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Abstract

We develop a novel approach for supervised learning based onadaptively parti-
tioning the feature space into different regions and learning local region-specific
classifiers. We formulate an empirical risk minimization problem that incorpo-
rates both partitioning and classification in to a single global objective. We show
that space partitioning can be equivalently reformulated as a supervised learning
problem and consequently any discriminative learning method can be utilized in
conjunction with our approach. Nevertheless, we consider locally linear schemes
by learning linear partitions and linear region classifiers. Locally linear schemes
can not only approximate complex decision boundaries and ensure low training
error but also provide tight control on over-fitting and generalization error. We
train locally linear classifiers by using LDA, logistic regression and perceptrons,
and so our scheme is scalable to large data sizes and high-dimensions. We present
experimental results demonstrating improved performanceover state of the art
classification techniques on benchmark datasets. We also show improved robust-
ness to label noise.

1 Introduction

We develop a novel approach for supervised learning based onadaptively partitioning the feature
space into different regions and learning local region classifiers. Fig. 1 (left) presents one possible
architecture of our scheme (others are also possible). Hereeach example passes through a cascade
of reject classifiers (gj ’s). Each reject classifier,gj , makes a binary decision and the observation is
either classified by the associated region classifier,fj, or passed to the next reject classifier. Each
reject classifier,gj , thus partitions the feature space into regions. The regionclassifierfj operates
only on examples within the local region that is consistent with the reject classifier partitions.

We incorporate both feature space partitioning (reject classifiers) and region-specific classifiers into
a single global empirical risk/loss function. We then optimize this global objective by means of coor-
dinate descent, namely, by optimizing over one classifier ata time. In this context we show that each
step of the coordinate descent can be reformulated as a supervised learning problem that seeks to op-
timize a 0/1 empirical loss function. This result is somewhat surprising in the context of partitioning
and has broader implications. First, we can now solve feature space partitioning through empirical
risk function minimization(ERM) and so powerful existing methods including boosting, decision
trees and kernel methods can be used in conjunction for training flexible partitioning classifiers.

Second, because data is usually locally “well-behaved,” simpler region-classifiers, such as linear
classifiers, often suffice for controlling local empirical error. Furthermore, since complex boundaries
for partitions can be approximated by piecewise linear functions, feature spaces can be partitioned
to arbitrary degree of precision using linear boundaries (reject classifiers). Thus the combination
of piecewise linear partitions along with linear region classifiers has the ability to adapt to complex
data sets leading to low training error. Yet we can prevent overfitting/overtraining by optimizing the
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Figure 1: Left: Architecture of our system. Reject Classifiers,gj(x), partition space and region classifiers,
fj(x), are applied locally within the partitioned region.Right: Comparison of our approach (upper panel)
against Adaboost and Decision tree (lower panel) on the banana dataset[1]. We use linear perceptrons and
logistic regression for training partitioning classifier and region classifiers. Our scheme splits with 3 regions
and does not overtrain unlike Adaboost.

number of linear partitions and linear region classifiers, since the VC dimension of such a structure
is reasonably small. In addition this also ensures significant robustness to label noise. Fig. 1 (right)
demonstrates the substantial benefits of our approach on thebanana dataset[1] over competing meth-
ods such as boosting and decision trees, both of which evidently overtrain.

Limiting reject and region classifiers to linear methods hascomputational advantages as well. Since
the datasets are locally well-behaved we can locally train with linear discriminant analysis (LDA),
logistic regression and variants of perceptrons. These methods are computationally efficient in that
they scale linearly with data size and data dimension. So we can train on large high-dimensional
datasets with possible applications to online scenarios.

Our approach naturally applies to multi-class datasets. Indeed, we present some evidence that shows
that the partitioning step can adaptively cluster the dataset into groups and letting region classifiers
to operate on simpler problems. Additionally linear methods such as LDA, Logistic regression, and
perceptron naturally extend to multi-class problems leading to computationally efficient and statisti-
cally meaningful results as evidenced on challenging datasets with performance improvements over
state of the art techniques.

