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ABSTRACT Multimodal biometric schemes arise as an interesting solution to the multidimensional
reinforcement problem for biometric security systems. Along with the performance dimension, these
systems should also comply with required levels for other conditions such as permanence, collectability,
and circumvention, among others. In response to the demand for a multimodal and synchronous dataset, in
this paper we introduce an open access database of synchronously recorded electroencephalogram signals
(EEG), voice signals and video feed from 51 volunteers, 25 female, 26 male, captured for (but not limited to)
biometric purposes. A total of 140 samples were collected from each user when pronouncing single digits
in Spanish, giving a total of 7140 instances. EEG signals were captured using a 14-channel Emotiv"" Epoc
headset. The resulting set becomes a valuable resource when working on unimodal biometric systems, but
significantly more for the evaluation of multimodal variants. Furthermore, the usefulness of the collected
signals extends to being exploited by projects in brain computer interfaces and face recognition to name
just a few. As an initial report on data separability of the related samples, six user recognition experiments
are presented: a face recognition identifier with accuracy of 99%, two speaker identification systems with
maximum accuracy of 100%, a bimodal face-speech verification case with Equal Error Rate around 2.64, an
EEG identification example, and a bimodal user identification exercise based on EEG and voice modalities
with a registered accuracy of 97.6%.

INDEX TERMS Biometrics, Face recognition, Speaker recognition, Electroencephalography, Brain-
computer interfaces, Image classification, Multiple signal classification, Classification algorithms

. INTRODUCTION

Biometrics, as “the measuring and statistical analysis of
people’s physical and behavioral attributes” [1] for individual
recognition, have become the reference solution in terms of
security [2], especially when compared to other validation
methods such as token presentation or password verification.
However, several articles, such as [3], [4], [5] and [6] among
others, have manifested the limitations and weaknesses of
biometric systems based on a single physical trait or biosignal
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to perform recognition. This trait or biosignal is known as the
system’s modality, with each modality producing different
behavior and performance. For example, iris-based systems
are considered to provide some of the best performance
levels, even though they may be affected by pupil dilation
and gaze angle [7]. Furthermore, iris biometrics may be
vulnerable to spoofing such as the use of textured contact
lenses [8].

The most desirable performance of a biometric system is
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described in terms of its capacity to 1) always accept a legiti-
mate user while rejecting all impostors (verification systems)
or 2) correctly identify the presenting users with the regis-
tered identities in the database (identification systems). Many
metrics have been defined in order to evaluate how adequate
a system is. Among the most widely used metrics are Ac-
curacy, False Acceptance Rate (FAR), False Rejection Rate
(FRR), Receiver Operating Characteristic (ROC) and Equal
Error Rate (EER). All these metrics describe the system’s
performance according to efficiency [9]. However, efficiency
is not the only characteristic defining a biometric system.
Many authors, such as Meng, Wong, Furnell and Zhou [10],
agree in defining a wider classification, including the follow-
ing seven desirable characteristics: Universality, Uniqueness,
Permanence, Collectability, Performance, Acceptability and
Circumvention. Hence, even though efficiency as a metric for
performance may be considered the most important charac-
teristic in most cases, a high-performance system will have
reduced utility in a security application if the modality can be
easily forged or if it lacks universality. Unfortunately, sources
such as [10], [11] and [12] fail to provide a quantitative
method for attributes’ evaluation other than performance. To
overcome the limitations inherent to single modality sys-
tems and in order to take advantage of different modalities’
strengths, the use of multimodal biometric systems has been
proposed and tested as a reliable alternative [13].

When approaching the design of a multimodal biometric
system, a critical decision is the selection of the most suitable
modalities. There is not a universal solution for all recogni-
tion systems. Since each modality presents different attribute-
compliance levels, the adequate combination should be se-
lected considering, among other factors, the reinforcement
of one modality’s weakness by another modality’s strength
and always focusing on the specific application for which the
system is being designed.

