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Abstract: Detecting infrared small targets lacking texture and shape information in cluttered envi-
ronments is extremely challenging. With the development of deep learning, convolutional neural
network (CNN)-based methods have achieved promising results in generic object detection. How-
ever, existing CNN-based methods with pooling layers may lose the targets in the deep layers and,
thus, cannot be directly applied for infrared small target detection. To overcome this problem, we
propose an enhanced asymmetric attention (EAA) U-Net. Specifically, we present an efficient and
powerful EAA module that uses both same-layer feature information exchange and cross-layer
feature fusion to improve feature representation. In the proposed approach, spatial and channel
information exchanges occur between the same layers to reinforce the primitive features of small
targets, and a bottom-up global attention module focuses on cross-layer feature fusion to enable the
dynamic weighted modulation of high-level features under the guidance of low-level features. The
results of detailed ablation studies empirically validate the effectiveness of each component in the
network architecture. Compared to state-of-the-art methods, the proposed method achieved superior
performance, with an intersection-over-union (IoU) of 0.771, normalised IoU (nIoU) of 0.746, and
F-area of 0.681 on the publicly available SIRST dataset.

Keywords: infrared small target detection; enhanced asymmetric attention mechanism; feature
fusion; U-Net

1. Introduction

The detection of infrared small targets plays a critical role in infrared search and
tracking systems, military early warning systems, remote sensing systems, and other
applications owing to the ability of infrared radiation to penetrate obstacles such as fog
and other atmospheric conditions and that of infrared sensors to capture images regardless
of lighting conditions [1]. Such target detection systems employ passive sensors with low
observability, and the all-weather, multi-scene nature of infrared imaging contributes to its
suitability in a wide range of applications. With the rise in unmanned aerial vehicles, the
use of infrared sensors for field detection and rescue has further enriched the application
scenario of infrared target detection. However, because of the long infrared imaging
distance and low-resolution, infrared targets usually have a low signal-to-noise ratio,
and dim and small target profiles exhibit limited shape features and are, thus, easily
submerged in strong noise and background cluster, as shown in Figure 1. Because of
these attributes, infrared small target detection remains challenging and has attracted
considerable attention.

Infrared small target detection methods can be broadly divided into two categories:
single-frame detection and multi-frame detection [2]. Single-frame detection uses target and
background information from a single image only, whereas multi-frame detection is based
on dynamically changing information contained in multiple images. The latter tends to be
inefficient and is often unable to perform real-time end-to-end detection [3]. Traditional
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methods for detecting infrared small targets based on single-frame detection include filter-
based methods [4,5], local contrast-based methods [6–9], and low-rank-based methods [10–13].
However, these traditional methods based on handcraft fixed sliding windows, step sizes, and
fixed hyperparameters are incapable of detecting targets accurately when the characteristics
of the real scene (e.g., target size, shape, and background clutter) change significantly from
those expected.
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on the likelihood maps to segment real targets. Fang et al. [21] integrated global and local 
dilated residual convolution blocks into U-Net for the remote infrared detection of un-
manned aerial vehicles (UAVs). Huang et al. [22] used multiple well-designed local simi-
larity pyramid modules (LSPMs) and attention mechanisms for the segmentation of infra-
red small targets. Although recent CNN-based approaches have achieved some perfor-
mance improvements, they still suffer from target loss and unclear segmentation of de-
tails. Recent research has shown that a ’channel shuffle‘ fusion of spatial attention and 
channel attention can highlight the optimal semantic feature regions and reduce the com-
putational complexity [23], thereby helping to preserve and extract the primitive features 
of small targets in deep networks. 

Figure 1. Examples of infrared small targets submerged in complex backgrounds that are difficult to detect accurately.

In recent years, with the success of deep learning in the field of computer vision,
convolutional neural networks (CNNs) have been applied in infrared small target detection.
In contrast to traditional methods, CNN-based methods learn the features of infrared small
targets through the training of neural networks with large amounts of data. Liu et al. [14]
were the first to propose the use of CNNs for infrared small target detection. Gao et al. [15]
subsequently proposed a high-precision dim and small target detection algorithm based
on feature mapping with a spindle network structure. McIntosh et al. [16] proposed a
network that optimises a ‘target to clutter ratio’ (TCR) metric defined as the ratio of the
output energies produced by the network in response to targets and clutter and compared
it to state-of-the-art detectors such as Faster-RCNN [17] and Yolo-v3 [18]. Dai et al. [19]
presented a typical infrared small target dataset, SIRST, and designed an asymmetric
contextual module (ACM) to obtain richer semantic information and encode spatial details
in infrared small target detection. Hou et al. [20] combined handcrafted feature methods
with a CNN feature extraction framework, established a mapping network feature maps
and the likelihood of small targets in the image, and applied thresholds on the likelihood
maps to segment real targets. Fang et al. [21] integrated global and local dilated residual
convolution blocks into U-Net for the remote infrared detection of unmanned aerial vehicles
(UAVs). Huang et al. [22] used multiple well-designed local similarity pyramid modules
(LSPMs) and attention mechanisms for the segmentation of infrared small targets. Although
recent CNN-based approaches have achieved some performance improvements, they still
suffer from target loss and unclear segmentation of details. Recent research has shown
that a ’channel shuffle‘ fusion of spatial attention and channel attention can highlight the
optimal semantic feature regions and reduce the computational complexity [23], thereby
helping to preserve and extract the primitive features of small targets in deep networks.

