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Abstract

We develop a novel approach for supervised learning basediaptively parti-
tioning the feature space into different regions and lewrhocal region-specific
classifiers. We formulate an empirical risk minimizatiomlplem that incorpo-
rates both partitioning and classification in to a singlebglambjective. We show
that space partitioning can be equivalently reformulated saupervised learning
problem and consequently any discriminative learning wettan be utilized in
conjunction with our approach. Nevertheless, we consmzlly linear schemes
by learning linear partitions and linear region classifidracally linear schemes
can not only approximate complex decision boundaries asdreriow training
error but also provide tight control on over-fitting and gesieation error. We
train locally linear classifiers by using LDA, logistic r&gsion and perceptrons,
and so our scheme is scalable to large data sizes and higmsiioms. We present
experimental results demonstrating improved performanves state of the art
classification techniques on benchmark datasets. We atswistiproved robust-
ness to label noise.

1 Introduction

We develop a novel approach for supervised learning basediaptively partitioning the feature
space into different regions and learning local regiongifiess. Fig. 1 (left) presents one possible
architecture of our scheme (others are also possible). ékarle example passes through a cascade
of reject classifiersy(;’s). Each reject classifie,;, makes a binary decision and the observation is
either classified by the associated region classifigrpr passed to the next reject classifier. Each
reject classifierg;, thus partitions the feature space into regions. The reg@ssifier f; operates
only on examples within the local region that is consisteitt Whe reject classifier partitions.

We incorporate both feature space patrtitioning (rejecsifeers) and region-specific classifiers into
a single global empirical risk/loss function. We then optiethis global objective by means of coor-
dinate descent, namely, by optimizing over one classifiartiae. In this context we show that each
step of the coordinate descent can be reformulated as assgrblearning problem that seeks to op-
timize a 0/1 empirical loss function. This result is sometgaprising in the context of partitioning
and has broader implications. First, we can now solve feapace partitioning through empirical
risk function minimization(ERM) and so powerful existingethods including boosting, decision
trees and kernel methods can be used in conjunction foirigaflexible partitioning classifiers.

Second, because data is usually locally “well-behavedijpker region-classifiers, such as linear
classifiers, often suffice for controlling local empiricala. Furthermore, since complex boundaries
for partitions can be approximated by piecewise linear fions, feature spaces can be partitioned
to arbitrary degree of precision using linear boundariegt classifiers). Thus the combination
of piecewise linear partitions along with linear regionsslifiers has the ability to adapt to complex
data sets leading to low training error. Yet we can preveatfitting/overtraining by optimizing the



Figure 1:Left: Architecture of our system. Reject Classifiegs(x), partition space and region classifiers,

fi(x), are applied locally within the partitioned regioRight: Comparison of our approach (upper panel)

against Adaboost and Decision tree (lower panel) on therzadataset[1]. We use linear perceptrons and
logistic regression for training partitioning classifierdaregion classifiers. Our scheme splits with 3 regions
and does not overtrain unlike Adaboost.

number of linear partitions and linear region classifieirs;es the VC dimension of such a structure
is reasonably small. In addition this also ensures sigmifioabustness to label noise. Fig. 1 (right)
demonstrates the substantial benefits of our approach drattena dataset[1] over competing meth-
ods such as boosting and decision trees, both of which elydmrertrain.

Limiting reject and region classifiers to linear methods¢@msputational advantages as well. Since
the datasets are locally well-behaved we can locally traih linear discriminant analysis (LDA),
logistic regression and variants of perceptrons. Thesb@adstare computationally efficient in that
they scale linearly with data size and data dimension. Soametrain on large high-dimensional
datasets with possible applications to online scenarios.

Our approach naturally applies to multi-class datasettedd, we present some evidence that shows
that the partitioning step can adaptively cluster the datzto groups and letting region classifiers
to operate on simpler problems. Additionally linear methedch as LDA, Logistic regression, and
perceptron naturally extend to multi-class problems legth computationally efficient and statisti-
cally meaningful results as evidenced on challenging é#gasith performance improvements over
state of the art techniques.

