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Credit card fraud detection (CCFD) is important for protecting the cardholder’s property and the reputation of banks. Class
imbalance in credit card transaction data is a primary factor affecting the classification performance of current detection
models. However, prior approaches are aimed at improving the prediction accuracy of the minority class samples
(fraudulent transactions), but this usually leads to a significant drop in the model’s predictive performance for the majority
class samples (legal transactions), which greatly increases the investigation cost for banks. In this paper, we propose a
heterogeneous ensemble learning model based on data distribution (HELMDD) to deal with imbalanced data in CCEFD.
We validate the effectiveness of HELMDD on two real credit card datasets. The experimental results demonstrate that
compared with current state-of-the-art models, HELMDD has the best comprehensive performance. HELMDD not only
achieves good recall rates for both the minority class and the majority class but also increases the savings rate for banks

to 0.8623 and 0.6696, respectively.

1. Introduction

With the rapid development of mobile internet and e-
commerce technologies, online payment tools such as credit
cards are welcomed by more and more people. While credit
cards bring convenience to customers, they also expose card-
holders and banks to potential fraud risks [1, 2]. Credit card
fraud is a global problem. The Nilson report found that by
2023, the worldwide fraud loss is expected to reach $35.67
billion annually [3]. Fraud prevention and fraud detection
are two main ways to combat credit card fraud [4]. Fraud
prevention consists of a series of rules, procedures, and pro-
tocols. Commonly used technologies in fraud prevention
include secure payment gateways, intrusion detection sys-
tems, and firewalls [5]. Fraud detection takes place after the
fraud prevention mechanism has been breached [4], which
means that fraud detection is the last line of defense to ensure
the security of credit card transactions. Banks have to invest
considerable money to optimize their fraud detection system
[6], due to the need to protect cardholder’s funds and their
own business reputation.

Data mining and machine learning are widely used tech-
nologies in financial fraud detection [7-9]. As early as 1998,
researchers had begun to build CCFD systems based on
machine learning techniques [10]. After more than two
decades of development, researchers have proposed many
different methods and models [2, 11]. In machine learning
terms, CCFD is a typical binary classification problem. The
detection system is aimed at determining whether the current
transaction is either legal (the transaction was made by the
cardholder) or fraudulent (the transaction was made by an
unauthorized person) based on historical transaction data
[12]. Various methods have been proposed to tackle this
problem, including supervised learning, unsupervised learn-
ing, and semisupervised learning. In supervised learning,
the historical transaction data (training data) are labeled with
known outcomes. Commonly used supervised learning
models include Hidden Markov Model (HMM) [13], Logistic
Regression (LR) [14], Support Vector Machine (SVM) [15],
K-nearest neighbors (KNN) [16], Bayesian Networks (BN)
[17], Decision Tree (DT) [18], random forest (RF) [19],
and Artificial Neural Network (ANN) [20]. Conversely, the
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historical transaction data used in unsupervised learning
models (ULMs) are unlabeled. ULMs judge whether transac-
tions are fraudulent by observing the distribution of current
and historical transaction data. Commonly used ULMs
include artificial immune systems [21] and self-organizing
maps [22]. Semisupervised learning models are a combina-
tion of supervised and unsupervised learning models, which
use some labeled data in combination with a large amount
of unlabeled data. This can help banks reduce the cost of
labeling large volumes of transaction data [12, 23].

In the real world, the proportion of fraudulent transac-
tions (minority class) is much lower than that of legitimate
transactions (majority class), which means that the distribu-
tion of credit card transaction data is highly imbalanced, and
this increases the difficulty of fraud detection [15, 24]. Most
standard classifiers have poor performance on imbalanced
data, especially for the minority class [25]. Resampling is a
widely used method to address the problem of imbalanced
classification data. Several resampling algorithms have been
proposed to improve the recognition performance of classi-
fiers for the minority class [26-28]. However, the disadvan-
tage of the resampling method is that it significantly
reduces the performance of classifiers for the majority class.
For CCFD, this means that a large number of legal transac-
tions are misclassified as fraudulent, which will significantly
increase the investigation costs. Therefore, it is critical to
build a CCFD model with strong recognition performance
in both the minority and majority classes.

To address the above issues, we propose a new kind of
heterogeneous ensemble learning model based on data distri-
bution (HELMDD) for credit card fraud detection. The core
idea is to incorporate a resampling method based on the dis-
tribution of data (RMDD). To reduce information loss in the
majority class and improve the performance of the base clas-
sifiers, RMDD applies KNN and K-Means algorithms to
obtain samples from the majority class, which retain its
diversity and boundary contours. Finally, balanced subsets
for training the base classifiers are obtained by pairing major-
ity and minority class training subsets.

