
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

“Shanon: A Wireshark-based Network Packet
Capture Anonymization Tool”

verfasst von / submitted by

Mislav Culig

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2021 / Vienna 2021

Studienkennzahl lt. Studienblatt / UA 066 921
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Informatik
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dipl.-Math. Dr.Peter Reichl, Privatdoz.

Zusammenfassung

Der Zugriff auf reale Daten ist wichtig für die Netzwerkforschung und -sicher-
heit. Diese Daten können in verschiedenen Logs enthalten sein, oder in
Netzwerkpakettraces, die von einer Netzwerkschnittstelle aufgezeichnet wur-
den. Durch das Teilen von Netzwerkpakettraces werden jedoch möglicherweise
Schwachstellen in den Netzwerken derjenigen, die sie teilen, aufgedeckt,
und es können vertrauliche und private Informationen offengelegt werden.
Um die Wahrscheinlichkeit zu minimieren, dass Schwachstellen und ver-
trauliche oder private Informationen aufgedeckt werden, müssen Netzwerk-
pakettraces vor der Freigabe anonymisiert werden. Dies bedeutet, dass so
viele vertrauliche Daten wie möglich entfernt werden müssen.

Es gibt keine universelle Lösung, da möglicherweise unterschiedliche
Teile der Daten für Forschung oder Analysen erforderlich sind und unter-
schiedliche Organisationen, die Netzwerkpakettraces bereitstellen, unter-
schiedliche Anforderungen an die Daten stellen, die anonymisiert werden
müssen. Zu diesem Zweck gibt es derzeit viele Tools und Frameworks.
Trotz der Existenz dieser Tools und der potenziellen Vorteile einer offene-
ren gemeinsamen Nutzung von Netzwerkpakettraces teilen wenige Autoren
ihre Netzwerkpakettraces, und viele der entwickelten Tools und Frameworks
scheinen nicht verwendet zu werden.

Diese Arbeit liefert einen Überblick über die vorhandene Literatur auf
dem Gebiet der Anonymisierung von Netzwerkpakettraces, einschließlich
Standards und Gesetzen im US-amerikanischen und EU-Raum, eine Taxo-
nomie der Funktionen von Anonymisierungstools für Netzwerkpakettraces,
sowie libAnonLua, eine Lua-Bibliothek zur Anonymisierung von Netzwerk-
pakettraces, die aus wiederverwendbaren Anonymisierungsmethoden be-
steht, und Shanon, ein flexibles, richtlinienbasiertes Anonymisierungstool,
implementiert als Plugin für den Wireshark-Netzwerkprotokollanalysator. Das
entwickelte Tool wird anhand eines echten Netzwerkpakettraces evaluiert.

2

Abstract

Access to real-world data is important for network research and security.
This data can be contained in various logs, including packet traces which
contain packets captured from an interface within the network. However, the
sharing of packet traces potentially exposes vulnerabilities in the networks
of those sharing them and may expose sensitive and private information.
To minimize the chance of exposing vulnerabilities and sensitive or private
information, packet traces need to be anonymized before sharing, meaning
as much sensitive data as possible needs to be removed.

There is no universal solution, as different parts of the data may be re-
quired for research or analysis, and different organizations providing the
traces may have different requirements when it comes to the data that needs
to be anonymized. Many tools and frameworks currently exist for this pur-
pose. However, despite the existence of these tools and the potential ben-
efits of more open sharing of network packet captures, few authors publicly
share their traces, and many of the tools and frameworks developed appear
not to be in use.

This thesis contributes a review of existing literature in the field of net-
work packet trace anonymization, including standards and United States
(US) and European Union (EU) law, a taxonomy of features of network
packet anonymization tools, a Lua library of reusable network anonymiza-
tion primitives, libAnonLua, and a flexible, policy-based anonymization tool
that plugs into the Wireshark network protocol analyzer, Shanon. The de-
veloped tool is evaluated using a real world capture of network traffic.

3

Acknowledgement

I would like to thank my father, who willingly went on tours of duty in the Mid-
dle East and Africa and set aside significant portions of his earnings there
to help finance my studies. It was thanks to his hard work and sacrifice that
I was able to pay for my bachelor studies and complete them. My mother,
who, despite understanding the significant financial cost and risk of it, en-
couraged me to continue my studies abroad and supported me throughout
them: financially, emotionally, as an expert in her field, and as a scientist.
My grandmother, who was always there, at home, always around, and in a
way like a second mother to me. She always said she would like to live to
see me get my diploma. I am glad this wish will come true. I would like
to thank two of my best friends, my brother and sister in all except blood,
Luka and Marina. It was Luka who first went to study in Vienna, and whose,
at first joking, invitation to come study here is the reason I have come this
far. Luka, your emotional support during the first few weeks was crucial to
me making it. Marina, your hard work and dedication in spite of adversity
was and still is an inspiration to me to work harder, and not to give up when
things do not go my way. I have found myself thinking about it many times
when things were just plain crazy, and it helped me ground myself and en-
dure. Last, but not least, I would like to thank an amazing friend I made
along the way, Lily. The fun times I had gaming with you helped me unwind
on difficult days and motivated me to work hard so I could justify relaxing
and forgetting about all the things I still have to do. Unrelated to this thesis,
but still of great importance, you taught me a lot that I did not yet know about
myself, and helped make me a better person. Thank you.

It is thanks to all my friends and family that I am who I am and where I
am, both those who I have mentioned here, and those who I have not. You
all have my thanks for your continued support and the valuable lessons you
have taught me in life.

4

Contents

Zusammenfassung . 2
Abstract . 3
Acknowledgment . 4
Acronyms . 7
List of Tables . 12
List of Figures . 13
1 Introduction . 14

1.1 The problem . 14
1.2 Aim of this thesis . 15
1.3 Contributions . 15
1.4 Structure of this thesis 16

2 State of the art . 18
2.1 Overview of Tools . 18
2.2 Methods of anonymization 19
2.3 Legal environment . 23
2.4 Attacks on anonymization 25
2.5 Extended scope . 29

3 Features of anonymization frameworks 32
4 Choosing initially supported protocols 39

4.1 Layered network model 43
4.2 Ethernet . 44
4.3 IPv4 . 45
4.4 IPv6 . 48
4.5 ARP . 51
4.6 ICMP and ICMPv6 . 52
4.7 NDP . 54
4.8 IPv4 and IPv6 pseudo-headers for TCP and UDP check-

sum calculation . 57
4.9 UDP . 58
4.10 TCP . 59

5 Anonymization of chosen protocols 66

5

5.1 Addresses . 66
5.2 Length . 70
5.3 Type fields . 70
5.4 Checksums . 71
5.5 Flags . 71
5.6 Port numbers . 71
5.7 Reserved fields . 71
5.8 Payload or Data field 72
5.9 Other fields of interest 72
5.10 Future considerations 73

6 Wireshark as a basis of a new anonymization tool 74
6.1 Features of Wireshark 74
6.2 The PCAP Next Generation Capture File Format (pcapng)

file format . 75
6.3 Lua in Wireshark . 76

7 libAnonLua . 80
7.1 Constants . 80
7.2 Writing pcapng files 80
7.3 Anonymization functions 83
7.4 Recalculating checksums 86
7.5 Helper functions . 87

8 Shanon . 89
8.1 Shanon structure . 89
8.2 Shanon features . 91
8.3 Limitations . 95
8.4 Configuring Shanon 98
8.5 Running the tool . 99

9 Evaluation . 100
9.1 Anonymization methods 100
9.2 The possibility of leaks 101
9.3 Performance . 101
9.4 Anonymization results 102
9.5 Comparison of original and anonymized captures in

the Wireshark window 109
10 Conclusion . 116
11 Future Work . 119

6

Acronyms

ACK Acknowledgment field significant. 60, 62, 63, 65, 71

AES Advanced Encryption Standard. 85

API Application Programming Interface. 81, 82, 97, 117

ARP Address Resolution Protocol. 5, 12, 25, 39, 41, 42, 44, 51, 52, 54, 70,
116

CAIDA Center for Applied Internet Data Analysis. 35

CB Custom Block. 75

CGN Carrier-Grade Network Address Translation. 67, 70

CIDR Classless Inter-Domain Routing. 67–69, 87, 88

CPU Central Processing Unit. 101, 104

CRC Cycling Redundancy Check. 86

CSV Comma Separated Values. 80

CWR Congestion Window Reduced. 60, 65

DF Don’t Fragment. 47

DHCPv6 Dynamic Host Configuration Protocol for IPv6. 57

DNS Domain Name System. 75

DSCP Differentiated Services Code Point. 45, 47, 48

ECE ECN-Echo. 60, 65

ECN Explicit Congestion Notification. 45, 47, 48, 60

ECPA Electronic Communications Privacy Act. 15, 24, 116

EPB Enhanced Packet Block. 12, 75, 76, 80, 83

EU European Union. 2, 3, 15, 16, 23, 39, 116

FCS Frame Check Sequence. 44, 45, 86

7

FIN No more data from sender. 60, 65, 71

GB Gigabyte. 34, 36

GDPR General Data Protection Regulation. 15, 23, 39, 116

GHz Gigahertz. 101

HMAC Hash-based Message Authentication Code. 22, 84, 85

IANA The Internet Assigned Numbers Authority. 46, 51, 58, 59, 67, 68, 76,
119

ICMP Internet Control Message Protocol. 5, 12, 39, 41, 42, 44, 52–55, 57,
72, 78, 86, 87, 94–96, 98, 116

ICMPv6 Internet Control Message Protocol for the Internet Protocol Version
6. 5, 12, 42–44, 52–55, 78, 86, 87, 93, 95, 97, 98, 106, 116

ID Identifier. 75, 81–83

IDB Interface Description Block. 12, 75, 76, 80–82, 104

IDS Intrusion Detection System. 14, 37

IEEE Institute of Electrical and Electronics Engineers. 67

IHL Internet Header Length. 43, 45, 47, 60, 78

IP Internet Protocol. 12, 14, 18, 20–25, 28, 35, 44, 47, 56, 66, 69, 78, 88,
94, 96, 112

IPv4 Internet Protocol version 4. 5, 12, 13, 22, 39, 41–48, 51–54, 57–60,
66–70, 72, 75, 78, 85–88, 92–94, 98, 100, 103, 106–109

IPv6 Internet Protocol version 6. 5, 12, 14, 21, 22, 39, 41–44, 48–54, 57,
58, 66–70, 72, 73, 75, 78, 85, 87, 88, 92–94, 96–98, 100, 102, 103,
106, 107, 109, 116

ISB Interface Statistics Block. 75

ISN Initial Sequence Number. 59

LSB Least Significant Bit. 80, 84

LTS Long-term Support. 101

8

MA-L MAC Addresses - Large. 67

MA-M MAC Addresses - Medium. 67

MA-S MAC Addresses - Small. 67

MAC Media Access Control. 39, 44, 66, 67, 69, 70, 107

MB Megabyte. 36, 101, 102, 106

Mbps Megabits per second. 34

MD5 Message Digest 5. 22

MF More Fragments. 47

MSB Most Significant Bit. 80, 84

MTU Maximum Transmission Unit. 54, 56

NAT Network Address Translation. 69

NDP Neighbor Discovery Protocol. 5, 12, 42, 44, 51, 52, 54–57, 70, 96, 98,
116

NRB Name Resolution Block. 75

NS Nonce Sum. 60, 65

NVMe Non-volatile Memory Express. 101

OS Operating System. 29, 72, 100, 104

OUI Organizationally Unique Identifier. 67

PBKDF2 Password Based Key Derivation Function 2. 84

PC Personal Computer. 22

pcapng PCAP Next Generation Capture File Format. 6, 15, 72, 74–76, 80,
81, 94, 95, 104, 119

PEN Private Enterprise Number. 76, 119

pinfo Packet Information. 77

PSH Push Function. 60, 65

9

RFC Request for Comments. 45, 46, 48, 49, 52–54, 58, 62, 63, 97

RIPE Reseaux IP Europeens. 68

RST Reset the connection. 60, 63, 65, 71

SC2D Shipping Flexible Analysis Code to the Data. 30, 31

SCA Stored Communications Act. 15, 24

SHA-2 Secure Hash Algorithm 2. 85

SHB Section Header Block. 12, 75, 76, 81

SIGCOMM Special Interest Group on Data Communication. 29

SPB Simple Packet Block. 75, 80

SSD Solid-state Drive. 101

SSL Secure Sockets Layer. 103, 112

SYN Synchronization. 59, 60, 62–65, 71

tapinfo Tap Information. 77

TB Terabyte. 101

TCP Transmission Control Protocol. 5, 12–14, 35, 39, 41–44, 53, 57–65,
71, 72, 77, 84, 86, 87, 93, 97, 98, 100, 102–104, 106, 107, 109–113,
117, 119

TLS Transport Layer Security. 103, 112

TLV Type-Length-Value. 49, 54, 72

TS Timestamp. 63

TTL Time To Live. 46–48, 72

TVB Testy Virtual Buffer. 42, 77–79

U.S.C. United States Code. 24

UDP User Datagram Protocol. 5, 12, 39, 41–44, 53, 57–60, 71, 72, 84, 86,
87, 93, 97, 100, 103, 104, 106, 107, 109, 112, 119

10

URG Urgent Pointer field significant. 60, 65

US United States. 2, 3, 15, 16, 23, 24, 39, 116

VLAN Virtual Local Area Network. 44

VM Virtual Machine. 101

11

List of Tables

1 Features supported by examined anonymization tools. 38
2 Protocols supported by at least half of the examined anonymiza-

tion tools and frameworks . 41
3 The TCP/IP model and protocols supported by Shanon . . . 44
4 Ethernet . 45
5 IPv4 . 47
6 IPv6 . 50
7 IPv6 Extension Headers . 51
8 ARP . 52
9 ICMP and ICMPv6 . 53
10 ICMP/ICMPv6 Messages . 55
11 NDP Options . 56
12 NDP Messages . 57
13 IPv4 Pseudo-header for TCP and UDP 58
14 IPv6 Pseudo-header for TCP and UDP 59
15 UDP . 59
16 TCP Options . 63
17 TCP . 65
18 A minimal SHB block . 81
19 A IDB as written by LibAnonLua 82
20 The fields of an EPB . 83

12

List of Figures

1 Grouping of anonymization attacks by King et al. [56] 26
2 Transmission Control Protocol (TCP) three-way handshake . 61
3 TCP four-way handshake . 61
4 Running the Shanon packet trace anonymization tool 89
5 Structure of the Shanon packet trace anonymization tool . . . 90
6 Protocol hierarchy of original capture 102
7 Protocol hierarchy of anonymized capture 103
8 Frame information from Frame 22 of the original capture . . . 105
9 Frame information from Frame 22 of the anonymized capture 106
10 Ethernet header from Frame 22 of the original capture 107
11 Ethernet header from Frame 22 of the anonymized capture . 107
12 Partial list of IPv4 addresses included in the original capture . 108
13 Partial list of anonymized IPv4 addresses in the anonymized

capture . 108
14 TCP header from Frame 22 in the original capture with TCP

Options . 110
15 TCP header from Frame 22 in the anonymized capture with

TCP Options . 111
16 First 53 packets of Original Wireshark Capture 114
17 First 53 packets of Anonymized Wireshark Capture 115

13

1 Introduction

1.1 The problem

Real network data is vital for network research, education, advancing net-
work design, maintaining secure and reliable networks, and the evaluation
and development of security mechanisms [71, 56, 82, 37]. This data can be
contained in various logs, such as Intrusion Detection System (IDS) logs, or
packet captures or traces which contain packets captured from an interface
within the network. Since packet captures or traces are also a form of logs,
these terms are often used interchangeably.

The focus of this thesis are packet traces. Packet traces often contain
information about individuals, enterprises and the networks themselves that
should not be disclosed. In order to properly protect sensitive information
in these traces while also maintaining a reasonable amount of utility it is
important to be able to anonymize various aspects of the traces. Various
solutions have been proposed in papers, and tools and frameworks have
been developed based on these solutions. However, despite the potential
benefits of more open sharing of packet captures, there do not appear to be
many resources available, and many of the tools and frameworks developed
appear not to be in use. This is likely due to the tools lacking features that
would make them appealing to users.

The anonymization of packet traces is a difficult problem. While some
fields, like Internet Protocol (IP) addresses, present a clear and obvious pri-
vacy concern, other fields like flags, or length fields can be more or less
of a threat depending on the environment in which the packets were cap-
tured. Ideally anonymizing a protocol would result in a packet trace that can
safely be shared without the loss of any information. In practice, this is not
possible, as many methods of anonymization rely on loss of information.
Maintaining the utility of a capture for research purposes while ensuring the
capture does not reveal information the organization providing the capture
does not wish revealed is not always possible. In addition to the complexity
of anonymization itself, the complexity of network protocols is a challenge
as well. In order to anonymize a protocol while preserving as much utility
as possible it is necessary to understand the design of the protocol well.
Protocols like TCP and Internet Protocol version 6 (IPv6) present additional
challenges, as they may have additional, optional fields attached in the form
of extension headers or protocol options which can modify the behaviour
of the protocol. These fields need to be processed in order to maintain as
much of the protocol’s semantics as possible. The combined difficulty of
anonymization and complexity of network protocols results in a large prob-

14

lem surface the entirety of which no single individual can reasonably tackle.

1.2 Aim of this thesis

The aim of this thesis is to develop a network packet capture anonymization
tool. This aim will be achieved through the following tasks:

1. Identify features the tool needs to support

2. Identify protocols the tool needs to support

3. Develop the anonymization tool

4. Evaluate the anonymization tool

1.3 Contributions

This thesis makes the following contributions to the field of network packet
capture anonymization:

A review of literature in the field of network packet trace anonymiza-
tion. This includes a review of existing tools and frameworks, which differ
from tools in their ability to adapt to the needs of a wider range of users,
in Section 2.1. Existing methods of anonymization are reviewed in Sec-
tion 2.2. The relevant US law, the Electronic Communications Privacy Act
(ECPA) and its components: The Wiretap Act, Pen Register Statute, and
Stored Communications Act (SCA), as well as EU law, the General Data
Protection Regulation (GDPR), are reviewed in Section 2.3.

A taxonomy of features of network packet anonymization tools. This
taxonomy identifies features that can make an anonymization tool useful to
a wider audience. It is based on the features identified in existing frame-
works: FLAIM [86], developed by Slagell et al., tcpmkpub [72], developed
by Pang et al. and PktAnon [41] developed by Gamer et al. The taxonomy
is described in Chapter 3.

A Lua library containing reusable network protocol anonymization prim-
itives. This library, named libAnonLua consists of a set of constants, func-
tions for writing pcapng files, anonymization functions, functions for calcu-
lating checksums, and helper functions written in C which can be imported

15

into and used in a script written in the Lua scripting language. A detailed
description of the library can be found in Chapter 7.

Shanon - a flexible, policy-based anonymization tool that plugs into the
Wireshark network protocol analyzer. Shanon was written in Lua as part
of this thesis with the aim of supporting many of the features identified in the
taxonomy of features mentioned above. It is designed to work as a plugin
for the Wireshark network protocol analyzer. More detailed description of
Shanon can be found in Chapter 8. An evaluation of Shanon on a real world
example can be found in Chapter 9.

1.4 Structure of this thesis

The structure of the thesis follows the tasks described in Section 1.2. Chap-
ter 2 studies the state of the art, including existing anonymization tools
which leads to Chapters 3 and 4 which identify features and protocols our
anonymization tool, Shanon, needs to support (Tasks 1 and 2). Chapters 5,
6, 7, and 8 describe the development of Shanon (Task 3). Shanon is eval-
uated in Chapter 9 (Task 4). The contents of the individual chapters are as
follows:

Chapter 2 will describe the current state of the art in anonymization. The
currently existing anonymization tools, methods of anonymization, the legal
environment in the US and EU, attacks on anonymization, and proposed
alternatives that fall outside of the scope of this work.

In Chapter 3 a taxonomy of features of anonymization frameworks is
proposed based on three existing frameworks.

Chapter 4 explains the choice of protocols to initially support in the anonymiza-
tion tool and provides an overview of their fields and features.

In Chapter 5 the anonymization of the various fields of the supported
protocols is discussed.

Chapter 6 explains the choice of Wireshark as the basis for a new anonymiza-
tion tool, the file format used by Wireshark and the usage of the Lua scripting
language in Wireshark.

Chapter 7 provides an overview of the libAnonLua library that was de-
veloped as part of this work.

Chapter 8 describes Shanon, the anonymization tool developed as part
of this work.

Chapter 9 evaluates the anonymization methods and the results of anonymiza-
tion using the developed anonymization tool on a real-world capture.

The thesis is concluded in Chapter 10.

16

Possible future work is examined in Chapter 11.

17

2 State of the art

Computers, as well as various other devices such as cellphones and “smart”
devices (devices which offer additional functionality through services avail-
able over the internet) communicate with each other by exchanging packets
of data across wired and wireless links. These packets consist of address-
ing information necessary to deliver the packets to their destination, various
fields used for the operation of the protocols the packets consist of, and
data intended for the recipient. Network packet captures are recordings of
these packets from the perspective of a device located somewhere along
the path between their source and destination. These captures can con-
tain not only a history of exchanged packets during a time period when they
were captured, but also additional meta-information about the environment
at the time of the capture, the device making the capture, and contextual in-
formation which can be interpreted from the captured packets themselves.
Typically, a network packet trace is first recorded, then later examined using
special software, such as Wireshark [40]. Due to the sensitivity of informa-
tion contained in network captures there is a need to anonymize them, i.e.
remove sensitive information such as public IP addresses from the fields of
protocols contained in the capture, before releasing them to the public or
sharing them with researchers. Many tools have been developed for that
purpose [41, 4, 70, 69, 38, 62, 100]. With the exception of two commercial
tools, anonymization tools were developed by organizations and individu-
als with their own needs in mind and lack the ability to adapt to the various
needs of different users.

2.1 Overview of Tools

Many tools have been developed for the purpose of packet trace anonymiza-
tion:

• TraceWrangler [4]

• WireEdit [70]

• SafePcap [69]

• CryptoPAn [38]

• Tcpdpriv [62]

• SCRUB-tcpdump [100]

18

In addition three frameworks have been developed. These frameworks
differ from the tools mentioned above due to being applicable to a wider
range of user needs thanks to including many of the features that will be
mentioned in Chapter 3. These frameworks are:

• tcpmkpub [72]

• FLAIM [86]

• PktAnon [41]

In terms of the features and anonymization methods the tools mentioned
here are limited. This is due to the tools having been developed to fit per-
sonal requirements of particular researchers and organizations. As a result
they lack the ability to adapt to the various needs different users may require
[86]. An exception to this is SafePcap which is a commercial tool. However,
there would appear to be no research or publicly available documentation
outlining this tool in more detail than the developer website. It is included
here, but it seems prudent to approach their claims with a dose of scep-
ticism. The same developer also developed WireEdit, which is not strictly
an anonymization tool as its primary purpose is manual, visual editing of
packets, however since the developer states removing sensitive fields as an
example use case it is included as an anonymization tool.

Given the limitations of the tools mentioned above it seemed more sensi-
ble to outline their features in a table rather than discuss each individual tool
in greater detail. Table 1 in Chapter 3 outlines the features supported by the
anonymization tools found while researching for this thesis. Tools designed
for the anonymization of other types of network logs, such as Cisco NetFlow
logs which store aggregated information on traffic flows rather than individ-
ual packets, are not considered here since this falls outside of the scope of
this thesis, which is packet trace anonymization.

In addition to these tools three frameworks were studied and their fea-
tures used as a basis for the features of anonymization tools. These three
frameworks: tcpmkpub, FLAIM and PktAnon are not present in Table 1 or
discussed here since their features will be discussed in more details when
defining the set of features in Chapter 3. A table of protocols supported by
these tools and frameworks can be found in Chapter 4.

2.2 Methods of anonymization

Slagell et al.[86] support a large list of anonymization methods in their frame-
work FLAIM and include a comprehensive list of anonymization methods in

19

their paper. Some of the methods mentioned in their list were variants of al-
ready mentioned methods and have been merged with them. The resulting
list is as follows:

• Black Marker: The black marker1 method replaces part of or an entire
protocol field with either zeroes or a constant, leading to a loss of
information that was contained in the replaced bits.

• Truncation: Removal of bits past a certain boundary (i.e. cutting out
“user” from “user@example.com”)

• Partitioning: Partitioning of possible values into subsets

• Permutation: A one-to-one mapping on a set.

• Hash: Using a hash function to anonymize fields.

• Enumeration: Assigning an initial value to an element and sequen-
tially increasing this value

This list will be used in this thesis as it is the most comprehensive list
found in the reviewed literature and provides good generalizations that future
methods can be grouped into. More details about the classes are provided
below.