1.1 Related Work

Our approach fits within the general framework of combiniingpde classifiers for learning complex
structures. Boosting algorithms [2] learn complex decidgioundaries characterized as a weighted
linear combination of weak classifiers. In contrast our radttakes unions and intersections of
simpler decision regions to learn more complex decisiomidades. In this context our approach is
closely related to decision trees. Decision trees are byitireedily partitioning the feature space
[3]. One main difference is that decision trees typicaltgmpt to greedily minimize some loss or a
heuristic, such as region purity or entropy, at each spilitifion of the feature space. In contrast our
method attempts to minimize global classification loss.oAlscision trees typically split/partition

a single feature/component resulting in unions of rectéarfyushaped decision regions; in contrast
we allow arbitrary partitions leading to complex decisiegions.

Our work is loosely related to so called coding techniques iave been used in multi-class classi-
fication [4, 5]. In these methods a multiclass problem is dgwosed into several binary problems
using a code matrix and the predicted outcomes of theseyljimablems are fused to obtain multi-
class labels. Jointly optimizing for the code matrix andajnclassification is known to be NP
hard [6] and iterative techniques have been proposed [7TBgre is some evidence (see Sec. 3)
that suggests that our space partitioning classifier grolysters multiple classes into different re-
gions; nevertheless our formulation is different in thatdeenot explicitly code classes into different
regions and our method does not require fusion of interntediatcomes.

Despite all these similarities, at a fundamental level woirk can also be thought of as a somewhat
complementary method to existing supervised learningrétgus. This is because we show that
space partitioning itself can be re-formulated as a supedviearning problem. Consequently, any



existing method, including boosting and decision treesildcbe used as a method of choice for
learning space partitioning and region-specific decisiorcfions.

We use simple linear classifiers for partitioning and regstassifiers in many of our experiments.
Using piecewise combinations of simple functions to modebmplex global boundary is a well
studied problem. Mixture Discriminant Analysis (MDA), grosed by Hastiet al. [9], models
each class as a mixture of gaussians, with linear discrimianalysis used to build classifiers be-
tween estimated gaussian distributions. MDA relies upenstinucture of the data, assuming that
the true distribution is well approximated by a mixture ofussians. Local Linear Discriminant
Analysis (LLDA) , proposed by Kimet al. [10], clusters the data and performs LDA within each
cluster. Both of these approaches partition the data ttemat to classify locally. Partitioning of
the data is independent of the performance of the localiirss and instead based upon the spatial
structure of the data. In contrast, our proposed approatitipas the data based on the performance
of classifiers in each region. A recently proposed alteveapproach is to build a global classifier
ignoring clusters of errors, and building separate classifin each error cluster region [11]. This
proposed approach greedily approximates a piecewise latessifier in this manner, however fails
to take into account the performance of the classifiers inether cluster regions. While piece-
wise linear techniques have been proposed in the past [12w&3are unaware of techniques that
learn piecewise linear classifiers based on minimizing gll&@RM and allows any discriminative
approach to be used for partitioning and local classificatimd also extends to multiclass learning
problems.

2 Learning Space Partitioning Classifiers

The goal of supervised classification is to learn a functif(m;), that maps features, € X, to a
discrete labely € {1, 2, ..., ¢}, based on training dat&y;,v;), i = 1, 2, ..., n. The empirical

risk/loss of classifierf is: 1
R(f) = - Z Lif ()2}
=1

Our goal is empirical risk minimization(ERM), namely, tommize R(f) over all classifiersf (),
belonging to some clasB. It is well known that the complexity of the familf dictates general-
ization errors. IfF is too simple, it often leads to large bias errors; if the fgndt is too rich, it
often leads to large variance errors. With this perspectieeconsider a family of classifiers (see
Fig. 1 that adaptively partitions data into regions and fitspbe classifiers within each region. We
predict the output for a test sampie,based on the output of the trained simple classifier agsatia
with the regionz belongs to. The complexity of our family of classifiers deg@ion the number
of local regions, the complexity of the simple classifiergach region, and the complexity of the
partitioning. In the sequel we formulate space partitignamd region-classification into a single
objective and show that space partitioning is equivalerstolging a binary classification problem
with 0/1 empirical loss.

