | 81 | 0 | 1.70 | 0 | 1 | 2 | 3.52 | 0.073 |
| History | 3,487 | 97 | 0 | 1.53 | 0 | 1 | 2 | 2.84 | 0.048 |
| Asian Studies | 877 | 32 | 0 | 1.10 | 0 | 0 | 1 | 1.99 | 0.067 |
| Literature, African, Australian, Canadian | 59 | 6 | 0 | 1.07 | 0 | 1 | 1.5 | 1.26 | 0.164 |
| Humanities, Multidisciplinary | 2,559 | 53 | 0 | 1.02 | 0 | 0 | 1 | 2.83 | 0.056 |
| Architecture | 1,376 | 145 | 0 | 1.00 | 0 | 0 | 1 | 4.45 | 0.120 |
| Literature | 1,608 | 18 | 0 | 0.81 | 0 | 0 | 1 | 1.77 | 0.044 |
| Theater | 300 | 9 | 0 | 0.77 | 0 | 0 | 1 | 1.19 | 0.069 |
| Medieval \& Renaissance Studies | 485 | 11 | 0 | 0.68 | 0 | 0 | 1 | 1.16 | 0.053 |
| Literature, American | 75 | 5 | 0 | 0.68 | 0 | 0 | 1 | 1.02 | 0.117 |
| Classics | 325 | 9 | 0 | 0.66 | 0 | 0 | 1 | 1.15 | 0.064 |
| Folklore | 134 | 7 | 0 | 0.65 | 0 | 0 | 1 | 1.26 | 0.109 |
| Dance | 74 | 8 | 0 | 0.55 | 0 | 0 | 0 | 1.30 | 0.152 |
| Literature, Romance | 269 | 6 | 0 | 0.49 | 0 | 0 | 1 | 0.92 | 0.056 |
| Literature, British Isles | 220 | 4 | 0 | 0.43 | 0 | 0 | 1 | 0.74 | 0.050 |
| Literary Theory \& Criticism | 498 | 45 | 0 | 0.39 | 0 | 0 | 0 | 2.34 | 0.105 |
| Poetry | 42 | 3 | 0 | 0.38 | 0 | 0 | 1 | 0.70 | 0.108 |
| Literature, German, Dutch, Scandinavian | 128 | 4 | 0 | 0.36 | 0 | 0 | 1 | 0.70 | 0.061 |
| Literature, Slavic | 35 | 3 | 0 | 0.29 | 0 | 0 | 0 | 0.67 | 0.113 |
| Literary Reviews | 35 | 2 | 0 | 0.17 | 0 | 0 | 0 | 0.51 | 0.087 |
|  |  |  |  |  |  |  |  |  |  |

## Bibliography

[1] Wittgenstein, L. (2009) Philosophical Investigations. Fourth Edition, Revised, P. Hacker, J. Schulte, Eds., John Wiley \& Sons.
[2] V.A. Lefebvre, V.A. (2010) Lectures on the Reflexive Games Theory. Los Angeles, CA, Leaf \& Oaks Publisher.
[3] Mel'čuk \& I.A, Žolkovskij, A.K. (1970) "Towards a functioning 'Meaning-Text' model of language." Linguistics. 8(57): 10-47. https://doi.org/10.1515/ ling.1970.8.57.10
[4] Mel'čuk, I.A. (2012) Semantics: From Meaning to Text. Volume 1 [Studies in Language Companion Series, 129]. Amsterdam, The Netherlands, John Benjamins Publishing Company.
[5] Mel'čuk, I.A. (2013) Semantics: From Meaning to Text. Volume 2 [Studies in Language Companion Series, 135]. Amsterdam, The Netherlands, John Benjamins Publishing Company.
[6] Mel'čuk, I.A. (2015) Semantics: From Meaning to Text. Volume 3 [Studies in Language Companion Series, 168]. Amsterdam, The Netherlands, John Benjamins Publishing Company.
[7] Shchedrovitsky, G.P. (1974) "Sense and meaning", In: Solntsev, V.M. (ed.) Problems of Semantics, Moscow, "Nauka", 76-111.
[8] Thurstone, L.L. (1934)"The vectors of mind." Psychol. Rev. 41(1): 1-32. https://doi.org/10.1037/h0075959
[9] McCrae, R.R., \& Costa, P.T. (2004) "A contemplated revision of the NEO fivefactor inventory." Personal. Individ. Differ. 36(3): 587-596. https://doi. org/10.1016/s0191-8869(03)00118-1.
[10] Fehrman, E., Egan, V., Gorban, A.N., Levesley, J., Mirkes, E.M., \& Muhammad, A.K. (2019) Personality Traits and Drug Consumption. A Story Told by Data. Cham, Springer. https://arxiv.org/abs/2001.06520
[11] Osgood, C. E., Suci, G. J., \& Tannenbaum, P. H. (1957) The measurement of meaning (No. 47). University of Illinois press.
[12] Osgood, C. E. (1952) "The nature and measurement of meaning." Psychological bulletin, 49(3): 197-237. https://doi.org/10.1037/h0055737
[13] Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v2
[14] WoS Subject Categories. (2019, October). Retrieved from https: //images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_ category_terms_tasca.html
[15] Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). figshare. Dataset. https://doi.org/10.25392/leicester.data.9896579.v3
[16] Suzen, Neslihan (2020): LScDC Word-Category RIG Matrix. University of Leicester. Dataset. https://doi.org/10.25392/leicester.data. 12133431. v2
[17] Bornmann, L., \& Daniel, H. D. (2008) "What do citation counts measure? A review of studies on citing behavior." Journal of documentation.
