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ABSTRACT The well-known Thien and Lin’s (k, n) secret image sharing (SIS) scheme and its extended
versions are threshold schemes, in which a secret image is shared among n shadow images and it can be
recovered from any k shadow images. To reduce the size of shadow image, in those schemes, secret image
pixels are embedded in all coefficients of (k−1)-degree polynomial to generate the shadows. Also, the secret
pixels are permuted before the sharing to address the residual-image problem on shadow images. Due to the
above two approaches, partial secret information can be exposed from (k − 1) shadow images, and thus the
threshold properties of those schemes will be compromised. To overcome this weakness, we propose a novel
(k, n)-SIS scheme based on encrypted pixels, whose shadow image size is slightly larger than that of Thien
and Lin’s scheme. By slightly modifying the secret image, we also propose a modified (k, n)-SIS scheme
with the same shadow size of Thien and Lin’s scheme.

INDEX TERMS Encryption, permutation, secret sharing, secret image sharing, visual cryptography.

I. INTRODUCTION
To protect and communicate the secret image data, a variety
of techniques such as image steganography [1], copy detec-
tion [2], [3], and encryption [4] have been widely researched.
Different from these techniques, a secret sharing scheme
shares a secret among n shadow images in such a way that
the secret can be recovered from any k shadows but no
information can be obtained from k−1 or fewer shadows [5].
In 1979, Shamir [5] proposed a (k , n) secret sharing, where
k ≤ n, to hide a secret data in the constant term of a
(k−1)-degree polynomial to generate the shadows. Thien and
Lin [6] firstly extended Shamir’s (k, n) secret sharing to (k, n)
secret image sharing (SIS) scheme for dealing with images.
To reduce the shadow size, instead of using only one coeffi-
cient, Thien and Lin’s (k, n)-SIS scheme uses all coefficients
(a0, a1, . . . , ak−1) of a (k − 1)-degree polynomial f (x) =
(a0 + a1x + . . .+ ak−1xk−1) over GF(251) (or GF(28)) to
embed secret pixels, so that the shadow size is reduced to 1/k
times of secret image size. By using i ∈ [1, n], the dealer
can generate n shadow pixels as f (i). After repeating the
above procedure for every k pixels, n shadows are created.
Any k shadows can jointly reconstruct the secret image via
Lagrange interpolation, but (k − 1) or fewer shadows cannot.

Thus, the (k , n)-SIS scheme can be regarded as a threshold
scheme.

Afterwards, various SIS schemes were accordingly pro-
posed. Noise-like shadows are suspected by censorships,
and thus some (k , n)-SIS schemes were proposed using
steganography and authentication so that the shadows reveal
meaningful image and meanwhile have the tamper detection
capability [7]–[10]. For some applications, a part of privi-
leged participants may have shadows more important than
others. Several SIS schemes [11], [12] are designed to provide
shadows with different importance. The above SIS schemes
recover either the entire image or nothing. A new scalable SIS
scheme with the scalability that the information amount of
reconstructed image is proportional to the number of involved
shadows was introduced in [13] and [14]. Since all of those
SIS schemes are based on Thien and Lin’s (k , n)-SIS scheme,
they can be regarded as its extended versions.

Note that, if we directly apply secret sharing on a secret
image, some residual information of this image will be
left on because of the relationships among neighbor pixels.
Fig. 1 shows the residual image effect. To avoid this problem,
all of the above (k , n)-SIS schemes use a key to permute the
pixels of the secret image before the secret sharing.
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FIGURE 1. Four shadows with image IDs 1, 2, 3 and 4 of (2, 4)-SIS scheme
over finite fields: (a) GF (251) (b) GF (28).

However, since all coefficients are used in those (k , n)-SIS
schemes, a part of permutated pixels may be directly obtained
from less than k shadows, which will be shown in the next
section. Moreover, Jolfaei et al. [15] proved that permutation-
only ciphers are insecure and correct permutation mapping
can be recovered completely by a chosen-plaintext attack.
Therefore, some partial secret pixels could be exposed from
(k − 1) shadows, which will compromise the threshold prop-
erties of those (k , n)-SIS schemes.

To overcome the above weakness, we use encryption rather
than simple permutation, and propose a (k , n)-SIS scheme
based on encrypted pixels, in which the shadow size is the
1/k size of a secret image plus a short piece of key length.
In addition, a modified secure (k , n)-SIS scheme is pro-
posed to achieve the same shadow size as Thien and Lin’
scheme.