1.1 Related Work

Our approach fits within the general framework of combining simple classifiers for learning complex
structures. Boosting algorithms [2] learn complex decision boundaries characterized as a weighted
linear combination of weak classifiers. In contrast our method takes unions and intersections of
simpler decision regions to learn more complex decision boundaries. In this context our approach is
closely related to decision trees. Decision trees are builtby greedily partitioning the feature space
[3]. One main difference is that decision trees typically attempt to greedily minimize some loss or a
heuristic, such as region purity or entropy, at each split/partition of the feature space. In contrast our
method attempts to minimize global classification loss. Also decision trees typically split/partition
a single feature/component resulting in unions of rectangularly shaped decision regions; in contrast
we allow arbitrary partitions leading to complex decision regions.

Our work is loosely related to so called coding techniques that have been used in multi-class classi-
fication [4, 5]. In these methods a multiclass problem is decomposed into several binary problems
using a code matrix and the predicted outcomes of these binary problems are fused to obtain multi-
class labels. Jointly optimizing for the code matrix and binary classification is known to be NP
hard [6] and iterative techniques have been proposed [7, 8].There is some evidence (see Sec. 3)
that suggests that our space partitioning classifier groups/clusters multiple classes into different re-
gions; nevertheless our formulation is different in that wedo not explicitly code classes into different
regions and our method does not require fusion of intermediate outcomes.

Despite all these similarities, at a fundamental level, ourwork can also be thought of as a somewhat
complementary method to existing supervised learning algorithms. This is because we show that
space partitioning itself can be re-formulated as a supervised learning problem. Consequently, any
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existing method, including boosting and decision trees, could be used as a method of choice for
learning space partitioning and region-specific decision functions.

We use simple linear classifiers for partitioning and region-classifiers in many of our experiments.
Using piecewise combinations of simple functions to model acomplex global boundary is a well
studied problem. Mixture Discriminant Analysis (MDA), proposed by Hastieet al. [9], models
each class as a mixture of gaussians, with linear discriminant analysis used to build classifiers be-
tween estimated gaussian distributions. MDA relies upon the structure of the data, assuming that
the true distribution is well approximated by a mixture of Gaussians. Local Linear Discriminant
Analysis (LLDA) , proposed by Kimet al. [10], clusters the data and performs LDA within each
cluster. Both of these approaches partition the data then attempt to classify locally. Partitioning of
the data is independent of the performance of the local classifiers, and instead based upon the spatial
structure of the data. In contrast, our proposed approach partitions the data based on the performance
of classifiers in each region. A recently proposed alternative approach is to build a global classifier
ignoring clusters of errors, and building separate classifiers in each error cluster region [11]. This
proposed approach greedily approximates a piecewise linear classifier in this manner, however fails
to take into account the performance of the classifiers in theerror cluster regions. While piece-
wise linear techniques have been proposed in the past [12, 13], we are unaware of techniques that
learn piecewise linear classifiers based on minimizing global ERM and allows any discriminative
approach to be used for partitioning and local classification, and also extends to multiclass learning
problems.

2 Learning Space Partitioning Classifiers

The goal of supervised classification is to learn a function,f(x), that maps features,x ∈ X , to a
discrete label,y ∈ {1, 2, . . . , c}, based on training data,(xi, yi), i = 1, 2, . . . , n. The empirical
risk/loss of classifierf is:

R(f) =
1

n

n∑

i=1

1{f(xi) 6=yi}

Our goal is empirical risk minimization(ERM), namely, to minimizeR(f) over all classifiers,f(·),
belonging to some classF . It is well known that the complexity of the familyF dictates general-
ization errors. IfF is too simple, it often leads to large bias errors; if the family F is too rich, it
often leads to large variance errors. With this perspectivewe consider a family of classifiers (see
Fig. 1 that adaptively partitions data into regions and fits simple classifiers within each region. We
predict the output for a test sample,x, based on the output of the trained simple classifier associated
with the regionx belongs to. The complexity of our family of classifiers depends on the number
of local regions, the complexity of the simple classifiers ineach region, and the complexity of the
partitioning. In the sequel we formulate space partitioning and region-classification into a single
objective and show that space partitioning is equivalent tosolving a binary classification problem
with 0/1 empirical loss.