This paper presents a multimodal dataset, intended to
be used for multimodal biometric system evaluation. Three
modalities were considered due to their particular character-
istics: voice, video feed and electroencephalography (EEG)
signals. In a similar fashion as discussed in [14] for audio-
visual biometric systems, the selection of the aforementioned
modalities aims to take advantage "...of complimentary bio-
metric information present between voice and face cues", and
goes a step beyond by cross-relating to EEG biometric infor-
mation present in the process of generating visually-evoked
potentials, imagining speech and uttering-articulation. A total
of 51 users volunteered, all Spanish-speaking Latinos, 26
males and 25 females, with ages between 16 and 61 years
old = 29.75 , 0 = 10.97); 43 claimed to be right-
handed, 5 left-handed and 3 declared being ambidextrous.
45 volunteers are Mexican, 2 Ecuadorians, and 1 each from
Colombia, Costa Rica, Venezuela, and Cuba.

In terms of utility, our dataset can be used for evaluation
of unimodal biometric systems (Text-dependent and Text-
independent for voice, Visually-evoked potentials and uttered
speech for EEG, static and dynamic face recognition, to cite
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some examples), for bimodal systems (static and dynamic
Audio-Visual biometric systems, EEG-Voice password-
based systems, etc.) as well as for the mentioned three-modal
proposed experiment. But the technical contribution of this
work extends beyond the borders of biometrics to touch fields
such as brain-computer interfaces (BCI) and automated-lip
reading and, in a more general sense, applications where
voice, video and EEG samples are required and digit-limited
vocabulary is not a restriction. The dataset can be openly
accessed at http://dx.doi.org/10.17632/s7chktmb6x.1 [15]

Il. RELATED DATASETS

Many multimodal datasets that include EEG signals were
originally conceived to perform emotion recognition func-
tions.

DEAP, a database for emotion analysis using physiolog-
ical signals [16], presents EEG and peripheral physiolog-
ical signals for 32 users (ages between 19 and 37 years,
50% female) and video recordings for 22 of the involved
subjects. The reported peripheral signals are: galvanic skin
response (GSR), respiration amplitude, skin temperature,
electrocardiogram, blood volume by plethysmograph, elec-
tromyograms(EMG) of Zygomaticus and Trapezius muscles,
and electrooculogram (EOG). The participants were asked to
watch 40 music video segments of one minute length. Each
segment was rated by the participant’s self-assessment of the
levels of arousal, valence, liking and dominance induced by
the exposition to each video segment. Hence, given the 40
samples for the 22 video-included users, a total of 880 one-
minute instances of the mentioned signals are available. This
data set, as well as MAHNOB-HCI [17], are widely used and
are considered as references in the area.

Similarly, Rayatdoost et al. [18] reported an approach for
emotion recognition and the collection of the required data,
namely EEG signals from 64 channels, GSR, respiratory
effort, EOG and EMG signals, as well as video records of eye
gaze and facial expressions for 60 subjects (ages between 17
and 67, 31 male). As for the previously mentioned datasets,
volunteers were exposed to 1-2 minutes-long video excerpts
(in this case, from commercial movies and user generated
material) and were asked to report their felt emotions for each
clip. 40 clips were used for each user, giving a total of 240
instances. However, high level of noise was reported for 13
users, reducing the used set to 47 out of the 60 available
volunteers’ data. Besides, no public access to the data is
explicitly found in the reported paper.