II. THE PROBLEM OF THE EXISTING SIS SCHEMES
Shamir’s scheme only uses one coefficient of a (k−1)-degree
polynomial for embedding secret, and thus it has perfect
security [5]. Different from Shamir’s scheme, Thein and Lin’s
(k , n)-SIS scheme and its extended versions use all coeffi-
cients of a (k − 1)-degree polynomial for embedding secret
pixels to reduce the shadow size. To avoid residual image
effect, all of those existing (k , n)-SIS schemes which are
mentioned above permute the pixels of a secret image before
the secret sharing. Consequently, partial secret pixels can
be reconstructed from less than k shadows, and thus the
threshold properties of those (k , n)-SIS schemes will be com-
promised. That can be illustrated by the following examples.

Suppose that we embed three permutated secret pixels
(a0, a1, a2) in the following polynomial of degree 2 over the
finite field GF(251).

f (x) = a0 + a1x + a2x2 (1)

Also, suppose that the i-th shadow is given by Si = f (i). Then,
after a simple calculation by S1 and S250, we obtain

a1 = 126S1 + 125S250 (2)

By the same argument, for (4, n)-SIS scheme based on a0+
a1x+a2x2+a3x3, we can derive a1 in Eq. (3-1) by S7, S8 and
S13. Consider another case that we can obtain a2 in Eq. (3-2)
by S3, S4 and S244.{

a1 = 122S7 + 4S8 + 125S13 (3-1)
a2 = 25S3 + 137S4 + 89S244 (3-2)

Eqs. (2) and (3) imply that those existing (k , n)-SIS
schemes are not always strong enough. We can recover the
partial permutated pixels from (k − 1) shadows. Note that,
if the permutation is not secure enough, one can recover
some original pixels of the secret image. Generally, the image
pixels are permuted using a permutationmatrix that is built by
a pseudo-random number generator. In fact, the cryptanalysis
demonstrated that such permutation-only image ciphers are
insecure against ciphertext-only attacks and/or known/chosen
plaintext attacks. Jolfaei et al. [15] showed that the cor-
rect permutation mapping can be recovered completely by
a chosen-plaintext attack. For an image with the size of
(M × N ) and with L different color intensities, the number of
required chosen plain-images to break the permutation-only
image cipher is

⌈
LogL(MN )

⌉
. The complexity indicates that

this attack is computational feasible in a polynomial time.
Finally, the partial pixels of a secret image will be recon-

structed from k−1 shadows, and this compromises the thresh-
old properties of those existing (k , n)-SIS scheme. By the
above approach, there are one third, a quarter and one fifth
pixels of a secret image that can be recovered for (3, n),
(4, n) and (5, n) SIS schemes, respectively. For a secret image
‘‘Lena’’, Fig. 2 reveals the reconstructed images of (3, n),
(4, n) and (5, n) SIS schemes generated from (k−1) shadows,
where black pixels are used for unknowns.

FIGURE 2. Using (k−1) shadows to recover the secret images of (k, n)-SIS
scheme with: (a) k=3 (b) k=4 (c) k=5.

III. THE PROPOSED (k, n)-SIS SCHEME
A. DESIGN CONCEPT
As illustrated above, although those existing (k , n)-SIS
schemes have the advantage that shadow size is significantly
smaller than the secret size, some partial secret pixels could
be exposed from (k − 1) shadows because (i) all coefficients
are used for embedding and (ii) the permutation is not secure
enough. As a result, the threshold properties of the existing
(k , n)-SIS schemes are compromised.
Therefore, all of those existing SIS schemes are not secure

enough. To address the security problem while maintain-
ing the advantage of small shadow size, instead of sim-
ply permuting secret image pixels and using the permuted
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pixels, we propose a secure (k , n)-SIS scheme based on
encrypted pixels. It combines the perfect secret sharing (using
one coefficient in polynomial for embedding), the existing
secret image sharing (using all coefficients in polynomial for
embedding), and encryption.

To make the secret sharing more feasible and practical,
without using an extra key distribution protocol, we share the
key by the perfect secret sharing again. Finally, our shadow
size is the 1/k size of a secret image plus a short piece of
key (e.g., 128 bits for encryption), which is much smaller
compared with the size of secret image.

B. DISTRIBUTION AND RECONSTRUCTION
Next, we describe distribution (the generation of shad-
ows) and reconstruction (the recovery of secret image from
any k shadows). Notations and their descriptions are listed
in Table 1.

TABLE 1. Notation and description.

Distribution: In this phase, the dealer shares the secret
image among n shadows {S1, S2, . . . , Sn}, and delivers them
to n participants.

(1) The dealer selects a random key K , and encrypts I to
obtain Î = EK (I ).

(2) By CSk,n(·) function, we process every k encrypted
pixels to share Î to n fragmented images {F1,F2, . . . ,Fn} =
CSk,n(Î ).

