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Abstract

This paper aims at making explicit the mixing time found by Anari et al.
(2016) for k-DPP Monte-Carlo sampling when it is applied on large graphs.
This yields a polynomial bound on the mixing time of the associated Markov
chain under mild conditions on the eigenvalues of the Laplacian matrix when
the number of edges grows.
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1 Introduction

Determinantal Point Processes, called DPPs, were identified by Macchi
(1975) to have the ability to model the position of fermions, where nearby
particles repel each other. They supply coherent probabilistic models in the
presence of negative correlation. Recently, DPPs have developed a growing
interest in statistics applications for machine learning such as finding the best
translation of a sentence, computing the marginals of a Markov random field
and modeling non-overlapping human poses in images or video (Kulesza and
Taskar, 2012). A DPP is defined by a kernel , basically a symmetric and
positive semidefinite matrix. For an integer , Kulesza and Taskar
(2011) introduced the -DPP, which requires a standard DPP on the event
that the modeled set is of fixed size.

Kannan and Vempala (2009) & Deshpande and Rademacher (2010), and
Kulesza and Taskar (2012) have presented algorithms for sampling from -
DPP. However, for a large dataset, these algorithms are inefficient to use
since eigen-decomposition of a possibly huge matrix is needed. On the other
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hand, the Markov chain techniques are very attractive because of their plain-
ness and effectiveness in generating k-DPP random samples. For instance,
the Metropolis-Hastings algorithm was used by Kang (2013) who has con-
sidered a Markov chain Monte Carlo (MCMC) to sample from -DPPs.

Anari et al. (2016) have given an accurate polynomial bound on the
mixing time depending only the probability of the starting point which can
deteriorate hugely the bound. Here, we make the bound precise in the spe-
cific case when -DPPs are used to sample a diverse set of nodes in connected
graphs. This has applications in video games to place randomly and with
repulsion ressources or monsters. The kernel we use is the Moore-Penrose
pseudo-inverse of the normalized Laplacian which is a classical kernel for
graphs so that the bound we derive is intrinsically related to the Laplacian.

This paper includes the following sections: Section 2 gathers some basic
facts about DPP, and Laplacian matrix properties. In Section 3, we define
the -DPP kernel and present the Markov Chain of Kang (2013) to efficiently
generate random samples. Our main result is presented in Section 4 where
we characterize the Laplacian eigenvalues and we focus on the mixing time
of the Markov chain for the -DPP.

2 Background

2.1. Determinantal Point Processes For a discrete set = 1
of items, a DPP denoted , is a probability measure on the set 2[ ] of
all subsets of [ ] = 1 . A DPP can be defined via an -ensemble
(Kulesza and Taskar, 2012) by using a symmetric and positive semidefi-
nite matrix indexed by the elements of such that if is a random subset
drawn according to , we have

( ) =
det( )

det( + )
;

where for , ( ) = i j and is the identity matrix. Note
that the required normalization constant can be given in closed form for the
reason that

det( ) = det( + )

Kulesza and Taskar (2011) propose an extension of DPPs that enables
to model the content of a selected number of items. They obtained thus a
-DPP by conditioning a standard DPP so that the set has cardinality .
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The probability of is then denoted and stands as follows:

( ) =
det( )

= det( )
(2.1)

where = and is a positive semidefinite matrix.
2.2. About the Graph Laplacian Let us consider an undirected unweighted

graph = ( ) where ( ) and ( ) are respectively the vertex and the
edge set of . Several kernels have effectively been used to capture the sim-
ilarity between a pair of nodes induced by the local structure of the graph.
One of them is based on the combinatorial Laplacian matrix of the graph
which is defined as

=

where the elements of the adjacency matrix of the graph are: for all
( )

=
1 if

0 otherwise

and = diag( 1 ), with = .
On occasion, it is also known as the Kirchhoff matrix or the information

matrix. Similar to the combinatorial Laplacian, the normalized Laplacian
yields eigenvalues which do not depend on the graph size, it is given by:

