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Abstract
The COVID-19 pandemic has prompted an international effort to develop and repurpose medications and procedures
to effectively combat the disease. Several groups have focused on the potential treatment utility of angiotensin-
converting–enzyme inhibitors (ACEIs) and angiotensin-receptor blockers (ARBs) for hypertensive COVID-19 patients,
with inconclusive evidence thus far. We couple electronic medical record (EMR) and registry data of 3,643 patients from
Spain, Italy, Germany, Ecuador, and the US with a machine learning framework to personalize the prescription of ACEIs
and ARBs to hypertensive COVID-19 patients. Our approach leverages clinical and demographic information to identify
hospitalized individuals whose probability of mortality or morbidity can decrease by prescribing this class of drugs.
In particular, the algorithm proposes increasing ACEI/ARBs prescriptions for patients with cardiovascular disease and
decreasing prescriptions for those with low oxygen saturation at admission. We show that personalized recommendations
can improve patient outcomes by 1.0% compared to the standard of care when applied to external populations. We develop
an interactive interface for our algorithm, providing physicians with an actionable tool to easily assess treatment alternatives
and inform clinical decisions. This work offers the first personalized recommendation system to accurately evaluate the
efficacy and risks of prescribing ACEIs and ARBs to hypertensive COVID-19 patients.
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• This paper introduces a data-driven approach for per-
sonalizing the prescription of ACE inhibitors (ACEIs)
and angiotensin-receptor blockers (ARBs) for hyperten-
sive COVID-19 patients.
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• Leveraging an international cohort of more than
3,500 patients, we identify clinical and demographic
characteristics that may affect the effectiveness of
ACEIs/ARBs for COVID-19 patients, such as low
oxygen saturation at admission.

• We developed a user-friendly online application that is
available to physicians to facilitate interpretation and
communication of the results of the algorithm.

1 Introduction

Since its emergence in December 2019, the COVID-19
pandemic has put an enormous strain on healthcare systems
around the world. As of October 19, 2020, more than
39 million cases have been reported globally, with a
death toll greater than 1.1 million [59]. Patients who have
developed severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection exhibit a wide range of clinical
responses, from being asymptomatic to being critically ill
[48]. Given the heterogeneity of clinical manifestations
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of the disease, it is of critical importance to be able to
understand how patients will respond to various potential
treatments [53].

There is still limited evidence from randomized con-
trolled trials (RCTs) to recommend specific anti-SARS-
CoV-2 treatment for patients with a suspected or con-
firmed COVID-19 infection. A preliminary report from
the RECOVERY collaborative group demonstrates that the
use of dexamethasone for COVID-19 patients receiving
either invasive mechanical ventilation or oxygen alone can
result in lower mortality [25]. Among antivirals, remde-
sivir is the only drug which has shown promising results
and recently received FDA approval; in a relatively small
cohort of patients hospitalized for severe COVID-19, clin-
ical improvement was observed in 68% of the participants
[24]. In separate multi-center studies, it was shown that
remdesivir can lead to faster clinical improvement in adults
who were hospitalized with COVID-19 and had evidence
of lower respiratory tract infection [4, 58]. There is con-
troversy regarding the effects of chloroquine and hydroxy-
chloroquine [11, 21, 22]. A wide range of other therapies
are continuously being evaluated, including corticosteroids,
other antiviral agents (lopinavir, ritonavir), antibodies, and
convalescent plasma transfusion [60].

In this work, we investigate the effectiveness of
ACE inhibitors (ACEIs) and angiotensin-receptor blockers
(ARBs) in COVID-19 treatment. This class of drugs
has gained attention regarding potential benefits and
harms to COVID-19 patients. ACEIs and ARBs are
two medications commonly used to treat high blood
pressure. Hypertension has been reported as one of the
most common comorbidities of COVID-19 with increased
risk of infection and development of increased severity
of lung injury and mortality [54]. Thus, it is of great
importance to effectively monitor and adjust the treatment
of hypertensive patients. These two types of medication
work on the same biochemical pathway in the body to
treat hypertension, but at different spots. Initially, there was
concern regarding a potential increased risk to COVID-19
patients taking ACEI/ARBs due to the drugs’ biological
mechanisms. SARS-CoV-2 attacks human cells by binding
its viral spike protein to the membrane-bound form of
the monocarboxypeptidase angiotensin-converting enzyme
2 (ACE2) [29]. ACEIs and ARBs directly act on the renin
angiotensin aldosterone system, increasing the expression
of ACE2. Thus, speculation has risen that ACE inhibitors
and ARBs might be harmful in patients with the disease
[19]. However, multiple clinical investigations from various
countries showed that neither ACEIs nor ARBs were
associated with an increased risk of in-hospital death or
severe COVID-19 [34, 37, 40, 42, 46]. To the contrary,
among hospitalized patients with COVID-19 and coexisting
hypertension, inpatient use of ACEI/ARBs was associated

with lower risk of all-cause mortality [62]. The effects
of ACEI/ARBs for hypertensive COVID-19 patients are
therefore not well-understood, and there is no consensus on
appropriate uses of these drugs [57].

Personalized medicine aims at providing answers to these
types of questions [26]. This emerging field is expected
to radically transform medical care and public health,
uncovering prevention and treatment programs more closely
targeted to the individual patient [32]. Machine learning
(ML) and analytics play a major role in this endeavor [17].
By leveraging large datasets, these techniques can generate
insights and derive decision rules by processing information
that exceed the capacity of the human brain [45]. ML
can identify data patterns in treatment effectiveness at the
individual level, allowing us to determine who is likely to
benefit from treatment with ACEI/ARBs.

1.1 Literature review

Our objective is to develop a model that determines whether
to recommend treatment T for an individual patient. We
include in our dataset n observations of the {(xi , yi, zi)}ni=1,
where xi ∈ R

p are the features of the ith observation,
zi ∈ [T , C] is the assigned treatment or control, and yi ∈ R

is the corresponding outcome of interest. We let y(C) be
the potential outcome resulting from the assignment of the
control and y(T ) of the treatment.

