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MCFsyn: A Multi-party Set Reconciliation Protocol
with the Marked Cuckoo Filter

Lailong Luo, Deke Guo, Yawei Zhao, Ori Rottenstreich, Richard T.B Ma, and Xueshan Luo

Abstract—Multi-party set reconciliation is a key component in
distributed and networking systems. It naturally contains two
dimensions, i.e., set representation and reconciliation protocol.
However, existing sketch data structures are insufficient to satisfy
the new needs brought by the multi-party scenario simultane-
ously, including space-efficiency, mergeability, and completeness.
The current reconciliation protocols, on the other hand, fail to
achieve the global optimization of communication cost. To this
end, in this paper, we propose the marked cuckoo filter (MCF),
a data structure for representing set members. Grounded on
MCF, we implement the MCFsyn protocol to reconcile multiple
sets. MCFsyn aggregates and distributes sets information repre-
sented by MCFs along with an underlying minimum spanning
tree among the participants. The participants then identify the
different elements by traversing the overall MCF which contains
the information of all elements in the union set. For the identified
missing elements, MCFsyn helps the participants to choose the
optimal senders to fetch with the minimum communication cost.
Comprehensive evaluations indicate that MCFsyn significantly
outperforms existing alternatives in terms of both reconciliation
accuracy and communication cost.

Index Terms—Set reconciliation, minimum spanning tree,
marked cuckoo filter, accuracy, communication cost

I. INTRODUCTION

AS users migrate their computation and data to the cloud,
cloud-based services such as Dropbox, Google Drive,

and OneDrive have emerged to enable users to access data
from various devices and allow team collaborations over the
same data. Since multiple copies of the data exist in users’
devices, cloud servers, and edge servers, as users update them
possibly from different devices simultaneously, these multiple
copies need to be periodically reconciled or synchronized
for their consistency and correctness. This so-called multi-
party set reconciliation problem also occurs in wireless sensor
networks [1], software-defined networks [2], content delivery
networks [3], blockchain transaction pools [4] and beyond.

The multi-party set reconciliation problem can be naturally
decomposed and tackled from two dimensions: 1) set rep-
resentation — how the set elements are represented; and 2)
reconciliation protocol — how the participants interact with
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each other to identify and thereafter transfer the different
elements. Existing set reconciliation methods mainly rely on
linear sketch data structures (e.g., hash tree, Bloom filter
(BF) [5] [6], Invertible Bloom filter [7], Invertible Bloom
lookup table (IBLT) [8] [9], Invertible Counting Bloom filter
(ICBF) [10], etc) to represent set elements. In particular, if
set elements can be represented as integers, the characteristic
polynomial can also work as a sketch of the corresponding set
[11] [12]. The reconciliation protocol is thereafter built on top
of these set sketches. Usually, these sketches are exchanged
among reconciliation participants. With the sketches from
others, a local participant can identify (with high accuracy)
the particular elements which have to be transferred for
reconciliation.

However, existing sketch data structures are insufficient
to satisfy the new needs brought by the multi-party set
reconciliation scenario. Specifically, a sketch data structure
in the multi-party context should be: 1) space-efficient, the
used space should be much less than the original data size;
2) mergeable, multiple such data structures can be merged
as one without loss of information; and 3) complete, both the
content information (such as a fingerprint representing element
identity) and the affiliation information (the sets an element
belongs to) are correctly represented. The space-efficiency and
mergeability features guarantee the low communication cost of
exchanging the sketches among the reconciliation participants.
The completeness property further ensures reconciliation ac-
curacy. On the contrary, existing sketch data structures fail to
achieve them simultaneously. Bloom filter and its variants are
space-efficient, but most of them are often not mergeable. The
IBLT is both space-efficient and mergeable, yet fails to achieve
the completeness property.

Moreover, existing reconciliation protocols do not optimize
the communication cost with the joint consideration of the
positions of participants in the network and the data distribu-
tion among the participants. Accordingly, they usually result
in redundant sketch exchange and data transfer. Currently,
most cloud storage services implement the backup strategy to
reconcile sets. They usually maintain the cloud server as the
central party to gather all the elements from the participants.
Participants upload their modified data or download their
missing data from the central party. Unfortunately, the overall
cost of this strategy highly depends on the physical locations
of participants and the distance between them. It may waste
network bandwidth since a participant can only get its missing
elements from the central party, even though its neighbor
may also hold that element. Other possible protocols, such
as exchanging the sketches and different elements through the
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all-to-all transmission or gossip protocol, occupy the network
bandwidth in an even more aggressive manner.

For the above reasons, in this paper, we first propose a new
variant of cuckoo filter [13], named the marked cuckoo filter
(MCF), to represent the sets in each reconciliation participant.
The MCF attaches an additional field in each slot to describe
which set(s) the stored fingerprint belongs to (earlier to the
reconciliation). This field is called the mark field. For example,
given three sets S1, S2 and S3, it has three bits in each MCF
slot (in addition to the fingerprint) to indicate the affiliation of
the stored element. The ith bit will be set to 1 if Si contains
that element. MCF naturally inherits the functionalities from
the standard cuckoo filter, including element insertion, query,
and deletion. Additionally, MCF enables filter-level operations,
such as aggregation and subtraction, so that the MCFs from
different sets can be aggregated together or subtracted pair-
wisely. Such a design allows MCF to be space-efficient,
mergeable, and complete.

Based on MCF, we propose a novel multi-party set recon-
ciliation protocol named MCFsyn. MCFsyn has the following
five main steps : (i) each participant represents its set elements
as an MCF vector; (ii) MCFsyn aggregates the MCF sketches
from all sets as an overall MCF in the central relay participant;
(iii) the central relay participant distributes the overall MCF
to all other participants; (iv) the participants determine the
missing elements by traversing the overall MCF; and (v)
the participants try to pull these missing elements with the
least transmission cost. Each of the above steps needs a
careful design with the joint consideration of reconciliation
delay, communication cost, and network topology. The main
contribution of this paper can be summarized as follows:

• We propose the MCF data structure to represent set
elements. Besides the fingerprint field, MCF uses an
additional mark field in each slot to record the affiliation
of the stored element. The space-efficiency, mergeability,
and completeness properties make MCF an elegant sketch
in the multi-party set reconciliation scenarios.

• We design the MCFsyn protocol to reconcile sets of the
multiple participants. MCFsyn relies on an underlying
minimum spanning tree of the participants to aggregate
and distribute the MCFs. Then a participant Pi tries to pull
any missing element x with the minimum communication
cost from a preferred participant which hosts x.

• Comprehensive evaluations are conducted to quantify the
performance of MCFsyn. Specifically, in our evaluations,
MCFsyn generates 20x and 70x times fewer errors on
average than the methods enabled by BF and IBLT
with the same bits per element, respectively. Moreover,
MCFsyn causes 21x and 7.9x times less communication
cost on average than transferring BF with the all-to-all
scheme and exchanging IBLT with the gossip protocol,
respectively.

The rest of this paper is organized as follows. Section
II introduces the background and related work. Section III
presents a novel Cuckoo filter variant named marked Cuckoo
filter. Section IV details the design philosophy of our MCF-
syn protocol. Section V presents the theoretical performance

analysis for MCFsyn. Section VI reports the evaluation results
and at last Section VIII concludes the whole paper.

II. BACKGROUND AND RELATED WORK

A. Set Reconciliation

The input to the multi-party set reconciliation are n hosts
(or parties), each of which has a set Si⊆U (where U is the
universal from which elements are taken). The target is to
identify and thereafter exchange the different elements among
these sets, so that after reconciling S′1=S′2= · · ·=S′n=S=∪i Si.
One previous approach for two-party set reconciliation uses
characteristic polynomials [11] [12] coupled with coding the-
ories such as Reed-Solomon codes, BHC codes, etc. This kind
of methods treat each element as an integer value. For set S1,
its characteristic polynomial is calculated as:

χS1(Z) = ∏
xi∈S1

(Z− xi), (1)

The set S2 also derives out its χS2(Z). Thereafter, in the
following rational function

χS1(Z)
χS2(Z)

, (2)

the common elements are eliminated. The sum of the de-
grees of the numerator and denominator is at most d, where
d=|S1\S2|+|S2\S1|. Interpolation is then executed to deter-
mine the integer values of different elements demonstrated
in the above rational function. However, this division and
interpolation method is somewhat time-consuming (O(d3)
time-complexity) and it is computation-intensive to recover
all elements using Gaussian elimination.

Recent set reconciliation methods rely on randomized data
structures to provide a sketch of sets. After exchanging and
comparing these sketches, the different elements can be de-
termined and transferred reasonably. These data structures
include Merkle tree [14] [15], Counting Bloom filter (CBF)
[5], Invertible Bloom filter (IBF) [7], IBLT [8] [9], Invertiable
Counting Bloom filter (ICBF) [10], etc. The nodes in the
Merkle trees are compared to prune same sub-trees, thereby
deriving out the different elements between two sets. CBF,
IBF, IBLT, ICBF, on the contrary, subtract the filters to
eliminate the existence information of common elements. The
remained different elements are decoded from the subtraction
results through either query or listing mechanisms.

