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Abstract—This paper considers the problem of sequential
binary hypothesis testing based on observations from a network
of m sensors where a subset of the sensors is compromised by
a malicious adversary. The asymptotic average sample number
required to reach a certain level of error probability is selected
as the performance metric of the system. We propose an asymp-
totically optimal voting algorithm for the sensor network with
a fusion center and generalize it to fully-distributed networks,
where the algorithm stays asymptotically optimal under the weak
assumption that the sensor network is connected. Moreover, we
prove that both of the proposed algorithms are asymptotically
optimal in the presence of Byzantine sensors, in the sense that
each of them forms a Nash equilibrium with the worst-case
attack (flip-attack). Compared to existing distributed detection
strategies, the proposed scheme has a low message complexity,
which is independent of the error probability and the sample
number, by taking advantage of the sparsity of votes. The results
are corroborated by numerical simulations.

Index Terms—Sequential analysis, Distributed algorithms,
Wireless sensor networks, Byzantine attack, Fault tolerant sys-
tems, Asymptotic optimality.

I. INTRODUCTION

Background and Motivation:
Distributed inference with sensor networks has drawn sub-

stantial research attention due to its wide application in
wireless sensor networks [1], power grids, cognitive radio
[2], smart building, Internet of Things, etc. As sensors in the
network are usually spatially separated and communicate by
wired/wireless channels, they are exposed to various interfer-
ence and attacks. Therefore, it is crucial that the distributed
detection schemes can withstand a certain number of corrupted
agents.

Recent studies on resilient distributed detection include fault
identification schemes [3] [4] and tolerant schemes [5] [6],
etc., as summarized in [7]. Rawat et al. [3] quantified the
reputation of a sensor by its time of mismatches with the
final decision, and the sensor with worse reputation (more
mismatches) over a threshold will be tagged as Byzantines
and removed from the decision process. Ren et al. [6] pursued
an efficient and resilient detection scheme by removing the
statistics with the largest deviation from the decision-making
process.

The aforementioned distributed detection schemes assume
the existence of a fusion center (FC) that can communicate
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with all the sensors in the network. However, the fusion center
is subject to single point of failure. Furthermore, due to various
practical constraints such as transmitting distance of wireless
channel and power limit of a sensor, it may be desirable
to adopt a peer-to-peer local information exchange scheme,
i.e., fully-distributed scheme. Research on fully-distributed
detection problem progress significantly based on average con-
sensus algorithm. The Belief Consensus algorithm proposed
by Olfati-Saber et al. [8] solved the distributed detection
problem using the average consensus algorithm to calculate
the likelihood values (or beliefs) in a Bayesian network. Kar
and Moura [9] [10] focused on the topology optimization
problem subjecting to communication noise, random topology
switch, and communication constraints. Besides the methods
that only carry out consensus on sensors’ states, works in [11]
[12] solved the consensus problem by updating the state based
on neighbors’ states and new local observations at the same
time, which is referred as consensus+innovation distributed
algorithm.

However, naive average consensus algorithm utilized in the
previous distributed detection schemes is not resilient when
there are malicious agents in the network [13]. Research
on resilient variants of consensus-based detection scheme
includes attempts to exclude nodes from the value consensus
process with significant deviated states [2] [14] and weight
design to mitigate the effect of data falsification attacks [15].
Furthermore, most of the algorithms based on naive consensus
and their secure variants suffer from high communication
complexity, which is at least proportional to time because they
perform value averaging (almost) every time step.

In contrast to the previous fixed sample size analysis or
static stopping scheme that gives a decision or belief whenever
new observations arise, another path to tackle the hypothesis
testing problem is sequential hypothesis testing or sequen-
tial analysis approach proposed by Wald [16]. The number
of samples needed for sequential analysis is not known in
advance. The system stops taking observations as soon as
the existing statistics are enough to make a decision. The
goal is to make decisions about the hypothesis with as few
observations as possible while controlling the probability of
making mistakes. Since the number of samples is adjusted
dynamically according to the current statistics, sequential test-
ing is more sample-efficient than static ones [17]. Moreover,
the optimality of Sequential Probability Ratio Test (SPRT)
has been proved by Wald et al. [18], and the optimal nature
of SPRT attracts a considerable amount of research on the
fusion center formulation of multi-sensor SPRT [19] [20] [21].
However, to the best of our knowledge, research on either
the security problem or the fully-distributed formulation of



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3075147, IEEE
Transactions on Signal Processing

2

sequential hypothesis testing has not been well explored.
Our work and contribution:
We consider the distributed binary hypothesis testing prob-

lem where a binary state θ = {0,1} is detected by a group of m
sensors that generate observations according to a background
hypothesis. c out of m sensors are manipulated by a malicious
adversary who can inject arbitrary data into the observations
and communication messages at compromised sensors. This
paper aims to design a distributed detection scheme to decide
on the time to stop and the hypothesis to choose based on
observations from the partly corrupted sensor network with
minimum average sample number under error probability con-
straints. Our previous result has been published in [22]. The
main contributions of this paper are summarized as follows:
(1) We propose a voting detection scheme named VSPRT

(voting SPRT, Section III, IV) in fusion center scenario
and a generalized scheme named DVSPRT (distributed
voting SPRT, Section V) in fully-distributed scenario.