Based on the above analysis, for features such as class imbalance and weak texture
between infrared small targets and an image background, target detection networks need
to focus not only on the spatial and channel features within a given image layer, but also
on the feature connections between different layers to achieve cross-layer feature fusion.
Inspired by channel shuffle units [23] and cross-layer feature fusion [24], we designed an
enhanced asymmetric attention (EAA) module to improve performance without increasing
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the required network parameters or the model complexity, using cross-layer feature fusion
and spatial and channel information exchange between the same layers to focus the network
on the detailed content and spatial location information of small targets.

The main contributions of this paper are as follows.

(1) We propose EAAU-Net, a lightweight network for single-frame infrared small target
detection, and experimentally demonstrate its ability to effectively segment the details
of images of small targets and obtain satisfactory results.

(2) We present an EAA module designed to not only focus on spatial and channel
information within layers, but also to apply cross-layer attention from shallow to deep
layers to perform feature fusion. This module dynamically senses the fine details of
infrared small targets and processes detailed target information.

(3) Experiments on the SIRST dataset show that our proposed EAAU-Net has the capacity
to achieve better performance than existing methods and exhibits greater robustness
to complex background clutter and weak texture information.

The remainder of this paper is organised as follows. Section 2 provides a brief review
of related work. Section 3 describes the architecture of EAAU-Net in detail. Section 4
describes the experiments conducted and analyses the results obtained. Section 5 presents
concluding remarks.

2. Related Work

In this section, we briefly review infrared small target detection and the existing
methods relevant to this work.

2.1. Infrared Small Target Detection

Infrared small target detection has been investigated for decades. Traditional infrared
small target detection methods measure the discontinuity between a target and its back-
ground. Such methods based on single-frame detection include two-dimensional least
mean square (TDLMS) adaptive filtering, top-hat filtering, and maximum mean filtering [1].
However, these methods are easily affected by background clutters and noise [25]. In
addition, human vision system (HVS)-based methods [6,7,26,27] have also been introduced
to perform infrared small target detection owing to their ability to quickly extract valid
information from complex scenes [28]. However, HVS-based methods are also susceptible
to factors such as background noise, which affects the detection performance.

In recent years, CNN-based methods for infrared small target detection have attracted
considerable attention. CNN-based methods with powerful model-fitting capabilities
have achieved better performance than traditional methods by learning small target fea-
tures in a data-driven manner. Deng et al. proposed a multi-scale CNN [29] for feature
learning and classification. They used a network called MCNN to automatically extract
the features of objects at multiple time scales and frequencies and combined low-level
features with high-level features for spatial infrared point target recognition. Shi et al.
proposed an end-to-end infrared small target detection model called CDAE based on
denoising autoencoder networks and CNNs [30]. They treated small targets in infrared
images as ‘noise’ and transformed the small target detection problem into a denoising
problem to achieve better detection. Inspired by the U-Net [31] segmentation network,
Zhao et al. [25] proposed a CNN for semantic segmentation of images containing infrared
small targets by combining semantic constraint modules and implemented real-time in-
frared small target detection in an actual field scene. Zhao et al. proposed a generative
adversarial network (GAN)-based detection model [32] to detect the basic characteristics
of infrared small targets. In addition, a series of deep learning networks [15,16,33,34] have
been designed to recognise the basic features of infrared small targets, with the aim of
improving the detection accuracy. The attention mechanism has been demonstrated to
enhance the contextual information of features by focusing the network on key areas [35].
Dai et al. [24] used bottom-up pixel-by-pixel convolution across layers to dynamically
perform weight modulation of high-level features using low-level information embedded
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in high-level coarse feature maps and demonstrated in [19] that asymmetric modulation
modules yield richer semantic information and spatial detail encoding. However, despite
recent improvements in network performance, significant target loss remains at the deep
level. Furthermore, these algorithms are less robust against scenarios such as complex
backgrounds, low signal-to-noise ratios, and dim targets.

2.2. Attention and Cross-Layer Feature Fusion

Deeper networks can extract richer semantic information regarding targets and im-
prove their learning capability over shallower networks, but small targets are easily lost in
deeper networks. Consequently, the detection of small targets has been a key challenge in
general-purpose computer vision. In particular, for infrared small target images, aspects
such as low target signal-to-noise ratios, absence of texture and shape features, and the fact
that the pixels of an infrared small target may occupy only 0.1% or less of a sensor image
area further increase the challenge of extracting small target features in deep networks. To
increase performance, anchor matching strategies have been elaborated [36], networks have
been trained using scalable schemes [37], and coding contexts have also been extensively
explored; this provides evidence beyond the object through the extraction and connection
of features in a magnified window around the object [38], thereby alleviating the problems
caused by small objects [39,40].

In addition, reawakening strategies involving the recall of prior or low-level feature
information have been investigated [41]. Luong et al. [42] proposed the use of global
and local attention for neural machine translation. Global attention refers to all prior
memories, i.e., all previous feature maps, whereas local attention refers to several prior
memories in a current prediction, i.e., several previous feature maps in the current layer.
The perceptual area of the network is usually expanded through the use of multi-scale
attention mechanisms designed for this purpose.