The main contributions of our study are as follows:

(1) We design a new undersampling method based on
the distribution of majority class samples, RMDD,
which can reduce information loss within the major-
ity class

(2) We design a novel combination based on heteroge-
neous ensemble learning and our RMDD resampling
method to obtain better prediction performance in
highly imbalanced credit card transaction datasets

(3) Experimental results on two real credit card fraud
datasets demonstrate that the proposed model can
achieve better performance

2. Literature Review

2.1. Credit Card Fraud Detection Model. Credit card datasets
contain detailed information about each transaction, such as
account number, transaction amount, time, location, and
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merchant category. We can construct a model to determine
whether a transaction is fraudulent or not by expressing the
transaction-related information as vectors and calculating
their similarity. Singh and Jain [29] reviewed literature on
CCFD and summarized the topical issues in current research,
such as datasets, evaluation matrices, and the advantages and
disadvantages of different models. Armel and Zaidouni [30]
compared and analyzed the effectiveness of simple anomaly
detection using DT, RF, and Naive Bayes (NB) in CCFD
through a series of experiments. Sohony et al. [4] found that
RF enables higher accuracy in predicting legal transaction
instances and a Feedforward Neural Network (FNN)
achieves higher accuracy in predicting instances of fraudu-
lent transactions. Consequently, they proposed an ensemble
learning model based on RF and FNN.

Deep learning for CCFD has been discussed in several
works [20, 31, 32]. Rushin et al. [20] conducted comparative
experiments on deep learning, LR, and Gradient Boosted
Tree (GBT) with a dataset containing approximately 80 mil-
lion account level transactions. The results showed that the
performance of deep learning models is better than the
GBT and LR. Kim et al. [31] proposed a champion-
challenger framework that includes deep learning and
ensemble learning and evaluated it on a large transaction
dataset taken from a major card issuing company in South
Korea. Li et al. [32] proposed a deep representation learning
model based on a full center loss function, which considers
both distances and angles among different features.

Some studies have made improvements in feature engi-
neering methods for credit card transaction data. Zhang
et al. [24] proposed a feature engineering method based on
homogeneity-oriented behavior analysis and then used a
deep belief network for learning the extracted features. Lucas
et al. [33] proposed an HMM-based feature engineering
strategy that could incorporate sequential knowledge in the
transactions in the form of HMM-based features, which
enabled a nonsequential RF classifier to make use of the
sequential information. Wu et al. [34] proposed a new feature
engineering method to detect fraudulent cash-out of credit
cards that considers both snapshot and dynamic behavioral
patterns of cardholders and conducted a comparative exper-
iment with the feature extraction method based on Whi-
trow’s strategy. Vlasselaer et al. [35] proposed a feature
engineering method based on the network structure of card-
holders and merchants and then calculated a time-dependent
suspiciousness score for each network object.

Many other approaches have been used recently in the
identification of credit card fraud. Gianini et al. [36] pro-
posed a method of rule pool management based on game the-
ory in which the system distributes suspicious transactions
for manual investigation while avoiding the need to isolate
the individual rules. Based on generative adversarial net-
works, Fiore et al. [37] proposed a method to generate simu-
lated fraudulent transaction samples to improve the
effectiveness of classification models. Carcillo et al. [38] pro-
posed a scalable real-time CCFD framework that could deal
with imbalance and feedback latency based on big data tools
such as Spark. Their work provides a reference for real-time
detection in massive credit card transaction data.
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2.2. Imbalanced Data Learning Methods. Imbalanced distri-
bution of data (class imbalance) has a great impact on the
performance of classification models, reducing the accuracy
of prediction in the minority class [25]. Some effective solu-
tions for class imbalanced data have been proposed by many
researchers. These solutions can be arranged into two groups:
data level and algorithm level [2].

Resampling is a simple and efficient way to address the
problem of class imbalance at the data level. Current
resampling strategies can be divided into those that over-
sample the minority class samples and those that under-
sample the majority class samples. Commonly used
oversampling methods include Random Oversampling
(ROS), Synthetic Minority Oversampling Technique
(SMOTE) [39], and Borderline-SMOTE [40]. For a highly
imbalanced credit card transaction dataset, oversampling
generates many minority class samples (fraudulent transac-
tions). Although this can increase the learning weight of
the classification model for minority class samples, it also
increases computational complexity and generates many
noise samples, which will reduce the predictive perfor-
mance for the majority class (legal transactions). Com-
monly used undersampling methods include Random
Undersampling (RUS), one-sided dynamic undersampling
[41], and neighborhood-based undersampling [42]. The
undersampling approach involves deleting a large number
of majority class samples. This improves the computational
efficiency of the classification model but may result in the
loss of important information from the majority class sam-
ples, which can increase the false-positive rate of the clas-
sification model and lead to additional investigation costs
for the banks.