[18] van Raan, A. F. (2005) "For your citations only? Hot topics in bibliometric analysis." Measurement: interdisciplinary research and perspectives, 3(1): 5062.
[19] Smith, A. T., \& Eysenck, M. (2002) "The correlation between RAE ratings and citation counts in psychology". University of London, Royal Holloway.
[20] Small, H. (2004) "On the shoulders of Robert Merton: Towards a normative theory of citation." Scientometrics, 60(1): 71-79.
[21] Woolgar, S. (1991) "Beyond the citation debate: towards a sociology of measurement technologies and their use in science policy." Science and Public Policy, 18(5): 319-326.
[22] Browne, C., Culligan, B. \& Phillips, J. (2013). The New Academic Word List. Retrieved from http://www.newgeneralservicelist.org
[23] Süzen, N., Gorban, A. N., Levesley, J., \& Mirkes, E. M. (2020) "Automatic short answer grading and feedback using text mining methods." Procedia Computer Science, 169: 726-743.
[24] Mohler, M., Bunescu, R. and Mihalcea, R. (2011) "Learning to grade short answer questions using semantic similarity measures and dependency graph alignments," in Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies 1: 752-762.
[25] Reynolds, C.R., Livingston, R.B., Willson, V.L. and Willson, V. (2010) Measurement and assessment in education. Pearson Education International.
[26] McDaniel, M.A., Anderson, J.L., Derbish, M.H. and Morrisette, N. (2007) "Testing the testing effect in the classroom." European Journal of Cognitive Psychology 19 (4-5): 494-513.
[27] Leacock, C. and Chodorow, M. (2003) "C-rater: Automated scoring of shortanswer questions." Computers and the Humanities 37 (4): 389-405.
[28] Mitchell, T., Russel, T., Broomhead, P., Aldridge N. (2002) "Towards robust computerized marking of free-text responses," in M. Danson (Ed.), Proceedings of the Sixth International Computer Assisted Assessment Conference, Loughborough University, Loughborough, UK
[29] Sukkarieh, J.Z., Pulman, S.G. and Raikes, N. (2004) "Auto-marking 2: An update on the UCLES-Oxford University research into using computational linguistics to score short, free text responses." International Association of Educational Assessment, Philadelphia.
[30] Basu, S., Jacobs, C. and Vanderwende, L. (2013) "Powergrading: a clustering approach to amplify human effort for short answer grading." Transactions of the Association for Computational Linguistics 1: 391-402.
[31] Page, E.B. (1966) "The imminence of... grading essays by computer." The Phi Delta Kappan 47 (5): 238-243.
[32] Wresch, W.(1993) "The imminence of grading Essays by computer- 25 Years Later." Computers and composition 10 (2): 45-58.
[33] Landauer, T.K.(2003) "Automatic essay assessment." Assessment in education: Principles, policy and practice 10 (3): 295-308.
[34] Shermis, M.D., Burstein, J., Higgins, D. and Zechner, K. (2010) "Automated essay scoring: Writing assessment and instruction." International encyclopedia of education 4 (1): 20-26
[35] Burrows, S., Gurevych, I. and Stein, B. (2015)"The eras and trends of automatic short answer grading." International Journal of Artificial Intelligence in Education 25 (1): 60-117.
[36] Jordan, S. and Mitchell, T. (2009) "e-Assessment for learning? The potential of short-answer free-text questions with tailored feedback." British Journal of Educational Technology 40 (2): 371-385.
[37] Bachman, L.F., Carr, N., Kamei, G., Kim, M., Pan, M.J., Salvador, C. and Sawaki, Y., (2002) "A reliable approach to automatic assessment of short answer free responses," in Proceedings of the 19th international conference on Computational linguistics 2: 1-4. Association for Computational Linguistics.
[38] Pulman, S.G. and Sukkarieh, J.Z. (2005) "Automatic short answer marking," in Proceedings of the second workshop on Building Educational Applications Using NLP (pp. 9-16). Association for Computational Linguistics.
[39] Cutrone, L. and Chang, M. (2011) "Auto-Assessor: Computerized assessment system for marking student's short-answers automatically," in Technology for Education (T4E), 2011 IEEE International Conference on (pp. 81-88). IEEE.
[40] Thomas, P. (2003) "The evaluation of electronic marking of examinations." ACM SIGCSE Bulletin 35 (3): 50-54.
[41] Mohler, M. and Mihalcea, R. (2009) March. "Text-to-text semantic similarity for automatic short answer grading," in Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics (pp. 567-575). Association for Computational Linguistics.
[42] Horbach, A., Palmer, A. and Wolska, M. (2014) "Finding a Tradeoff between Accuracy and Rater's Workload in Grading Clustered Short Answers." In LREC (pp. 588-595).
[43] Manning C.D., and Schütze, H. (1999) Foundations of Statistical Natural Language Processing, MIT Press.
[44] Provost, F. and Fawcett, T. (2013) Data Science for Business: What you need to know about data mining and data-analytic thinking. O'Reilly Media, Inc.
[45] Everitt, B.S., Landau, S., Leese, M., Stahl, D. (2011) Cluster Analysis. John Wiley \& Sons. Ltd., NY.
[46] Bock, H.H. (2007) "Clustering methods: a history of k-means algorithms." In Selected contributions in data analysis and classification (pp. 161-172). Springer, Berlin, Heidelberg.
[47] Cox, D.R. (1957) "Note on grouping." Journal of the American Statistical Association 52 (280): 543-547.
[48] Fisher, W.D. (1958) "On grouping for maximum homogeneity." Journal of the American statistical Association 53 (284): 789-798.
[49] Steinbach, M., Karypis, G. and Kumar, V. (200) "A comparison of document clustering techniques," in KDD workshop on text mining 400 (1): 525-526).