For accurate object localisation and segmentation, U-Net [31] and feature pyramid
networks (FPNs) [43] are the classical networks for semantic segmentation. They follow
a rough-to-fine strategy to hierarchically combine subtle features from lower layers and
coarse semantic features from higher layers. However, most studies focus on the con-
struction of complex paths to span the features at each layer [44]. Feature fusion methods
via summation or cascading do not provide the network with the ability to dynamically
select relevant features from lower layers. The bottleneck in infrared small target detec-
tion involves the retention and highlighting of the features of dim and small targets in
deeper layers. Recently, methods have been proposed [45,46] for modulating low-level
features in skip connections through a global channel attention module [47] using high-
level features as a guide. Dai et al. [19] proposed ACM modules following the idea of
cross-layer modulation, using bidirectional paths (top-down and bottom-up) to retain prior
feature information for cross-layer feature fusion. They also demonstrated that bottom-up
cross-layer feature fusion with pointwise attention modulation in CNNs can preserve
and highlight the fine details of infrared small targets. Zhang et al. [23] achieved feature
fusion and improved the target detection performance using spatial and channel attention
mechanisms by implementing spatial and channel information exchange of target features
through a shuffle unit.

3. Proposed Method

In this section, we describe EAAU-Net in detail. As shown in Figure 2, the network
comprises three components: encoder, EAA module, and decoder. The following subsec-
tions detail the principal building blocks, overall architecture, and training loss function of
the proposed EAAU-Net.
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3.1. Network Architecture

As shown in Figure 2, EAAU-Net takes a SIRST image as input, performs down-
sampling, asymmetric attention feature fusion, and up-sampling operations in succession,
and finally, outputs the segmentation result through the prediction module. The proposed
architecture mainly consists of two components—U-Net [31] as a host network, with the
proposed EAA module performing the cross-layer feature fusion operation; ResNet-20 [48]
as the backbone architecture—as shown in Table 1. The deeper layers of the network are
designed to be able to extract richer semantic information, as spatially finer shallow features
and semantically stronger deeper features are considered crucial for detecting infrared small
targets [34]. U-Net has natural advantages for infrared small target detection. Among these
advantages, shallow network information ensures the integrity and extractability of the
target information feature, and the lightweight network structure improves the inference
efficiency. In addition, it is possible to pass high-resolution information throughout the
network by skipping connections. This method has been used in detection networks [25,32].

Table 1. EAAU-Net backbones.

Stage Output Backbone

Conv-1 480 × 480 3× 3conv, 16

Stage-1/UpStage-1 480 × 480
[

3× 3conv, 16
3× 3conv, 16

]
×b

Stage-2/UpStage-2 240 × 240
[

3× 3conv, 32
3× 3conv, 32

]
×b

Bottleneck 120 × 120
[

3× 3conv, 64
3× 3conv, 64

]
×b

ResNet-20 is used as the backbone architecture to enhance the learning of the CNN,
further improving the network’s ability to fully exploit different levels of features in down-
sampling and up-sampling phases, preserving fine features as well as deep semantic
information, and enhancing spatial information and feature propagation. In addition, to
study the relationship between the performance and network depth, we set ResNets of
different depths (block number b in each stage) in experiments conducted. For b = 3, the
network used the standard ResNet-20 backbone [48]. In Table 1, only the first convolutional
layer of Stage-2 and Stage-3 is sub-sampled.



Remote Sens. 2021, 13, 3200 6 of 20

3.2. Enhanced Asymmetric Attention (EAA) Module

The up-sampling (decoding) process fuses the feature map information output using
the encoder module by skipping connections, as well as using additional contextual and
spatial information of the feature map from the low-resolution decoder block. We propose
an EAA module, which mainly consists of two components—a bottom-up asymmetric
attention (BAA) block and a shuffle attention (SA) block, as shown in Figure 3. The
BAA block enables cross-layer feature fusion and highlights the fine details of a target.
The SA block focuses on spatial and channel feature information within layers through
channel shuffling, captures the spatial and channel correlation between features based on
contextual information and weight selection regions, and enhances the spatial and channel
information exchange of features to improve the performance of the proposed approach.
In this subsection, we present the details of the entire module.
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3.2.1. Bottom-Up Asymmetric Attention (BAA) Block

Deep networks can provide high-level semantic features and understanding of scene
context, but inevitably increase the risk of losing the spatial details of the target [44].
Inspired by bottom-up local attention modulation techniques [24], we aim to aggregate
global contextual information by adding a global averaging pool to dynamically perceive
the fine details of infrared small targets through low-level features. Therefore, we use a
global channel attention approach BAA block (as shown in Figure 3a), in contrast to the
traditional top-down path, to embed smaller-scale details into high-level coarse feature
maps, with dynamic weighted modulation of the high-level features guided by low-level
features. By default, X and Y refer to the low-level fine detail information and deep
semantic information, respectively. For a given feature map output, both have the same
size after the up-sampling and convolution operations. To preserve and emphasise the
detailed information of the infrared small targets, the global channel attention module G
first employs global averaging pooling in the bottom-up modulation path to aggregate the
global contextual information, resulting in the following channel statistics:

x =
1

H ×W

H

∑
i=1

W

∑
j=1

X[:, i, j] (1)
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where H and W denote the height and width of each feature map, respectively. The
bottom-up modulation weight G(X) ∈ RC can be expressed as

G(X) = σ(B(W2δ(B(W1x)))) (2)

where C, σ, B, and δ denote the number of channels, sigmoid function, batch normalisation
(BN), and rectified linear unit (ReLU), respectively. W1 denotes the first fully connected
layer, which aims to reduce the number of channels, and W2 denotes the second fully
connected layer, which aims to recover the number of channels. For the relatively high-
level feature map Y, the bottom-up modulation of the feature map by the global channel
attention module can be expressed as

Z = G(X)⊗ Y (3)

where ⊗ denotes the element-wise multiplication, and G(·) denotes the bottom-up global
channel attention modulation module.