This problem lies at the core of the causal inference
literature. Rubin [50] set its foundation by proposing the
Potential Outcomes Framework which assumes that patients
are prescribed a treatment via a probabilistic assignment
mechanism. Under this framework, the causal effect of a
treatment T is measured by the difference in the potential
outcomes y(T ) − y(C). The fundamental challenge of this
problem is that for any given patient, only one of the
potential outcomes is observed [1, 51]. As a result, causal
inference methodologies usually focus on estimating the
aggregated treatment effect, studying its impact on an entire
population rather than at the individual level.

Personalized medicine calls for more individualized
approaches that leverage patient-level characteristics to
evaluate treatment efficacy for each patient in isolation.
Since machine learning estimates a binary or continuous
outcome of interest from large, high-dimensional datasets,
a common approach involves training separate prediction
models for the treatment and the control group, and
recommending the alternative with the best outcome [20,
44]. This technique is referred in the literature as “Regress
and Compare” [55]. Bertsimas et al. [7] showed how
this framework can be extended for the management
of diabetes by applying the k-nearest neighbors method.
While a useful and intuitive framework, “Regress and
Compare” has received criticism as it can be subject to
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prediction errors and biases associated with the specific
classification or regression algorithm. More advanced
machine learning approaches are focused on tree-based
methods that involve recursive partitioning [33], causal
trees [2], causal forests [56], and optimal prescriptive
trees [8].

Recently, a machine learning based framework was
proposed to identify the best therapy for patients with
coronary artery disease [10]. The authors created a series
of regression models for several treatment alternatives to
predict the time from diagnosis to a potential heart attack
or a stroke. It extends the classical “Regress and Compare”
approach by aggregating an ensemble of ML models,
making it more robust to individual method biases. The
algorithm recommends the therapy with the best expected
outcome through a voting mechanism that considers the
predictions from each of the regression models. We build
upon this framework and adapt it to the specific challenges
posed by COVID-19.

1.2 Contributions

In this paper, we propose a machine learning-based
approach for personalized prescription of ACEI/ARBs for
hospitalized hypertensive patients with COVID-19. We
leverage EMR and registry data of 3,643 patients from
Spain, Italy, Germany, Ecuador, and the US to provide
accurate predictions of expected mortality and morbidity.
We then propose individualized treatment decisions by
applying the voting scheme that was introduced by [10]; we
combine multiple binary classification models to identify
whether there is a potential benefit from prescribing
this class of drugs based on a patient’s characteristics.
The main contributions of this work can be summarized
as follows:

– We combine EMR data with an international registry to
create a diverse dataset from multiple clinical centers.
We present a unified dataset from 38 hospitals of
five distinct countries, encompassing demographics,
pre-admission comorbidities and medications, vitals
at admission, laboratory test results, and inpatient
medications.

– We develop binary classification models to predict
mortality and morbidity during hospital admission
under treatment alternatives.

– We utilize an ensemble analytical framework, that
has been previously applied to personalize treatments
for coronary artery disease and hypertension [9, 10],
to evaluate the effectiveness of ACEI/ARBs at the
individual level.

– We discover specific patient populations who benefit
most from this class of drugs, such as patients with

cardiovascular disease, as well as those who may suffer
from these prescriptions, like patients with low oxygen
saturation at admission. We provide clinical insights
that validate findings from the medical literature, and
propose new hypotheses for further investigation.

– We provide a dynamic online application with a user-
friendly interface of the predictive models and the
resulting prescriptions for use by clinical providers.

2Methods

We propose a machine learning approach to the problem
of personalizing treatments. A patient’s prescription is
generated based on individualized risk scores under each
treatment alternative. We leverage clinical data from
3,643 patients across international institutions to train
our models. One ensemble of various machine learning
models is trained to predict mortality/morbidity risk with
ACEI/ARBs, and another ensemble is trained to predict
the risk when patients are not given ACEI/ARBs. We then
employ a voting scheme to aggregate the risk scores of
the individual methods and give a final prescription and
estimated benefit of treatment. An overview of the approach
is illustrated in Fig. 1.

2.1 Data resources

This study utilizes patient data from 38 hospitals across five
countries: Spain, Italy, Ecuador, Germany, and the United
States. Depending on the institution, data is sourced either
from a standardized COVID-19 specific registry or from
electronic medical records. The data is separated into a
derivation cohort, which is used to train the machine learn-
ing models, and a validation cohort, which is used to test
the models on unseen populations. The derivation cohort is
comprised of data from 2,842 hypertensive patients from
HOPE registry’s hospitals in Spain and from HM Hospitals,
also in Spain [23]. The validation cohort consists of data
from 801 patients diagnosed with hypertension from the
following organizations and geographic locations: HOPE
(Italy, Germany, Ecuador), ASST Cremona (Northern Italy),
and Brigham and Women’s Hospital (Massachusetts, United
States). The study population includes adult patients with a
hypertension diagnosis who were admitted to the hospital
with confirmed severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) infection by polymerase chain
reaction testing of nasopharyngeal samples. Hypertension
was identified using diagnosis codes from a patient’s med-
ical record or from patient history available in the registry,
as accepted in their respective medical centers or attending
medical teams; this is detailed further in the Supplemen-
tary Material. A description and details of the collaborating
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Patient-level data:
Clinical features available 
at admission (! )
Outcome (" # $%&' ()
ACEI/ARBs treatment 
indicator () # $%&' ()

No ACEI/ARBs 
treatment group 

(* + %) 

ACEI/ARBs 
treatment group 

(* + ' )

Predict probability of 
mortality/morbidity with
ACEI/ARBs treatment

Predict probability of 
mortality/morbidity without

ACEI/ARBs treatment

1. Data Processing:
Construct COVID-19 patient 
database from international 
collaborating institutions.

2. Matching Algorithm:
Match treated and untreated 
populations based on clinical 
features and other treatments.

3. Predictive Modeling:
Train several binary 
classification models to predict 
patient risk under treatment 
alternatives.

4. Treatment Prescription: 
Aggregate model predictions 
through voting scheme to 
generate final prescription.

Method
Prescribe

ACEI/ARBs?