Cost-sensitive learning technology is often used to
address the problem of imbalanced datasets at the algo-
rithm level. These learning models introduce some con-
straints and weights through a cost matrix based on the
loss function of conventional learning models, which
causes models to shift to a smaller total cost. The advan-
tage of cost-sensitive learning technology is that it does
not generate or add new information, thereby avoiding
the introduction of external noise into the classification
model. The disadvantage of cost-sensitive learning technol-
ogy is that the establishment of the cost matrix needs to be
estimated by business experts and cannot be calculated
accurately. Commonly used cost-sensitive learning models
include cost-sensitive SVM [43], cost-sensitive LR [44],
and cost-sensitive DT [18].

Akila and Reddy [45] proposed a cost-sensitive risk-
induced Bayesian inference bagging model for CCFD to
help card issuers reduce costs. They verified the effective-
ness of this model on a dataset from a Brazilian bank.
Nami and Shajari [46] proposed a two-stage detection
algorithm to address class imbalance in payment card
fraud detection. The first stage extracts the relevant fea-
tures from the transaction data and the second stage
extracts the recent transaction behavioral characteristics
of cardholders. In the second stage, a cost-sensitive
dynamic random forest model is used to improve classifi-
cation performance.

3. Methodology

In this section, we introduce the proposed heterogeneous
ensemble learning model based on data distribution
(HELMDD) in details, which consists of two main compo-
nents. The first is a resampling method based on data distri-
bution (RMDD), as illustrated in Figure 1. RMDD
undersamples the majority class based on the data distribu-
tion of the majority samples and creates several balanced
training subsets by using KNN and K-Means. The second
one is a framework based on a heterogeneous ensemble
learning model (HELM), as illustrated in Figure 2. HELM is
a framework that integrates seven kinds of heterogeneous
classification models (LR, SVM, NB, DT, RF, AdaBoost,
and XGBoost) in the bagging method.

3.1. KNN. KNN is a widely used unsupervised learning
method. KNN can predict the category of samples by calcu-
lating the Euclidean distance between different points. The
formula for calculating the Euclidean distance between
points (x;, y ;) is shown in the following equation:

QU
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RMDD divides the majority class samples of the training
dataset into a subset of boundary samples and a subset of
ordinary samples using a KNN algorithm. A selection of
samples is then drawn from each of these subsets to create
several new balanced datasets that contain cases from both
the majority and minority classes. The advantage of this
method is that the new balanced training subsets retain some
of the boundary features of the majority class from the orig-
inal training dataset, which can reduce information loss in
these critical boundary cases.

3.2. K-Means. K-Means is a popular unsupervised clustering
algorithm. Taking dataset S and the number of classes k as
inputs, the K-Means algorithm is aimed at dividing S into k
subsets quickly. Specifically, K-Means randomly select k
samples as initial clusters. Then, for each sample s in the
dataset, the Euclidean distance d; between sample s and the

centroid of k different clusters is calculated. If the distance
between s and the centroid of cluster i is the shortest, s is
assigned to cluster i. The third step is to calculate the average
value of samples in cluster i and update the centroid of cluster
i. The second and third steps are repeated until the difference
between the old centroid and the new centroid is less than a
preset threshold. After the algorithm is executed, we can
obtain the data distribution of the majority class samples.

In the task of imbalanced classification, undersampling
methods can increase the learning weight of minority class
samples, which helps classification models to attain a higher
recall rate. RUS is the most widely used method, but a signif-
icant defect of RUS is that it discards a large number of sam-
ples from the majority class, which may increase the false-
positive rate of classification models. During the undersam-
pling process, if we do not consider the distribution of
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FIGURE 1: Flowchart of RMDD resampling algorithm, including three classic algorithms: KNN, K-Means, and RUS.

majority class samples, the selected samples cannot represent
main features of the majority class and thus could decrease
the performance of the base classifiers. In our method, we
divide the majority class into k clusters using the K-Means
algorithm and then randomly sample from each cluster in
different proportions. This resampling method fully con-
siders the distribution of majority class samples and thus
can better retain the main features of these cases.

