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Abstract

Motivation: Whole-genome regressions methods represent a key framework for genome-wide prediction, cross-
validation studies and association analysis. The bWGR offers a compendium of Bayesian methods with various pri-
ors available, allowing users to predict complex traits with different genetic architectures.

Results: Here we introduce bWGR, an R package that enables users to efficient fit and cross-validate Bayesian and likeli-
hood whole-genome regression methods. It implements a series of methods referred to as the Bayesian alphabet under
the traditional Gibbs sampling and optimized expectation-maximization. The package also enables fitting efficient multi-
variate models and complex hierarchical models. The package is user-friendly and computational efficient.

Availability and implementation: bWGR is an R package available in the CRAN repository. It can be installed in R by
typing: install.packages(‘bWGR’).

Contact: alencar.xavier@corteva.com or krainey@purdue.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide markers have been increasingly deployed for the pre-
diction of complex traits since the concept of genomic prediction was
introduced (Meuwissen et al., 2001). Whole-genome regression
(WGR) methods predict traits as a linear combination of marker
effects that capture quantitative trait loci and the relationship among
individuals (Habier et al., 2007). A large variety of models exist, each
with different prior assumptions that are optimized for a specific gen-
etic architecture (de los Campos et al., 2013). Evaluating the parame-
terizations of genomic information in prediction models to suit
different genetic architectures can enhance prediction accuracy.

Few statistical packages enable genome-wide prediction, includ-
ing rrBLUP, BGLR and VIGoR (Endelman, 2011; Onogi and Iwata,
2016; Pérez and de los Campos, 2014). Genome-wide models are
sensitive to the algorithm implementation, such that two implemen-
tations of the same model often lead to reasonably different results
(Gianola et al., 2009; Lehermeier et al., 2013). In a user-friendly
framework, the bWGR package implements a compendium of likeli-
hood and Bayesian methods, via expectation-maximization (EM)
and Markov Chain Monte Carlo (MCMC), at univariate and multi-
variate level (see Supplementary Material for details). It also imple-
ments a mixed model solver that enables modeling replicated
observations, computing marker effects using link functions and
accounting for nuisance parameters (Fig. 1).

2 MCMC methods

MCMC methods constitute the most popular set of WGR (Gianola,
2013). These include Bayesian Ridge Regression, BayesA, BayesB

(Meuwissen et al., 2001), BayesC, BayesCpi, BayesDpi (Habier
et al., 2011), Bayesian LASSO (Park and Casella, 2008) and
Reproducing Kernel Hilbert Spaces (RKHS) regression (de los
Campos et al., 2010). The variable selection of BayesB and BayesC
was implemented through Gibbs Sampling unconditional prior (Kuo
and Mallick, 1998) and Metropolis-Hasting for BayesCpi and
BayesDpi. In our models, the prior specifications are similar but not
identical to the BGLR package (Pérez and de los Campos, 2014).
We kept the models less hierarchical like those originally proposed
by Meuwissen et al. (2001), with restricted Bayesian learning
(Lehermeier et al., 2013) to avoid under- and over-regularization.
These methods can be performed either from bWGR’s generalized
function ‘wgr’ or by their standalone implementation written entire-
ly in Cþþ (Eddelbuettel et al., 2011). The generalized function
‘wgr’ enable users to combine a WGR with a kernel method, such as
combining BayesB and RKHS. It also has an exclusive feature as it
enables the subsampling of Markov chains to save time and compu-
tational power (Xavier et al., 2017).

3 EM methods

EM methods provide an elegant and efficient way to reduce the
computation time due to MCMC iterations (Shepherd et al., 2010).
Iterative procedures may replace Gibbs sampling by updating
parameters with the expectation as opposed to sampling and averag-
ing the posteriors. This algorithmic variation of the traditional
MCMC solver of the Bayesian methods was proposed by
Meuwissen et al. (2009). These EM Bayesian methods can calibrate
WGR without loss in accuracy (Lopez et al., 2019). From the
Bayesian alphabet implemented via EM, the package provides
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implementations of BayesA (‘emBA’), BayesB (‘emBB’), BayesC
(‘emBC’) and Bayesian Lasso (‘emBL’). The package also includes a
Gaussian maximum likelihood (‘emML’) and an elastic-net
(‘emEN’) and the fast Laplace model (‘emDE’; Xavier, 2019).