VoxCeleb, as reported in [19], represents an impressive
effort to curate datasets involving voice and video. So far, this
project has made public two datasets: VoxCelebl [20] and
VoxCeleb2 [21], both originally meant to perform speaker
recognition experiments. These sets use a fully automated
pipeline to extract utterances form YouTube videos. Vox-
Celebl selected 1,251 celebrities (690 male) from which
over 100,000 utterances are collected (with an average of 18
videos and 116 utterances per person of interest). VoxCeleb2
increases the volume of the first version by a factor greater
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than 5, gathering a total of 1,128,246 utterances from 6,112
persons of interest extracted from 150,480 YouTube videos.
On the other hand, intended for BCI purposes, Ref. [22]
introduced an open access database of EEG signals recorded
for imagined and pronounced speech of two sets of phonetic
emissions: the first one containing the Spanish vowels /a/,
lel, fi/, lo/ and /u/; the second for the Spanish commands
"arriba" (up), "abajo"” (down), "derecha" (right), "izquierda"
(left), "adelante" (forward) and "atras" (backward). Their
collected data gather audio and EEG registers for each word
on the vocabulary repeated 50 times for 15 subjects; a six-
channel acquisition system was used for the EEG signals.
This database has already been tested by the authors of this
paper for biometric purposes [23].

lll. ACQUISITION PROTOCOL

The experiment protocol consisted in the capture of video,
voice and EEG signals of the uttering of a sequence of digits.
Prior to the recording session, a 14-channel Emotiv"™" Epoc
wireless EEG headset was carefully set on each user. Before
the start of the recording session, the user was instructed
on the procedure and then taken to the recording room. An
anechoic chamber was conditioned to minimize the possible
presence of acoustic noise in the voice registers. The volun-
teers sat in front of a screen at a distance of approximately
one meter.

Three computers were used for data acquisition, one
for each modality. Markers were emitted by the number-
presenting computer (C1) and communicated to the EEG
(C2) and video (C3) recording computers using Arduinos
connected to them. The proposed array is shown in Figure
1.

]
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Anechoic room ]

o R
Capture room

FIGURE 1. Hardware disposition for signal acquisition.

Two different sessions were recorded for each user. For
both of them the sequence of events was established as
follows: 1) The volunteer is asked to wait for an acoustic
signal indicating the start of the recording session. 2) After
the signal is emitted, the user must stay as still as possible,
while relaxing with eyes closed for a period of 10 seconds,
until the next acoustic signal. 3) Now, with eyes opened, the
user must stay relaxed for a second period of 10 seconds.
4) After this, another signal is emitted and a series of non-
sequential whole numbers between 0 and 9 is presented on
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the screen. The user has to pronounce the displayed number.
The difference between sessions lies on the length of the
numbers’ series: for the first session, ten digits are presented,
whilst for the second, four digits per chain are presented. 5)
After a series is completed, the user is granted a relaxation
period of 5 seconds to breath and swallow. 6) The next series
is presented. 7) steps 4 to 6 are repeated until 10 sequences
are completed. This procedure is depicted in Figure 2.

IV. MODALITIES AND PHYSICAL RESOURCES

This section describes the functions performed at each
recording station (C1, C2 and C3 in figure 1) and provides
some relevant information on the physical resources em-
ployed for the task.

A. VOICE SIGNAL

Uttered digits were recorded at an anechoic room using a
Sennheiser” MD 421-1I Cardioid Dynamic Microphone and
a Yamaha™ MGO06X Audio Mixing Console connected to the
audio input of computer C1. As shown in figure 1, C1 con-
trols the audio signals, visual instructions and digits’ display
at the anechoic room; it also generates event-synchronization
markers to be read by computers C2 and C3.

These tasks are coded using a Matlab™ script. At the
beginning of the relaxed with eyes closed (REC) stage, a
marker with code 99 is emitted via USB port to this com-
puter’s Arduino, which is defined as master in the 12C bus
configuration. The marker code will be read from the bus
by the other stations’ Arduinos to be incorporated to their
respective signals, as will be explained in further sections.
The start-beep signal is also emitted and the instruction to
“remain relaxed with eyes closed until next beep" is shown
in the monitor. After ten seconds, a second marker, with
code 89, is generated at the beginning of the relaxed with
eyes opened (REO) stage, a beep commands the volunteer
to open his/her eyes while the screen message is changed to
show the present stage. Ten seconds later, a beep is emitted to
announce the beginning of the uttering stage, and digits are
presented on screen, changing after two-second intervals; for
each digit, a marker is generated, coded 1-9 according to the
digit presented and coded 10 when zero is presented.