2.1 Binary Space Partitioning as Supervised Learning

In this section we consider learning binary space partitioning for ease of exposition. The function
g(·) partitions the space by mapping features,x ∈ X , to a binary label,z ∈ {0, 1}. Region classi-
fiersf0(x), f1(x) operate on the respective regions generated byg(x) (see Fig. 1). The empirical
risk/loss associated with the binary space partitioned classifiers is given by:

R(g, f0, f1) =
1

n

n∑

i=1

1{g(xi)=0}1{f0(xi) 6=yi} +
1

n

n∑

i=1

1{g(xi)=1}1{f1(xi) 6=yi} (1)

Our goal is to minimize the empirical error jointly over the family of functionsg(·) ∈ G andfi(·) ∈
F . From the above equation, when the partitioning functiong(·) is fixed, it is clear how one can
view choice of classifiersf0(·) andf1(·) as ERM problems. In contrast, even whenf0, f1 are fixed,

it is unclear how to view minimization overg ∈ G as an ERM. To this end let,̀(i)0 , `
(i)
1 indicate

whether or not classifierf0, f1 makes an error on examplex(i) and letS denote the set of instances
where the classifierf0 makes errors, namely,

`0i = 1{f0(xi) 6=yi}, `1i = 1{f1(xi) 6=yi}, S = {i | `0i = 1} (2)
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We can then rewrite Eq. 1 as follows:

R(g, f0, f1) =
1

n

n∑

i=1

`0i1{g(xi)=0} +
1

n

n∑

i=1

`1i1{g(xi)=1}

=
1

n

∑

i∈S

1{g(xi)=0} +
1

n

∑

i∈S

`1i1{g(xi)=1} +
1

n

∑

i6∈S

`1i1{g(xi)=1}

=
1

n

∑

i∈S

1{g(xi)=0} +
1

n

∑

i∈S

`1i (1− 1{g(xi)=0}) +
1

n

∑

i6∈S

`1i1{g(xi)=1}

=
1

n

∑

i∈S

(1− `1i )1{g(xi)=0} +
1

n

∑

i∈S

`1i

︸ ︷︷ ︸

indep. ofg

+
1

n

∑

i6∈S

`1i1{g(xi)=1}

Note that for optimizingg ∈ G for fixedf0, f1, the second term above is constant. Furthermore, by
consequence of Eq. 2 we see that the first and third terms can befurther simplified as follows:
1

n

∑

i∈S

(1− `1i )1{g(xi)=0} =
1

n

∑

i∈S

(1− `1i )1{g(xi) 6=`0
i
};

1

n

∑

i6∈S

`1i1{g(xi)=1} =
1

n

∑

i6∈S

`1i1{g(xi) 6=`0
i
}

Putting all this together we have the following lemma:

Lemma 2.1. For a fixedf0, f1 the problem of choosing the best binary space partitions,g(·) in
Eq. 1 is equivalent to choosing a binary classifierg that optimizes following 0/1 (sincewi ∈ {0, 1})
empirical loss function:

R̃(g) =
1

n

n∑

i=1

wi1{g(xi) 6=`0
i
}, where wi =

{

1, `0i 6= `1i
0, otherwise

The composite classifierF (x) based on the reject and region classifiers can be written compactly as
F (x) = fg(x)(x). We observe several aspects of our proposed scheme:
(1) Binary partitioning is a binary classification problem on the training set,(xi, `

0
i ), i =

1, 2, . . . , n.
(2) The 0/1 weight,wi = 1, is non-zero if and only if the classifiers disagree onxi, i.e.,
f0(xi) 6= f1(xi).
(3)The partitioning error is zero on a training examplexi with weightwi = 1 if we chooseg(xi) = 0
on examples wheref0(xi) = yi. In contrast iff0(xi) 6= yi the partitioning error can be reduced by
choosingg(xi) = 1, and thusrejecting the example from consideration byf0.

