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Abstract  

 One of the most significant parts of integrating computer technologies into intelligent transportation systems (ITS) 
is vehicle license plate recognition (VLPR). In most cases, however, to recognize a license plate successfully, the 
location of the license plate is to be determined first. Vehicle License Plate Recognition systems are used by law 
enforcement agencies, traffic management agencies, control agencies, and various government and non-
government agencies. VLPR is used in various commercial applications, including electronic toll collecting, 
personal security, visitor management systems, parking management, and other corporate applications. As a result, 
calculating the correct positioning of a license plate from a vehicle image is an essential stage of a VLPR system, 
which substantially impacts the recognition rate and speed of the entire system. In the fields of intelligent 
transportation systems and image recognition, VLPR is a popular topic. In this research paper, we address the 
problem of license plate detection using a You Only Look Once (YOLO)-PyTorch deep learning architecture. In 
this research, we use YOLO version 5 to recognize a single class in an image dataset.  
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1.Introduction  

Vehicle License Plate Recognition aims to detect the presence of a license plate on a vehicle in a concise amount 
of time and with high accuracy. The license plate of a vehicle is usually referred to as a "number plate." It's a 
metal plate fitted to a car that carries its official registration number imprinted on it. The vehicle can be identified 
using the number plate placed on both front and rear sides. Over the last few decades, License Plate Recognition 
(LPR) has been a methodology utilized in various Intelligent Transportation Systems (ITS). It replaces the efforts 
of humans in recognizing the license plate. This proposed LPR system is primarily used in a car park with a static 
camera rather than a high-speed vehicle plate recognition setting. In a traditional LPR system, the initial step is to 
collect a vehicle image with the license plate using a camera. After that, several image processing techniques are 
used to convert the digital image into usable information. License Plate (LP) detection, character segmentation [9], 
and character recognition are the three steps of most LPR systems. Because non-observance of LP would lead to 
failure in the subsequent phases., the early steps require better accuracy or near-perfection, and this paper focuses 
on the detection part only. To reduce processing time and prevent false positives, many approaches scan the car 
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first, then the license plate. Even though LPR has been discussed extensively in the literature, many studies are 
still unreliable in the actual world. 
 

Why is it necessary to register? 
• A legally purchased motor vehicle must be registered with the local authority or the government. This helps 
prevent theft of that vehicle and identify the crimes committed using that vehicle. By registering the vehicle, a 
record is created, which gives the vehicle its unique identity. 
Contents of Number Plates 
 • Number plate comes in various colors and numeric or alphanumeric characters. These colors signify the 
authority of the owner of that vehicle. The numeric or alphanumeric character combination varies from country to 
country, and it is the record that gives the vehicle its unique identity. 

2. Literature Survey 

Character segmentation and character classification steps were used in previous works on  License  Plate 
recognition:  
Various handcrafted algorithms, including projections, connectedness, and contour-based picture components, are 
commonly used in character segmentation. Because it uses a binary picture or intermediate representation as input, 
noise, low resolution, blur, and deformations in the input image significantly impact character segmentation 
quality[9]. 
Character classification typically utilizes one of the optical character recognition (OCR) methods - adopted for LP 
character sets. Because classification comes after character segmentation, the quality of end-to-end recognition is 
highly influenced by the segmentation method used. End-to-end Convolutional Neural Networks (CNNs) 
[12]based solutions were presented to handle the problem of character segmentation, accepting the entire LP 
picture as input and producing the output character sequence[6]. 
The segmentation-free model is based on connectionist temporal classification (CTC) loss and variable-length 
sequence decoding. To generate character classes probability, it leverages handcrafted features LBP based on a 
binarized picture as CNN input[7][12] 
. The input sequence for the bi-directional LongShort Term Memory (LSTM) [5]based decoder is created by 
applying the sliding window technique to all input image positions. CTC loss is employed for pre-segmentation-
free end-to-end training since the decoder output, and target character sequence lengths are different[7]. 
The sliding window method was substituted by CNN output spatial splitting to the RNN input sequence ("sliding 
window" over feature map instead of input) in this model[5][8]. 
There are two types of license plate segmentation algorithms available: projection-based and connected 
component (CC)-based. Because the lettering and backgrounds in a license plate have visibly different nine hues, 
they should have opposite binary values in the binary picture. For character segmentation, projection-based 
methods use the histograms of vertical and horizontal pixel projections[9]. The top and bottom limits of the 
characters are determined by projecting the binary license plate image horizontally, then vertically to separate 
each character.  The rotation of the license plate might easily affect this type of procedure. Based on 4 or 8 
neighborhood connectivity, CC-based algorithms identify connected pixels of the binary license plate into 
components. Characters can be extracted from rotating license plates using CC-based approaches, however, they 
cannot be segmented effectively if they are connected together or torn apart. 