CART Yes

OCT No

XGBoost Yes

4/6 methods predict improvement 
under ACEI/ARBs 

prescribe ACEI/ARBs

Fig. 1 An overview of the machine learning approach to prescription personalization

organizations, as well as the time horizon of admissions
for each organization’s study population, can be found in
Table 1.

2.2 Clinical features

Dataset features include demographics, pre-admission
comorbidities and medications, vitals at admissions, labo-
ratory test results, and inpatient medications. In total, we
compile 29 features, which are summarized in Supple-
mentary Tables 3-4. Comorbidities are derived from the
International Classification of Diseases (ICD), 9th and 10th
revision, using codes of hospital discharges. Medications
are extracted from the Anatomical Therapeutic Chemical
(ATC) Classification System. We record the earliest labo-
ratory test results obtained within the hospital admission
and include both binary measurements (e.g., D-dimer ≥
0.5mg/L) and continuous measurements (e.g., creatinine
in mg/dL). Missing values are imputed using multivari-
ate imputation by chained equations (MICE) (details can
be found in the Supplementary Material) [14]. We exclude
all features that are not present for at least 70% of the
observations.

2.3 Treatment outcome

The outcome of interest is the occurrence of mortality or
morbidity during hospital admission. We collect informa-
tion on patient mortality, as well as inpatient development
of specific severe medical events, during hospitalization,
including: sepsis, acute renal failure, heart failure, and
embolic event. A patient may experience one of these mor-
bidities without mortality; we define the occurrence of any
of these events as a negative treatment outcome. This is

designed to reflect the clinical knowledge of COVID-related
adverse events and to prevent prescription recommendations
that are likely to lead to severe health consequences.

2.4 Covariate matching

As opposed to data obtained from a randomized controlled
trial (RCT), for which treatment assignment is random,
the data in our study is observational in nature. Given
that we aim to determine the effect of a treatment on the
probability of mortality and morbidity for a patient, we
must consider that individuals taking a specific treatment
may differ from those that are not taking the treatment
in terms of their baseline, or pre-treatment, characteristics.
Such characteristics may affect both treatment assignment
and mortality/morbidity risk and may, therefore, confound
our treatment effect estimates. We also recognize that the
medications that we are investigating were not used in
isolation and were often administered in combination with
other medications; this, too, may bias our treatment effect
estimates.

There is extensive literature regarding methods for reduc-
ing bias due to covariate heterogeneity; the most widely
established include inverse probability of treatment weight-
ing, stratification, covariate adjustment, and matching [3,
30]. We use matching techniques prior to training our
machine learning models in order to mitigate bias intro-
duced by confounding variables. The objective of matching
methodologies is to replicate a randomized clinical trial by
generating groups, without using the outcome, for which
the observed covariate distributions are alike (balanced).
The motivation of the technique is to find groups of treated
and non-treated individuals whose pre-treatment character-
istics are similar, and to then create models using only these
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Table 1 Overview of participating institutions in the study

Organization Region Study Dates NH Description

Derivation Cohort

HOPE (Spain) Madrid, Galicia, Castilla y León,
Castilla la Mancha, Andalu-
cia, Murcia, Valencia, Cataluña
(Spain)

03/01-04/30 21 HOPE is an international registry that was
created at the beginning of the pandemic
with the aim of collecting data to carefully
characterize the clinical profile of patients
infected with COVID-19. The study was
initiated by the Hospital Clinico San
Carlos in Madrid and the majority of
the recorded patients were hospitalized in
Spain.

HM Hospitals Madrid, Galicia, Castilla y León,
Cataluña (Spain)

02/01-04/20 17 HM Hospitals, a leading Hospital Group
in Spain with 15 general hospitals and
21 clinical centres that cover the regions
of Madrid, Galicia, and León. The group
has served more than 2,300 COVID-19
patients over the last two months. Its total
capacity includes more than 1,468 beds
and 101 operating rooms.

Validation Cohort

ASST Cremona Lombardy (Italy) 02/01-05/08 3 Azienda Socio-Sanitaria Territoriale di
Cremona (ASST Cremona) includes the
Ospedale di Cremona, Ospedale Oglio
Po and other minor public hospitals in
the Province of Cremona. Cremona is
one of the most hit italian provinces in
Lombardy in the Italian COVID-19 crisis
with a total of 4,422 positive cases to
date. Ospedale di Cremona has around
750 beds. During the COVID-19 crisis
all elective activities and surgeries were
suspended and most of the hospital was
converted to treat COVID-19.

HOPE (Other) Mannheim (Germany), Lom-
bardy, Piedmont, Lazio, Puglia,
Marche (Italy), Guayaquil, Quito
(Ecuador)

03/01-04/30 14 This subpopulation includes patients dis-
charged (deceased or alive) from all
collaborating hospital centers from the
HOPE registry outside of Spain with
a confirmed diagnosis or a COVID-19
high suspicion have been included. There
are no exclusion criteria, except for the
patient’s explicit refusal to participate.

Brigham and Women’s Hospital Massachusetts (USA) 03/01-05/31 1 Brigham and Women’s Hospital is a
leading academic medical center located
in Boston, MA. Today it is part of
Massachusetts General Brigham (MGB),
which comprises 16 institutions in New
England. During the COVID-19 pan-
demic, it has played a central role provid-
ing health care services and conducting
research with multiple academic institu-
tions of the US.

The column NH stands for Number of Hospitals

individuals. By minimizing the differences in pre-treatment
characteristics, we become more confident that the outcome
estimates can be attributed to differences in the treatment
assignment rather than to preexisting differences between
the individuals in the treated and non-treated group.

Bennett et al. [5] recently proposed a new method for
cardinality matching that directly balances the observed
covariates without explicitly estimating the generalized
propensity score. In contrast prior existing methodologies,
it extends beyond the treatment-control setting to handle
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multi-valued treatments; this allows for the generalization
of our framework to multiple treatments. By using a linear-
sized mixed integer programming formulation, this method
also scales to large datasets within minutes while also
addressing the challenge of building matched samples that
are not only balanced but also representative of a reference
population of interest.