2.2 Surrogate Loss Functions, Algorithms and Convergence

An important implication of Lemma 2.1 is that we can now use powerful learning techniques such
as decision trees, boosting and SVMs for learning space partitioning classifiers. Our method is a
coordinate descent scheme which optimizes over a single variable at a time. Each step is an ERM
and so any learning method can be used at each step.

Convergence Issues:It is well known that that indicator losses are hard to minimize, even when
the class of classifiers,F , is nicely parameterized. Many schemes are based on minimizing sur-
rogate losses. These surrogate losses are upper bounds for indicator losses and usually attempt
to obtain large margins. Our coordinate descent scheme in this context is equivalent to describ-
ing surrogates for each step and minimizing these surrogates. This means that our scheme may
not converge, let alone converge to a global minima, even when surrogates at each step are nice
and convex. This is because even though each surrogate upperbounds indicator loss functions
at each step, when put together they do not upper bound the global objective of Eq. 1. Conse-
quently, we need a global surrogate to ensure that the solution does converge. Loss functions are
most conveniently thought of in terms of margins. For notational convenience, in this section we
will consider the case where the partition classifier,g, maps to labels̀ ∈ {−1, 1}, where a la-
bel of −1 and1 indicates classification byf0 andf1, respectively. We seek functionsφ(z) that
satisfy1z≤0 ≤ φ(z). Many such surrogates can be constructed using sigmoids, exponentials etc.
Consider the classification functiong(x) = sign (h(x) > 0). The empirical error can be upper
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bounded:1`g(x)=1 = 1−`h(x)≤0 ≤ φ(−`h(x)) We then form a global surrogate for the empir-
ical loss function. Approximating the indicator functionsof the empirical risk/loss in Eq. 1 with
surrogate functions, the global surrogate is given by:

R̂(g, f0, f1) =
1

n

n∑

i=1

φ (h(xi))φ (yif0(xi)) +
1

n

n∑

i=1

φ (−h(xi))φ (yif1(xi)) , (3)

which is an upper bound on Eq. 1. Optimizing the partitioningfunction g(·) can be posed as a
supervised learning problem, resulting in the following lemma (see Supplementary for a proof):

Lemma 2.2. For a fixedf0, f1 the problem of choosing the best binary space partitions,g(·) in
Eq. 3 is equivalent to choosing a binary classifierh that optimizes a surrogate functionφ(·):

R̂(g) =
1

2n

2n∑

i=1

wiφ (h(xi)ri) , ri =

{
1, i < n+ 1
−1, otherwise ,wi =

{
φ(f0(xi)yi), i < n+ 1
φ(f1(xi)yi), otherwise .

Theorem 2.3. For any continuous surrogateφ(·, ·), performing alternating minimization on the
classifiersf0, f1, and g converges to a local minima of Eq. 3, with a loss upper-bounding the
empirical loss defined by Eq. 1.

Proof. This follows directly, as this is coordinate descent on a smooth cost function.

2.3 Multi-Region Partitioning

Lemma 2.1 can be used to also reduce multi-region space partitioning to supervised learning. We
can obtain this reduction in one of several ways. One approach is to use pairwise comparisons,
training classifiers to decide between pairs of regions. Unfortunately, the number of different reject
classifiers scales quadratically, so we instead employ a greedy partitioning scheme using a cascade
classifier.

Fig 1 illustrates a recursively learnt three region space partitioning classifier. In general the regions
are defined by a cascade of binary reject classifiers,gk(x), k ∈ {1, 2, . . . , r − 1}, wherer is the
number of classification regions. Region classifiers,fk(x), k ∈ {1, 2, . . . , r}, map observations in
the associated region to labels. At stagek, if gk(x) = 0, an observation is classified by the region
classifier,fk(x), otherwise the observation is passed to the next stage of thecascade. At the last
reject classifier in the cascade, ifgr−1(x) = 1, the observation is passed to the final region classifier,
fr(x). This ensures that onlyr reject classifiers have to be trained forr regions.