2.1 Binary Space Partitioning as Supervised Learning

In this section we consider learning binary space pariitigifior ease of exposition. The function
g() partitions the space by mapping features; X, to a binary labelz € {0, 1}. Region classi-
fiers fo(x), f1(z) operate on the respective regions generated(by (see Fig. 1). The empirical
risk/loss associated with the binary space partitioneskdiars is given by:

1 n 1 n
R(g, fo, f1) = — D lig@n=0y Lifotwozu} + - > Lgen=13 Lif @2y 1)
=1

=1
Our goal is to minimize the empirical error jointly over thanfily of functionsg(-) € G and f;(-) €
F. From the above equation, when the partitioning funcgjé) is fixed, it is clear how one can
view choice of classifiergy(-) and f1(-) as ERM problems. In contrast, even whin f; are fixed,
it is unclear how to view minimization over € G as an ERM. To this end let”, ¢{" indicate

whether or not classifiefy, fi makes an error on exampié€”) and letS denote the set of instances
where the classifief, makes errors, namely,

4? = l{fo(-’ﬁi)#yi}’ K% = ]l{fl(ﬂfi)#yi}’ S= {Z | 4? = 1} (2)



We can then rewrite Eq. 1 as follows:

1 & 1 &
R(g, fo, 1) = =D 0wy + =D Liligwo—)
=1 =1
1 1 . 1 .
= = D Lgwo=0y + - D g1y + - D Gl g1
i€S i€S igS
= —Zﬂ{g (@)=0} + —~ Z€ — Lg(ai)=0}) Zf LNPTED)
€S ZES 7€S
1
= —Z 0L {g(i)=0} + —ZE +- Zf Lig(ai)=1}
€S €S z€S
indep. ofg

Note that for optimizingy € G for fixed fy, f1, the second term above is constant. Furthermore, by
consequence of Eq. 2 we see that the first and third terms camtber simplified as follows:

1 1 1 1 1 1
n Z (1= ) gm0y = — D (1= ig@reryi — > liligy=1y = = D Lligre

lES i€S iZS iZS
Putting all this together we have the following lemma:

Lemma 2.1. For a fixed f, f1 the problem of choosing the best binary space partitigits, in
Eqg. 1 is equivalent to choosing a binary classifjehat optimizes following 0/1 (sinae; € {0,1})
empirical loss function:

s Ly [ L4
Rg) = n Z:lwi]l{g(wi#f?}’ where w; = { 0, otherwise

The composite classifidr(x) based on the reject and region classifiers can be written actigmas
F(x) = fy)(x). We observe several aspects of our proposed scheme:

(1) Binary partitioning is a binary classification problem orettraining set, (z;,¢?),i =
1,2,...,n.

(2) The 0/1 weight,w; = 1, is non-zero if and only if the classifiers disagree :on i.e.,
Jo(xi) # fi(xq).

(3) The partitioning error is zero on a training exampjavith weightw; = 1 if we choosey(x;) = 0

on examples wheré(z;) = y;. In contrast iffy(z;) # y; the partitioning error can be reduced by
choosingy(z;) = 1, and thugejecting the example from consideration by.

2.2 Surrogate Loss Functions, Algorithms and Convergence

An important implication of Lemma 2.1 is that we can now use@dul learning techniques such
as decision trees, boosting and SVMs for learning spacé&ipaimg classifiers. Our method is a
coordinate descent scheme which optimizes over a singleblarat a time. Each step is an ERM
and so any learning method can be used at each step.