3.3. RMDD Resampling Method. RMDD is an undersampling
algorithm that fully considers data distribution, which has
three components. The first is to sample the minority class.
Due to the highly imbalanced distribution in a CCFD dataset,
we use all the minority class samples to improve recognition
ability for the minority class of the base classifier. In the sec-
ond part, we undersample the majority class to generate mul-

tiple subsets so that the number of majority class samples is
the same as the number of minority class samples, which
forms the core of the RMDD algorithm. The third part is to
generate several balanced subsets to provide training data
for the base classifiers by merging the minority class samples
and the subset of majority class samples. The flowchart of the
RMDD resampling algorithm is shown in Figure 1.
The second part above consists of the following 4 steps:

(1) We divide the majority class samples into a boundary
sample set B and an ordinary sample set G by the
KNN algorithm. Then, for any sample x in the major-
ity class (labeled 0), we find K-nearest neighbor sam-
ples to x from the training set. If there are more than
k/2 neighboring samples with a label of 1, then B=
BU {x}, otherwise G=GU {x}
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(2) Random sampling with replacement is used to divide
sample B into k subsets. N, represents the number of
samples in set B. The formula for calculating the
number of samples in each subset is shown as

Ny=AN,, i€[L,2,- kA €[0,1], (2)

k
A =1 (3)
=1

1

A; is a weight parameter, which is used to adjust the
number of boundary samples in each subset

(3) Using the K-Means algorithm, we divide ordinary
sample set G into k clusters and sample with
replacement from each cluster with different sam-
pling rate. The sampling rate in the ith cluster is
calculated from Equation (4), where N; represents
the number of samples in the ith cluster, and N,
represents the number of ordinary samples in set
G. N,,;, represents the number of minority sam-
ples, and N; represents the number of samples
randomly selected from the ith cluster and can be
calculated from Equation (5).

N, =(N

gi — Ny,;)SR; (5)

min

(4) Combining boundary sample subset B; with ordinary

sample subset G; to construct a subset S}naj of major-

ity class samples. The corresponding calculation for-
mula is as follows:

S;paj:{Bj’G},GJ?,...,G;?}) jeL2, k. (6)

The number of samples in the majority class is equal to
the number in the minority class, that is, N, = |S;"|

3.4. Framework of HELM. To improve classification perfor-
mance, we propose a heterogeneous ensemble learning
model (HELM) framework, as shown in Figure 2. The HELM
framework uses data resampling and ensemble learning tech-
nologies to address the problem of imbalanced data in CCFD.
Through the training and screening of multiple heteroge-
neous base classifiers, we improve the robustness of HELM
as well as avoid reliance on a single classifier. The HELM
framework consists of two phases: (1) the data processing
phase and (2) the model training and selection phase.

3.4.1. Data Processing Phase. The main task of this phase is to
preprocess the original credit card transaction dataset,
including feature selection, data normalization, dataset divi-
sion, and resampling. First, we divide the original dataset into



a training set and a test set. The training set is used for esti-
mating parameters of the classification model, and the test
set is used for evaluating the trained classification model.
We further divide the training set into a training subset and
a validation subset and use the RMDD algorithm to resample
the training subset, which divides the highly imbalanced
training subset into k balanced subsets for training base clas-
sifiers. The RMDD algorithm fully considers the distribution
of majority class samples. Boundary samples are distin-
guished from ordinary samples by applying the KNN algo-
rithm. Ordinary samples are grouped into k classes by the
K-Means algorithm. Through these two algorithms, we can
build several balanced subsets and ensure that each balanced
training subset contains a certain ratio of boundary samples
and ordinary samples from each cluster. The advantage of
this is that more feature information of samples in the major-
ity class can be preserved while generating new balanced
training subsets. In addition, the introduction of boundary
samples retains some of boundary contours from the original
dataset in the new balanced subset, which can help to
improve classification performance.

3.4.2. Model Training and Selection Phase. When the prepro-
cessing phase is completed, we have k balanced training sub-
sets. For each subset, we use seven different base classifiers for
training, including LR, SVM, NB, DT, RF, AdaBoost, and
XGBoost. Then, we use an imbalanced validation subset to
obtain Area Under the Curve (AUC) score for each base clas-
sifier and select the base classifier with the best AUC score as
recommended classifier for that subset. Finally, we obtain an
ensemble learning model with heterogeneous or isomorphic
recommended classifiers that are trained with other subsets.
For samples in the test dataset, each recommended classifier
will give an initial prediction; then, the final prediction result
is generated through a voting method across each recom-
mended classifier. In the model selection phase, we use
AUC score as the selection condition because AUC score
takes into account both the prediction accuracies of the
majority and minority classes at the same time, which gives
us a good compromise between the accuracy and recall met-
rics for the classification model. In credit card fraud predic-
tion, misclassification of legitimate transactions as
fraudulent transactions or mis classification of fraudulent
transactions as legitimate transactions willincur costs for
banks and customers, such as loss of transaction amount,
manual investigation costs, etc. Therefore, by comparing
the AUC score of multiple base classifiers and selecting the
base classifier with the best AUC score to build an ensemble
model, we can effectively improve prediction performance
and reduce economic losses for cardholders and banks.