3.2.2. Shuffle Attention (SA) Block

Attention mechanisms serve to improve the representation of interest, i.e., the ability
of a model to focus on essential features while suppressing unnecessary features [35].
Zhang et al. [23] proposed a shuffle unit that efficiently combines spatial and channel
characteristics to reduce the number of network parameters and improve performance. We
incorporate this module in the encoding and decoding path of the proposed U-Net-based
framework (as shown in Figure 3b), aiming to fully exploit the feature information and its
correlation in the spatial and channel dimensions of both the low- and high-level networks
to suppress possible noise while highlighting the optimum target feature regions.

For a given input feature map X ∈ RC×H×W , C, H, and W denote the number of
channels and the height and width of each feature map, respectively. First, SA divides
X into G groups along the channel dimension, i.e., X = [X1, · · · , XG], Xk ∈ RC/G×H×W ,
where each sub-feature Xk progressively captures a specific semantic response during
the training process, generating a corresponding importance factor for each sub-feature
through the attention module. The input of Xk is split into two branches along the channel
dimension, i.e., Xk1, Xk2 ∈ RC/2G×H×W . The input grouped feature map Xk1 first generates
the channel statistics s ∈ RC/2G×1×1 by simply embedding the global information using
global averaging pooling (GAP) and, then, multiplies s by the input grouping feature
map Xk1 pixel by pixel after processing with the enhancement function Fc ∈ RC/2G×1×1

and sigmoid function to obtain the channel attention feature map Ac ∈ RC/G×H×W . The
channel attention is calculated via Equations (4) and (5):

s = Fgp(Xk1) =
1

H ×W

H

∑
i=1

W

∑
j=1

Xk1(i, j) (4)

Ac = X′k1 = σ(Fc(s)) · Xk1 = σ(W1s + b1) · Xk1 (5)

where W1, b1 ∈ RC/2G×1×1 are the parameters used to scale and shift s, and σ denotes the
sigmoid function.

The input grouped feature map Xk2 is first processed by the group norm (GN) [49], then,
by the enhancement function Fc ∈ RC/2G×1×1, after which it is multiplied pixel by pixel by
the input grouped feature map Xk2 to obtain the spatial attention map As ∈ RC/G×H×W . The
spatial attention calculation process can be expressed using Equation (6):

As = X′k2 = Fc(GN(Xk2))⊗ Xk2 = σ(W2 · GN(Xk2) + b2) · Xk2 (6)

where W2 and b2 are parameters with shape RC/2G×1×1, and σ denotes the sigmoid function.
After the input feature map has passed through the channel attention module and the

spatial attention module, the network is able to focus on the feature map in which ‘what’
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and ‘where’ are meaningful. The two branches from the channel features and the spatial
features are connected such that the number of channels is equal to the number of inputs.

X′
k
= [X′

k1
, X′

k2
] ∈ RC/G×H×W (7)

Finally, all the sub-features are aggregated and a ‘channel shuffle’ operator similar
to ShuffleNetv2 [50] is used to achieve cross-group information flow along the channel
dimension, with the final SA module output being the same size as the input feature map.

3.2.3. EAA Module

To address the increased risk of losing the details of the target as the network deepens,
and also the problem of insufficient exchange of feature information within layers, we
propose an EAA module. In contrast to [19,24], we wish to fully exploit the feature
information of both lower and higher layers, as is possible in a limited number of network
layers, and ensure the spatial and channel information exchange in the same layer network.
In particular, we hope to introduce BAA blocks in the same-layer information exchange to
encode smaller-scale visual details to a deeper level and enable the exchange of high-level
semantic and low-level detail feature information so as to ensure that the fine details of
infrared small targets are not drowned out by background noise in the high-level feature
information exchange. Finally, the multi-scale feature maps from different layers are
intelligently fused to recover the full spatial resolution of the network output by iteratively
fusing the information exchange in the lower spatial and channel dimensions as well
as the information exchange feature maps in the higher spatial and channel dimensions
modulated by the local attention across layers.

Given a low-level feature X and a high-level feature Y, the input feature map is first
processed through the SA module to obtain X′ and Y′. Then, the relatively high-level
feature map Y, which is modulated by the bottom-up global channel attention module G,
can be obtained using Equation (8):

Y′′ = G(X)⊗ Y′ (8)

where ⊗ denotes element-wise multiplication, G(X) is reconstructed and broadcast to size
C× H ×W and, then, pixel-by-pixel dot product, and finally, the output feature map is
added to obtain the cross-layer fusion feature Z ∈ RC×H×W .

Z = X′ + Y′′ = SA(X) + G(X)⊗ SA(Y) (9)

where ⊗, SA(·), and G(·) denote element-wise multiplication, the shuffle attention block
operation, and the bottom-up asymmetric attention block operation, respectively.