:= 1 2 1 2 = 1 2 1 2

For a graph we can see that, for all ( )

=

1 if = and = 0
1

i j
if

0 otherwise

As mentioned by Chung (1997) & Cvetković et al. (2010), = ( ) ( )

is a symmetric, positive semidefinite matrix, and its eigenvalues 1

satisfy

0 = 1 2 2

The eigenvalues can be used to provide effective information about a graph.
For instance, the number of connected components can be obtained from
the multiplicity of the eigenvalue 0. If the graph is connected then 0 is an
eigenvalue with multiplicity one. The second smallest eigenvalue, discussed
in next section, is an indicator of bottlenecks in the graph.
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2.2.1. On the Second Smallest Normalized Laplacian Eigenvalue. Dif-
ferent types of studies were presented by Li et al. (2008) & Li and Li (2011)
and Li et al. (2014) on the second smallest normalized Laplacian eigenvalue.
Since is symmetric and 0 = 1 2 2, then its eigenvalues
are all real and nonnegative. We recall some properties of the eigenvalues
and eigenfunctions of by using the variational characterization of those
eigenvalues in terms of the Rayleigh quotient of .

Let be a graph, = ( ), and be an eigenvector of . Then,
can be viewed as a function that assigns a real value ( ) to each vertex
of . By letting = 1 2 , we have

=
1 2 1 2

( 1 2 ) 1 2
= =

( )( ( ) ( ))2

( ) ( )( ( ))2
(2.2)

It is easy to deduce that 0 is an eigenvalue of and 1 2 is an eigenfunc-
tion corresponding to 0 where denotes the constant function which takes
the value 1 on each vertex. Thus, by using Eq. (2.2) we can obtain the fol-
lowing formula corresponding to the second smallest normalized Laplacian
eigenvalue of a graph :

2 = inf = inf
( )( ( ) ( ))2

( ) ( )( ( ))2

where is called a harmonic eigenfunction associated with 2.
Moreover, 2 is closely related to the discrete Cheeger constant

(Cheeger, 1970). For all non-empty subset ( ) whose complement is
= ( ) , we define

( ) =
min

where are the elements of the adjacency matrix. The Cheeger constant
of a graph is defined to be

= min
( ) =

( )

Here below, the Cheeger inequality makes the connection between 2( )
and the tightness of the bottleneck explicit.

Theorem 1. (Cheeger Inequality (Cheeger, 1970)) If is connected, then

2

2
2 2

where is the Cheeger constant of .
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2.2.2. The Moore-Penrose Pseudo-inverse of the Normalized Laplacian
Matrix. The concept of pseudo-inverse generalizes the matrix inverse to ma-
trices that are not of full rank or square. In fact, when the number of paths
that link two nodes increases, the entries of the pseudo-inverse of the Lapla-
cian matrix increase as well. This matrix represents the similarity between
any pair of nodes. Then, it is motivating to use the pseudo-inverse of the
normalized Laplacian matrix of the graph as a Gram matrix. This is a conve-
nient way of defining a kernel on a graph (Lovász, 1993). The Moore-Penrose

pseudo-inverse of the normalized Laplacian matrix will be denoted .

Some of the important properties of are:

– is symmetric and positive-semidefinite.

– If ( = 0) are (eigenvectors, eigenvalues) of , then ( 1 = 0)

are the corresponding (eigenvectors, eigenvalues) of .

– If ( = 0) are (eigenvectors, eigenvalues) of , then are also

(eigenvectors, eigenvalues) of .

Interestingly, the pseudo-inverse of the Laplacian matrix can be used to
determine the average commute time, which is defined as the average number
of steps taken by a random walker when starting from node to reach node
and returning to node . Let vol( ) denotes the volume of the graph, the

average commute time can be computed as follows: Gobel and Jagers (1974)

( ) = vol( ) + 2

with vol( ) = =1 .
Finally, the following interlacing eigenvalues lemma is well-known in ma-

trix analysis. It will be applied in this paper on . First, let us denote
( ) as the -th smallest eigenvalue of .