The HELM framework can be deployed in a distributed
manner. Base classifier training tasks on different subsets in
HELM can be assigned to different cluster nodes. Each node
can perform model training in parallel during periods of low
credit card transactions (such as the early morning). Since
the proportion of fraudulent transactions is very low, the bal-
anced training subset space generated by the RMDD algo-
rithm is quite small, which can significantly reduce the
training time of base classifiers. Compared with other tradi-
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tional methods, our HELM framework can significantly
reduce model training and deployment time by reducing
the training sample space and facilitating the application of
parallel computing technologies.

4. Experiments

4.1. Dataset Description. In this paper, we use two real credit
card transaction datasets: one from Kaggle (public dataset)
and one from a bank in China (our private dataset). The
detailed statistics are shown in Table 1.

(1) Kaggle dataset [47]. This dataset is composed of
credit card transaction records of European card-
holders in September 2013. The time span of these
transactions is two days, and each transaction record
contains 30 features. Due to privacy considerations,
28 features were encoded by Principal Component
Analysis (PCA), except for two features: transaction
time and amount. This dataset contains a total of
284,807 instances, of which 492 are minority class
samples (fraudulent transactions). The fraud rate of
this dataset is 0.173%, which indicates that the data-
set is highly imbalanced

(2) Our private dataset. This dataset is provided by a
bank in China and contains credit card transaction
records of customers on a typical day in May 2017.
Each instance has 23 features, including some per-
sonal information of cardholders (such as age, gen-
der, marital status, and education level) and
transaction-related features (such as transaction
amount, time, and merchant number). This dataset
contains 24,024 instances, including 660 fraud
instances. The fraud rate of this dataset is 2.747%.

4.2. Performance Measures. Confusion matrix provides help-
ful information regarding the actual labels and predicted
labels proposed by the classification model. The confusion
matrix used in this study is shown in Table 2. Due to the
highly imbalanced phenomenon of our credit card datasets,
widely used evaluation indexes (such as accuracy and preci-
sion) do not fully represent the performance of classification
models. For example, if we classify all samples in the Kaggle
dataset as legitimate transactions, the accuracy will be close
to 98%; it is clear that this prediction model is not a good
classification model. Therefore, we choose Fra_Recall (fraud
class recall), Leg Recall (legal class recall), G-mean, AUC,
and savings rate [48] to evaluate the model.

Fra_Recall and Leg Recall are calculated by Equations
(7) and (8), respectively. The larger the Fra_Recall value,
the higher the proportion of fraudulent transactions that
are identified by the classification model, and the more fraud
losses that can be avoided for banks and cardholders. The
larger the Leg Recall value, the higher the proportion of
legitimate transactions that is identified by the classification
model, and the greater the investigation costs that can be
saved for banks. The ideal model is that Fra_Recall and
Leg_Recall are close to 1 at the same time. G-mean and
AUC are very important measures that are widely used in
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TaBLE 1: Dataset description.

Dataset Instances Features Fraud instances (minority class) Legal instances (majority class) Fraud ratio
Kaggle dataset 284807 30 284315 0.173%
Our private dataset 24024 23 23364 2.747%

TaBLE 2: Confusion matrix.

Actual fraud (positive)

Actual legal (negative)

Predicted fraud (positive)
Predicted legal (negative)

True positive (TP)
False negative (FN)

False positive (FP)
True negative (TN)

model evaluation studies in the presence of imbalanced data.
The larger the G-mean and AUC value, the better the perfor-
mance of the classification model. G-mean and AUC can be
calculated by Equations (9) and (10).

TP
Fra_Recall = itivity = ———, 7
ra_Recall = sensitivity TP+ TN (7)

TN
Leg_Recall = ificity = ———, 8
eg_Recall = specificity TN+ FP (8)
G-mean = \/ sensitivity x specificity, )

1
|D | ) |D ‘x"ED*x’eD’

(10)

(1) <)+ 316 =) ).

D* and D™ denote the collection of fraudulent transac-
tions and legitimate transactions, respectively.

The savings rate is an indicator that banks attach great
importance to, because it is always used to quantify the eco-
nomic benefits that fraud detection models can create for
banks. The CCFD cost matrix [48] is shown in Table 3.