Black Marker

The black marker method is the digital equivalent of text being censored
with black markers in sensitive government documents. Slagell et al. do
not just delete the field in FLAIM, however, as this could cause issues with
log analysis tools. Instead values are replaced with a single value that is
still valid for that field. Slagell et al. provide an example of 0.0.0.0 for IP ad-
dresses. Pang et al. name this constant substitution [71]. In their framework,
tcpmkpub [72], the operation ZERO replaces a field’s value with zeroes, and
the functions labeled const n8, const n16 and const n32 in their provided
anonymization policy appear to allow for overwriting a protocol field with a
user-provided constant. However, in [71] Pang et al. note that substituting
identifiers such as IP addresses with constants is undesirable as it makes
it impossible to precisely distinguish objects from one another. Gamer et
al.[41] support overwriting every byte with a user-supplied constant. This
would be better if the length of a value could be specified as is the case with

1Named after the practice of running a black marker over a body of text to conceal it.

20

tcpmkpub, instead of being limited to overwriting every byte. Some fields
may not be valid when replaced by all zeroes or byte-sized patterns, so a
black marker method should be implemented with care.

Truncation

Truncation is the removal of data past a certain boundary. Slagell et al.
provide the examples of truncating an e-mail address and removing the do-
main, leaving only the user name and truncating 24 bits of an IP address to
leave a class C subnet. They also note that truncating all bits is a special
example of a black marker. This is consistent with the ZERO transformation
used by Pang et al.

Partitioning

Partitioning is the subdividing of possible values into subsets. Slagell et al.
consider black marker anonymization and truncation to be examples of par-
titioning. Black marker is an extreme where only one partition exists, while
truncation creates many partitions depending on the amount of truncated
bits. This could also be called aggregation or binning. This is similar to the
idea of k-anonymity [95]. A special case of partitioning featured in FLAIM is
time unit annihilation. Timestamps are broken down into year, month, day,
hour, minute and second subfields which can then be removed in order to
influence the time precision.

Burkhart et al. [9] argue that permutation-based IP address anonymiza-
tion is not sufficient and propose the use of truncation. They evaluate the
risk-utility trade-off of truncation in the case of detection of scans and de-
nial of service attacks. Depending on the metric they use different sizes of
truncation are acceptable. In the case of their example and data set, trun-
cating up to 8 bits was acceptable in the best case for internal addresses
and 20 bits for external addresses. Depending on the size of the network
and other parameters, as well as the use-case, truncating more or less bits
may be acceptable. Evaluating the acceptable amount of truncation is nec-
essary before applying truncation if a good balance between risk and utility
is to be achieved. One way to achieve this is ensuring that each address is
indistinguishable from k-1 others, k-anonymity [95].

Permutation

Slagell et al. consider permutation the one-to-one mapping on a set. They
consider block ciphers for permutations on large binary fields, and even IPv6

21

addresses due to their size of 128 bits, however note that there are no strong
32-bit block ciphers, making them less effective on Internet Protocol version
4 (IPv4). For this case they mention the possibility to use tables, as is done
by tcpdpriv [62]. The tables used by tcpdpriv are an issue if one wants to
keep their anonymization constant as tcpdpriv’s table-based anonymization
is not consistent between traces and depends on the order in which ad-
dresses appear. The tables are also large. For this reason the cryptography-
based IP anonymization by Fan et al. [38] is a better solution in such cases.
In some cases it may be necessary to preserve a relationship between val-
ues across packets. Slagell et al. provide the example of timestamps and
preserving distances, stating that a simple shift can be used in this case.
Finally, it may be necessarys to preserve information about the structure of
a network. This requires prefix-preserving anonymization, which is unique
to IP addresses. Prefix-preserving anonymization is defined by Fan et al.
[38] as a one-to-one function where, if two IP addresses share the same
k-bit prefix, their anonymized counterparts will share the same k-bit prefix.

Hash

Hash functions can be used to anonymize a variety of fields, however small
protocol fields may require hashes to be truncated, resulting in a higher like-
lyhood of collisions. Slagell et al. state that dictionary attacks become very
practical for fields 32 bits and smaller. This is confirmed by Brekne et al. [8]
who computed Message Digest 5 (MD5) hashes for the entire IPv4 address
space in “hours” on what they considered a “regular PC”. The exact specifi-
cations of this Personal Computer (PC) and exact time were not revealed in
their paper, however the Nvidia GTX1080Ti graphics card, launched March
10, 2017., is capable of calculating 30000 million MD5 hashes per second
making it capable of calculating MD5 hashes for the whole IPv4 address
space (around 4.3 billion addresses) in 0.14 seconds [45]. For the IPv6 ad-
dress space this is still not feasible, but may be if an adversary is able to
reduce the address space from the whole IPv6 space to a smaller space
using additional information. Slagell et al. differentiate between hash and
Hash-based Message Authentication Code (HMAC) in their list of supported
anonymization methods, however due to their similarity it would make sense
to group them into one category. HMACs are calculated using a secret key,
making it impossible for an adversary to perform a dictionary attack since
they would have to not only calculate all the hashes, but do so for every
possible secret key. Like with hashes, collisions are also possible when us-
ing HMACs, so if collisions are not permissible neither HMACs nor hashes

22

should not be used.

Enumeration

Enumeration assigns an initial value to an element and then increments
this value for future elements. For example, an initial timestamp could be
chosen and incremented for future timestamps. This preserves information
about the order of events, but removes details such as the exact time of an
event or the distance between events. Pang et al. [72] refer to this method
as sequential numbering.

2.3 Legal environment

When talking about the problem of anonymization of any kind, which in-
cludes packet capture anonymization, the legal environment must be con-
sidered. In this section law affecting anonymization of network captures in
the EU and US is discussed.

EU

In the EU, the GDPR makes the importance of anonymization very clear.
According to article 4 of the GDPR: “‘personal data’ means any informa-
tion relating to an identified or identifiable natural person (‘data subject’); an
identifiable natural person is one who can be identified, directly or indirectly,
in particular by reference to an identifier such as a name, an identification
number, location data, an online identifier or to one or more factors specific
to the physical, physiological, genetic, mental, economic, cultural or social
identity of that natural person; .”[73]

In the case of Patrick Breyer vs Germany the European Court of Justice
ruled that “with regard to the processing of personal data and on the free
movement of such data [...] a dynamic IP address registered by an online
media services provider when a person accesses a website that the provider
makes accessible to the public constitutes personal data [...] where the latter
has the legal means which enable it to identify the data subject with addi-
tional data which the internet service provider has about that person”[54]

Packet traces can contain sufficient data for IP addresses to be consid-
ered personal data, and as such these values are an obvious choice for
anonymization, but following the logic of article 4 and the ruling in Breyer vs
Germany there is potential for other fields to contain sufficient information to

23

narrow down an individual, either on their own or in combination with other
gathered information, resulting in these fields becoming personal data.

US

Regarding the US, [11] identifies the ECPA as the main source of protection.
The three main components of the ECPA: The Wiretap Act, Pen Register
statute and SCA limit the sharing of network captures.

The SCA [92] states “a provider of remote computing service or elec-
tronic communication service to the public shall not knowingly divulge a
record or other information pertaining to a subscriber to or customer of such
service [...] to any governmental entity.” In this example the term provider
is defined in 18 United States Code (U.S.C.) §2258E [90] as an electronic
communication service provider where an electronic communication service
is defined in 18. U.S.C. §2510 [91] as “any service which provides to users
thereof the ability to send or receive wire or electronic communications.”

The author of [11] notes that “to the public” is an important phrase here
as it limits the applicability of the law. A company’s internal network which is
accessible only by employees would not be providing services to the public.
This becomes a bit more of a legal gray area when it comes to, for example,
universities. The author also notes that “knowingly” is not defined in the
SCA, but legal precedent in the case of Freedman v. AOL, Inc [98] defines
it as an awareness of the consequences of the action. It could be argued
that a faulty anonymization scheme or one circumvented by a new solution
does not render the author of a packet trace guilty as they were not aware
that they were divulging information. It is also important to note that the
SCA prohibits divulging this information to a governmental entity. While this
obviously makes it illegal to share an unanonymized trace directly with a
governmental entity, it is not clear if this would also apply to a trace shared
with the public in a way that makes it accessible to a governmental entity,
but it would be reasonable to assume it would.

The Wiretap Act [91] and Pen Register statute [93] can be seen as two
sides of the same coin. The Wiretap act prohibits the capture and disclo-
sure of content but does not state anything regarding non-content, such as
addressing information like IP addresses, while the Pen Register statute reg-
ulates the use of pen registers which are used to capture “dialing, routing,
addressing, or signaling information.” [94] Both the Wiretap Act and the Pen
Register statute relate to real-time collection of data. While that means they
are not of consequence for offline anonymization (although they could be of
consequence for the data collection mechanism prior to the anonymization

24

process), both the Wiretap Act and Pen Register statute could potentially
affect online anonymization.

2.4 Attacks on anonymization

Attacks on anonymiztion are methods by which the original data present in
the capture before anonymization can be revealed or contextual information
present in a capture can be used to reveal information about the original
state of the network in which the capture was taken that was not intended to
be shared through the capture in question.

Attacks on various anonymization schemes have been explored by many
researchers. Fan et al. [38] consider the effects of attacks using cryptanaly-
sis techniques and knowledge of compromised unanonymized-anonymized
address pairs and exploiting the semantics of prefix-preserving anonymiza-
tion. They call these cryptographic and semantic attacks. Pang and Paxson
[71] look at inference attacks. These are attacks that can be used to in-
fer sensitive information from traces. Their taxonomy is discussed later in
this section, together with other taxonomies of attacks. Bethencourt et al.
[3] demonstrate how the Internet Storm Center’s internet sensors, devices
which submit logs for the purpose of various reports, can be mapped by
probing them with activity that will be reported and analyzing the reports.
Pang et al. [72] notice their routers sometimes send Address Resolution
Protocol (ARP) requests for an entire subnet in quick succession which
could be used to partially deanonymize IP addresses. Coull et al. [27]
demonstrate how network topology can be inferred from anonymized traces
and the behavior of hosts in anonymized traces can be used to find their
real-world counterparts. Slagell and Yurick [85] create a taxonomy of at-
tacks similar to that of Pang and Paxson. This taxonomy is likewise dis-
cussed later in this section. Kohno et al. [57] demonstrate how the clock
skew, small deviations in device time-measuring hardware, can be used to
fingerprint a physical device. A detailed analysis of the attacks mentioned
here is outside of the scope of this thesis, however knowledge of their exis-
tence and the broader class of attacks they represent is important in order to
develop proper anonymization policy. The two taxonomies mentioned here,
as well as a third one developed by King et al. are discussed in chronological
order below.

25

Fi
gu

re
1:

G
ro

up
in

g
of

an
on

ym
iz

at
io

n
at

ta
ck

s
by

K
in

g
et

al
.

[5
6]

26

A taxonomy of attacks

A taxonomy of attacks against anonymization can help develop an anonymiza-
tion policy that best protects the log provider from attacks while stil maintain-
ing the utility necessary for researchers and be used to define the strength
of such an anonymization policy, which can be expressed as the amount of
attacks it protects against.

In [71] Pang and Paxson look at inference techniques an adversary might
use in order to strengthen their anonymization. Pang and Paxson divide
attacks into the following groups:

• Fingerprinting: Comparing attributes of an anonymized object to those
of a known object

• Structure recognition: Recognizing structure between objects in the
anonymized trace which may aid in inferring their identities (e.g. scans)

• Shared-Text matching: Attributes shared between anonymized ob-
jects can be used to expose one when the other is exposed. For
example in prefix-preserving anonymization deanonymizing one host
also deanonymizes the shared prefix.

• Known-Text matching: Knowing both the anonymized and the deanonymized
value can lead to deanonymizing all appearances of a value in a trace.

Pang and Paxson consider the possibility of an attacker injecting traffic
of their own in order to aid with fingerprinting and known-text matching at-
tacks, but do not classify this as an attack of its own, instead calling it an
active method of the attacks specified. While they do consider scans by
attackers as helpful for structure-recognition, they do not discuss the possi-
bility of the attacker seeking to aid themselves in later structure recognition
by performing the scan themselves.

In [85] Slagell and Yurick create their own taxonomy and note its sim-
ilarity to the taxonomy proposed by Pang and Paxson. Slagell and Yurick
propose the following taxonomy:

• Fingerprinting

• Structure Recognition

• Known Mapping Attacks

• Data Injection

27

• Cryptographic attacks

The definitions of fingerprinting, structure recognition and known map-
ping attacks used by Slagell and Yurick are identical in meaning to those
used by Pang and Paxson. Additionally, they consider data injection, the
attacker injecting data they can later recognize in the trace, as a separate
attack. Slagell and Yurick also note that attacks can be mounted against
cryptographic algorithms used in anonymization, however other attacks in
their taxonomy will usually be easier to carry out.

In [56] King et al. develop a taxonomy of attacks based on nineteen at-
tacks from other research papers with the aim of developing a complete and
mutually exclusive set of classes of attacks. To do this they take into ac-
count pre-conditions, knowledge an attacker must have or be able to glean
from the network log or capture. Based on these pre-conditions King et al.
construct the graph in figure 1. For the sake of classifying attacks King et al.
ignore consistent IP anonymization due to many attacks relying on it. The
graph of attacks and prerequisite knowledge generated as a result shows
a clear separation into six subgraphs. King et al. merge two of the result-
ing subgraphs, both of which involve cryptographic weaknesses, resulting
in the five classes of attacks in their taxonomy. The resulting set of attack
classes is virtually identical to the classes proposed by Slagell and Yurick.
King et al. criticize the previous taxonomy of Slagell and Yurick for not being
fine-grained enough to support their goal of creating a policy that maintains
high levels of both security and utility. In order to support that they create
subclasses of fingerprinting attacks:

• Port-Based: Fingerprinting devices based on well-known ports in use
or statistically derived port numbers

• Machine Attribute: Fingerprinting based on machine characteristics
such as time drift or operating system characteristics

• Behavioral: Fingerprinting devices based on machine or user behav-
ior

• Network Traffic: Fingerprinting based on recognizing patterns in net-
work traffic.

While their high-level taxonomy seems to hold up to the requirement
of mutual exclusivity, the port-based and network traffic fingerprinting sub-
classes of fingerprinting attacks do not seem to do so. King et al. specifically
mention ”being able to extract port numbers from statistical analysis” as part

28

of port-based fingerprinting, which would seem to overlap with network traf-
fic fingerprinting as the method for statistically revealing a service (and thus
its port number) is based on recognizing the unique patters in network traffic
that characterize particular applications. Using traffic patterns and charac-
teristics to identify services without the knowledge of port numbers has been
done by Early et al. [36] and Collins et al. [16].

Although in Figure 1 King et al. place Operating System (OS) finger-
printing in the Machine Attribute fingerprinting subclass of the fingerprinting
class, they note that it is a problem for their classification as OS fingerprint-
ing can be done in a manner that could place it in any of the subclasses. As
such they express the view that OS fingerprinting is best viewed as a group
of attacks rather than a single attack.

2.5 Extended scope

Alternatives to packet traces have been proposed. These alternatives fall
outside the scope of this thesis, but they are worth mentioning as they high-
light some of the issues of packet trace anonymization and contribute to the
discussion of packet trace anonymization in ways that can fuel improvement.

Secure queries

Mirkovic [63] argues anonymization of packet traces is a poor solution be-
cause it offers insufficient research utility and poor privacy. They look at
papers published to Special Interest Group on Data Communication (SIG-
COMM) and the Internet Measurement Conference in 2006 and 2007 and
show that only 10 out of 144 papers used public traces while the rest used
private traces. They conclude that this is likely due to lower utility of public
traces.

They argue traces offer low privacy due to the utility loss required to pro-
tect from passive attacks, the inability to defend against active attacks and
the inability to protect released traces against future attacks. The difficulty
of defending against all passive attacks can be seen from the taxonomy of
anonymization attacks by King et al. in Figure 1. A more detailed description
of this taxonomy is provided in Section 2.4. It is safe to conclude, as Mirkovic
does, that a trace obscuring many of the fields used by these attacks would
be useless for many researchers. Mirkovic’s conclusion that no sanitiza-
tion can defeat active attacks is also partially corroborated by Burkhart et
al. [10] who conclude that by stretching patterns in time an attacker can
always manage a successful attack while staying undetected. However, the

29

attacker does need to know when the packets will be recorded and the trace
has to be of sufficient length or the pattern sufficiently visible, both of which
make this form of attack more difficult than it may seem. The third problem,
the inability to protect released traces from future attacks, is evident, and
can not be solved in any way when releasing packet traces publicly. Once a
trace is released, it is released.

Mirkovic’s system of secure queries would improve upon packet traces
in many ways. It would improve privacy by providing fine-grained control
over permissible queries. The system could also log queries which could
then be audited to reveal misuse and help improve policy. Mirkovic states
that many active attacks can be prevented by a combination of restricting
possible queries, restricting results and through auditing. Additionally, the
system would offer better protection against future attacks as policy could
be updated to protect against new attacks, and only those users who have
run queries that future policy forbids would be able to run these attacks.

There are also downsides to this approach, which Mirkovic acknowl-
edges. The approach does not make it possible to view raw packets, which
researchers may need. For this problem Mirkovic proposes exploratory
research be done on private traces until a point where the research can
benefit from aggregate results such as those provided by secure queries.
Operations needed by some may be missing, but these can be added.
Mirkovic does not address the centralization of their system as a poten-
tial security flaw. Assuming all the queries are secure and policy is kept
up to date, preventing the queries themselves from being used in an at-
tack, the system proposed by Mirkovic still has unanonymized traces stored
on the system and a flaw elsewhere in the system could possibly expose
the unanonymized data from their database. Additionaly, organizations may
have policy preventing them from storing unanonymized data, as mentioned
by Pang et al. [72]. Storing data in an unanonymized form can also lead to
legal issues as personal information may be contained within. Data longevity
is also a potential downside of this approach, as no incentive is suggested
for data providers to store their data for any amount of time, and no incentive
for hosting data at all is provided.

SC2D

The Shipping Flexible Analysis Code to the Data (SC2D) framework, devel-
oped by Mogul et al. [65], proposes to solve the problems of packet trace
anonymization in a way similar to the proposal made by Mirkovic. However,
instead of queries, Mogul et al. propose a framework based on modules that

30

support commonly used analysis methods and a high-level domain-specific
interpreted language. Researchers would develop modules and send their
analysis code to the trace owners who would then run it on their systems
and return results. In this way the confidentiality of traces can be preserved
while providing researchers with the information they need. Mogul et al. do
not provide their language in their paper, so the strengths and weaknesses
can not be compared to those of the secure queries proposed by Mirkovic,
but such detailed comparisons would be out of the scope of this thesis any-
way.

Mogul et al. propose a system of expert reviews for their framework and
modules. Expert review would ensure modules and analysis code truly do
what is claimed and do not contain malicious code. The expert review pro-
cess does suffer from several potential issues, both technical and social in
nature, which Mogul et al. acknowledge. The technical issues are the design
of analysis code, modules and the framework in a way that makes reviewing
them and finding issues easy. Mogul et al. also propose signing reviewed
code as a way of ensuring the code delivered to a data owner is the same
code that was signed off on by the expert reviewers, and automatic leak-
age detection as an addition to the review process that automates detecting
privacy leaks in analysis code. The social issues recognized by Mogul et
al. include the choice, potential payment and potential liability of experts,
as well as the detection of attempted subversions of the review process and
the confidentiality of a researchers work.

The system proposed by Mogul et al. suffers from the same drawbacks
as secure queries proposed by Mirkovic: inability to view raw packets, cen-
tralization, the possibly short lifespan of data and lack of incentives for data
providers to store data and allow the execution of code. Additionally, SC2D
also makes debugging difficult as bugs might reveal themselves during run-
time on provider data that could not be detected using a researcher’s own
data. Debugging would also be made more difficult by the lack of insight into
the data that would help reveal the bug. Fixed code may also have to be re-
submitted for expert review, potentially making the process time consuming.
Unlike Mirkovic, who does not appear to consider the option, Mogul et al. do
consider online operation. This means organizations with policies against
storing data can participate, however in the case of SC2D, since analysis is
performed and then the data is discarded, it also means reproducibility is an
issue.

31

3 Features of anonymization frameworks

One possible solution to the shortcomings of existing anonymization tools 2

are frameworks such as FLAIM [86], developed by Slagell et al., tcpmkpub
[72], developed by Pang et al. and PktAnon [41] developed by Gamer et
al. These frameworks are designed with features that make them useful to
a wider variety of users. In this chapter the following taxonomy of features
is proposed, based on features discussed and mentioned by the authors of
the three previously mentioned frameworks:

• Extensibility: The ability to extend a framework with support for new
protocols or anonymization methods

• Policy support: Support for a detailed anonymization policy

• Meta-data generation: Generation of additional meta-data

• Large file support: Support for capture files containing gigabytes or
terabytes of data

• Consistency: Support for consistent anonymization across multiple
logs

• Performance: Executing anonymization tasks in a time that is reason-
able for the policy employed

• Online anonymization: The ability to anonymize captured packets as
they arrive at a network capture card or interface

In addition to these features, no authors to our knowledge discussed re-
coverability, the ability to recover from failure or run additional operations
on an anonymized capture after a policy has been reviewed and found lack-
ing. A more detailed discussion of the features mentioned can be found
below.

Extensibility

Extensibility is the ability of a framework to be extended in order to support
new protocols or anonymization methods.

2Based on the features described in this chapter, a differentiation between anonymiza-
tion tools and anonymization frameworks is made. Tools are mentioned in Section 2.1.
Their features according to the taxonomy in this chapter are shown in Table 1.

32

In FLAIM extensibility is achieved through a modular architecture and
a core consisting of an anonymization engine and policy manager. Users
can create modules that support different types of logs and the protocols
in these logs, and create flexible policy to anonymize these logs using the
anonymization engine. Users adding new anonymization primitives is not
an intended feature.

Tcpmkpub allows users to specify their own C++ functions to execute
over fields of the supported protocols which would allow for new anonymiza-
tion methods. Tcpmkpub does not have an in-depth understanding of the
protocols it anonymizes, instead relying on the anonymization policy to also
specify names and lengths of fields. The way in which this is done sug-
gests that tcpmkpub recognizes the protocol itself, despite having no deeper
knowledge of its structure. This may make extending tcpmkpub to support
new protocols simpler by dividing the actions of recognition and handling
between the engine and the anonymization policy, but also means a user
looking to add a new protocol to anonymize would have to alter the source
code of tcpmkpub in order to write in recognition for their protocol.

Adding new protocol support to pktanon also requires modifying pktanon
source code. Pktanon handles protocols by first passing the captured eth-
ernet frame from a pcap capture file to a class called packet, which then
uses an interface that must be supported by classes for handling different
protocols. This means that inserting a new protocol requires knowledge of
the interface, writing one’s own protocol handler and possibly modifying the
packet class to recognize the new protocol. Writing a new anonymization
method for pktanon requires implementing an interface that must be sup-
ported by anonymization methods.

Policy support

Policy support is the ability of a framework to allow users to write their own
policies detailing the mappings of protocol elements to supported anonymiza-
tion methods.

Gamer et al. mention two important features: flexibility and configura-
bility. They consider flexibility the ability to apply a framework to different
environments and objectives, and state that it must be able to anonymize
any field with any anonymization method. By configurability they mean the
ability for users to define their own profiles, mappings between protocol at-
tributes and anonymization methods.

Slagell et al. [86] state that an anonymization tool needs to be “multi-
level”, meaning it must support many options for each protocol field which

33

they consider levels of anonymization. They also state a tool must have a
rich supply of anonymization algorithms. These two features are similar in
spirit to the flexibility and configurability required by Gamer et al.

Pang et al. do not explicitly name this requirement, but they do state
that existing tools did not satisfy their requirements and they develop their
framework with the ability to accommodate a wide range of policy decisions.
The ability to extend their framework with functions for anonymizing the sup-
ported protocol fields by naming C++ functions in pktanon allows for both
flexibility and configurability as defined by Gamer et al.

The separation of flexibility and configurability seems somewhat super-
fluous as a configurable solution would automatically have to be flexible to
some degree and existing solutions supporting one supported the other. In-
stead, we can call the union of these two features policy support.

Meta-data generation

Pang et al. state that meta-data is often crucial for understanding traces and
include this additional data with their traces. The same sentiment is mirrored
by Paxson [74] who argues that retaining meta-data can be beneficial as a
good data-set can be revisited later for different research that may require
some of that additional information. While providing meta-data is obviously
a boon to researchers and can extend the usefulness of a data-set beyond
its initial planned usage, it can also provide attackers with useful information
that can help them refine their attacks. [28]

These features were a central part of the design of the frameworks men-
tioned at the start of this section, but other features that are less prominently
featured but also worth mentioning are discussed below.