As a result, 20 monoaural audio files are created per user,
one for each series of digits, with a sampling frequency of
16 KHz. If digit separation is performed later, a total of 140
number samples can be obtained per user; 40 from the 4-digit
sequences and 100 from the 10-digit sequences. Considering
all 51 users, a total of 7140 audio files were be generated.
Table 1 shows the sequences presented for 4-digit sessions
and 10-digit sessions.

Figure 3 shows an example of a graphic representation
for one audio file (e.g., FO02_01G04_1.wav). As previously
established, 20 audio files were generated by user giving a
total of 1020 files for the 51 users. The nomenclature for
these files is conformed as shown in figure 4.
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FIGURE 2. Protocol timing diagram. The number of digits n of the sequence is either 4 or 10.
TABLE 1. Digit sequences for (a) 10-digit series (b) 4-digit series Gender Id.
F: Female
M: male Session Series Index

Series dl  d2 d3 d4 d5 d6 d7 d8 d9 dl0
1 7 9 0 2 1 5 8 6 4 3
2 1 7 0 3 8 4 6 5 2 9
3 6 8 2 5 3 0 9 1 4 7
4 9 4 2 1 0 3 8 7 5 6
5 2 0 9 1 3 7 5 4 6 8
6 8 6 1 5 7 0 3 9 2 4
7 3 5 6 8 1 2 4 7 9 0
8 4 3 5 6 9 7 0 8 2 1
9 0 8 2 1 3 9 7 4 6 5
10 5 3 1 6 7 0 4 9 8 2
@)

Series dlI  d2 d3 d4

1 1 2 3 4

2 5 3 2 9

3 1 0 7 3

4 9 6 4 7

5 5 4 2 1

6 8 3 9 6

7 7 0 6 8

8 9 5 2 3

9 0 6 4 7

10 8 1 5 0

(®)

Waveform: F002_01G04_1.wav, Label: F002_01G04_1.lab, Num samples 128001, HTK sampling rate: 1

¢ -

e feare]

3

[uno]  sience SILENCE [eres] SILENCE

FIGURE 3. A voice sample showing a four-digit Spanish-pronounced
sequence uttered by user F002.

B. EEG SIGNAL

EEG signals were transmitted from the headset to terminal
C2 via Bluetooth. Markers emitted by terminal C1 were
read from the Arduino via the USB port. Both, markers and
signals, are incorporated into the output files. EDF-format
files were created by Emotiv’s Headset TestBench software.
Two files per user are generated, one for the 10-digit series
and another for the 4-digit sequences. These files were also
converted to CSV-format files using the same TestBench

4

F002 01G04_1.wav

Series Id.
GO04: 4-digit series
G10: 10-digit series

Subject Index
1..50 for F
1..51 for M

FIGURE 4. Nomenclature configuration for the generated audio files.

software and they are available as well, along with the EDF
files, for reference and use. Signal segmentation can be easily
achieved to obtain REO, REC and single-digit elements using
the markers as segment boundaries.

As mentioned before, Emotiv’s Epoc is a 14-channel, wet
electrode wireless headset. In accordance with the 10-20
electrode placement system, the following channels are avail-
able: AF3, F3, F7, FC5, T7, P7, O1, 02, P8, T8, FC6, F8, F4
and AF4. Signals are generated with a sampling rate of 128
samples per second. The information contained in the EDF
and CSV files can be consulted in the manufacturer’s website
[24]. Figure 5 shows the structure for the files nomenclature.

Gender Id.
F: Female
M: male  Session Date stamp
F021-01G04-dd.mm.yylhh.mm.ss.edf
\ [ T Smesamn
Subject Index Series Id. ime stamp
1..50 for F G04: 4-digit series
1..51 for M G10: 10-digit series

FIGURE 5. Nomenclature configuration for the generated EDF files. G04 files
contain the 10 four-digit series, whilst G10 contain the 10 ten-digit ones.