We adopt this methodology to find populations of
patients in each treatment group that (1) have similar
baseline characteristics and (2) have similar medications as
part of their additional treatments. To study of the effect
of ACEI/ARBs on patient mortality, we first identify all of
the patients that were given either ACEIs or ARBs during
their hospital stay. We then use cardinality matching, as
implemented by [63], to identify the most similar cohort
of non-ACEI/ARB recipients to this group, as measured
by a set of important pre-treatment and other treatment
features. The final dataset we use to predict patient
mortality consists of the ACEI/ARBs treatment group
along with the matched dataset from the non-ACEI/ARBs
treatment patient group, . We evaluate our matching
procedure based on how balanced pre-specified covariates
are between our treated and non-treated groups. Balance is
measured by comparing the pairwise absolute standardized
mean differences in covariates. Groups are considered
well-balanced if their standardized mean differences are
below 0.10.

2.5 Risk prediction under treatment alternatives

Using the matched datasets, two sets of models are
constructed to predict a patient’s risk of mortality/morbidity,
as defined in Section 2.2. One set of models is trained
on patients who were given ACEI/ARBs, and the other on
patients who were not given ACEI/ARBs. The matching
process aims to equalize the baseline characteristics of
the populations to better isolate the effect of ACEI/ARBs
between the two sets of models.

For each treatment, we train six binary classification
models to predict a patient’s risk of mortality/morbidity.
The machine learning methods we utilize are: random
forests [12], classification and regression trees [13], optimal
classification trees [6], gradient boosted decision trees
[16], quadratic discriminant analysis [27], and Gaussian
naı̈ve Bayes [61]. These models take diverse approaches
to classification tasks and involve tradeoffs in their
interpretability, handling of nonlinear relationships, and
computational complexity. Further details on the training
procedures and parameter tuning employed for these models
are available in the Supplementary Material. Algorithms
were trained using Python 3.6.3 and Julia 1.2.0 through
Scikit-learn [43], XGBoost [16], and the Interpretable
AI [31] packages.

The primary metric of performance for the classification
models is Area Under the ROC Curve (AUC), which
measures a model’s ability to discriminate between high and
low risk patients. Although the predictive models are not the
final output of our framework, this evaluation is important
to verify that the individual models provide high quality
predictions.

We apply the SHapley Additive exPlanations (SHAP)
to identify the most important risk drivers for each learner
under both treatment alternatives [38, 39]. We use the
SHAP Python package [39], leveraging the Tree Explainer
for the XGBoost, classification and regression trees, and
random forests algorithms and the Kernel Explainer for
the logistic regression, quadratic discriminant analysis, and
Gaussian Naive Bayes classifiers. The SHAP methodology
approximates any nonlinear prediction model with a linear
model around the patient prediction. The coefficients of
the linear approximation are called SHAP values. They
are computed for each observation by introducing every
feature separately and comparing the model output risk.
We calculate the absolute mean SHAP value for all the
independent covariates using the testing set. We report the
ones with the greatest impact on the prediction task.

2.6 Treatment prescriptionmethodology

Each algorithm is used to train two separate models: one
model with ACEI/ARBs and one without ACEI/ARBs.
For a given patient and algorithm, the models yield a
prediction for the patients mortality/morbidity risk with
ACEI/ARBs, ŷY , and without ACEI/ARBs, ŷN . The
algorithm recommends ACEI/ARBs if administering the
treatment is predicted to have a reduction of at least 5%
in the probability of mortality/morbidity. Namely, treatment
with ACEI/ARBs is suggested if:

ŷY − ŷN

ŷN

≤ −0.05

The improvement threshold is intended to reduce unneces-
sary prescriptions: if the patient’s predicted risk is nearly
identical under both treatment alternatives, we do not rec-
ommend treatment. The threshold of 5% was chosen based
on tradeoffs between treatment effectiveness and number of
prescriptions; this is further explored in the Supplementary
Material.

The six ML algorithms yield six “votes” for whether
or not to recommend ACEI/ARBs. The final prescription
aggregates the votes. If there is majority consensus (i.e.
if at least four methods agree on the optimal treatment),
the majority choice is selected. In the case of ties (i.e.
three methods vote for ACEI/ARBs and the other three vote
against it), we consider the AUC of the individual methods
as a way of measuring the credibility of the votes. We select
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the treatment option which has a higher average AUC for
the methods that voted for it. In other words, in the case of a
tie between the treatments, we follow the treatment selected
by the most credible methods.

Our prescriptive approach is the respective analog
of ensemble supervised learning methods, like gradient
boosted decision trees, in the prescriptive setting. Lever-
aging the different geometries of individual learners, the
voting scheme avoids biases and pitfalls that are specific to
a single method, providing a more holistic perspective to
the decision maker. In this study, we trained six indepen-
dent algorithms for each treatment option but more methods
could be leveraged in future applications of the framework.

2.7 Prescription evaluation

An effective treatment prescription scheme should improve
outcomes compared to the current standard of practice.
Since our outcome of interest is a patient’s mortal-
ity/morbidity, good prescriptions would decrease the inci-
dence rate. Prescription evaluation is a well-recognized
problem due to the lack of counterfactuals; we only have
data on the treatment received by a patient, and we cannot
know what their outcome would have been under the other
treatment option. We must therefore estimate the counter-
factuals to evaluate the quality of our prescriptions, and we
can leverage the predictive models for this task. We perform
this assessment in several ways:

Prescription effectiveness The effectiveness of the pre-
scription scheme can be estimated by comparing the actual
event rate to the average predicted risk under our prescrip-
tion scheme. For a given patient, we can compute their
predicted risk under a treatment as the average probabil-
ity among the methods that voted for the treatment; for
example, if ACEI/ARBs are selected by four methods, the
predicted probability with treatment would be the averages
of these four methods’ predictions. Let ŷip denote patient
i’s predicted probability of mortality/morbidity under the
recommended treatment, and yi ∈ {0, 1} indicate the true
outcome. Then the prescription effectiveness (PE) is defined
as:

PE = 1

n

n∑

i=1

ŷip − 1

n

n∑

i=1

yi

If the raw mortality/morbidity rate is 30%, for example,
and the average probability of mortality/morbidity is 25%
under the prescription scheme, then the PE equals -0.05.
We adjust the calculation of this metric to include only
cases for which the algorithmic recommendation differs
to the doctors’ prescription at the standard of care. Thus,
observations of patients whose medication did not change

were not included. Note that a negative number indicates an
improvement in mortality/morbidity.