Now define for an arbitrary instance(x, y) and fixed{gj}, {fj}, the 0/1 loss function at each stage
k,

Lk(x, y) =

{(1{gk(x)=0}

)1{fk(x) 6=y} +
(1{gk(x)=1}

)
Lk+1(x, y) if k < r1{fk+1(x) 6=y} if k = r

, (4)

We observe thatLk(x, y) ∈ {0, 1} and is equal to zero if the example is classified correctly at
current or future stages and one otherwise. Consequently, the aggregate 0/1 empirical risk/loss is
the average loss over all training points at stage 1, namely,

R (g1, g2, . . . , gr−1, f1, f2, . . . , fr) =
1

n

n∑

i=1

L1(xi, yi) (5)

In the expression above we have made the dependence on rejectclassifiers and region-classifiers
explicit. We minimize Eq. 5 over allgj, fj by means of coordinate descent, namely, to optimizegk
we holdfj, ∀j andgj , j 6= k fixed. Based on the expressions derived above the coordinatedescent
steps forgk andfk reduces respectively to:

gk(·) = argmin
g∈G

1

n

n∑

i=1

Ck(xi)Lk(xi, yi), fk(·) = argmin
f∈F

1

n

n∑

i=1

Ck(xi)1{fk(xi) 6=yi}
∧
{gk(xi)=0}

(6)

where,Cj(x) = 1{
∧j−1

i=1
{gi(x)=1}}, denotes whether or not an example makes it to the jth stage. The

optimization problem forfk(·) is exactly the standard 0/1 empirical loss minimization over training
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Algorithm 1 Space Partitioning Classifier

Input: Training data,{(xi, yi)}
n
i=1, number of classification regions,r

Output: Composite classifier,F (·)
Initialize: Assign points randomly tor regions
while F not convergeddo

for j = 1, 2, . . . , r do
Train region classifierfj(x) to optimize 0/1 empirical loss of Eq. (6).

end for
for k = r − 1, r − 2, . . . , 2, 1 do

Train reject classifiergk(x) to optimize 0/1 empirical loss of Eq. (7).
end for

end while

data that survived upto stagek. On the other hand, the optimization problem forgk is exactly in
the form where Lemma 2.1 applies. Consequently, we can also reduce this problem to a supervised
learning problem:

gk(·) = argmin
g∈G

1

n

n∑

i=1

wi1{g(xi) 6=`i}, (7)

where

`i =

{
0 if fk(xi) = yi

1 if fk(xi) 6= yi
and wi =

{
1, `i 6= Lk+1(xi, yi), Ck(x) 6= 0
0, otherwise .

The composite classifierF (x) based on the reject and region classifiers can be written compactly as
follows:

F (x) = fs(x), s = min{j | gj(x) = 0} ∪ {r} (8)
Observe that if thekth region classifier correctly classifies the examplexi, i.e., fk(xi) = yi then
this would encouragegk(xi) = 0. This is becausegk(xi) = 1 would induce an increased cost in
terms of increasingLk+1(xi, yi). Similarly, if thekth region classifier incorrectly classifies, namely,
fk(xi) 6= yi, the optimization would prefergk(xi) = 1. Also note that if the kth region classifier
loss as well as the subsequent stages are incorrect on an example are incorrect then the weight on
that example is zero. This is not surprising since reject/no-reject does not impact the global cost.
We can deal with minimizing indicator losses and resulting convergence issues by deriving a global
surrogate as we did in Sec. 2.2. A pseudo-code for the proposed scheme is described in Algorithm 1.

2.4 Local Linear Classification

Figure 2:Local LDA classification regions
for XOR data, the black line is reject classi-
fier boundary.

Linear classification is a natural method for learning lo-
cal decision boundaries, with the global decision regions
approximated by piecewise linear functions. In local lin-
ear classification, local classifiers,f1, f2, . . . , fr, and re-
ject classifiers,g1, g2, . . . , gr−1, are optimized over the
set of linear functions. Local linear rules can effectively
tradeoff bias and variance error. Bias error (empirical er-
ror) can be made arbitrarily small by approximating the
decision boundary by many local linear classifiers. Vari-
ance error (classifier complexity) can be made small by
restricting the number of local linear classifiers used to
construct the global classifier. This idea is based on the
relatively small VC-dimension of a binary local linear classifier, namely,

Theorem 2.4. The VC-dimension of the class composed (Eq. 8) withr − 1 linear classifiersgj and
r linear classifiersfj in a d-dimensional space is bounded by2(2r − 1) log(e(2r − 1))(d+ 1).