(2) We quantify the limit distribution of the sample number of
VSPRT and DVSPRT while most existing works consider
the expectation of sample number. Based on this more
refined analysis, we prove that our proposed VSPRT
and DVSPRT are both order-1 asymptotic optimal and
quantify their gap from the theoretical optimal. Moreover,
the optimality of DVSPRT holds for arbitrary topology
as long as the graph is connected.

(3) In the presence of attack, when the number of com-
promised sensors is known, we prove that the detec-
tion strategy VSPRT (DVSPRT) and system disturbing
strategy flip-attack form a Nash equilibrium pair, i.e.,
the proposed VSPRT (DVSPRT) scheme achieves the
fundamental limit among all possible detection strategies.
When the number of compromised sensors is unknown,
the proposed schemes are still resilient with appropriate
parameter choice.

(4) We further prove that the proposed DVSPRT scheme has
message complexity O(mM)1, which is independent of
error probability and sample number. In contrast, the
message complexity of most fully-distributed detection
schemes in the literature is O(mMT ), which scales lin-
early with respect to detection delay T , i.e., decreasing
error probability requires more time (or more samples)
and thus more communication energy.

Organization:
The rest of this paper is organized as follows: In Section II,

we formulate the problem of sequential binary hypothesis
testing, define the performance metric, and demonstrate corre-
sponding fundamental limits. Section III proposes the voting
scheme named VSPRT in fusion center formulation, quantifies
its performance, and proves its optimality in the absence of
attack. In Section IV, the Byzantine attack model is formu-
lated, the performance of VSPRT under attack is quantified.
In Section V, VSPRT is generalized to DVSPRT in fully-
distributed scenario. We quantify the performance and prove
the optimality in the absence and in the presence of attack.
We further investigate the resiliency of DVSPRT with com-

1m is the number of sensors and M is the number of communication links.

munication manipulation and link failure. In Section VI, the
results are collaborated by numerical simulations. Section VII
finally concludes the paper.

Notations:
We denote by Z+ the set of strictly positive integers and by

R the set of real numbers. The cardinality of a set S is denoted
as |S|. The transpose of a matrix is denoted by superscript
T . If not explicitly stated, ∞ represents +∞. N(µ,σ2)
denotes normal distribution with mean µ and variance σ2.
In particular, N(0,1) denotes standard normal distribution. Let
f ,g be real-valued functions whose ranges are both unbounded
subsets of R. f (x) ∼ g(x) with respect to a limit process
represents lim f (x)

g(x) = 1. The little o notation f (x) = o(g(x))

with respect to a limit process means lim f (x)
g(x) = 0. The big O

notation f (x) = O(g(x)) with respect to a limit process means
limsup | f (x)|g(x) < ∞.

II. PROBLEM FORMULATION

A. Sequential Binary Hypothesis Testing

We consider the problem of binary hypothesis testing
where a group of m sensors infers a binary state θ ∈ {0,1}
from their measurements. At each discrete time index k
(k ∈ Z+), the observations are generated at each sensor
i ∈ {1,2, ...,m} according to θ . Let the column vector zzz(k) =
[z1(k),z2(k), ...,zm(k)]T ∈ Rm denote the observations at time
k from all m sensors, and zi(k) is the observation from sensor
i.

For the null hypothesis H0 (θ = 0), probability measure
generated by zi(k) is denoted as ν0 and for the alternative hy-
pothesis H1 (θ = 1), it is denoted as ν1. In other words, for any
Borel-measurable set B ⊆ R, the probability that zi(k) ∈B
equals to νθ (B). We assume that all observations from dif-
ferent sensors at different times are identically distributed and
conditionally independent given the true hypothesis. Denote
the probability space generated by all measurements given the
true hypothesis Hθ as (Ω, F , Pθ ), i.e.,

Pθ (zi1(k1) ∈B1, . . . ,zil (kl) ∈Bl)

=

{
ν0(B1)ν0(B2) . . .ν0(Bl), given θ = 0
ν1(B1)ν1(B2) . . .ν1(Bl), given θ = 1

,

where (i j,k j) 6= (i j′ ,k j′) for all j 6= j′. The expectation taken
with respect to Pθ is denoted by Eθ . We make the following
assumptions, which are conventional in statistical inference.

Assumption 1 (Detector knowledge) The probability mea-
sure νθ ,θ ∈ {0,1} is known to the detector.