Figure 6 shows a time frame for a signal capture, as
presented by Emotiv’s TestBench software. On the upper-left
a representation of the electrodes position is shown. Green-
colored circles stand for electrodes with good contact. On
the right side a representation of the channels’ signals along
time is presented; the red pulses at the bottom of the graphic
represent the markers for the digit presentation on screen.

C. VIDEO SIGNAL

Computer C3 receives the video stream from the webcam
located at the anechoic room and the markers generated by
computer C1. Markers are embedded into the video file and
appear in the bottom left corner. As for EEG signals, two
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FIGURE 6. EEG signal representation for a given sample from user F021. Second four-digit sequence shown.

.avi-formatted files per user are created, with frame size of
1280x720, and with frame rate of 8fps, one for the 10-digit
sequence and one for the 4-digit series. Figure 7 shows a
sample of one frame from a captured video. Along with the
.avi files, Matlab’s .mat files with time-stamped markers are
included. Due to users’ privacy restrictions, video signals
are unavailable for 12 users. Table 2 summarizes the dataset
information and content.

TABLE 2. Dataset content summary

Users Files
Modality included per File description
user
One file includes ten 10-digit
series, a REO sequence and
EEG 51 2 a REC sequence. The other
file includes ten 4-digit series,
a REO and a REC sequence.
10 files include 10-digit
Voice 51 20 series audios and 10 files
include 4-digit series audios.
One file includes the video
Video 39 5 recordings of the ten 10-digit

series and the other the video
feed of the ten 4-digit series.

For validation purposes and initial study on data separa-
bility, the following sections present four unimodal identi-
fication experiments (one for face recognition, two speaker
recognition examples and an EEG identifier) and two bi-
modal biometric identification exercises, based on face-voice
and EEG-voice.
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FIGURE 7. An example of a video frame during the presentation of number
eight for user M003.

V. EXPERIMENTAL EVALUATION, CASE I: FACE-VOICE
RECOGNITION

A. INTRODUCTION

An initial set of experiments using BIOMEX-DB aiming to
explore data characteristics is presented as follows. The first
group of experiments is based on Deep Learning models
(DL), which have been proven to provide very good results
in a variety of applications in the fields of artificial intelli-
gence, machine learning and pattern recognition [25], and
specifically in data fusion [26]. DL techniques have been
successfully used in unimodal biometric approaches using
several modalities such as speech [27], Electrocardiogram
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(ECG) [28], or iris [29], as well as in multimodal cases using
a variety of traits such as iris/face [30], or fingerprint/ECG
[31]. A relevant characteristic of DL models is their ability to
extract and process features directly from raw biometric data
[32], although more complex information can be extracted
using deeper models, as it is the case with deeply learned
residual features [33]. In general, DL techniques achieve very
high performance in both identification and verification cases
[14], but with the associated complexity cost. In the first
part of this section, we present two unimodal recognition ex-
periments based on Convolutional Neural Networks (CNN),
using the dataset BIOMEX-DB with voice and face informa-
tion. In the second part, these two individual modalities are
fused following a CNN-based bimodal approach at feature
level. Results on identification and verification modes are
described.

B. SPEAKER RECOGNITION

The first experiment consists of a unimodal speech-based
biometric system implemented in a Convolutional Neural
Network (CNN) Sincnet framework. The architecture is
shown in Table 3. Categorical cross-entropy was used as
the cost function within an Adam optimizer. Training of
the CNN was carried out with a learning rate of 0.001 in
50 epochs. Voice signals were obtained from the presented
database using 39 subjects. The 10-digit utterances were used
for training and validation, while the 4-digit utterances were
reserved to be used during the testing process.