The VC-dimension of local linear classifiers grows linearlywith dimension and nearly linearly with
respect to the number of regions. This is seen from Fig. 1. In practice, few regions are necessary to
achieve low training error as highly non-linear decision boundaries can be approximated well locally
with linear boundaries. For example, consider 2-D XOR data.Learning the local linear classifier
with 2 regions using LDA produces a classifier with small empirical error. In fact our empirical
observation can be translated to a theorem (see Supplementary for details):
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Theorem 2.5. Consider an idealized XOR, namely, samples are concentrated into four equal clus-
ters at coordinates(−1, 1), (1, 1), (1,−1), (−1,−1) in a 2D space. Then with high probability
(where probability is wrt initial sampling of reject region) a two region composite classifier trained
locally using LDA converges to zero training error.

In general, training linear classifiers on the indicator loss is impractical. Optimization on the non-
convex problem is difficult and usually leads to non-unique optimal solutions. Although margin
based methods such as SVMs can be used, we primarily use relatively simple schemes such as
LDA, logistic regression, and average voted perceptron in our experiments. We use each of these
schemes for learning both reject and region-classifiers. These schemes enjoy significant computa-
tional advantages over other schemes.

Computational Costs of LDA, Logistic Regression and Perceptron: Each LDA classifier is
trained inO(nd2) computations, wheren is the number of training observations andd is the di-
mension of the training data. As a result, the total computation cost per iteration of the local lin-
ear classifier with LDA scales linearly with respect to the number of training samples, requiring
O(nd2r) computations per iteration, wherer is the number of classification regions. Similarly, the
computational cost of training a single linear classifier bylogistic regression scalesO(ncd2) for a
fixed number of iterations, with the local linear classifier training time scalingO(rncd2) computa-
tions per iteration, wherec is the number of classes. A linear variant of the voted perceptron was
implemented by taking the average of the weights generated by the unnormalized voted perceptron
[15]. Training each perceptron for a fixed number of epochs isextremely efficient, requiring only
O(ndc) computations to train. Therefore, training local linear perceptron scales linearly with data
size and dimensions, withO(ndcr) computations, per iteration.

3 Experimental Results

Multiclass Classification:Experimental results on six datasets from the UCI repository [16] were
performed using the benchmark training and test splits associated with each data set, as shown in
Table 1. Confidence intervals are not possible with the results, as the predefined training and test
splits were used. Although confidence intervals cannot be computed by multiple training/test splits,
test set error bounds [17] show that with test data sets of these sizes, the difference between true error
and empirical error is small with high probability. The six datasets tested were: Isolet (d=617, c= 26,
n=6238, T=1559), Landsat (d=36, c=7, n=4435, T=2000), Letter (d=16, c=26, n=16000, T=4000),
Optdigit (d=64, c=10, n=3823, T=1797), Pendigit (d=16, n=10, n=7494, T=3498), and Shuttle (d=9,
c=7, n=43500, T=14500), whered is the dimensions,c the number of classes,n training data size
andT the number of test samples.

Local linear classifiers were trained with LDA, logistic regression, and perceptron (mean of weights)
used to learn local surrogates for the rejection and local classification problems. The classifiers were
initialized with 5 classification regions (r = 5), with the trained classifiers often reducing to fewer
classification regions due to empty rejection region. Termination of the algorithm occurred when the
rejection outputs,gk(x), and classification labels,F (x), remained consistent on the training data for
two iterations. Each classifier was randomly initialized 15times, and the classifier with the minimum
training error was chosen. Results were compared with Mixture Discriminant Analysis (MDA)

g2(x) g3(x) g4(x) g5(x)g1(x)

Figure 3:Histogram of classes over test data for the Optdigit datasetin different partitions generated by our
approach using the linear voted perceptron .