Lemma 1. Horn and Johnson (1985) Let be a real symmetric matrix
and denotes any -by- principal submatrix of . For any integer
such that 1 we have

( ) ( ) + ( )

3. Sampling via -DPP

Henceforth, we will use the Moore-Penrose pseudo-inverse of the normal-
ized Laplacian matrix as kernel which is given by:

( ) = (3.1)
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Kang (2013) presented an efficient method to construct a Markov chain
with the stationary distribution generated by the Metropolis-Hastings
algorithm (Chib and Greenberg, 1995). The main idea behind this method
is to suggest a new configuration by choosing two elements and : to be
removed from the current set of size = , and to be added. Hence,
for = and , the acceptance probability of removing from

and replacing it with is computed as follows:

1

2
min 1

det

det
=

1

2
min 1

det

det

(3.2)
with = 1 1 representing the proposal distribution.

Consequently, P (Y ∪{x}, Y ∪{y})=
q Y ∪ {x}, Y ∪ {y} · 1

2 min 1,
detLY ∪{y}
detLY ∪{x}

if y = x

1 −
z=x

q Y ∪ {x}, Y ∪ {z} · 1
2 min 1,

detLY ∪{z}
detLY ∪{x}

otherwise.

Since ( ) 1
2 for all [ ], the Markov chain described above is said

to be a lazy chain (Greenhill, 2013).
The lazy MCMC produced by the Metropolis-Hastings algorithm is in-

troduced to acquire a sample from -DPP as follows:

The essential idea of this algorithm is to obtain a rapidly-mixing Markov
chain whose stationary distribution is the -DPP .
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4. Mixing Time

In this section, we will study the convergence of the distribution of a
Markov chain to the stationary distribution .

Definition 1. The total variation distance between two probability distribu-
tions and on a finite space is:

=
1

2
( ) ( )

If is a random variable samples according to and , then
we say is an -approximate sample of .

Definition 2. (Mixing Time). For a chain started at with transition
probability matrix and stationary distribution . For 0, the total
variation mixing time of the Markov chain is defined as follows:

( ) := min : ( )

where ( ) is the distribution of the chain started at at time .

After recalling the result of Anari et al. (2016), we will make it explicit
in the case of sampling on large graphs using the kernel given before. In
what follows, k

L
denotes the transition probability matrix of .

Theorem 2. Anari et al. (2016) For any -DPP : 2[ ]
+

where = supp and = . For 0,

( )
1

k
L

log
1

( )

where

k
L
= min max k

L
( ) k

L
( )

and is at least 1
2 by construction.

Our contribution is to provide a lower bound for ( ).
4.1. Convergence Theorem Since the acceptance probability (Eq. (3.2))

is bounded below by the ratio of the determinants of two matrices, we must
bound the spectrum of , which denotes the restriction of to the entries
indexed by elements of . Since in a connected graph 0 is a single eigenvalue
of , then it is also a single eigenvalue of . This suggests that under
some conditions, the eigenvalues of can be bounded below by a strictly
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positive constant. This is achieved by using the fact that ( ) as it
does not make sense to take = in most applications.

As the eigenvalues of are the inverse of those of , to bound the

largest eigenvalue of , the lower bound of the smallest eigenvalue of
is needed. In the following lemma we provide a lower bound for 1( ).

Lemma 2. Noting the number of edges and considering for all 1

= 1
=1

ij

i j
where with 1 stand for the nodes degrees and

=
1 if is connected to

0 otherwise
we have the following bound: 1( )

max 1 with:

λ = max 0,min f
1

2
+

1

2
1

4B2
j

4B2
j + C2

j

, f
1

2

1

2
1

4B2
j

4B2
j + C2

j

where = 2( ) , = 2 j

2 (1 + 2) and = 2 + 2 j .

Proof. Without loss of generality we consider that = . First we
remark that the smallest eigenvalue of which is larger or equal to the

smallest eigenvalue of the matrix
0

0 1
Then, it can be rewritten

as:

1( ) 1
0

0 1
= 1 +

0 0 1
...

...
...