(3) ByPSk,n(·) function, we share the keyK to n sub-shares
{K1,K2, . . . ,Kn} = PSk,n(K ).
(4) By concatenating Fi and Ki, we generate n shadows

Si = (Fi||Ki), where i = 1, 2, . . . , n.
Reconstruction: In this phase, any k shadows are used to

reconstruct the secret image.
(1) Any k shadows are used for reconstruction (w.l.o.g. say

S1, S2, . . . , and Sk ).
(2) Extract Fi and Ki from Si, respectively, for 1 ≤ i ≤ k .
(3) Recover the encrypted image Î = CS−1k,n(F1,

F2, . . . ,Fk ).

(4) Recover the key K = PS−1k,n(K1,K2, . . . ,Kk ).
(5) Via Î and K , decrypt the secret image I = DK (Î ).
The following theorem shows that the proposed (k , n)-SIS

scheme based on encrypted pixels is computationally secure.
Here, ‘‘computationally secure’’ means that the security of
the proposed SIS scheme is similar to that of computationally
infeasible secure encryption/decryption.
Theorem 1: The proposed SIS scheme is a (k , n)-threshold

scheme, and is computationally secure. Each shadow has the
size (|I |/k)+ |K |.

Proof: We first prove that our scheme is a (k , n)-
threshold scheme, i.e., the secret image can be reconstructed
from any k shadows (w.l.o.g. say S1, S2, . . . , Sk ). From these
k shadows, we derive k fragmented images F1−Fk and sub-
keys K1 − Kk , and recover Î = CS−1k,n(F1,F2, . . . ,Fk ) and
K = PS−1k,n(K1,K2, . . . ,Kk ). Via Î and K , the secret image
can be decrypted and obtained.

Suppose that the decryption function DK (·) is computa-
tionally infeasible. We also prove our scheme is computa-
tionally secure. In other words, we prove that no information
about the secret can be recovered from less than k shadows.
From Section II, we can only obtain partial encrypted pixels
from less than k shadows for some cases (∵ CS(·) does
not have perfect security). However, we cannot decrypt the
secret pixels from those encrypted pixels, because the key
K in the computation infeasible function DK (·) cannot be
obtained from less than k shadows (∵ PS(·) is a perfect secret
sharing scheme). Finally, it is obvious that the shadows size
is |Si| = |(Fi||Ki)| = |Fi| + |Ki| = (|I |/k)+ |K |.
Fig. 3 shows one shadow of the proposed (2, n)-SIS scheme

over GF(28) using 512 × 512-pixel Lena as a secret image.
The total shadow size is (512 × 256) pixels plus |K | =
128 bits (e.g., 128-bit key for AES encryption), which are
represented as 16 pixels and are put in the last column of
shadow.

FIGURE 3. The frame structure of a shadow in the proposed (2, n)-SIS
scheme with 16 pixels in the last column.

Actually, an image with 16 pixels in the last column
is not processing-friendly to most image processing tools.
Yang et al.[16] used an inherent property of image to let the
involved k participants easily obtain the permutation key for
Thien and Lin’s (k , n)-SIS scheme. Their approach is based
on the fact that the permutation of pixels does not change
histogram. However, our scheme encrypts the image and all
the values of pixels are changed. Thus the method in [16]
cannot be used for the proposed scheme. To achieve the same
shadow size of Thien and Lin’s scheme (i.e., |I |/k), in next
section, we also propose a modified (k , n)-SIS scheme.
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IV. The MODIFIED (k, n)-SIS SCHEME
A. DESIGN CONCEPT
Consider that the secret image is a gray-level image with
512× 512 pixels and the length of encryption key is 128 bits,
where K = (k1, k2, . . . , k128). The design concept is briefly
described as follows. As shown in Fig. 4, we first subdivide
a secret image into 128 super blocks SBi, 1 ≤ i ≤ 128.
Then, we divide each super block SBi into 128 blocks Bi,j,
1 ≤ j ≤ 128, and thus every block has 16 pixels (i.e.,
128 bits). Let the super block and the block in an encrypted
image be ŜBi and B̂i,j.

FIGURE 4. Super blocks and blocks in the modified (k, n)-SIS scheme.

If the XOR-ed result of the bits of all pixels in ŜBi is the
same as ki, the super block SBi is not modified. Otherwise,
modify the least significant bit (LSB) in one of 16 pixels in
the block Bi,j, for 1 ≤ j ≤ 128, to test whether the XOR-ed
result of all bits in the new ŜBi is the same as ki. There are
128×16=2048 (∵ one super block has 128 blocks, and every
block has 16 pixels) chances to get the same result, and the
successful probability is almost 100% (≈ 1−(0.5)2048). Thus,
at most, we only need to change one bit in SBi, which implies
that themodified image I ′ has almost no distortionwith a very
high PSNR, i.e., 10 log10

(
2552

128/(512×512)

)
= 81.24dB.