[9] and classification trees trained using the Gini diversity index (GDI) [3]. These classification
algorithms were chosen for comparison as both train global classifiers modeled as simple local
classifiers, and both are computationally efficient.
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For comparison to globally complex classification techniques, previous state of the art boosting re-
sults of Saberian and Vasconcelos [18] and Jhu et al. [19] were listed. Although the multiclass
boosted classifiers were terminated early, we consider the comparison appropriate, as early termi-
nation limits the complexity of the classifiers. The improved performance of local linear learning
of comparable complexity justifies approximating these boundaries by piecewise linear functions.
Comparison with kernelized SVM was omitted, as SVM is rarelyapplied to multiclass learning
on large datasets. Training each binary kernelized classifier is computationally intensive, and on
weakly learnable data, boosting also allows for modeling ofcomplex boundaries with arbitrarily
small empirical error.

Table 1:Multiclass learning algorithm test errors on six UCI datasets using benchmark training and test sets.
Bold indicates best test error among listed algorithms. Onevs All AdaBoostis trained using decision stumps as
weak learners. AdaBoost-SAMME and GD-MCBoost are trained using depth-2 decision trees as weak learners.

Algorithm Isolet Landsat Letter Optdigit Pendigit Shuttle
One vs All AdaBoost [2] 11.10% 16.10% 37.37% 12.24% 11.29% 0.11%

GDI Tree [3] 20.59% 14.45% 14.37% 14.58% 8.78% 0.04%
MDA [9] 35.98% 36.45% 22.73% 9.79% 7.75% 9.59%

AdaBoost-SAMME [19] 39.00% 20.20% 44.35% 22.47% 16.18% 0.30%
GD-MCBoost [18] 15.72% 13.35% 40.35% 7.68% 7.06% 0.27%
Local Classifiers

LDA
Logistic Regression

Perceptron

5.58%
19.95%
5.71%

13.95%
14.00%
20.15%

24.45%
13.08%
20.40%

5.78%
7.74%
4.23%

6.60%
4.75%
4.32%

2.67%
1.19%
0.32%

In 4 of the 6 datasets, local linear classification produced the lowest classification error on test
datasets, with optimal test errors within0.6% of the minimal test error methods for the remaining
two datasets. Also there is evidence that suggests that our scheme partitions multiclass problems
into simpler subproblems. We plotted histogram output of class labels for Optdigit dataset across
different regions using local perceptrons (Fig. 3). The histogram is not uniform across regions,
implying that the reject classifiers partition easily distinguishable classes. We may interpret our
approach as implicitly learning data-dependent codes for multiclass problems. This can contrasted
with many state of the art boosting techniques, such as [18],which attempt to optimize both the
codewords for each class as well as the binary classificationproblems defining the codewords.

Figure 4:Test error for different values of label noise.Left: Wisconsin Breast Cancer data,Middle: Vertebrae
data, andRight: Wine data.
Robustness to Label Noise:Local linear classification trained using LDA, logistic regression, and
averaged voted perceptron was tested in the presence of random label noise. A randomly selected
fraction of all training observations were given incorrectlabels, and trained as described for the
multiclass experiments. Three datasets were chosen from the UCI repository [16]: Wisconsin Breast
Cancer data, Vertebrae data, and Wine data. A training set of100 randomly selected observations
was used, with the remainder of the data used as test. For eachlabel noise fraction, 100 randomly
drawn training and test sets were used, and the average test error is shown in Fig. 4.

For comparison, results are shown for classification trees trained according to Gini’s diversity index
(GDI) [3], AdaBoost trained with stumps [2], and support vector machines trained on Gaussian ra-
dial basis function kernels. Local linear classification, notably when trained using LDA, is extremely
robust to label noise. In comparison, boosting and classification trees show sensitivity to label noise,
with the test error increasing at a faster rate than LDA-trained local linear classification on both the
Wisconsin Breast Cancer data and Vertebrae data.
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