Large file support

It is important for a anonymization tool to be able to properly handle large
capture files. This is necessary since even a 10 Mbps connection, which
can be considered low-bandwidth by modern standards, can transfer 108
GB over the course of a day when saturated. Fan et al. [38] mention large
trace files with an example of terabytes. Pang et al. [72] mention a trace
of 48 gigabytes. Slagell at al. [86] do not explicitly mention a size but state
that their framework works admirably when anonymizing large data sets and
give a preliminary estimate of a gigabyte per minute. This strongly suggests
that they are dealing with traces that are multiple gigabytes in size or more.
Mogul and Arlitt [65] use the example of Arlitt having 5 terabytes of trace

34

data as one of the reasons why their proposed alternative to anonymization,
shipping the analysis code to the data, may be better than sharing traces.
While these 5 terabytes are not stated to be one file, it appears reasonable to
believe several multi-gigabyte files may be present. A more recent example
of capture sizes is available on the website of the Center for Applied Internet
Data Analysis (CAIDA) [12]. While they do no explicitly mention the size of
their captures, they provide a mean transmission rate, which can be used
to estimate the size when combined with the duration of the capture. This
results in an estimated capture size of around 2 Terabytes in the case of
their most recent capture.

Consistency

Fan et al. [38] provide several examples that demonstrate a necessity for
consistent anonymization of packet traces. Traces from different sites may
better be anonymized simultaneously on different sites instead of being first
collected and then anonymized. This would also be safer than sending
unanonymized traces off-site for anonymization. A large trace may also
be anonymized more quickly if it were possible to break it down into multi-
ple sub-traces and anonymize these separately with a consistent scheme.
Consistency is not without its downsides, however, as King et al. [56] note
that 9 out of the 19 attacks they looked at when developing their taxonomy
required some form of consistent IP pseudonyms.

TCP sequence and acknowledgement numbers present an issue when
attempting to maintain consistency. In order to anonymize TCP sequence
and acknowledgement numbers correctly, it is necessary to maintain a large
amount of state information, or anonymize a packet trace in two passes.
This also presents an issue when anonymizing sub-traces, as maintaining
a consistent sequence between such traces would not be possible. Prob-
lems encountered with anonymizing TCP sequence and acknowledgement
numbers during Shanon development are discussed in Section 8.3.

Performance

While performance has not been the focus of any of the developed tools
or frameworks for anonymization, many authors have included some form
of performance metric, usually relating to the speed of processing cap-
ture files. Slagell et al. [86] mention that their framework can handle a
gigabyte per second. Fan et al. [38] express the performance of their
anonymization method for IP addresses in terms of packets per second.

35

Their cryptography-based anonymization scheme can process 10,000 pack-
ets per second on an 800 Mhz Intel Pentium III processor, which they say
is “fast enough for practical purposes”. This shows that, despite perfor-
mance not being the main goal of their new scheme, they still consider it
an important metric. Pang et al. [72] look at the time and peak mem-
ory usage required to anonymize their trace. Their framework, tcpmkpub,
anonymized a trace containing 165 million packets, with a total size of 48
Gigabyte (GB), in 2.9 hours, having used a peak of 331 Megabyte (MB) of
memory. Gamer et al. [41] express the view that performance is very im-
portant for online anonymization and evaluate the performance of various
parts of their framework. They conclude that further work needs to be done
to improve the speed of their framework. It seems obvious from the inclu-
sion of performance metrics and given the possibly large size of capture
files as mentioned previously, that performance should not be ignored when
developing an anonymization tool or framework.

Online anonymization

Online anonymization is the ability to anonymize captured packets as they
arrive at a network capture card or interface. Pang et al. [72] note that some
organizations may require even internally stored traces be anonymized.
They do not focus on this further as their organization does not require it
and their anonymization policy requires multiple passes, preventing online
anonymization. This also reveals the possible issue that online anonymiza-
tion may not always be amicable with every possible policy regarding anonymiza-
tion. Gamer et al. [41] mention legal requirements may make it necessary to
anonymize data as soon as possible and state the opinion that that requires
online anonymization.

Other features

Slagell et al. [86] state that a tool should be multi-log capable, a feature they
describe as “being flexible enough to support the anonymization of most
security relevant logs without major modification.” While the subject of this
thesis is not the sharing of logs, but network captures, the ability to share
additional logs and anonymize them consistently can aid research. Slagell
and Yurick [85] expressed a belief in a need for standards in anonymiza-
tion. A standard defining types of anonymization that need to be supported
and ways to express the needs of different organizations would greatly im-
prove the space and allow for different types of logs to be anonymized in a
consistent, standard manner.

36

A feature not suggested by any author to our knowledge is recoverabil-
ity. Pang et al. [72] took 2.9 hours to anonymize their trace using their
framework, tcpmkpub, and the policy developed in their work. It is possible
that an anonymization framework could crash or the process could be left
unfinished due to a power outage or other issues. Being able to recover
from such an issue and continue anonymization or run additional operations
on an already anonymized trace could save valuable researcher time.

Cross-Comparison

Using the above features as a basis we can now provide an overview of
the tools mentioned in Chapter 2. This overview can be seen in Table 1.
The three frameworks used as a basis for developing this taxonomy are not
present in the table both as a means of conserving space due to the size of
the table and because they possess all of the listed features.

Assumptions are made in favor of the tools wherever any reasonable
proof of feature support was provided, such as the presence of performance
metrics for performance or a more generalized configurable anonymiza-
tion scheme for policy support. The presence of configurable anonymiza-
tion methods that could yield consistent anonymization across traces were
counted towards consistency. Most tools do not explicitly state their sup-
port for large files, but this can be assumed for many of the tools based on
context provided in the papers describing them and in their manuals. For
example, any tool capable of online anonymization can just as well accept a
stream of packets from a file. The same could be said for any tool based on
libpcap[35] which supports large files. Any additional data that can be gen-
erated in addition to an anonymized trace and used to provide additional
insight was counted as meta-data generation. This appears to only be sup-
ported by TraceWrangler. Meta-data support in TraceWrangler consists only
of support for importing Snort IDS[15] alert files to mark packets detected
by the IDS. Still, this meta-data can be of use to security researchers and
as such has value.

37

Fe
at

ur
es

Tr
ac

eW
ra

ng
le

r
W

ire
E

di
t

S
af

eP
ca

p
C

ry
pt

oP
A

n
Tc

pd
pr

iv
S

C
R

U
B

-tc
pd

um
p

La
rg

e
Fi

le
S

up
po

rt
–

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

C
on

si
st

en
cy

Ye
s

–
Ye

s
–

–
Ye

s
O

nl
in

e
an

on
ym

iz
at

io
n

–
–

–
–

–
Ye

s
Po

lic
y

su
pp

or
t

–
–

Ye
s

–
–

Ye
s

E
xt

en
si

bi
lit

y
–

–
–

–
–

–
M

et
a-

da
ta

ge
ne

ra
tio

n
Ye

s
–

–
–

–
–

Pe
rfo

rm
an

ce
–

–
Ye

s
Ye

s
–

–
R

ec
ov

er
ab

ili
ty

–
–

–
–

–
–

Ta
bl

e
1:

Fe
at

ur
es

su
pp

or
te

d
by

ex
am

in
ed

an
on

ym
iz

at
io

n
to

ol
s.

38

4 Choosing initially supported protocols

This chapter explains the choice of protocols to support in the tool developed
as part of this thesis, provides an overview of the layered architecture of
network protocols, and overviews of each of the chosen protocols.

The initial choice of protocols to anonymize in this work is based on
the protocols anonymized by existing tools and frameworks. Table 2 paints
a clear picture about the needs of organizations and researchers when it
comes to protocol anonymization. All of the tools that were looked at sup-
ported anonymization of IPv4, showing a clear focus and recognized need
for anonymization support. User Datagram Protocol (UDP) and Transmis-
sion Control Protocol (TCP) are clearly also considered very important as
they were only not anonymized by CryptoPAn, the focus of which is solely
IPv4. The relative lack of support for Ethernet is understandable to a de-
gree as the utility of a Media Access Control (MAC) address to a would-be
attacker seems to end at the ability to consistently identify a device and its
make and model. Still, it could be argued that even that is too much in-
formation to expose unnecessarily, and in light of US and EU law a MAC
address could potentially be considered addressing information regulated
by the Pen Register statute or personal information regulated by the GDPR.
ARP and Internet Control Message Protocol (ICMP) are also somewhat ne-
glected, but seemingly for a different reason. The utility of ARP and ICMP in
diagnosing network issues and understanding the topology of a network is
a double-edged sword. While it can certainly be of interest to researchers it
can also be utilized by attackers to help uncover the topology of the network
despite efforts to conceal it through the merging of subnets or flows, remap-
ping of addresses or simply use of a non-prefix-preserving scheme. As an
added complexity ICMP messages may contain part of a packet. This part
would need to be recognized and anonymized consistently with the cap-
tured packet itself, which may require multiple passes of a file be made or
in the case of online anonymization sufficient memory to store reasonably
sized chunks of packets for comparisons to incoming ICMP messages for
a sufficiently long time, which may be more overhead than justified by the
utility of ICMP messages. That IPv6 support is low comes as no surprise
as adoption is sadly still not widespread, and was far less so more than a
decade ago when many of these anonymization tools were written .[44] It
is also important to note that the full required set of IPv6 extension head-
ers that must be supported by a full implementation of IPv6 according to
RFC8200[31] are not supported by TraceWrangler. WireEdit and SafePcap
do not explicitly state support for extension headers, but given their impres-

39

sive list of supported protocols it is reasonable to assume.

40

P
ro

to
co

ls
Tr

ac
e

W
ra

ng
le

r
W

ire
E

di
t

S
af

eP
ca

p
C

ry
pt

oP
A

n
Tc

pd
pr

iv
S

C
R

U
B

-
tc

pd
um

p
tc

pm
kp

ub
FL

A
IM

P
kt

A
no

n

E
th

er
ne

t
Ye

s
Ye

s
Ye

s
–

–
Ye

s
Ye

s
Ye

s
Ye

s
A

R
P

Ye
s

Ye
s

Ye
s

–
–

–
Ye

s
Ye

s
Ye

s
IP

v4
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
IP

v6
Ye

s
Ye

s
Ye

s
–

–
–

–
Ye

s
Ye

s
IC

M
P

Ye
s

Ye
s

Ye
s

–
–

–
Ye

s
Ye

s
Ye

s
U

D
P

Ye
s

Ye
s

Ye
s

–
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
TC

P
Ye

s
Ye

s
Ye

s
–

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ta
bl

e
2:

P
ro

to
co

ls
su

pp
or

te
d

by
at

le
as

th
al

fo
ft

he
ex

am
in

ed
an

on
ym

iz
at

io
n

to
ol

s
an

d
fra

m
ew

or
ks

41

The protocols chosen to be supported in the initial version of Shanon,
the tool created in this thesis, are:

• Ethernet

• IPv4

• IPv6

• ARP

• ICMP

• ICMPv6

• NDP

• UDP

• TCP

In additional to those supported by at least half of the examined tools, as
seen in table 2, Internet Control Message Protocol for the Internet Protocol
Version 6 (ICMPv6) has been added to the list as the IPv6 counterpart of
ICMP. Neighbor Discovery Protocol (NDP) has also been added as it uses
the same general message format as ICMPv6 and replaces ARP in IPv6
networks, along with additional functionality. Given the ubiquity of wireless
communication nowadays it also seemed prudent to include 802.11 sup-
port, however upon further review dealing with 802.11 was found to be far
too complicated and worthy of a thesis in and of itself. This decision was
further simplified by the fact that capturing 802.11 traffic is often not possi-
ble without running a network card in promiscuous mode, a mode where all
traffic the card receives can be captured, rather than only the traffic the card
is meant to receive. Outside of promiscuous mode, many network cards
transform 802.11 data packets into Ethernet packets before supplying them
to the operating system network stack [24].

A more detailed overview of each of the supported protocols follows.
The tables showing each of the protocols merge fields smaller than 1 byte
and fields with lengths that are not a multiple of bytes. The reason for this
alternative division of protocol fields is the way in which these fields can be
retrieved from Wireshark in their raw form, as unmodified bytes of data such
as they are in capture files. This is done by returning a range of bytes from
the Testy Virtual Buffer (TVB), a buffer containing the bytes of a captured
protocol. As such it is not possible to retrieve a field that is less than 1 byte in

42

size or does not end on a 1-byte boundary in this way without also retrieving
parts of, or entire other fields, such as the Internet Header Length (IHL)
field when retrieving the Version field. Organizing protocol fields in such a
manner makes it easier to refer to these tables when actually working with
the protocol data or looking at the bytes stored in capture files. In several
places the lengths of fields may be marked with the letters “M” and “N”.
These signify fields of variable lengths and may both be in use to clearly
distinguish between fields that have variable lengths, but are not necessarily
of the same length.

4.1 Layered network model

Network protocols operate in a layered architecture where each layer is re-
sponsible for providing layer-specific services to the layer above it. Lower-
layer protocols encapsulate the protocols from higher layers, adding their
own header before the higher-layer protocol header, and in some cases
also adding a trailer after the higher-layer protocol data. The higher-layer
protocol contents are the payload, or data, of the lower layer protocol.

The goal of a layered architecture is to separate different functions on
different layers, each providing its services to the layer above and relying
on the services of the layer below. However, in some cases the operation of
protocols crosses these layer boundaries. TCP and User Datagram Protocol
(UDP) pseudo-headers, described in Section 4.8, contain fields from the
lower-layer protocol. In this thesis only IPv4 and IPv6 pseudo-headers are
examined, but for other protocols to carry TCP or UDP traffic appropriate
pseudo-headers need to exist. ICMPv6, described in Section 4.6, also uses
an IPv6 pseudo-header.

Multiple models exist which describe the layered architecture of network
protocols. For the purpose of this thesis, the TCP/IP 5-layer model [58] will
be used. This model consists of the following layers:

• Application - Network applications and their protocols

• Transport - Transports application-layer messages between applica-
tions

• Network - Transports network-layer packets between hosts

• Link - Transports packets between nodes along a route

• Physical - Transports individual bits across a transmission medium

43

The protocols supported by Shanon and their place in this model can be
seen in Table 3.

Layer Protocols
Application
Transport TCP,UDP
Network IPv4,IPv6,ARP,ICMP,ICMPv6,NDP
Link Ethernet
Physical

Table 3: The TCP/IP model and protocols supported by Shanon

4.2 Ethernet

The Ethernet frame [52], as seen in table 4, consists of 5 fields. The Des-
tination and Source Address fields contain the MAC addresses of the des-
tination and source of the frame. These are 6-byte unique addresses. The
type/length field either carries the length of the Ethernet frame or type of the
higher layer payload, depending on the value in the field. The data field is
the encapsulated higher-layer packet. The Frame Check Sequence (FCS)
is used to verify the integrity of the received frame.

Depending on the value in the Type/Length field, the field contains either
the length of payload or the type of payload the frame is carrying. According
to the 802.3 standard, a value “less than or equal to 1500 decimal” is meant
to denote the length of the data field in octets. Such a frame is called a
basic frame in the standard. If the value of the type/length field is “greater
than or equal to 1536 decimal”, the field instead denotes the type, called the
Ethertype, of the protocol encapsulated in this frame.

A size of 1504 denotes a Q-tagged frame. These are frames including a
4-byte 802.1Q header used for the logical separation of a physical network
into Virtual Local Area Networks (VLANs).

A size of 1982 denotes an Envelope frame. These are frames which
“allow inclusion of additional prefixes and suffixed required by higher layer
encapsulation protocols.”

Q-tagged and Envelope frames will not be supported in this work.
The Ethernet FCS is a cyclic redundancy check that is calculated using

all fields but the FCS. In many cases the frame check sequence may not be
present at the end of a captured frame as it is not always provided to the
higher layers by the network card.

44

Protocol Field Size (Bytes)

Ethernet

Destination Address 6
Source Address 6
Type/Length 2
Data 46-1500, 1504 (.Q), 1982
FCS 4

Table 4: Ethernet

4.3 IPv4

The Internet Protocol version 4 (IPv4) [78] header can be seen in table 5,
and consists of 13 fields plus an optional options field which can carry a
variable amount of options. As previously mentioned, fields the size of which
is less than 1 byte, such as Version and Internet Header Length are merged
into a single field in the table, then divided into subfields.

The IPv4 Version field is used to denote the version of the IPv4 header
in use. For IPv4 this field contains the value 4 decimal.

The IHL field contains the length of the IPv4 header in 32-bit words, and
has a minimum value of 5, meaning 160 bits, for an IPv4 header without any
included options.

The Differentiated Services Code Point (DSCP) field and Explicit Con-
gestion Notification (ECN) field were originally the Type of Service field.[78]
Differentiated Services were defined in Request for Comments (RFC) 2474[68]
and are used to classify and manage network traffic for quality of service
purposes. ECN is defined in RFC 3168[80] and is used to indicate conges-
tion in the network. A more detailed look at the mechanisms of either of
these fields is outside of the scope of this thesis.

The Total Length field contains the length of the IPv4 packet in bytes.
This length includes both the header and the data.

The Identification field is used to identify fragments of a fragmented
packet for the purposes of reassembly. Other uses of this field are pro-
hibited. [96]

The Flags and Fragment Offset fields are used for the purposes of frag-
mentation, the process of splitting a larger packet into several segments,
which may be necessary if a packet can not be transported across a seg-
ment of a network in one piece due to size constraints . The Reserved flag
must be zero and is currently not in use. The Do Not Fragment flag is used
to indicate the fragmentation of a packet is not permitted. The More Frag-
ments flag is set when a packet is not the last fragment of a fragmented
packet. The Fragment Offset field indicates where in a fragmented packet

45

the fragment belongs. The unit of size for the Fragment Offset field is 8 bytes
(64 bits) and the first fragment starts at 0.

The Time To Live (TTL) field is used to denote the maximum time a
packet is allowed to exist. RFC 791[78] originally intended for this time to
be in seconds, with processing times less than a second being rounded
effectively rounded up by a minimum decrease of 1 each time a packet was
processed. In practice this field now serves as a hop limit.

The Protocol field is used to identify the next layer protocol. These values
are managed by The Internet Assigned Numbers Authority (IANA) and can
be found online at [51].

The Header Checksum is “the 16 bit one’s complement of the one’s com-
plement sum of all 16 bit words in the header.”[78] For the purposes of cal-
culating the checksum, the field is set to 0. This means that 16-bit words
from the header are added together as 16-bit integers and whenever there
is an overflow, the overflow bit is discarded and the sum incremented by 1.
This can result in another overflow, meaning it may be necessary to perform
this operation twice. This method of calculation is inefficient, as it requires 2
checks every time 2 16-bit words are added together. In practice this check-
sum can quickly be calculated at the price of additional memory space by
adding 16 bit words from the header to a 32-bit integer, then subtracting
65535 (216 − 1) until the 16th bit is no longer 1.

The Source and Destination IPv4 addresses are 32-bit IPv4 addresses
denoting the source and intended destination of the IPv4 packet.

The IPv4 Options field is often stated to be rarely used. In their technical
report [39] Fonseca et al. find that IPv4 Options are not well supported on
the Internet, with their work finding that approximately half of the paths their
packets took dropped packets with IPv4 options, as well as options causing
a small increase in end to end latency. Due to their seemingly low usage,
IPv4 Options are not reviewed in detail or supported by this work.

46

P
ro

to
co

l
Fi

el
d

S
iz

e
(B

yt
es

)
S

ub
fie

ld
s

na
m

e
si

ze
(b

its
)

IP
v4

Ve
rs

io
n/

IH
L

1
Ve

rs
io

n
4

In
te

rn
et

H
ea

de
rL

en
gt

h
(IH

L)
4

D
S

C
P

/E
C

N
1

D
iff

er
en

tia
te

d
S

er
vi

ce
s

C
od

e
Po

in
t(

D
S

C
P

)
6

E
xp

lic
it

C
on

ge
st

io
n

N
ot

ifi
ca

tio
n

(E
C

N
)

2
To

ta
lL

en
gt

h
2

Id
en

tifi
ca

tio
n

2

Fl
ag

s/
Fr

ag
m

en
tO

ffs
et

2

R
es

er
ve

d
(F

la
gs

)
1

D
on

’t
Fr

ag
m

en
t(

D
F)

1
M

or
e

Fr
ag

m
en

ts
(M

F)
1

Fr
ag

m
en

tO
ffs

et
13

TT
L

1
P

ro
to

co
l

1
H

ea
de

rC
he

ck
su

m
2

S
ou

rc
e

IP
A

dd
re

ss
4

D
es

tin
at

io
n

IP
A

dd
re

ss
4

O
pt

io
ns

N

Ta
bl

e
5:

IP
v4

47

4.4 IPv6

The Internet Protocol version 6 (IPv6)[31] header can be seen in table 6.
The header consists of 8 fields, with the Version, Traffic Class and Flow
Label fields being merged in the table as they do not adhere to a clear 1-
byte boundary.

The Version field in IPv6 serves the same purpose as in IPv4. For IPv6
this field contains the value 6 Decimal.

The Traffic Class field is currently used for DSCP and ECN the same way
as the originally named Type of Service field in IPv4.

The Flow Label field is used to label packets belonging to the same
flow.[1] A more detailed look is out of the scope of this thesis.

The Payload Length field in IPv6 specifies the length of the remaining
payload, including any extension headers present, in bytes.

The Next Header field identifies the header following the IPv6 header,
and uses the same values as the IPv4 Protocol field. These values can be
found online at [51].

The Hop Limit field is used in the same way as the IPv4 TTL field, being
decremented every time the packet is forwarded in the network.

The Source and Destination Addresses are 128-bit IPv6 addresses of
the source and intended destination for the packet.

Unlike IPv4, IPv6 does not include options as part of the header, but
rather as separate Extension Headers that can follow the IPv6 header. Ac-
cording to RFC 8200[31], a full implementation IPv6 includes the following
headers:

• Hop-by-Hop Options

• Fragment

• Destination Options

• Routing

• Authentication

• Encapsulating Security Payload

The recommended order of these headers is as follows:

• IPv6 header

• Hop-by-Hop Options header

48

• Destination Options header

• Routing header

• Fragment header

• Authentication header

• Encapsulating Security Payload header

• Destination Options header

• Upper-Layer header

Each of these headers should only occur once with the exception of the
Destination Options header which may occur twice. The Destination Options
header before the Routing header is intended for each node along the path,
while the one before the upper layer protocol header is intended for the
final destination of the packet only. With the exception of the Hop-by-Hop
Options header which may appear only after the IPv6 header, IPv6 nodes
must accept the headers in any order, but the RFC strongly advises they
appear in the recommended order. [31]

To reduce the work required to a reasonable amount, only the extension
headers and parameters present in RFC 8200, the IPv6 standard, will be
considered in this work. These can be seen in table 7. In addition, a No
Next Header extension header exists which carries no data and signifies
that no header exists after it. This header has a Next Header value of 59
and its Length field should be ignored. The Hop-by-hop and Destination Op-
tions headers can contain different options encoded in a Type-Length-Value
(TLV) format, but only padding options are defined in RFC 8200. Similarly,
the Routing Header has Type-specific data, but only the header format is
defined in RFC 8200. [31]

49

P
ro

to
co

l
Fi

el
d

S
iz

e
(B

yt
es

)
S

ub
fie

ld
s

na
m

e
si

ze
(b

its
)

IP
v6

Ve
rs

io
n/

Tr
af

fic
C

la
ss

/F
lo

w
La

be
l

4
Ve

rs
io

n
4

Tr
af

fic
C

la
ss

8
Fl

ow
La

be
l

20
P

ay
lo

ad
Le

ng
th

2
N

ex
tH

ea
de

r
1

H
op

Li
m

it
1

S
ou

rc
e

A
dd

re
ss

16
D

es
tin

at
io

n
A

dd
re

ss
16

Ta
bl

e
6:

IP
v6

50

The IPv6 adoption rate among Google users is around 30% at the time
of writing (November 2020) [44].

Option Field Size (Bytes)

Hop-by-hop
Options

Next Header 1
Length 1
Options N

Routing
Header

Next Header 1
Length 1
Routing Type 1
Segments Left 1
Type-specific data N

Fragment
Header

Next Header 1
Reserved 1
Fragment Offset/Res/M 2
Identification 4

Destination
Options

Next Header 1
Length 1
Options N

Table 7: IPv6 Extension Headers

4.5 ARP

The Address Resolution Protocol (ARP) was first proposed as a means
of translating a higher layer protocol’s addresses into 48 bit Ethernet ad-
dresses, with generalizations made to enable the use of ARP on other hard-
ware.

For the purpose of this thesis only the use of ARP with Ethernet and IPv4
will be examined since IPv6 uses NDP for this purpose.

The Hardware Address Space field identifies the layer 2 protocol the
request is being made for. These values are managed by IANA and can be
found online at [49]. For the purposes of this work only the value 1 Decimal,
meaning Ethernet, is of interest.

The Protocol Address Space uses the Ethertype space, the same values
used for higher layer protocol types in Ethernet.

The Hardware Address Length and Protocol Address Length are the
lengths of the hardware and protocol addresses in bytes. For Ethernet the
Hardware Address Length is 6 Decimal. The Protocol Address Length for
IPv4 is 4 Decimal.

51

The Operation Code is used to denote the different types of ARP mes-
sages.