The EAA module enables the intelligent fusion of multi-scale feature maps at different
stages, restoring the full spatial resolution of the network output by iteratively fusing
coarse high-level semantic feature maps and fine low-level detail feature maps. The specific
structure of the asymmetric attention feature fusion module is shown in Figure 3c; feature
maps X and Y are processed by the shuffle unit, which fully exploits the spatial and channel
information exchange between the features of equivalent network depth. In addition,
the bottom-up global channel modulation path encodes smaller-scale visual details to a
deeper level, enabling the exchange of high-level semantic and low-level detail feature
information—ensuring that the fine details of infrared small targets are not overwhelmed
by background noise when high-level feature information is exchanged.
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3.3. Loss Function

Owing to the problem of severe class imbalance between an infrared image back-
ground and typical small targets, we used a soft-IoU [51] loss function during the network
training process, which is defined as follows:

`soft-IoU(x, s) =
∑
i,j

xi,j·Si,j

∑
i,j

si,j + xi,j − xi,j·si,j
(10)

where s ∈ RH×W is the predicted score map, and x ∈ RH×W is the labelled mask, given in
infrared image f .

4. Experimental Evaluation

In this section, we outline quantitative and qualitative evaluations conducted of
EAAU-Net on SIRST datasets. Section 4.1 describes our evaluation criteria. The details
of the experimental implementation are detailed in Section 4.2. Section 4.3 compares the
proposed approach with state-of-the-art methods. The detailed ablation study conducted
to verify the efficacy of the components of our proposed network architecture is presented
in Section 4.4. Section 4.5 analyses the evaluation results.

4.1. Evaluation Metrics

The signal-to-noise ratio gain (SCRG), background suppression factor (BSF), and
receiver operating characteristic (ROC) curve are commonly used as performance metrics
for infrared small target detectors. However, we do not consider SCRG and BSF to be
suitable in terms of detection performance, as BSF only focuses on the global standard
deviation, and SCRG is infinite in most cases. Instead, we use five other metrics—IoU,
nIoU, PR curve, ROC curve, and F-area—to further evaluate infrared small target detection
methods in the present work. In the formulas below, N is the total number of samples, TP,
FP, TN, FN, T, and P denote true positive, false positive, true negative, false negative, true,
and positive, respectively.

(1) Intersection-over-union (IoU). IoU is a pixel-level evaluation metric that evaluates
the contour description capability of the algorithm. It is calculated as the ratio of the
intersection and union regions between predictions and labels, as follows:

IoU =
TP

T + P− TP
(11)

(2) Normalised IoU (nIoU). To avoid the impact of the network segmentation of large
targets on the evaluation metrics and to better measure the performance of network
segmentation of infrared small targets, nIoU is specifically designed for infrared small
target detection. It is defined as follows:

nIoU =
1
N

N

∑
i

TP[i]
T[i] + P[i]− TP[i]

(12)

(3) PR curve: Precision is used as the vertical axis and recall as the horizontal axis. The
closer the curve is to the top right, the better the performance when using the PR
curve to show the trade-off between precision and recall for the classifier:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(13)
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(4) Receiver operating characteristic: The ROC is used to describe the changing relation-
ship between the true positive rate (TPR) and the false positive rate (FPR). They are
defined as:

TPR =
TP

TP + FN
FPR =

FP
FP + TN

(14)

(5) New metric: F-area. F-measure is a precision- and recall-weighted summed average
to measure the performance of the harmony. When operating with a fixed threshold,
these methods do not sufficiently improve the average accuracy, which is valuable for
practical applications. F-area considers both F-measure and average accuracy, taking
into account the harmony and potential performance aspects of any technique. It is
expressed as given below, where β2 = 0.3.

Fmeasure =
(β2 + 1)Precision× Recall

β2Precision + Recall
(15)

F-area = Average Precision × Fmeasure (16)

4.2. Implementation Details

Datasets. Our proposed EAAU-Net was evaluated on the SIRST datasets, which
comprise 427 images and 480 instances with high-quality image annotations [19]. Approxi-
mately 55% of these targets occupy only 0.02% of the image area, i.e., only 3 × 3 pixels of
the target in a 300 × 300-pixel image. Figure 1 shows some representative and challenging
images, from which it may be observed that many targets are very dim, submerged in
a complex and cluttered background. In addition, only 35% of the targets in the dataset
contain the brightest pixels in the image. In our experiments, we divided the dataset in a
5:2:3 ratio to form a training set, a validation set, and a testing set.

Implementation details. We conducted all CNN- based experiments on the PyTorch
platform using a single TITAN RTX GPU, CUDA 10.1, and cuDNN v7. All methods based
on traditional manual design were implemented in MATLAB. EAAU-Net was trained
using an AdaGrad [52] optimiser, and we set the initial learning rate to 0.05, the batch
size to 8, and the weight decay to 1 × 10−4. The input images were randomly cropped to
480 × 480 pixels, and the network was trained for a total of 300 epochs.

4.3. Comparison to State-of-the-Art Methods

To demonstrate the superiority of EAAU-Net, we performed quantitative and qualitative
comparisons on the SIRST dataset and compared the proposed network with the state-
of-the-art methods top-hat filter [53], max-median filter [5], relative local contrast method
(RLCM) [54], multi-scale patch-based contrast measure (MPCM) [55], multiscale grey dif-
ference weighted image entropy (MGDWE) [56], local intensity and gradient properties
(LIGP) [57], facet kernel and random walker (FKRW) [58], infrared patch-image model
(IPI) [10], and reweighted infrared patch-tensor model (RIPT) [11]. These methods are listed
in Table 2 with their hyperparameter settings. The CNN-based methods FPN [43], U-Net [31],
TBC-Net [25], ACM-FPN [19], ACM-U-Net [19], and ALCNet [24] were also considered.
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Table 2. Detailed hyper-parameter settings of traditional methods.