TABLE 3. Speaker recognition Sincnet architecture

Layers Filters/Neurons ~ Size  Activation fcn
Sinc Convld 120 251 ReLu
Batch Norm - - -
Max Pooling - 5 -

ConvlD 32 5 ReLu
Batch Norm - - -
Max Pooling - 5 -

ConvlD 64 5 ReLu
Batch Norm - - -
Max Pooling - 5 -

Fully connected 512 - ReLu
Batch Norm - - -
Fully connected 39 - Softmax

In every case, the raw speech signals were organized in
segments of 200 ms length, and normalized in amplitude.
In order to test the noise-related robustness of the network,
a process of data augmentation was carried out using noise

TABLE 4. Speaker recognition results.

Identification Verification
Frame Sentence
SNR (dB)  Accuracy (%)  Accuracy (%) EER (%)

Mean o Mean o Mean o
0 76.64 5.6 9343 1.3l 1548 0.36
5 8533 536 98.25 0.52 9.03 0.24
10 86.99 487 9948 0.39 4.66 0.31
15 89.53 4.33 100 0 4.53 0.21

Noiseless ~ 88.07  3.93 100 0 436  0.18

signals obtained from the MUSAN database [34] at several
signal to noise ratio (SNR) values ranging from O to 15
dB. The average results corresponding to identification and
verification modes obtained are shown in Table 4.

C. FACE RECOGNITION

The second experiment consists of a unimodal face biometric
system, implemented using an approach similar to the previ-
ous case, with a Convolutional Neural Network. The CNN
architecture is described in table 5. The images were ob-
tained from the BIOMEX-DB database using the same set of
subjects. In this experiment, 30 still frames per subject were
extracted at random moments from each video. The images
were preprocessed through a series of operations including
tilt alignment, color to grayscale conversion, and scaling
down to 100x100 pixels. The available dataset was further
divided in three parts to be used for training, validation, and
testing, respectively. Categorical cross-entropy was used as
the required cost function. Training was carried out with a
learning rate of 0.001, and network convergence was reached
after 30 epochs on average. The CNN output delivers the
probability that the image under analysis corresponds to the
pattern learned during the training stage. The label with the
highest probability value is considered the best match for a
specific trial.

TABLE 5. Face recognition CNN architecture

Layers Filters/Neurons ~ Size  Activation fcn
Conv2D 32 3x3 ReLu
Batch Norm - - -
Max pooling - 2x2 -
Conv2D 64 5x5 ReLu
Batch Norm - - -
Max pooling - 2x2 -
Fully connected 512 - ReLu
Batch Norm - - -
Fully connected 39 - Softmax

The evaluation corresponding to the verification mode was
carried out with a feature extraction process using the last
CNN hidden layer. Therefore, each image in the database is
represented by a feature vector with a dimension of 512 ele-
ments, and the whole set is used for training the network. An
impostor’s set was obtained from the Yalefaces dataset [35].
Cosine distance was used as the score to determine whether
an input sample corresponds or not to the claimed identity.
Testing on identification mode was performed using a similar
approach over the available dataset. The CNN assigns an
identity to each subject according to the minimum Cosine
distance rule. In identification mode, the results obtained in
average when a set of 100 trials was executed indicated an
accuracy with a mean of 99.51% and a standard deviation
of 0.69. The results corresponding to the verification mode
with a set of 10 trials exhibited a mean EER of 1.08% with a
standard deviation of 0.19.
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TABLE 6. Bimodal verification results.

EER (%)
SNR (dB) —pro———
0 739 055
5 271 034
10 1.99  0.18
15 175 025

Noiseless 2.67 0.35

D. FACE-VOICE BIMODAL BIOMETRICS

A set of bimodal face-speech experiment is then carried out
following a direct concatenation of feature vectors previously
normalized, aiming to have initial results which can be used
for comparison purposes in further approaches. For that
purpose, the CNN architecture as well as training and testing
conditions are kept the same as in previous experiments.
Table 6 summarizes the average verification results.