The Hardware and Protocol Addresses of Sender and Target contain the
layer 2 and higher layer addresses of the sender of the ARP packet and the
intended target of the ARP packet. [75]

The different kinds of ARP operations do not appear to be of signifi-
cance for the work of anonymization, as they involve using ARP with dif-
ferent values in the Hardware and Protocol addresses and different Opera-
tion Codes. This does not appear to influence the anonymization of these
addresses in any way. If the addresses are anonymized consistently with
their anonymization in their respectable protocols, ARP retains its purpose.
Should they not be, the ARP operations themselves can still be analyzed
but the relationship between them and the devices that sent them may be
lost or degraded. It seems plausible that ARP packets could still be linked
to the devices that sent them even if values in the packets are inconsistently
anonymized by observing the order of messages, but a deeper look into this
is outside of the scope of this thesis.

Protocol Field Size (Bytes)

ARP

Hardware Address Space 2
Protocol Address Space 2
Hardware Address Length 1
Protocol Address Length 1
Operation Code 2
Hardware Address of Sender N
Protocol Address of Sender M
Hardware Address of Target N
Protocol Address of Target M

Table 8: ARP

4.6 ICMP and ICMPv6

Internet Control Message Protocol (ICMP) and Internet Control Message
Protocol for the Internet Protocol Version 6 (ICMPv6), defined in RFC 792
and RFC 4443, are used to communicate errors and for diagnostics. For
ICMP the value in the IPv4 Protocol field is 1, for ICMPv6 the value in the
IPv6 Next Header field is 58. In IPv6 networks NDP replaces the func-
tionality of ARP. NDP defines new ICMPv6 messages for this purpose and
is thus also reviewed here. ICMP and ICMPv6 share a general message

52

format that can be seen in table 9. Despite sharing the general message
format, the values for types and codes are not shared between ICMP and
ICMPv6. The checksum is calculated in the same fashion, using the Inter-
net Checksum, which is also used by IPv4, TCP and UDP, however ICMPv6
also includes a pseudo-header for IPv6 in the checksum calculation while
ICMP does not do the same for IPv4. The reason behind this is that IPv6
lacks the header checksum that IPv4 has.[76, 17, 66, 31] Since there are
many different ICMP and ICMPv6 messages, supporting them all in the ini-
tial development of a tool would not be feasible. Therefore an initial choice
of ICMP and ICMPv6 messages to support had to be made. We chose to
limit the supported ICMP and ICMPv6 messages to those present in RFC
729 (ICMP) and 4443 (ICMPv6) with the exception of those that have been
deprecated.

Protocol Field Size (Bytes)

ICMP(v4/v6)

Type 1
Code 1
Checksum 2
Body N

Table 9: ICMP and ICMPv6

ICMP messages described in RFC 729[76] are:

• Destination Unreachable

• Time Exceeded

• Parameter Problem

• Redirect

• Echo and Echo Reply

• Timestamp and Timestamp Reply

In addition to the messages listed above Source Quench messages and
Information Request and Information Reply messages are present in RFC
729 but are deprecated and therefore not part of this thesis [42, 43].

ICMPv6 messages described in RFC 4443 [17] are:

• Destination Unreachable

• Packet Too Big

53

• Time Exceeded

• Parameter Problem

• Echo Request and Echo Reply

These messages, in order of appearance in the ICMP standard, RFC
792, can be seen in table 10. The ICMP header field in the table represents
the three fields that are always present in an ICMP and ICMPv6 message
and that can be seen at the beginning of the general message format in
table 9: The Type, Code and Checksum fields.

Some messages are part of one standard, but not the other. Redirect
is not part of ICMPv6, but is present in NDP, an overview of which is pro-
vided later. Timestamp and Timestamp Reply messages are only present
in ICMP . The Packet Too Big message would be unnecessary in ICMP as
routers in an IPv4 network could fragment packets while in IPv6 networks
the fragmenting of a packet is performed exclusively by the originating host,
requiring a mechanism to notify the host that a segment of the network along
the packet’s route could not transport the packet due to the Maximum Trans-
mission Unit (MTU) being lower than the packet’s size. Thus ICMPv6 has a
Packet Too Big message.

One message, the Parameter Problem message, has a difference in size
of a field, the Pointer field, between the two protocols. In ICMP the pointer
field is 1 Byte in size with 3 Bytes left unused, while in ICMPv6 all 4 Bytes
are used for the pointer.

4.7 NDP

In IPv6 networks Neighbor Discovery Protocol (NDP) Neighbor Solicitation
and Neighbor Advertisement messages are used in place of ARP. For this
reason NDP is included in this thesis. It also includes the Redirect message
which is not part of the ICMPv6 RFC, but is present in the ICMP RFC, as
well as Router Solicitation and Advertisement which, in ICMP, is another,
separate protocol that will not be supported in the initial supported protocols
for this thesis as it remains a proposed standard despite existing since 1991
and to our best knowledge does not have widespread usage. NDP makes
use of the same ICMP and ICMPv6 general message format seen in table
9 [32, 66].

NDP also contains options. Options are optional parts of the message
encoded in a TLV format where the length field is the total length of the
option (including the type and length fields) in units of 8 Bytes (64 bits). Zero

54

Message Field Size (Bytes)
ICMP ICMPv6

Destination
Unreachable

ICMP Header 4 4
Unused 4 4
Original packet data N N

Parameter
Problem

ICMP Header 4 4
Pointer 1 4
Unused 3 0
Original packet data N N

Redirect
ICMP Header 4 Not in

ICMPv6Gateway Address 4
Original packet data N

Echo
Echo Reply

ICMP Header 4 4
Identifier 2 2
Sequence Number 2 2
Data N N

Timestamp
Timestamp Reply

ICMP Header 4

Not in
ICMPv6

Identifier 2
Sequence Number 2
Originate Timestamp 4
Receive Timestamp 4
Transmit Timestamp 4

Packet Too Big
ICMP Header Not in

ICMP

4
MTU 4
Original packet data N

Table 10: ICMP/ICMPv6 Messages

or more options may be included at the end of a message, and some options
may appear multiple times. NDP requires these options to be padded to end
on 64-bit boundaries.

The following options are part of NDP:

• Source/Target Link-layer Address

• Prefix Information

• Redirected Header

• MTU

These options can be seen in table 11. As can be seen in the table, dif-
ferent options can be present in different messages with the Source/Target

55

Link-layer Address option being possible in all messages. The Prefix Infor-
mation Option contains two flags, L and A. These flags are the on-link flag,
L, and the autonomous address-configuration flag, A.

Option Field Size (Bytes) Used in

Source/Target
Link-layer Address

Type 1
All messagesLength 1

Link-layer Address N

Prefix Information

Type 1

Router
Advertisement

Length 1
Prefix Length 1
L/A/Reserved 1
Valid Lifetime 4
Preferred Lifetime 4
Reserved 4
Prefix 16

Redirected Header

Type 1

RedirectLength 1
Reserved 6
IP header + data N

MTU

Type 1
Router

Advertisement
Length 1
Reserved 2
MTU 4

Table 11: NDP Options

The following messages are part of NDP:

• Router Solicitation

• Router Advertisement

• Neighbor Solicitation

• Neighbor Advertisement

• Redirect

These messages can be seen in table 12.
The Router Advertisement and Neighbor Advertisement messages both

have flags. The Router Advertisement M and O flags are used to indicate
that addresses (M) or other configuration information (O) is available via

56

Dynamic Host Configuration Protocol for IPv6 (DHCPv6), which is outside
of the scope of this thesis. The Neighbor Advertisement R, S and O flags
indicate that the neighbor is a router (R), whether the advertisement was
a response to a solicitation message (S), and whether the advertisement
should override an existing cache entry (O).

Message Field Size (Bytes)

Router
Solicitation

ICMP Header 4
Reserved 4
Options N

Router
Advertisement

ICMP Header 4
Cur Hop Limit 1
M/O/Reserved 1
Router Lifetime 2
Reachable Time 4
Retrans Time 4
Options N

Neighbor
Solicitation

ICMP Header 4
Reserved 4
Target Address 16
Options N

Neighbor
Advertisement

ICMP Header 4
R/S/O/Reserved 1
Reserved 3
Target Address 16
Options N

Redirect

ICMP Header 4
Reserved 4
Target Address 16
Destination Address 16
Options N

Table 12: NDP Messages

4.8 IPv4 and IPv6 pseudo-headers for TCP and UDP check-
sum calculation

TCP and UDP Checksums cover not only the fields of their headers, but
also specific fields of the lower layer protocol and the entire higher layer
protocol, or payload, they encapsulate. Fields of the lower layer protocol

57

are prepended to the UDP or TCP header when calculating the Checksum,
and are referred to as pseudo-headers. Since pseudo-headers cross the
boundary between layers, they are examined separately in this section. For
the purposes of this thesis, only the IPv4 and IPv6 pseudo-headers are
examined as these are the only two pseudo-headers supported by Shanon,
the anonymization tool developed as part of this thesis.

TCP and UDP Checksums are calculated in a similar fashion to IPv4
Checksums, however in addition to the header itself, the Checksum calcu-
lation also includes a prepended pseudo-header, and the payload or en-
capsulated higher layer protocol. The pseudo-header for IPv4 is defined in
RFC 768 [77] and can be seen in Table 13. The pseudo-header for IPv6 is
defined in RFC 8200 [31] and can be seen in Table 14. The two pseudo-
headers include the same data, but they differ in the order of fields and their
sizes. The fields included in the pseudo-header are relevant for the correct
delivery and integrity of the data delivered: the source and destination ad-
dresses, the protocol that is carried - the next header in the case of IPv6, the
length of the upper layer protocol payload, and a padding of zeroes meant
to ensure the pseudo-header length is a multiple of 16 bits, or two bytes.
This is the size of the words used when calculating the checksum, as well
as the size of the checksum fields in TCP and UDP.

Both the Protocol and Next Header fields used in the pseudo-headers
use the same protocol numbers as IPv4 and IPv6, the assignments of which
are maintained by IANA at [51].

Field Size (Bytes)
Source Address 4
Destination Address 4
Zero 1
Protocol 1
TCP/UDP Length 2

Table 13: IPv4 Pseudo-header for TCP and UDP

4.9 UDP

The User Datagram Protocol (UDP)[77] header, seen in Table 15 is com-
posed of 4 2-byte fields.

The Source and Destination ports serve to identify the process sending
the datagram and the intended receiving process. Port numbers are divided

58

Field Size (Bytes)
Source Address 16
Destination Address 16
Upper Layer Protocol Length 4
Zero 3
Next Header 1

Table 14: IPv6 Pseudo-header for TCP and UDP

into three groups. Well Known Ports are ports between 0 to 1023, Reg-
istered Ports range from 1024 to 49151 and Ephemeral Ports range from
49152 to 65535. Well Known Ports and Registered Ports are assigned spe-
cific uses by IANA. Ephemeral Ports are unassigned and can be used by
various processes [26].

The Length field is the total length of the datagram, including header and
payload.

The Checksum is calculated in a similar fashion to the IPv4 header
checksum, but the UDP checksum covers the lower layer protocol, the UDP
header, and the payload. This is done using a pseudo-header. Pseudo-
headers are described in Section 4.8

Protocol Field Size (Bytes)

UDP

Source port 2
Destination port 2
Length 2
Checksum 2

Table 15: UDP

4.10 TCP

The Transmission Control Protocol (TCP)[79] header can be seen in Table
17. It is composed of numerical fields and single-bit flags. Additional, op-
tional fields may be present at the end of the header. These options are
discussed later in this section.

The Source and Destination port serve the same purpose as in UDP and
are assigned in the same fashion.

The Sequence Number field can have two meanings. When the Syn-
chronization (SYN) flag is set, the Sequence Number is the Initial Sequence
Number (ISN) and the first byte of data is ISN+1. When the SYN flag is not

59

set, the Sequence Number represents the order of the first byte of the TCP
segment in a sequence of segments.

When the Acknowledgment field significant (ACK) flag is set, the Ac-
knowledgment Number contains the value of the next Sequence Number
that the sender of the segment is expecting, and is always sent once a con-
nection is established.

The Data Offset field is similar in purpose to the IPv4 IHL field. It is
the length of the TCP header in 32-bit words. When there are no Options
included at the end of a TCP header this field contains the value 5 Decimal.

The Reserved field is reserved for future use and should be set to 0.
The Flags, also called Control Bits, are a set of 1-bit fields. The Nonce

Sum (NS) flag is an experimental nonce for ECN [89]. The Congestion
Window Reduced (CWR) and ECN-Echo (ECE) flags serve to communi-
cate congestion. They also serve a secondary role which is communicating
ECN capability during the TCP three-way handshake which can be seen in
Figure 2 [80]. The Urgent Pointer field significant (URG) flag signals that
the Urgent Pointer field is significant, signalling that bytes of the payload
up to the byte marked by the Urgent Pointer are urgent. The ACK flag sig-
nals that the Acknowledgement number field contains a value of the next
Sequence Number the sender of the segment is expecting. The Push Func-
tion (PSH) flag is used to signal the receiver should not wait for more data
before sending the received data to the receiving process. The Reset the
connection (RST) flag is used to reset the connection. RFC 793 states that:
“As a general rule, reset (RST) must be sent whenever a segment arrives
which apparently is not intended for the current connection.” The SYN flag
is used to synchronize Sequence numbers when initiating a connection, as
can be seen in the three-way handshake in figure 2 and should otherwise
not be set. The No more data from sender (FIN) flag is used to terminate a
connection, as can be seen in the four-way handshake in figure 3

The Window Size field is the number of bytes the sender of the TCP
segment is willing to accept, beginning with the byte indicated in the Ac-
knowledgment Number

The Checksum field is a checksum calculated using the same method
as the IPv4 and UDP checksum. Like the UDP checksum, it makes use of
a pseudo-header to also cover fields of the lower layer protocol. Pseudo-
headers are described in Section 4.8.

The Urgent Pointer is used in combination with the URG flag and is used
to indicate which byte, relative to the received segment’s sequence number,
is the last byte of urgent data.

60

Figure 2: TCP three-way handshake

Figure 3: TCP four-way handshake

61

TCP Options

TCP supports up to 40 Bytes of options. :

• End of Options

• No Operation (padding)

• Maximum Segment Size

• Window Scale

• Timestamp

• Selective Acknowledgment

TCP Options can take on 2 possible forms. Either a single byte determin-
ing the kind of option with no additional data present, or a kind/length/data
triplet with 1 byte determining the type of option, 1 byte determining the total
length of the option (including kind, length and data fields) and a variable
amount of data. The fields and values present in the TCP options listed
above can be seen in table 16.

The End of Options, No Operation and Maximum Segment Size options
are defined in RFC 793 [79] . End of Options is used to mark the end of
the options list. No Operation can be used as padding to align options to
32-bit boundaries. If the Maximum Segment Size option is present in a TCP
segment it indicates the maximum size of a TCP segment the sender is
willing to receive. Maximum Segment Size must only be sent with a TCP
segment that has the SYN flag set.

The Window Scale and Timestamp options are defined in RFC 7323 [5].
The Window Scale option expands the Window Size field by communicating
the number of left shifts to be performed on the Window Size to determine
the actual maximum size. This expands the TCP segment size from 65
kibibytes to 1 gibibytes. When using the Window Scale option TCP deter-
mines if a segment is a previously received or new segment by testing if the
sequence number is within 231 bytes of the left edge of the receive window.
This limits the maximum size of a window to below 230 bytes. Since the
maximum unscaled window size is 216 − 1 this limits the magnitude of the
shift to a maximum of 14 places. The Window Scale option may be present
in a TCP segment with the SYN flag set to indicate the sender of the seg-
ment is willing to use Window Scaling and communicate the scaling factor
to be applied to its Window Size, as well as in a segment with the SYN and
ACK flags set (if the option was present in an initial SYN segment) to agree

62

Option Field Length Value
End of Options Kind 1 0
No Operation Kind 1 1

Maximum Segment Size
Kind 1 2
Length 1 4
Maximum Segment Size 2 N

Window Scale
Kind 1 3
Length 1 3
Shift Count 1 N

Timestamp

Kind 1 8
Length 1 10
TS Value 4 N
TS Echo Reply 4 N

Selective Acknowledgment
Permitted

Kind 1 4
Length 1 2

Selective Acknowledgment

Kind 1 5
Length 1 N
Left Edge of Nth Block 4 N
Right Edge of Nth Block 4 N

Table 16: TCP Options

to use it. The Timestamp option’s carries 2 fields, Timestamp Value and
Timestamp Echo Reply. The Timestamp Value field contains the timestamp
of the sender. The Timestamp Echo Reply is valid when the ACK bit is set
and should otherwise be set to zero. The process of deciding which received
timestamp to echo takes into account delayed acknowledgements, lost seg-
ments and segments filling holes left by lost segments in order to arrive at
a more precise round trip time estimate. For the purposes of anonymization
this exact mechanism appears to be irrelevant as reducing the precision of
timestamps already interferes with its stated goals, and it is therefore not
further discussed in this work. The Timestamp option may be sent with a
segment with a SYN flag set to indicate willingness to use this option and
in a segment with the SYN and ACK flags set (if received in a segment with
a SYN flag set) to agree to use it. Once successfully negotiated (both the
initial SYN segment and the SYN-ACK response contained the option) the
Timestamp option must be sent in every segment that does not have the
RST flag set for the negotiated connection, and segments received without
it should be silently dropped without aborting the connection.

TCP Selective Acknowledgement is defined in RFC 2018 and consists
of 2 options. The first option is the Selective Acknowledgment Permitted

63

option. The purpose of this option is to indicate support for Selective Ac-
knowledgements, and it may be sent with a segment with the SYN flag set,
but must not be sent otherwise. The choice of using 2 bytes rather than
making it a 1-byte kind-only option does not seem to serve any purpose and
would appear to be a design oversight. The second option is the Selective
Acknowledgement option. It is composed of pairs of 32-bit integers in net-
work byte order which mark the left and right edges of continuous blocks of
received data. Thus data in TCP’s own Acknowledgement field signifies the
last byte of received continuous data in order, with the attached Selective
Acknowledgement option identifying blocks that have also been received,
but with data missing between the left edge of the 1st block and the right
edge of the last received in-order block of data, as well as between the right
and left edges of the blocks in the Selective Acknowledgment option.

The TCP header ends with zero padding for the purpose of aligning the
beginning of data with a 32-bit boundary. This is necessary as the data
offset field expresses the beginning of the data in 32-bit words.

64

P
ro

to
co

l
Fi

el
d

S
iz

e
(B

yt
es

)
S

ub
fie

ld
s

na
m

e
si

ze
(b

its
)

TC
P

S
ou

rc
e

po
rt

2
D

es
tin

at
io

n
po

rt
2

S
eq

ue
nc

e
nu

m
be

r
4

A
ck

no
w

le
dg

m
en

tn
um

be
r

4

D
at

a
of

fs
et

,R
es

er
ve

d,
Fl

ag
s

2
D

at
a

of
fs

et
4

R
es

er
ve

d
3

N
S

1
C

W
R

1
E

C
E

1
U

R
G

1
A

C
K

1
P

S
H

1
R

S
T

1
S

Y
N

1
FI

N
1

W
in

do
w

S
iz

e
2

C
he

ck
su

m
2

U
rg

en
tp

oi
nt

er
2

O
pt

io
ns

N

Ta
bl

e
17

:
TC

P

65

5 Anonymization of chosen protocols

In this chapter the importance of anonymizing the different types of fields
encountered in the chosen protocols will be discussed.

Despite sharing a common function at a high level, the semantics of
the different types of fields discussed here can differ significantly between
protocols. Due to their commonalities it makes sense to group them for the
sake of discussing anonymization, however when anonymizing the fields it
is necessary to pay attention to the differences between them.

An example of these differences between functionally similar protocol
fields can be seen in Section 5.1 below. Despite both IP and MAC addresses
being addressing information, the addresses are semantically different and
cannot be anonymized in the same fashion.

Similar situations occur with different fields in all the protocols discussed
in this thesis. For this reason, while the general ideas in this chapter apply
to the types of fields explored here, it is necessary to consider each field
individually in the context of its operation in the protocol it is a part of when
anonymizing that field.

5.1 Addresses

The importance of anonymizing addresses is high and a lot of work in
anonymization has been dedicated just to methods of anonymizing IPv4 ad-
dresses and demonstrating these methods are sound and offer high levels
of protection, as well as countering these methods. It therefore seems sen-
sible to also dedicate effort to anonymizing addresses in this thesis as well.
The addresses present in the protocols chosen for this thesis are MAC, IPv4
and IPv6 addresses. At the most basic level, addresses identify devices for
the purpose of communicating with them in a network. However, these ad-
dresses can have different meanings and scopes.

MAC addresses

A MAC address is used to communicate on a shared medium, such as a
physical cable or wireless network, or in a segment of a network where
multiple devices are connected via a switch.

The first two bits of a MAC address serve specific purposes. The first
bit determines whether an address is the address of an individual device(0),
or a group address(1). The second bit determines whether an address is
globally administered(0), or assigned locally(1). Additionally, the broadcast

66

address, an address used to send broadcast frames to all devices on a
shared medium, is an address where all bits are set to 1. For globally admin-
istered addresses prefixes are assigned from an address space managed
by the Institute of Electrical and Electronics Engineers (IEEE). According to
the IEEE 802 Standard three different types of MAC address spaces are
currently able to be registered. The MAC Addresses - Large (MA-L) ad-
dress space has 24 IEEE assigned bits (out of 48) that can be used as a
company or organization identifier and are known under the name Orga-
nizationally Unique Identifier (OUI). Many large network equipment manu-
facturers will be using this address space and their network equipment will
thus match the commonly mentioned division of MAC addresses. The MAC
Addresses - Medium (MA-M) address space begins with 28 IEEE assigned
bits which cannot be used as a company or organization identifier. The MAC
Addresses - Small (MA-S) address space begins with 36 IEEE assigned bits
which can be used to identify a company or organization [53].

IPv4 and IPv6 addresses

IPv4 and IPv6 addresses are used for communicating within and between
networks and can be used to access a device across large distances.

The IPv4 address space is managed by IANA. It is divided into blocks
which are either reserved for a specific purpose or assigned to a local reg-
istry which can then assign it to individual organizations such as service
providers.

The IPv4 address spaces that follow are assigned specific purposes
by IANA. The addresses will be written in Classless Inter-Domain Routing
(CIDR) notation, meaning an IPv4 address will be written in the form of four
numbers representing the four bytes of the address, separated by dots. Fol-
lowing the IPv4 address will be a slash and a number which represents the
number of bits, starting from the left side of the IPv4 address, which repre-
sents the network portion of the address.

The 0.0.0.0/8 address space is reserved for self-identification [6].
The 127.0.0.0/8 address space is reserved for Loopback and must not

appear outside a host [6].
The 100.64.0.0/10 address space is reserved for the Shared Address

Space. These addresses are used by service providers in Carrier-Grade
Network Address Translation (CGN) deployments, a measure meant to ex-
tend the life of IPv4 until IPv6 is fully deployed [99].

The 169.254.0.0/16 address space is reserved for Link-Local usage,
meaning communication on the same physical or logical link [14].

67

The 192.168.0.0/16, 172.16.0.0/12, and 10.0.0.0/8 address spaces are
reserved for private use, meaning these addresses can be used by private
individuals or organizations within private networks without a need to regis-
ter them with a registry. These addresses are not intended to be routed on
the public internet [81].

The 192.0.2.0/24, 198.51.100.0/24, and 203.0.113.0/24 address spaces
are referred to as TEST-NET-1, TEST-NET-2, and TEST-NET-3, and are in-
tended for use in documentation and examples in order to avoid conflicts
and confusion. Addresses within these blocks should not appear on the
public Internet [2].

The 198.18.0.0/15 address space is reserved for benchmarking network
devices [7].

The 192.88.99.0/24 address space is reserved for the deprecated 6to4
anycast defined in RFC 3068 [47], a mechanism for communication between
IPv6 networks over IPv4 networks. It was deprecated in by RFC 7526 [97].

Address blocks in the 224.0.0.0/8-239.0.0.0/8 range are reserved for dif-
ferent kinds of Multicast traffic [25].

Address blocks in the 240.0.0.0/8-255.0.0.0/8 blocks are reserved for fu-
ture uses, with the exception of 255.255.255.255/32 [33]. 255.255.255.255/32
is used to broadcast to all immediate neighbours [64].

The IPv6 address space, like the IPv4 address space, is managed by
IANA and divided into blocks of addresses with specific purposes or as-
signed to registries.

IPv6 CIDR notation differs slightly from IPv4 notation. Blocks of up to
four hexadecimal characters representing two bytes each, are separated by
a colon. One group of two colons may be present in the notation, indicating
an uninterrupted sequence of zeroes. Like with IPv4, a slash followed by
a number at the end of the sequence indicates the number of bits, starting
from the left side of the IPv6 address, which represents the network portion
of the address.

The IPv6 address spaces that follow are assigned specific purposes by
IANA. This list of address spaces was compiled by Reseaux IP Europeens
(RIPE) and is available at [67].

The ::/128 address space can only be used as by a host that is initializing
before it learns its own address. This is similar to the 0.0.0.0/8 address
space in IPv4.

The ::1/128 IPv6 address is used for loopback. This is similar to the
function of the 127.0.0.0/8 address space in IPv4.