We further assume that probability measure ν0 and ν1 are
well-defined:

Assumption 2 (Well-defined probability measure)
(1) Kullback-Leibler (K–L) divergence between ν0,ν1 is well-

defined2, i.e., 0 < D0,D1 < ∞, where D0,D1 are defined

2The existence of K–L divergence implies that probability measure ν0,ν1
are absolutely continuous with respect to each other, that is, for any Borel-
measurable set B ⊆ R, if νθ (B) = 0 then ν1−θ (B) = 0, for both θ = 0,1.
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as

D1 ,
∫

z∈R
log
(

dν1(z)
dν0(z)

)
dν1,

D0 ,
∫

z∈R
log
(

dν0(z)
dν1(z)

)
dν0,

and dν0(·)
dν1(·)

, dν1(·)
dν0(·)

are the Radon-Nikodym derivative.
(2) Variance of log-likelihood ratio is well-defined, i.e.,

V1,V0 < ∞, where V1,V0 are defined as:

V1 ,
∫

z∈R

[
log
(

dν1(z)
dν0(z)

)
−D1

]2

dν1(z),

V0 ,
∫

z∈R

[
log
(

dν0(z)
dν1(z)

)
−D0

]2

dν0(z).

Due to the Law of Large Numbers, increasing number of
observations leads to decreasing error probability. However, in
many practical applications, observations are costly and intro-
duce unnecessary delays in decisions. We adopt the framework
of Sequential Analysis to quantify and optimize the error-delay
trade-off. The observation sampling is terminated according to
a specific rule, e.g., when error probability reaches a certain
threshold. To be precise, at every time k, the decision is made
by choosing one element from the set of decisions:

fk ∈ {continue,0,1},

where the choice “continue” means taking next round of
observations at time k + 1 since existing observations are
insufficient to support either hypothesis. Decision fk = θ

means stop taking observations and choosing hypothesis Hθ at
time k (θ = 0,1). A detection strategy or a hypothesis testing
scheme3 f , { f1, f2, · · ·} is defined as an infinite sequence of
decisions from time 1 to ∞.

B. Performance Evaluation and Fundamental Limits
Define the (random) stopping time T with respect to strategy

f as:
T , inf{k| fk 6= continue} .

T is a {Fk}-stopping time, where Fk is a σ -field of all the
observations from time 1 to k: Fk = σ{zzz(1),zzz(2), · · · ,zzz(k)}.
In the context of sequential test, T denotes the sample number
or delay required to make a decision. We will use these two
terms interchangeably in the remainder of the paper.

The type-I error (false alarm rate) and type-II error (missing
detection rate) are respectively probabilities of making a wrong
decision when the background hypothesis is H0 and H1:

type-I error: e0 = P0 ( fT = 1) , (1)
type-II error: e1 = P1 ( fT = 0) , (2)

where fT represents the decision at termination moment T .
We consider the following problem where the expected delay
is minimized under error probability constraints, which is
conventional in literature considering optimality of sequential
test (e.g., [20] [23]).

3In the remainder of the paper, a detection strategy or a detection scheme
specifically refers to a sequential binary hypothesis testing algorithm design,
inducing when to stop and which hypothesis to choose, denoted as f .

Problem 1

min
f
Eθ [T ], θ = 0,1

s.t. e0 ≤ α,e1 ≤ β . (3)

Define the set of all admissible detection strategies that satisfy
the error probability constraint as

F , { f |e0 ≤ α,e1 ≤ β}, (4)

where 0 < α,β < 1. Wald et al. [18] has proved that for a
single sensor, among all f ∈F , SPRT optimizes Problem 1 for
both θ = 0 and θ = 1 simultaneously. However, for distributed
detection problem, it is in general intractable from a dynamic
programming point of view [24], and we turn to asymptotic
optimality analysis. Following definition in [20] [23], we
define the order of asymptotic optimality.

Definition 1 (Optimality) Let T ∗(m) be the stopping time of
the optimum detection strategy with m sensors that satisfies the
two error probability constraints in (3) with equality. Then, as4

α,β→0, the detection strategy in F with stopping time T is
said to be order-1 asymptotically optimal if

1≤ Eθ [T ]
Eθ [T ∗(m)]

≤ 1+o(1)

holds for both θ = 0 and θ = 1. It is order-2 asymptotically
optimal if

0≤ Eθ [T ∗(m)]−Eθ [T ]≤ O(1)

holds for both θ = 0 and θ = 1.

Moreover, the minimum expected stopping time among all
f ∈ F is provided in the following. The proof is referred to
[25].

Proposition 1 (Fundamental Limit) Recalling that T ∗(m)
is the stopping time of the optimum detection strategy among
F with m sensors, we have

E0[T ∗(m)] =
1

mD0

[
α log

1−β

α
+(1−α) log

β

1−α

]
, (5)

E1[T ∗(m)] =
1

mD1

[
(1−β ) log

1−β

α
+β log

β

1−α

]
. (6)

As α,β→0, results above can also be written as

E0[T ∗(m)] =
| logβ |
mD0

+O(1), E1[T ∗(m)] =
| logα|
mD1

+O(1).

The results in Proposition 1 provide lower bounds of Eθ [T ]
for all possible detection strategies. Based on these perfor-
mance bounds, we will prove the optimality of our proposed
detection strategies in Section III (fusion center) and Section
V (fully-distributed).