Convergence Issuesit is well known that that indicator losses are hard to miziepieven when
the class of classifierst, is nicely parameterized. Many schemes are based on mingngur-
rogate losses. These surrogate losses are upper boundslicator losses and usually attempt
to obtain large margins. Our coordinate descent schemddrctintext is equivalent to describ-
ing surrogates for each step and minimizing these surregafbis means that our scheme may
not converge, let alone converge to a global minima, evemveuerogates at each step are nice
and convex. This is because even though each surrogate bppeds indicator loss functions
at each step, when put together they do not upper bound thalgbbjective of Eq. 1. Conse-
guently, we need a global surrogate to ensure that the spldties converge. Loss functions are
most conveniently thought of in terms of margins. For notzi convenience, in this section we
will consider the case where the partition classifiermaps to labeld € {-1,1}, where a la-
bel of —1 and1 indicates classification by, and f1, respectively. We seek functiorgz) that
satisfy1,<o < ¢(z). Many such surrogates can be constructed using sigmoigsenextials etc.
Consider the classification functigi{z) = sign (h(z) > 0). The empirical error can be upper



bounded:1yy;)—1 = 1_sn(z)<o < ¢(—Lh(x)) We then form a global surrogate for the empir-
ical loss function. Approximating the indicator functioasthe empirical risk/loss in Eq. 1 with
surrogate functions, the global surrogate is given by:

n

R(g. fouf1) = = 300 (@) 6 (rfo(a)) + 3+ D6 (-h) o (ihile)), @)

=1

which is an upper bound on Eq. 1. Optimizing the partitionfaigction g(-) can be posed as a
supervised learning problem, resulting in the followingnfea (see Supplementary for a proof):

Lemma 2.2. For a fixed f, f1 the problem of choosing the best binary space partitiaits, in
Eq. 3 is equivalent to choosing a binary classifiethat optimizes a surrogate functief-):

R(g):izwi¢(h($i)ri)7r¢={ L e<ntl wz{qﬁ(fo(xi)yi% t<nt 1

—1, otherwise " é(f1(x:)y:), otherwise

Theorem 2.3. For any continuous surrogaté(-, -), performing alternating minimization on the
classifiersfy, f1, and g converges to a local minima of Eq. 3, with a loss upper-bongdhe
empirical loss defined by Eq. 1.

Proof. This follows directly, as this is coordinate descent on a@magost function. O

2.3 Multi-Region Partitioning

Lemma 2.1 can be used to also reduce multi-region spaceiqairig to supervised learning. We
can obtain this reduction in one of several ways. One appr@ato use pairwise comparisons,
training classifiers to decide between pairs of regionsodahately, the number of different reject
classifiers scales quadratically, so we instead employedgrpartitioning scheme using a cascade
classifier.

Fig 1 illustrates a recursively learnt three region spacétwaing classifier. In general the regions
are defined by a cascade of binary reject classifigrgy), k € {1,2,...,r — 1}, wherer is the
number of classification regions. Region classifigigz), &k € {1,2,...,7}, map observations in
the associated region to labels. At stdgéf g, (z) = 0, an observation is classified by the region
classifier, fi.(x), otherwise the observation is passed to the next stage afateade. At the last
reject classifier in the cascadegjf_; (z) = 1, the observation is passed to the final region classifier,
f~(x). This ensures that onlyreject classifiers have to be trained faregions.