3. Proposed Solution 

The issue at hand can be resolved by utilizing various object detection methods, where we must train our model 
using photos of cars and other vehicles with license plates but in this research work, we are focused on using 
YOLO v5s[1]. YOLO v5s is used to detect the presence of a number plate in a given image along with its location 
and confidence of being a number plate in the detected location[1]. We used Google Colab for this experiment 
because of the free availability of GPUs. 
The proposed solution, along with character recognition, is likely to be integrated with a web application. The 
backend will display the contents to the user after the camera takes the image of the vehicle. 
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3.1. YOLO  
 
YOLO v5 is a real-time, single-stage object detection model that builds on YOLO v2 [2]with several 
improvements. The detection is done by applying 1 x 1 detection kernels on feature maps of three different sizes at 
three different places in the network. 
The YOLO v5 network is made up of three primary components. 
1) Backbone - A convolutional neural network that accumulates and produces visual features at various 
granularities is known as the backbone. 
2) Neck - A set of layers that integrate and mix picture characteristics before passing them on to prediction. 
3) Head - Takes box and class prediction steps while consuming features from the neck. 
YOLO v5 is a PyTorch implementation rather than a fork from the original Darknet. YOLO v5 [3] introduces a 
new PyTorch training and deployment framework that improves state-of-the-art for object detectors.  
YOLO v5[3] feeds training data through a data loader with each training batch, which augments data online. 
Scaling, color space adjustments, and mosaic augmentation are the three types of augmentations performed by the 
data loader. Mosaic data augmentation is the most unique of them, combining four photos into four random-ratio 
tiles. 
YOLO v5[3] provides four versions, namely  
• YOLO v5s, which is a miniature version 
• YOLO v5m, which is a medium version[3] 
• YOLO v5l, which is a large version 
• YOLO v5xF, which is an extra-large version  
 
3.2.  Mean Average Precision  
 
Precision is a metric that asks, "How often does your model estimate correctly?" The recall is a metric that asks, 
"Has your model guessed every time it should have?" 
Precision is a metric that gauges how accurate your forecasts are. In other words, the percentage of your 
predictions that are correct[10]. 
The recall is a metric that assesses how well you remember all of the positives.  
Some mathematical definitions related to Precision and Recall :  
 

 
 

The average of AP is mAP (mean average precision). We compute the AP for each class and average it in some 
situations. However, in some situations, they are interchangeable. There is no distinction between AP and mAP in 
the COCO context. 
 

3.3 Intersection over Union (IoU) 

Intersection over Union is a statistic for determining how accurate an item detector is on a given dataset. Object 
detection problems, such as the popular PASCAL VOC challenge, frequently employ this assessment metric[11]. 
IOU = Area of Overlap / Area of Union 

Or 
IOU = Overlapping region / Combined   Region 
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Intersection over Union (IoU) is a statistic that compares our predicted bounding box to the ground truth 
bounding box. The concept is to compare the ratio of the overlapped area of the two boxes to the total combined 
area of the two boxes. 

4. Dataset 

Dataset for this experiment was taken from various sources. It consists of images of cars with number plates of 
different countries[4]. They are Indian, Tunisian, United Kingdom, and Arabian number plates in the dataset. 
Images are taken from different angles and distances to make the dataset more flexible. Some images contained 
more than one number plate and were annotated accordingly[4]. Dataset consists of 800 images. It is bifurcated in 
the ratio of 70:20:10 for train, test, and validation, respectively. All the images were annotated manually using the 
roboflow web app. The single class named "plate" was used in annotation[4]. Bounding boxes are created in the 
roboflow app. Roboflow web app stores the bounding box coordinates i.e., number plate coordinates in a text file; 
for YOLO v5, it also creates a YAML file i.e, data configuration file which consist of the address of the train, test 
and validation data and the number of class that the data is divided into along with the class name[10]. 

5. Inference and Results 

We have used YOLO v5s[3], a miniature version of YOLO v5, for detecting number plates in images. It can be 
implemented in real cameras for plate detection as YOLO v5 provides the option of detection from video streams. 
Here are the statistics about YOLO v5s. When evaluating the accuracy of any model, we must consider many 
parameters such as mAP (mean Accuracy Precision), recall, and precision. We can also study parameters such as 
the object [1]loss and classification loss. Parameters like object[1] loss and categorization loss can also be 
investigated. 
 

 
Fig. 1. Plots of precision, recall, and mean average precision (mAP) over the training epochs for the training and 

validation set. 
 

The values of mAp, precision parameter, and recall for Yolo v5s are 0.984, 0.953, 0.988, respectively. 
On running the trained model on an image, the output contains a new image generated with a bounding box(if the 
object is detected) with class name i.e., plate, along with its class confidence value. 
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Fig. 2. The output of running model on a test image 

6. Conclusion 

This research work will significantly benefit the future of object detection, especially in vehicle detection. It 
uses the latest version of YOLO, i.e., version 5, and the miniature version for number plate detection. YOLO v5, in a 
traditional sense, does not bring any novel architectures or losses, or techniques to the table. However, it vastly 
improves the speed with which individuals may integrate YOLO into their existing pipelines. It is written in 
PyTorch (python), while the older version was in C, making it more friendly to people and companies. It includes a 
simple approach to defining experiments utilizing modular config files, quick inference, mixed-precision training, 
improved data augmentation approaches, etc. There is yet to be a research paper released for YOLO v5. The 
outcome of this research work was pretty good with the mAP@0.5 values of 0.984 on the dataset of 800 images split 
into 70:20:10 ratio for train, test, and validation. 

6. Future Work   

This work can further be extended to recognize the characters of the detected number plate by the proposed 
solution and implementation in a web app connected to a database of car owners to make it more versatile and 
beneficial for the country's judicial system. 

An increase in the number of images in the dataset can result in better detection accuracy. Furthermore, if the 
number plates of a particular country are used, the model will work better. Dataset can be changed to video format 
further to test the detection rate and accuracy of the model. 

Hyperparameter tuning can be done with more precision to generate better results. YOLO v5 also gives the 
option of custom architectures and anchors, which can be explored more.  
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