III. VOTING SCHEME WITH FUSION CENTER

In this section, we consider the scenario where there is a
fusion center that can communicate with every sensor in the

4In order to prevent degradation problems, the limit process α,β→0 in
this paper is assumed to satisfy 0 < limα/β < ∞. This assumption is made
throughout the paper unless stated otherwise.
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network. This formulation covers many practical applications
(e.g., building environment control system and wearable smart
devices) where there is a control unit in local sensor network
that has direct access to the data in every sensor. We will
propose a voting scheme in this formulation based on single
sensor SPRT and decision voting. It is named as VSPRT (short
for voting SPRT) in this paper. We will present the VSPRT
scheme, quantify its performance and prove its optimality. This
scheme will be used as a baseline to evaluate the performance
of fully-distributed detection schemes in subsequent sections.

A. Voting SPRT

Voting SPRT is a detection strategy where every sensor
calculates its local cumulative log-likelihood ratio

Si(n),
n

∑
k=1

li(k) =
n

∑
k=1

log
(

dν1(zi(k))
dν0(zi(k))

)
(7)

and compares Si(n) with a pair of thresholds h0,h1 > 0.
The thresholds are chosen according to the error probability
constraints:

h1 =
− logα + log

(m
r

)
r

, h0 =
− logβ + log

(m
r

)
r

, (8)

where
(m

r

)
is the combinatorial number of picking r unordered

outcomes from m possibilities. The integer r (1≤ r≤m) is the
minimum number of votes required to support a hypothesis for
final decision. This number r is an adjustable parameter of the
VSPRT scheme. Sensor i casts a ballot supporting H1 (H0) at
the first time when random walk Si(k) crosses the threshold
h1 (h0). The corresponding stopping times are defined as

τ
+
i (h1), inf

k∈Z+
{k|Si(k)≥ h1}, (9)

τ
−
i (h0), inf

k∈Z+
{k|Si(k)≤−h0}. (10)

The two first-passage time τ
+
i (h1) and τ

−
i (h0) are also the

moments when sensor i reports a vote supporting hypothesis
H1 and hypothesis H0 respectively. In the following we omit
the thresholds h0,h1 and parentheses and denote them as
τ
+
i ,τ−i for notation simplicity. The vote indicators at time k

for hypothesis H1 and hypothesis H0 are defined respectively
as

δ
+
i (k),

{
1, k ≥ τ

+
i

0, k < τ
+
i

, δ
−
i (k),

{
1, k ≥ τ

−
i

0, k < τ
−
i

. (11)

The vote indicator is used to indicate whether sensor i has cast
a vote at time k. Since every sensor has only one vote for each
of the two hypotheses, each of the indicator changes at most
once among all the time steps k ∈ Z+. The indicator δ

+
i (k)

jumps from 0 to 1 when sensor i reports a vote supporting H1.
It is similar for δ

−
i (k) and H0.

Remark 1 The random walk Si(k) may cross the same thresh-
old multiple times but only the first cross of h1 will cast a vote
for hypothesis H1, and only the first cross of −h0 will cast a
vote for hypothesis H0. Moreover, one sensor may send votes
for both hypotheses at different time steps (see Fig.1).
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0 10 20 30 4025
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time k

v o
te
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r

−h0

h1

δ
−
i (k) δ

+
i (k)

Fig. 1. An example with thresholds h1 = h0 = 20. The sensor i vote for both
hypotheses.

Denote the first moment that there are (at least) r votes of
same type as:

τ
+(r), inf

k∈Z+

{
k

∣∣∣∣∣ m

∑
i=1

δ
+
i (k)≥ r

}
, (12)

τ
−(r), inf

k∈Z+

{
k

∣∣∣∣∣ m

∑
i=1

δ
−
i (k)≥ r

}
. (13)

As soon as there are r votes supporting the same hypothesis,
the VSPRT scheme stops sampling and chooses the corre-
sponding hypothesis as the final decision, i.e.,

fk(r) =

 0, k = τ−(r)≤ τ+(r)
1, k = τ+(r)< τ−(r)

continue, k < min{τ+(r),τ−(r)}
. (14)

The VSPRT scheme is denoted as f (r) , { fk(r)}∞
k=1. The

corresponding stopping time is defined as

τ(r),min{τ+(r),τ−(r)}. (15)

B. Performance of VSPRT

In this subsection, we quantify the performance of VSPRT.
In existing works in the literature [6] [21] [23] and our
previous work [22], the stopping time T is quantified using
expectation E[T ]. It is insufficient to characterize the random-
ness of T . For instance, two stopping times may have the
same expectation, but the one with larger variance has more
uncertainty and larger probability of being extremely large.

In order to establish more accurate analysis on random
stopping time T , we consider the γ-quantile (0 < γ < 1) of
distribution of T as a finer metric:

tθ ,γ(T ), inf
t∈R+
{t |Pθ (T ≤ t)≥ γ } , θ = 0,1. (16)

In other words, function tθ ,γ(T ) with respect to γ is the inverse
function of the cumulative distribution function (CDF) of T .
This finer characterization of T enables us to quantify the
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higher-order optimality of detection strategy and evaluate real-
world performance more accurately. Define the CDF of stan-
dard normal distribution as Φ(·). The corresponding inverse
function is denoted as Φ−1(·). The performance of VSPRT is
quantified in the following theorem whose proof is provided
in Appendix B.