0 0 1

1 1 0

where for all 1 1 , = in

i n
. The matrix

0 0 1

..

.
..
.

..

.
0 0 n 1

1 n 1 0

has only 0 and some eigenvalues that we will denote by . In order to find
, the following system of linear equations is used:

1 = 1
...

...

1 = 1

= 1
=1
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thereby = 1
=1

2 n hence = 1
=1

2 as obviously = 0,

that is . Next, the eigenvectors associated with and are
respectively

1 = 1 1

1

=1

2 and 2 = 1 1

1

=1

2

Now we can proceed with bounding 1( ). Let us note = =1 ,
where the eigenvectors 1 of are ordered with increasing ( )
and form an orthonormal basis. As we are interested in the eigenvalues, we
consider hence without loss of generality that 1 0 and = 1, that is

=1
2 = 1. Now we can minimize to bound 1 . This yields,

G 0
0 1

=

n

i=1

i i G +
1 1

1
2

2 2

2
2

n

i=1

i i

=

n

i=2

i i G +
1 1

1
2

2 2

2
2

n

i=2

i i

+
1

2
2
1 ( 1 1)

2 ( 1 2)
2 + 2( 1 1)

1 1

1
2

2 2

2
2

n

i=2

i i as 1( G) = 0

2( G)

n

i=2

i i

2

+
1

2
2
1

n

i=1

1i 1i

2 n

i=1

1i 2i

2

+ 2
1 1

2
1 1 2 2

n

i=2

i i

Recalling that the matrix 1 1 2 2 is as follows:

1 1 2 2 = 2

0 0 1
...

...
...

0 0 1

1 1 0
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We set := 1( 1 1 2 2) = 2 1 1 1 1
1

=1 1 and

by using the fact that has an orthonormal basis of eigenvectors, we get

G 2( G)

n

i=2

2
i +

2
1

2

n

i=1

1i 1i

n

i=1

1i 2i

n

i=1

1i 1i +

n

i=1

1i 2i

+
1
2 1n 1 1n n 1

n 1

i=1

i 1i

n

i=2

i i

2( G) 1 2
1 +

2
1

2

n

i=1

1i( 1i 2i)

n

i=1

1i( 1i + 2i)

+
1

n

i=2

i i

2( G) 1 2
1 +

2
1

2
1n 2

n 1

i=1

2
i

n 1

i=1

1i(2 i)

+
1

n

i=2

i i

2( G) 1 2
1 +2 2

1 1n

n 1

i=1

1i i
1

n

i=2

i i by Cauchy-Schwarz

Recalling that 1 is the eigenvector of corresponding to eigenvalue 0 as

mentioned in Section 2.2.1 we get 1 =
1
2

1
... with =1 = 2 .

Consequently,

2( ) 1 2
1 + 2 2

1 2

1

=1

1
1 2

1 by Cauchy-Schwarz

2( ) 1 2
1 +

2
1

1

=1

1
1 2

1

2( ) 1 2
1 + 2

1
1

1 2
1

Now, we need an upper bound on :

2 2 1 1 1 1

1

=1

1

2
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4 2 ( 1 1)
2 + + ( 1 1)

2 +
1

=1

1

2

4 2

2

1

=1

+
1

=1
2

2

4 2

2
2 +

1

2

1

=1

2

4 2

2
1 + 2

This implies that

2( ) 1 2
1 + 2

1 2 1
2

(1 + 2) 1 2
1 (4.1)

To shorten notation, we introduce , , and function as follows: =

2( ) , = 2 n
2 (1 + 2), = 2 + 2 n and ( 1) = 1

2
1 + n 2

1 1 1 2
1 Then, the derivative of the function is given by

( 1)= 2 +2 1 1 2
1

2
1

1 2
1

= 1
1 2 2

1

1 2
1

Therefore, ( 1) = 0 implies:

2 2
1 =

2 (1 2 2
1)

2

1 2
1

= 2 2
1

2 4
1 =

2 + 4 2 4
1 4 2 2

1 (4.2)