Methods Hyper-Parameter Settings

Top-hat Patch size = 3 × 3
Max-median Patch size median = 3 × 3

RLCM Sub-block size = 8 × 8, sliding step = 4, threshold factor k = 1.
MPCM N = 1, 3, · · · , 9

MGDWE r = 2, window size = 7 × 7
LIGP k = 0.2, window size = 11 × 11

FKRW K = 4, p = 6, β = 200, window size = 11 × 11

IPI
Patch size = 50 × 50, stride = 10, λ = L√

min(m,n)
, L = 4.5, threshold

factor k = 10, ε = 10−7

RIPT
Patch size = 50 × 50, stride = 10, λ = L√

min(I,J,P)
, L = 0.001,

h = 0.1,∈= 0.01, ε = 10−7, k = 10

(1) Quantitative results: For all traditional methods, to obtain better detection perfor-
mance, we first obtained their predicted values and, then, performed noise suppression by
setting a threshold to remove low response areas. The adaptive threshold was calculated
by Equation (17). For the CNN-based methods, we used the same experimental parameter
settings as in the original works.

Tadaptive = 0.5avg(G) + 0.5Max(G) (17)

where avg(G) and Max(G) denote the average value and largest value of the
output, respectively.

Table 3 details the quantitative results of IoU, nIoU, and inference speed for all the
methods, and Figure 4 shows a visual comparison in terms of IoU and nIoU; EAAU-Net
achieved the best performance in terms of both IoU and nIoU. The significant increase in these
values demonstrates that our proposed algorithm significantly improved in terms of accuracy
for the shape-matching of prior infrared small targets. The SIRST dataset contains challenging
images with different signal-to-noise ratios, background clutter, target shapes, and target sizes;
this suggests that our proposed method can learn distinguishing features that are robust to
scene variations. Furthermore, as illustrated in Figure 4, the deep-learning-based algorithm
achieved a significant improvement over methods based on handcrafted aspects, which are
traditionally designed for specific scenes (e.g., specific target sizes and clutter backgrounds),
and manually selected parameters (e.g., structure size in top-hat filters and block size in IPI)
limit the generalisation performance of these methods.

Table 3. Comparison with state-of-the-art methods on IoU and nIoU.

Methods IoU nIoU Time on
CPU/s Para (M) Methods IoU nIoU Time on

CPU/s Para (M)

Top-hat 0.295 0.433 0.006 — RIPT 0.146 0.245 6.398 —
Max-

median 0.135 0.257 0.007 — FPN 0.721 0.704 0.075 1.6

RLCM 0.281 0.346 6.850 — U-Net 0.736 0.723 0.144 2.2
MPCM 0.357 0.445 0.347 — TBC-Net 0.734 0.713 0.049 6.93

MGDWE 0.163 0.229 1.670 — ACM-
FPN 0.736 0.722 0.067 1.6

LIGP 0.295 0.410 0.877 — ACM-U-
Net 0.745 0.727 0.156 2.2

FKRW 0.268 0.339 0.399 — ALCNet 0.757 0.728 0.378 1.44
IPI 0.466 0.607 11.699 — Ours 0.771 0.746 0.179 2.07



Remote Sens. 2021, 13, 3200 12 of 20

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 20 
 

 

MGDWE 0.163 0.229 1.670 — ACM-FPN 0.736 0.722 0.067 1.6 

LIGP 0.295 0.410 0.877 — ACM-U-
Net 

0.745 0.727 0.156 2.2 

FKRW 0.268 0.339 0.399 — ALCNet 0.757 0.728 0.378 1.44 
IPI 0.466 0.607 11.699 — Ours 0.771 0.746 0.179 2.07 

 
Figure 4. Inference IoU and nIoU comparison on the SIRST dataset. 

As presented in Table 3, the improvements achieved by EAAU-Net over other CNN-
based approaches (i.e., FPN, U-Net, TBC-Net, ACM-FPN, ACM-U-Net, and ALCNet) are 
evident. EAAU-Net performed the best; IoU was improved by 0.014, from 0.757 to 0.771, 
and nIoU by 0.018, from 0.728 to 0.746 for EAAU-Net compared to the next best method, 
ALCNet, with an increase in network parameters of only 0.63 M. This can be attributed to 
the design of the new backbone network tailored for infrared small target detection. The 
U-shaped basic backbone allows for feature fusion across layers through a skip connection 
and an encoder–decoder structure capable of maintaining and fully learning the primitive 
features of infrared small targets in the network. In the skip connection and up-sampling 
paths, we designed the EAA module specifically for infrared small target detection. This 
module first exchanges information between the channels and spaces by shuffling the fea-
ture maps from deep and shallow layers through a shuffle unit. Then, through a bottom-
up global channel attention module, fine features from the lower layers are used to dy-
namically weight and modulate the higher-layer feature maps containing rich semantic 
information. The EAA module helps the model learn to distinguish features and selec-
tively augment informative features in the deeper layers of the CNN for better perfor-
mance, significantly improving the detection performance. 

Figure 5 illustrates the PR curves, ROC curves, and F-area performance evaluation 
results against all the state-of-the-art methods. EAAU-Net outperformed all existing 
CNN-based and traditional handcraft-based infrared small target detection methods for 
every metric. The PR curve (i.e., Figure 5a) shows that our proposed method was able to 
achieve the best accuracy and completeness rates, implying that our network has the ca-
pacity to focus on the overall target localisation in challenging scenarios where the targets 
vary in size, type, and location while ensuring detection accuracy. The experimental re-
sults for the ROC curve (i.e., Figure 5b) show that our method was able to consistently 
achieve state-of-the-art performance when the false alarm rate (FA) changed and the prob-
ability detection (PD) was able to respond quickly to changes in this false alarm rate. The 
experimental results for the F-area (i.e., Figure 5c) show that our method still achieved the 
best performance when both the harmony and accuracy of the algorithm were considered, 
implying the high potential of our method for practical applications. 