Theorem 1 For VSPRT scheme defined in (14) with m/2 <
r ≤ m, we have the following results:

t0,γ
(
τ
−(r)

)
≤ | logβ |

rD0
+Φ

−1
(

γ
1
m

)√V0| logβ |
rD3

0

+o
(√
| logβ |

)
, (17)

t1,γ
(
τ
+(r)

)
≤ | logα|

rD1
+Φ

−1
(

γ
1
m

)√V1| logα|
rD3

1

+o
(√
| logα|

)
, (18)

as α,β→0. The equalities are achieved when r = m.

Based on Theorem 1, we are able to quantify the distri-
bution of stopping time with r = m, i.e., τ−(m) and τ+(m).
Define Nm(0,1) as the probability distribution whose CDF is
[Φ(·)]m. The probability distributions of τ−(m) and τ+(m) are
quantified in Corollary 1 whose proof is in Appendix B.

Corollary 1 In the absence of attack, the stopping times
τ+(m) and τ−(m) satisfy the following as α,β→0:

τ+(m)− | logα|
D1√

V1
D3

1
| logα|

d−→ Nm(0,1),
τ−(m)− | logβ |

D0√
V0
D3

0
| logβ |

d−→ Nm(0,1),

where d−→ means convergence in distribution. Hence, the cor-
responding expectation satisfy

E1[τ(m)]≤ E1[τ
+(m)]≤ | logα|

mD1
+O

(√
| logα|

)
, (19)

E0[τ(m)]≤ E0[τ
−(m)]≤ | logβ |

mD0
+O

(√
| logβ |

)
, (20)

as α,β→0, and VSPRT with r = m is of order-1 optimal .

In order to give the readers a more intuitive understanding
about the limit distribution Nm(0,1), its cumulative distribu-
tion function (CDF) and probability density function (PDF)
are illustrated in Fig. 2.

According to Theorem 1 and Corollary 1, choosing larger r
leads to better performance because it reduces the first-order
term | logβ |

rD0
( | logα|

rD1
) and thus reduces detection delay while

holding the same error probability. Therefore, choosing the
largest r = m yields the asymptotic least expected delay and
further leads to order-1 optimality. This result coincides with
Mei’s SPRT in [19].

However, as one can verify, a random variable drawn from
distribution Nm(0,1) has strictly positive expectation when
m > 1, which means there is a gap between Eθ [τ(m)] and the
optimal Eθ [T ∗(m)]. The gap is of order

√
| logα| and goes to

infinity as α→0. Similar results also apply on β . Therefore,
our proposed VSPRT is not order-2 optimal when m> 1. Even
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Fig. 2. The PDF and CDF of distribution Nm(0,1) with different m. When
m > 1, the expectation of distribution Nm(0,1) is strictly positive.

though VSPRT is not higher-order optimal, it has the following
merits:

(1) VSPRT is resilient to Byzantine sensors by a conserva-
tive choice of r < m. Moreover, as will be shown in Section
IV, VSPRT is optimal against attack considering the worst-
case performance.

(2) VSPRT is easily generalized to fully-distributed scenar-
ios with low message complexity by taking advantage of the
sparsity of the votes. In Section V, we leverage these merits
to design a fully-distributed resilient detection scheme named
DVSPRT (distributed voting SPRT).

IV. VSPRT WITH BYZANTINE SENSORS

This section demonstrates that the VSPRT scheme is re-
silient to Byzantine attack on an unknown subset of sensors.
The attack model is formulated, and the fundamental limit
of the average sample number in the presence of attack is
established. Moreover, we prove that VSPRT achieves this
fundamental limit.

A. Attack Model

Malicious adversary manipulates data by adding bias values
on the measurements of the compromised sensors. At time k,
the measurements received by all the sensors can be collected
as a vector

yyy(k) = zzz(k)+aaa(k), (21)

where zzz(k) is the true measurement generated according to
background hypothesis, and aaa(k) is the bias vector injected by
the attacker. The i-th entry yi(k) is the manipulated observation
at sensor i. Define the support of vector aaa ∈Rm as supp(aaa),
{i|1≤ i≤ m,ai 6= 0} where ai is the i-th entry of vector aaa.
Denote the index set of all sensors as S , {1,2, . . . ,m}. We
have the following assumptions on the malicious adversary.
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Assumption 3 (Sparse Attack) There exists a time invariant
index set C ⊆ S with |C|= c such that

⋃
∞
k=1 supp{aaa(k)}= C.

Furthermore, the detector knows the cardinality c, but it does
not know the set C. We further assume less than half of the
sensors are compromised, i.e., m > 2c.

Remark 2 It is conventional in the literature (e.g., [26] [27])
to assume that the attacker possesses limited resources, i.e.,
can only corrupt a subset of sensors with known cardinality.
Assumption 3 does not rule out the case where the number
of compromised sensors is unknown. Number c is a design
parameter set up by the system operator representing how
many compromised sensors the detection scheme can tolerate.
If the exact number of compromised sensors is no greater than
c, the proposed scheme is still resilient. Otherwise, the system
may be compromised, and we need a larger c for algorithm
design.