[50] Luo, C., Li, Y. and Chung, S.M. (2009) "Text document clustering based on neighbors." Data and Knowledge Engineering 68 (11): 1271-1288.
[51] Chiang, M.T. (2009) "Intelligent K-means clustering in L2 and L1 versions: experimentation and application" (Doctoral dissertation, University of London).
[52] Kaufman, L. and Rousseeuw, P. (1987) Clustering by means of medoids. NorthHolland, Amsterdam.
[53] Xu, R. and Wunsch, D. (2005) "Survey of clustering algorithms." IEEE Transactions on neural networks 16 (3): 645-678.
[54] Park H.S., and Jun, C.H. (2009) "A simple and fast algorithm for K-medoids clustering", Expert Systems with Applications 36 (2): 3336-3341.
[55] Hamming, R. W. (1950) "Error detecting and error correcting codes." The Bell System Technical Journal 29 (2): 147-160
[56] Zielesny, A. (2016) From curve fitting to machine learning: an illustrative guide to scientific data analysis and computational intelligence. Springer, Switzerland.
[57] Motulsky, H. and Christopoulos, A. (2004) Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford University Press, Oxford.
[58] ResearchGate. (2019, October 14). Why a commitment to open science makes a great job candidate [Blog Post]. Retrieved from https://www.researchgate.net/scientific-recruitment/blog/post/ why-a-commitment-to-open-science-makes-a-great-job-candidate
[59] Matthews, D. (2016, April 7). Do academic social networks share academics' interests?. Times Higher Education. Retrieved from https://www.timeshighereducation.com/features/ do-academic-social-networks-share-academics-interests
[60] Sebastiani, F. (2014, April) "Text quantification." In European Conference on Information Retrieval (pp. 819-822). Springer, Cham.
[61] Leydesdorff, L., \& Welbers, K. (2011) "The semantic mapping of words and co-words in contexts." Journal of Informetrics, 5(3): 469-475.
[62] Osgood, C. E. (1952) "The nature and measurement of meaning." Psychological bulletin, 49(3): 197-237.
[63] Web of Science. (2019, October). Retrieved from https://clarivate.com/ webofsciencegroup/solutions/web-of-science/
[64] Suzen, N. (2019). LSC (Leicester Scientific Corpus) [Dataset]. figshare. Retrieved from https://doi.org/10.25392/leicester.data.9449639.v1
[65] Research Areas in WoS. (2019, October). Retrieved from https://images. webofknowledge.com/images/help/WOS/hp_research_areas_easca.html
[66] Times Cited in WoS Core Collection.. (2019, October). Retrieved from https://support.clarivate.com/ScientificandAcademicResearch/s/ article/Web-of-Science-Times-Cited-accessibility-and-variation? language=en_US
[67] Suzen, N. (2019). LScD (Leicester Scientific Dictionary) [Dataset].figshare. Retrieved from https://doi.org/10.25392/leicester.data.9746900.v2
[68] Suzen, N. (2019). LScDC (Leicester Scientific Dictionary-Core) [Dataset]. figshare. Retrieved from https://doi.org/10.25392/leicester.data. 9896579.v2
[69] Browne, C., Culligan, B. \& Phillips, J. (2013). The New General Service List. Retrieved from http://www.newgeneralservicelist.org
[70] Coxhead, A. (2000) "A new academic word list." TESOL quarterly, 34(2): 213238.
[71] Suzen, N. (2019). LScD-LEICESTER SCIENTIFIC DICTIONARY CREATION. Available from https://github.com/neslihansuzen
[72] Biber, D. (1993) "Representativeness in corpus design." Literary and linguistic computing, 8(4): 243-257.
[73] McEnery, T., Xiao, R., \& Tono, Y. (2006) Corpus-based language studies: An advanced resource book. Routledge.
[74] Johansson, S., Leech, G. N., \& Goodluck, H. (1978). Manual of information to accompany the Lancaster-Oslo/Bergen Corpus of British English, for use with digital computer. Department of English, University of Oslo. Retrieved from http://khnt.hit.uib.no/icame/manuals/lob/INDEX.HTM
[75] Onwuegbuzie, A. J., \& Leech, N. L. (2007) "A call for qualitative power analyses." Quality $\mathcal{E}$ Quantity, 41(1): 105-121.
[76] Salton, G. (1975) A theory of indexing (Vol. 18). SIAM.
[77] Salton, G., \& McGill, M. J. (1983) Introduction to modern information retrieval. McGraw-Hill.
[78] Salton, G., \& Buckley, C. (1988)"Term-weighting approaches in automatic text retrieval." Information processing \& management, 24(5): 513-523.
[79] Ramos, J. (2003, December) "Using tf-idf to determine word relevance in document queries." In Proceedings of the first instructional conference on machine learning (Vol. 242, pp. 133-142).
[80] Bowker, L. (2003) "3.2 Specialized lexicography and specialized dictionaries." In van Sterkenburg, P. (Ed.)., A Practical Guide to Lexicography (pp. 154-164). John Benjamins Publishing.
[81] Francis, W. N., \& Kucera, H. (1967) Computational analysis of present-day American English. Brown University Press.
[82] Burnard, L., \& Aston, G. (1998) The BNC handbook: exploring the British National Corpus with SARA. Edinburgh University Press.
[83] Leech, G. (2013) "The Development of ICAME and the Brown Family of Corpora." Bergen Language and Linguistics Studies, 3(1).
[84] Leech, G., \& Rayson, P., Wilson, A. (2014) Word frequencies in written and spoken English: Based on the British National Corpus. Routledge.