Calibrated prescription effectiveness When applying the
prescription algorithm to external populations with signif-
icantly different mortality/morbidity rates, the PE metric
may require recalibration. PE compares the baseline mortal-
ity/morbidity rate to the average probability of the proposed
treatments. If a new population has a much higher event rate
than the training population, the predicted probabilities may
be systematically low; the opposite is true if the new pop-
ulation has a much lower incidence rate. We take a simple
rescaling approach to adjust the probabilities proportionally
to the incidence rates. Denoting the outcome rate on the
training population as ȳT rain, we can construct a calibration
factor

c =
1
n

∑n
i=1 yi

ȳT rain

If the new population has a higher incidence rate, this
factor will be greater than 1, meaning that we scale up the
projected probabilities. If the new population has a lower
incidence rate, then c < 1 and the probabilities will be
scaled down. The calibrated PE (CPE) is then given by:

CPE = c

(
1

n

n∑

i=1

ŷip

)
− 1

n

n∑

i=1

yi

Other sophisticated calibration schemes exist, but this
metric has an appeal of not requiring access to data and
outcomes for the full external population. For example, if
we are applying the method to a new hospital, we only need
to know the baseline mortality/morbidity to recalibrate our
probabilities. We also note that by using a constant scaling
factor, we preserve the ordering of the probabilities; this,
therefore, does not affect the prescription decisions or the
AUC of the models.

Prescription robustness While PE and CPE are highly
intuitive metrics, they can also be biased in their estimates
of the outcome probability under the prescription scheme
since the predictions are taken from methods that also
determine the prescription. In the binary classification
setting, these metrics involve data of different types
as they compare the discrete outcomes with continuous
probabilities. Prescription robustness (PR) takes a more
objective view: it uses a single ML method to evaluate both
the outcome probability under the standard of care (given
treatments) and the probability under the prescription. For
example, PR with respect to CART would be computed as:

PRCART = 1

n

n∑

i=1

ŷCART
ip − 1

n

n∑

i=1

ŷCART
it
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where ŷCART
ip and ŷCART

it are the CART models’ predicted
outcomes under the proposed treatment (p) and true
treatment (t), respectively. PR is calculated for each of the
six candidate methods, and the range across the methods is
reported.

Treatment agreement rate We report the proportion of our
prescriptions that match the true treatment decisions. For
example, if out of 100 patients, 60 of our treatment rec-
ommendations are consistent with the treatment decision,
then the agreement rate would be 60%. We note how-
ever that given the rapid evolution of the pandemic and
shifting treatment protocols, the true treatments do not nec-
essarily reflect a consistent treatment strategy. While the
agreement rate is informative, the goal of the prescrip-
tive algorithm is to improve upon the current standard of
care and thus a high agreement rate is not necessarily
desirable.

Prescription AUC We also report the AUC of the risk
probabilities for our prescriptions compared to the true
outcomes. We can only compare the probabilities and
outcomes for the patients whose treatment prescriptions
agree with their true treatments, since we do not have the
counterfactual outcomes. For example, if the agreement rate
is 60%, the AUC of our prescriptions can only be compared
for the 60% of patients with agreement. This metric does
not assess the prescription benefit, but rather the quality of
our predictions under the prescription algorithm.

3 Results

In this section, we present the results of our analysis
from the predictive and prescriptive components of this
study. In Section 3.1, we provide information regarding
the final dataset and describe the impact of the matching
process. Section 3.2 focuses on the predictive performance
of the binary classification models trained to predict mor-
tality/morbidity risk. Section 3.3 outlines the quantitative
results of the proposed prescription mechanism. Section 3.4
summarizes the online interface that was developed to
communicate the output of the algorithm to the clinical
audience.

3.1 Data processing

The derivation cohort contains 1,043 observations of
patients receiving ACEI/ARBs and 1,663 records that are
not prescribed the specific class of drugs.

Following the method described in Section 2.4, we iden-
tify optimal matches for the treatment group and restrict

our cohort to an equally balanced set of 1,920 cases. We
select the features for matching through a t−hypothesis
test, identifying the variables that are most significant in
differentiating those who experienced the outcome of inter-
est and those who did not. Thus, we selected 21 patient
features and also included all available covariates related
to other administered treatments, including hydroxychloro-
quine, antivirals (lopinavir and ritonavir), corticosteroids,
anticoagulants, and interferons. We achieve pairwise bal-
ance between two groups below 0.05 for all covariates
considered. Figure 2 provides an illustration of the match-
ing results. In Supplementary Table S5, we summarize
the pre-treatment variables before and after the matching
procedure.

A descriptive summary of each treatment group’s clinical
features and outcomes, for both the derivation and validation
groups, is shown in Table 2. After matching, the derivation
cohort has an even split of patients with and without
ACEI/ARBs. The validation cohort has 801 total patients,
of which 280 (35.0%) receive ACEI/ARBs.

3.2 Predictivemodels

The AUCs for the six individual binary classification algo-
rithms for both the ACEI/ARBs and non-ACEI/ARBs mod-
els are shown in Table 3. We report the average AUCs on
the training and testing splits of the derivation population,
as well as the external validation population. In general,
the models for predicting outcomes without ACEI/ARBs
have higher performance on the test and validation set
than those for patients treated with ACEI/ARBs. Ran-
dom Forests and XGBoost are the highest performing
methods overall, although nearly all methods demonstrate
AUCs above 0.7 across all cohorts, and above 0.8 in most
cases.

