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ABSTRACT Twitter spam classification is a tough challenge for social media platforms and cyber security
companies. Twitter spamwith illegal links may evolve over time in order to deceive filtering models, causing
disastrous loss to both users and the whole network. We define this distributional evolution as a concept drift
scenario. To build an effective model, we adopt K–L divergence to represent spam distribution and use a
multiscale drift detection test (MDDT) to localize possible drifts therein. A base classifier is then retrained
based on the detection result to gain performance improvement. Comprehensive experiments show that K–L
divergence has highly consistent change patterns between features when a drift occurs. Also, the MDDT is
proved to be effective in improving final classification result in both accuracy, recall, and f-measure.

INDEX TERMS Concept drift, drift detection test, twitter spam classification, K-L divergence.

I. INTRODUCTION
Social media is ubiquitous nowadays, evolving its functions
from personal sharing with friends to communicating with
strangers of similar interests [1]. Social media platforms
like Twitter therefore can exploit big data techniques to
describe accurate user profiles for precision marketing [2].
Many merchants have seen this opportunity and used social
media to help boost sales, among which some provide,
unfortunately, bad services. They publish spam that could
possibly link to unauthorized downloads and illegal com-
modities or even virus websites [3]. Users are unaware to
click the link and suffer from information leak and finan-
cial deception. Moreover, the virus may fail the whole
network and bring disastrous loss to the social media
companies [4], [5].

Since social media spam can inflict catastrophic harm to
the network environments, network safety corporations as
well as social media platforms have dedicated themselves
to identifying spam to assure user safety. The major solu-
tions are black list systems and data-driven classification
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models [6]. Companies establish a black list filtering system
based on manual inspection and user reports. Once a target
link exists in the list, the browser automatically cuts off the
connection and thus prevents further loss. The advantage of
this method is stableness due to low false alarms by human
verification. However, the cost to build such a system is fairly
high compared to that of reproducing a new spam link. Also,
when there is a report claimed from the user, the damage
is unavoidable. Therefore, more and more companies turned
to data-driven models aided by labor inspection to judge
whether a tweet is spam.

Data-driven models use classification algorithms or
anomaly detection methods to find spam among normal
tweets. They benefit from low-labor costs. They can also
help discover new latent features of twitter spam [7], [34].
Nevertheless, illegal merchants are building spam generating
models too. They flood the filtering system with tons of spam
to detect decision boundaries of normal and abnormal data.
Once a bug is found, the next generation of spam can be
much stealthier. This is why a twitter spam filtering model
relying only on historical data would fail in the future: the
twitter spam itself is evolving or as we define, has concept
drifts.
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Concepts are defined as the joint probability of data x as
well as label y [8]. Concept drift means that current probabil-
ity of data is different from the past. In our case, the decision
boundaries of normal tweets and spam can change over time.
If we use historical classifiers to predict new tweets, we will
make horrible mistakes in the future since spam ‘‘knows’’
how to trick the models. In order to build an evolvable
classification model, we need to trace spam changes and
update our model accordingly so as to improve classification
performance [9]. In this work, we mainly focus on tracing
change, which will be introduced by two modules: concept
extraction and drift detection.

Our main contribution of this work is to build a framework
for detecting abrupt shifts in twitter spam series. We adopt
K-L divergence to represent spam distribution and initia-
tively observe correlated drift patterns among twitter features
including account age shift, the numbers of followers and fol-
lowings. Also, we innovatively use a multiscale detection test
to localize drifted time on three out of ten days and improve
final classification accuracy to reach 98.86%. The rest of this
paper is organized as follows. Section II reviews related work.
Section III presents the proposed methods including: a detec-
tion framework, concept extraction, concept drift detection,
and classification/update. Sections IV provides the experi-
mental results. The paper is concluded in Section V.

II. RELATED WORK
A. CONCEPT EXTRACTION METHOD
The aim of concept extraction is to represent data distri-
bution. The main extraction methods use raw features, sta-
tistical features and neural networks-based features. When
raw input features are distinguishable enough, they can
be directly applied to monitor a concept change. Statisti-
cal methods characterize data information through testing
a proper hypothesis, e.g., some given data follow a normal
distribution [10]. Neural networks can extract semantic fea-
tures through layer structures without hypothesizing distribu-
tion [31], [32], but they need training processes and big data
to fit parameters, which cannot be satisfied in some scenarios.
Therefore, we further introduce several statistical methods.