As for multi-party set reconciliation, it is usually decom-
posed as multiple rounds of two-party set reconciliation with
the above methods. We note that most-recently, the IBLT and
characteristic polynomial are generalized from two-party set
reconciliation to multi-party scenarios [16] [17]. Specifically,
the binary fields in IBLT are extended to multi-ary to aggregate
element information [16]. The XOR operations in the IBLT
are also redefined in the multi-ary system correspondingly.
The possibility of using characteristic polynomials to reconcile
multiple sets is investigated by combining with the gossip
protocol in general networks [17].

Another related model is the multi-party membership query,
which answers the question which set(s) an element belongs
to. The existing solutions for this query are mainly based on
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Bloom filter variants [18] [19] [20] [21] [22]. The Combi-
natorial Bloom filter indicates the affiliation information of
any element with different groups of hash functions [18]. The
OMASS proposes to isolate the values generated from hash
functions in a sub-block for diverse sets with differentiated
hash functions [19]. In Noisy Bloom filter, an element x is
mapped to k bits in the bit vector. The bits after these k bits
are employed to explicitly record the affiliation information of
x [20]. The Difference Bloom filter makes the representation of
elements exclusive by writing a different number of 1s and 0s
in the same filter [21]. Particularly, the coloring embedder first
maps elements to a high dimensional space to almost eliminate
hashing collisions and then uses a dimensional reduction
representation to save memory [22]. However, these methods
assume that an arbitrary element x exclusively belongs to a
single set, making these proposals impractical in our cases.

B. Cuckoo Filter and its Variants

Cuckoo filter (CF) [13] is a light-weight probabilistic data
structure to support constant-time membership query. An
element x is associated with a f -bit fingerprint ηx which is
derived out by a hash function h0. Unlike Bloom filter, CF
stores the fingerprint of each element directly. Structurally,
a CF consists of m buckets, each of which is capable of
residing b fingerprints. An CF offers 2 candidate buckets to
each element, and the fingerprint can be stored in either of
the candidates. If both candidates are occupied, CF randomly
kicks out an existing fingerprint in one of the candidates and
reinserts the victim in its alternative candidate bucket. This re-
allocation ends successfully when a bucket has available space
or fails when the number of such re-allocations reaches a given
threshold max. During reallocation, the alternative bucket can
be derived out by executing an XOR operation towards the
current bucket and the fingerprint of the victim. Specifically,
the two candidate buckets are derived as h1(x)=hash(x) and
pair-wisely h2(x)=h1(x)⊕hash(ηx).

Most recently, several CF variants have been proposed to
further improve its performance [23] [24] [25] [26]. The
Simplified Cuckoo filter [23] (SCF) calculates the indices of
buckets for an element x as h1(x) and h1(x)⊕ηx. In this way,
SCF provides a theoretical analysis of its performance with
the graph theory. The Adaptive cuckoo filter [24] tries to
remove false positive errors from the CF vector by resetting
the collided fingerprints with optional hash functions. Dynamic
Cuckoo filter [25] (DCF) adaptively maintains multiple homo-
geneous CFs with same parameter setting to enable the filter-
level capacity elasticity. Consistent Cuckoo filter (CCF) further
realizes the bucket-level capacity elasticity by introducing a
consistent hash ring into each CF [26]. The buckets in each
CF are mapped onto the consistent hash ring so that the
buckets can be added or removed at will. Thereafter, the
element fingerprints are also mapped onto the consistent hash
ring to determine their candidate buckets on the ring. The
upper bounds of false positive rate in both DCF and CCF
are 1−∏

s
i=1(1−ξi), where s is the number CFs in DCF and

CCF and ξi is the false positive rate of the ith CF. There are
also some lock-free designs for cuckoo hashing [27]. Besides,
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Fig. 1. The existing work for set reconciliation. MCFsyn differs from others
by implementing mergeable sketches and optimizing the communication cost
with a customized reconciliation protocol.
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Fig. 2. A toy example of Marked Cuckoo Filter (MCF) which represents
three sets, including S1={x,z}, S2={y,w}, and S3={w}. The mark field has
three bits to explicitly indicate whether the represented element is a member
of S1, S2, and S3 (from right to left), respectively. For instance, the element
x that belongs only to S1 is associated with the mark 001 and w that belongs
to both S2,S3 with 110.

Morton filter speeds up the insertion, query and deletion
operations by organizing the buckets as compressed blocks and
pruning unnecessary memory accesses [28]. Vacuum filter [29]
achieves a significant improvement of throughput by confining
the two candidate buckets for any element in an alternate
range which can be fetched by exactly one memory access.

Generally, the above CF variants are space-efficient and
mergeable, however, fail to achieve the completeness property
(they cannot represent the affiliation information of elements).
Therefore, we investigate the MCF to represent multi-party
set members. As shown in Fig. 1, our MCFsyn dedicates
to solve the multi-party reconciliation problem in distributed
systems, it implements the mergeable sketches to aggregate
and distribute set information and tries to minimize the overall
communication cost.

III. THE MARKED CUCKOO FILTER

In this section, we present the MCF design, including its
data structure and operations to represent multi-party sets.

A. The MCF Data Structure

Besides the fingerprint information of elements, multi-set
representation also requires the affiliates of the stored ele-
ments. Therefore, MCF attaches additional bits in each slot
to integrate element affiliation information.
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As depicted in Fig. 2, MCF consists of m buckets, each
of which has b slots to accommodate at most b element
fingerprints. Each slot has two fields, including the fingerprint
field to represent element fingerprint information and the mark
field showing the affiliation information of the element. The
fingerprint field has f bits to store the element fingerprint;
while the mark field occupies n bits (correspond to the number
of participants n) to explicitly label the affiliation(s) of the
stored fingerprint. The ith bit in the mark field will be set to
1 if the represented element in this slot is a member of the
set Si. Just as CF, MCF offers two candidate buckets for each
element to represent with hash functions h1(x)=hash(x)%m
and h2(x)=h1(x)⊕(hash(ηx)%m), respectively. The fingerprint
ηx can be stored in either of its candidate buckets. Upon
insertion, if both candidate buckets are fully occupied, MCF
randomly kicks out an existing fingerprint from one of the
candidate buckets to store ηx. The victim will be reallocated
to its alternative candidate bucket. The re-allocation ends
successfully when a bucket has available space or fails when
the number of re-allocations reaches a given threshold max.

The MCF naturally supports multi-party set representation
by jointly considering the fingerprint and mark field in slots.
Therefore, it acts as the basis of our multi-party set reconcil-
iation protocol.

B. MCF Operations
With the above design, MCF provides element-oriented

operations to represent sets, including element insertion, query,
and deletion. Besides, some inter-filter operations such as
aggregation and subtraction are also enabled.

Element insertion. To insert an arbitrary element x in set
Si, we first generate its f -bit fingerprint with the hash function
h0(x). The candidate buckets for x are then calculated by the
functions h1(x) and h2(x). If either of its candidate buckets
has an empty slot to accommodate x, the fingerprint ηx will
be stored there and the ith bit of the mark field will be set to 1.
Otherwise, MCF has to kick out a stored fingerprint randomly
and clear its mark field from the two candidate buckets to
represent x. The victim will be re-allocated to its alternative
candidate bucket. The re-allocation will end until there is no
further victim or the number of re-allocations reaches the given
upper bound max. Notice that when a victim is kicked out, the
1s in mark field of that slot will be reset as 0s. Pair-wisely,
when the victim is reinserted, the corresponding mark field
bit(s) in the target slot will be set to 1s. This guarantees the
correctness of the recorded affiliation information.

Element query. To query an arbitrary element x with
fingerprint ηx, MCF just checks the two candidate buckets. If
the fingerprint can be found in either of its candidate buckets,
MCF returns the mark field to explicitly demonstrate the set(s)
x belongs to. Otherwise, MCF returns False to indicate that x
is not a member of any set. The time-complexity of query is
constant since only two candidate buckets are checked. Similar
to the standard cuckoo filter, the false positive rate of a query
(wrongly indicating a membership is some set the element
does not belong to) is bounded as ξ≤1−(1− 1

2 f )
2b, where f

and b are the number of bits in each fingerprint and the number
of slots in each bucket, respectively.