Motivated by the unencrypted and encrypted communica-
tion in sensor networks, we define two kinds of attackers
distinguished by their information set.

Assumption 4 (Attacker Knowledge)
A weak attacker has the following information: 1) the

probability measure, i.e., ν0 and ν1; 2) the real system state
θ ; 3) the historical original measurements from compromised
sensors: {zi(n) : i ∈ C,1 ≤ n ≤ k}. Besides the information
above, a strong attacker also knows the historical original mea-
surements from honest sensors: {zi(n) : i ∈ S \C,1≤ n≤ k}.

Remark 3 In real-world scenarios, most binary hypothesis
testing problems focus on monitoring an interested state,
and an alarm is triggered when the state deviates from the
normal one. For instance, the sensors monitor the smoke and
temperature for fire alarm. In this case, the hypothesis H0
represents the safe state and H1 represents the abnormal state.
It is possible that the malicious attacker is the cause of an
abnormal state H1 (e.g., causing fire) and intends to remain
undetected by the system at the same time by manipulating
sensor readings. Therefore, the assumption that the attacker
knows the true hypothesis is reasonable for these scenarios
and has a real-world background.

For an unencrypted sensor network, a Byzantine attacker is
modeled as a strong attacker who has access to all sensors’
observations. For an encrypted sensor network, only obser-
vations at compromised sensors are known to the adversary,
and the Byzantine attacker is modeled as a weak attacker. It
will be claimed in Remark 5 that the delay upper bound of
VSPRT in presence of strong attacker and weak attacker is the
same, i.e., in the sense of worst-case performance, knowing
observations at honest sensors cannot benefit an attacker when
using VSPRT.

An admissible attack strategy is a mapping from attacker’s
information set to the bias vector:

weak attacker:
{

θ ,C,k,{zi(n)}i∈C,n≤k

}
g−→ aaa(k),

strong attacker:
{

θ ,C,k,{zi(n)}i∈S,n≤k

}
g−→ aaa(k),

where g is a measurable function, and aaa(k) satisfies Assump-

tion 3.

Remark 4 With the constraints in Assumptions 3 and 4, the
adversary still has adequate knowledge about the system and
can carry out complex attack strategies such as time-varying or
probabilistic ones. The compromised sensors can “cooperate”
since bias vector is designed based on global information from
all compromised sensors.

Denote the probability measure and expectation under attack
strategy g on set C as Pg,C

θ
and Eg,C

θ
. The corresponding error

probabilities under attack are defined as the largest one among
all possible C:

eg
0 , max

|C|=c
Pg,C

0 [ fT = 1], eg
1 , max

|C|=c
Pg,C

1 [ fT = 0]. (22)

The expected delay is defined similarly:

Eg
θ
[T ], max

|C|=c
Eg,C

θ
[T ], θ = 0,1. (23)

Recalling definition in (16), tθ ,γ(·) under attack g is defined
as

tg
θ ,γ(T ), max

|C|=c
inf

t

{
t|Pg,C

θ
(T ≤ t)≥ γ

}
, θ = 0,1. (24)

B. Fundamental Limits

In this subsection, we propose an attack strategy which
provides a fundamental performance limit for all admissible
detection scheme. Define sensor index set

O0 , {1,2, . . . ,c}, O1 , {m− c+1,m− c+2, . . . ,m}.

The attacker first generates random observations yi(k) at time
k for every sensor i ∈ Oθ according to the distribution which
is opposite to the real hypothesis, i.e., the following holds for
each Borel set B:

P[yi(k) ∈B] = ν1(B), ∀i ∈ O1, given θ = 0. (25)
P[yi(k) ∈B] = ν0(B), ∀i ∈ O0, given θ = 1. (26)

Then design the injected bias data ai(k) to make sure the final
observation zi(k)+ai(k) of sensor i ∈ O0∪O1 is the same as
yi(k):

ai(k) = yi(k)− zi(k), i ∈ O0∪O1. (27)

We denote the attack strategy defined in (25) to (27) as
g∗. It is called flip-attack in this paper. We have the following
theorem quantifying the performance fundamental limits of all
detection schemes under the proposed attack g∗.

Theorem 2 For any admissible detection strategy f under
flip-attack g∗, we have the following results for the stopping
time T with respect to strategy f :

inf
f∈F

Eg∗
0 [T ]≥ E0[T ∗(m−2c)] =

| logβ |
(m−2c)D0

+O(1) , (28)

inf
f∈F

Eg∗
1 [T ]≥ E1[T ∗(m−2c)] =

| logα|
(m−2c)D1

+O(1) , (29)

where F , { f |e0 ≤ α,e1 ≤ β}.
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Proof Under attack g∗, the compromised sensor set is C =
Oθ given hypothesis Hθ . In this case, for either θ = 0 or
θ = 1, sensors in O0 will follow distribution ν0 and sensors
in O1 will follow distribution ν1. In other words, only sensors
in S \ (O0 ∪O1) have different distributions under different
hypotheses, and sensors in O0 ∪O1 provide no information
for distinguishing the hypotheses. As we assume m > 2c, S \
(O0∪O1) 6=∅. Therefore,