VI. EXPERIMENTAL EVALUATION, CASE II: EEG-VOICE
RECOGNITION

A. EXPERIMENT DESCRIPTION

There is a general consensus among many authors, such as
[36], on the levels at which the fusion of multimodal systems
can be carried out. In accordance with a biometric system
pipeline, fusion can be applied at sensor level (aka signal
level), feature level, score level, rank level and decision level.
This experiment is part of a performance analysis, intended
to evaluate accuracy variations across different fusion levels
for an EEG/voice-based bimodal biometric system. Results
from a previous experiment with fusion at signal level can be
looked at in [37]. As a subsequent step, fusion at feature level
is presented here, according to the scheme depicted in figure
8. A multiple classifier performance evaluation is considered

EEG signals Signal Feature 120 PSD
(12 Channels) Conditioning Extraction features

Fusion Classifier

Vo anal Signal Feature
'oice signal Conditioning Extraction SIS,

FIGURE 8. Block diagram of the proposed system with fusion at feature level

Identification
Result

and presented for comparison purposes. As in the previous
section, unimodal cases are evaluated prior to the execution
of the bimodal one.

To preserve gender balance, 50 users are included in the
experiment (FOO1 to FO25 and MOO1 to M025). A single-
digit utterance exercise is proposed. Therefore, the sample set
is made up of a total of 7,000 digit instances (140 per user).
For the biomodal case, each audio file is associated with its
respective EEG file. The individual digits are extracted from
the original database in the signal conditioning stages.

B. EEG RECOGNITION

As mentioned in previous sections, the available EDF files
contain the information of 14 EEG channels of digit-
sequences. The first step of signal conditioning consists in the

VOLUME 4, 2016

selection of channels. 12 out of the 14 available channels are
selected, namely: F3, F7, FC5, T7, P7, O1, O2, P8, T8, FC6,
F8 and F4. High-pass filtering with cut-off frequency of 1 Hz
is applied to the 12 signals, followed by a low-pass filtering
with cut-off frequency of 50 Hz. Next, a Common Average
Reference (CAR) re-reference is applied to the signals. Fi-
nally, segmentation of the digit sequences to obtain single-
digit samples and discarding the REO, REC and relaxing
pause segments is achieved by means of a Matlab script
using the digit markers contained in the EDF files as segment
delimiters.

Feature extraction methods for EEG signals can be classi-
fied into three main types: time-domain, frequency-domain
and time-frequency domain [38]. For this experiment the
feature vector for the processed EEG signals is formed by
the Power Spectral Density (PSD) of the beta and gamma
sub-bands for all the selected channels, each one segmented
on 5 windows with 50% overlap. Therefore, for 12 channels,
the resulting feature vector has a length equal to 120.

To validate the suitability of the selected feature vector,
several classifiers were tested in an identification task, with
75% of the samples reserved for training and the remaining
for testing, with a 5-fold validation scheme, obtaining, among
others, the results shown in Table 7.

TABLE 7. Classifiers’ accuracy comparison for EEG features

Accuracy (%)

Classifier
Mean o

ANN 92.8  0.67
Cubic SVM 89.4  0.12
Quadratic SVM 89.4 0.18
Linear SVM 88.2 0.12
Medium Gaussian SVM 83.8 0.10
Weighted KNN 77.8 0.31
Fine KNN 73.8 0.27
Subspace discriminant 69.7 0.24
Cosine KNN 67.8 0.31
Linear discriminant 67.1 0.34

C. SPEAKER IDENTIFICATION

In terms of signal conditioning for the voice files, the 20
sequences of digits from each user are first segmented to
obtain 140 audio files of 2.5 seconds length for each of the
subjects. After the segmentation process, each audio file is
normalized, and then processed by a voice detection function
which eliminates the silences in order to extract the features
in the subsequent stages exclusively from voice segments of
the signal. Once treated, for the resulting voice files, Mel
frequency cepstral coefficients (MFCCs) and their respective
delta coefficients are calculated. A Hanning window of 40 ms
with 20 ms overlap is used for the extraction of 20 MFCCs
and 20 delta coefficients, for a total vector length of 40. The
number of feature vectors (windows) per file is variable, since
only the voice segments are considered for the extraction
process, being the shortest one a five-windows sample and
the longest, a 94-windows one.
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TABLE 8. Classifiers’ accuracy comparison for voice features