[85] Leech, G. N. (1992) "100 million words of English: the British National Corpus (BNC)." Language Research, 28(1): 1-13.
[86] British National Corpus. (2007). Retrieved from https://web.archive.org/ web/20191017093659/http://www.natcorp.ox.ac.uk/corpus/index.xml
[87] The Oxford English Corpus. (2019, June 10). Retrieved from https: //web.archive.org/web/20190610180141/https://languages.oup.com/ our-story/corpus
[88] The Oxford English Corpus. (2019). Retrieved from Sketch Engine: https: //www.sketchengine.eu/oxford-english-corpus/.
[89] The Oxford Corpus of Academic English. (2019). Retrieved from Sketch Engine: https://www.sketchengine.eu/oxford-corpus-of-academic-english/
[90] Rösiger, I. (2016, May) "Scicorp: A corpus of english scientific articles annotated for information status analysis." In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016) (pp. 1743-1749).
[91] D. Lewis. (1997). Reuters-21578 text categorization test collection, Distribution 1.0, ATE T Labs-Research [Dataset]. Retrieved from http://kdd.ics.uci. edu/databases/reuters21578/reuters21578.html
[92] Kim, J. D., Ohta, T., Tateisi, Y., \& Tsujii, J. I. (2003) "GENIA corpus-a semantically annotated corpus for bio-textmining." Bioinformatics, 19 (suppl_1), i180-i182.
[93] Brümmer, M., Dojchinovski, M., \& Hellmann, S. (2016, May) "Dbpedia abstracts: A large-scale, open, multilingual NLP training corpus." In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016) (pp. 3339-3343).
[94] Steels, L. (2017) "Human language is a culturally evolving system." Psychonomic bulletin $\mathcal{E}$ review, 24(1): 190-193.
[95] Satoshi. (2019) In Oxford English dictionary online. Oxford University Press. Retrieved from https://www.oed.com/view/Entry/78036595? redirectedFrom=satoshi\#eid
[96] Yeesh. (2019) In Oxford English dictionary online. Oxford University Press. Retrieved from https://www.oed.com/view/Entry/75048500? redirectedFrom=yeesh\#eid
[97] Simit. (2019) In Oxford English dictionary online. Oxford University Press. Retrieved from https://www.oed.com/view/Entry/61488496? redirectedFrom=simit\#eid
[98] Crystal, D. (1987) "How many words?" English Today, 3(4): 11-14.
[99] How many words are there in English?. (2019, September 18) MerriamWebster. Retrived from https://web.archive.org/web/20190918100123/ https://www.merriam-webster.com/help/faq-how-many-english-words
[100] Michel, J. B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Pickett, J. P., ... \& Pinker, S. (2011) "Quantitative analysis of culture using millions of digitized books." Science, 331(6014): 176-182.
[101] The Oxford English Dictionary. (2019, October 18). Retrieved from https:// web.archive.org/web/20191018041346/https://public.oed.com/about/
[102] Oxford English dictionary online. (2019). Retrieved from https://www.oed. com/
[103] Gove, P. B. (Ed.). (1961) Webster's third new international dictionary (unabridged). United States of America: Merriam-Webster Inc.
[104] Ritter, R. M. (Ed.). (2014) New Oxford dictionary for writers and editors. Oxford University Press.
[105] Lea, D. (2014) "Making a learner's dictionary of academic English." In Proceedings of the XVI EURALEX International Congress: The User in Focus. Bolzano/Bozen: Institute for Specialised Communication and Multilingualism.
[106] Stedman, T. L. (Ed.). (2005) Stedman's Medical Dictionary. Lippincott Williams \& Wilkins. Retrieved from https://stedmansonline.com/public/ LearnMore.aspx?resourceID=Medical
[107] Younger, P. (2007) "Stedman's Medical Dictionary", 28th ed. Reference Reviews, 21(1): 41-42.
[108] The OEC: Facts about the language. (2012, January 4) Retrieved from https: //web.archive.org/web/20111226085859/http://oxforddictionaries. com/words/the-oec-facts-about-the-language
[109] Word for Office 365. (2019) Show word Count. Retrieved from https://support.office.com/en-us/article/ show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3
[110] American Psychological Association. (1983) Publication manual. Washington, DC: American Psychological Association.
[111] Gloviczki, P., \& Lawrence, P. F. (2017) "Information for Authors." Journal of Vascular Surgery, 65(1): A16 - A22.
[112] Suzen, N., Mirkes, E. M., \& Gorban, A. N. (2019) "LScDC-new large scientific dictionary." arXiv preprint arXiv:1912.06858.
[113] Blumberg, R., \& Atre, S. (2003) "The problem with unstructured data." DM Review, (13): 42-49.
[114] Thomas, A. (2013) "Common Prefixes, Suffixes and Roots." Center for Development and Learning [PDF file]. Retrieved from https://www.cdl.org/ wp-content/uploads/2013/12/Common-Prefixes-Suffixes-and-Roots-8. 5.13.pdf
[115] Ramasubramanian, C. \& Ramya,R. (2013) "Effective pre-processing activities in text mining using improved porter's stemming algorithm." International Journal of Advanced Research in Computer and Communication Engineering, 2(12): 4536-4538.
[116] Bouchet-Valat, M., \& Bouchet-Valat, M. M. (2019) SnowballC: Snowball Stemmers Based on the C 'libstemmer' UTF-8 Library. $R$ package version 0.6.0. Retrieved from https://CRAN.R-project.org/package=SnowballC
[117] Feinerer, I., Hornik, K., \& Meyer, D. (2008) "Text Mining Infrastructure in R." Journal of Statistical Software, 25(5): 1-54.