To facilitate cross-validation studies, the bWGR implements
‘emCV’ and ‘mcmcCV’ which allow k-fold cross-validations and
leave-a-level-out cross-validation, where the cross-validations are
performed on the phenotypes or true breeding values, if provided.

4 Multivariate methods

The package provides a ridge-type (‘mrr’) and kernel-type (‘mkr’)
function for multivariate regressions that enable simultaneous mod-
eling of two or more response variables. Both implementations were
based on an efficient Gauss-Seidel (Legarra and Misztal, 2008)
paired with an efficient first-derivative estimation of EM-REML like
variance components (Schaeffer, 1986) written in Cþþ. These
implementations are fast and memory efficient by avoiding explicit
matrix inversion or Kronecker products, also robust to a relatively
large number of traits and accept missing values. The multivariate
regression functions do not offer the modeling flexibility of other
packages but the computation time to fit the model is �8% of those
fit with REML implementations (Gilmour et al., 1995; Covarrubias-
Parazan, 2016) and without the burden of MCMC methods
(Hadfield, 2010; Montesinos-López et al., 2019).

5 Hierarchical mixed models

The functions implemented via MCMC and EM enable simple mod-
els with one or two random effects. For more complex models, the
function ‘mixed’ enables fitting models with multiple fixed and ran-
dom effects, with or without marker information through link
functions.

Design to be a multi-purpose function, users can use the ‘mixed’
function to run a wide range of models, from phenotypic analysis to
single-step models. The function can estimate best linear unbiased
predictors (BLUPs), marker effects and variance components, while
accounting for environmental factors and other nuisance
parameters.

6 Additional tools

The bWGR package is a self-coined toolbox for genetic analysis. In
this section we will briefly describe some of the key additional
functions.

6.1 Relationship matrices
‘GRM’ creates the genomic relationship described by VanRaden
(2008) and ‘GAU’ generates a Gaussian kernel often deployed for
RKHS regression (de los Campos et al., 2010).

6.2 Genotyping imputation
‘markov’ implements a forward Markov model that accounts for the
linkage disequilibrium among neighbor markers, and ‘IMP’ imputes
missing values with the expected value of the marker (marker
average).

6.3 Spatial analysis
Providing field coordinates and phenotype, the spatial covariate
function ‘SPC’ creates covariates on neighbor plots (Lado et al.,
2013). The ‘SPM’ function generates a design matrix for spatial ad-
justment (Gilmour et al., 1995; Muir, 2005).

6.4 Miscellaneous
‘CNT’ centralizes markers for a better blending a posteriori and
unbiasedness. ‘SibZ’ creates a WGR-compatible matrix from pedi-
gree. ‘emGWA’ runs a ridge regression coupled with genome-wide
association studies that outputs values for prediction and inference.

6.5 Two random effects
Hybrid breeding models often fit two random terms, such as
Additive-Dominance and Parent1-Parent2. Besides the function
‘mixed’, simpler stand-alone functions that can handle two random
effects include: ‘BayesA2’, ‘BayesB2’, ‘BayesRR2’, ‘emML2’,
‘mrr2X’ and ‘mkr2X’.

7 Conclusions

The bWGR package has implemented a series of WGR methods in
Bayesian framework that covers a variety of priors to enable accur-
ate genome-wide prediction of complex traits across various genetic
architectures. Implementations are available in the traditional
MCMC framework as well as efficient EM methods. The package
also enables efficient multivariate and hierarchical modeling. The
package focuses on statistically sound methodologies implemented
for high computational performance and prediction accuracy.
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