The ::ffff:0:0/96 address space is used to map IPv4 addresses to IPv6
addresses. The last four bytes of the IPv6 address can be written using the

68

same CIDR notation as the IPv4 address that is being mapped, for example
::ffff:192.0.2.47.

The fc00::/7 address space is reserved for Unique Local Addresses.
These addresses serve the same purpose as IPv4 private addresses.

The fe80::/10 address space is reserved for Link-Local addresses. These
addresses serve the same purpose as IPv4 Link-Local addresses.

The 2001:0000::/32 address space is used for Teredo, a mechanism that
enables hosts located behind IPv4 Network Address Translations (NATs) to
connect to the internet using IPv6 via a Teredo sevice [48]. The 2001:0002::/48
address space is reserved for benchmarking, similar to the 198.18.0.0/15
IPv4 address space.

The 2001:20::/28 address space is currently being used for an experi-
ment named ORCHID2 [59].

The 2002::/16 address space is used for 6to4 unicast which is defined
in RFC 3056 [13]. Unlike the IPv4 6to4 anycast transition mechanism, the
unicast 6to4 mechanism is not deprecated.

The 2001:db8::/32 address space is reserved for documentation, similar
to the TEST-NET-1, TEST-NET-2, and TEST-NET-3 IPv4 address spaces.

The ff00::/8 address space is used for multicast.

Anonymization considerations

When capturing network traffic in a local network, devices will have both
unique IP addresses and unique MAC addresses. When communicating
between networks, the MAC addresses of the communicating devices are
typically not transmitted to the distant host. When recording network traffic
on a transit link, between networks, captured packets will have the MAC
addresses of the communicating routers, and many different IP addresses.

Both MAC and IPv4/IPv6 addresses can be used to infer information
about the structure of a network. In addition to this, MAC addresses can
potentially be used to uniquely identify a device, as well as to identify the
device manufacturer.

IPv4 and IPv6 addresses can also potentially be used to uniquely iden-
tify a particular device. Servers with static addresses can be expected to
have these addresses for long periods of time. In cases where the IPv4
or IPv6 address of a device is dynamically assigned a history of addresses
can be used to identify a specific device. Additionally, IPv4 and IPv6 ad-
dress spaces are assigned by and to various organizations, meaning these
addresses can be used to narrow down the geographic location of a device,
the organization it belongs to or the network service provider it is connected

69

to.
Parts of the IPv4 and IPv6 address space serve specific purposes, and

do not identify a particular host within a local network or on the internet. For
example, local addresses are used in many networks. On the other hand,
the presence of these addresses can also reveal the presence of certain
services in the network, such as the use of CGN or Teredo.

Given this information, it is evident that both MAC addresses and IPv4/IPv6
addresses need to be suitably anonymized to prevent revealing unwanted
information about devices or the structure of a network. In addition to the
protocols themselves, the addresses mentioned here can also be present in
other protocols such as ARP and NDP.

5.2 Length

The protocols chosen for anonymization in this work and their options have
various length fields. Some of these fields are of no importance to anonymiza-
tion in and of themselves. For example the various options in NDP all have
a length field, but the length is defined by the message type or the Link-
layer in use and as such anonymizing them serves no purpose. Likewise
the Hardware and Protocol Address Length in ARP will be known given the
limited protocol choices of the tool. The same can be said for the length
in cases where messages of known prescribed lengths are in use. How-
ever, the length of a protocol payload or a pattern of payload lengths can
be used to infer the data that was carried or the upper layer protocols in
use.[55] For this reason in cases where the upper layer protocol needs to
be concealed or a risk exists of exposing data that has been accessed it
is prudent to consider recalculating lengths and anonymizing upper layer
payloads appropriately to conceal their true length.

In the case of Ethernet, the Type/Length field can serve two purposes,
being either the length of the higher-layer payload, or a type field indicating
the higher-layer protocol in use, depending on the value of the field. When
anonymizing Ethernet, this duality needs to be taken into account in order
to properly anonymize the field. The values this field can take on and their
meanings are described in Section 4.2.

5.3 Type fields

In situations where concealing the activity of certain protocols is desirable,
anonymizing type fields may be necessary. This only makes sense if the up-
per layer data is anonymized completely or removed, as it would otherwise

70

be simple to discover which protocol was in use. Patterns of communication,
such as a TCP handshake, could also be used to infer the protocols in use.

5.4 Checksums

In an attack on anonymization checksums can be used to verify if deanonymiza-
tion was successful. For this reason checksums should always be anonymized.
In situations where the validity of the checksum is important, they can be re-
calculated and, if an incorrect checksum is required to mark packets that
had incorrect checksums in the original trace, the calculated checksum can
simply be incremented.

5.5 Flags

In some cases, such as the Urgent Pointer in TCP, a flag may be set or unset
without necessarily breaking the operation of the protocol. Such flags could
be used to introduce patterns into a capture that could aid in deanonymiza-
tion. Other flags, such as the TCP SYN, ACK, FIN and RST flags, are an
important part of the workings of the protocol and changing them would
interfere with the operation of the protocol or subsequent interpretation of
captured packets. As such, it is important to consider the value of a particu-
lar flag and whether or not to make sure the flag is cleared to avoid potential
patterns.

5.6 Port numbers

TCP and UDP Port numbers are divided into three groups. For the purposes
of anonymization Well Known Ports (ports ranging between 0 and 1023) and
Registered Ports (between 1024 and 49151) are of interest. These ports are
assigned to specific uses and as such can reveal the presence of certain
types of services on a host even if upper layer payloads are anonymized
and their types are removed. As such it may be necessary to anonymize
port numbers in order to prevent matching a host in an anonymized capture
with the actual real host based on knowledge about the organization sharing
the capture.

5.7 Reserved fields

Reserved fields are fields left for future updates of protocols. Reserved
fields should be set to 0 and ignored. These fields could, however, be used

71

to pass on secret messages or introduce patterns into an anonymized trace
that could later be used to deanonymize the trace.

5.8 Payload or Data field

Network protocols operate in a layered architecture where each layer is re-
sponsible for providing layer-specific services to the layer above it. The data
or payload field of a protocol instance can therefore contain an instance of
a higher-layer protocol or user data, depending on the situation.

For protocols which have a type field, the type of the higher-layer protocol
is specified in this field. In the case of TCP and UDP port numbers can be
used providing a Well Known Port number or Registered Port number is
in use, as these are linked to specific applications and use cases. These
values should not be blindly trusted, however, as it is possible to misuse
them.

More details on the layered network architecture are provided in Section
4.1.

5.9 Other fields of interest

In addition to the fields listed above several other fields that can potentially
be abused or reveal information exist in the protocols supported by this
work. In IPv4 the Identification field is intended to be used only to identify
fragments of a same packet, but there does not seem to be anything pre-
venting the field from being used to introduce patterns into a packet trace.
The TTL field can potentially be used to identify the OS in use on a host
since different OSes use different initial values [84]. The same applies to
the IPv6 Hop Limit field which serves the same purpose as the IPv4 TTL
field. Timestamps present in ICMP Timestamp messages, TCP Timestamp
options, and in the pcapng file format could reveal the time a capture was
taken which may help matching with known patterns that were injected or
happened naturally at the time of the capture, helping deanonymization.

When anonymizing timestamps it is also important to consider the res-
olution of timestamps, which may differ between different timestamps, in
order to achieve a consistent level of anonymization. IPv6 Hop-by-hop Op-
tions and Destination Options can contain multiple TLV encoded options
which can carry different kinds of data. These fields are ripe for abuse and
need to be carefully examined. In addition to their contents, the order of
optional headers, such as TCP Options, may also help reveal information
about the source device, such as the OS it is running [87]. It is conceivable

72

that the same could apply to IPv6 Extension Headers and other optional
headers.

5.10 Future considerations

In addition to all the information above, new ways of abusing known fields
may be discovered in the future, rendering some of the anonymization meth-
ods and considerations discussed in this work obsolete. Methods may al-
ready exist that are of yet not publicly known or have not been sufficiently
discussed. As such these considerations should not be taken at face value,
but used to inform decisions made when anonymizing a packet trace in the
context of the environment the trace comes from, the security requirements
of the organization providing the trace and the requirements of the research
using the trace in order to find an acceptable trade between a reasonable
level of security and research value.

73

6 Wireshark as a basis of a new anonymization
tool

Wireshark [40] is an open source protocol analyzer with support for a wide
variety of protocols across all layers. It supports both online analysis through
packet capture as well as offline analysis of packets captures from a wide va-
riety of file formats including libpcap’s pcap file format and Wireshark’s own
pcapng format. Wireshark is available natively on many platforms, includ-
ing Windows, Linux and MacOS. The remainder of this chapter discusses
the features of Wireshark based on the features outlined in Chapter 3, the
pcapng file format used by Wireshark, and the way in which the Lua scripting
language is used in Wireshark to retrieve protocol information.

6.1 Features of Wireshark

Wireshark is a good choice as a basis for a new anonymization tool due to
its support for the many desirable features outlined in Chapter 3. Large files
are supported both by libpcap’s pcap file format as well as Wireshark’s own
pcapng file format. Consistency can in part be achieved through the pcapng
file format’s support for concatenating multiple captures, however support
for consistent online anonymization and consistent anonymization at multi-
ple locations would have to come from the tool itself as well as be possible
for the particular policy developed by a prospective user. Wireshark’s capa-
bility to analyze both online and packets captured from files allows for the
development of an anonymization tool supporting online as well as offline
anonymization. Wireshark itself is extensible through the writing of proto-
col dissectors and taps. Dissectors enable the dissection (analysis) of new
protocols through the development of new dissectors. Taps allow tapping
into (accessing programmatically) the information made available by these
dissectors. This extensibility and support for a wide variety of protocols can
also be utilized by an anonymization tool by allowing users to write their
own anonymizers for protocols of their choosing. However, some protocol
features may require more than just an existing dissector and filter (e.g. gen-
erating checksums post-anonymization). Performance does not currently
seem to be a strong feature in Wireshark, as it is only single-threaded at the
time and may perform slowly with large captures.[23]

74

6.2 The pcapng file format

The pcapng[61] file format is a file format for storing network packet traces
used by Wireshark. It was developed to address the lack of functionality of
libpcap’s pcap file format. The file format consists of a set of blocks defining
various aspects of the capture. These blocks are:

• Section Header Block (SHB): Section Header Blocks define the be-
ginning of a section in a pcapng file, which can contain multiple sec-
tions. Since a pcapng file must always begin with a Section Header
Block (SHB) it is possible to merge multiple pcapng files into a valid
pcapng file by simply concatenating them.

• Interface Description Block (IDB): An Interface Description Block is
used to store information related to an interface that was used to cap-
ture packets. Interface Description Blocks (IDBs) can be used to store
additional information about a capture device such as the interface’s
name, description, addresses and other. Other blocks within a section
can reference these IDBs.

• Interface Statistics Block (ISB): An Interface Statistics Block is used
to store capture statistics for a particular interface which is specified
by an interface Identifier (ID) in the block. Statistics are recorded as
options added to the block. These can be the capture start time, end
time, received and dropped packets, and others.

• Enhanced Packet Block (EPB): An Enhanced Packet Block stores a
captured packet as well as additional information regarding this packet
such as a 64-bit timestamp, the original length and the actually cap-
tured length, and an interface ID that references an existing IDB in the
same section.

• Simple Packet Block (SPB): A Simple Packet Block is a simpler block
for storing packets. It only stores the original length and the captured
portion of the packet, omitting the extra information present in an En-
hanced Packet Block (EPB).

• Name Resolution Block (NRB): A Name Resolution Block is used to
store pairs of IPv4 and IPv6 addresses and their records as retrieved
from a Domain Name System (DNS) server.

• Custom Block (CB): A Custom Block can be used to store custom
data.

75

Each block may also have additional options. These are optional fields
that add additional information to the particular block. Many of these options
are block-dependant, and thus will not be listed here. An end-of-options
option marks the end of options for each block type. A comment option
containing UTF-8 text as well as a custom option the contents of which are
up to the implementer can be added to any block.

In addition to the blocks mentioned above several experimental blocks
exist. Due to being experimental, they are not mentioned in this thesis.

Wireshark’s pcapng file format could be used to attach meta-data directly
to captures. Custom blocks and options can be used by an application to
attach meta-data to particular packets, sections marking groups of multi-
ple captured packets or to the entire file. This feature can also be used to
support recoverability by marking particular packets or sections of a file (or
entire files) as having experienced a certain error in a way the application
can parse and possibly correct. The configuration used to anonymize the
file could also be stored in the file in a machine-readable way that would
allow the application to execute additional anonymization operations while
leaving already sufficiently anonymized parts untouched. It is important to
note that a Private Enterprise Number (PEN) is needed in order to generate
a valid Custom Block. This is to avoid number space collisions between or-
ganizations looking to implement their own custom blocks in the file format.
A PEN can be freely registered with IANA by filling out a form.[50]

The tool developed as part of this thesis makes use of the SHB, IDB and
EPB, as well as the comment, end of options and interface timestamp res-
olution options. A more detailed look at the structures of these three blocks
and the attached options is provided in Section 7.2 where the functions for
writing a pcapng filesystem are discussed.

6.3 Lua in Wireshark

Lua, meaning ”Moon” in Portuguese, is a free, open-source scripting lan-
guage developed and maintained by the Pontificial Catholic University of
Rio de Janeiro in Brazil [34]. A more in-depth analysis of Lua itself and the
many functions available in Wireshark is out of scope for this thesis. Instead,
this section will focus on functions used in this thesis.

In Wireshark Lua can be used to write dissectors, post-dissectors and
taps. [21]

Dissectors are used to analyze a part of the data of a captured packet.
They can be written in Lua, which can help prototype dissectors, but all
Wireshark dissectors are written in C for performance reasons.

76

Post-dissectors are similar to dissectors, but run after all other dissectors
have run.

Taps are used to retrieve information after a protocol has been analyzed
by Wireshark’s dissectors. This means taps have read access to all fields of
the protocol and Wireshark’s interpretation of these fields, as well as any ad-
ditional data Wireshark generates about them, such as TCP state informa-
tion or the validity of checksums. For the purposes of this thesis Wireshark
taps were used so the main focus of this section will be taps.

Taps

The official Wireshark documentation is too short and unclear in many cases.
The description of taps is one such case. For example, in the wiki article for
Lua taps [22] taps are described as a mechanism to fetch data from every
frame, however an example script using this mechanism is also referred to
as a tap. In the Wireshark documentation a function that is called for every
packet matching a certain filter or having a certain tap is referred to as a
listener [20]. In this context the word tap seems to refer to an internal mech-
anism by which data from dissectors and post-dissectors is made available.
In the following text the function that is called when a particular protocol has
been dissected will be referred to as a listener.

To create a listener, the function Listener.new is used. The function can
accept three optional parameters. The first parameter is referred to as the
tap. The exact meaning of tap is, again, unclear in this context, however list-
ing available listener names using the Listener.list function reveals that these
tap names correspond to the names of protocols as used when using filters
in Wireshark. The second parameter is the filter. This would seem to be any
filter which could be applied in Wireshark. The third parameter is named
allfields and is described as a boolean determining if all fields should be ge-
neated. The exact meaning of this is not demonstrated or further clarified in
the documentation. The result of calling Listener.new is a table containing a
set of callback functions which Wireshark itself will execute. The function of
interest for this thesis is the listener.packet function which is called for every
packet Wireshark processes that matches the provided tap and filter. When
called by Wireshark, the listener.packet function is given three parameters.
A Packet Information (pinfo) object containing information about the cap-
tured packet, a TVB object representing the buffer containing the bytes of
the captured packet, and a Tap Information (tapinfo) table that contains in-
formation based on the type of listener, or nil. The documentation currently
lacks further information about the tapinfo table [20]. .

77

Retrieving protocol data

The various fields of the protocols analyzed by Wireshark can be retrieved
using a field extractor. Field extractors are creates using the Field.new func-
tion with a field name as a parameter. Field names correspond to the filters
that can be used in Wireshark. For example “ip.src” would correspond to
the source address of an IPv4 packet. Field extractors need to be created
outside the callback functions previously mentioned in this section. Once
created, a field extractor can be called within a callback function and will
return an array of fieldinfo objects. The objects in this array will be ordered
by order of appearance in the analyzed portion of the captured frame. This
behaviour is not explained in the documentation, and the call is treated as
retrieving a single value of a field in several examples, which can be con-
fusing. If an array of values is not expected and the returned value is stored
in a variable instead of a table, only the first value will be retrieved. The
lack of documentation for this scenario can cause issues in situations where
multiple instances of the same protocol are expected to be in a captured
packet, such as can be the case with IP in IP encapsulation or ICMP and
ICMPv6 containing a portion of the packet that caused the ICMP or ICMPv6
message.

The fieldinfo objects created by calling a field extractor inside a callback
function contain several functions and properties for retrieving information
about a field, however they lack a method to get the binary data of a field.
For most intended purposes this is not an issue, however for our use case
we require the binary data. To do this the offset and length of the field can
be retrieved from the fieldinfo object, then a tvbrange object containing the
bytes in this part of the buffer can be retrieved from the TVB buffer using the
tvb:range function with the offset and length of the field as parameters. One
important thing to note about this is that the retrieved offset of a protocol field
will correspond to the first byte of the buffer containing the first bit of this field.
This is important when retrieving the bytes of fields which do not begin or
end on byte boundaries, such as the version field in IPv4 and IPv6 headers
which begins on a byte boundary, but is only four bits long. Likewise, the
length of a field is expressed in bytes and rounded up. As a result the
aforementioned IPv4 version field begins at the first byte of the IPv4 header
and has a length of one byte. This means that an IPv4 version field retrieved
from Wireshark’s buffer in this fashion contains both the version field and the
IHL field. The values retrieved from the buffer in this fashion are encoded
in the form of hexadecimal characters by default. In order to retrieve the
actual bytes the tvbrange:raw function needs to be called, which will return
the actual (raw) bytes contained in the retrieved part of the TVB buffer in the

78

form of a string of bytes. For this reason bytes retrieved from the TVB buffer
in this way may be referred to as raw bytes in parts of this thesis [19, 18]

79

7 libAnonLua

libAnonLua is a Lua library written in C which contains constants, functions
for writing a pcapng files, anonymization functions, functions for recalcu-
lating correct checksums, and helper functions. It is the core functional
part of Shanon. Its place in the tool can be seen in Figure 5 in Chapter
8. libAnonLua source code can be found online at [29].

In this chapter an overview of the constants and functions provided by
libAnonLua is provided.

7.1 Constants

libAnonLua makes several constants available for use in code using the
library. These are intended to make using the functions of the library easier.
The pcapng file format has several link types that can be present in IDBs
and which determine what layer 2 protocol the data in the EPBs or Simple
Packet Blocks (SPBs) is treated as. For ease of use these are loaded from
a Comma Separated Values (CSV) file named linktypes.csv that needs to
be located in the same folder as the library. The libAnonLua source files
come with this file included. Loading these values at library initialization
makes it possible to add additional linktypes in the future without reworking
the whole library. The link types are then made available under easy to
remember names prefixed with LINKTYPE . For example, for Ethernet the
link type would be LINKTYPE ETHERNET. Since the full table of link types is
long, it is not included here.

Since the black marker anonymization function can be applied starting
at the Least Significant Bit (LSB) or Most Significant Bit (MSB), effectively
either removing a prefix or suffix from an address, two constants for the
direction are also present to make using this function more intuitive. These
are black marker LSB and black marker MSB.

Finally, a version constant is made available in order to ensure that the
appropriate version of libAnonLua is being used. This serves to prevent
situations where an outdated library would cause compatibility issues due
to changes in library functions.

7.2 Writing pcapng files

libAnonLua has three functions for writing pcapng files. These functions
are:

• create filesystem(string path)

80

• add interface(string path, LINKTYPE type)

• write packet(string path, string raw packet bytes, integer IDB

ID, [double timestamp], [string comment])

The create filesystem function

The create filesystem function accepts a single parameter: a path, includ-
ing filename and extension, and creates a pcapng compatible file with that
name by writing a minimal SHB to that file. This minimal SHB can be seen
in table 18.

In case of success the create filesystem function returns a value of 1,
otherwise it returns -1.

Protocol Field Size (Bits) Value

SHB

Block Type 32 0x0A0D0D0A
Block Length 32 28
Byte Order Magic 32 0x1A2B3C4D
Major Version 16 1
Minor Version 16 0
Section Length 64 0
Block Length 32 28

Table 18: A minimal SHB block

The add interface function

The add interface function accepts two parameters: a path of the same
kind as the create filesystem function and a LINKTYPE parameter, which
is an integer constant determining the type of layer 2 interface the IDB rep-
resents. Link types are explained in Section 7.1.

A IDB as written by libAnonLua can be seen in table 19. The minimal
length of a IDB without any additional options is 20 bytes, however an addi-
tional 12 bytes are added to the IDB produced by libAnonLua as an option
(Interface Timestamp Resolution, if tsresol) is added to each IDB to set
the time resolution to nanoseconds instead of the default, microseconds,
which are used for compatibility with libpcap pcap files. The timestamp res-
olution is added for compatibility with both Wireshark and the method used
by libAnonLua, internally, to get precise system time. Wireshark’s Lua Ap-
plication Programming Interface (API) returns the absolute time a packet
was captured at in seconds as a Lua number, which is in a double-precision

81

floating-point format. Thus a high precision in nanoseconds can be reached.
Using the default microsecond time resolution would possibly destroy the
precision preserved in this timestamp. Likewise, the method used to get
system time internally in libAnonLua returns the time in nanoseconds. The
exact precision of this time depends on the time resolution of the system
clock. Since options need to align to a 32-bit boundary, 24 bits of pad are
added following the option, then an endofopt option is added which marks
the end of options.

In case of success the add interface function returns the IDB ID, an
identifier for the created IDB that is used when writing packets to deter-
mine which interface the packets originated from. In case of failure the
add interface function returns a value of -1.

Protocol Field Size (Bits) Value

IDB

Block Type 32 0x00000001
Block Length 32 32
Link Type 16 LINKTYPE

Reserved 16 0
SnapLen 32 0
Option if tsresol Option code 16 0x09
Option if tsresol Length 16 0x01
Option if tsresol Value 8 0x09
Pad 24 0
Option opt endofopt Option code 16 0
Option opt endofopt Length 16 0
Block Length 32 32

Table 19: A IDB as written by LibAnonLua

The write packet function

The write packet function accepts up to five parameters: the path to the
file to write into, same as the create filesystem and add interface func-
tions, a string containing the frame bytes to write, the IDB ID of the interface
this frame was captured on, an optional timestamp, in seconds, and an op-
tional comment. The string containing the packet bytes is referred to as a
raw string in reference to the Wireshark Lua API where an array of bytes
taken from a packet will be a string of hex characters, and the method raw
is used to get the actual binary values of these bytes. The IDB ID refers
to the ID returned by the add interface function and marks the generated

82

EPB as having come from that interface and using the layer 2 protocol of
that interface. If the optional timestamp is omitted or a non-number value is
used the system time at the time libAnonLua writes this packet is used for
the time. This results in the order of packets remaining the same as during
the capture or in the original capture file as packets are processed one af-
ter the other in sequence, but destroys the original times between packets
as these now depend solely on how quickly the packets were processed
before being written. If the optional comment is included, it is attached to
the created EPB as a comment option and will show up as a comment on
this packet when viewing the generated capture in Wireshark. Due to the
varying possible comment lengths zero padding may or may not be present
to align the comment option to a 32-bit boundary. The fields of an EPB as
used by libAnonLua can be seen in table 20.

Protocol Field Size (Bits) Value

EPB

Block Type 32 0x00000006
Block Length 32 Variable
Interface ID 32 1
Timestamp High 32 Variable
Timestamp Low 32 Variable
Captured Packet Length 32 0x09
Original Packet Length 32 0x01
Packet data Variable Variable
Option opt comment Option code 16 0x01
Option opt comment Length 16 Variable
Option opt comment comment Variable Variable
Pad Variable 0
Option opt endofopt Option code 16 0
Option opt endofopt Length 16 0
Block Length 32 Variable

Table 20: The fields of an EPB

7.3 Anonymization functions

libAnonLua contains the following anonymization functions:

• black marker(string raw bytes, int mask length, int direction)

• apply mask(string raw bytes, string raw mask)

83

• get port range(string raw port number)

• HMAC(string raw bytes, string salt, int iterations)

• CryptoPAN functions:

– init cryptoPAN(string filename)

– cryptoPAN anonymize ipv4(string raw IPv4 address)

– cryptoPAN anonymize ipv6(string raw IPv6 address)

black marker

The black marker function accepts three parameters: a string of bytes to
anonymize, the length of bytes to mask, and the direction in which to anonymize
in the form of an integer. For ease of use this direction is available as two
constants: black marker LSB to start anonymizing from the Least Signifi-
cant Bit (LSB) and black marker MSB to start from the Most Significant Bit
(MSB).