Now define for an arbitrary instan¢e, y) and fixed{g;}, { f;}, the 0/1 loss function at each stage
ky
Li(ey) = {(l{gk(m>—0}) L@y T (Lgw=1y) L@ y) ik <r @
Lipps (@)} ifk=r
We observe thal,(z,y) € {0, 1} and is equal to zero if the example is classified correctly at

current or future stages and one otherwise. Consequemthadgregate 0/1 empirical risk/loss is
the average loss over all training points at stage 1, namely,

1 n
R(glaQQa' .. ag'rflaflvfév" '7f'r) = EZLI(:L“ZJ%) (5)
i=1

In the expression above we have made the dependence ondleggsifiers and region-classifiers
explicit. We minimize Eq. 5 over al};, f; by means of coordinate descent, namely, to optimize
we holdf;, Vj andg;, j # k fixed. Based on the expressions derived above the coordiratent
steps forg, and f; reduces respectively to:

1 n 1 n
gr(+) = argmin — E Cr(x;)Lr(x,9y;), fr(-) = argmin — Cru(®) L s, (20) 2y ()=
() = arem n £ (@) Li(wi, i), fi(") = argm n; (@) L s @)y} Adow(:)=0}
(6)

where,Cj(z) = ]1{/\_7;:11{%(%):1}}, denotes whether or not an example makes it to the jth stdge. T
optimization problem forfi(+) is exactly the standard 0/1 empirical loss minimizationrdx&ning



Algorithm 1 Space Partitioning Classifier

Input: Training data{(z;,y;)}?_,, number of classification regions,
Output: Composite classifief'(+)
Initialize: Assign points randomly te regions
while F not convergedo
forj=1,2,...,rdo
Train region classifief; (x) to optimize 0/1 empirical loss of Eq. (6).
end for
fork=r—1,r—2,...,2,1do
Train reject classifieg, (x) to optimize 0/1 empirical loss of Eq. (7).
end for
end while

data that survived upto stage On the other hand, the optimization problem §gris exactly in
the form where Lemma 2.1 applies. Consequently, we can athace this problem to a supervised

learning problem: 1 En:
gk (+) = argmin — Wi Lggz,)20,1s (7
() i {g(e)#0:}
where .
0 =10 if fi(zi) =i and w — 4§ L b7 L (@i i), C(a) # 0
L if fr(r) A ‘T0, otherwise
The composite classifidr(x) based on the reject and region classifiers can be written actigmas
follows:

F(z) = fs(z), s =min{j | g;(x) = 0} U {r} ®)
Observe that if theith region classifier correctly classifies the examplei.e., fi(z;) = y; then
this would encouragex(x;) = 0. This is because(z;) = 1 would induce an increased cost in
terms of increasind .. +1 (z;, ;). Similarly, if thekth region classifier incorrectly classifies, namely,
fx(x;) # vy;, the optimization would prefegi(x;) = 1. Also note that if the kth region classifier
loss as well as the subsequent stages are incorrect on amplexara incorrect then the weight on
that example is zero. This is not surprising since rejeetéect does not impact the global cost.
We can deal with minimizing indicator losses and resultiogwergence issues by deriving a global
surrogate as we did in Sec. 2.2. A pseudo-code for the prdaseme is described in Algorithm 1.

2.4 Local Linear Classification

Linear classification is a natural method for learning lo-
cal decision boundaries, with the global decision regions
approximated by piecewise linear functions. In local lin-
ear classification, local classifierg,, fs, ..., f-, and re-
ject classifiersgi, go, ..., 9-—1, are optimized over the
set of linear functions. Local linear rules can effectively
tradeoff bias and variance error. Bias error (empirical er-
ror) can be made arbitrarily small by approximating the
decision boundary by many local linear classifiers. Vari- o )
ance error (classifier complexity) can be made small E{f”re 2:Local LDA classification regions

restricting the number of local linear classifiers used g XOR data, the black line is reject classi-
ier boundary.

construct the global classifier. This idea is based on the
relatively small VC-dimension of a binary local linear ddier, namely,

Theorem 2.4. The VC-dimension of the class composed (Eq. 8) withl linear classifiery; and
r linear classifiersf; in a d-dimensional space is boundedd{gr — 1) log(e(2r — 1))(d + 1).