Feature Extraction for Explicit Concept Drift Detection
(FEDD) [11] computes 6 linear and 2 nonlinear statistical
features to describe concepts. The linear ones include auto-
correlation, variance, skewness, and kurtosis. The nonlinear
ones are bicorrelation and mutual information. These 8 fea-
tures are computed along each input dimension and obtain a
concept vector. Then cosine or Person distances are compared
among vectors at different time steps. Other distribution dis-
tance measurements involve total variation distances [29] and
streaming hashing histograms [30]. Nevertheless, the con-
cept vectors of FEDD suffer from high computational cost.
Therefore, Kullback-Leibler divergence (K-L divergence),
also known as relative entropy, is proposed to measure dis-
tance with lower complexity and has been widely used in
anomaly detection scenarios [12], [13]. Its advantage lies in

TABLE 1. Notations and descriptions.

high consistency among extracted features. Hence, we adopt
K-L divergence as a target extraction method.

B. CONCEPT DRIFT DETECTION METHOD
Detectionmethods are designed to find shift points in concept
series. Afterwards, a classifier model can use data after the
shift points to adapt itself [14]. An active approach refers to
the strategy that a model is only updated when a detection
method finds a drift [15]. Most of the detection algorithms
are based on hypothesis tests, i.e., given h0that current data
has the similar distribution as the historical one, a test method
validate whether h0 holds true. Based on different h0, several
detection algorithms are proposed [16], [37].

Page-Hinkley test (PH-test) presumes that mean values
of current concepts should be close to historical ones [17].
It cumulates difference between the observed values and
historical ones. If the minimum of such difference exceeds
a threshold, current moment is claimed as drift time. Cumu-
lative Sum (CUSUM) hypothesizes that stationary concepts
should fluctuate within a small range [18]. A cumulative
sum variable is built. It should be near zero when there is
no drift since negative and positive small values offset each
other. A drift is found when such variable explodes to reach
a predefined bound.

Based on a resampling scheme and a paired student t-test,
we have proposed a multiscale drift detection test (MDDT)
that localizes abrupt drift points when a concept changes [19].
It applies a detection procedure on two different scales. Ini-
tially, the detection is performed on a broad scale to check if
recently gathered drift indicators remain stationary. If a drift
is claimed, a narrow scale detection is performed to trace the
refined change time. This multiscale structure reduces mas-
sive time of constant checking and filters noises successfully.
Hence, we use MDDT as a final drift detector in this work.
Such application is never seen to the best knowledge of the
authors.

III. DRIFTED TWITTER SPAM CLASSIFICATION
In this section, we present a drifted twitter spam classification
method based onmultiscale drift detection test (MDDT) [19].
The main idea is to detect distributional change and use
drifted data to update the classification model. The notations
frequently used in this paper are summarized in Table 1.
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FIGURE 1. Framework for drifted twitter spam classification.

The concrete steps of the method are detailed in the following
sections.

A. PROPOSED METHOD
1) FRAMEWORK
The framework of our method is given in Algorithm 1 and
Fig. 1. First, we train a binary classification model on tweets
to decide whether they are spam or normal. Meanwhile,
a concept extractor is computed using K-L divergence which
measures distributional distance among different samples.
The purpose is to describe the difference between the present
data distribution and historical one and leave the adaptation
task to a base classifier. Then, MDDT is adopted to check
whether current data concepts differ from historical ones and
if so, claims the drift time. Afterwards, drifted data after
that time are utilized to update the model to enhance robust-
ness. Finally, further data are input to verify performance
improvement.

Algorithm 1 Framework of Drifted Twitter Spam Classifica-
tion

Input: Twitter data in time: D = {D1,D2, . . . ,Dt }
Output: classification model F
1. Initialization: train a classifier F on D1, time window
W = Ø
2. For t = 2, 3, . . .
3. Compute K-L divergence between Dt and D1:DKL

(Dt||D1) and add it to W
4. Multiscale drift detection test on W to see if there are

drifts
5. If True
6. Retrain F with data after the drift point, W = Ø,

D1 = Dt
7. End If
8. Verify F with Dt
9. End For

2) CONCEPT EXTRACTION: K-L DIVERGENCE
Concept extraction is aiming at representing data distribution.
When drift occurs, it changes correspondingly such that drift
detection algorithms can easily find outliers therein. In our
case, K-L divergence is chosen as a measure for similarity or

FIGURE 2. Framework of MDDT.

asymmetry between two distributions. It is calculated as

DKL (P ‖ H) = −
∑K

i=1
Piln

Hi
Pi
=

∑K

i=1
Piln

Pi
Hi

(1)

where P and H represent two 1-D distributions of categorical
variables, Pi = P(x|x = i) and K is the set of all possible
outcomes. In our case, P and H are present and historical
twitter data distribution. If they are identical, their divergence
should be small since ln (Pi/Hi) ≈ 0. In case Hi = 0 when
i only occurs in P, we revise Pi and Hi by Pi’ and Hi’ as
suggested in [20]

P
′

i = 0.66 (Pi + 0.5) , H
′

i = 0.66(Hi + 0.5) (2)

Equation (2) is always applied for consistency. For numer-
ical variables, K-L divergence can be approximated by split-
ting inputs into categories. For multi-dimensional variables
we compute it along each dimension and use cosine distance
to aggregate total difference, i.e.,

dcos (P,H) = 1−
< P,H >

‖P‖ ‖H‖
(3)

where < P, H > is the inner product of two vectors and ‖·‖
is the l2-norm of a vector.

Now we are able to evaluate difference of the present spam
and historical one. If the result is huge, then there is a drift
in the time window W . However, to evaluate difference with
‘‘huge’’ or ‘‘small’’ is sometimes blurry and can claim false
alarm drifts. Therefore, we need an accurate checkingmethod
to find reliable drift points as to be discussed next.

3) CONCEPT DRIFT DETECTION: MULTISCALE TEST
We utilize Multiscale Drift Detection Test (MDDT) [19] to
localize drift points in a time window W . It is described in
Algorithm 2 and Fig. 2.

Suppose that a stationary environment changes at a certain
point t ∗ (unknown in advance). Then the latest detection
features in a test window T shall be significantly different
from a sub-window Ssub picking features from the past. More
specifically, first we want to check out whether current fea-
tures are drifted. If so, can they be further purified to leave
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only drifted features? Our main contribution is that we do not
need to examine each and every feature in T. Instead we apply
a further drift detection on the split of T, i.e., T1 and T2. If they
are significantly different, then the split point between T1 and
T2 is supposed to be the drift point.

The reason why this split works is that we build a t-test
statistic for T1 and T2 when they are significantly differ-
ent. Then based on relationship that T = T1+ T2, we find
a condition to satisfy a new statistic representing signifi-
cant difference between T and stationary window S, i.e.,
|T1| = n

1+
(
tα(n−2)
tα(2n−2)

)2 n−4
n−2

in Algorithm 2.

| T| is the cardinality of a window T, tα(n) is the α quantile
of t-distribution with n degrees of freedom. MDDT tries
to select the latest samples to formulate a test window T
(step 1) and check if they are significantly different from
the past (steps 2-3). We adopt paired t-test (Theorem 1) to
evaluate difference significance. If positive, can T be further
split so as to find an accurate segment between drifted spam
and historical one (steps 5-6)? If so, MDDT claims a drift
point t∗.

Algorithm 2 [19] Multiscale Drift Detection Test (MDDT)
Input: time window W
Output: drift time t∗
1.Split W into stationary window S and test window T ,
n = |T |, |S| >> |T |
2.Undersampling S to get sub-window Ssub, |Ssub| = |T |
3. t-test on Ssub and T to see if they are
significantly different

4. If True
5. Further split T into T1 and T2, |T1| = n

1+
(
tα(n−2)
tα(2n−2)

)2 n−4
n−2

,

6. t-test on T1 and T2 to see if they are
significantly different

7. If True
8. t∗ = time at T1& T2’s boundary
9. End If
10. End If

The central limit theorem (CLT) establishes that, when
independent random variables are averaged, the distribution
of the mean is closely approximated by a normal distribution,
even if the original variables themselves are not normally dis-
tributed. Hence, we can use the mean values of independent
KL divergence for a paired t-test.
Theorem 1 (paired t-test): Let S 1, S 2, . . . , and S n1, and

T 1, T 2, . . . , and T n2 be two independent samples satisfying
S∼ N (µ1, σ

2) and T ∼ N (µ2, σ 2 ). S̄ and T̄ denote their
sample means and σ 2

S and σ 2
T are sample variances. Given

hypothesis H0 : µ1 − µ2 ≤ δ and a confidence level α, the
statistic t obeys a student distribution:

t =
S̄ − T̄ − (µ1 − µ2 − δ)

σw

√
1
n1
+

1
n2

∼ t (n1 + n2 − 2) (4)

σ 2
w =

(n1 − 1) σ 2
S + (n2 − 1) σ 2

T

n1 + n2 − 2
(5)

When t lies within the rejected region, i.e., t ≥

tα (n1 + n2 − 2), we accept µ1 − µ2 > δ and assert sig-
nificant difference between S and T.

The final output of MDDT is the drift time. The next
section introduces how to adapt a classification model to
improve performance.

4) CLASSIFICATION MODEL AND UPDATING
After comparing with KNN and SVM models, we choose
random forest (RF) as a spam/normal classification model.
A random forest is an ensemble of sub decision tree classi-
fiers. Training data are split for building different sub trees.
A sub tree calculates the Gini coefficient of a subset of
all features and recursively builds a binary classifier on the
feature with the smallest coefficient [33]. The ensemble using
data and feature split not only increases diversity on a data
level, but also on a feature level, which balances well between
bias and variance. It turns out that twitter spam data has high
intra-class variance. Hence, the mechanism of random forests
to use sub-features can learn different sub tress for intra-class
samples and is therefore suitable for our case. A revised ver-
sion of a forest called XGBoost in order is adopted to further
improve performance. Later experimental results show that
random forest outperforms other base learners like SVM and
KNN [21]–[24]. As for model updating, we simply retrain
a new classifier with data after the claimed drift time from
MDDT.

IV. EXPERIMENTS AND RESULTS
In this section, experiments are detailed to test the proposed
method on an open source drifted twitter spam dataset. Sev-
eral criteria are used to evaluate concept extraction, claimed
drift points and classification performance. Experiments are
performed on 2.60GHzCore i5-3230Mmachineswith 12GB
of memory. The simulation environment includes Python 2.7.
All base classifiers are built by using open-source scikit-learn
package.

A. DATASET: DRIFTED TWITTER SPAM
We use the public dataset from [6]. It collects 12 features
that are directly accessible through Twitter API (Table 2).
Only tweets with URL are selected, whether they are spam or
normal data are verified byWeb Reputation Technology from
Trend Micro. According to AV Comparatives’ testing report,
the protection rate of the WRT system is 100%. 10,000 per
day of total 10 day records are used. The spam rate is set to be
5% to mimic real world scenarios. More details of the dataset
can be seen in [36].

B. COMPARING METRICS
1) CONCEPT EXTRACTION
Raw input, FEDD and KL-divergence are chosen as con-
cept extractors to be compared. Each extractor calculates a
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FIGURE 3. Correlation coefficients of three concept extraction methods.

TABLE 2. Drifted twitter spam dataset (no means number).

concept vector with dimension equal to 12 (raw dimension).
Correlation coefficients are computed among 12 features:

ri,j =

∑10
day=2

(
f (day)i − fl

) (
f (day)j − f J

)
√∑10

day=2

(
f (day)i − f l

)2√∑10
day=2

(
f (day)j − f J

)2
(6)

R =
1

12× 12

∑12

i=1

12∑
j=1

|ri,j| (7)

High R values means that this extraction method obtains
consistent concept features, which is good because if a drift
occurs, every feature value is expected to fluctuate accord-
ingly. Otherwise, if some features shift while others not,
we cannot decide whether it is a real shift or just noise on
certain features.

2) MODEL UPDATE PERFORMANCE
We evaluate classification performance on different methods.
They are categorized as: RF/KNN/SVM/XGB- based meth-
ods. In each set five methods are compared

[a] X ∈ {RF, KNN, SVM, XGB}
[b] X#

[c] MDDT + X
[d] CUSUM + X
[e] PH + X

where X can be a base learner, e.g., KNN (nearest neighbor
k = 5), RF, and SVM (penalty coefficient C = 1.5, kernel =
RBFwith balanced reweighting for each class). The tolerance
factor δ of the PH test is set to be 0.005. The change detection
threshold λ of PH test is set to be 50. The max depth of
an XGB tree is 50. We use cross-validation to select the
appropriate parameters of the above methods. X is trained
only once on the first day. X# represents an X classifier that
is constantly retrained based on the last-day data. Methods c,
d and e mean that X is retrained only after detectors claim a
drift point.

Experiment (a) is to find the optimal one among tested
base classifiers for the problem. Experiment (b) is to
test whether constant update can enhance performance.
Experiments (c) -(d) are used to compare different drift detec-
tion methods. Besides accuracy, other metrics like recall and
F-measure for imbalanced classification are used to evaluate
performance. The confusion matrix is defined as follows:

Then,

Acc =
TP+ TN

TP+ FP+ FN + TN
(8)

Precision =
TP

TP+ FP
, Recall =

TP
TP+ FN

(9)

F − measure =
2× Precision× Recall
Precision+ Recall

(10)

C. RESULTS AND ANALYSIS
1) CONCEPT EXTRACTION
The heat map plots of correlation coefficients are displayed
in Fig. 3 and the results of absolute average over coefficients
are given in Table 3.

K-L divergence extraction achieves the highest score
of 0.55 and has the most correlated features in heat maps.
In Fig. 3, after K-L representation, f1-f3 are found to be
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TABLE 3. Average over absolute correlation coefficients.

FIGURE 4. Accumulation of K-L divergence for twelve features.

FIGURE 5. Claimed drift intervals of detection methods.

most correlated with each other, which means that when the
account age shift, the numbers of followers and followings
are very likely to be drifted together. Also, f7 is highly
consistent with f10, indicating that fluctuations in the number
of URL attached can directly affect total retweets. Overall,
when there is a drift, every feature exhibits various degree
of change. Hence, we choose K-L divergence as a concept
extractor.

The accumulation of K-L divergence for 12 features are
illustrated in Fig. 4. The total time step count is 40 instead
of 10 since we split everyday data into 4 even parts. This
generates more concept vectors that help better display dis-
tributional shifts. Most of features have a similar trend and
the overall trend peaks at time step 13, 24 and 34, i.e., day 4,
6 and 9. Therefore, we use 13, 24 and 34 as real drift points
to evaluate concept drift detection algorithms. The detected
intervals are plotted in Fig. 5: MDDT and CUSUM catch
all drift points, PH has one missing point at time step 34.
MDDT has 1-time-step latency on position 24 but still catches
it. The time step MDDT discovers a drift is the 29th one,
the time step it localizes the drift is the 25th one. Hence,
MDDT successfully catches all drift points. MDDT claims
one more false alarm point than CUSUM. It regards a small

FIGURE 6. Accuracy of three methods on nine days.

fluctuation on the interval [5], [10] as a drift. This implies that
CUSUM is more suitable for detecting severe abrupt drifts
whereas MDDT can also detect non-severe drifts. A drift
detection method belongs to data preprocessing and needs to
be computationally efficient so as to save time for classifier
training. Hence, we do not aggregate the results of the three
methods. Later classification comparisons show that more
sensitive adaption is necessary and helpful for dealing with
drifts in this case.

2) MODEL UPDATE PERFORMANCE
The results of experiment (a) are illustrated in Fig. 6. We use
data from day 1 as a training set and predict spam labels
for the next 9 days. XGBoost (XGB) achieves the highest
accuracy compared to RF, KNN and SVM. The average
value is 98.19% whereas the same metrics for RF, KNN and
SVM are 98.03% 96.36%, and 65.59%. Low performance
of SVM is attributed to a balanced reweighting process,
which is aimed to successfully classify more spam data
but leads to more errors in normal data. Hence, the recall
score of SVM (0.87) is higher than that of KNN (0.51),
RF (0.63) and XGB (0.69). As mentioned earlier, spam
data has high intra-class variations. A spam data with no
similar neighbors can still be a valid point yet SVM might
ignore it to avoid overfitting. Hence, algorithms that tend to
overfit data like XGB, RF can predict spams well in such
scenario.