Algorithm 1: MCF Aggregation
Input: Two MCFs to aggregate: MCFi and MCFj
Output: The aggregation result MCFo

1 for k=0 to m−1 do
2 for r=0 to b−1 do
3 if MCFj[k][r].fingerprint6= /0 then
4 Locate the MCFj[k][r].fingerprint in MCFi,

denoted as slot;
5 if slot is not Null then
6 slot.mark = slot.mark OR MCFj[k][r].mark;

7 else
8 Insert MCFj[k][r].fingerprint into MCFi;

9 Let MCFo = MCFi;
10 return MCFo

Algorithm 2: MCF Subtraction
Input: The two MCFs to subtract MCFi and MCFj
Output: The MCFi and MCFj after subtracting

1 for k=0 to m−1 do
2 for r=0 to b−1 do
3 if MCFj[k][r].fingerprint6= /0 then
4 Locate the MCFj[k][r].fingerprint in MCFi,

denoted as slot;
5 if slot is not Null then
6 Reset the common 1s in slot.mark and

MCFj[k][r].mark to 0s;
7 Empty slot and MCFj[k][r] when no 1s left

in their mark fields;

8 return MCFi and MCFj;

Element deletion. Deletion is required for dynamic set
representation. MCF supports both the deletion of element
x from a specific set Si and the elimination of element x
from all its affiliates with only one execution. For example,
to delete x from set Si, MCF first locates the fingerprint ηx in
the candidate buckets. If ηx cannot be found in its candidate
buckets or the ith bit in the mark field is 0, MCF returns False
to declare that x is not a member of set Si and the deletion
has failed. Otherwise, MCF just resets the ith bit in the mark
field to 0 to indicate that x is not a member of Si anymore.
After that, if there are no 1s in that mark field, the fingerprint
field will also be cleared. To eliminate x from all the sets, MCF
simply tries to remove ηx and reset all the 1s in the mark field.
If succeed, MCF returns True; otherwise, it returns False. The
time-complexity of deleting an element is also constant.

MCF aggregation. Aggregation means to merge the fin-
gerprint information and affiliation information from multiple
homogeneous MCFs into one single MCF. This operation is
important to reduce communication overhead during reconcil-
iation. As shown in Algorithm 1, given MCFi and MCFj, the
basic insight is to add the affiliation information of common
fingerprints into MCFi and insert sole fingerprint of MCFj into
MCFi. Specifically, the algorithm needs to traverse the whole
MCFj vector. For any MCFj[k][r].fingerprint, we try to locate
it in MCFi. For MCFi and MCFj with the same parameter
setting and hash functions, this is straightforward since they
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offer same candidate buckets for a common fingerprint. If this
fingerprint can be found in MCFi, the slot in MCFi will OR
itself with the mark field of the corresponding slot in MCFj to
aggregate the affiliation information (line 4 to 6). Otherwise,
MCFj[k][r].fingerprint is inserted into MCFi. Eventually, the
updated MCFi is returned as the aggregation result. The time-
complexity of aggregation is O(mb).

MCF subtraction. Given two homogeneous MCFs, e.g.,
MCFi and MCFj, subtraction tries to eliminate common
fingerprints in them. Only the fingerprints appear in one
single set or common fingerprints with diverse affiliations
will be remained. To this end, as shown in Algorithm 2,
we also have to traverse the whole MCFj vector. For any
MCFj[k][r].fingerprint, Algorithm 2 locates this fingerprint in
MCFi first. If this fingerprint can be found in slot of MCFi,
the common bits in the mark field of slot and MCFj[k][r]
will be reset to 0s. In this way, the common affiliations of
this fingerprint are removed. After such resetting, if there
is no 1 in slot.mark or MCFj[k][r].mark, Algorithm 2 will
empty the fingerprint fields in these two slots. On the other
hand, if this fingerprint cannot be found in MCFi, it will be
remained in MCFj. The time-complexity of subtraction is also
O(mb). Such subtraction functionality is useful for two-party
set reconciliation and difference estimation.

IV. THE MCFSYN RECONCILIATION PROTOCOL

A. The MCFsyn Framework

Multi-party set reconciliation means to deduce the different
elements between sets and exchange these different elements
such that every participant has the same set elements as the
union of these sets. We provide a general framework for multi-
party set reconciliation with the following five steps.
• Step 1: Representation. Every participant represents its

local elements with the employed data structure (MCF in
our proposal) to provide a sketch of the local set.

• Step 2:Aggregation. The sketches from all the partic-
ipants are sent to a logical central relay wherein they
are aggregated together to produce a sketch of the global
union, S=∪i Si. For privacy preservation, the data should
only be stored and transferred within the group. There-
fore, the logical central relay must also be a reconciliation
participant.

• Step 3: Distribution. The logical central relay distributes
the aggregation results to all the participants. By doing
so, every participant acknowledges the union set.

• Step 4: Extraction. Each participant traverses the global
sketch to determine its missing elements (elements which
do not belong to the local set), as well as exclusive
elements (elements that belong only to the local set).

• Step 5: Transmission. The different elements in ∪iSi−
∩iSi are transmitted among the participants with selected
senders to accomplish the reconciliation task.

The above framework is general while we specify it with
our MCF. The reason is that the MCF data structure naturally
provides the following features: 1) space-efficiency, the caused
communication overhead in the aggregation and distribution
steps is bounded and acceptable; 2) mergeability, a participant
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Fig. 3. Left: The reconciliation group graph. Right: The aggregation (dotted
blue arrows) and distribution (dotted orange arrows) of sketches within the
reconciliation group.

can aggregate the received MCFs with its local MCF as a
single MCF before sending them out; 3) completeness, the
mark field in MCF is responsible to record the affiliation
of the stored elements. Additionally, MCFsyn can implement
differentiated transfer strategies for the missing elements and
exclusive elements to save the communication cost in the
transmission step.

B. The Design Details of MCFsyn

With the above framework, there are still two challenges
remained. First, the route of aggregation and distribution
have significant impacts on the total communication overhead.
Gossiping or broadcasting these sketches indeed works, how-
ever, leads to vast delay and communication cost. Therefore,
reasonable routes are needed with the joint consideration of
the underlying network. Second, the missing elements may
be hold by multiple participants. It is challenging to select a
provider so that the communication overhead is minimized.
To settle these challenges, we first present the abstraction of
the reconciliation group before elaborating our design details.

We consider n participants denoted as P1, . . .,Pn, each of
which hosts a set of elements. As depicted in Fig. 3, we
abstract the reconciliation group as a fully-connected graph.
Each edge in the graph couples with a weight which measures
the hops in the physical network between this pair of partici-
pants. For instance, the weight wi, j denotes the hops between
participant Pi and Pj. In the aggregation step, all sketches are
sent to the logical central relay. With the above abstraction,
the design details are stated as follows.

Representation. Each participant represents its local set
with an MCF. These MCFs are homogeneous with identical
parameter settings, including filter length m, the hash functions
for fingerprints and candidate buckets, and the number of slots
in each bucket b. The homogeneity simplifies the subsequential
aggregation and extraction steps significantly. These MCFs can
also be heterogeneous with a slight alteration, as elaborated
later in Section IV-C.

Aggregation. After formulating the reconciliation group
graph, we derive out a minimum spanning tree (MST) of
the graph as the route for the sketch aggregation. A single
participant is regarded as the logic central relay to gather and
distribute the MCFs from others. Note that the selection of the
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Algorithm 3: MCFsyn Extraction at participant Pi

Input: The overall MCF MCFo
Output: The missing elements and exclusive elements of Pi

1 Let DMi= /0 denote the set of Pi’s missing elements;
2 Let DEi= /0 denote the set of Pi’s exclusive elements;
3 for k=0 to m−1 do
4 for r=0 to b−1 do
5 if MCFo[k][r].fingerprint6= /0 then
6 if MCFo[k][r].mark[i]==0 then
7 Add MCFo[k][r] into DMi ;

8 else if Only MCFo[k][r].slot[i]==1 then
9 Add MCFo[k][r].fingerprint into DEi ;

10 return DMi and DEi ;

logic central relay has no impact on the communication cost of
MCFsyn. We prefer to selecting the participant with the largest
degree in the MST as the logic central relay. Such design
enables the parallel transmission of sketches from the leaf
participants to the central relay. In the example shown in Fig.
3, participant P3 is selected as the central relay. Consequently,
the two leaf participants P5 and P2 can send their MCFs
along with the MST simultaneously. An internal participant
aggregates the MCFs from its children (having longer distance
to the central relay) with its local MCF and thereafter sends
the aggregation results to its father participant. In the example
depicted in Fig. 3, after receiving MCF5 from participant
P5, participant P1 aggregates its MCF1 with MCF5 and then
sends the result to participant P3. This aggregating-while-
transmitting strategy reduces communication cost significantly.

Distribution. The central relay executes the aggregation
operation provided by MCF, so that all the MCFs from its
children are merged as an overall MCF, denoted as MCFo.
MCFo represents all the elements in the union set S=∪i Si
and their affiliation information. As shown in Fig. 3, MCFsyn
distributes MCFo from the central relay to others along with
the generated MST.

Extraction. After receiving MCFo, each participant tries to
determine both the missing elements and exclusive elements
by traversing MCFo. As elaborated in Algorithm 3, participant
Pi processes the received MCFo. For any stored fingerprint in
a slot, if the ith bit in the corresponding mark field is 0, it
means this fingerprint is not a member of Si. Therefore, this
fingerprint, together with its affiliation information, is added
into DMi (line 6 to 7). On the other hand, if only the ith bit in
the corresponding mark field is 1, this element belongs to Si
solely and is added into DEi (line 8 to 9). The time-complexity
of the extraction is O(mb) since all the slots will be checked.