Eg∗
θ
[T ]
∣∣∣
S
= Eθ [T ]|S\(O0∪O1)

,

where the expectation Eg
θ
[T ]|S restricted on a set S means the

detection scheme only takes observations in set S. Since |S \
(O0 ∪O1)| = m− 2c, according to Proposition 1, the results
are obtained. �

Theorem 2 provides a performance fundamental limit in
presence of Byzantine attack. No detection strategy can have
strictly lower expected sample number than Eθ [T ∗(m− 2c)]
in presence of flip-attack. In the following subsection, we
quantify the performance of VSPRT in presence of attack
and prove that VSPRT achieves the performance bound in
Theorem 2.

C. Achievability

In the presence of attack, the VSPRT scheme uses manip-
ulated observations to calculate log-likelihood ratios:

li(k) = log
(

dν1(yi(k))
dν0(yi(k))

)
.

The thresholds chosen according to probability constraints are:

h1 =
− logα + log

( m
r−c

)
r− c

, h0 =
− logβ + log

( m
r−c

)
r− c

. (30)

The remaining procedures are all the same as Subsection
III-A. The following theorem quantifies the performance of
VSPRT in the presence of attack, and the proof is provided in
Appendix C for legibility.

Theorem 3 For any admissible attack strategy g on arbitrary
sensor set C with |C|= c. The following results hold for m/2<
r ≤ m− c as α,β→0:

tg
0,γ

(
τ
−(r)

)
≤ | logβ |

(r− c)D0
+

√
V0| logβ |
(r− c)D3

0
Φ
−1(γ

1
m )

+o
(√
| logβ |

)
. (31)

tg
1,γ

(
τ
+(r)

)
≤ | logα|

(r− c)D1
+

√
V1| logα|
(r− c)D3

1
Φ
−1(γ

1
m )

+o
(√
| logα|

)
. (32)

According to Theorem 3, increasing r (r ≤ m− c) will
decrease the delay. By choosing r = m− c, the fundamental
limits in Theorem 2 are achieved. We cast the detection
problem as a zero-sum game between detecting strategy f and
attack strategy g with pay-off of f defined as5 either ρ0 or ρ1:

5Pay-off of g is defined as −ρ0 or −ρ1 accordingly.

ρ0( f ,g), lim
α,β→0

| logβ |
Eg

0[T ]
, ρ1( f ,g), lim

α,β→0

| logα|
Eg

1[T ]
. (33)

Since the detection strategy pursues smaller error probability
α (or β ) with lower expected delay Eg

θ
[T ], larger ρθ ( f ,g)

(θ = 0,1) represents better performance. The detection strategy
f aims at increasing ρθ , and the malicious attacker g intends
to decrease ρθ . Based on Theorem 3, we have the following
performance bound of VSPRT scheme f (r).

Corollary 2 Under any admissible attack strategy g, if r ≤
m− c, for arbitrary admissible attack g, we have

ρθ ( f (r),g)≥ (r− c) ·Dθ , θ = 0,1. (34)

Corollary 2 indicates that, when the number c of compromised
sensors is unknown, as long as we choose r such that r ≤
m− c, the system performance has a lower bound. Moreover,
if we know the number c, the following Nash equilibrium is
obtained.

Corollary 3 VSPRT detection strategy f ∗ , f (m− c) and
flip-attack strategy g∗ form a Nash equilibrium pair, i.e., for
any admissible strategy f and g, the following holds:

ρθ ( f ,g∗)≤ ρθ ( f ∗,g∗)≤ ρθ ( f ∗,g), (35)

where

ρθ ( f ∗,g∗) = (m−2c) ·Dθ , θ = 0,1. (36)

Proof (proof of Corollaries 2 and 3) We consider the case
where θ = 1. It can be proved similarly when θ = 0. According
to Theorem 3, one obtains

Eg
1[τ(r)]≤

| logα|
(r− c)D1

+O
(√
| logα|

)
.

Thus,

ρ1( f (r),g) = lim
α,β→0

| logα|
Eg

1[τ(r)]
≥ (r− c)D1, (37)

and Corollary 2 is obtained. According to Theorem 2, one
obtains

ρ1( f ,g∗) = lim
α,β→0

| logα|
Eg∗

1 [T ]
≤ (m−2c)D1. (38)

Enforcing r = m−c in (37), and combing it with (38) lead to

ρ1( f ,g∗)≤ (m−2c)D1 ≤ ρ1( f ∗,g).

Plugging in f = f ∗ and g = g∗ in (37) and (38) results in
(m−2c)D1 ≤ ρ1( f ∗,g∗)≤ (m−2c)D1. The proof of Corollary
3 is thus accomplished. �

Since neither the attacker’s policy set nor the detector’s
policy set is compact, the Nash equilibrium pair does not
necessarily exist. Corollary 3 is of significance because it
proves its existence. If we define the worst performance among
all possible attacks as ρ̃θ ( f ) = infg ρθ ( f ,g), inequalities in
Theorem 2 imply ∀ f , ρ̃θ ( f )≤ (m−2c)Dθ . Combining it with
the second inequality in (35) leads to ρ̃θ ( f ∗) = (m− 2c)Dθ ,
i.e., the VSPRT scheme f ∗ achieves the performance upper
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bound and is optimal among all possible f . Notice that
the optimality is defined against all admissible attacks. We
introduce flip-attack because it is one of the attack strategies
that achieve the performance bound.