Among them, y, is the actual label for transaction i, and y;

is the predicted label for transaction i given by classifier f.
If a transaction is predicted to be a fraudulent transaction
(TP or FP), the bank needs to investigate the transaction
incurring a cost of C,. Conversely, if the transaction is pre-
dicted to be legitimate (TN or FN), there is no investigation
cost, but in the case of FN, the loss of the bank is equal to
the transaction amount Amt,. If no classifier is used for
CCED, the total loss of the bank is calculated by Equation
(11). The proportion of cost saved for the bank by using clas-
sifier f is calculated by Equation (12).

n
Crotal = ZyiAmti’ (11)
i=1
(Z?:l)’i)’ilAmti _yi’Cu)
Savings(f) = (12)
Ctotal

4.3. Experimental Design. To evaluate the effectiveness of the
HELMDD model, we conducted experiments on two real

credit card datasets and compared the proposed model with
several competing approaches. Most of models can be
divided into two categories: independent model and ensem-
ble learning model. The independent model we used in our
experiment includes LR, SVM, NB, and DT. The ensemble
learning model we used in our experiment includes RF, Ada-
Boost, and XGBoost. In addition, we also combined these
models with different resampling methods, such as SMOTE
and RUS.

5. Experimental Results and Discussion

To directly compare with previous works, we evaluate our
model using 10-fold cross-validation similar to prior
approaches on the two datasets. The experimental results
for each classification model on the Kaggle dataset and our
private dataset are shown in Tables 4 and 5, respectively.
For convenience of comparison, we have also presented the
data of Tables 4 and 5 in histogram form, as shown in
Figures 3 and 4. In Tables 4 and 5, numbers in italic indicate
the best values of the model in the corresponding evaluation
measure.

For the Kaggle dataset, we compare the proposed model
with several competing approaches and show the results in
Table 4. From the results, we can observe the following:

(1) In the case of the same classification model, those
implementing resampling methods to preprocess
the training subset achieved better performance
than models with the original imbalanced training
subset. Fra_Recall, AUC, and G-mean have differ-
ent degrees of improvement. For example, Fra_
Recall increased from 0.0235 (DT model with
SMOTE method) to 0.2353 (LR model with RUS
method), AUC increased from 0.0023 (AdaBoost
model with SMOTE method) to 0.0275 (NB model
with RUS method), and G-mean increased from
0.0018 (DT model with RUS method) to 0.1239
(LR model with RUS). The main reason is that pre-
processing the original imbalanced dataset with
SMOTE or RUS method helps models to improve
the learning rate of fraudulent transaction instances
and therefore enhances the ability to identify fraud-
ulent transactions
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TaBLE 3: Credit card fraud cost matrix.

Actual fraud (positive)

Actual legal (negative)

yi=1 yi=0
Predicted fraud (positive
I P ) CTP,- =C, CFP‘ =G,
yi=1
Predicted legal (negative
B gal (negative) Cy, = Amt; Cry, =0
¥;=0
TABLE 4: Results on the Kaggle dataset.
Model Rebalancing technique Fra_Recall Leg_Recall AUC G-mean Savings
Imbalanced 0.6176 0.9942 0.9500 0.7836 0.5980
LR SMOTE 0.8412 0.9755 0.9571 0.9058 0.7591
RUS 0.8529 0.9657 0.9630 0.9075 0.7399
Imbalanced 0.8059 0.9963 0.9559 0.8961 0.7893
SVM SMOTE 0.8824 0.9700 0.9678 0.9252 0.7829
RUS 0.8529 0.9605 0.9697 0.9051 0.7237
Imbalanced 0.7001 0.9996 0.9413 0.8365 0.6943
NB SMOTE 0.8012 0.9920 0.9539 0.8908 0.7700
RUS 0.8059 0.9783 0.9688 0.8879 0.7329
Imbalanced 0.7647 0.9996 0.8821 0.8743 0.7585
DT SMOTE 0.7882 0.9965 0.8924 0.8863 0.7723
RUS 0.8471 0.9062 0.9061 0.8761 0.5477
Imbalanced 0.7588 0.9999 0.9614 0.8711 0.7538
RF SMOTE 0.8235 0.9998 0.9709 0.9074 0.8178
RUS 0.8588 0.9703 0.9719 0.9129 0.7604
Imbalanced 0.7765 0.9998 0.9601 0.8811 0.7708
AdaBoost SMOTE 0.8706 0.9850 0.9624 0.9260 0.8182
RUS 0.8824 0.9473 0.9694 0.9143 0.7117
Imbalanced 0.7706 0.9999 0.9649 0.8778 0.7656
XGBoost SMOTE 0.8765 0.9885 0.9700 0.9308 0.8194
RUS 0.9001 0.9663 0.9725 0.9325 0.7886
HELMDD RMDD 0.8882 0.9903 0.9853 0.9379 0.8623