Transmission. Lastly, the participants exchange their differ-
ent elements to finish the reconciliation task. For a participant
Pi, its exclusive elements in DEi will be pushed to other partic-
ipants by either broadcasting directly to save time or spreading
along with the MST to achieve optimal communication cost.
For a missing element in DMi , if its corresponding mark field
only has one non-zero bit then this element is an exclusive
element of another participant. Therefore participant Pi will
do nothing but waiting for receiving that element content from

that element holder. By contrast, if there are multiple 1s in that
mark field, participant Pi selects the participant with which
it establishes a link with the lowest weight as its provider.
This strategy is implemented as a preference list based on the
reconciliation group graph. In this list, a neighbour with a
lower-weight link gets a higher preference. Consequently, the
challenge of selecting the optimal element sender is resolved.

C. The Generalization of MCFsyn

We consider the generalization of MCFsyn by further in-
vestigating the using of heterogeneous MCFs and the scenario
with dynamic reconciliation participants.

1) Heterogeneous MCFs: The above MCFsyn protocol im-
plements homogeneous MCFs at each participants. However,
in reality, a participant may hold much fewer elements than
others due to long-term offline reasons or store much more
elements than others because of a sudden content update. In
this case, representing elements with homogeneous MCFs may
not be economic. Consequently, we consider the using of het-
erogeneous MCFs in the MCFsyn reconciliation framework.
In this manner, each participant customizes its MCF according
to its local set cardinality.

Unlike homogeneous MCFs, the candidate buckets in het-
erogeneous MCFs with unequal lengths are not the same.
This feature disables the proposed aggregation algorithm.
Thus, we redesign the data structure of MCF so that the
candidate buckets are derived out by the fingerprint. Given an
element x with fingerprint ηx, the two candidate buckets are
calculated as: h1(x)=hash(ηx)%m and h2(x)=(h1(x)⊕ηx)%m.
In this manner, when inserting fingerprints from two MCFs
into the aggregated MCF, the candidate buckets can be simply
determined by the fingerprints themselves. The impact of this
alteration is theoretically detailed in [23]. For a participant
Pi, the capacity of its MCF is determined as mi ·bi ≈ α · |Si|,
where mi, bi are the number and capacity of buckets in MCFi
respectively, and α ≥ 1 is a constant coefficient.

Given MCFi and MCFj, the aggregation algorithm is also
altered correspondingly. A new MCF MCFo is initialized
with capacity mo × bo=α × |Si ∪ S j|. The value of |Si ∪ S j|
can be evaluated by counting the total number of distinct
fingerprints in MCFi and MCFj. Thereafter, the fingerprints in
both MCFi and MCFj, as well as the associated mark fields,
are inserted into MCFo one by one. The time-complexity is
thereby increased from O(mb) (for homogeneous MCFs) to
O(mibi+m jb j).

Another problem of using heterogeneous MCFs is that trans-
mitting MCFs with the MST may not be the optimal choice
anymore. The reason is that transmitting the most lengthy
MCF all along with the MST is not economic. To generate
the optimal transmission route, one has to traverse all the nn−2

possible spanning trees [30] in the reconciliation group graph.
This is certainly computation-intensive. Therefore, there is a
trade-off between the communication cost and the computation
complexity here. A proper spanning tree can surely lower
the communication cost of MCFsyn, yet determining such
a tree will occupy computation resources. For a bandwidth-
scarce situation (such as wireless sensor networks), saving the
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bandwidth is the first priority; thus choosing the best spanning
tree is worthwhile. By contrast, when the network resource is
abundant, it may be not advisable to spend time to derive out
the optimal spanning tree.

2) Dynamic Reconciliation Participants: In the design of
the protocol we assumed the set of participants is fixed. In
reality, participants may join in or depart unpredictably. In
the reconciliation group graph, if a leaf participant of the
construct MST departures, there is no impact to the rest of
the MST. The corresponding bit in the mark field of MCF will
be removed or ignored. On the other hand, when a non-leaf
(internal) participant of the MST leaves, the MST is divided
into multiple connected components. In that case, MCFsyn
has to reconstruct a new MST. This can be achieved based
on the following cut property and corollaries.

Theorem 1: (Cut property of MST [31]) Let G(V,E) be
a graph, (X ,V−X) be a cut of G, and edge e be the only
minimum cost edge that crosses the cut (X ,V−X). Then every
minimum spanning tree contains the edge e.

Corollary 1: Let G(V,E) be a graph, T be an MST of G,
Ĝ(V̂ , Ê) (with V̂⊆V and Ê⊆E) be a connected subgraph of
G. T̂ is a subtree of T which covers all the participants in Ĝ.
Then T̂ is an MST of the graph Ĝ.

Proof: Consider the cut (Ĝ,G− Ĝ) and the MST T , then
according to Theorem 1, we have T=T̂ ∪T ∪ ê, where T and ê
are the subtree of T which covers all participants in the graph
G− Ĝ and the minimum edge across Ĝ and G− Ĝ. If T̂ is not
an MST of graph Ĝ, then it can be replaced by an MST of
a smaller weight in Ĝ to allow an MST of G with a weight
smaller than T , in contradiction. This proves the correctness
of Corollary 1.

Corollary 2: For a fully connected reconciliation group
graph G(V,E) and its MST T , when a participant Pi leaves
the group, T may be split as multiple subtrees. Connecting
these subtrees incrementally with the minimum edges without
creating cycles among them generates a new MST for the
group without Pi.

Corollary 2 is a natural result of Theorem 1 and Corollary
1. Therefore we omit its proof here. Based on this corollary,
MCFsyn reconstructs the disconnected MST by adding the
edges with the minimum weight between these disconnected
components. Certainly, when adding these edges, MCFsyn
must ensure that there is no cycle introduced into the MST.

When a new participant Pn+1 joins into the reconciliation
group and all weights associated with the introduced edges
are larger than the weights in the existing MST, MCFsyn
just adds the edge which connects Pn+1 with any existing
participants and has the minimum weight into the MST.
Otherwise, MCFsyn has to run some existing algorithms to
update the MST with the time-complexity of O(n4/3logn) [32].
Besides, the MCF data structure introduces one additional bit
into its mark field to explicitly demonstrate the members of
the set Sn+1.

V. PERFORMANCE ANALYSIS

A. Failures of Element Representation
The ability of a CF to represent a set without failures in

element insertions is probabilistic. In a CF with mi buckets

and bi slots in each bucket, there exists a threshold Hi, when
Hi ≥ |Si|

mi
, the |Si| elements can be represented by this CF

successfully with probability 1−o(1); otherwise, this CF fails
to represent all the |Si| elements with probability 1− o(1).
This threshold is detailed in previous work [26] [33] [34].
Furthermore, an upper bound of the probability that all the
|Si| elements are successfully represented by the CF with
parameters mi and bi is also presented in [26]. We denote this
upper bound as Φ(mi,bi, |Si|). The same bound applies also
to MCF since its additional field does not affect the element
representation. Pair-wisely, following constraints among the
CF parameters mi, bi, f , |Si| given in [23], a lower bound of the
probability that all |Si| elements are successfully represented
by the CF can be derived. We denote this lower bound which
is also affected by the fingerprint length f as Θ(mi,bi, |Si|, f ).
Then the probability that all participants represent their set
members with MCFs successfully is bounded as:

n

∏
i=1

Θ(mi,bi, |Si|, f )≤ pr ≤
n

∏
i=1

Φ(mi,bi, |Si|). (3)

With these theories, the capacity of our MCF can also
be designed such that all the elements in each participant
can be represented successfully with a probability close to
1. However, we cannot guarantee that every element is rep-
resented eventually. Therefore, we analyze the consequence
of such failures in our MCFsyn framework. A reconciliation
participant Pi, might have three kinds of elements: 1) common
elements Sc

i which exist in every participants; 2) exclusive
elements Se

i which are only held by Pi; and 3) partial elements
Sp

i which only appear in part of these participants (in at least
one other set).

For a common element, if the local MCF fails to represent it,
it will be regarded as a missing element during the extraction
step. As a result, a false positive error of reconciliation
(identifying a common element as a different one) will occur.
In the last step of reconciliation, Pi has to request this element
from the participant with the highest priority, introducing
unnecessary element transfer.

The failure of representing an exclusive element at Pi, on
the other hand, leads to a false negative error of reconciliation
(identifying a different element as a common one). As a
consequence, Pi will not push this exclusive element to others,
resulting in inaccurate reconciliation. As for a partial element,
missing its information also causes a false positive error of
reconciliation. The participant Pi will pull this element from a
non-optimal participant. Besides, for those participants which
assign Pi with the highest priority, they cannot fetch this partial
element with the minimum communication overhead.

B. Impact of Hash Collisions

In the framework of MCF, two independent sets of hash
functions are employed — one for fingerprint generation and
one for candidate buckets derivation. Hash collisions are not
avoidable. When diverse elements are assigned to the same
candidate buckets, this hash collision is resolvable because
each bucket has b slots. Therefore, we focus on hash collisions
in the generation of element fingerprints.
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If two elements (e.g., x and y) share the same fingerprint yet
have totally different candidate buckets, the aggregation and
distribution step will not be affected. However, a problem will
occur during the extraction process (detailed in Section IV)
because participants cannot distinguish them when they try to
fetch these two elements. To resolve this dilemma, participants
only pull x and y from the participants which don’t have x and
y simultaneously. On the other hand, if x and y share common
affiliates, they will be reconciled according to the standard
extraction and transmission steps.