Figure 4. Inference IoU and nIoU comparison on the SIRST dataset.

As presented in Table 3, the improvements achieved by EAAU-Net over other CNN-
based approaches (i.e., FPN, U-Net, TBC-Net, ACM-FPN, ACM-U-Net, and ALCNet) are
evident. EAAU-Net performed the best; IoU was improved by 0.014, from 0.757 to 0.771,
and nIoU by 0.018, from 0.728 to 0.746 for EAAU-Net compared to the next best method,
ALCNet, with an increase in network parameters of only 0.63 M. This can be attributed to
the design of the new backbone network tailored for infrared small target detection. The
U-shaped basic backbone allows for feature fusion across layers through a skip connection
and an encoder–decoder structure capable of maintaining and fully learning the primitive
features of infrared small targets in the network. In the skip connection and up-sampling
paths, we designed the EAA module specifically for infrared small target detection. This
module first exchanges information between the channels and spaces by shuffling the
feature maps from deep and shallow layers through a shuffle unit. Then, through a
bottom-up global channel attention module, fine features from the lower layers are used to
dynamically weight and modulate the higher-layer feature maps containing rich semantic
information. The EAA module helps the model learn to distinguish features and selectively
augment informative features in the deeper layers of the CNN for better performance,
significantly improving the detection performance.

Figure 5 illustrates the PR curves, ROC curves, and F-area performance evaluation
results against all the state-of-the-art methods. EAAU-Net outperformed all existing
CNN-based and traditional handcraft-based infrared small target detection methods for
every metric. The PR curve (i.e., Figure 5a) shows that our proposed method was able
to achieve the best accuracy and completeness rates, implying that our network has the
capacity to focus on the overall target localisation in challenging scenarios where the
targets vary in size, type, and location while ensuring detection accuracy. The experimental
results for the ROC curve (i.e., Figure 5b) show that our method was able to consistently
achieve state-of-the-art performance when the false alarm rate (FA) changed and the
probability detection (PD) was able to respond quickly to changes in this false alarm
rate. The experimental results for the F-area (i.e., Figure 5c) show that our method still
achieved the best performance when both the harmony and accuracy of the algorithm were
considered, implying the high potential of our method for practical applications.
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(2) Qualitative results: Figure 6 shows the 3D visualisation qualitative results of the
traditional handcraft-based method and the CNN-based method. Compared with the
traditional method, our proposed method was able to produce accurate target localisation
and shape segmentation output at a very low false alarm rate. The traditional handcrafted
setting-based method is prone to producing several false alarms and missed regions in
complex scenes (as shown in Figure 6a,b), owing to the fact that the performance of
traditional methods relies heavily on manually extracted features and cannot adapt to
changes in the target size. CNN-based methods (i.e., U-Net and ACM-FPN) perform much
better than traditional methods. However, U-Net also appears to lose targets (as shown
in Figure 6e). EAAU-Net is more robust to these scenario changes. In addition, EAAU-
Net was able to generate better shape segmentation than ACM-FPN. This is because we
designed the EAA module to help the network adapt well to various types of background
clutter, target shapes, and target size challenges using bottom-up cross-layer feature fusion
and exchange of channel and spatial information between the same layers, resulting in
better performance.
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4.4. Ablation Study

In this subsection, we compare the EAA module with several other variants to investi-
gate the potential benefits of our proposed network module and design choices to ensure
that the contribution of our proposed model components is justified.

Ablation study for down-sampling depth. The feature information of infrared small
targets tends to be very weak, and thus, methods to retain and highlight the deeper features
of such targets are of primary concern in target detection network design. Therefore,
to avoid losing the deep features of infrared small targets, we applied different down-
sampling schemes by changing the block number b in each stage to examine the effects
of varying the down-sampling depth. The comparative results are shown in Figure 7; it
may be observed that the network performance of EAAU-Net increased gradually with the
depth of the network, while the increase in network parameters was less.
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Ablation study for the cross-layer fusion approach. We investigated and compared
the bottom-up cross-layer fusion approach with two other ablation modules. The first was
a bottom-up local attention modulation (BLAM) module, which aggregates the channel
feature context at each spatial location via a local channel attention module (as shown
in Figure 8a). The second was a top-down global attention modulation (TGAM) module
taking opposite directions from the EAA module and guiding low-level features through
high-level coarse information (as shown in Figure 8b). The experimental results are shown
in Figure 7, from which it may be observed that the BLAM and TGAM did not perform
as well as the EAA module. These results suggest that for infrared small targets, with a
given set of computational cost and parameter constraints, fine-grained global contextual
information should be aggregated as a guide to refine a high-level feature map by using
low-level features as a guide, rather than relying on local information or embedding
high-level semantic information into low-level features. Therefore, detailed bottom-up
information is more useful for accurate segmentation than top-down semantic guidance.
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Figure 8. Architectures used in the ablation study on modulation scheme. (a) Bottom-up modulation with point-wise
channel attention module (BLAM). (b) Top-down modulation with global channel attention module (TGAM). (c) Bottom-up
modulation with single-SA attention module (single-SA). (d) Only bottom-up modulation module (only-BAA). (e) Only SA
block modulation (only-SA). All architectures shared the same hyperparameters.
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Ablation study for the SA block. We further investigated and compared the addition
of the SA block to both low- and high-level feature maps with two alternate modules.
First, a separate SA block considering only spatial and channel information fusion in deep
network layers (as shown in Figure 8c) was studied, along with a model lacking an SA
block without considering spatial and channel information fusion within the network
layers (as shown in Figure 8d), to verify the necessity of adding an SA block to both low-
and high-layer networks in the EAA module. Figure 7 provides the results, from which
it can be seen that, compared to other modulation schemes, the proposed EAA module
performed better in all settings, demonstrating the effectiveness of incorporating an SA
block in low- and high-level feature maps to enhance the representation of the CNN by
fusing the information of different sub-features using feature dependencies in the spatial
and channel dimensions, thus enhancing the original features of the infrared small target.