A summary of the predictive models and their feature
importance is shown in Table 4. Our analysis reveals that
the key predictors of mortality and morbidity are common
between the two treatment groups. Abnormal creatinine lev-
els, white blood cell count, and hemoglobin are identified
in both groups as the most significant lab values. Age and
low oxygen saturation are also identified within the top
five predictors of risk. These biomarkers have been iden-
tified in other retrospective analysis of mortality outcomes
of COVID-19 [15, 35, 49]. In accordance with the med-
ical literature [36], lymphocyte count is also found as an
important feature in both models. There are a few less sig-
nificant variables in each cohort that are distinct between
the two groups. Platelets were found to only be a signif-
icant risk predictor for ACEI/ARBs, while blood sodium
and temperature only appeared in the No ACE/ARBs
cohort.
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Fig. 2 Pre-Treatment covariate
balance after matching
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3.3 Treatment Prescriptions

Table 5 shows the results of the prescription voting scheme
on the training, testing, and validation populations for an
improvement threshold of 5.0%. 42.2% of the patients
in the training population are recommended to receive
ACEI/ARBs under our scheme, as well as 43.1% of the
testing population and 46.8% of the validation population.
The voting behaviors of the individual methods are included
in the Supplementary Material. The proposed prescription
rate decreases from the 50% seen in practice in the training
and testing data due to the matching procedure. In the
raw validation data, we see an increase in the prescription
rate from the observed 35.0% of COVID-19 patients who
received ACEI/ARBs at these sites.

The PE metric indicates a reduction in mortality and
morbidity rate of 1.0% on the validation set, a notable
reduction from the baseline mortality/morbidity rates seen
in practice. When calibrating for the incidence rates in
the testing and validation populations, the CPE decreases
from the PE but still demonstrates a reduction in average
risk. The PE metric indicates a slight increase in the
mortality/morbidity probability on the test set (-0.8%).

When evaluating the given vs. recommended treatments
using each of the individual ML algorithms as the ground
truth, we see a benefit ranging from 0.8% to 3.3% on the
test set and 0.7% to 4.5% on the validation set. Thus, we
see a benefit even in the most pessimistic estimates. We
observe that the PE metric can be worse than even the

most pessimistic PR estimate; this is due to the fact that
PE compares probabilities to the event rate, versus directly
comparing probabilities. While both are useful, PR provides
a more consistent basis for evaluation.

The match rate is 51.4% on the testing set and 48.2% on
the validation set. The predictions of mortality/morbidity
under our prescriptions have an AUC of 80.4% on the
testing set and 77.4% on the validation set, demonstrating
strong discriminative ability for risk in cases where the
predictions match the true treatment decisions.

Figure 3 compares the proposed prescription frequencies
to the true treatment decisions administered in practice on
the validation data, broken down by various clinical fea-
tures. These figures offer insight into how our prescriptions
differ from current practice and how the treatment patterns
change for specific clinical characteristics.

Our results generally propose to increase the prescription
rate in the validation data, which treated 35.0% of
patients with ACEI/ARBs in practice. The prescription rate
increases by 67.6% for patients with heart disease and
22.5% for patients without the comorbidity. Specifically,
for the case of atrial fibrillation, our algorithm suggests a
significant increase by 153.8% for those diagnosed with
the disease, compared to 28.1% for those who are not.
Notice that for patients with chronic lung disease, the
proposed prescription is 237.5% higher compared to the
standard of care. The corresponding increase for patients
who were not diagnosed with lung disease is lower, 19.1%.
The personalized approach leads to a decrease in the
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Table 2 Descriptive summary of clinical characteristics of derivation and validation populations prior to matching

Derivation Validation

ACEI/ARBs No ACEI/ARBs ACEI/ARBs No ACEI/ARBs

Patient Count 1043 1663 280 521

Age 70.0 (57.0-79.0) 70.0 (56.5-79.0) 68.0 (56.0-78.0) 68.0 (57.0-79.0)

Gender = Male 599 (57.4%) 985 (59.2%) 175 (62.5%) 336 (64.5%)

Race = Black 2 (0.2%) 1 (0.1%) 8 (2.9%) 40 (7.7%)

Race = Caucasian 955 (91.6%) 1532 (92.1%) 237 (84.6%) 369 (70.8%)

Race = Hispanic 78 (7.5%) 109 (6.6%) 34 (12.1%) 106 (20.3%)

Race = Asian 3 (0.3%) 6 (0.4%) 1 (0.4%) 5 (1.0%)

Temperature 36.8 (36.5-37.5) 36.8 (36.6-37.4) 37.3 (36.8-37.8) 37.0 (36.8-37.8)

Creatinine (mg/dL) 0.9 (0.7-1.2) 0.9 (0.7-1.2) 1.0 (0.8-1.3) 1.0 (0.8-1.3)

Sodium (mmol/L) 138.0 (135.0-140.0) 138.0 (135.0-140.0) 138.0 (135.0-140.0) 138.0 (135.0-140.0)

Hemoglobin (g/dL) 14.0 (12.5-15.0) 14.0 (12.9-15.0) 13.6 (12.0-14.8) 13.0 (11.4-14.2)

Leukocytes (1e3/muL) 6.4 (4.9-8.5) 6.3 (4.8-8.4) 6.9 (5.0-9.8) 7.0 (5.1-9.4)

Lymphocytes (1e3/muL) 1.0 (0.7-1.4) 1.0 (0.7-1.4) 1.0 (0.7-1.4) 1.0 (0.8-1.4)

Platelets (1e3/muL) 194.0 (150.0-255.0) 195.0 (152.0-250.0) 200.5 (150.8-256.2) 204.0 (152.0-285.0)

Low Oxygen Saturation 345 (33.1%) 614 (36.9%) 114 (40.7%) 182 (34.9%)

Low Systolic BP 78 (7.5%) 191 (11.5%) 10 (3.6%) 35 (6.7%)

Elevated D-Dimer 728 (69.8%) 1244 (74.8%) 224 (80.0%) 419 (80.4%)

Elevated CRP 945 (90.6%) 1564 (94.0%) 193 (68.9%) 429 (82.3%)

Elevated Transaminases 406 (38.9%) 688 (41.4%) 125 (44.6%) 239 (45.9%)

Elevated LDH 758 (72.7%) 1298 (78.1%) 124 (44.3%) 227 (43.6%)

Diabetes 315 (30.2%) 497 (29.9%) 59 (21.1%) 159 (30.5%)

Hypertension 1043 (100.0%) 1663 (100.0%) 280 (100.0%) 521 (100.0%)

Dislipidemia 517 (49.6%) 823 (49.5%) 72 (25.7%) 199 (38.2%)

Obesity 310 (29.7%) 458 (27.5%) 54 (19.3%) 129 (24.8%)