Re-noting = 2
1, Eq. (4.2) can be written as a second order equation:

(4 2 + 2) 2 (4 2 + 2) + 2 = 0 Then,

=
(4 2 + 2) (4 2 + 2) 1 4 2

4 2+ 2

2(4 2 + 2)
=

1

2

1

2
1

4 2

4 2 + 2
[0; 1]

(4.3)
Moreover, as (0) = 0 and ( )

1
+ , the minimum of the above

function is reached for either:

1

2
+

1

2
1

4 2

4 2 + 2
or

1

2

1

2
1

4 2

4 2 + 2
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Therefore, according to Eq. (4.1), we get

min
1

2
+
1

2
1

4 2

4 2 + 2

1

2

1

2
1

4 2

4 2 + 2

This result has been obtained without loss of generality for vertex, so that
we can conclude for any vertex .

Using previous result, we can make the polynomial bounds on the mixing
time more precise in the following theorem.

Theorem 3. Let : 2[ ] + where is the matrix defined by Eq. (3.1).
For any 0 the lazy Markov chain defined in Algorithm 1 generates an
-approximate sample of in time

2 2 log
2

1
k

where is the bound provided by lemma 2.

Proof. The proof is based on the main theorem of Anari et al. (2016) by
considering the matrix defined by Eq. (3.1) and noting that if 1,
then the determinant defining can be seen as a principal submatrix of a
matrix of size 1 enabling us to use the bound of lemma 2. By applying
Lemma 1, the eigenvalues of are as follows:

0 ( ) ( ) 1 + ( ) (4.4)

By using Eq. (4.4), lower and upper bounds of the determinant of can
be obtained as:

det X = det X 1( G) k( G) 1( G)
k

(4.5)

det X = det X n 1 k+1( G) n 1 k+k( G) n 1( G)
k

(4.6)

Recalling that the eigenvalues of satisfy:

0 = 1( ) ( ) 2

then by deleting its th row and th column and by applying Lemma 1, the
eigenvalues of stand as follows:

1( ) 2( ) 1( ) ( ) 2 (4.7)
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Thus, Eq. (4.7) yields:

1

2

1

( )

1

1( )
= 1( )

1

2( )

1

1( )
= 1( )

Hence, for any set of cardinality and by using Eq. (4.5), we have

det( ) 1( )
1

2

Indeed, by using Eq. (4.6) we can bound the determinant of as follows:

det 1( ) = 1
1( G)

1

Consequently,

k
L( ) =

det( X)

X =k det( X )

1
2

k

1
λ∗

k

( )k !
k2k 2

k
using Stirling inequality

Now, by using Theorem 2 we can directly upper bound the mixing time in
total variation distance as follows:

( )
1

k
L

log
1

2 log
2 1

2 2 log
2

1
k

This proves the result.

5 Discussion and Conclusion

The bound provided by Lemma 2, as mentionned in Theorem 3 is only
useful if 0. This is unfortunately not always the case but we can report
here below in Table 1 some real graphs where this happens. These three
datasets, hens, eies relations and bktecc all stem from the R networkdata
package.

Table 1: Application to three small graphs
Hens eies relations bktecc

Number of vertices 32 32 34
Number of edges 496 435 561

0.023 0.0.07 0.017
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We have tested for dozens of other graphs where the lower bound ap-
peared useless being negative, some explanation for it was that many times
the smallest vertex degree was quite small as well as the graph size. That is
why we have also applied the bound to Erdös-Renyi graphs where the bound
appears much more useful as can be seen in Table 2. Then it also seems that
the bigger the graph, the easier it is to have a positive bound.

To conclude, this paper makes the bound of Anari et al. (2016) more
precise in the particular case where we sample -DPP on graphs using as
kernel the Moore-Penrose pseudo-inverse of the normalized Laplacian. The
proof involving some linear algebra observations is simply an application of
the main theorem of Anari et al. (2016) in a practical case. In the future we
would like to provide lower bounds of a more general use for graph sampling
looking at for example what happens when more than one vertex is removed
from the whole graph.
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