When elements x and y share the same fingerprint and
some common candidate bucket(s), the aggregation step and
the thereafter extraction step have to handle this exception.
During aggregation, adding the affiliation information of x to
y will surely lead to inaccurate reconciliation, and vice versa.
MCFsyn mitigates this issue conservatively by broadcasting
x and y to all the participants and setting the corresponding
mark fields to 1s. Specifically, during aggregation, if Pi finds
this collision, the elements x and y will be pushed to others
from Pi or (and) the participants which hold x or y. After
that, in the overall MCF, the bits of the mark fields in the
corresponding slots are all set to 1 to explicitly declare that
these elements are already common elements. The later steps
can be executed as they are designed, without the worry of
conflicted elements.

Theorem 2: Consider a n-party set reconciliation using
MCFsyn with parameters m, b and f , given the boarder length
of MCF m̂ calculated with the threshold H, as long as we
choose m≥ (1+ ε)m̂ for some ε > 0, the MCFsyn reconciles
all the elements from S = ∪iSi correctly with probability:

p = O(1−o(1)) ·2−|S| f ·
|S|−1

∏
i=0

(2 f−i). (4)

Besides, the reconciliation takes 2(n−1) steps with 2(n−1)
total messages of size O(|∪i Si|) to identify the differences.

Proof: For a successful MCFsyn reconciliation, all the
elements should be correctly represented and there must have
no fingerprint collisions. According to the theory presented in
[26] [33] [34], when m≥(1+ε)m̂ for some ε>0, the MCF
represents all elements in S successfully with probability
O(1−o(1)). Given the number of bits in each fingerprint as
f , the probability of collision-free fingerprint generation is
2−|S| f ·∏|S|−1

i=0 (2 f−i). Consequently, Equ. 4 follows. Moreover,
MCFsyn aggregates and distributes the MCFs along with the
MST to and from the logic central relay. Each aggregation
and distribution operation carries an MCF. The size of that
MCF is decided by the number of elements in the union set.
Therefore, the whole reconciliation takes 2(n−1) steps with
2(n−1) total messages of size O(| ∪i Si|) to identify all the
different elements among participants.

C. The space overhead of MCFs

In this subsection, we quantify the space overhead of
representing the elements for reconciliation with MCFsyn.

Suppose a reconciliation group with n participants, and the
total number of elements in the union set S = ∪iSi is |S|, then

the bits per element (bpe) after the aggregation step can be
formulated as:

BPEMCF =
(n+ f )×b×m

|S|
, (5)

where f , b and m are the parameters of MCFs to represent the
union set S. With the given b and |S|, the value of m can be
derived out by the threshold introduced in previous work [26]
[33] [34]. In effect, MCF introduces a mark field with n bits
into each slot to label which participant(s) this element belongs
to. Each slot needs n+ f bits, and the total number of bits of
the whole filter is (n+ f )×b×m. This confirms Equ. 5. Note
that, if homogeneous MCFs are deployed, they share the same
capacity yet unequal |Si|. Therefore, the bpe of participant Pi

at the representation step is (n+ f )×b×m
|Si| . By contrast, when

heterogeneous MCFs are used as stated in Section IV-C,
then the bpe of participant Pi at the representation step is
(n+ f )×b×mi

|Si| .
An extended problem is how to determine the value of |S|

before reconciliation. It can be abstracted as a cardinality
estimation problem. There are a family of solutions [35],
such as LogLog [36], SuperLogLog [37], HyperLogLog [37],
HyperLogLog++ [38], MinCount [39], AKMV [40], etc. They
usually rely on the bit-mapping, hashing, sampling techniques
to derive out the cardinality of a given set. In our case,
undoubtedly, to implement these methods among multiple
reconciliation participants, multiple rounds of communications
are necessary.

D. Communication cost of MCFsyn

In this paper, we measure the communication cost over a
link as the product of the size of the carried message by the
link weight (described in the reconciliation graph). The total
communication cost is given by the summation over all links.

Theorem 3: Given the size of the sketch data structure,
when the different elements can only be sent from their
affiliates before reconciliation, MCFsyn achieves the minimum
communication cost of multi-party set reconciliation.

Proof: The communication cost of MCFsyn is caused
by exchanging the MCFs (the aggregation and distribution
steps) and transferring different elements (the transmission
step) among the participants. Let Ca, Cd , Ce, and Cm denote
the communication cost of sketch aggregation, sketch distribu-
tion, exclusive element transfer, and missing element transfer,
respectively. The overall communication cost of MCFsyn
(denoted as Co) can be calculated as:

Co = Ca +Cd +Ce +Cm. (6)

Assuming the employed sketch data structure is Bs bits, then
we have:

Ca = Bs · ∑
ei, j∈Ea

wi, j and Cd = Bs · ∑
ei, j∈Ed

wi, j, (7)

where Ea is the set of edges which get involved with the aggre-
gation step and Ed is the corresponding set for the distribution
step. Note that both the aggregation and distribution steps
need to cover all participants. Moreover, Ca/Bs and Cd/Bs
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Fig. 4. The multi-party reconciliation accuracy with diverse parameter settings.

are the sums of weights for all involved edges. Therefore
the minimal Ca/Bs and Cd/Bs naturally fit the definition of
a minimum spanning tree. Hence, the communication cost
Ca +Cd is minimized.

MCFsyn implements diverse transmission strategies for the
exclusive elements and missing elements to save bandwidth.
Specifically, when the exclusive elements are pushed to other
participants along with the MST tree, we have:

Ce = ∑
x∈DE

Bx · ∑
ei, j∈MST

wi, j, (8)

where x is an exclusive element and Bx is the number of bit of
the element x. Consequently, when distributing the exclusive
elements with the MST, MCFsyn minimizes the cost Ce. As for
Cm, note that in MCFsyn, for missing elements with multiple
holders, the local participant just fetches the content from its
nearest participants. This mechanism naturally minimizes the
cost Cm. Thus, the communication cost of transferring different
elements is also optimal in MCFsyn.

VI. EVALUATION

In this section, we compare MCFsyn with other methods for
multi-party set reconciliation, including the BF-based method
and the IBLT-based method. All the experiments are conducted
on a host with 8 GB RAM and 3.4 GHz CPU. Note that
the element content has merely impact on the reconciliation
performance, thereby we generate random strings with diverse
lengths as set elements. The metrics include the number
of false positives, the number of false negatives, and the
communication cost of reconciliation.

A. Reconciliation Accuracy

We quantify the false positives (FPs) and false negatives
(FNs) of reconciliation with different parameter settings. The
considered parameters include the number of elements in the
union set S, denoted as |S|, the number of different elements
|D| (appear in some but not all sets), the ratio between |DE |
(appear in only one of the sets) and |D| denoted as R and
the number of participants n. The default parameter setting
is |S|=28,000 with |D|=1,000, R=0.5 and, n=10. Given the
same bits per element for each data structure, we alter the
above parameters respectively and plot the results in Fig. 4.

We also observe that the BF-based method and our MCF-
based method incur no false positive errors; the IBLT-based

method, by contrast, leads to no false negative errors. In effect,
BF relies on the membership query operations to determine the
different elements among participants. MCFsyn traverses the
overall MCF to identify the different elements. Therefore they
never suffer from false negative errors, once the elements are
represented successfully. The IBLT, on the contrary, tries to list
the different elements from the subtracting result which only
contains the information of different elements. Consequently,
IBLT may fail to list these elements but will never identify a
common element as a different one.

We first set the total number of elements |S| between 4,000
to 44,000. As depicted in Fig. 4(a), BF-FN shows a significant
growth from 364 to 869. The reason is that larger |S| means
more membership queries, thus increasing the risk of false
negatives of set reconciliation. On the contrary, the IBLT-
based method leads to less false positives when |S| grows.
Intrinsically, more elements require more cells to represent
them. In the generated IBLT after subtracting, more cells
increase the probability of successful decoding. Obviously, our
MCFsyn has the least false negatives. These false negatives
are caused by the failures of representing elements. Certainly,
by lengthening the MCFs, we can generate an even better
reconciliation accuracy.

We then change the number of different elements |D| from
200 to 2,200. As plotted in Fig. 4(b), when |D| grows,
both BF and IBLT experience increasing reconciliation errors.
When |D| increases, more elements in D may be identified as
common ones by BFs. IBLT need to decode more elements
from the subtracting result; thereby its risk of unsuccessful
decoding rises up significantly. As for MCFsyn, we only
observe a few false negatives in our experiments, rising from
1.8 to 16. The reason for such an increasing trend is that more
element representation failures may happen upon the different
elements when |D| grows.

Lastly, we vary the ratio between |DE | and |D| from 0
to 1. As specified in Fig. 4(d), BF still causes the most
false negatives, fluctuating around 818. The number of false
negatives resulted by MCF decreases from 17 to 1.33. In fact,
a larger value of |DE | lowers the number of elements in each
participant. Consequently, the participants can represent their
local sets with MCF successfully with a higher probability.
This explains the decreasing curve of MCF-FN in Fig. 4(d).
IBLT, on the contrary, shows its instability and still incurs
much more errors than our MCF.