The VC-dimension of local linear classifiers grows lineavith dimension and nearly linearly with
respect to the number of regions. This is seen from Fig. 1rdntfce, few regions are necessary to
achieve low training error as highly non-linear decisionhdaries can be approximated well locally
with linear boundaries. For example, consider 2-D XOR datarning the local linear classifier
with 2 regions using LDA produces a classifier with small emepl error. In fact our empirical
observation can be translated to a theorem (see Suppleméntdetails):



Theorem 2.5. Consider an idealized XOR, namely, samples are concedtiate four equal clus-
ters at coordinateg—1,1), (1,1),(1,—1),(—1,—1) in a 2D space. Then with high probability
(where probability is wrt initial sampling of reject regipa two region composite classifier trained
locally using LDA converges to zero training error.

In general, training linear classifiers on the indicatosl@simpractical. Optimization on the non-
convex problem is difficult and usually leads to non-unigpéiral solutions. Although margin
based methods such as SVMs can be used, we primarily us&eblaimple schemes such as
LDA, logistic regression, and average voted perceptroruinexperiments. We use each of these
schemes for learning both reject and region-classifiergesglschemes enjoy significant computa-
tional advantages over other schemes.

Computational Costs of LDA, Logistic Regression and Percepon: Each LDA classifier is
trained inO(nd?) computations, where is the number of training observations adds the di-
mension of the training data. As a result, the total companatost per iteration of the local lin-
ear classifier with LDA scales linearly with respect to thenner of training samples, requiring
O(nd?r) computations per iteration, wherds the number of classification regions. Similarly, the
computational cost of training a single linear classifierddyistic regression scal&8(ncd?) for a
fixed number of iterations, with the local linear classifi@ining time scaling)(rncd?) computa-
tions per iteration, where is the number of classes. A linear variant of the voted pdroapvas
implemented by taking the average of the weights generatdldeounnormalized voted perceptron
[15]. Training each perceptron for a fixed number of epochextsemely efficient, requiring only
O(ndc) computations to train. Therefore, training local lineargeptron scales linearly with data
size and dimensions, with(ndcr) computations, per iteration.

3 Experimental Results

Multiclass Classification:Experimental results on six datasets from the UCI repositbé] were
performed using the benchmark training and test splitscéa®al with each data set, as shown in
Table 1. Confidence intervals are not possible with the tesab the predefined training and test
splits were used. Although confidence intervals cannot bepeded by multiple training/test splits,
test set error bounds [17] show that with test data sets eéthizes, the difference between true error
and empirical error is small with high probability. The sixtdsets tested were: Isolet (d=617, c= 26,
n=6238, T=1559), Landsat (d=36, c=7, n=4435, T=2000) drti=16, c=26, n=16000, T=4000),
Optdigit (d=64, c=10, n=3823, T=1797), Pendigit (d=16, 071=7494, T=3498), and Shulttle (d=9
c=7, n=43500, T=14500), whetrkis the dimensions; the number of classes, training data size
andT the number of test samples.

Local linear classifiers were trained with LDA, logistic regsion, and perceptron (mean of weights)
used to learn local surrogates for the rejection and loeaisification problems. The classifiers were
initialized with 5 classification regions (= 5), with the trained classifiers often reducing to fewer
classification regions due to empty rejection region. Taation of the algorithm occurred when the
rejection outputsy, (x), and classification label#;(x), remained consistent on the training data for
two iterations. Each classifier was randomly initializedifrtes, and the classifier with the minimum
training error was chosen. Results were compared with Mixiiscriminant Analysis (MDA)

g1(x) 2,(%)

Figure 3: Hlstogram of classes over test data for the Optdigit datasdifferent partltlons generated by our
approach using the linear voted perceptron .