[118] Zipf, G. K. (1949) Human behavior and the principle of least effort. Oxford, England: Addison-Wesley Press.
[119] Luhn, H. P. (1957) "A statistical approach to mechanized encoding and searching of literary information." IBM Journal of research and development, 1(4): 309-317.
[120] Salton, G., Wong, A., \& Yang, C. S. (1975) "A vector space model for automatic indexing." Communications of the ACM, 18(11): 613-620.
[121] Torrisi, A., Bevan, R., Atkinson, K., Bollegala, D., \& Coenen, F. (2019, June) "Automated Bundle Pagination Using Machine Learning." In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Law (pp. 244-248). ACM.
[122] Yang, Y., \& Pedersen, J. O. (1997, July) "A comparative study on feature selection in text categorization." In Icml, 97(412-420): 35.
[123] Rigouste, L., Cappé, O., \& Yvon, F. (2005, May) "Evaluation of a probabilistic method for unsupervised text clustering." In Proceedings of the international symposium on applied stochastic models and data analysis (ASMDA), Brest, France.
[124] Wayne, W. P. (2018) Subjectivity Detection through Quotation Analysis in Wikipedia. Master's thesis, University of Koblenz • Landau, Germany. Retrieved from https://d-nb.info/1162134461/34
[125] Nugumanova, A., Bessmertny, I., Baiburin, Y., \& Mansurova, M. (2016, September) "A new operationalization of contrastive term extraction approach based on recognition of both representative and specific terms." In International Conference on Knowledge Engineering and the Semantic Web (pp. 103118). Springer, Cham.
[126] Hasan, K. S., \& Ng, V. (2014, June) "Automatic keyphrase extraction: A survey of the state of the art." In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1262-1273).
[127] Weeber, M., Vos, R., \& Baayen, R. H. (2000) "Extracting the lowest-frequency words: Pitfalls and possibilities." Computational Linguistics, 26(3): 301-317.
[128] Comeau, D. C., \& Wilbur, W. J. (2004) "Non-word identification or spell checking without a dictionary." Journal of the American Society for Information Science and Technology, 55(2): 169-177.
[129] Pareto, V. (1964) Cours d'économie politique (Vol. 1). Librairie Droz.
[130] Pareto, V. (2014) Manual of political economy: a critical and variorum edition. OUP Oxford.
[131] Pareto, V. (1897) "The new theories of economics." Journal of Political Economy, 5(4):, 485-502.
[132] Geerolf, F. (2016) A theory of Pareto distributions. UCLA manuscript.
[133] Newman, M. (2000) "Applied mathematics: The power of design." Nature, 405(6785): 412-413.
[134] Pickands III, J. (1975) "Statistical inference using extreme order statistics." the Annals of Statistics, 3(1): 119-131.
[135] Hardy, M. (2010) "Pareto's law." The Mathematical Intelligencer, 32(3): 3843.
[136] Kleiber, C., \& Kotz, S. (2003) Statistical size distributions in economics and actuarial sciences (Vol. 470). John Wiley \& Sons.
[137] West, M. P. (Ed.). (1953) A general service list of English words: with semantic frequencies and a supplementary word-list for the writing of popular science and technology. Longmans, Green.
[138] Carroll, J. B. (1971) "Statistical analysis of the corpus." In The American Heritage Word Frequency Book (pp. xxi-xl). Boston: Houghton Mifflin.
[139] Carroll, J. B., Davies, P., \& Richman, B. (1971) "Guide to the alphabetical list." In The American heritage word frequency book. Boston: Houghton Mifflin
[140] Breland, H. M., Jones, R. J., Jenkins, L., Paynter, M., Pollack, J., \& Fong, Y. F. (1994) "The college board vocabulary study." ETS Research Report Series, 1994(1): i-51.
[141] Hedgcock, J. S., \& Ferris, D. R. (2018) Teaching readers of English: Students, texts, and contexts. Routledge.
[142] Hauke, J., \& Kossowski, T. (2011) "Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data." Quaestiones geographicae, 30(2): 87-93.
[143] Dodge, Y. (2008) The concise encyclopedia of statistics. Springer Science \& Business Media.
[144] Ogden, C. K., \& Richards, I. A. (1923) The Meaning of Meaning: A Study of the Influence of Language upon Thought and of the Science of Symbolism (Vol. 29). K. Paul, Trench, Trubner \& Company, Limited.
[145] Putnam, H. (1975) "The meaning of 'meaning'." In Language, Mind, and Knowledge, ed. by K. Gunderson, Minnesota Studies in the Philosophy of Science, 7: 131-193.
[146] Carston, R. (2002) "Linguistic meaning, communicated meaning and cognitive pragmatics." Mind \& Language, 17(1-2): 127-148.
[147] Michaelis, L. (2003) "Word meaning, sentence meaning, and syntactic meaning." Cognitive approaches to lexical semantics, 23: 163-209.
[148] Shchedrovitsky, G.P. (1995) Selected Works, Moscow, The School of Cultural Politics.
[149] Habermas, J. (1984) Theory of Communicative Action, V. 1: Reason and the Rationalization of Society. Boston, MA, Beacon Press.
[150] Habermas, J. (1987) Theory of Communicative Action, V. 2: Lifeworld and System: A Critique of Functionalist Reason. Boston, MA, Beacon Press.
[151] Chen, G. (2012) Fuzzy Logic in Data Modeling: Semantics, Constraints, and Database Design. Springer, NY.
[152] Cho, K, van Merrienboer, B, Bahdanau, \& D, Bengio, Y (2014), On the properties of neural machine translation: Encoder-decoder approaches. in Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8), October 25, 2014, Doha, Qatar, Association for Computational Linguistics, 103-111. https://arxiv.org/abs/1409.1259
[153] Putnam, H. (1988) Representation and Reality. MIT press.