Additionally, we also note that the IBLT-based method [16]
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Fig. 5. The fraction of correctly decoded different elements by the IBLT based reconciliation method.
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Fig. 6. The communication cost of multi-party set reconciliation for diverse methods.

may fail to tell the affiliation of these elements precisely.
Therefore, Fig. 5 presents the exact fractions of the decoded
different elements with correct affiliations by IBLTs when
the parameters change. It is clear that IBLT can seldom
judge the affiliation of the different elements correctly (the
fraction of such correct decoding is at the level of 10−2). As
suggested by Mitzenmacher and Pagh [16], IBLT leverages
the parity of the corresponding bit in the ID field of each cell
to represent the affiliation of each stored element. However,
when the ith set has multiple elements mapped into this cell,
the parity of the ith bit in the ID field may fail to tell
the affiliation of these elements. The absence of the exact
affiliation information of the recorded elements surely results
in inaccurate set reconciliation. This is also why we introduce
the completeness feature into MCF .

Given the default setting, i.e., |S|=28,000, |D|=1,000,
R=0.5 and n=10, we vary the four parameters respectively
and record the generated ratio of correct decoding in IBLT. As
depicted in Fig. 5(a), when |S| increases from 4,000 to 44,000,
more elements in D are decoded correctly. The behind reason
is that, the increasing number of elements generates a longer
IBLT vector, which creates a higher probability of successful
decoding. However, in Fig. 5(b), the growth of |D| decreases
the fraction of successful IBLT decoding. The decrement is
expected since it can be more difficult to search a “pure” cell
for decoding when IBLT stores more different elements.

Additionally, as reported by Fig. 5(c), when the number of
reconciliation participants n grows from 4 to 24, the fraction
of correct decoding experiences a slight growth. With the
given total number of elements and growing number of partic-
ipants, each participant holds shrinking number of elements.
Consequently, the parity of the corresponding bit in the ID
field can correctly represent the affiliation of elements with

a higher probability. The difference ratio R, on the contrary,
has limited impact on the IBLT decoding accuracy. Therefore,
the fraction of correct decoding in Fig. 5(d) fluctuates around
29×10−3. Note that, the curves in Fig. 5 are unstable to some
extent. The instability is caused by the decodings which end
far early before all the different elements are listed. IBLT’s
unstable performance further limits its usage in multi-party
reconciliation scenarios.

B. Communication Cost

During reconciliation, the participants need to exchange
their local sketches with others. Therefore, the communication
overhead of transferring these sketches is a joint result of the
employed data structure and the transfer scheme. MCFsyn
relies on the MST to aggregate and distribute the MCFs.
By contrast, other reconciliation methods launch the all-to-
all transmission or the gossip traffic (denoted as the suffix
-A and -G respectively in the legends of Fig. 6) within the
reconciliation group to exchange their sketches.

We evaluate the communication cost of transferring the
sketch data structures in a random regular graph (a widely
used topology in computer networks), with the consideration
of three main parameters, i.e., the network scale Π, the
number of reconciliation participants n, and the degree of
nodes in the network. We let Π=30,000, n=30 and degree=20
by default and then vary them respectively to compare the
communication cost of distinct combinations of data structures
and transmission schemes. In our evaluations, we assume that
each of the BF, IBLT, and MCF occupies the same space
(normalized as 1 unit for simplicity) to represent each set.

As plotted in Fig. 6(a), when the underlying network scale
grows from 5,000 to 55,000, all methods lead to increasing
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communication cost of transferring their sketches. Note that
transmitting BF and IBLT with the all-to-all strategy incur the
same communication cost. In this strategy, all participants send
their local sketch to others. Therefore the total communication
cost is ∑

n
i=1 ∑

n
j=1 Li, j, where Li, j is the shortest path length

from participant i to participant j. To gossip these sketches,
logn rounds of transmissions are required on average. Each
participant merges the received IBLTs as a single IBLT.
The generated IBLTs are exchanged in the next round of
gossip transmission. However, BFs cannot be merged. The
participants have to send all the received BFs out in the next
round of gossip transmission. This explains why the curve
BF-G is much higher than IBLT-G in Fig. 6. In contrast,
MCFsyn causes the least communication cost by aggregating
and distributing the MCFs with MST. Beside of the MST, just
like IBLT, the mergeability of MCF also highly contributes to
such an excellent performance.

When n varies from 10 to 60 (in Fig. 6(b)) we observed
the increase of communication cost for all measured methods.
With more reconciliation participants, we have to transfer more
sketches with the underlying network. Still, gossiping BFs
results in the most communication cost, while our MCFsyn
incurs one or two orders less communication cost than others.
On the contrary, as presented in Fig. 6(c), when the node
degree in the network gets larger, the communication cost for
all the methods decreases constantly. The increased degree
shortens the distance between all participants, thereby lowers
the cost. MCFsyn still outperforms others in a large scale.

We further consider the communication cost of transmit-
ting different elements. Note that, due to the unacceptable
reconciliation accuracy or (and) the incapability of telling
the affiliation of different elements, both the BF and IBLT
enabled methods can be impractical. Consequently, we only
compare the caused communication cost of our MCFsyn
protocol, the backup strategy and the LAN sync strategy
[41] in cloud services. The network topology is illustrated
in Fig. 7. The backup strategy is widely used in current
personal file cloud storage applications, such as Dropbox,
Google Drive, OneDrive, etc. In this backup strategy, each
local device uploads its data to the remote cloud for backup
(usually three replicas in the cloud). Then the cloud pushes its
data to the devices for consistency. We also note that, Dropbox
has a “LAN sync” option for users. When a file is edited by
a device, the updated version is first uploaded to the cloud
server for sure. Thereafter, instead of pulling updates from the
cloud server, the devices will try to obtain the updates from
the devices in the same LAN first. By doing so, unnecessary
cloud-device communications are avoided significantly.

As depicted in Fig. 6(d), this kind of communication over-
head of backup strategy and our MCFsyn protocol increases
linearly with the growth of the number of local devices.
However, the backup strategy costs much more than our
MCFsyn protocol. Specifically, in our evaluation, we suppose
that the local devices are interconnected with an access point.
According to [42] the AS level path length of the Internet is
3.9. For simplicity, we suppose the hops from the access point
to a cloud rack is approximated as 3.9. Therefore, fetching
(uploading) a data block from (to) the backup server costs 5.9

Cloud Switch

LAN Switch

Cloud Server

Device 1
Device 2

Device 3

Device 4
Device 5

……

3.9 hops

Fig. 7. A typical network topology of personal cloud storage system, wherein
the personal devices are interconnected with a LAN switch, i.e., an access
point. A device (device 4 in this example) has 1 unit of new files to sync
with others.

hops. Given the same volume of different elements to reconcile
(normalized as 1 unit), the backup strategy causes 5.9·#device
communication cost. The reason is that each different element
has to be sent to the cloud first. After that, the cloud will push
that element to the rest of the devices. By contrast, this kind of
communication cost in MCFsyn is 2·(#device−1)+5.9. Note
that the addend 5.9 indicates the cost of transferring different
elements to the cloud; while 2·(#device−1) is the overhead
of transmitting the different elements from its host to other
devices by using the access point as a relay. As for LAN sync,
in this network setting, it realizes the same communication
overhead of transmitting different elements as MCFsyn does,
since all the devices lie in a single LAN and the different
elements can be fetched locally.

However, we argue that MCFsyn generally outperforms
LAN sync from the following two aspects. First, in MCFsyn,
participants always try to get the missing elements with mini-
mal overhead; while this is not guaranteed in LAN sync since
it fails to optimize inter-LAN reconciliations. For instance, if
the devices in Fig. 7 belong to diverse LANs, the devices in
a LAN can only fetch updated data from the remote cloud
server but not other LANs even they may be geographically
close. Second, the LAN sync has not changed the nature
of the backup strategy in personal cloud storage. In other
words, LAN sync is still centralized, while MCFsyn is fully
decentralized. The cloud server still plays a central role in the
whole system. It confirms the changes and initiates the sync
process. What LAN sync does is only try to speed up the data
distribution step. By contrast, in MCFsyn, all the participants
are totally equal and self-organized. They decide and then
push/pull the different elements all by themselves. Such a
design philosophy brings both flexibility and fault-tolerance.
The participants are allowed to join or leave dynamically. Even
when the cloud-LAN links fail, the devices in Fig. 7 can still
sync with each other with our MCFsyn protocol; but such a
failure may be problematic in LAN sync.