Ablation study for the EAA module. A comparison between a model using only the
BAA block (Figure 8d), SA block (Figure 8e), and the proposed EAA module is given in
Figure 7 to verify the effectiveness of the proposed EAA modulation. It can be observed
that, compared to using only the BAA block and only the SA block modulation schemes,
the proposed EAA module performed better in all settings by exploiting the features in
the spatial and channel dimensions and performing information fusion in both low- and
high-level feature maps, while using the low-level features obtained by global contextual
channel attention in bottom-up pathways to guide the refinement of the high-level feature
maps. The results validate the effectiveness of our proposed EAA modulation, i.e., a
bottom-up global channel attention mechanism relying on low-level detail information to
guide the high-level features for dynamic weighted modulation when low- and high-level
feature maps are fused using the spatial and channel feature information. Thus, strong
support is provided for the design of bottom-up modulation paths for infrared small target
detection and for the fusion of spatial and channel information mechanisms within layers.

4.5. Discussion

Figure 9 shows the qualitative results achieved by the different detection methods
on the SIRST dataset. The target areas are enlarged in the lower right corner to allow for
a more visual presentation of the fine segmentation results. Correctly detected targets,
false positives, and missed regions are indicated by red, yellow, and green dashed circles,
respectively. As traditional methods rely on manually extracted features, they cannot adapt
to target size and complex background variations, and numerous false alarms and missed
detection areas are present. The CNN-based methods (i.e., U-Net and ACM-FPN) are
much better than the traditional methods, which also inevitably show varying degrees
of false alarms and missed regions due to the infrared small targets being merged into
complex backgrounds. EAAU-Net not only generates better shape segmentation for these
scene targets, but also generates no false alarms and missed regions, demonstrating the
robustness of our proposed method against cluttered backgrounds, dim and small targets,
and its better detection performance.

Although our proposed method achieves better performance, it also has the limi-
tation of not being able to accurately segment the boundaries of infrared small targets.
Figure 10 shows a partial visualisation of the output of the results of the proposed EAAU-Net
on the SIRST dataset. The manually labelled ground truth is ambiguous in terms of one- or
two-pixel shifts and had a significant impact on our final IoU and nIoU metrics; for example,
a 2 × 2-pixel pinpoint target with even a single pixel of shift would result in the pixel being
labelled as 3 × 3; this would result in an error of approximately 50% for that target. Therefore,
the proposed EAAU-Net suffers from a certain degree of segmentation error (as shown in
Figure 10b,c), which originates from target boundaries that either exceed the labelling mask
by a few pixels or segment the target incompletely. Such boundary errors are also present
in general vision tasks. Notably, errors are inevitable in manually labelled masks, and the
proposed EAAU-Net was able to produce more accurate segmentation results than manually
labelled ground truth masks (shown in Figure 10d,e).
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As can be seen in Figure 10f, the main reason for the inaccurate detection of infrared
small targets is that they are too faint. In addition, the small size of the target also results
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in its small weight in the loss function, which is easily swamped by the boundary error
of the larger target during training. In future work, we will focus on reducing the model
complexity while adding attention mechanisms and feature fusion modules to the network
to enable the exchange of feature information across the different layers of infrared small
targets. This is very promising and deserves further research.

5. Conclusions

In this paper, we proposed a lightweight network that fuses contextual attention
mechanisms for infrared small target detection. The experimental results show that the
network demonstrates strong small target detection capabilities. To retain and highlight the
infrared small target features in different layers, the proposed network extracts and fuses
the target feature maps in two stages (i.e., in the same layer and across layers), explicitly
solving the problem of small targets being lost at deeper layers. With multiple fusions and
enhancements, the inherent information of small targets can be fused and fully utilized.
Convolutional networks integrating different prior knowledge and deep feature fusion are
very promising and deserve further investigation. The EAA module plays an important
role in our proposed EAAU-Net by effectively performing spatial and channel feature
information exchange within the network layers, while the bottom-up global contextual
convolution of low-level feature guidance is used to refine the high-level feature maps,
enabling an effective fusion of contextual information to retain and highlight infrared small
target features. In addition, we reorganised a set of evaluation metrics to better assess the
performance of infrared small target detection algorithms. We conducted an extensive
ablation study and compared it with other state-of-the-art methods. The proposed method
achieved state-of-the-art results on the publicly available SIRST dataset, suggesting that
deep networks should be combined with attention mechanisms, that cross-layer feature
fusion schemes preserve targets, and that the adequate information fusion of target features
from different layers of the network has the potential to produce better results.
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