B. DISTRIBUTION AND RECONSTRUCTION
Let the operation XOR(ŜBi) = ki, 1 ≤ i ≤ 128, be the
XOR-ed result of the bits of all pixels in ŜBi, and the operation
I ′ = LSB(Bi,j) be the modification of the LSB in one
of 16 pixels in Bi,j, for 1 ≤ j ≤ b, to get a modified image I ′.
Distribution and reconstruction of the modified (k , n)-SIS
scheme are described below.
Distribution:
(1) The dealer selects a random key K = (k1, k2, . . . , k128)

(for simplicity we use |K | = 128), and encrypts I to obtain
Î = EK (I ).

(2) Subdivide I and Î into 128 super blocks SBi and ŜBi,
1 ≤ i ≤ 128, respectively, where every super block has
b 16-pixel blocks Bi,j and B̂i,j, 1 ≤ i ≤ b, respectively
(note: the block length is 128 bits; we use XTS-AES mode
(IEEE standard 1619-2007), which employs a ciphertext-
stealing technique instead of padding, and thus no extra
appended bits are required).

(3) For i = 1 to 128, do {if XOR(ŜBi) = ki skip the
super block, else {for j = 1 to b do {I ′ = LSB(Bi,j);

B̂i,j = EK (LSB(Bi,j)); if XOR(ŜBi) = ki skip the super
block}}}.

(4) Encrypt the modified image, i.e., Î = EK (I ′).
(5) We generate n shadows {S1, S2, . . . , Sn} from CSk,n(Î ).
Reconstruction:
(1) Any k shadows are used for secret image reconstruction

(w.l.o.g. say S1, S2, . . . , and Sk ).
(2) Recover the encrypted image Î = CS−1k,n(S1,

S2, . . . , Sk ).
(3) Obtain the key K from ki = XOR(ŜBi), 1 ≤ i ≤ 128.
(4) Via Î and K , decrypt the secret image I ′ = DK (Î ).
In step (3) of distribution phase, the modified I ′ has the

property XOR(ŜBi) = ki, 1 ≤ i ≤ 128, where ŜBi is the super
block in Î = EK (I ′); the probability of success of this process
is 1− (0.5)16×b. For a 512×512-pixel image, when the value
of b is 128, the probability is equal to 1 − (0.5)16×b =
1 − (0.5)2048 ≈ 100%. For a very small-size image, e.g.,
64×32-pixel image, by a certain manner, we can also divide
it into 128 super blocks, each of which has 16 blocks. For this
case, we have b = 1. Thus, the probability is 1 − (0.5)16 =
99.998%, which is still a very high probability to accomplish
step (3) of distribution phase. Also, we can choose to modify
at most two LSBs in a block. Then, the probability for b = 1
will be 1− (0.5)

( 16
1

)
+
( 16
2

)
= 1− (0.5)16+120 = 1− (0.5)136 ≈

100%, and the PSNR of modified image is slightly reduced
from 81.24dB to 78.2dB. Although the recovered image is not
the original one, the quite high PSNRmeans that it almost the
same as the original one.
Theorem 2: The modified SIS scheme is a (k , n)-threshold

scheme, and is computationally secure. Each shadow has the
size |I |/k .

Proof: As mentioned above, when there are k shadows,
we can recover the encrypted image and extract the key from
the encrypted image. By using the encrypted image and the
key, the modified I ′, which is almost the same to I , can be
recovered. On the other hand, from Section II, because CS(·)
does not have perfect security, we can obtain partial encrypted
pixels from less than k shadows, e.g., (k − 1) shadows.
However, it is worth noting that the key cannot be extracted
from partial encrypted pixels. Therefore, without the com-
plete key, we cannot obtain any original information of secret
image from (k − 1) shadows. Therefore, we can conclude
that it is a (k , n)-threshold scheme, and is computationally
secure.

Themodified scheme embeds the key into encrypted image
by changing LSB of a small part of pixels in the secret image.
The changed secret image has the same size with the original
secret image. Thus, the shadow size of this scheme is the same
with that of Thien and Lin’s scheme, i.e., |I |/k .

V. CONCLUSION
Because all coefficients of (k − 1)-degree polynomial are
used for embedding secret image pixels and permutation-only
ciphers are insecure, in all of the existing (k , n)-SIS schemes,
one may recover some partial secret pixels from (k − 1)
shadows. Thus, the threshold properties of those schemes
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are compromised. In this paper, we address this weakness,
and propose a (k , n)-SIS scheme based on encrypted pixels.
Moreover, by slightlymodifying the secret image, we propose
a modified (k , n)-SIS scheme with the same shadow size
of Thien and Lin’s scheme. Both schemes are proved to be
computationally secure.
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