C. MCFsyn in Blockchains

In a blockchain, the transactions are validated and prop-
agated as blocks. A fundamental question is that the trans-
actions should be synchronized before block propagation.
Specifically, each peer in the blockchain maintains a mempool
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Fig. 8. The communication overhead of reconciling transactions in blockchain
networks when n = 1,000 and p = 0.05.
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Fig. 9. The communication cost of reconciling transactions in blockchain
networks when n and p vary.

which stores unpackaged transactions. The problem can be
abstracted as set reconciliation between mempools. The state-
of-the-art method for such a scenario is called Graphene [4]
which employs both BF [6] and IBLT [8] to identify the miss-
ing transactions in a peer. However, Graphene and its same
kind only try to solve the two-party reconciliation problem,
thus fail to achieve an overall optimization of communication
overhead. Basically, Graphene needs to broadcast the newly
formed block from the source to others, with the two-party
synchronization strategy.

In this paper, we conduct simulations to compare MCFsyn
with Graphene in blockchains with real Ethereum transactions
[43]. We consider the first million on-chain blocks and ex-
tract more than 5,500 blocks that possess no less than 30
transactions. Thereafter, we try to propagate such blocks by
reconciling their transactions. In our experiment, we generate
ER graphs to simulate the underlying blockchain P2P networks
and assign weights to the links to demonstrate the commu-
nication cost. We simplify the size of each transaction as 1
unit and then sum up the weights of utilized links to quantify
the overall communication cost for network-wide consistency.
For each node, we decide a random number in [0, 10] as its
missing transactions. Our target is to reconcile such randomly
chosen transactions for each block in the network.

As shown in Fig. 8, MCFsyn outperforms the broadcast
strategy in current blockchain systems significantly. To be
specific, when n=1,000 and the probability in ER graph
is p=0.05, the overhead of MCFsyn ranges from 10,947
to 15,050, with an average value of 12,939. By contrast,
the minimum, maximum, and average costs of the broadcast
strategy are 24,600, 30,399, and 27,456, respectively. In other

words, MCFsyn saves more than half of the communication
overhead when transmitting the different transactions. The
intrinsic reason is that a node in MCFsyn always tries to fetch
its missing transactions with the minimum cost. However, for
broadcast transmission, nodes just push/pull missing transac-
tions from their neighbors without considering the cost.

Moreover, we quantify the communication cost of transmit-
ting transactions in the blockchain network when the number
of nodes n and the probability of links in ER graph p increase
constantly. The results are presented in Fig. 9. Obviously,
MCFsyn still outperforms the broadcast strategy significantly.
When n grows, both the MCFsyn and the broadcast methods
lead to increasing cost, since more links are employed to
transmit the missing transactions. When p increases from
0.005 to 0.05, the communication cost decreases in MCFsyn
while remains at a high level in broadcast strategy. With more
links in the network, MCFsyn can search out a smaller MST
with high probability; for broadcast, the introduced links may
help to speed up the transmission but cannot decrease the
communication cost.

As a summary, MCFsyn significantly outperforms other
methods. Quantitatively, in our evaluations, MCFsyn generates
20x and 70x times fewer errors on average than the methods
enabled by IBLT and BF with the same bits per element,
respectively. Moreover, MCFsyn causes 21x and 7.9x times
less communication cost on average than transferring BFs with
the all-to-all scheme and exchanging IBLTs with the gossip
protocol, respectively. Especially, the IBLT-based method can
barely tell the affiliations of its decoded elements. MCFsyn
is competent to discover the different elements with their
correct affiliations so that these different elements can be
synchronized to other participants with the optimal senders.
Therefore, MCFsyn shows much less communication cost
to deliver these different elements than the general backup
strategy used in current cloud storage services. Besides, the
trace-driven simulations indicate that MCFsyn can half the
communication overhead of transmitting transactions, com-
pared with the current broadcast-based reconciliation strategy.

VII. DISCUSSION

In this section, we further discuss several issues about the
MCFsyn protocol.

Evil nodes in the reconciliation group. In a distributed
scenario, it is possible that evil nodes intend to steal informa-
tion from the group or spread unwanted data within the group.
Such an issue is beyond the scope of this paper. However, we
think it is costly or uneasy to do so. First, the hackers have
to pass the verification and authorization from the upper-level
applications, before becoming a member of the reconciliation
group. For enterprises or institutions which build their own
private networks, they have no such worry since they are
independent from the public Internet physically. Second, the
network security modules in the network monitor the network
consistently and provide security to the reconciliation group,
to some extent. If the evil nodes attack or disturb the network,
the defense facilities will act.

When to run the MCFsyn protocol. MCFsyn is a low-level
protocol to synchronize content among multiple participants.
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An upper-level question is when MCFsyn should be executed.
In effect, there is a body of work that focuses on this field
[44] [45]. For example, UDS proposes to batch the micro
changes before synchronization to save bandwidth [44]. These
strategies can potentially be applied to MCFsyn. In our case,
an upper-level control scheme can be either update-driven
or time-divided. For an update-driven policy, the MCFsyn is
triggered once new elements are included or existing elements
are edited. Alternatively, it is also advisable to prob the
participants periodically and sync the updates in a batched
fashion. Generally, the latter can is more bandwidth-friendly
than the former, since reconciling the micro updates may cause
the overuse of synchronization messages.

MCFsyn in extreme scenarios. MCFsyn is a general
protocol for multi-party reconciliation and can be applied
to reconcile elements no matter how the different elements
distribute among the participants. When the participants have
a skewed number of elements, following the MCFsyn steps
can identify and transmit the different elements successfully.
A possible optimization for this case is to choose the node with
the most elements as its central relay, such that the others may
use smaller MCFs for bandwidth saving purposes. Besides,
in the scenario where the sets are totally or barely different,
MCFsyn still works. Specifically, if the sets are almost the
same, MCFsyn should still be employed to discover the
different elements. By contrast, when they share no common
elements, MCFsyn can still guide the participants to transmit
the elements along with the MST tree for fast and economic
reconciliation.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present the MCFsyn protocol for multi-
party set reconciliation in distributed scenarios. MCFsyn em-
ploys the MCF data structure as a sketch of each set, thereafter
aggregates and distributes the MCFs with the underlying MST
to minimize the communication cost. The aggregating-while-
transmitting strategy further reduces the communication cost
of exchanging MCFs. By differentiating the exclusive elements
from missing elements, MCFsyn realizes an optimal strategy
to transmit the different elements among the participants. The
comprehensive evaluations indicate that MCFsyn significantly
outperforms its same kind in terms of both reconciliation
accuracy and communication cost.

Our future work is mainly two-fold. First, we will imple-
ment MCFsyn in real systems, such as open-source blockchain
platforms Ethereum [46], Hyperledger [47], Corda [48],
and private cloud storage systems such as OwnCloud [49],
Nextcloud [50], Seafile [51], etc. As far as we know, these
blockchain and cloud storage systems mainly rely on a two-
party reconciliation scheme [4] to synchronize transactions
before block construction. Our MCFsyn may help to speed up
this process with less communication overhead. Second, we
would like to consider the multi-party reconciliation of multi-
sets wherein elements are allowed to have multiple instances.
In such cases, both the element content and multiplicity
can cause differences; thus identifying and transmitting such
elements can be more challenging.

ACKNOWLEDGMENT

The authors thank all the anonymous reviewers for their
insightful feedback. Besides, this work was supported in part
by the National Key Research and Development Program of
China under grant 2018YFB1800203, in part by the National
Natural Science Foundation of China under Grant 62002378,
and in part by the Research Funding of NUDT under Grant
ZK20-3.

REFERENCES

[1] S. Guo, Y. Gu, B. Jiang, and T. He, “Opportunistic flooding in low-duty-
cycle wireless sensor networks with unreliable links,” IEEE Transactions
on Computers, vol. 63, no. 11, pp. 2787-2802, 2014.

[2] V. Stefano, L. Vanbever and O. Bonaventure, “Opportunities and re-
search challenges of hybrid software defined networks,” in Proc. of ACM
SIGCOMM, 2014.

[3] B. Maggs and R. Sitaraman, “Algorithmic nuggets in content delivery,”
ACM SIGCOMM Computer Communication Review, vol. 45, no. 3, pp.
52-66, 2015.

[4] A. Ozisik, B. Levine, G. Bissias, G. Andresen, D. Tapp and S. Katkuri,
“Graphene: Efficient interactive set reconciliation applied to blockchain
propagation,” in ACM SIGCOMM, 2019.

[5] D. Guo and M. Li, “Set reconciliation via counting Bloom filters,” IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 10, pp.
2367–2380, 2013.

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[7] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s the
difference?: Efficient set reconciliation without prior context,” in Proc.
of ACM SIGCOMM, 2011.

[8] M. T. Goodrich and M. Mitzenmacher, “Invertible Bloom lookup tables,”
in Proc. of Allerton Conference, 2011.

[9] D. Chen, C. Konrad, K. Yi, W. Yu, and Q. Zhang, “Robust set
reconciliation,” in Proc. of ACM SIGMOD, 2014.

[10] L. Luo, D. Guo, J. Wu, O. Rottensreich, Q. He, Y. Qin, and X. Luo,
“Efficient multiset synchronization,” IEEE Transactions on Networking,
vol. 25, no. 2, pp. 1190-1205, 2017.

[11] G. Karpovsky, and B. Levitin, “Data verification and reconciliation
with generalized error-control codes,” IEEE Transactions on Information
Theory, vol. 49, no. 7, pp. 1788–1793, 2003.