Renal Insufficiency 84 (8.1%) 192 (11.5%) 18 (6.4%) 65 (12.5%)

Lung Disease 285 (27.3%) 430 (25.9%) 45 (16.1%) 122 (23.4%)

Atrial Fibrillation 70 (6.7%) 161 (9.7%) 13 (4.6%) 47 (9.0%)

HIV 2 (0.2%) 4 (0.2%) 0 (0.0%) 1 (0.2%)

Heart Disease 360 (34.5%) 603 (36.3%) 71 (25.4%) 154 (29.6%)

Cerebrovascular Disease 96 (9.2%) 190 (11.4%) 14 (5.0%) 56 (10.7%)

Connective Tissue Disease 52 (5.0%) 72 (4.3%) 8 (2.9%) 44 (8.4%)

Liver Disease 66 (6.3%) 75 (4.5%) 5 (1.8%) 29 (5.6%)

Cancer 155 (14.9%) 310 (18.6%) 19 (6.8%) 77 (14.8%)

Corticosteroids 387 (38.0%) 724 (44.1%) 138 (49.3%) 225 (44.3%)

Interferons 108 (10.6%) 176 (10.8%) 50 (17.9%) 47 (9.3%)

Tocilizumab 96 (9.2%) 176 (10.6%) 20 (7.1%) 20 (3.8%)

Antibiotics 842 (80.7%) 1367 (82.2%) 221 (78.9%) 399 (76.6%)

Mortality/Morbidity 329 (31.5%) 545 (32.8%) 82 (29.3%) 179 (34.4%)

Death 219 (21.0%) 352 (21.2%) 67 (23.9%) 139 (26.7%)

Heart Failure 73 (7.0%) 92 (5.5%) 12 (4.3%) 22 (4.2%)

Acute Renal Failure 163 (15.6%) 266 (16.0%) 19 (6.8%) 43 (8.3%)

Sepsis 108 (10.4%) 148 (8.9%) 8 (2.9%) 26 (5.0%)

Embolic Event 14 (1.3%) 25 (1.5%) 4 (1.4%) 7 (1.3%)

prescription rate by -14.0% for patients who were admitted
with low oxygen saturation. To the contrary, observations

with oxygen saturation levels at the normal range were
associated with a 66.9% increase. The prescription rate
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Table 3 AUC of the six binary classification algorithms trained on two populations

Training Data Testing Data Validation Data

ACEI/ARBs No ACEI/ARBs ACEI/ARBs No ACEI/ARBs ACEI/ARBs No ACEI/ARBs

RF 0.886 0.862 0.834 0.814 0.770 0.761

CART 0.843 0.827 0.812 0.790 0.762 0.714

OCT 0.879 0.829 0.797 0.777 0.737 0.699

XGBOOST 0.909 0.927 0.819 0.802 0.768 0.743

QDA 0.883 0.870 0.827 0.813 0.718 0.736

GB 0.824 0.813 0.826 0.805 0.710 0.734

Average AUC 0.871 0.855 0.819 0.800 0.744 0.731

The twelve models are evaluated on the training, testing, and validation datasets

increases across all age groups, with greater increases
for younger patients; the algorithm raises prescriptions by
125.0% for patients below 40 and only 8.3% for patients
over 70. Finally, the algorithm proposes to increase the
prescription rate more for women (43.8%) than for men
(28.0%).

3.4 Online algorithm interface

Our goal is to provide clinicians with a readily available
and actionable tool that can communicate the algorithm
recommendations. For this reason, we have developed an
online application that can directly inform the decision
making process of physicians using the proposed models.
Through this application (accessible at: https://www.
covidanalytics.io/treatments), practitioners can enter new

patient data at hospital admission, obtain individualized
estimations of mortality/morbidity risk and evaluate the
effectiveness of ACEI/ARBs for their own patients. Figure 4
displays the user interface of the web application.

4 Discussion

In this study, we compiled EMR and registry data from
five different countries to create predictive and prescrip-
tive models for COVID-19 patients. We demonstrate that
accurate analytical models can help physicians assess the
potential benefit of ACEI/ARBs for hypertensive patients
in practice. To the best of our knowledge, this constitutes
the first personalized prescription algorithm for COVID-
19 patients that has been validated in an international

Table 4 Summary of variable importance for each model by rank (1 = most important)

Algorithm CART GB OCT QDA RF XGBOOST Average

ACEI/ARBs Creatinine 1.0 – 1.0 2.0 1.0 1.0 1.2

Low Oxygen Saturation 2.0 – 2.0 4.0 2.0 2.0 2.4

Age 3.0 1.0 3.0 3.0 3.0 3.0 2.7

White Blood Cell Count – 2.0 – 1.0 4.0 4.0 2.8

Hemoglobin – 3.0 5.0 – – – 4.0

Platelets – 4.0 – 5.0 – – 4.5

Lymphocytes – 5.0 4.0 – 5.0 5.0 4.8

No ACEI/ARBs White Blood Cell Count – 2.0 – 1.0 – – 1.5

Creatinine 1.0 4.0 1.0 3.0 2.0 1.0 2.0

Age 3.0 1.0 3.0 2.0 1.0 3.0 2.2

Low Oxygen Saturation 2.0 – 2.0 5.0 3.0 2.0 2.8

Lymphocytes 4.0 – 4.0 – 4.0 – 4.0

Hemoglobin – 3.0 5.0 4.0 5.0 4.0 4.2

Temperature 5.0 – – – – – 5.0

Blood Sodium – 5.0 – – – 5.0 5.0
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Table 5 Summary of prescription results on training, testing, and validation datasets, using a 5% improvement threshold

Match Rate Presc. Count Avg. AUC PE CPE PR (Low) PR (High)

Training Data 0.521 688 0.896 -0.058 -0.058 -0.008 -0.034

Testing Data 0.514 124 0.804 0.008 0.007 -0.008 -0.033

Validation Data 0.482 375 0.774 -0.010 -0.005 -0.007 -0.045

cohort of patients. We place particular emphasis on essen-
tial components of causal inference by applying match-
ing methods to confirm common baseline characteristics
between both treatment groups, establishing similar base-
line risk between the two populations. We combine six
well-established binary classification techniques to pre-
dict in-hospital mortality and morbidity. We combine these

models on an individual basis, using a voting scheme to
assess whether the prescription of ACEI/ARBs can reduce
the probability of a hypertensive patient experiencing an
adverse event during hospital admission. We apply detailed
quantitative evaluation metrics to assess the recommenda-
tions’ effectiveness and robustness. We demonstrate through
various metrics that the application of our framework can

Fig. 3 Comparison of ACEI/ARB prescription rates under observed (blue) and recommended (orange) treatments for the validation dataset
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Fig. 4 Visualization of the
online algorithm user interface

lead to improved patient outcomes relative to the standard
of care.