(2) In the case of applying the same resampling method,

AUC obtained by ensemble learning models are gen-
erally better than those from independent learning
models. As shown in Table 4, the highest AUC
obtained by independent learning models with three
different resampling methods are 0.9559 (imbalanced
data), 0.9678 (SMOTE method), and 0.9697 (RUS
method), while the average AUC obtained by ensem-
ble learning models with three different sampling
methods are 0.9621 (imbalanced data), 0.9678
(SMOTE method), and 0.9713 (RUS method), so
the ensemble learning models are slightly better than
the independent learning models. This is because
ensemble learning models are strengthened by using
multiple weak classification models. Compared with

3)

independent models, ensemble models can obtain a
smaller deviation and better generalization ability

For the same classification model, those using RUS to
preprocess the training dataset achieve better Fra_
Recall and AUC than models based on SMOTE. For
example, Fra_Recall increases from 0.0047 (NB model)
t0 0.0589 (DT model), and AUC increases from 0.0010
(RF model) to 0.0149 (NB model). However, we cannot
ignore that Leg Recall decreases by 0.0095 (SVM
model) to 0.0903 (DT model). This is because the
RUS method discards many legitimate transaction
samples and leads to an improvement in the identifica-
tion of fraudulent transactions while increasing the
false prediction rate for legitimate transactions
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TaBLE 5: Results on our private dataset.

Model Rebalancing technique Fra_Recall Leg Recall AUC G-mean Savings
Imbalanced 0.5928 0.8145 0.7334 0.6949 0.5414

LR SMOTE 0.5825 0.7431 0.7058 0.6579 0.5130
RUS 0.6959 0.6483 0.7250 0.6717 0.6014

Imbalanced 0.5155 0.7679 0.6567 0.6291 0.4527

SVM SMOTE 0.6959 0.6068 0.6881 0.6498 0.5909
RUS 0.5773 0.8751 0.7509 0.7108 0.5415

Imbalanced 0.3505 0.9428 0.7076 0.5749 0.3335

NB SMOTE 0.5722 0.8055 0.7245 0.6789 0.5186
RUS 0.5722 0.8038 0.7274 0.6782 0.5182

Imbalanced 0.0876 0.9659 0.5268 0.2909 0.0783

DT SMOTE 0.1598 0.9072 0.5335 0.3807 0.1350
RUS 0.6443 0.6017 0.6230 0.6226 0.5384

Imbalanced 0.5773 0.7958 0.7252 0.6778 0.5213

RF SMOTE 0.5412 0.7126 0.6564 0.6210 0.4642
RUS 0.6186 0.7861 0.7528 0.6973 0.5598

Imbalanced 0.6186 0.8047 0.7465 0.7055 0.5645

AdaBoost SMOTE 0.6031 0.7360 0.7101 0.6662 0.5316
RUS 0.6392 0.7531 0.7581 0.6938 0.5718

Imbalanced 0.6649 0.7387 0.7543 0.7008 0.5937

XGBoost SMOTE 0.6082 0.7398 0.7014 0.6708 0.5377
RUS 0.6753 0.7693 0.7624 0.7208 0.6118

HELMDD RMDD 0.7213 0.7985 0.7941 0.7589 0.6696
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FI1GURE 3: Histogram for the mean of model evaluation measures on the Kaggle dataset.
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(4) In terms of savings score, we have two findings: first,

after resampling the original imbalanced training
data with SMOTE method, the savings score of six
classification models has been improved to varying
degrees. For example, the XGBoost model has been
increased from 0.7656 to 0.8194 and the LR model
has been upgraded from 0.5980 to 0.7591. Second,
when we use the RUS method to resample original
data, the savings score of three classification models
(SVM, DT, and AdaBoost) has been reduced by dif-
ferent degrees, such as the SVM model which has
been reduced from 0.7893 to 0.7237, while the sav-
ings score of the other four classification models have
been improved by different degrees, such as the
XGBoost model which has been increased from
0.7656 to 0.7886. There may be two reasons for this:
first, the savings score is highly correlated with the
recognition rate of fraudulent transactions; SMOTE
method can help classification models increase the
recall rate of fraudulent transactions and reduce
fraud losses of banks. Second, the RUS method dis-
cards many legitimate transaction samples, although
it strengthens the learning of fraud samples and
improves the recall rate of fraud transaction for the
model, but it also leads to an increase in the false pre-
diction rate of legitimate transactions and increases
investigation cost for banks