[12] K. Abdel-Ghaffar and A. Abbadi, “An optimal strategy for comparing
file copies,” IEEE Transactions on Parallel and Distributed Systems, vol.
5, no. 1, pp. 87-93, 1994.

[13] B. Fan, D. Andersen, M. Kaminsky, and M. Mitzenmacher, “Cuckoo
filter: Practically better than Bloom,” in Proc. of ACM CoNEXT, 2014

[14] Z Zhu, A Afanasyev, “Let’s chronosync: Decentralized dataset state
synchronization in named data networking,” in Proc. of IEEE ICNP,
2013.

[15] T. Chekam, E. Zhai, Z. Li, Y. Cui, and K. Ren, “On the synchronization
bottleneck of OpenStack Swift-like cloud storage systems,” in Proc. of
IEEE INFOCOM, 2016.

[16] M. Mitzenmacher, R. Pagh, “Simple multi-party set reconciliation,”
Distributed Computing, vol. 31, no. 6, pp. 441-453, 2018.

[17] A. Boral, M. Mitzenmacher, “Multi-party set reconciliation using char-
acteristic polynomials,” in Proc. of Allerton Conference, 2014.

[18] F. Hao, M. Kodialam, T. V. Lakshman, and H. Song, “Fast dynamic
multiset membership testing using combinatorial Bloom filters,” in Proc.
of IEEE INFOCOM, 2009.

[19] M. Mitzenmacher, P. Reviriego, and S. Pontarelli, “OMASS: One
memory access set separation,” IEEE Transactions on Knowledge and
Data Engineering, vol. 28, no. 7, pp. 1940-1943, 2016.

[20] H. Dai, Y. Zhong, A. Liu, W. Wang, and M. Li, “Noisy Bloom filters for
multi-set membership testing,” in Proc. of ACM SIGMETRICS, 2016.

[21] D. Yang, D. Tian, J. Gong, S. Gao, T. Yang, and X. Li, “Difference
Bloom filter: A probabilistic structure for multi-set membership query,”
in Proc. of IEEE ICC, 2017.

[22] T. Yang, D. Yang, J. Jiang, S. Gao, B. Cui, L. Shi, and X. Li, “Coloring
embedder: A memory efficient data structure for answering multi-set
query,” in Proc. of IEEE ICDE, 2019.

[23] D. Eppstein, “Cuckoo filter: Simplification and analysis,” arXiv preprint,
arXiv:1604.06067, 2016.

[24] M. Mitzenmacher, S. Pontarelli, and P. Reviriego, “Adaptive Cuckoo
filters,” in Proc. of SIAM ALENEX, 2018.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3074440, IEEE
Transactions on Parallel and Distributed Systems

14

[25] H. Chen, L. Liao, H. Jin, and J. Wu, “The dynamic cuckoo filter,” in
Proc. of IEEE ICNP, 2017.

[26] L. Luo, D. Guo, O. Rottenstreich, R. T. B. Ma, X. Luo, and B. Ren,
“The Consistent cuckoo filter,” in Proc. of IEEE INFOCOM, 2019.

[27] N. Nguyen, P. Tsigas, “Lock-free cuckoo hashing,” in Proc. of IEEE
ICDCS, 2014.

[28] A. Breslow and N. Jayasena, “Morton filter: fast, compressed sparse
cuckoo filters,” The Very Large Data Bases Journal, vol. 29, pp. 731-
754, 2020.

[29] M. Wang, M. Zhou, S. Shi, and C. Qian, “Vacuum filters: more space-
efficient and faster replacement for bloom and cuckoo filters,” In Proc.
of VLDB, 2019.

[30] Y. Wu and K. Chao, “Spanning trees and optimization problems”,
Chapman and Hall/CRC, 2004.

[31] J. Kleinberg and E. Tardos, “Algorithm design,” Pearson Addison Wesley,
2006.

[32] M. Henzinger, V. King, “Maintaining minimum spanning trees in
dynamic graphs,” in Proc. of ICAPL, 1997.

[33] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh,
and M. Rink, “Tight thresholds for cuckoo hashing via XORSAT,” in
Proc. of ICALP, 2010.

[34] N. Fountoulakis, M. Khosla, and K. Panagiotou, “The multiple ori-
entability thresholds for random hypergraphs,” in Proc. of ACM-SIAM
SODA, 2011.

[35] H. Harmouch, F. Naumann, “Cardinality estimation: an experimental
survey,” in Proc. of VLDB, 2017.

[36] M. Durand, P. Flajolet, “LogLog counting of large cardinalities,” in Proc.
of European Symposium on Algorithms, 2003.

[37] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “HyperLogLog: the
analysis of a near-optimal cardinality estimation algorithm,” in Proc. of
Discrete Mathematics and Theoretical Computer Science, 2008.

[38] P. J. Haas and L. Stokes, “Estimating the number of classes in a finite
population,” Journal of the American Statistical Association, vol. 93, no.
444, pp. 1475–1487, 1998.

[39] F. Giroire,“ Order statistics and estimating cardinalities of massive data
sets,” Discrete Applied Mathematics, vol. 157, no. 2, pp. 406–427, 2009.

[40] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla, “On
synopses for distinct-value estimation under multiset operations,” in
Proc. of SIGMOD, 2007.

[41] What is LAN sync? https://help.dropbox.com/installs-integrations/sync-
uploads/lan-sync-overview.

[42] B. Edwards, S. Hofmeyr, G. Stelle, and S. Forrest, “Internet topology
over time,” arXiv preprint, arXiv:1202.3993, 2012.

[43] Ethereum On-chain Data, http://xblock.pro/xblock-eth.html.
[44] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Zhao, C. Jin, Z. Zhang, Y.

Dai, “Efficient batched synchronization in dropbox-like cloud storage
services,” in Proc. of ACM/IFIP/USENIX Middleware, 2013.

[45] L. Caviglione, M. Podolski, W. Mazurczyk, “Covert channels in personal
cloud storage services: The case of Dropbox,” IEEE Transactions on
Industrial Informatics, vol.13, no.4, pp. 1921-1931, 2017.

[46] Ethereum, https://ethereum.org/en/.
[47] Hyperledger, https://www.hyperledger.org/.
[48] Corda, https://www.corda.net/.
[49] OwnCloud, https://owncloud.com/.
[50] Nextcloud, https://nextcloud.com/.
[51] Seafile, https://www.seafile.com/en/home/.

Lailong Luo received his B.S. and M.S. Ph.D degree
at the College of Systems Engineering from Na-
tional University of Defence Technology, Changsha,
China, in 2013, 2015, and 2019 respectively. He is
currently a lecturer in School of Systems, National
University of Defense Technology, Changsha, China.
His research interests include data structure and
distributed networking systems.

Deke Guo Deke Guo received the B.S. degree in
industry engineering from the Beijing University
of Aeronautics and Astronautics, Beijing, China, in
2001, and the Ph.D. degree in management science
and engineering from the National University of
Defense Technology, Changsha, China, in 2008. He
is currently a Professor with the College of Sys-
tems Engineering, National University of Defense
Technology His research interests include distributed
systems, software-defined networking, data center
networking, wireless and mobile systems, and in-

terconnection networks. He is a senior member of the IEEE and a member
of the ACM.

Yawei Zhao Yawei Zhao is now a Ph.D candidate in
School of Computer, National University of Defense
Technology. He received his B.E. degree and M.S.
degree in Computer Science from the National Uni-
versity of Defense Technology, China, in 2013 and
2015, respectively. His research interests include nu-
merical optimization algorithms, pattern recognition
and machine learning. He is also interested in data
structures and algorithms.

Ori Rottenstreich is an assistant professor at the
Department of Computer Science and the Depart-
ment of Electrical Engineering of the Technion,
Haifa, Israel. He is also the chief scientist of Orbs.
His main research interest is computer networks and
blockchain technologies. In 2015-2017 he was a
Postdoctoral Research Fellow at the Department of
Computer Science, Princeton University. Earlier, he
received the BSc in Computer Engineering (summa
cum laude) and PhD degree from the Technion in
2008 and 2014, respectively.

Richard T.B Ma received the Ph.D. degree in
Electrical Engineering in May 2010 from Columbia
University, New York. During his Ph.D. study, he
worked as a research intern at IBM T. J. Wat-
son Research Center, Yorktown Heights, NY, USA,
and Telefonica Research, Barcelona, Spain. He is
currently a Research Scientist in Advanced Digital
Science Center, University of Illinois, USA, and an
Assistant Professor in School of Computing at Na-
tional University of Singapore. His research interests
include distributed systems and network economics.

Xueshan Luo received his B.E. degree in Informa-
tion Engineering from Huazhong Institute of Tech-
nology, Wuhan, China, in 1985, and his M.S. and
Ph.D degrees in System Engineering from the Na-
tional University of Defense Technology, Changsha,
China, in 1988 and 1992, respectively. Currently,
he is a professor of College of Systems Engineer-
ing, National University of Defense Technology.
His research interests are in the general areas of
information system and operation research.