The return value of the black marker function is the anonymized string
of bytes.

apply mask

The apply mask function accepts two parameters: a string of bytes to anonymize,
and a string of bytes representing a mask that will be applied to the bytes
that are to be anonymized in the same order.

The apply mask function returns a string of bytes with the mask applied
to them.

get port range

The get port range function accepts a TCP or UDP port number in the form
of a raw string of bytes and returns a value indicative of the range the port
comes from.

For well-known ports a value of 0 is returned, for registered ports a value
of 1024, and for ephemeral ports a value of 49152.

HMAC

The HMAC function uses OpenSSL’s libcrypto library to calculate a Pass-
word Based Key Derivation Function 2 (PBKDF2) HMAC of the provided

84

bytes using 256-bit Secure Hash Algorithm 2 (SHA-2). This algorithm is typ-
ically employed to protect passwords stored in databases, in which case the
bytes provided would be the password, the salt would be a randomly gener-
ated value used to protect against pre-computed hashes, and the number of
iterations determines the number of times the function is executed over the
provided password. In the HMAC function instead of a password the provided
bytes are hashed, and the salt and iterations serve as a key of sorts. For
the same salt and number of iterations the HMAC function will return the same
result consistently for the same input bytes.

On failure the HMAC function throws a Lua error which appears in the
command line of the script being executed. On success a string of bytes of
equal length as the input is provided as a result.

CryptoPAN functions

The CryptoPAN functions consist of three functions:

• init cryptoPAN(string filename)

• cryptoPAN anonymize ipv4(string raw IPv4 address)

• cryptoPAN anonymize ipv6(string raw IPv6 address)

The init cryptoPAN function is used to generate or read bytes for use
by 256-bit Advanced Encryption Standard (AES). 64 bytes are either read
from an existing file located at the path specified by the parameter filename,
or alternatively generated by reading 64 bytes from /dev/urandom. These
64 bytes are used as the Key, IV and pad for AES.

The cryptoPAN anonymize ipv4 function is a modification of the original
cryptoPAN algorithm written by Jinliang Fan et. al. A direct source for the
original CryptoPAN could not be found at the time of writing, but the PktAnon
framework uses the original CryptoPAN and had it as part of its source code.
This was retrieved from [83].

The original code was modified to use OpenSSL’s libcrypto library in-
stead of a version of AES that was originally included with CryptoPAN.

the cryptoPAN anonymize ipv6 function is a modification of the IPv4 ver-
sion of CryptoPAN for longer IPv6 addresses.

All three functions return a status (-1 on failure, 1 on success) which can
be used to determine if the operation failed and take appropriate action. In
addition to this status, cryptoPAN anonymize ipv4 and cryptoPAN anonymize ipv6

return the anonymized IPv4 or IPv6 address on success, or an empty string
on failure.

85

7.4 Recalculating checksums

libAnonLua supports calculating checksums for Ethernet, TCP, UDP, IPv4,
ICMP and ICMPv6 using the following functions:

• calculate eth fcs(string raw frame)

• calculate ipv4 checksum(string raw header)

• calculate tcp udp checksum(string raw IP packet)

• calculate icmp checksum(string raw ICMP packet)

• calculate icmpv6 checksum(string raw IPv6 packet)

calculate eth fcs

The calculate eth fcs function calculates the FCS of an Ethernet frame.
The FCS of an Ethernet frame is a 32-bit Cycling Redundancy Check (CRC)
of all fields of the entire Ethernet frame, without the trailing FCS field. The
input frame is expected not to have the trailing 4-byte FCS field, as it is
not possible to detect if this is part of the higher layer data or a FCS field.
The function returns the resulting FCS and the entire frame with the FCS
appended to the end.

calculate ipv4 checksum

The calculate ipv4 checksum function calculates the IPv4 header check-
sum. The naive version of this is to set the Header Checksum field to 0 and
then add 16-bit words from the header together, checking if there was an
overflow every time, and if so adding 1 to the result. This can be imagined
as the overflowing bit being added at the back. This can result in a sec-
ond overflow that needs to be checked for again. calculate ipv4 checksum

does this in an optimized fashion by adding all 16-bit words in the header into
a 32-bit integer, then subtracting 65535 until the result is less than 65536.
This reduces the number of checks for the overflow necessary to a mini-
mum. The operation of removing the 16th bit and adding 1 is also merged
into a single subtraction of 65535. The result of this is then inverted to re-
ceive the final checksum. The function returns the calculated checksum as
well as the provided header with the correct checksum inserted.

86

calculate tcp udp checksum

The calculate tcp udp checksum function accepts an entire IPv6 or IPv4
packet and calculates the TCP or UDP checksum based on this packet.
The entire packet is necessary in order to populate the fields of the pseudo-
headers used for TCP and UDP, which can be seen in tables 13 and 14. The
checksum itself is calculated using the same method as the IPv4 checksum,
but is calculated over the whole UDP datagram or TCP segment with the
pseudo-header prepended. The function returns the calculated checksum,
the TCP/UDP header with the correct checksum inserted, and the whole
TCP segment/UDP datagram.

calculate icmp checksum

The calculate icmp checksum function accepts the ICMP packet in its en-
tirety and calculates a checksum for the provided ICMP packet. This check-
sum is calculated over all fields of the ICMP header as well as included data
with the ICMP checksum set to 0 for the purposes of the calculation. The
calculation method is the same as for the IPv4, TCP and UDP checksums.
The function returns the calculated checksum as well as the provided ICMP
packet with the correct checksum inserted in the checksum field.

calculate icmpv6 checksum

The calculate icmpv6 checksum function accepts the entire IPv6 packet.
Unlike IPv4, IPv6 does not include a checksum in the header. For this rea-
son, unlike ICMP which merely includes a checksum of its own header and
data, ICMPv6 includes a checksum for the entire IPv6 packet. This is done
by prepending a pseudo-header to the ICMPv6 packet. The pseudo-header
is the same as for TCP and UDP and can be seen in table 14. The checksum
is calculated in the same way as the IPv4, TCP, UDP and ICMP checksums.
The function returns the calculated checksum and the provided IPv6 packet
with the correct ICMPv6 checksum inserted.

7.5 Helper functions

libAnonLua includes two helper functions:

• ntop(string raw address)

• ip in subnet(string raw address, string CIDR notation)

87

These two functions are meant both as a means to ease debugging and
as a means of simplifying use of the library.

The ntop function is a wrapper for the inet ntop function from the arpa/inet.h

C header and returns the provided IPv4 or IPv6 address in a human-readable
form.

The ip in subnet function accepts an IPv4 or IPv6 address in the form
of a string containing the raw bytes of the IP address and an address in
human-readable CIDR notation (e.g. 192.168.1.0/24) and checks to see
if the provided address is in the provided subnet. The function returns a
boolean indicating the address is in the subnet (TRUE) or not (FALSE).

88

Figure 4: Running the Shanon packet trace anonymization tool

8 Shanon

The Shanon packet trace anonymization tool is a tool written in Lua as part
of this thesis. The name is a combination of Wireshark and anonymizer.

In this chapter an overview of the functionality of the tool will be provided
using the features provided in Chapter 3 as a basis. Due to the large amount
of code written a detailed exploration of the various functions used in the tool
will not be provided. A general overview of the structure of Shanon can be
found in Section 8.1, and an overview of the configuration file in Section 8.4.
Those interested in a more detailed look can look at the commented source
code at [30].

An example of running Shanon and the generated terminal output can be
seen in Figure 4. The anonymized packets in this example are outputted to
a file defined in Shanon’s cofiguration file. Since tshark will always generate
output for each processed packet, Shanon itself does not generate addi-
tional output. The -e frame.number and -T fields parameters are sup-
plied to limit the output of tshark to frame numbers only. These parameters
are not necessary to run Shanon, but they reduce visual clutter and make it
easier to follow anonymization progress.

8.1 Shanon structure

The Shanon anonymization tool is divided into several files and folders.
These can be seen in Figure 5. The main body of the tool is contained in
the shanon.lua file. Additional lua files containing functions used by Shanon
and the individual protocol anonymizers are contained in the shanonHelpers.lua

and shanonPolicyValidators.lua files. The config folder contains the con-
figuration file, config.lua, which contains parameters for the anonymization
of captured packets. The protocols folder contains the individual anonymiz-

89

Figure 5: Structure of the Shanon packet trace anonymization tool

ers for the supported protocols: arp.lua, ethernet.lua, icmp.lua, icmpv6.lua,
ipv4.lua, ipv6.lua, tcp.lua and udp.lua. Finally, the libAnonLua library
and its linktypes.csv file must be present for Shanon to operate correctly.

Shanon is built with extensibility and online anonymization in mind. For
this reason the main application is built as a loop that iterates over protocols
present in a particular captured frame and calls the necessary individual
anonymizers to handle the details of these protocols. This functions simi-
larly to how the network stack naturally functions. Higher-layer protocols are
anonymized first, then this data is handed over to lower layer anonymizers
when they are called to anonymize the lower layer protocols. Any unrec-
ognized protocol that breaks this chain is logged if the appropriate config-
uration option is set and the data including this unrecognized protocol and
above is treated as data by the protocol below. Depending on the settings

90

of the anonymizer for that protocol this data can either be kept in the same
form or it can be replaced depending on the parameters of the particular
anonymizer.

This method of anonymization allows new protocol anonymizers to be
created and added to the anonymization chain without interfering with exist-
ing protocol anonymizers, making Shanon easy to extend with support for
new protocols.

Shanon is a single-pass anonymization tool, meaning it only looks at
each packet once, anonymizes it based on the information available up to
that point, then moves on to the next packet. This enables online anonymiza-
tion which would be prohibitively memory-intensive if a copy of each packet
captured so far had to be kept in memory, but makes anonymizing TCP
sequence and acknowledgement numbers difficult and inaccurate.

8.2 Shanon features

Shanon was created with the features described in Chapter 3 in mind. In this
section the support for each of these features in Shanon will be discussed.

Extensibility

Shanon is built with extensibility in mind. Potocols are anonymized by indi-
vidual anonymizers rather than together as part of a monolithic application.
Individual anonymizers are called to run on a captured frame in order from
the highest layer protocol contained in that frame to the lowest layer, based
on the names of protocols used by Wireshark.

Adding a new protocol to Shanon is relatively simple. To do so, a new
anonymizer needs to be created and added to the protocols folder. Anonymiz-
ers take on the form of Lua modules, meaning they are Lua files which return
a table containing their variables and methods. Each protocol anonymizer
must contain the following values and methods:

• filterName - The name of the protocol this anonymizer is intended for
as used by Wireshark. For example “eth” for Ethernet.

• fauxProtocols - Certain tags, such as for example ethertype, can ap-
pear in the protocol list as a way of presenting information about a cer-
tain protocol. These are called faux protocols, as they are not actual
protocols. This function accepts a protocol name and returns whether
this is a faux protocol related to this protocol or not. For example the
presence of an ethertype protocol in the list of protocols contained in

91

a captured frame means that the captured ethernet frame has a type
field and not a length field.

• relativeStackPosition - Multiple protocols of the same type can be
present in a captured frame. When this occurs, Wireshark will re-
turn a table of values when retrieving fields of a particular protocol in
order of their appearance from the lowest layer to the highest. The
relativeStackPosition variable is used to indicate which instance of
a protocol in the frame is being processed.

• anonymize - This function accepts the buffer containing protocol fields,
the list of protocols, the current position in this list, the anonymized
frame containing the results of anonymization of upper layers and the
configuration and returns a new anonymized frame with the results of
the current anonymization added to it, and optionally comments that
will be added to the comments in this frame along with comments from
other anonymizers, if present.

• validatePolicy - This function accepts the Shanon config file and val-
idates the configuration for this specific policy. Should any part of the
policy fail to validate the application is expected to crash with an ap-
propriate error message and log. The validatePolicy function can
validate a policy in any way deemed appropriate, however helper func-
tions are made available in the shanonPolicyValidators.lua script
that can ease validating policies.

Once an anonymizer has been written and placed in the protocols folder,
it can be added to Shanon by adding it to the protocols table in the shanon.lua

file.
A simple example of an anonymizer which can provide a good overview

of how anonymizers are intended to be written is the Ethernet anonymizer,
ethernet.lua. It contains a small number of fields and options compared to
other anonymizers, thus making it easier to understand. The IPv6 anonymizer,
ipv6.lua, is a good example of a more complex anonymizer since anonymiz-
ing IPv6 involves validating a policy which includes a table of subnets that
can have different policies applied to them, as well as parsing and anonymiz-
ing protocol options.

Policy support

Shanon features a large and detailed policy with many options. Special at-
tention was given to the anonymization of IPv4 and IPv6. Different anonymiza-

92

tion methods can be set for packets with source or destination addresses
in different subnets, and addresses belonging to different subnets can be
anonymized in different ways. Using multiple methods of anonymization
to anonymize a single address is also supported, such as running a black
marker method, erasing a selected amount of bits from the beginning or
end, followed by CryptoPAN.

Other protocols also feature a support for various options, with each field
having two or more ways in which it can be treated.

One downside of the modular way in which Shanon has been written
is the separation of network layers that occurs even during anonymization.
With the exception of the IPv4 and IPv6 anonymizers handling checksums
for TCP, UDP and ICMPv6 due to pseudo-headers being necessary when
calculating the checksums for these protocols, there is no interaction be-
tween different anonymizers. This also extends to policy. It may, in some
situations, be desirable to anonymize TCP port numbers, for example, dif-
ferently depending on the subnet the traffic comes from. However, the
TCP anonymizer only handles TCP and is unaware of other protocols in
the chain. As such, this form of policy is not supported.

A more thorough analysis of each individual option of each protocol
would be far too extensive to include here, however the config.lua file in-
cluded with Shanon is thoroughly commented and can be used to further
inform oneself on the supported options.

Meta-data generation

The current version of Shanon generates a very limited amount of meta-
data. Currently it is possible to add a comment to each anonymized packet
with the version of Shanon and libAnonLua which were used to anonymize
it. Additionally, the TCP and UDP anonymizers can generate a comment
containing the original stream index Wireshark generated for that UDP flow
or TCP conversation. Due to the way certain anonymization options change
TCP and UDP, Wireshark can become unable to recognize which segments
or messages belonged to a particular exchange. To aid in this, adding the
original stream index as a comment can help reconstruct the exchange.

The ability to add comments to packets when writing them enables future
anonymizers to generate their own meta-data, as well as additional meta-
data to be added to existing anonymizers in the future.

93

Large file support

Wireshark supports large capture files, as does the pcapng filesystem used
by Wireshark and by Shanon. Thus, Shanon itself also supports large cap-
ture files without any necessary additional actions taken by the user. The
file size Shanon is able to process in a real-world scenario is limited by lim-
itations present within Wireshark itself. These are discussed in Section 9.3
as part of the evaluation of Shanon’s performance.

Consistency

Every method of anonymization in Shanon is intended to produce consistent
results, meaning for the same configuration and packet capture the same
anonymized capture should be produced. It is, however, possible to cre-
ate some inconsistency within the capture file itself due to how IP address
anonymization works. The IPv4 and IPv6 configurations enable the creation
of entirely different policies for different subnets. If present, these policies
will be used if an address matches a subnet instead of the default. If a pol-
icy contains two subnets which exchange packets, the policy matching the
source IPv6 address will be prioritized over the destination address in pro-
tocols where a source and destination address are available. In situations
where there is only one address, such as the ICMP Redirect gateway ad-
dress, the subnet matching that address will be selected. This can lead to a
situation where the same address is anonymized in different ways depend-
ing on the source of the packet. For this reason policies requiring different
anonymization methods for multiple subnets should be carefully crafted to
avoid such conflicts.

Performance

A test of Shanon’s performance on an example real-world capture can be
seen in Section 9.3.

Online anonymization

Just like Wireshark, shanon can be used for both offline and online anonymiza-
tion, meaning both the anonymization of previously captured packets in the
form of a packet capture or a live capture of packets from an interface. This
is an inherent property arising from the usage of Wireshark as a basis for
the tool, as well as the one-pass nature of how the tool processes captured
packets.

94

Recoverability

Recoverability was not considered during the development of Shanon. Due
to the sensitive nature of anonymization, inconsistencies or failures to anonymize
can lead to unwanted data leaks. As such, any automated recovery from a
failure, or any failure at all, can not be trusted. In addition to the issue of
trust, recovery from failure is also a complicated technical issue. The rea-
sons for failure are versatile, and depending on how the failure happened
an inconsistent state could be achieved. Finally, even without this feature
Shanon is already a large and complicated tool which took significant time
to develop so additional development time was not dedicated to this feature.
However, recoverability could be achieved in the future by storing metadata
related to anonymization either in comments or as additional optional data
attached to captured packets using optional blocks in the pcapng filesystem.

8.3 Limitations

During the development of Shanon several issues were encountered. The
encountered issues, employed solutions, and limitations imposed by these
issues and solutions are documented here.

Partial protocols and partial captures

Shanon does not support dealing with partial protocol data. This means
any protocol where fields that should be present but are not can not be
processed. This can occur in two cases.

The first case is when a frame was partially captured, either due to a
limitation on the number of bytes captured per frame or due to some other
reason. In this situation the captured length of the frame will differ from
the actual length of the frame. Shanon will crash with a warning message
informing the user about this situation and the frame in which it occurred if
this is the case.

The second case is when an ICMP or ICMPv6 message contains partial
protocol data, such as part of the packet that caused a redirect or destination
unavailable message included in the payload. To avoid this from happening,
Shanon does not process any protocol layers above the first instance of
ICMP or ICMPv6 found in a particular frame. Any higher-layer data above
the first instance of these two protocols is instead treated as data by their
anonymizers and replaced with an equal-length payload of zeroes.

The decision to implement this restriction rather than account for possibly
missing protocol fields was made due to time limitations and the already

95

large amount of work done when writing this tool. Processing partial protocol
data would require the retrieval of each protocol field to take into account the
possibility of the data not being present and anonymization to account for
only some fields possibly being present, which would require a significant
rewriting of protocol field retrieval and anonymization to account for.

Retrieval of optional fields and multiple protocol instances

Some protocols, such as ICMP, have a different structure depending on the
type of message that is being sent. Some fields may not be present for
every instance of this protocol. Other protocols, such as NDP and IPv6
have additional options or headers which may or may not be present when
certain messages are sent or, in the case of IPv6 extension headers, may
even be present multiple times. It is also possible for multiple instances of
the same protocol to be present in the same capture, for example IP in IP
encapsulation.

When retrieving a particular protocol field using methods supplied by
Wireshark, the result is a Lua table containing a list of tables with information
for all fields of this kind. In a situation where a protocol appears only once
and a field is always present for that protocol, simply retrieving the only result
of retrieving the field is the correct value for this field. However, in situations
where multiple instances of the same protocol are present, the first value
will always be the lowest instance of that protocol in the stack of protocols.
To overcome this, Shanon counts the number of occurrences of a particular
protocol and keeps track of the specific occurrence of a protocol which is
being processed.

The same problem is present for optional fields and extension headers,
however the problem is more pronounced. Since an optional field or ex-
tension header can possibly appear multiple times, or not appear at all, for
any particular instance of a protocol, the method applied to individual proto-
cols does not apply to options or extension headers. Instead, Shanon sets
boundaries for where in the buffer of protocol data these options or exten-
sion headers can be. These boundaries are the beginning of the protocol
being processed and either the beginning of the higher layer instance of this
protocol, the end of the data this protocol carries, or end of the capture de-
pending on the specific situation. When retrieving the fields of a particular
instance of a protocol, Shanon retrieves all options or extension headers
which are within the appropriate boundaries for that instance of the protocol
in question.

96

The IPv6 next header value

The structure of IPv6 extension headers presented a unique issue for anonymiza-
tion. Since Shanon does not support all possible IPv6 extension headers,
but only the subset present in RFC 8200 and the details mentioned there, it
is necessary to reconstruct the sequence of extension headers according to
what is supported and anonymized. An additional difficulty is the way Wire-
shark makes information on extension headers available through their API.
Known extension headers have their own names and sets of fields available,
while unrecognized extension headers are grouped together into a single
category. Without writing a parser for IPv6 next header values which would
be capable of traversing the set of extension headers until an upper layer
protocol was reached correctly parsing and assigning the next header value
for the upper layer protocol is not possible in all situations.

The solution to this problem employed by Shanon is using the list of
protocols contained in the anonymized capture and setting the next header
value for recognized protocols when these are present. In a majority of
cases the upper layer protocol will be TCP, UDP or ICMPv6, all of which
will be correctly recognized and properly set. It is also worth noting that this
issue is only present when IPv6 extension headers are processed, as the
correct next header value is otherwise present in the IPv6 header itself. In
cases where the next layer protocol is not recognized by Shanon, protocol
number 59 is used, which signifies no next header is present. Upper layer
data provided by anonymizers is retained, however Wireshark does not rec-
ognize the upper layer protocol.

TCP sequence and acknowledgement numbers

Anonymizing TCP sequence and acknowledgement numbers is a more dif-
ficult problem than was initially anticipated. Two different approaches were
attempted, both of which have downsides. The second approach was se-
lected to be the one employed in Shanon.

The first attempt at renumbering involved creating a table for each TCP
conversation containing sequence and acknowledgement numbers for each
side. Each time a TCP segment was seen, the appropriate sequence and
acknowledgement numbers would be incremented so that the conversation
flowed from message to message. This presented a problem, however.
Information about messages being retransmitted was completely lost and
sequentially recorded messages received sequential sequence numbers re-
gardless of their actual order in the sequence.

The second approach was to keep track of the original and expected

97

sequence and acknowledgement numbers and only increment when seg-
ments are encountered that fit into this. For segments encountered that are
out of order, a decremented sequence number is set so that the segment
appears as out of order in the capture. This approach, however, presents
a new issue. Should a series of segments from both sides be missing, the
incrementing will stop and all following segments will appear out of order.

In addition to the issues encountered when implementing the two ap-
proaches, an interesting observation was made with keep-alive segments.
Shanon preserves the information that a TCP segment was sent without
data and in situations where such a segment is encountered a minimum
payload is not attached when configured to do so. In cases where TCP
keep-alive segments do not have data attached to them this preserves the
semantics of the TCP keep-alive. However, if a keep-alive is sent with a
single octet of data, which may be the case, the semantics are lost.

Lack of IPv6 tools

The lack of tools with support for IPv6 severely limited the extent to which
ICMPv6, NDP and IPv6 could be tested during development. For example,
nping [60], a packet generator and ping utility that comes with nmap, was
able to generate ICMP messages of various types for the purposes of test-
ing, however failed when it came to ICMPv6. DPKT [88], a Python module
for packet generation, has very little useful documentation and few exam-
ples, all of which are for IPv4. It was possible to generate ICMPv6 packet
too big, echo, parameter problem and destination unreachable messages
using DPKT, however it required trial and error and looking at sources to
write a few lines of code to actually produce these packets, and the packets
themselves were of limited utility. The thc-ipv6 IPv6 attack toolkit [46] was
also used to generate NDP router advertisements.

8.4 Configuring Shanon

The configuation file for Shanon is located in the config folder and is named
config.lua. It is a Lua file which contains configuration options for Shanon
in the form of a Lua table. The table is further subdivided into a set of
general options: the output file, the key file for the CryptoPAN algorithm,
logging settings, meta-data settings, and an anonymization policy which is
further subdivided into tables containing the anonymization settings for each
protocol Shanon supports. A more detailed look into all the configurable
options in this policy would be too extensive to include here. Instead, those

98

interested should look at the detailed comments in the policy file itself which
describe the available options for each protocol in detail. The source code
for Shanon is available at [30].

8.5 Running the tool

In order for Shanon to run, all files and folders included with the tool must
be present in the location the main script, shanon.lua, will be run from.
Additionally, a compiled version of libAnonLua [29] and the linktypes.csv

file used by libAnonLua must be present in the same directory and must
match the expected libAnonLua version for the version of Shanon in use.

Shanon is intended to be run with tshark, the terminal-based version of
Wireshark. In order to run Shanon when processing a packet capture with
tshark, tshark needs to be started from the folder containing Shanon with
the following additional parameters:

-X lua_script:shanon.lua

99

9 Evaluation

In this chapter the anonymization methods and results of the Shanon packet
capture anonymization tool will be evaluated.

9.1 Anonymization methods

With the exception of the CryptoPAN algorithm described in [38], the meth-
ods used by Shanon rely on the principle of K-anonymity [95]. The result
of these actions is the removal of an amount of information that serves to
distinguish a particular packet, sequence of packets, or source or destina-
tion host from others in the capture and in the real world. When a certain
packet or host is indistinguishable from k-1 others, it can be said that it is
k-anonymous.