(5) Our HELMDD model proposed in this paper

achieved the best AUC, G-mean, and savings scores,

which were 0.0128, 0.0054, and 0.0429 higher than
previous state-of-the-art methods, respectively. The
model showed good stability. While obtaining the
second highest Fra_Recall, it did not significantly
reduce Leg Recall, thus ensuring that banks can
achieve greater savings. The overall performance of
HELMDD is better than the ensemble learning
models (such as XGBoost, AdaBoost, and RF) with
different resampling methods. This is because the
RMDD resampling algorithm fully considers the dis-
tribution of legitimate transaction samples. Samples
extracted from the boundary subset and multiple
clusters fully retain the diversity and boundary con-
tours of legitimate transaction samples. In addition,
the selection mechanism of base classification models
also helps to improve the overall performance of the
framework

Table 5 presents the performance comparison between

our approach and other competitive methods on our private
dataset. From the results, we can observe the following:

(1) Using the SMOTE method to resample the training

dataset may not necessarily improve performance of
the classification models and may even lead to a dete-
rioration in classification performance. In Table 5,
AUC and G-mean obtained by SVM, NB, and DT
combined with SMOTE have been improved to vary-
ing degrees. For example, AUC increases from 0.0067
(DT model) to 0.0314 (SVM model), and G-mean
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TaBLE 6: Ablations on two datasets with different resampling and
model ensemble methods.

Kaggle dataset Our private dataset

Method AUC Savings AUC Savings
HELMDD 0.9853 0.8623 0.7941 0.6696
-RMDD 0.9764 0.8255 0.7737 0.6324
-HELM 0.9788 0.8472 0.7853 0.6582
Base 0.9725 0.7886 0.7624 0.6118

increases from 0.0207 (SVM model) to 0.1040 (NB
model). However, the overall performance of LR,
RF, AdaBoost, and XGBoost combined with SMOTE
decreases to varying degrees, in which AUC
decreases by 0.0276 (LR model) to 0.0688 (RF
model), and G-mean decreases from 0.0300
(XGBoost model) to 0.0568 (RF model). This is pos-
sibly because through the SMOTE method, a large
amount of minority sample noise is generated in the
process of resampling for the training dataset, which
decreases the performance of some classification
models

(2) Using RUS to resample the training dataset, apart
from AUC of the LR model that dropped from
0.7334 to 0.7250, AUC obtained by the other six clas-
sification models manifests an improvement of
0.0081 (XGBoost model) to 0.0962 (DT model). This
may be because the absence of new minority samples
generated in the RUS process avoids the introduction
of noise samples and improves the performance of
the classification models

(3) The HELMDD model proposed in this article
achieved the best Fra_Recall, AUC, G-mean, and sav-
ings scores, which were 0.0254, 0.0317, 0.0381, and
0.0578 higher than the corresponding measures of
the previous state-of-the-art models, respectively.
The validity and stability of HELMDD model were
thus verified again

6. Ablation Study

We conduct an ablation study to investigate the effectiveness
of our model components.

Table 6 shows the effects of the different resampling and
model ensemble methods on AUC and savings scores. Here,
-RMDD denotes using RUS instead of the RMDD resam-
pling technique in HELMDD, and -HELM denotes using
XGBoost instead of the seven heterogeneous models and
ensemble in HELMDD. Base is the model generated by per-
forming the above two ablations, which is the default
XGBoost model with RUS resampling. For Kaggle and our
private dataset, we observe that both RMDD and HELM
are beneficial for identifying fraudulent transactions and
controlling the cost of investigating fraudulent transactions.
The reason is that two model components can significantly
improve the recognition rate of fraudulent transactions with-
out reducing the recognition rate of legitimate transactions.

11

7. Conclusions

In this paper, we propose a heterogeneous ensemble learning
model based on data distribution (HELMDD) for the prob-
lem of the highly imbalanced data distribution encountered
in CCFD. In our HELMDD model, we first propose an
undersampling method, RMDD, based on the distribution
of the majority class. RMDD divides the majority class into
boundary samples and ordinary samples and then generates
multiple balanced subsets based on the idea of clustering to
train multiple base classifiers. The RMDD algorithm can
maintain the classification boundary contours of the majority
class and reduce the loss of sample information. Therefore,
our model can obtain a higher majority class recall rate while
also improving the minority class recall rate. In terms of
model selection, we chose base classifiers that obtain the best
AUC score in the balanced subset to generate an ensemble
model, which helped to improve classification performance.
Finally, we evaluate the proposed method on the Kaggle data-
set and our private dataset. The results show that HELMDD
achieves new state-of-the-art performance compared to
other competing approaches.
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