[154] Miller, G. A. (1998) WordNet: An electronic lexical database. MIT press.
[155] Samsonovic, A. V., \& Ascoli, G. A. (2010) "Principal semantic components of language and the measurement of meaning." PloS one, 5(6): e10921.
[156] Turney, P. D., \& Pantel, P. (2010) "From frequency to meaning: Vector space models of semantics." Journal of artificial intelligence research, 37: 141-188.
[157] Anderson, A. B. (1970) "Structure of semantic space." Sociological Methodology, 2: 308-325.
[158] Bentler, P. M., \& LA VOIE, L. (1972) "An extension of semantic space." Journal of Verbal Learning and Verbal Behavior, 11(2): 174-182.
[159] Lowe, W. (2001) "What is the dimensionality of human semantic space?." In Connectionist Models of Learning, Development and Evolution (pp. 303-311). Springer, London.
[160] Harris, Z. S. (1954) "Distributional structure." Word, 10(2-3): 146-162.
[161] Sahlgren, M. (2006) The Word-Space Model: Using distributional analysis to represent syntagmatic and paradigmatic relations between words in highdimensional vector spaces (Doctoral dissertation).
[162] Lapesa, G., Evert, S., \& Im Walde, S. S. (2014, August) "Contrasting syntagmatic and paradigmatic relations: Insights from distributional semantic models." In Proceedings of the Third Joint Conference on Lexical and Computational Semantics (* SEM 2014) (pp. 160-170).
[163] Schutze, H. (1993) "Word space." In Advances in neural information processing systems (pp. 895-902).
[164] Firth, J. R. (1957) "A synopsis of linguistic theory: 1930-1955" Studies in linguistic analysis.
[165] Dinu, G., \& Lapata, M. (2010, October) "Measuring distributional similarity in context." In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing (pp. 1162-1172). Association for Computational Linguistics.
[166] Lowe, W. (2001) "Towards a theory of semantic space." In Proceedings of the Annual Meeting of the Cognitive Science Society, 23(23).
[167] Landauer, T. K., McNamara, D. S., Dennis, S., \& Kintsch, W. (Eds.). (2013) Handbook of latent semantic analysis. Psychology Press.
[168] Landauer, T. K., \& Dumais, S. T. (1997) "A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge." Psychological review, 104(2): 211.
[169] Landauer, T. K.,\& Dumais, S. (2008) "Latent semantic analysis." Scholarpedia, 3(11): 4356.
[170] McCarthy, D., Apidianaki, M., \& Erk, K. (2016) "Word sense clustering and clusterability." Computational Linguistics, 42(2): 245-275.
[171] Murphy, G. L. (1997) "Polysemy and the creation of novel word meanings." In T. B. Ward, S. M. Smith, \& J. Vaid (Eds.), Creative thought: An investigation
of conceptual structures and processes (p. 235-265). American Psychological Association.
[172] Lopukhina, A., Laurinavichyute, A., Lopukhin, K., \& Dragoy, O. (2018) "The mental representation of polysemy across word classes." Frontiers in psychology, 9: 192.
[173] Hanks, P. (2000) "Do word meanings exist?." Computers and the Humanities, 34(1/2): 205-215.
[174] Kintsch, W. (2007) "Meaning in context." Handbook of latent semantic analysis, 89-105.
[175] Dumais, S. T. (2004) "Latent semantic analysis." Annual review of information science and technology, 38(1): 188-230.
[176] Evangelopoulos, N. E. (2013) "Latent semantic analysis." Wiley Interdisciplinary Reviews: Cognitive Science, 4(6): 683-692.
[177] Erk, K., McCarthy, D., \& Gaylord, N. (2013)"Measuring word meaning in context." Computational Linguistics, 39(3): 511-554.
[178] Pustejovsky, J. (1991) "The generative lexicon." Computational linguistics, 17(4): 409-441.
[179] Kintsch, W. (2001) "Predication." Cognitive science, 25(2): 173-202.
[180] Kintsch, W., \& Mangalath, P. (2011) "The construction of meaning." Topics in Cognitive Science, 3(2): 346-370.
[181] Klein, D. E., \& Murphy, G. L. (2001) "The representation of polysemous words." Journal of Memory and Language, 45(2): 259-282.
[182] Murphy, G. (2004) The big book of concepts. MIT press.
[183] Frazier, L., \& Rayner, K. (1990) "Taking on semantic commitments: Processing multiple meanings vs. multiple senses." Journal of memory and language, 29(2): 181-200.
[184] Frisson, S., \& Frazier, L. (2005) "Carving up word meaning: Portioning and grinding." Journal of Memory and Language, 53(2): 277-291.
[185] Pickering, M. J., \& Frisson, S. (2001) "Processing ambiguous verbs: Evidence from eye movements." Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(2): 556.
[186] Frisson, S. (2009) "Semantic underspecification in language processing." Language and Linguistics Compass, 3(1): 111-127.
[187] Erk, K. (2012) "Vector space models of word meaning and phrase meaning: A survey." Language and Linguistics Compass, 6(10): 635-653.
[188] Asher, N., \& van de Cruys, T. (2018) "Content vs. function words: The view from distributional semantics." In Proceedings of Sinn und Bedeutung, 22(1): 1-21.
[189] Asher, N., Van de Cruys, T., \& Abrusán, M. (2015) "Lexical semantics today." The Routledge Handbook of Linguistics, N. York/London: Routledge, 169-186.