Methods such as the black marker, named after the practice of censor-
ing bits of text by going over them with an opaque black marker, or setting
a field to zero, reduce the amount of information present in a field, render-
ing that field indistinguishable from a number of other fields with the same
changes made depending on the amount of bits erased. Setting field values
to particular values ensures devices cannot be identified based on unique
values that may be in use for particular settings, such as lifetime values in
router advertisements, or time to live and hop count values in IPv4 and IPv6
headers which have different default values on different OSes. Recalcu-
lating checksums eliminates the possibility of comparing anonymized data
to real data to deanonymize part of it or using checksums to validate at-
tempted deanonymization. Replacing TCP and UDP payloads with minimal
payloads of zeroes and recalculating TCP sequence and acknowledgement
numbers guards against attacks that use the size and order of messages to
fingerprint a source or destination such as network traffic fingerprinting de-
scribed in [56]. Shanon also sets any field that is reserved for future use in
a protocol to zero, and fields such as the IPv4 and IPv6 version fields which
should have constant specific values to their standard values, eliminating
the possibility of using these fields to insert patterns that can be recognized
at a later date. This protects against attacks that rely on injecting and later
recognizing patterns in network traffic using these fields. While the individ-
ual anonymization methods used in Shanon are sound, as demonstrated
above, the quality of the anonymization of a packet capture depends on
properties of the environment the capture was taken in and the combination
of anonymization methods used. Due to this a set of sound methods is not
sufficient to guarantee protection, but instead the details of the capture it-

100

self must be considered and a policy created that is suitable to the level of
protection desired and the capture being anonymized.

9.2 The possibility of leaks

Shanon utilizes defensive transformation [41]. The retrieved original values
of fields for each protocol anonymized by Shanon are stored in separate
variables from the anonymized fields. When anonymizing a protocol, the
anonymized values are concatenated to create a new, anonymized instance
of a protocol. The anonymized values are derived from the original values
using the anonymization methods chosen by the user in the configuration
file. As a result of this no original values can accidentally pass through
anonymization and end up in the anonymized capture. This also removes
the possibility of leaks from higher-layer encapsulated data, as this data
can only be included in the output if it was processed by Shanon. Shanon
also constructs its own pcapng capture files which contain the minimum
set of necessary headers and options for the correct functioning of the files
and Shanon itself, thus avoiding potential information leaks from within the
structure of the capture files themselves.

9.3 Performance

Shanon was tested on a 568 MB capture containing 638993 packets on a
VirtualBox VM running 64-bit Ubuntu 20.04 LTS with 2 cores from a Core
i7-6700K CPU running at 4.0 GHz with 4.2 GHz turbo enabled. The virtual
machine was run from an Crucial P1 1 TB NVMe solid state drive. A detailed
structure of the capture can be seen in Section 9.4.

Running on this configuration, Shanon achieved a packet processing
rate of 2075 packets per second having processed all packets in 5 min-
utes, 7.868 seconds as reported by the utility program time which was used
to time the execution. Based on the observed read/write intensity it does not
seem likely that the SSD played a crucial role in enabling this speed, as the
reported CPU utilization was near to or at 100% at all times.

We consider this processing speed sufficient to satisfy users in both of-
fline and online anonymization scenarios. Compared to tcpmkpub, devel-
oped by Pang et al. Shanon falls short, however. In their test [72] Pang et
al. processed 165 million packets in 2.9 hours. Translated to packets per
second, this results in 15804 packets per second. It is also worth noting that
their test was conducted on older hardware.

101

Figure 6: Protocol hierarchy of original capture

Due to the data that needs to be stored when processing a capture file,
Wireshark necessarily has a large memory footprint when processing large
captures. For a test file 568 MB in size containing 638993 packets the mem-
ory footprint exceeded 2 GB. Large captures containing fewer packets or not
containing protocols for which Wireshark needs to maintain a lot of state in-
formation, such as TCP, may fare better, however this was not tested. This
is a limitation inherent to Wireshark itself and thus one Shanon can not over-
come.

9.4 Anonymization results

The following results were observed when anonymizing a capture of private
computer usage over the span of 2 hours, 13 minutes and 13 seconds. The
capture contains a total of 638993 packets with a total size of 596 MB. The
protocol hierarchy of the original and anonymized captures can be seen in
Figures 6 and 7.

The percentages are provided by Wireshark and are rounded up to a sin-
gle decimal point of precision. Where percentages are not included the num-
ber was too small to display and Wireshark displayed 0.0 instead. One issue
with using this capture is the low amount of IPv6 traffic recorded. However,
given the lack of tool support as described in Section 8.3 and the low level of
IPv6 adoption [44] this was deemed acceptable. During development each

102

Figure 7: Protocol hierarchy of anonymized capture

individual protocol anonymizer was tested on a small scale with generated
or captured traffic, depending on the availability of such traffic. For the pur-
poses of this evaluation, however, using a larger real-world capture is more
suitable as it demonstrates the functionality of the tool in a realistic sce-
nario. Using generated traffic equivalent to the generated traffic used to test
during development would not demonstrate that the tool functions properly,
but instead demonstrate that the tool functions when encountering the ex-
act traffic it was written to function on. The results demonstrated below are
based on statistics generated by using the various options in the statistics
menu in Wireshark. Testing each possible configuration of the anonymiza-
tion tool and producing statistics for each would be too extensive, so instead
the focus is put on a subset of results that were deemed significant.

Protocol hierarchy of the anonymized capture

The protocol hierarchy in the anonymized capture remained unchanged
for all supported protocols. Unsupported protocols are treated as data by
Shanon, meaning they are replaced by zero payloads of minimal or equal
length depending on the protocol anonymizer and configuration. The result
of this is that some unsupported protocols disappeared from the hierarchy
in the anonymized capture. Protocols that can be identified by their protocol
number in Ethernet frames and IPv6 and IPv4 packets remained in the list,
despite their contents being replaced with zeroes, however when preserv-
ing only the range of TCP and UDP ports all protocols carried by TCP and
UDP showed up as data in the protocol hierarchy. Preserving port numbers
preserved more of the original hierarchy, but there were still losses in in-
formation. One example of lost information occurs with traffic on TCP port
443. In the original capture, Transport Layer Security (TLS) is appropriately
identified based on the carried data. With the higher-layer protocol data au-
tomatically stripped by Shanon, the packets are instead marked as Secure

103

Sockets Layer (SSL) or TCP. Since none of the protocols encapsulated in
TCP and UDP are anonymized by Shanon a more in-depth look at the pro-
tocols lost due to anonymization and the causes of this loss is outside of
the scope of this work. Instead, what is important to note is that for some
protocols the semantics of the protocol contents are relevant to the correct
identification of those protocols by Wireshark and as a result the removal of
protocol payloads by Shanon results in failure to identify these protocols.

Metadata contained in the original capture

The original capture contained information on the hardware and software
the capture was taken on. This consisted of the CPU manufacturer and
model, the OS version and build and the version of Wireshark used to make
the capture. There was also metadata about the interface the capture was
made from, containing the original name of the interface, number of dropped
packets, type and the packet size limit for that interface. Such additional in-
formation can be included in a capture file by using the appropriate options
defined in the pcapng standard. [61] These options are not used by Shanon
nor is this data retrieved when anonymizing a capture, and thus this addi-
tional information is lost. In the anonymized capture these values showed
up as unknown or 0.

Shanon can either preserve the original timestamps stored in the pcapng
file or use relative timestamps the arrival times of which are relative to the
time of the capture being recorded. When using relative timestamps the
capture start time shows up as 1970-01-01 01:00:00 in Wireshark statis-
tics. The duration of the capture and time between individual packets is
preserved.

An example of some of the information associated with a frame in a Wire-
shark packet capture can be seen in Figure 8. The captured frame itself has
a timestamp associated with it, while the interface information is stored in
a separate block in the pcapng filesystem called an Interface Description
Block (IDB). The frame references this block through the Interface id prop-
erty. In the case of the anonymized frame, which can be seen in Figure
9, the timestamp is relative to the beginning of the capture, and since no
additional metadata about the interface is stored in the output file, there is
no additional information about the capture device present in Wireshark’s
display of the anonymized frame.

104

Fi
gu

re
8:

Fr
am

e
in

fo
rm

at
io

n
fro

m
Fr

am
e

22
of

th
e

or
ig

in
al

ca
pt

ur
e

105

Figure 9: Frame information from Frame 22 of the anonymized capture

Effects on capture size

Shanon does not keep information it can not process, such as IPv6 exten-
sion headers, IPv4, TCP and ICMPv6 options other than the ones imple-
mented. In the cases of Ethernet, IPv4 and IPv6 if no data is provided by
a previous anonymizer Shanon uses a minimum payload. For TCP and
UDP Shanon provides a choice of 5 options: keeping the payload, using a
20 byte payload of zeroes, using a payload of zeroes of the same length,
and two options which keep an anonymized payload if present or one of the
two zero payload options if not. As a result of this, the capture size can
change compared to the original. In a test using the “Anonymized1” option,
which preserves an anonymized payload if present, and provides a 20 byte
payload of zeroes if not, the anonymized capture file was reduced in size
from the 596 MB original down to 125 MB. This property can be used, for
example, in combination with preserving TCP sequence numbers, to retain
information about the original sizes of TCP segments while also reducing
the size of a packet capture to one that is easier to transfer and store.

Effects of storing metadata as packet comments

When generating capture file properties, Wireshark also lists all packet com-
ments in the generated statistics. Comments generated on a per-packet ba-
sis by Shanon resulted in list of 638993 comments. While the exact time it
took Wireshark to generate statistics was not measured, it took significantly
longer and Wireshark even became unresponsive at one moment. Using
the same anonymization settings without storing any comments resulted in
a significantly faster generation time for this statistic.

Wireshark allows for packet filtering based on the contents of comments.

106

Figure 10: Ethernet header from Frame 22 of the original capture

Figure 11: Ethernet header from Frame 22 of the anonymized capture

In combination with the generated metadata this allows original TCP and
UDP streams, as identified by Wireshark in the original captures, to be pre-
served and filtered out. The level of detail still present in these streams
depends on other anonymization options chosen.

MAC addresses

When using a black marker method on the first 24 bits of MAC addresses,
the number of endpoints was preserved between the original and anonymized
capture, however none of the addresses in the anonymized capture showed
the manufacturer name in Wireshark. This achieves a possibly desired goal
of anonymization which is concealing the hardware used when making a
capture. An example of this effect can be seen in Figures 10 and 11. In the
original capture in Figure 10 Wireshark displays a short manufacturer name.
In the anonymized capture in Figure 11 this name is no longer present as
it was removed by removing the first 24 bits. The multicast bits in the MAC
address are also lost in the process, and the broadcast MAC address is also
not labelled as such by Wireshark. Depending on other anonymization set-
tings some of this information may be preserved through context, but some
will inevitably be lost.

IPv4 and IPv6 addresses

To show the total number of different IPv4 and IPv6 addresses as well as
the packets sent and received endpoint statistics were used. When using
CryptoPAN to anonymize IPv4 and IPv6 addresses the observed number of
addresses and packets sent and received did not change. The addresses

107

Figure 12: Partial list of IPv4 addresses included in the original capture

Figure 13: Partial list of anonymized IPv4 addresses in the anonymized
capture

in the anonymized capture and original capture were different, but a 1 to 1
mapping and the preservation of prefix relationships could be seen. A partial
list of original and anonymized IPv4 addresses from the example capture
used in this evaluation can be seen in Figures 12 and 13. The relationships
between the addresses demonstrate the prefix-preserving properties of the
CryptoPAN anonymiziation algorithm.

Truncating parts of the IPv4 addresses predictably resulted in a decrease
of observed addresses. In this capture truncating the 16 least significant bits
produced far fewer addresses than truncating the most significant 16 bits.
This makes sense for the capture in question since multiple blocks of ad-
dresses sharing the same 16-bit prefix were present. When truncating this
prefix the different addresses would still remain different, however truncat-
ing 16 bits after this prefix would result in blocks of addresses sharing the
same 16-bit prefix to merge into one address. One example of such a block
of addresses is 172.217.0.0/16 owned by Google.

108

TCP and UDP

When analyzing TCP and UDP using Wireshark endpoint statistics an end-
point is a combination of IPv4 or IPv6 address and TCP or UDP port.

In the original trace the number of endpoints for TCP was 1040, and
for UDP 1065. In the anonymized trace TCP and UDP port ranges were
preserved by mapping values to the first port of each range. This resulted
in the number of endpoints dropping to 239 for TCP and 54 for UDP. This
result makes sense since the anonymization method results in ports from
the same range all becoming the same port. As a result, multiple different
endpoints in the same port range for any given IPv4 or IPv6 address would
merge into one endpoint.

Keeping the original port numbers while also using CryptoPAN to ensure
IPv4 and IPv6 addresses are transformed 1 to 1 results in the same number
of TCP and UDP endpoints as the original capture: 1040 for TCP and 1065
for UDP.

Examples of original and anonymized TCP headers can be seen in Fig-
ures 14 and 15. The mapping of port numbers to the first port of their respec-
tive ranges can be seen. The original source port 443 has been mapped to
0, and the destination port 58504 has been mapped to 49152. Sequence
numbers have been remapped, and due to this the original sequence num-
bers which begin at a random initially chosen value begin at 0. The relative
sequence numbers are unaffected by this change. Flags have been pre-
served. Several TCP options are present. As mentioned in Section 5.9, the
order of Options may help reveal information about the source of the TCP
frames. Shanon implements its own order of TCP Options, followed by No-
Operation Options used as padding, with an End of Option List Option at the
end. This prevents the order of TCP Options from being used to fingerprint
the source device.

9.5 Comparison of original and anonymized captures in
the Wireshark window

In this section a side-by-side comparison of a portion of the original and
anonymized captures will be made based on the first 53 captured packets.
The original capture can be seen in Figure 16. The anonymized capture can
be seen in Figure 17.

The order of the packets is preserved by Shanon, as each packet is
read, anonymized, then written to the output file in a single-threaded pro-
cess before the next one is read. As a result the 53 packets visible in the

109

Fi
gu

re
14

:
TC

P
he

ad
er

fro
m

Fr
am

e
22

in
th

e
or

ig
in

al
ca

pt
ur

e
w

ith
TC

P
O

pt
io

ns

110

Fi
gu

re
15

:
TC

P
he

ad
er

fro
m

Fr
am

e
22

in
th

e
an

on
ym

iz
ed

ca
pt

ur
e

w
ith

TC
P

O
pt

io
ns

111

original and anonymized captures are the same 53 packets before and after
anonymization through Shanon.

The second column in the capture window shows the relative time of a
packet’s arrival compared to the beginning of the capture. With the excep-
tion of a few packets the relative arrival times of the packets match. The
few packets where this is not the case would appear to suffer from a floating
point rounding error. An example of that is packet 11 in the anonymized
capture.

The source and destination addresses (columns 3 and 4) have been
anonymized using the CryptoPAN algorithm. The consistency of prefixes
can be observed when looking at packets from different devices in the lo-
cal network, such as packets 15 and 17. Just like in the original capture,
these packets share the first three octets of their source IP addresses in the
anonymized capture.

The protocol column (column 5) demonstrates the loss of information
that occurs due to the TCP and UDP source and destination ports being
remapped. As a result of this, Wireshark is not able to identify the upper
layer protocol in the anonymized capture. In the original capture Wireshark
is able to determine the upper layer protocol. It is worth noting that the exact
version of TLS in use is determined from the application layer payload and
without it Wireshark would display SSL in the protocol field.

In the info column (column 6) of the original capture we can see many
packets marked as having incorrect checksums. Due to checksums always
being recalculated in the anonymized capture, this information is lost and
all checksums appear to be correct. This results in the packets at the
start of the capture being highlighted in black. Many of the later packets
in the anonymized capture are marked as Out-Of-Order, which also results
in a black highlight. TCP sequence and acknowledgement numbers are
difficult to anonymize in a consistent manner without maintaining a large
amount of state information or using a two-pass approach. Neither of these
approaches would be suitable for online anonymization. As a result, the
anonymization of TCP sequence and acknowledgement numbers does not
always result in a sequence mirroring the order of sequence and acknowl-
edgement numbers in the original. A detailed explanation can be found in
Section 8.3.

The last three columns are not present in Wireshark’s window by de-
fault, and were added for debugging purposes during development, but also
serve to demonstrate the effects of anonymization on the TCP payload sizes
and sequence and acknowledgement numbers. In this anonymization run
Shanon was set to replace TCP payloads with a fixed minimum-size pay-

112

load of 20 bytes. As a result any TCP frame which had a payload has had
it replaced with a 20-byte payload. When combined with recalculating TCP
sequence and acknowledgement numbers, this conceals the actual sizes
of the exchanged packets and prevents fingerprinting attacks based on se-
quences of packet sizes.

113

Fi
gu

re
16

:
Fi

rs
t5

3
pa

ck
et

s
of

O
rig

in
al

W
ire

sh
ar

k
C

ap
tu

re

114

Fi
gu

re
17

:
Fi

rs
t5

3
pa

ck
et

s
of

A
no

ny
m

iz
ed

W
ire

sh
ar

k
C

ap
tu

re

115

10 Conclusion

Real network data is vital for network research, education, advancing net-
work design, maintaining secure and reliable networks, and the evaluation
and development of security mechanisms [71, 56, 82, 37]. This data can be
contained in various logs, such as Intrusion Detection System (IDS) logs,
or packet captures or traces which contain packets captured from an in-
terface within the network. Packet traces often contain information about
individuals, enterprises and the networks themselves that should not be
disclosed. In order to properly protect sensitive information in these traces
while also maintaining a reasonable amount of utility it is important to be
able to anonymize various aspects of the traces.

The aim of this thesis was to develop a network packet capture anonymiza-
tion tool. In order to achieve this, the problem was divided into four tasks:

1. Identifying features the tool needs to support

2. Identifying protocols the tool needs to support

3. Developing an anonymization tool - Shanon

4. Evaluating the developed tool

In the process of completing these tasks this thesis makes multiple con-
tributions to the field of network packet trace anonymization.

The first contribution is a review of literature in the field of network packet
trace anonymization which includes existing tools and frameworks, stan-
dards, and relevant US and EU law: the ECPA and GDPR.

Shanon’s features and protocols are based on features and protocols
identified as part of the study of existing work. Identifying these features led
to the creation of a taxonomy of features anonymization tools should pos-
sess in order to adapt to the needs of a wider range of users. The taxonomy
is based on features present in three frameworks: FLAIM [86], developed
by Slagell et al., tcpmkpub [72], developed by Pang et al. and PktAnon [41]
developed by Gamer et al. It can be found in Chapter 3, and is the second
contribution this thesis makes to its field. The protocols Shanon supports
are based on protocols supported by existing tools and frameworks. These
can be seen in Table 2. Additionally ICMPv6 and NDP are included as the
IPv6 counterparts of ICMP and ARP.

The final two contributions are Shanon, a flexible, policy-based anonymiza-
tion tool written in Lua that plugs into the Wireshark network protocol an-
alyzer, and libAnonLua, a Lua library containing reusable network proto-

116

col anonymization primitives, as well as additional utility functions and con-
stants.

Anonymization is a difficult problem to tackle. It requires attention to de-
tails and consideration of the information present not just in a protocol field,
but in a combination of protocol fields, even after some or all of them have
been anonymized, as well as how this information can be used to defeat it.
The attack surface is broad, as can be seen in Section 2.4. Anonymizing in
a way that protects from these threats also inevitably leads to a significant
loss of information. Some of the effects of this can be seen in Chapter 9.

As a result of this, some have argued that anonymization is not sufficient
or the right approach [63, 65]. Somewhat reluctantly, considering the large
amount of work that went into this thesis, we must acknowledge they have
a point. Sufficiently strong anonymization causes such data losses that the
utility of a capture after this anonymization has been executed is question-
able. One example of this is the difficulty of anonymizing TCP sequence
and acknowledgement numbers in a consistent way without maintaining a
prohibitively large amount of state information, as discussed in Section 8.3.

Using Wireshark as a basis for Shanon offers a solution to part of the
anonymization problem. Wireshark processes capture files and analyzes
protocols, allowing Shanon to focus on retrieving the protocol fields and
anonymizing them. However, Wireshark is not without its own issues. Wire-
shark documentation does not offer sufficient information for new users to
fully understand how to work with the provided Lua API without spending
a large amount of time on trial and error. The documentation seems to be
more suited as a reminder to those already familiar with the subject matter
than an entry point for new users. This creates an entry barrier for new
users, and also results in a loss of time when first developing scripts in-
tended to run in Wireshark. Lua as a language is also not the best choice
for a tool such as this, however the alternative, writing the tool in C, would
require compiling Wireshark with the tool in order for the tool to work, which
would have made the tool less portable and debugging during development
slower. It would potentially result in an increase in performance, however,
and is therefore worth considering for future work.

The number of chosen protocols for this work was too large. Looking
back, it would have been more reasonable to choose a smaller set of pro-
tocols as an initial choice. A significant portion of work was dedicated to
retrieving all the fields of the anonymized protocols. The amount of work
was further increased due to difficulties with retrieving optional fields de-
scribed in Section 8.3. The result of the large number of chosen protocols
was a large amount of work and time necessary to complete Shanon and

117

this thesis.
Despite the difficulty of the problem, the aim of this thesis has been

achieved. With the exception of recoverability, which is difficult to implement
as well as a potential security risk, Shanon possesses all the features de-
fined in Chapter 3 as shown in Chapter 8. Chapter 9 demonstrates some of
Shanon’s capabilities on a real-world capture, showing that anonymization
was achieved for the protocols present in that capture.

118

11 Future Work

In the future, Shanon could be improved in multiple ways. When it comes
to performance, Shanon achieved only 2075 packets per second, which is
roughly 13% of what tcpmkpub can do. This perfomance could be improved
by coding a future version in C instead of Lua, but would potentially come at
the cost of portability.

Metadata could be improved as well. Currently only the information
that anonymization was carried out by Shanon, and original TCP and UDP
stream numbers, can be preserved. This is done using packet comments
which can result in Wireshark becoming unresponsive when viewing certain
statistics for a capture with many packets. In the future, metadata could
be expanded to include more information. Instead of packet comments, a
custom block in the pcapng filesystem could be used, or a custom option.
These would require registering a PEN with IANA, however.

Shanon currently does not support exchanging information between anonymiz-
ers for individual protocols. Each anonymizer is run independently. While
this makes extending Shanon with new protocols simple as there is no need
to handle the complexity of different possible protocols at different layers in
each anonymizer, it also limits the flexibility of anonymization policies. It is
currently impossible to anonymize protocols differently depending on exter-
nal context. For example, anonymizing TCP differently for different subnets.
The TCP anonymizer is completely unaware of any protocol other than TCP.
Improving this would yield the ability to create more intricate policies which
better thread the fine line between retaining information for research utility
and removing information which should not make it into a capture.

Finally, new anonymizers for protocols which are currently not supported
by Shanon could be written, expanding its capabilities.

119

Bibliography

[1] S. Amante et al. IPv6 Flow Label Specification. RFC 6437. RFC Ed-
itor, 2011-11. URL: https://www.rfc-editor.org/rfc/rfc6437.
html.

[2] J. Arkko, M. Cotton, and L. Vegoda. IPv4 Address Blocks Reserved
for Documentation. RFC 5737. RFC Editor, 2010-01. URL: https:
//www.rfc-editor.org/rfc/rfc5737.html.

[3] John Bethencourt, Jason Franklin, and Mary K Vernon. “Mapping In-
ternet Sensors with Probe Response Attacks.” In: USENIX Security
Symposium. 2005, pp. 193–208.

[4] Jasper Bongertz. TraceWrangler Manual. 2016.

[5] D. Borman et al. TCP Extensions for High Performance. RFC 7323.
RFC Editor, 2014-09. URL: https://www.rfc- editor.org/rfc/
rfc7323.html.

[6] Robert Braden. Requirements for Internet Hosts - Communication
Layers. STD 3. RFC Editor, 1989-10. URL: http://www.rfc-editor.
org/rfc/rfc1122.txt.

[7] Scott Bradner and Jim McQuaid. Benchmarking Methodology for
Network Interconnect Devices. RFC 2544. RFC Editor, 1999-03. URL:
http://www.rfc-editor.org/rfc/rfc2544.txt.

[8] Tønnes Brekne and André Årnes. “Circumventing IP-address pseudonymiza-
tion.” In: Communications and Computer Networks. 2005, pp. 43–48.

[9] Martin Burkhart et al. “The Risk-Utility Tradeoff for IP Address Trun-
cation”. In: Proceedings of the 1st ACM Workshop on Network Data
Anonymization. NDA ’08. Alexandria, Virginia, USA: Association for
Computing Machinery, 2008, pp. 23–30. ISBN: 9781605583013. DOI:
10 . 1145 / 1456441 . 1456452. URL: https : / / doi . org / 10 . 1145 /
1456441.1456452.

120

https://www.rfc-editor.org/rfc/rfc6437.html
https://www.rfc-editor.org/rfc/rfc6437.html
https://www.rfc-editor.org/rfc/rfc5737.html
https://www.rfc-editor.org/rfc/rfc5737.html
https://www.rfc-editor.org/rfc/rfc7323.html
https://www.rfc-editor.org/rfc/rfc7323.html
http://www.rfc-editor.org/rfc/rfc1122.txt
http://www.rfc-editor.org/rfc/rfc1122.txt
http://www.rfc-editor.org/rfc/rfc2544.txt
https://doi.org/10.1145/1456441.1456452
https://doi.org/10.1145/1456441.1456452
https://doi.org/10.1145/1456441.1456452

[10] Martin Burkhart et al. “The role of network trace anonymization under
attack”. eng. In: ACM SIGCOMM Computer Communication Review
40.1 (2010), pp. 5–11. ISSN: 0146-4833.