[9] and classification trees trained using the Gini divgrgiidex (GDI) [3]. These classification
algorithms were chosen for comparison as both train glolzasdiers modeled as simple local
classifiers, and both are computationally efficient.
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For comparison to globally complex classification techejprevious state of the art boosting re-
sults of Saberian and Vasconcelos [18] and Jhu et al. [19¢Wsted. Although the multiclass
boosted classifiers were terminated early, we considerdah®parison appropriate, as early termi-
nation limits the complexity of the classifiers. The imprdyeerformance of local linear learning
of comparable complexity justifies approximating thesertataries by piecewise linear functions.
Comparison with kernelized SVM was omitted, as SVM is ramghplied to multiclass learning
on large datasets. Training each binary kernelized classfficomputationally intensive, and on
weakly learnable data, boosting also allows for modelingahplex boundaries with arbitrarily
small empirical error.

Table 1:Multiclass learning algorithm test errors on six UCI datasesing benchmark training and test sets.
Bold indicates best test error among listed algorithms. @n&ll AdaBoostis trained using decision stumps as
weak learners. AdaBoost-SAMME and GD-MCBoost are trairgdgidepth-2 decision trees as weak learners.

Algorithm Isolet Landsat Letter Optdigit | Pendigit | Shuttle
One vs All AdaBoost [2]| 11.10% 16.10% 37.37% 12.24% 11.29% 0.11%
GDI Tree [3] 20.59% 14.45% 14.37% 14.58% 8.78% 0.04%
MDA [9] 35.98% 36.45% 22.73% 9.79% 7.75% 9.59%

AdaBoost-SAMME [19]] 39.00% 20.20% 44.35% 22.47% 16.18% 0.30%
GD-MCBoost [18] 15.72% 13.35% 40.35% 7.68% 7.06% 0.27%
Local Classifiers

LDA 5.58% 13.95% 24.45% 5.78% 6.60% 2.67%
Logistic Regression 19.95% 14.00% 13.08% 7.74% 4.75% 1.19%
Perceptron 5.71% 20.15% 20.40% 4.23% 4.32% 0.32%

In 4 of the 6 datasets, local linear classification produdedlowest classification error on test
datasets, with optimal test errors withirt6% of the minimal test error methods for the remaining
two datasets. Also there is evidence that suggests thatcbernse partitions multiclass problems
into simpler subproblems. We plotted histogram output aésllabels for Optdigit dataset across
different regions using local perceptrons (Fig. 3). Thedgsam is not uniform across regions,
implying that the reject classifiers partition easily digtiishable classes. We may interpret our
approach as implicitly learning data-dependent codes fdticlass problems. This can contrasted
with many state of the art boosting techniques, such as {@8ich attempt to optimize both the
codewords for each class as well as the binary classificpatioinlems defining the codewords.

Wisconsin Breast Cancer Data Label Noise vs. Test Error Vertebrae Label Noise vs. Test Error

Figure 4:Test error for different values of label noideeft: Wisconsin Breast Cancer datdiddle: Vertebrae
data, andRight: Wine data.

Robustness to Label NoiselLocal linear classification trained using LDA, logistic regsion, and
averaged voted perceptron was tested in the presence afmelatbel noise. A randomly selected
fraction of all training observations were given incorréattels, and trained as described for the
multiclass experiments. Three datasets were chosen froki@h repository [16]: Wisconsin Breast
Cancer data, Vertebrae data, and Wine data. A training sEd@fandomly selected observations
was used, with the remainder of the data used as test. Folaaamoise fraction, 100 randomly
drawn training and test sets were used, and the averagenasiseshown in Fig. 4.

For comparison, results are shown for classification tnedsad according to Gini's diversity index
(GDI) [3], AdaBoost trained with stumps [2], and supporttegenachines trained on Gaussian ra-
dial basis function kernels. Local linear classificatiootably when trained using LDA, is extremely
robust to label noise. In comparison, boosting and classidin trees show sensitivity to label noise,
with the test error increasing at a faster rate than LDAngdilocal linear classification on both the
Wisconsin Breast Cancer data and Vertebrae data.
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