[190] Erk, K., \& Padó, S. (2010, July) "Exemplar-based models for word meaning in context." In Proceedings of the acl 2010 conference short papers (pp. 92-97).
[191] Erk, K., \& Padó, S. (2008, October) "A structured vector space model for word meaning in context." In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing (pp. 897-906).
[192] Mitchell, J., \& Lapata, M. (2008, June) "Vector-based models of semantic composition." In proceedings of ACL-08: HLT (pp. 236-244).
[193] Thater, S., Dinu, G., \& Pinkal, M. (2009, August) "Ranking paraphrases in context." In Proceedings of the 2009 Workshop on Applied Textual Inference (TextInfer) (pp. 44-47).
[194] Mitchell, J., \& Lapata, M. (2010) "Composition in distributional models of semantics." Cognitive science, 34(8): 1388-1429.
[195] Mitchell, J., \& Lapata, M. (2009, August) "Language models based on semantic composition." In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 (pp. 430-439). Association for Computational Linguistics.
[196] Van de Cruys, T., Poibeau, T., \& Korhonen, A. (2011, July)"Latent vector weighting for word meaning in context." In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 1012-1022). Association for Computational Linguistics.
[197] Van de Cruys, T. (2010) "Mining for meaning." The Extraction of Lexicosemantic Knowledge from Text.
[198] Paradis, C. (2012) "Lexical semantics." The encyclopedia of applied linguistics, 3356-3357.
[199] Beltagy, I., Roller, S., Cheng, P., Erk, K., \& Mooney, R. J. (2015) "Representing meaning with a combination of logical form and vectors." arXiv preprint arXiv:1505.06816.
[200] Sahlgren, M. (2005) "An introduction to random indexing." In Methods and applications of semantic indexing workshop at the 7th international conference on terminology and knowledge engineering.
[201] Suzen, Neslihan (2019): LScD (Leicester Scientific Dictionary). figshare. Dataset. https://doi.org/10.25392/leicester.data.9746900.v3
[202] Shannon, C. E. (1948) "A mathematical theory of communication." Bell system technical journal, 27(3): 379-423.
[203] Largeron, C., Moulin, C., \& Géry, M. (2011, March) "Entropy based feature selection for text categorization." In Proceedings of the 2011 ACM symposium on applied computing (pp. 924-928). ACM.
[204] Suzen, Neslihan (2020): LScDC Word Clouds and Tables to Visually Present the Most Informative Words in Subject Categories. figshare. Figure. https: //doi.org/10.25392/leicester.data.12191604.v1
[205] Suzen, N., Mirkes, E. M., \& Gorban, A. N. (2020) "Informational Space of Meaning for Scientific Texts." arXiv preprint arXiv:2004.13717.
[206] Wold, S., Esbensen, K., \& Geladi, P. (1987) "Principal component analysis." Chemometrics and intelligent laboratory systems, 2(1-3): 37-52.
[207] Jackson, D. A. (1993) "Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches." Ecology, 74(8): 22042214.
[208] King, J. R., \& Jackson, D. A. (1999) "Variable selection in large environmental data sets using principal components analysis." Environmetrics: The official journal of the International Environmetrics Society, 10(1): 67-77.
[209] Peres-Neto, P. R., Jackson, D. A., \& Somers, K. M. (2005) "How many principal components? Stopping rules for determining the number of non-trivial axes revisited." Computational Statistics \& Data Analysis, 49(4): 974-997.
[210] Zwick, W. R., \& Velicer, W. F. (1986) "Comparison of five rules for determining the number of components to retain." Psychological bulletin, 99(3): 432.
[211] Fukunaga, K., \& Olsen, D. R. (1971) "An algorithm for finding intrinsic dimensionality of data." IEEE Transactions on Computers, 100(2): 176-183.
[212] Gorban, A. N., Golubkov, A., Grechuk, B., Mirkes, E. M., \& Tyukin, I. Y. (2018) "Correction of AI systems by linear discriminants: Probabilistic foundations." Information Sciences, 466: 303-322.
[213] Mirkes, E. M., Allohibi, J., \& Gorban, A. N. (2020) "Fractional norms and quasinorms do not help to overcome the curse of dimensionality." arXiv preprint arXiv:2004.14230.
[214] Dunteman, G. H. (1989) Principal components analysis, (No.69). Sage.
[215] Pearson, K. (1901). LIII. "On lines and planes of closest fit to systems of points in space." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11): 559-572.
[216] Guttman, L. (1954) "Some necessary conditions for common-factor analysis." Psychometrika, 19(2): 149-161.
[217] Kaiser, H. F. (1960) "The application of electronic computers to factor analysis." Educational and psychological measurement, 20(1): 141-151.
[218] Yeomans, K. A., \& Golder, P. A. (1982) "The Guttman-Kaiser criterion as a predictor of the number of common factors." The Statistician, 221-229.
[219] Cangelosi, R., \& Goriely, A. (2007) "Component retention in principal component analysis with application to cDNA microarray data." Biology direct, 2(1): 2.
[220] Süzen, N., Gorban, A. N., Levesley, J., \& Mirkes, E. M. (2020) "Principal Components of the Meaning." arXiv preprint arXiv:2009.08859.
[221] Aksnes, D. W. (2003) "Characteristics of highly cited papers." Research evaluation, 12(3): 159-170.
[222] Suzen, Neslihan (2020): LScDC Word Clouds and Tables to Visually Present the Most Informative Words in Subject Categories. University of Leicester. Figure. https://doi.org/10.25392/leicester.data.12191604.v1
[223] Salton, G. (1971) The SMART system. Retrieval Results and Future Plans.
[224] Robertson, S. (2004) "Understanding inverse document frequency: on theoretical arguments for IDF." Journal of documentation.