4.1 Clinical insights

Figure 3 offers insight into how our proposed treatment
scheme agrees with and differs from what was observed
in the data, as measured by the prescription rates. Our
algorithm recommends an increase in the overall number
of prescriptions of ACEI/ARBs. This includes suggestions
to hypertensive patients who were not originally prescribed
this line of therapy as well as patients who were already
prescribed this class of drugs. A benefit of personalization
is also the identification of patients for whom getting this
regimen might be detrimental.

Figure 3a shows that the algorithm recommends a higher
ACEI/ARB prescription rate for patients with heart disease.
This could be highly impactful given the prevalence and
potential consequences of cardiovascular disease in severe
COVID-19 cases [18, 41]. In particular, we note that the
algorithm identifies a significantly higher proportion of
patients with atrial fibrillation who would benefit from this
class of drugs. This finding is in line with the hypothesis that
this comorbidity in combination with COVID-19 can lead to
severe complications [52], and potentially extends previous
findings suggesting a benefit of ACEI/ARBs in relation to
atrial fibrillation [28].

The proposed personalized treatment allocation identi-
fies a potential subgroup of hypertensive patients for which
ACEI/ARB prescriptions may be detrimental. Figure 3d
highlights that the prescription rate should be low-
ered amongst patients with low oxygen based on the

mortality/morbidity outcome. Oxygen saturation has been
commonly used as a reference metric to potentially identify
respiratory complications due to COVID-19. This finding
provides an interesting direction for future clinical research.

Our prescription scheme proposes an increase in
prescription rates across all age groups, as indicated in
Fig. 3e. The algorithm proposes the most significant
increase in prescription rates for the youngest cohort below
40 years of age.

Other clinical criteria for ACEI/ARBs cannot be con-
firmed by our study due to our outcome of interest.
For example, ACE inhibitors are known to be risky for
women who may become pregnant due to potential birth
defects, [47] yet our prescription scheme proposes a higher
prescription rate for women (Fig. 3g). This is not surprising,
because such an effect would not be captured in our mortal-
ity/morbidity outcome. These external factors demonstrate
the need for clinical expertise; while this tool can facilitate
treatment decisions, it must be considered in the broader
context of a patient’s care.

Finally, we note that our criteria for prescription is
an improvement of at least 5.0% in predicted mortal-
ity/morbidity during hospitalization. Thus, the reduction
does not necessarily imply that ACEI/ARBs are harmful to
the remaining patients; the effect could be neutral. The raw
predicted probabilities for a patient under each treatment
alternative can be assessed in more detail on an individual
basis. This can assist clinicians by quantifying the effect
of ACEI/ARBs on the specific outcome of interest, mortal-
ity/morbidity from COVID-19, which can then be traded off
against other external concerns such as chronic hypertension
treatment for.
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4.2 Limitations

There are several limitations to this study. We consider
the effect of ACEI/ARBs in isolation, rather than in
combination with other treatments. This assumes that the
effect of other treatments is independent from the effect
of ACEI/ARBs. This is consistent with existing literature,
in which COVID-19 treatments have generally been
considered separately rather than as combination regimens.
However, there is potential to consider treatment strategies
more holistically as drug combinations. The methodology
presented in this work could be easily extended to the case
of multiple treatments: rather than training models for the
treated and untreated group, as done here, models could be
trained for N treatment groups, and the same prescription
and voting scheme could be followed to choose between
the N alternatives. This was impractical in the current
study given the scope of the available data, as the sample
sizes become much smaller when dividing the population
by treatment combination, but this could be considered in
future work as larger datasets become available.

All of the data included in the derivation and validation
cohorts were collected between February to May 2020. As
a result, our investigation carries the limitations associated
with the design of observational studies. Moreover, we
would like to highlight that the outcome prevalence seems to
be dependent on the relative timing of the pandemic curve.
Hence, confounding factors such as the degree of congestion
in the hospital systems, or changes in the clinical protocols
and the use of other drugs might have affected the observed
mortality and morbidity rates.

Additionally, there is a tradeoff between obtaining
detailed clinical data and curating large datasets. In order
to leverage a broad international cohort of patients, we
were unable to use granular data that was only available
for subgroups of patients. As a result, we used binary
indicators with predefined cutoff values for many clinical
features. If raw lab readings were available, we could gain
further insight into these features and identify data-driven
risk cutoffs.

Finally, we note that these results are not causal and do
not isolate the effect of ACEI/ARBs in patient outcomes.
However, given the time and cost involved in implementing
an RCT, we believe that this study adds value. Our study
provides insight into potential subpopulations with maximal
benefit from ACEI/ARBs that can guide future clinical
studies.

5 Conclusions

Our approach provides promising evidence for the the
benefit of individualizing ACEI/ARBs for hypertensive

COVID-19 patients. Using machine learning, we are
able to identify patients who would benefit the most
by receiving this type of medication. Our framework
highlights the potential effect of this class of drugs for
hypertensive patients or cases admitted with low oxygen
saturation. By personalizing the drug prescription process,
the proposed framework improves patient outcomes and
avoids unnecessary drug prescriptions that would have
limited efficacy. In the future, the algorithm could be
integrated in practice into existing EMR systems to generate
dynamically personalized treatment recommendations. Our
data-driven approach invites further testing using datasets
from other hospitals or other types of treatment. Our work
is a key step toward a fully patient-centered approach
to COVID-19 management and the utilization of existing
treatments to reduce its toll on public health.
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