Accuracy (%)

Classifier
Mean o

ANN 94.2  0.64
Fine KNN 92.0 0.17
Weighted KNN 90.7 0.21
Medium gausian SVM  90.5  0.19
Cubic SVM 90.1 0.27
Quadratic SVM 88.9 0.22
Cosine KNN 88.2 0.13
Linear SVM 68.7 0.23
Subspace discriminant ~ 63.0  0.21
Linear discriminant 60.9 0.16

By the addition of a fixed-length feature vector restriction,
only the first five windows of all the samples are considered
to obtain 200-long coefficients vectors, resulting from the
concatenation of the 5 MFCCs vectors. As for the EEG case,
the resulting set is tested with several classifiers, under the
same conditions of 75% of the samples reserved for training
and under the same validation scheme. Results are shown in
Table 8.

D. EEG-VOICE BIMODAL BIOMETRICS

After the unimodal evaluation, both EEG and voice feature
vectors are then fused by concatenation to form a resulting
vector with 320 elements to be fed as input to the classifi-
cation stage. As well as for the single modalities cases, the
same classifiers were tested, producing the results shown in
Table 9.

TABLE 9. Classifiers’ accuracy comparison for fused features

Classifier _Accuracy (%)

Mean o
ANN 97.6  0.63
Quadratic SVM 96.6 0.12
Cubic SVM 96.3 0.18
Linear SVM 96.0 0.10

Medium Gaussian SVM~ 94.7  0.08
Subspace discriminant 94.3 0.10

Linear discriminant 93.8 0.08
Fine KNN 93.7 0.10
Weighted KNN 92.5 0.24
Cosine KNN 91.2 0.23

As it can be appreciated in Table 9 the best performance
was obtained by an ANN, made up by an input layer of 320
nodes, a hidden layer with 640 neurons and ReLu activation
function, a dropout layer with dropout coefficient of 0.25, and
a Softmax-activated output layer with 50 output nodes. The
network was set to be trained with an Adam optimizer and a
sparse categorical cross-entropy as loss function. To preserve
consistency for the network performance evaluation, a 4-
fold validation scheme is selected, with 75% of the available
samples for training and the remaining 25% for testing. The
ANN is trained across 150 epochs. Figure 9 shows the loss
function evolution across epochs, whereas figure 10 shows
the accuracy evolution as the network is trained.

8

For comparative purposes, Figure 11 summarizes the re-
sults obtained for the best evaluated classifiers. As expected,
the obtained results confirm the achievement of higher accu-
racies when bimodal systems are attempted.
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FIGURE 9. Loss function evolution across epoch of the training stage.
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FIGURE 10. Accuracy evolution across epoch of the training stage.
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FIGURE 11. Classifier's accuracy comparison: EEG, voice and fusion.

VIl. CONCLUSIONS

An open access database of synchronously recorded EEG,
voice and video signals to be used in biometric projects has
been introduced, and a collection of experiments explores
data separability of each modality. As previously established,
the main underlying justification for multimodal biometrics
is the improvement of one or more of the system’s de-
sired characteristics. The experimental cases presented in
this article validate this argument taking into consideration
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mainly the performance dimension. The presented database
gathers three modalities with different characteristics whose
objective is to create a robust recognition system, in which

the

weakness of a modality is compensated by another

modality’s strength. In particular, the database relies on the
proven collectability and acceptance of voice recognition, the
universality and circumvention of EEG and the permanence
and collectability of video stream modalities. Furthermore,
when modalities are synchronously used, the robustness of
liveness detection increases. The database represents a rich
source for multimodal biometric investigation projects and in
general for any project in which the use of video feed, voice
samples or EEG signals are required.
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