[225] Wu, H. C., Luk, R. W. P., Wong, K. F., \& Kwok, K. L. (2008) "Interpreting tf-idf term weights as making relevance decisions." ACM Transactions on Information Systems (TOIS), 26(3): 1-37.
[226] Lund, K., \& Burgess, C. (1996) "Producing high-dimensional semantic spaces from lexical co-occurrence." Behavior research methods, instruments, \& computers, 28(2): 203-208.
[227] Berry, M. W. (2004) "Survey of text mining." Computing Reviews, 45(9): 548.
[228] Lewis, D. D. (1992, February) "Feature selection and feature extraction for text categorization." In Proceedings of the workshop on Speech and Natural Language (pp. 212-217). Association for Computational Linguistics.
[229] Salton, G., Buckley, C., \& Smith, M. (1990) "On the application of syntactic methodologies in automatic text analysis." Information Processing $\mathcal{E}^{\mathcal{J}}$ Management, 26(1): 73-92.
[230] Stavrianou, A., Andritsos, P., \& Nicoloyannis, N. (2007) "Overview and semantic issues of text mining." ACM Sigmod Record, 36(3): 23-34.
[231] Salton, G. (1988, June) "Syntactic approaches to automatic book indexing." In Proceedings of the 26th annual meeting on Association for Computational Linguistics (pp. 204-210). Association for Computational Linguistics.
[232] Lewis, D. D. (1992, June) "An evaluation of phrasal and clustered representations on a text categorization task" In Proceedings of the 15th annual international ACM SIGIR conference on Research and development in information retrieval, (pp. 37-50).
[233] Quan, X., Liu, G., Lu, Z., Ni, X., \& Wenyin, L. (2010) "Short text similarity based on probabilistic topics." Knowledge and information systems, 25(3): 473-491.
[234] AlSumait, L., \& Domeniconi, C. (2007, January) "Local semantic kernels for text document clustering." In SIAM international conference on data mining workshop on text mining.
[235] Ikonomakis, M., Kotsiantis, S., \& Tampakas, V. (2005) "Text classification using machine learning techniques." WSEAS transactions on computers, 4(8): 966-974.
[236] Church, K., \& Gale, W. (1999) "Inverse document frequency (idf): A measure of deviations from poisson." In Natural language processing using very large corpora (pp. 283-295). Springer, Dordrecht.
[237] Xu, R., \& Wunsch, D. (2008) Clustering (Vol. 10). John Wiley \& Sons.
[238] Aksnes, D. W., \& Sivertsen, G. (2004) "The effect of highly cited papers on national citation indicators." Scientometrics, 59(2): 213-224.
[239] Chapman, W. W., Fizman, M., Chapman, B. E., \& Haug, P. J. (2001) "A comparison of classification algorithms to automatically identify chest X-ray reports that support pneumonia." Journal of biomedical informatics, 34(1): 4-14.
[240] Davis, J., \& Goadrich, M. (2006, June) "The relationship between PrecisionRecall and ROC curves." In Proceedings of the 23rd international conference on Machine learning (pp. 233-240).
[241] Hanley, J. A., \& McNeil, B. J. (1982) "The meaning and use of the area under a receiver operating characteristic (ROC) curve." Radiology, 143(1): 29-36.
[242] Jiang, L., Cai, Z., Wang, D., \& Jiang, S. (2007, August) "Survey of improving k-nearest-neighbor for classification." In Fourth international conference on fuzzy systems and knowledge discovery (FSKD 2007), Vol. 1: 679-683. IEEE.
[243] Guo, G., Wang, H., Bell, D., Bi, Y., \& Greer, K. (2003, November) "KNN model-based approach in classification." In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 986-996). Springer, Berlin, Heidelberg.
[244] Arif, M., Malagore, I. A., \& Afsar, F. A. (2012) "Detection and localization of myocardial infarction using k-nearest neighbor classifier." Journal of medical systems, 36(1): 279-289.
[245] Tan, S. (2005) "Neighbor-weighted k-nearest neighbor for unbalanced text corpus." Expert Systems with Applications, 28(4): 667-671.
[246] Fisher, R. A. (1936) "The use of multiple measurements in taxonomic problems". Annals of eugenics, 7(2): 179-188.
[247] Muhammad, A. K. (2018) " Model selection, union and assembling in practical data analysis: methods and case study" Doctoral dissertation, University of Leicester.
[248] Vehtari, A., Gelman, A., \& Gabry, J. (2017) "Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC." Statistics and computing, 27(5): 1413-1432.
[249] Mirkes, E.M. Supervised PCA (2016). https://github.com/Mirkes/ SupervisedPCA/wiki
[250] Mirkes, E.M. Supervised PCA (2016). https://github.com/Mirkes/ SupervisedPCA
[251] Times Cited in WoS Core Collection. (27 August 2020). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/ article/Web-of-Science-Times-Cited-accessibility-and-variation? language=en_US
[252] Patience, G. S., Patience, C. A., Blais, B., \& Bertrand, F. (2017) "Citation analysis of scientific categories". Heliyon, 3(5), e00300.


[^0]:    ${ }^{1}$ The dataset used in the project was downloaded from the archive hosted at the URL http://lit.csci.unt.edu/index.php/Downloads. It is available at the following link https://github.com/dbbrandt/short_answer_granding_capstone_project/tree/ master/data/source_data/ShortAnswerGrading_v2.0 (accessed 6 September 2020)

[^1]:    ${ }^{1}$ Use of the LSC is subject to acceptance of request of the link by email. To access the LSC for research purposes, please email to ns433@le.ac.uk or suzenneslihan@hotmail.com.