[11] Aaron J Burstein. “An Uneasy Relationship: Cyber Security Informa-
tion Sharing, Communications Privacy, and the Boundaries of the
Firm.” In: WEIS. 2007.

[12] Caida. The CAIDA UCSD Trace Statistics for CAIDA Passive OC48
and OC192 Traces website. URL: https://www.caida.org/data/
passive/trace_stats/.

[13] B. Carpenter and K. Moore. Connection of IPv6 Domains via IPv4
Clouds. RFC 3056. RFC Editor, 2001-02. URL: https://www.rfc-
editor.org/rfc/rfc3056.html.

[14] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of
IPv4 Link-Local Addresses. RFC 3927. RFC Editor, 2005-05. URL:
https://www.rfc-editor.org/rfc/rfc3927.html.

[15] Cisco. Snort IDS. 2019. URL: https://www.snort.org/ (visited on
2019-04-08).

[16] M.P. Collins and M.K. Reiter. “Finding peer-to-peer file-sharing us-
ing coarse network behaviors”. In: vol. 4189. Springer Verlag, 2006,
pp. 1–17. ISBN: 354044601X.

[17] A. Conta, S. Deering, and M. Gupta. Internet Control Message Proto-
col (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification.
RFC 4443. RFC Editor, 2006-03. URL: http://www.rfc-editor.
org/rfc/rfc4443.txt.

[18] Wireshark Contributors. Wireshark Documentation: Functions For Han-
dling Packet Data. 2020. URL: https://www.wireshark.org/docs/
wsdg_html_chunked/lua_module_Tvb.html (visited on 2020-08-13).

[19] Wireshark Contributors. Wireshark Documentation: Obtaining Dis-
section Data. 2020. URL: https://www.wireshark.org/docs/wsdg_
html_chunked/lua_module_Field.html (visited on 2020-08-13).

[20] Wireshark Contributors. Wireshark Documentation: Post-Dissection
Packet Analysis. 2020. URL: https://www.wireshark.org/docs/
wsdg_html_chunked/lua_module_Listener.html (visited on 2020-
08-11).

[21] Wireshark Contributors. Wireshark Wiki Lua Page. 2020. URL: https:
//gitlab.com/wireshark/wireshark/- /wikis/Lua/ (visited on
2020-08-13).

121

https://www.caida.org/data/passive/trace_stats/
https://www.caida.org/data/passive/trace_stats/
https://www.rfc-editor.org/rfc/rfc3056.html
https://www.rfc-editor.org/rfc/rfc3056.html
https://www.rfc-editor.org/rfc/rfc3927.html
https://www.snort.org/
http://www.rfc-editor.org/rfc/rfc4443.txt
http://www.rfc-editor.org/rfc/rfc4443.txt
https://www.wireshark.org/docs/wsdg_html_chunked/lua_module_Tvb.html
https://www.wireshark.org/docs/wsdg_html_chunked/lua_module_Tvb.html
https://www.wireshark.org/docs/wsdg_html_chunked/lua_module_Field.html
https://www.wireshark.org/docs/wsdg_html_chunked/lua_module_Field.html
https://www.wireshark.org/docs/wsdg_html_chunked/lua_module_Listener.html
https://www.wireshark.org/docs/wsdg_html_chunked/lua_module_Listener.html
https://gitlab.com/wireshark/wireshark/-/wikis/Lua/
https://gitlab.com/wireshark/wireshark/-/wikis/Lua/

[22] Wireshark Contributors. Wireshark Wiki Lua/Taps Page. 2012. URL:
https://gitlab.com/wireshark/wireshark/-/wikis/Lua/Taps

(visited on 2020-08-13).

[23] Wireshark Contributors. Wireshark Wiki Performance Page. 2013.
URL: https://wiki.wireshark.org/Performance (visited on 2019-
04-08).

[24] Wireshark Contributors. Wireshark Wiki WLAN (IEEE 802.11) Cap-
ture Setup Page. 2020. URL: https://wiki.wireshark.org/CaptureSetup/
WLAN (visited on 2020-08-19).

[25] M. Cotton, L. Vegoda, and D. Meyer. IANA Guidelines for IPv4 Mul-
ticast Address Assignments. BCP 51. RFC Editor, 2010-03. URL:
https://www.rfc-editor.org/rfc/rfc5771.html.

[26] M. Cotton et al. Internet Assigned Numbers Authority (IANA) Proce-
dures for the Management of the Service Name and Transport Pro-
tocol Port Number Registry. BCP 165. RFC Editor, 2011-08. URL:
https://www.rfc-editor.org/rfc/rfc6335.html.

[27] Scott E. Coull et al. “Playing Devil’s Advocate: Inferring Sensitive
Information from Anonymized Network Traces”. In: in Proceedings
of the Network and Distributed System Security Symposium. 2007,
pp. 35–47.

[28] Scott E Coull et al. “Taming the devil: Techniques for evaluating anonymized
network data”. In: (2008).

[29] M. Culig. libAnonLua. URL: https://github.com/mculig/libAnonLua.

[30] M. Culig. Shanon. URL: https://github.com/mculig/Shanon.

[31] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Spec-
ification. STD 86. RFC Editor, 2017-07. URL: https://www.rfc-
editor.org/rfc/rfc8200.html.

[32] Stephen E. Deering. ICMP Router Discovery Messages. RFC 1256.
RFC Editor, 1991-09. URL: http://www.rfc- editor.org/rfc/
rfc1256.txt.

[33] Steve Deering. Host extensions for IP multicasting. STD 5. RFC Ed-
itor, 1989-08. URL: http://www.rfc-editor.org/rfc/rfc1112.txt.

[34] Lua Developers. Lua About Page. URL: https://www.lua.org/
about.html (visited on 2020-08-19).

[35] Tcpdump/libpcap devs. Tcpdump/libpcap. 2019. URL: https://www.
tcpdump.org/ (visited on 2019-04-08).

122

https://gitlab.com/wireshark/wireshark/-/wikis/Lua/Taps
https://wiki.wireshark.org/Performance
https://wiki.wireshark.org/CaptureSetup/WLAN
https://wiki.wireshark.org/CaptureSetup/WLAN
https://www.rfc-editor.org/rfc/rfc5771.html
https://www.rfc-editor.org/rfc/rfc6335.html
https://github.com/mculig/libAnonLua
https://github.com/mculig/Shanon
https://www.rfc-editor.org/rfc/rfc8200.html
https://www.rfc-editor.org/rfc/rfc8200.html
http://www.rfc-editor.org/rfc/rfc1256.txt
http://www.rfc-editor.org/rfc/rfc1256.txt
http://www.rfc-editor.org/rfc/rfc1112.txt
https://www.lua.org/about.html
https://www.lua.org/about.html
https://www.tcpdump.org/
https://www.tcpdump.org/

[36] J.P Early, C.E Brodley, and C Rosenberg. “Behavioral authentication
of server flows”. eng. In: 19th Annual Computer Security Applications
Conference, 2003. Proceedings. Vol. 2003-. IEEE, 2003, pp. 46–55.
ISBN: 0769520413.

[37] Sonia Fahmy and Christine Tan. Balancing Privacy and Fidelity in
Packet Traces for Security Evaluation. Tech. rep. Tech. Rep. CSD-
04-034, Purdue Univ, 2004.

[38] Jinliang Fan et al. “Prefix-preserving IP address anonymization: measurement-
based security evaluation and a new cryptography-based scheme”.
eng. In: Computer Networks 46.2 (2004), pp. 253–272. ISSN: 1389-
1286.

[39] Rodrigo Fonseca et al. IP Options are not an option. Tech. rep. UCB/EECS-
2005-24. EECS Department, University of California, Berkeley, 2005-
12. URL: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2005/
EECS-2005-24.html.

[40] Wireshark Foundation. Wireshark. 2019. URL: https://www.wireshark.
org/ (visited on 2019-04-08).

[41] Th. Gamer, Chr. Mayer, and M. Schöller. “PktAnon - A Generic Frame-
work for Profile-based Traffic Anonymization”. In: PIK - Praxis der In-
formationsverarbeitung und Kommunikation 31.2 (2008), pp. 76–81.
ISSN: 0930-5157.

[42] F. Gont. Deprecation of ICMP Source Quench Messages. RFC 6633.
RFC Editor, 2012-05. URL: http://www.rfc- editor.org/rfc/
rfc6633.txt.

[43] F. Gont and C. Pignataro. Formally Deprecating Some ICMPv4 Mes-
sage Types. RFC 6918. RFC Editor, 2013-04. URL: http://www.rfc-
editor.org/rfc/rfc6918.txt.

[44] Google. Google IPv6 adoption statistics. 2019. URL: https://www.
google.com/intl/en/ipv6/statistics.html (visited on 2019-04-
08).

[45] Jeremi M Gosney. Nvidia GTX 1080 Ti Hashcat Benchmarks. 2017.
URL: https://gist.github.com/epixoip/973da7352f4cc005746c627527e4d073
(visited on 2019-05-10).

[46] Marc Heuse. thc-ipv6. URL: https://github.com/vanhauser-thc/
thc-ipv6.

123

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2005/EECS-2005-24.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2005/EECS-2005-24.html
https://www.wireshark.org/
https://www.wireshark.org/
http://www.rfc-editor.org/rfc/rfc6633.txt
http://www.rfc-editor.org/rfc/rfc6633.txt
http://www.rfc-editor.org/rfc/rfc6918.txt
http://www.rfc-editor.org/rfc/rfc6918.txt
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
https://gist.github.com/epixoip/973da7352f4cc005746c627527e4d073
https://github.com/vanhauser-thc/thc-ipv6
https://github.com/vanhauser-thc/thc-ipv6

[47] C. Huitema. An Anycast Prefix for 6to4 Relay Routers. RFC 3068.
RFC Editor, 2001-06. URL: https://www.rfc- editor.org/rfc/
rfc3068.html.

[48] C. Huitema. Teredo: Tunneling IPv6 over UDP through Network Ad-
dress Translations (NATs). RFC 4380. RFC Editor, 2006-02. URL:
https://www.rfc-editor.org/rfc/rfc4380.html.

[49] IANA. IANA ARP Parameters Registry. URL: https://www.iana.
org/assignments/arp-parameters/arp-parameters.xml (visited
on 2020-08-19).

[50] IANA. IANA PEN Application Forms. 2019. URL: https://pen.iana.
org/pen/ (visited on 2019-04-08).

[51] IANA. IANA Protocol Numbers Registry. URL: https://www.iana.
org/assignments/protocol- numbers/protocol- numbers.xhtml

(visited on 2020-08-19).

[52] IEEE Standard for Ethernet (802.3-2018). eng. New York, USA: IEEE,
2018, pp. 1–5600. ISBN: 9781504450904.

[53] “IEEE Standard for Local and Metropolitan Area Networks: Overview
and Architecture”. In: IEEE Std 802-2014 (Revision to IEEE Std 802-
2001) (2014), pp. 1–74.

[54] European Court of Justice. Patrick Breyer vs Bundesrepublik Deutsch-
land. 2016. URL: http : / / curia . europa . eu / juris / document /

document.jsf?docid=184668&doclang=EN (visited on 2019-03-04).

[55] T Karagiannis, K Papagiannaki, and M Faloutsos. “BLINC: Multilevel
traffic classification in the dark”. English. In: Acm Sigcomm Computer
Communication Review 35.4 (2005), pp. 229–240. ISSN: 0146-4833.

[56] Justin King, Kiran Lakkaraju, and Adam Slagell. “A taxonomy and ad-
versarial model for attacks against network log anonymization”. eng.
In: Proceedings of the 2009 ACM symposium on applied computing.
SAC ’09. ACM, 2009, pp. 1286–1293. ISBN: 9781605581668.

[57] T Kohno, A Broido, and K.C Claffy. “Remote physical device fin-
gerprinting”. eng. In: IEEE Transactions on Dependable and Secure
Computing 2.2 (2005), pp. 93–108. ISSN: 1545-5971.

[58] James F. Kurose and Keith W. Ross. Computer Networking: A Top-
Down Approach (6th Edition). 6th. Pearson, 2012. ISBN: 0132856204.

124

https://www.rfc-editor.org/rfc/rfc3068.html
https://www.rfc-editor.org/rfc/rfc3068.html
https://www.rfc-editor.org/rfc/rfc4380.html
https://www.iana.org/assignments/arp-parameters/arp-parameters.xml
https://www.iana.org/assignments/arp-parameters/arp-parameters.xml
https://pen.iana.org/pen/
https://pen.iana.org/pen/
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
http://curia.europa.eu/juris/document/document.jsf?docid=184668&doclang=EN
http://curia.europa.eu/juris/document/document.jsf?docid=184668&doclang=EN

[59] J. Laganier and F. Dupont. An IPv6 Prefix for Overlay Routable Cryp-
tographic Hash Identifiers Version 2 (ORCHIDv2). RFC 7343. RFC
Editor, 2014-09. URL: https://www.rfc-editor.org/rfc/rfc7343.
html.

[60] Gordon Lyon. Nping - Network packet generation tool / ping utiliy.
URL: https://nmap.org/nping/.

[61] Ed. M. Tuexen et al. PCAP Next Generation (pcapng) Capture File
Format. 2019. URL: https://github.com/pcapng/pcapng (visited on
2019-04-07).

[62] Greg Minshall. Tcpdpriv BSD Man Page. 1996. URL: http://fly.
isti . cnr . it / software / tcpdpriv / tcpdpriv . 0 . txt (visited on
2019-03-02).

[63] J. Mirkovic. “Privacy-safe network trace sharing via secure queries”.
In: 2008, pp. 3–10. ISBN: 9781605583013.

[64] Jeffrey Mogul. Broadcasting Internet Datagrams. STD 5. RFC Editor,
1984-10. URL: http://www.rfc-editor.org/rfc/rfc919.txt.

[65] Jeffrey Mogul and Martin Arlitt. “SC2D: an alternative to trace anonymiza-
tion”. eng. In: Proceedings of the 2006 SIGCOMM workshop on min-
ing network data. Vol. 2006. MineNet ’06. ACM, 2006, pp. 323–328.
ISBN: 159593569X.

[66] T. Narten et al. Neighbor Discovery for IP version 6 (IPv6). RFC
4861. RFC Editor, 2007-09. URL: http://www.rfc- editor.org/
rfc/rfc4861.txt.

[67] RIPE NCC. IPv6 Address Types. 2019. URL: https://www.ripe.
net/ipv6-address-types (visited on 2021-01-24).

[68] Kathleen Nichols et al. Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers. RFC 2474. RFC Editor,
1998-12. URL: http://www.rfc-editor.org/rfc/rfc2474.txt.

[69] Omnipacket. SafePcap Website. 2016. URL: https://omnipacket.
com/safepcap (visited on 2019-02-27).

[70] Omnipacket. WireEdit website. 2014. URL: https://wireedit.com/
(visited on 2019-02-27).

[71] RM Pang and V Paxson. “A high-level programming environment for
packet trace anonymization and transformation”. English. In: Acm
Sigcomm Computer Communication Review 33.4 (2003), pp. 339–
351. ISSN: 0146-4833.

125

https://www.rfc-editor.org/rfc/rfc7343.html
https://www.rfc-editor.org/rfc/rfc7343.html
https://nmap.org/nping/
https://github.com/pcapng/pcapng
http://fly.isti.cnr.it/software/tcpdpriv/tcpdpriv.0.txt
http://fly.isti.cnr.it/software/tcpdpriv/tcpdpriv.0.txt
http://www.rfc-editor.org/rfc/rfc919.txt
http://www.rfc-editor.org/rfc/rfc4861.txt
http://www.rfc-editor.org/rfc/rfc4861.txt
https://www.ripe.net/ipv6-address-types
https://www.ripe.net/ipv6-address-types
http://www.rfc-editor.org/rfc/rfc2474.txt
https://omnipacket.com/safepcap
https://omnipacket.com/safepcap
https://wireedit.com/

[72] Ruoming Pang et al. “The devil and packet trace anonymization”.
eng. In: ACM SIGCOMM Computer Communication Review 36.1
(2006), pp. 29–38. ISSN: 0146-4833.

[73] European Parliament. General Data Protection Regulation. 2016.
URL: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/
?uri=CELEX:32016R0679 (visited on 2019-03-04).

[74] V. Paxson. “Strategies for sound internet measurement”. In: Pro-
ceedings of the 2004 ACM SIGCOMM Internet Measurement Con-
ference, IMC 2004. 2004, pp. 263–271. ISBN: 1581138210.

[75] David C. Plummer. Ethernet Address Resolution Protocol: Or con-
verting network protocol addresses to 48.bit Ethernet address for
transmission on Ethernet hardware. STD 37. RFC Editor, 1982-11.
URL: http://www.rfc-editor.org/rfc/rfc826.txt.

[76] J. Postel. Internet Control Message Protocol. STD 5. RFC Editor,
1981-09. URL: http://www.rfc-editor.org/rfc/rfc792.txt.

[77] J. Postel. User Datagram Protocol. STD 6. RFC Editor, 1980-08.
URL: http://www.rfc-editor.org/rfc/rfc768.txt.

[78] Jon Postel. Internet Protocol. STD 5. RFC Editor, 1981-09. URL:
http://www.rfc-editor.org/rfc/rfc791.txt.

[79] Jon Postel. Transmission Control Protocol. STD 7. RFC Editor, 1981-
09. URL: http://www.rfc-editor.org/rfc/rfc793.txt.

[80] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit
Congestion Notification (ECN) to IP. RFC 3168. RFC Editor, 2001-
09. URL: http://www.rfc-editor.org/rfc/rfc3168.txt.

[81] Yakov Rekhter et al. Address Allocation for Private Internets. BCP
5. RFC Editor, 1996-02. URL: http://www.rfc-editor.org/rfc/
rfc1918.txt.

[82] Bruno Ribeiro et al. “Analyzing Privacy in Enterprise Packet Trace
Anonymization”. In: In Proceedings of the 15 th Network and Dis-
tributed Systems Security Symposium. 2008.

[83] Thomas Gamer Roland Bless Christoph P. Mayer. PktAnon v1.4.0-
dev Source Code. URL: https : / / www . tm . uka . de / software /

pktanon/download/index.html.

[84] Stavros Shiaeles and Maria Papadaki. “FHSD: An improved IP spoof
detection method for web DDoS attacks”. In: The Computer Journal
58 (2014-02). DOI: 10.1093/comjnl/bxu007.

126

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
http://www.rfc-editor.org/rfc/rfc826.txt
http://www.rfc-editor.org/rfc/rfc792.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.rfc-editor.org/rfc/rfc1918.txt
http://www.rfc-editor.org/rfc/rfc1918.txt
https://www.tm.uka.de/software/pktanon/download/index.html
https://www.tm.uka.de/software/pktanon/download/index.html
https://doi.org/10.1093/comjnl/bxu007

[85] Adam J. Slagell and William Yurcik. “Sharing Computer Network Logs
for Security and Privacy: A Motivation for New Methodologies of
Anonymization”. In: CoRR cs.CR/0409005 (2004). URL: http : / /

arxiv.org/abs/cs.CR/0409005.

[86] Adam Slagell, Kiran Lakkaraju, and Katherine Luo. “FLAIM: A Mul-
tilevel Anonymization Framework for Computer and Network Logs”.
In: Computing Research Repository - CORR (2006-01), pp. 63–77.

[87] Matthew Smart, G Robert Malan, and Farnam Jahanian. “Defeating
TCP/IP Stack Fingerprinting.” In: Usenix Security Symposium. 2000.

[88] Dug Song and Contributors. dpkt. URL: https://dpkt.readthedocs.
io/en/latest/index.html.

[89] N. Spring, D. Wetherall, and D. Ely. Robust Explicit Congestion Noti-
fication (ECN) Signaling with Nonces. RFC 3540. RFC Editor, 2003-
06. URL: https://www.rfc-editor.org/rfc/rfc3540.html.

[90] United States. 18 U.S.C. §2258E. 2019. URL: https://www.law.
cornell.edu/uscode/text/18/2258E#6 (visited on 2019-04-07).

[91] United States. 18 U.S.C. §2510. 2019. URL: https : / / www . law .

cornell.edu/uscode/text/18/2510 (visited on 2019-04-07).

[92] United States. 18 U.S.C. §2702. 2019. URL: https : / / www . law .

cornell.edu/uscode/text/18/2702 (visited on 2019-04-07).

[93] United States. 18 U.S.C. §3121. 2019. URL: https : / / www . law .

cornell.edu/uscode/text/18/3121 (visited on 2019-04-07).

[94] United States. 18 U.S.C. §3127. 2019. URL: https : / / www . law .

cornell.edu/uscode/text/18/3127 (visited on 2019-04-07).

[95] Latanya Sweeney. “k-anonymity: A model for protecting privacy”. In:
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 10.05 (2002), pp. 557–570.

[96] J. Touch. Updated Specification of the IPv4 ID Field. RFC 6864. RFC
Editor, 2013-02. URL: http://www.rfc-editor.org/rfc/rfc6864.
txt.

[97] O. Troan and B. Carpenter. Deprecating the Anycast Prefix for 6to4
Relay Routers. BCP 196. RFC Editor, 2015-05. URL: https://www.
rfc-editor.org/rfc/rfc7526.html.

[98] Alexandria Division. United States District Court E.D. Virginia. Freed-
man v. America Online, Inc., 329 F. Supp. 2d 745 (E.D. Va. 2004).
2004. URL: https://law.justia.com/cases/federal/district-
courts/FSupp2/329/745/2409876/ (visited on 2019-04-07).

127

http://arxiv.org/abs/cs.CR/0409005
http://arxiv.org/abs/cs.CR/0409005
https://dpkt.readthedocs.io/en/latest/index.html
https://dpkt.readthedocs.io/en/latest/index.html
https://www.rfc-editor.org/rfc/rfc3540.html
https://www.law.cornell.edu/uscode/text/18/2258E#6
https://www.law.cornell.edu/uscode/text/18/2258E#6
https://www.law.cornell.edu/uscode/text/18/2510
https://www.law.cornell.edu/uscode/text/18/2510
https://www.law.cornell.edu/uscode/text/18/2702
https://www.law.cornell.edu/uscode/text/18/2702
https://www.law.cornell.edu/uscode/text/18/3121
https://www.law.cornell.edu/uscode/text/18/3121
https://www.law.cornell.edu/uscode/text/18/3127
https://www.law.cornell.edu/uscode/text/18/3127
http://www.rfc-editor.org/rfc/rfc6864.txt
http://www.rfc-editor.org/rfc/rfc6864.txt
https://www.rfc-editor.org/rfc/rfc7526.html
https://www.rfc-editor.org/rfc/rfc7526.html
https://law.justia.com/cases/federal/district-courts/FSupp2/329/745/2409876/
https://law.justia.com/cases/federal/district-courts/FSupp2/329/745/2409876/

[99] J. Weil et al. IANA-Reserved IPv4 Prefix for Shared Address Space.
BCP 153. RFC Editor, 2012-04. URL: http://www.rfc-editor.org/
rfc/rfc6598.txt.

[100] William Yurcik et al. “SCRUB-tcpdump: A multi-level packet anonymizer
demonstrating privacy/analysis tradeoffs”. eng. In: 2007 Third In-
ternational Conference on Security and Privacy in Communications
Networks and the Workshops - SecureComm 2007. IEEE, 2007,
pp. 49–56. ISBN: 9781424409747.

128

http://www.rfc-editor.org/rfc/rfc6598.txt
http://www.rfc-editor.org/rfc/rfc6598.txt

	Zusammenfassung
	Abstract
	Acknowledgment
	Acronyms
	List of Tables
	List of Figures
	Introduction
	The problem
	Aim of this thesis
	Contributions
	Structure of this thesis

	State of the art
	Overview of Tools
	Methods of anonymization
	Legal environment
	Attacks on anonymization
	Extended scope

	Features of anonymization frameworks
	Choosing initially supported protocols
	Layered network model
	Ethernet
	IPv4
	IPv6
	ARP
	ICMP and ICMPv6
	NDP
	IPv4 and IPv6 pseudo-headers for TCP and UDP checksum calculation
	UDP
	TCP

	Anonymization of chosen protocols
	Addresses
	Length
	Type fields
	Checksums
	Flags
	Port numbers
	Reserved fields
	Payload or Data field
	Other fields of interest
	Future considerations

	Wireshark as a basis of a new anonymization tool
	Features of Wireshark
	The pcapng file format
	Lua in Wireshark

	libAnonLua
	Constants
	Writing pcapng files
	Anonymization functions
	Recalculating checksums
	Helper functions

	Shanon
	Shanon structure
	Shanon features
	Limitations
	Configuring Shanon
	Running the tool

	Evaluation
	Anonymization methods
	The possibility of leaks
	Performance
	Anonymization results
	Comparison of original and anonymized captures in the Wireshark window

	Conclusion
	Future Work