Remark 5 Noticing that flip-attack only requires observations
in O0 (when θ = 0) or O1 (when θ = 0), the flip-attacker
belongs to the category of weak attacker (recalling definition
in Assumption 4) since it does not need to know observations
from honest sensors in S \ (O0 ∪O1). In other words, the
information of a weak attacker is sufficient to support the
attack that causes the worst performance, and knowing more
observations from honest sensors cannot enable the strong
attacker to incur further performance loss.

In the next section, we generalize VSPRT in fully-
distributed scenario and prove that the optimality and the
resiliency are preserved.

V. FULLY DISTRIBUTED VOTING SCHEME

In many real-world scenarios, sensor network performs a
peer-to-peer local information exchange and there does not
exist a fusion center. We model the network topology as a
digraph where the directed edges represent communication
channels. We propose a fully-distributed detection scheme in
this network where every sensor makes decision based on
local observations and information shared from its neighbors.
It is named as distributed voting SPRT (DVSPRT), and we
prove that this scheme has the same asymptotic performance
as VSPRT both in the presence and in the absence of attack.

We assume the model of the sensor network is a directed
graph G = (V,E), where V is the set of nodes (sensors) with
|V| = m. Edge set E is the set of links or communication
channels among sensors: (i, j)∈ E represents that sensor i can
send information to j. Define the number of communication
links as M , |E|. The (incoming) neighborhood set N j of
sensor j is defined as all the sensors that can send messages
to j, i.e. N j , {i|(i, j) ∈ E}. Denote (A)i j as the element at
i-th row j-th column of matrix A. Define adjacency matrix of
sensor network as A, with (A)i j = 1 if (i, j) ∈ E and (A)i j = 0
otherwise. The distance from vertex i to j (i 6= j) is the shortest
length of path that starts from i and ends in j:

dis(i, j), min
n∈Z+
{n|(An)i j = 1}.

Let dis(i, i) = 0 for each i ∈ V . If (An)i j = 0 for all positive
integer n, i.e., there does not exist a path from i to j, the
distance is defined as dis(i, j) = ∞. Define the diameter of a
digraph G as

diaG , max
i, j∈V

dis(i, j).

We say that G is strongly connected if diaG < ∞.

A. Distributed Voting SPRT

Distributed voting SPRT (DVSPRT) is based on single
sensor SPRT and distributed votes propagation. The single
sensor SPRT is the same as in VSPRT scheme and we con-
centrate on the voting propagation process. In fully-distributed
scenario, every sensor maintains a transcript of vote list that

records the source and type of the vote currently known.
Define the set of vote list known at time k by sensor i as
∆i(k)⊆{−m,−m+1, · · · ,−1,1,2, · · · ,m}, which is initialized
as empty set, i.e., ∆i(0) := ∅. Recalling the definition of
stopping times τ

+
i and τ

−
i in (9) and (10), the vote list is

updated at time k as:

∆i(k) =


∆i(k−1)

⋃{⋃
j∈Ni

∆ j(k−1)
}⋃
{+i}, k = τ

+
i ,

∆i(k−1)
⋃{⋃

j∈Ni
∆ j(k−1)

}⋃
{−i}, k = τ

−
i ,

∆i(k−1)
⋃{⋃

j∈Ni
∆ j(k−1)

}
, otherwise.

(39)
Define the time that sensor i collects at least r positive
(negative) votes as

T+
i (r), inf

k∈Z+

{
k :
∣∣∆i(k)∩Z+

∣∣≥ r
}
, (40)

T−i (r), inf
k∈Z+

{
k :
∣∣∆i(k)∩Z−

∣∣≥ r
}
, (41)

where Z+ (Z−) is the set of strictly positive (strictly negative)
integers. The final decision at sensor i is made once there are
r votes supporting the same hypothesis in set ∆i(k):

fi,k(r) =

 0, k = T−i (r)≤ T+
i (r)

1, k = T+
i (r)< T−i (r)

continue, k < min{T+
i (r),T−i (r)}

. (42)

The DVSPRT scheme based on local information at sensor i
is defined as fi(r),

{
fi,k(r)

}∞

k=1. The stopping time of fi(r)
is

Ti(r),min{T+
i (r),T−i (r)}. (43)

The DVSPRT algorithm at sensor i is presented in Algo-
rithm 1.

Algorithm 1 DVSPRT at sensor i
1: Initialize ∆i(0) :=∅, fi,0(r) = continue, k := 0.
2: while fi,k(r) = continue do
3: Calculate Si(k) according to (7).
4: Update local vote set ∆i(k) according to (39).
5: Make decision according to (42).
6: k := k+1.
7: end while

The vote list ