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ABSTRACT The Internet of Things (IoT) is here and has permeated every aspect of our lives. A disturbing
fact is that the majority of all IoT devices employ weak or no encryption at all. This coupled with recent
advances within the areas of computational power and deep learning has increased interest in Specific Emitter
Identification (SEI) as an effective means of IoT security. Deep learning is capable of in-situ extraction of
discriminating features, making it well suited to discrimination of wireless transmitters without the need
for feature engineering. However, the accuracy of the deep learning model is adversely affected by time-
varying channel conditions. The time-varying nature is attributed to the mobility of the transmitter, receiver,
objects within the operations environment, or combinations thereof. This can result in the channel conditions
changing faster than the deep learning algorithm is capable of handling. This paper assesses deep learning–
based SEI using waveforms that undergo Rayleigh fading, as well as channel estimation and equalization,
prior to being input into a deep learning algorithm.

INDEX TERMS AutoEncoder, convolutional neural network (CNN), Deep learning, feature engineering,
radio frequency (RF) fingerprinting, specific emitter identification (SEI).

I. INTRODUCTION
The Internet of Things (IoT) is here and has permeated every
aspect of our lives both personal and professional. An esti-
mated 26.66 billion IoT devices are currently deployed, and
that number is expected to reach 75.4 billion by 2025 due to
the roughly 127 IoT devices being connected to the Internet
every second [1]–[4]. A disturbing fact of this rapid growth
is that the majority, roughly 70%, of all IoT devices fail to
use encryption due to (i) on-board computation restrictions,
(ii) the manufacturer’s cost of implementation being too high,
and (iii) implementation and management challenges that are
exacerbated at scale [5]–[7]. This lack of security makes IoT
devices and the corresponding infrastructure open to attacks
by devices that are incorrectly authenticated—often due to
their use of compromised digital credentials that have been
transmitted in the clear. Thus, there is a critical need for
the development and integration of more advanced security
techniques as the proliferation of IoT devices continues [4].
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The criticality of this need is intensified as the lack of encryp-
tion or related weaknesses of IoT devices and/or infrastruc-
tures are attacked [8]–[14].

Specific Emitter Identification (SEI) is one technique
capable of filling this gap in security [15], [16]. SEI is a
physical layer approach that has demonstrated success in
identifying wireless transmitters by exploiting the uninten-
tional coloration that is imparted upon everywaveform during
its formation and transmission [17]–[35]. This coloration
is attributed to the distinct characteristics and interactions
of the radio’s Radio Frequency (RF) front-end components.
It differs from other security approaches (e.g., encryption,
passwords) in that it is inherent to every transmitter and is
very difficult to mimic, which in turn makes it very challeng-
ing to circumvent.

One SEI implementation is known as RF-Distinct Native
Attributes (RF-DNA) fingerprinting. RF-DNA fingerprint-
ing extracts SEI features from the portion or portions of
the waveform associated with a fixed, known sequence of
symbols such as those of the IEEE 802.11a Wi-Fi pream-
ble [36]. RF-DNAfingerprinting has demonstrated success in
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multiple research efforts within the SEI and network security
communities. Most of these RF-DNA fingerprinting efforts
have achieved intra-model (a.k.a., serial number) discrimi-
nation [20], [22]–[26], [34], [35], [37]–[40]. Prior RF-DNA
fingerprinting has performed radio discrimination using tra-
ditional supervised or unsupervised classification algorithms.
We argue that these implementations overlook recent suc-
cesses within the area of deep learning, which stands to
improve the accuracy and efficiency of fingerprinting-based
security. These improvements are of even greater importance
when SEI is conducted using waveforms that transverse a
multipath environment, because the resulting interference and
phase shifting makes it more difficult for the classification
algorithm to learn the inherent features.

Our paper contributes the first case in which RF-DNA
fingerprint–based SEI is performed using deep learning.
Specifically, we perform deep learning–based SEI using:

1) Waveforms that undergo Rayleigh fading (i.e., the line-
of-sight waveform is not present in the received signal)
and equalization prior to RF-DNA fingerprint learning.

2) RF-DNA fingerprints in which the features are learned
from the raw In-Phase & Quadrature (IQ) sam-
ples, complex Gabor coefficients, and representations
thereof.

3) An autoencoder-initialized Convolutional Neural Net-
work (CNN) to aid in convergence and improve classi-
fication accuracy.

4) An assessment under four multipath channels: noise
only, three, five, and seven reflectors/paths

5) An assessment of deep learning’s ability to learn
SEI features that are invariant to noise or noise and
multipath.

This work differs from previous RF-DNA fingerprint-
ing works in that handcrafted features (a.k.a., feature
engineering) are not used. In feature-engineered RF-DNA
fingerprinting, the segmentation of the waveform represen-
tation (e.g., power spectral density, instantaneous phase)
and calculated features (e.g., skewness, kurtosis) are done
prior to and without knowledge of how they aid or hin-
der the discrimination of one radio from another and vice
versa. Thus, handcrafted RF-DNA fingerprints rely upon an
individual’s knowledge and expertise, which can negatively
impact SEI performance. Deep learning–based RF-DNA fin-
gerprinting eliminates the need for (i) empirical partitioning
of the waveform or its transform, (ii) calculation of features
(e.g., variance, skewness, kurtosis, entropy) over each par-
tition, and (iii) feature selection (e.g., principal component
analysis) prior to SEI. Our deep learning–based RF-DNA
fingerprinting approach is compared with the handcrafted
RF-DNA fingerprinting approach in [40]; this prior approach
is described in Sect. III-F and corresponding results shown in
Sect. V.

The remaining sections of this paper are as follows: Sect. II
presents a review of related works; Sect. III provides a brief
overview of signal collection, detection, post-processing, and
multipath generation and equalization; Sect. IV presents the

CNN-based SEI approaches; Sect. V presents CNN-based
SEI results; and the conclusion is in Sect. VI.

II. RELATED WORK
RF-DNA fingerprinting and similar SEI works augment
wireless network security through the use of radio signal clas-
sification. Recently, multiple SEI investigations have con-
ducted radio signal classification using deep learning [35],
[41]–[54]. The application of deep learning within the SEI
domain is motivated by the removal of feature engineering
while achieving superior radio signal classification results.
The remainder of this section presents a brief summary of
related deep learning–based SEI works.

These prior deep learning–based SEI works either (i) per-
form analysis without any channel impairments (e.g., interfer-
ence, noise, multipath) [44]–[46], [49], [50], (ii) use a noise
only channel [41], [42], [47], [51], [52], (iii) use a multipath
channel with unspecified or unknown characteristics [43],
[48], [53], [54], or (iv) use a static multipath channel (i.e.,
the same multipath channel coefficients are used for every
transmitted waveform) [35]. These works assume that the
chosen deep learning approach will sufficiently learn the
channel to mitigate its impact on the classification decisions.
This assumption is convenient in that it removes the need
for channel estimation and correction steps within the SEI
process, but it overlooks the time-varying nature of most
multipath fading conditions. In our work, CNN-based SEI
is assessed using RF-DNA features learned from waveforms
that have undergone channel estimation and equalization after
simulated transmission through a dynamic Rayleigh fading
channel under degrading SNR conditions.

III. BACKGROUND
A. SIGNAL COLLECTION, DETECTION, AND
POST-PROCESSING
RF-DNA fingerprint–based SEI uses a portion of the trans-
mitted waveform that corresponds with a fixed, known
sequence of symbols used by the receiver to perform
synchronization and channel equalization to facilitate demod-
ulation. This work uses the fixed, known, Orthogonal Fre-
quency Division Multiplexed (OFDM) symbol sequence of
the IEEE 802.11a Wi-Fi waveform’s preamble. Our rationale
for using the 802.11a preamble is three-fold: (i) OFDM is
used in 802.11ac, 802.11ad, 802.11ax, and Long Term Evolu-
tion (LTE) [55]; (ii) prior SEI research has demonstrated suc-
cess with its use [18], [20], [23], [27], [33], [34], [37], [38],
[40], [46], [48], [56]; and (iii) the on-hand set of preambles
was used in [37], [38], [40], which facilitates comparative
analysis.

All signals are collected from ND = 4 Cisco AIR-CB21G-
A-K9 Wi-Fi cards/devices using an Agilent E3238S-based
spectrum analyzer within an office environment. This spec-
trum analyzer has a 36MHz wide RF bandwidth, a frequency
range of 20 MHz to 6 GHz, a sampling rate of up to 95 mega-
samples/s, and a 12-bit analog-to-digital converter [57]. For
each radio, a total of NB = 2, 000 transmissions/bursts
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TABLE 1. The delays, τk , and variances, σ2
k , used to generate the Rayleigh

fading channel models comprised of L paths.

are selected using amplitude-based variance trajectory detec-
tion [22]. Following detection, each waveform is filtered
using a fourth order low-pass Butterworth filter with a cutoff
frequency of 7.7 MHz. Once filtered the preamble’s IQ sam-
ples are stored for post-processing. Post-processing consists
of carrier frequency offset correction and re-sampling to a
sampling rate of 20 MHz.

B. MULTIPATH CHANNEL MODELING
Multipath fading is a common occurrence within wireless
communications environments and leads to distortion of the
received waveform. If not compensated for, this distortion
adversely affects the demodulation process. In addition to
interfering with receiver function, multipath distortion alters
the SEI-exploited distinct and native waveform characteris-
tics that facilitate transmitter discrimination.

For the results presented in Sect. V, the multipath channel
is modeled using Rayleigh fading, which is the default, indoor
model for IEEE 802.11a Wi-Fi operating environments [58].
The Rayleigh fading model is implemented through the use
of a tap delay line given by

h(t, τ ) =
L∑
k=1

αkδ(t − τkTs), αk = ak + jbk , (1)

where Ts is the sampling period; L is the total number of
paths; τk is the time delay for the k = 1, . . . ,L path; and
ak , bk are zero mean, independent and identically distributed
(iid) Gaussian random variables of variance σ 2

k . The specific
values for τk and σ 2

k used to construct Rayleigh fading chan-
nels of L = [3, 5, 7] paths are presented in Table 1.

C. MULTIPATH ESTIMATION AND CORRECTION
RF-DNA fingerprinting is a waveform-based SEI approach;
thus, estimation and correction of the fading channel delays
and coefficients is performed using the waveform-based
approach initially presented in [38], which uses the Nelder-
Mead (N-M) simplex algorithm [59].

The first step in estimating the channel’s impulse response
is time synchronization. The start of the received waveform

is obtained using the Least Square (LS) estimator in [60].
The resulting estimate coincides with the delay of the fading
channel’s k = 1 path. Any remaining delays are estimated in
relation to the first as described in [38].

Following time synchronization, estimation of the impulse
response’s coefficients is performed using the N-M channel
estimator developed in [38]. The N-M estimator is an itera-
tive, direct search approach that minimizes the function given
in (2):

f (h) =
∑
k∈m

∣∣∣∣r(m)− L−1∑
k=0

x(m− τk )hk

∣∣∣∣2, (2)

where r(m) is the preamble of the received 802.11a wave-
form, x(m) is the transmitted preamble, and hk is the k th

coefficient to be estimated. As in [37], [38], [40], x(m) is
one of Np = 20 ‘‘candidate’’ preambles that represent each
of the ND = 4 Wi-Fi radios. A total of five preambles are
randomly selected from eachWi-Fi radio’s set ofNB = 2, 000
waveforms to serve as that radio’s candidates. The use of
Np = 20 candidate preambles results in twenty estimated
values of hk . The best estimate hbk results in the smallest
residual error between the received and selected candidate
preamble.

Following estimation of the impulse response’s coeffi-
cients, channel equalization is performed using the Minimum
Mean Square Error (MMSE) equalizer in [61]. MMSE equal-
ization accounts for the channel statistics, which makes it
well suited to the low SNR conditions encountered in SEI
applications.

D. CONVOLUTIONAL NEURAL NETWORKS
CNN networks are feed-forward networks that use back-
propagation to minimize a loss function. In CNNs, the feed-
forward multi-layer neural network is prepended with
one or more convolutional and pooling layers that enable it

FIGURE 1. CNN architecture used for one-dimensional RF-DNA
fingerprint representations.
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to take two-dimensional data (e.g., images) as input (a.k.a.,
tensor) [46], [62]. CNN uses the convolutional layer(s) to
extract and learn features from the input data and generate
feature maps. After each convolution layer, an activation
function performs a nonlinear transformation for each node
in the feature map. In this work, the activation function is
the Rectified Linear Unit (ReLU) function [46]. The acti-
vated feature maps are then passed to the pooling layer for
dimensionality reduction. After one or more convolutional,
activation, and pooling layers, dense layers extract higher-
level features from the feature maps [48]. Finally, the output
layer assigns the learned RF-DNA features to one of the
classes that represent each of the ND = 4 Wi-Fi radios.
In this work, over-fitting is minimized by using l2 reg-

ularization to control the CNN network parameters size.
Categorical cross-entropy is used for the loss function, which
represents the error between the model prediction and the
ground truth. ADAM optimization, with a learning rate l =
0.0001, is used to adjust the CNN network weights to mini-
mize the loss function during the training process. The CNN
networks are implemented using Keras with a TensorFlow
backend running on NVIDIA Tesla K40m GPUs.

1) ONE-DIMENSIONAL (1D) CNN
The CNN, shown in Fig. 1, is used for 1D SEI. The input to
this CNN is a 2×N real-valued tensor where N is the length
of the slice/partition, as described in Sect. IV. 1D SEI is con-
ducted using a CNN comprised of two convolutional stages.
The first and second convolutional layers use 50 filters of size
1×7 and 2×7, respectively. Down sampling is implemented
using 2×2max pooling. ReLU activation is used for all layers
except the output layer. The first and second fully connected
layers consist of 256 and 128 neurons, respectively. A 50%
dropout rate is used in the 256 layer to minimize overfitting.
The output layer uses a softmax decision.

2) TWO-DIMENSIONAL (2D) CNN
All 2D SEI results are generated using the CNN network
shown in Fig. 2. The input image is passed to the first convo-
lution stage, which consists of a convolution layer constructed
of 64 3 × 3 filters, and a 2 × 2 max pooling layer. The
output of the first convolution stage passes through three
additional convolution stages and one convolution layer prior
to the flattening layer. The flattening layer transforms the
passed feature maps into a 1D vector that is fed into the fully
connected layers. As with the 1D CNN, a dropout rate of 50%
is used to minimize over-fitting. The output of the second
fully connected layer is fed to the softmax output layer where
the classification decision is made. The activation function of
all layers except the output layer is ReLU.

E. AUTOENCODER
An Autoencoder (AE) is a feed-forward neural network that
is used to learn an efficient representation of the input data
by regenerating the input at the output layer [63], [64]. The
AE architecture is similar to aMulti-Layer Perceptron (MLP)

FIGURE 2. CNN architecture used for two-dimensional RF-DNA
fingerprint representations.

network in that it has an input layer, a variable number of
hidden layers, and an output layer. An AE differs from an
MLP in that (i) the input and output layers have the same
size (i.e., number of units), (ii) it is trained using unsu-
pervised learning via unlabeled data, and (iii) it learns a
compressed representation of the input to reproduce it at the
output [62]–[64]. An AE can be used for (i) dimensionality
reduction by finding an efficient, compressed representation
of the input; (ii) denoising by forcing the AE to learn features
from corrupted input data [52]; and (iii) initializing neural
networks, especially when the number of labeled training
samples is small [62]–[64]. In this paper, unsupervised ini-
tialization of a CNN is achieved by using the weights and
biases of a trained Convolutional AE (CAE).

1) CONVOLUTIONAL AUTOENCODER
In CAE, the encoder is constructed using convolutional and
pooling layers to extract the features while reducing the
dimensionality of the input. TheCAEdecoder is comprised of

FIGURE 3. The CAE architecture used to initialize the convolutional layers’
weights and biases of a one-dimensional CNN.

VOLUME 9, 2021 17103



M. K. M. Fadul et al.: Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning

FIGURE 4. The CAE architecture used to initialize the convolutional layers’ weights and biases of a two-dimensional CNN.

deconvolutional and unpooling layers to expand the encoder
output to the same size as that of the input [63], [64]. Unpool-
ing zeroes out all locations except those corresponding to
the maximum values preserved by the pooling layers [63].
Spatial locality is preserved by using shared convolutional
filter weights across all input locations [64]. If the input tensor
to the CAE is x, then the resulting code after the encoder is
given by

ei = σ (xi ∗W + b), (3)

where ∗ denotes the 1D or 2D convolution depending on the
input selected, W are the convolutional filter weights, b is
the bias, and σ is the activation function [63]. The decoder
reconstructs the output of the encoder using

zi = σ (ei ∗ W̃ + b̃), (4)

where zi, is the reconstruction of the ith input, W̃ are
the deconvolutional filter weights, b̃ is the bias at the
decoder [63]. The CAE parameters to include W , W̃ , b, and
b̃ are adjusted through the use of backpropagation. Unsu-
pervised pre-training of the CAE aims to minimize the loss
function given by

E(θ ) =
m∑
i=1

(xi − zi)2, (5)

which measures the reconstruction error between the input xi
and the output zi. The use of 1D and 2D RF-DNAfingerprints
requires the use of 1D and 2D CAE architectures, which are
shown in Fig 3 and Fig. 4, respectively.

F. FEATURE-ENGINEERED RF-DNA FINGERPRINTING
To compare the presented deep learning approach with prior
feature-engineered RF-DNA fingerprinting approaches, our

assessment includes results generated using the approach
in [40]. The work in [40] classifies the same Cisco Wi-Fi
cardsmentioned in Sect. III-A andwhosewaveforms undergo
the channel equalization process described in Sect. III-C.
Following equalization, the Time-Frequency (TF) response
of eachwaveform is calculated using the discrete Gabor trans-
form (DGT) [65]. The DGT is computed using a Gaussian
window of width wG = 0.015,M = 186 total Gaussian win-
dow shifts, K = 186 total frequency values, and the window
is advanced by N1 = 1 samples between calculations, which
equates to over sampling of the DGT.

The normalized magnitude-squared GT surface is calcu-
lated and subdivided into non-overlapping sub-regions that
are NT = 12 by NF = 10 in dimension in accordance
with [25], where NT and NF are the length of the sub-region
along the time and frequency dimension, respectively. Each
sub-region is reshaped into a 1×(NTNF ) = 120 length vector
and statistical values of variance, skewness, and kurtosis cal-
culated. Each sub-region’s statistical features are sequentially
concatenated to those of the prior sub-region. This process is
repeated for the entire TF surface. The final three statistical
features, composing an RF-DNA fingerprint, are calculated
over the entire TF surface itself. The result is a Nf = 363
length feature-engineered RF-DNA fingerprint.

Classification of the feature-engineered RF-DNA fin-
gerprints is conducted using the Multiple Discriminant
Analysis/Maximum Likelihood (MDA/ML) classifier. MDA
performs feature selection by linearly projecting the
Nf -dimensional RF-DNA fingerprints into a
ND − 1-dimensional subspace that maximizes inter-class
separability while simultaneously minimizing intra-class
spread [66]. Following the projection, ML classification is
facilitated by fitting a multivariate Gaussian distribution to
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each of the classes’ projected RF-DNA fingerprints. Finally,
an unknown radio’s projected RF-DNA fingerprints are
assigned to the class whose associated likelihood function
returns the largest value.

IV. METHODOLOGY
In this work, RF-DNA fingerprint–based SEI is performed
using the CNN-learned features drawn from 1D and 2D
representations of the 802.11a Wi-Fi preambles.

A. CNN USING ONE-DIMENSIONAL RF-DNA FEATURES
For 1D RF-DNA fingerprints, the time domain IQ samples of
the 802.11a preamble are used. The CNN architecture used
for 1D RF-DNAfingerprinting approaches is shown in Fig. 1.

The time-domain, channel-equalized preambles consist of
Ns = 320 complex IQ samples due to the 16 µs duration
preamble being sampled at a rate of 20 MHz. The training
of deep learning networks requires large data sets, which is
typically not the case when working with collected RF signal
data sets [63].Motivated by the results presented in [46], [47],
this work adopts a signal partitioning scheme to provide data
augmentation. This partitioning scheme has three advantages:
(i) the size of the network is reduced by at least reducing the
size of the input layer, (ii) the shift-invariant nature of the
network is improved by training the CNNusing shorter length
sequences [46], and (iii) the partitioning of long sequences
into multiple shorter sequences results in a larger data set for
training the CNN.

Given a discrete-time RF signal comprised of Ns total
samples, signal partitioning is implemented by sliding a Nb
length window along the entire duration of theNs long signal.
The sliding window is advanced by one sample between con-
secutive windows; thus, two consecutive sub-sequences differ
by one sample. Fig. 5 provides a representative illustration
of the signal partitioning process applied to all 1D signals
as well as their representations. The length of the sliding
window is set to Nb = 128, which results in the Ns = 320
length sequence being partitioned into 193 complex-valued
sub-sequences each of length Nb = 128. The partitioning
results in shorter signals, but the number of data set entries
increases to 193(2, 000) = 386, 000 per Wi-Fi radio. A 2 ×
128 real-valued tensor is input to the CNN shown in Fig. 1
Each tensor’s first and second rows contain the I andQ sample
values, respectively.

B. CNN USING TWO-DIMENSIONAL RF-DNA FEATURES
For 2D RF-DNA fingerprinting, the 802.11a preamble’s TF
representation is generated using the DGT, which is briefly
explained in Sect. III-F. Selection of the DGT is due to
(i) computational complexity being proportional to the sam-
pling rate, (ii) being well-suited to degrading SNR when over
sampled, and (iii) superior performance in prior RF-DNA
fingerprinting work [25], [33], [37], [40]. For all TF-based
results, the DGT is computed using the same variable settings
as stated in Sect. III-F. Greater detail on the DGT, including

FIGURE 5. Representative illustration of the signal partitioning scheme
applied to 1D sequences. In this case, the partitioning is applied to the
in-phase samples of an 802.11a Wi-Fi preamble. The length of the sliding
window, Nb, as well as the number of samples advanced between
windows differs from that used to generate the results in Section V in an
effort to improve visual clarity.

mathematical expression and use within the RF-DNA finger-
print generation process, can be found in [25].

1) IMAGE-BASED
For image-based RF-DNA fingerprinting using CNN, a 2D
intensity representation is generated from the phase angle of
the complex Gabor coefficients. This intensity image is 300×
300 in size and is input to the CNN architecture described in
Sect. III-D2 and illustrated in Fig, 2.

2) PARTITIONED TIME-FREQUENCY
For partitioned TF-based RF-DNAfingerprinting, each 300×
300 image is partitioned along the time dimension. A 300 ×
100 sliding window is applied to the original image and
advanced by one sample/pixel to generate each sub-image.
This process generated 201 sub-images per image, resulting
in a data set of 201(2, 000) = 402, 000 sub-images per Wi-Fi
radio.

C. CNN INITIALIZATION USING CAE
A CNN’s convolutional layers are often initialized using
randomly generated weights and biases; however, such an
approach can result in poor convergence and classification
performance of the final model. This issue becomes an even
greater detriment when using a training set comprised of a
limited number of RF-DNA fingerprints/samples [63], [64].
We mitigate this issue herein by initializing the 1D and 2D
CNNs using the corresponding CAE as described in Sect. III-
E. The use of CAE initialization results in a two-stage training
process: (i) unlabeled RF-DNA fingerprints are used to train
the CAE via unsupervised learning, and (ii) the CNN is
trained using labeled RF-DNAfingerprints and convolutional
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FIGURE 6. The loss function output after each training epoch of a 1D and
2D CAE at SNR = 9 dB.

layers whose weights and biases are initialized using the
corresponding values of the trained CAE’s encoder.

In general, the CAE training data is sampled into mini-
batches, and backpropagation is used to compute the gradient
of the loss function over each minibatch [67]. During CAE
training, the difference between the CAE’s input, xi, and
the reconstructed sample, zi, is calculated using a Minimum
Mean Square Error (MMSE) loss function. In this work, mini-
batch sizes of 16 and 32 are used for the 1D and 2D represen-
tations of the CAE training data, respectively. These values
were determined based on a grid search that is performed
for three hyperparameters: (i) minibatch size, (ii) layer size,
and (iii) hidden layers activation. The number of epochs,
used to train a given CAE, is determined experimentally by:
(i) setting the number of epochs to 300 and (ii) recording the
loss function value calculated at the end of each epoch. The
epoch corresponding to the smallest loss function value is
selected as the total number of CAE training epochs. That
process was conducted for all SNRs in the range of 9 dB to
30 dB. It was observed that the number of epochs needed to
train the CAE increased as the SNR decreased. Fig. 6 shows
that for an SNR of 9 dB, the minimum number of training
epochs needed to achieve the desired loss value was 78 and
99 for the 1D and 2D CAE, respectively. Since an SNR =
9 dB represents the lowest SNR used in this work, all 1D
and 2D CAEs are trained using a total of 78 and 99 training
epochs, respectively (i.e., SNR ≥9 dB).
Following CAE training, the encoder’s convolutional lay-

ers weights and biases are stored for CNN initialization. It is
important to note that the selected (i.e., 1D or 2D) CNN’s
fully connected layers are always initialized randomly.

V. RESULTS
All results presented in this section are generated using
802.11a Wi-Fi preambles that have undergone Rayleigh fad-
ing as described in Sect. III-B. Each of the NB = 2, 000
preambles is convolved with a unique Rayleigh channel and
like-filtered, scaled AdditiveWhite Gaussian Noise (AWGN)

is used to achieve SNR ∈ [9], [30] dB at 3 dB steps. Monte
Carlo analysis is facilitated through the use of Nz = 10
AWGN realizations per SNR. Following convolution with
the Rayleigh fading channel and SNR scaling, each preamble
undergoes channel estimation and equalization in accordance
with Sect. III-C. The resulting data set is normalized using
the minimum and maximum values and then divided into two
subsets: one for training of the CAE and CNN, and the other
for use as a ‘‘blind’’ test set. A total of 200 preambles from
each noise realization and radio (i.e., 200× 10 = 2, 000 per
radio) are randomly selected to form the blind test set. The
remaining preambles are used to train the 1D and 2D CAEs
and CNNs.

Both of the CAEs are trained using the entire training set
for each of the Wi-Fi radios without class/radio labels (i.e.,
unsupervised). For CNN model development (i.e., the sec-
ond stage in the training process) the training set is further
subdivided to facilitate five-fold cross-validation. A total
of 1,800 preambles from each noise realization and radio (i.e.,
1, 800× 10 = 18, 000 per radio) is divided into five equally
sized subsets. For each fold, four of the training subsets are
used for model development, while the remaining subset is
held out for model validation. This process is repeated five
times such that each subset serves once in validating the
developed CNN model. The CNN model that results in the
highest classification accuracy, across all five folds and noise
realizations, is selected as the ‘‘best’’ model. All CNN-based
classification results are generated using the best CNNmodel
and the blind test set. Classification performance is assessed
using average percent correct classification, which is the aver-
age of at least 2,000 total decisions per radio at a given SNR.

A. RESULTS: CNN WITHOUT CAE INITIALIZATION
Initial assessment of CNN-based RF-DNA fingerprinting is
conducted using 1D and 2D CNNs that use randomly initial-
ized weights and biases. This approach serves two purposes:

FIGURE 7. Average percent correct classification performance of 802.11a
Wi-Fi preambles using seven different preamble representations and
pre-processing scenarios for L = 5 Rayleigh fading channel conditions.
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FIGURE 8. Average percent correct classification performance of the TP and TFP results corresponding to randomly and CAE-initialized CNNs.
These results are compared with the TPE scenario and handcrafted RF-DNA fingerprinting, TFFE , results generated in accordance with Sect. III-F
and consistent with the work in [40].

(i) selection of the best RF-DNA fingerprint representation
based on classification performance and (ii) facilitating com-
parison with prior CNN-based SEI publications.

The results in this section are generated using a Rayleigh
fading channel that consists of L = 5 total paths. Based
upon the 1D and 2D RF-DNA fingerprint representations
presented in Sect. IV, three RF-DNA fingerprinting scenarios
result: (i) partitioned time (TP), (ii) TF phase images (TFI ),
and (iii) partitioned TF images (TFP). Four additional sce-
narios are also presented to aid in assessing the SEI perfor-
mance of the developed CNN-based RF-DNA fingerprinting
approaches. The first two of these additional scenarios cor-
responds to perfect estimation (PE) of the Rayleigh fading
channel coefficients, which represents the case in which the
exact value of αk is known or achieved. Thus, PE eliminates
the impact of channel estimation error from the classifica-
tion results. Results for this scenario are generated using
the partitioned time and time-frequency approaches and are
designated as TPE and TFPE , respectively. It is important
to note that PE is an ideal case that is impractical within
operational systems. However, PE is included as a baseline
against which the TP, TFI , and TFP results can be com-
pared. The remaining two scenarios use the 802.11a Wi-Fi
preambles directly from the Rayleigh fading channel (i.e.,
no channel estimation nor correction (NC) is performed).
These scenarios assess the CNN’s ability to extract discrim-
inating RF-DNA fingerprint features directly from signals
that undergo Rayleigh fading, but not channel estimation
and correction. The NC scenarios use RF-DNA fingerprints
learned from the partitioned time signals TNC and partitioned
TF images TFNC .
For the sake of brevity, clarity, ease of comparative analy-

sis, and to facilitate selection of the best RF-DNA fingerprint
approach, average percent correct classification performance
is presented for each of the seven RF-DNA fingerprinting
scenarios, Fig. 7. It is important to note that the results are

generated using CNNs that were not initialized using the
CAEs’ encoder weights and biases. The use of CAE initializa-
tion may change the performance of an individual scenario,
but the relation between scenarios is unchanged. The perfect
estimation scenario TPE resulted in the best average percent
correct classification performance for SNR ∈ [9], [30] dB.
The partitioned TF images, TFP, achieved average percent
correct classification performance of 90% or greater for
SNR≥21 dB, which proved superior to the other four scenar-
ios: TP, TFI , TNC , and TFNC at these SNRs. For SNR≤18 dB,
the partitioned time (TP) scenario achieved superior average
percent correct classification performance versus that of the
TFI , TFP, TNC , and TFNC scenarios. The poorest average
percent correct classification performance is associated with
the TNC and TFNC scenarios across all SNRs. The poor
performance is attributed to the Rayleigh fading effects that
are unique for every preamble; thus, making it difficult for
the CNNs to extract RF-DNA fingerprint features that are
sufficiently unique and distinct to facilitate serial number
discrimination. This suggests that channel correction is nec-
essary unless channel agnostic features can be learned by
the deep learning approach. Learning of channel agnostic
features may be facilitated through the use of a larger train-
ing data set, alternate signal representation, or both. Based
upon the results shown in Fig. 7, all subsequent results are
generated using the partitioned time and TF scenarios only.
Lastly, the remainder of this section is focused on presenting
the results and analysis associated with modifying the pre-
sented approach for the purpose of improving classification
performance.

B. RESULTS: CNN WITH CAE INITIALIZATION
Based upon the results presented in Fig. 7 and the discussion
in Sect. V-A, 1D and 2D CAE-initialized CNN (CAE-CNN)
RF-DNA fingerprinting assessments are conducted using
the partitioned time (TP), partitioned TF (TFP), and perfect
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estimation (TPE ) data sets. Fig. 8 presents average percent
correct classification performance for randomly (Fig. 8(a))
and CAE (Fig. 8(b)) initialized CNNs directly overlaid with
TPE and feature-engineered, TFFE , RF-DNA fingerprinting
performance. When the CNN weights and biases are ran-
domly initialized, TFFE results achieve superior average per-
cent correct classification performance for SNR ≥18 dB,
Fig. 8(a). However, for SNR≤15 dB, the TP RF-DNA finger-
printing performance is as good as or marginally worse than
that of the TFFE results. For SNR ≥21 dB, TFP-based RF-
DNA fingerprinting results prove superior in average percent
correct classification performance versus the TP-based RF-
DNA fingerprinting approach, Fig. 8(a).

Average percent correct classification results for CAE ini-
tialized 1D and 2D CNNs are compared with TPE and TFFE
results in Fig. 8(b). When compared to the results in Fig. 8(a),
CAE initialization of the CNNs improves the average percent
correct performance of all three DL-based RF-DNA finger-
printing scenarios at each of the eight SNRs. The largest
improvement occurs at SNR = 9 dB and represents an
approximate classification increase of 9% for the DL-based
scenarios of TP, TFP, and TPE . For SNR ≥21 dB, the TP
and TFP average percent correct classification performance
matches that of the perfect estimation scenario, TPE . In con-
trast to the results in Fig. 8(a), TP and TFP average percent
correct performance is superior to TFFE for SNR ≥9 dB and
SNR ≥12 dB, respectively. When excluding TPE , TP-based
RF-DNA fingerprinting achieves superior average percent
correct classification performance for SNR ≤18 dB. These
results suggest that noise is more detrimental to the image-
based, TFP, RF-DNA fingerprinting approach than that of
the time partitioned cases TP and TPE . This is because all
three DL-based scenarios are conducted using the same set
of signals (i.e., the same Rayleigh fading, estimation, and
correction effects are present). Thus, when considering the
architecture complexity and number of parameters associated
with 2D CAE and CNN, as well as the results presented thus
far, the partitioned time signal representation, TP, is selected
as the superior CNN-based RF-DNA fingerprinting approach
under Rayleigh fading and noisy channel conditions. All sub-
sequent results and investigations are performed using the TP
scenario and a CAE-CNN.

1) MODEL COMPLEXITY
Table 2 presents the number of hyperparameters and train-
ing times associated with the 1D and 2D CAE-CNNs used
for the TP, with Nb = 64, and TFP RF-DNA finger-
printing scenarios, respectively. All training times are deter-
mined by running the selected architecture and scenario on a
Dell i7 computer with a GTX GP1060 Graphics Processing
Unit (GPU). The training time for the feature engineering,
TFFE , is included to complete its comparison with the DL
approaches (Fig. 8(b)). The TFFE training time encompasses
the time needed to perform signal transformation, feature
generation, and MDA/ML development using five-fold cross
validation and a total of ten Monte Carlo trials at each SNR

TABLE 2. Number of parameters and training times for the different
architectures used in this paper.

value. Based on Table 2, the TFP scenario’s 2D CAE-CNN
requires the longest training time (33 hours) and most hyper-
parameters (roughly 5.4×106), representing the highest com-
plexity of the three scenarios. Although the TFFE scenario
requires the least amount of training time, its performance is
inferior to both DL approaches. The TFP and TFFE scenarios
require the calculation of the GT coefficients. For a sampling
frequency of 20 MHz, the GT requires a sequential calcula-
tion time ofO

(
N 3
B

)
for a data set comprised ofNB preambles.

When considering the training times and hyperparameters,
as well as the results in Fig. 8(b), the 1D CAE-CNN archi-
tecture associated with the TP scenario results in superior
performance.

2) SLIDING WINDOW LENGTH ANALYSIS
In an effort to improve percent correct classification perfor-
mance, the optimal sliding window size, Nb, is determined
using empirical assessment. Selection of the initial sliding
window length of Nb = 128 was inspired by the work
presented in [46]. However, the work in [46] performed
SEI using IQ signals that lacked channel impairments such
as noise and multipath; thus, a sliding window of length
Nb = 128 may not facilitate maximum SEI performance
when these impairments are present within the collected
IQ signals/preambles. The sliding window assessment is
conducted using (i) a Rayleigh fading channel consisting
of L = 5 reflectors; (ii) an SNR = 9 dB; (iii) a 1D

FIGURE 9. Average percent correct classification performance using time
partitioned, TP , 802.11a preambles; a Rayleigh fading channel comprised
of L = 5 reflectors; sliding window lengths of Nb = [32], [64], [128], [256];
and 1D CAE-initiated CNN at an SNR of 9 dB.
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CAE-CNN; and (iv) the 802.11a preambles’ time partitioned,
TP, IQ samples that are partitioned using sliding windows of
length Nb = [32], [64], [128], [256]. Average percent correct
classification performance for each sliding window length is
presented in Fig. 9. Based on these results, a Nb = 64 length
slidingwindow results in superior classification performance,
which results in a 6% classification performance increase
versus that of the Nb = 128 length window.

3) ADDITIONAL FADING CHANNELS
All results presented up to this point used a Rayleigh fad-
ing channel comprised of L = 5 reflectors. This section
presents results for three additional channel conditions of
noise only and Rayleigh fading channels consisting of L =
3 and L = 7 reflectors. Fig. 10 shows average percent
correct classification performance generated using the ND =
4 802.11a Wi-Fi radios’ TP preambles, partitioned using a
sliding window of length Nb = 64, for each of the four
channel conditions at SNR ∈ [9], [30] dB in 3 dB steps.
A 1D CAE-CNN is trained at each SNR of a given chan-
nel condition. Noise only classification performance is at
95% or higher for all investigated SNRs. The noise only
results prove superior to those associated with the Rayleigh
fading channels. This is attributed to the fact that the noise
only preambles do not undergo fading nor subsequent channel
estimation and correction, which can alter the SEI exploited
features. For the L = 3 channel conditions, average per-
cent correct classification performance of 91% or higher is
achieved for all SNRs. For the L = 5 Rayleigh fading chan-
nel, average percent correct classification of 93% or higher is
achieved for SNR≥15 dB.Average percent correct classifica-
tion performance is greater than 80% for the L = 7 Rayleigh
fading channel at SNR ≥21 dB but fails to exceed 87% at
any SNR. The L = 7 case represents the most challenging
case in terms of classification performance. The decrease in
classification performance is attributed to error that occurs

FIGURE 10. Average percent correct classification performance across the
ND = 4 802.11a Wi-Fi radios using time partitioned, TP , preambles; a
sliding window of length Nb = 64; and CAE-CNNs for SNR ∈[9], [30] dB
in 3 dB steps.

within the N-M channel estimation process. The work in [40]
shows that as the number of reflectors, L, increases so does
the error associated with estimating the channel coefficient(s)
hk . This error is exacerbated as the SNR degrades. The inabil-
ity to accurately estimate the channel coefficients carries for-
ward into the correction stage and results in the SEI features
being corrupted and/or lost, which inhibits the CNN’s ability
to sufficiently learn them as they change across preambles
due to the time-varying nature of the channel. The estima-
tion error can be reduced or eliminated by (i) improving
the N-M channel estimator’s accuracy as L increases and
SNR decreases, (ii) developing or selecting a more accurate
channel estimation approach, and/or (iii) developing an SEI
approach capable of learning signal features that are channel
invariant. The next section provides a brief investigation into
channel-immutable signal features using CAE-CNNs. The
first two error-reducing suggestions are left to future research.

FIGURE 11. Average percent correct classification performance across the
ND = 4 802.11a Wi-Fi radios using time partitioned, TP , preambles,
a sliding window of length Nb = 64, and 1D CAE-CNN.
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FIGURE 12. Average percent correct classification performance across the ND = 4 802.11a Wi-Fi radios using time partitioned, TP , preambles,
a sliding window of length Nb = 64, and a 1D CAE-CNN that is trained for a specific channel condition (e.g., L = 3) and SNR = 9 dB, but is used to
classify all TP preambles across the four channels and SNR ∈ [9], [30] dB.

4) CHANNEL INVARIANT SEI
The results presented in Fig. 10 require training and storage of
individual CAE and CNN models at each SNR for a selected
channel condition. This results in a total of 16 models—eight
CAE and eight CNN—for a given channel condition (e.g.,
L = 3) and 64 overall when considering all four investigated
channel conditions. Thus, every CAE and CNN model is
developed for a specific SNR and channel. This specificity
can be problematic in two ways: (i) individual deep learning
models may be hindered or prevented from learning SEI
features that remain consistent as the SNR and/or channel
changes, and (ii) storage of the developed deep learning mod-
els may become problematic as the number of radios and/or
possible channel conditions (e.g., more multipath channel
cases such as L = [2], [9]) increases. These issues are
important to consider because SNR and multipath channel
conditions are continuous, not discrete as investigated here.
It would prove ideal if a single CAE-CNN pair could learn a
set of SEI features that is invariant to the channel conditions
(i.e., SNR and multipath).

Motivated by the results in Fig. 10 and the findings in [53],
[54], the approach presented here investigates learned SEI
features that are invariant to (i) noise or (ii) noise and
Rayleigh fading. Fig. 11(a) presents average percent cor-
rect classification performance in which an individual 1D
CAE-CNN pair is trained for each channel condition at
SNR = 9 dB using the corresponding TP preambles with
Nb = 64, resulting in four 1D CAE-CNN trained pairs (i.e.,
one for each channel condition). When comparing the results
in Fig. 11(a) to those in Fig. 10, average percent correct
classification performance actually improves by 1% to 2%
for all four channel conditions at SNR ≥12 dB. These results
demonstrate that the SEI features learned at SNR = 9 dB
remain consistent as the SNR improves. These results suggest
that using noisy data to train the 1D CAE-CNN results in a
more robust set of learned SEI features.

Investigation into noise- and Rayleigh fading–invariant
SEI features is conducted by training a single 1D CAE-CNN
using TP preambles, with Nb = 64, for the L = 7 Raleigh
fading channel at SNR = 9 dB. This approach is selected

because it represents the most difficult case in terms of the
channel conditions under which the CNNmust learn discrim-
inating SEI features. The resulting 1D CAE-CNN is used
to classify the TP preambles for every channel condition,
noise only and L = [3], [5], [7], at SNR ∈ [9], [30] dB
in 3 dB steps. Fig. 11(b) shows the average percent correct
classification performance for this investigation. The results
show that the SEI features learned by the 1D CAE-CNN,
at L = 7 and SNR = 9 dB, are invariant to changes in
SNR but not Rayleigh fading conditions. The poor clas-
sification performance for the L 6= 7 channel cases is
attributed to poor channel estimation performance as dis-
cussed previously in Sect. V-B3. Since the 1D CAE-CNN
never exceeds an average percent correct classification per-
formance of 90% or higher when classifying L = 7 TP
preambles at any SNR, it is not surprising that it performs
poorlywhen classifying the TP preambles correspondingwith
the other three channel conditions.

Based on these observations, three additional investiga-
tions are conducted in which a 1D CAE-CNN model is
developed for each of the remaining Rayleigh fading chan-
nels: (i) noise only, (ii) L = 3, and (iii) L = 5 at an
SNR = 9 dB. Each of the trained 1D CAE-CNNs classi-
fies the TP preambles for all of the channel conditions and
SNRs. The associated average percent correct classification
performance associated with the (i) noise only, (ii) L = 3,
and (iii) L = 5 cases are shown in Fig. 12(a), Fig. 12(b),
and Fig. 12(c), respectively. The results in Fig. 12, along
with those in Fig. 11(b), indicate that the RF-DNAfingerprint
features learned for a particular multipath channel condition
(e.g., L = 5) are insufficient to achieve the same level of
discrimination when classifying preambles received under a
different channel conditions (e.g., L = 3 or noisy only).
Although the same level of discrimination is not achieved,
the results suggest that some RF-DNA fingerprint feature
commonality does exist between the preambles of two dif-
fering Rayleigh fading channels (e.g., train for L = 5 and
classify L = 3). If RF-DNA feature commonality did not
exist, then one would expect an average percent correct clas-
sification performance of 25% (i.e., a guess) or lower. The

17110 VOLUME 9, 2021



M. K. M. Fadul et al.: Identification of OFDM-Based Radios Under Rayleigh Fading Using RF-DNA and Deep Learning

FIGURE 13. Percent correct classification performance for each of the ND = 4 802.11a Wi-Fi radios using TP preambles, a sliding window
of length Nb = 64, and a 1D CAE-CNN that is trained at SNR = 9 dB for each channel condition: noise only and L = [3], [5], [7]. The trained
1D CAE-CNNs classify their corresponding multipath channel’s TP preambles for SNR ∈ [9], [30] dB.

degradation in classification performance is attributed to the
number of paths, L, that compose two different Rayleigh
fading channels. For example, a Rayleigh fading channel
with L = 5 paths will impact a preamble’s inherent SEI
features differently than a channel consisting of L = 3
paths. The CNN’s RF-DNA feature learning is influenced by
channel estimation inaccuracies as well as residual channel
effects that remain after correction and differ across channel
conditions. This issue persists whenever the 1D CAE-CNN
is trained using TP preambles for one channel condition
(e.g., noise only) but used to classify those associated with
a different channel (e.g., L = 3). Since the results shown
in Fig. 11(b) and Fig. 12 fail to demonstrate multipath
channel-invariant RF-DNA fingerprint feature learning, per-
cent correct classification performance for each of the ND =
4 802.11a Wi-Fi radios is presented in Fig. 13 for the noise-
invariant SEI feature learning case whose average percent
correct classification performance is shown in Fig. 11(a).

VI. CONCLUSION
This paper presents RF-DNA fingerprint–based SEI using
a CAE-initialized CNN (CAE-CNN) under Rayleigh fading

and degrading SNR conditions. A total of seven RF-DNA
fingerprinting scenarios were investigated to determine the
approach best suited to maximizing serial number discrimi-
nation performance of four 802.11a Wi-Fi radios under noise
only and three different Rayleigh fading channel conditions.
These seven scenarios span both time (1D) and joint time-
frequency (2D) representations of the 802.11a preambles. For
the seven scenarios, SEI features learned from the preambles’
partitioned, time IQ samples resulted in superior average
percent correct classification performance across all four
channel conditions and eight SNR values.

In an effort to maximize classification performance,
the length of the sliding window, used to partition the pream-
bles’ IQ samples, was analyzed. This analysis revealed that
average percent correct classification performance was opti-
mal when a sliding window 64 samples in length is used
to partition the raw IQ samples of the 802.11a preambles.
The use of a 64-sample window improved classification
performance by as much as 5% when compared to one of
length 128.

In addition to analyzing the length of the sliding window,
this work assessed the 1D CAE-CNN’s ability to learn SEI
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features that are invariant to noise or noise and Rayleigh fad-
ing effects. Although able to learn SEI features that are invari-
ant to noise, the 1D CAE-CNN was not able to determine a
set of features that remained invariant to changing multipath
channel conditions. The inability to learn multipath-invariant
SEI features is attributed to the channel estimation and correc-
tion processes used herein. One possible solution to this issue
would be to train the 1D CAE-CNN using a data set com-
prised of signals representing each of the possible multipath
channel conditions. One challenge associated with this solu-
tion would be in determining the number of signals needed
to represent each of the possible channel conditions. This
may not be a tenable approach when considering the contin-
uum of possible channel conditions (e.g., number of paths,
non-Rayleigh fading, etc.). Another alternative would be to
replace the CNN with a Long Short-Term Memory (LSTM)
architecture, because it is designed to handle sequences of
data such as waveforms.
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