In order to explore whether continuous retraining can
outperform never-adapting models, experiment (b) is added.
Also, we compare concept drift detection methods includ-
ing MDDT, CUSUM and PH-test to validate whether they
can keep track of drifts and adapt models accordingly via
Experiments (c)-(e). Accuracy, recall and F-measure results
are displayed in Tables 4-6. Boxplot performances of overall
algorithms are given in Figs. 7-10.

From Tables 4-7 column (b) we can conclude that X#

competes against all other tested methods on or close to
drift days (4, 6 and 9). This means that compared to non-
adaptive classifiers, constantly adapting ones can respond
more quickly and gain improvement right after the drifts.
However, their average metrics are lower than MDDT-based
methods’ (Figs. 7-10), indicating that improper updating can
possibly lead to unstable performance.
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TABLE 4. Classification performances of five RF - based algorithms on nine days.

TABLE 5. Classification performances of five KNN - based algorithms on nine days.

TABLE 6. Classification performances of five SVM - based algorithms on nine days.

From Figs. 7-10 we can see that MDDT is the winner
among all the tested algorithms. Its best average values of
accuracy, recall and F-measure on an XGB-based classi-
fier are 98.86%, 0.80 and 0.87 respectively, with recall and
F-measure being 0.14 higher than CUSUM’s and 0.3 higher
than PH-test’s. The outlier in Fig 8(b) is on day 7, which

is much lower than the rest of days. From the K-L diver-
gence (Fig. 4) we know that there are two fluctuations in
the interval [25], [30] (day 7). Hence the model of CUSUM
updates too early on the first distribution and fails to fit the
later one. Also, the performance of MDDT is more stable
than those of CUSUM and PH-test with only one outlier (Red

108390 VOLUME 7, 2019



X. Wang et al.: Drifted Twitter Spam Classification Using Multiscale Detection Test on K-L Divergence

TABLE 7. Classification performances of five XGBoost - based algorithms on nine days.

TABLE 8. Wilcoxon test results of five comparing methods.

FIGURE 7. Boxplot classification performance of five RF-based algorithms.

cross in Fig. 9(a)) and lower variations (box range in the
figures), which satisfies the need of practical use of twitter
spam classification.

We have applied Wilcoxon’s test on all the methods. The
results are given in Table 8. Among different drift detection
algorithms, MDDT are significantly better than PH on almost

every metric. Also,MDDT outperforms X and CUSUM-X on
KNN-based methods. MDDT is not significantly better than
most of RF-based methods because the original performance
of RF is already high. X# is designed to become the upper
bound for all drift detection methods like MDDT since intu-
itively a model that keeps updating is supposed to fit better on
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FIGURE 8. Boxplot classification performance of five KNN-based algorithms.

FIGURE 9. Boxplot classification performance of five SVM-based algorithms.

FIGURE 10. Boxplot classification performance of five XGB-based algorithms.

new data distribution. In practice, however, if the model only
updates on the drift time like MDDT, the average accuracy
could be slightly higher than X#. Although such strength is
not obvious, considering that MDDT does not lose accuracy,
it has lower time cost on model retraining and is therefore
more competitive than other drift detection methods.

V. CONCLUSION AND FUTURE WORK
In this paper, we have presented a drifted twitter spam
classification method by using multiscale drift detection
test (MDDT) on K-L divergence. K-L divergence is used
as a concept extractor to represent spam distributional
change, while MDDT localizes shift points in the diver-
gence sequence. Once a drift is found, a base classifier using
XGBoost is called. The results reveal that K-L divergence has
highly consistent change patterns among features when a drift

occurs. Also, MDDT improves final classification accuracy
to achieve 98.86% and well outperforms state-of-art drift
detection algorithms, which is significant in this field.

In the future, we plan to exploit artificial neural net-
works [25]–[28], [38] and imbalanced classification methods
[39], [40] to blend concept extraction and model adaptation,
which may enable us to explore concept drift in a coupled
feature space [35]. Also, we plan to build sub-trees for new
concepts in RF or XGB to have lower cost of model retraining
and knowledge forgetting.
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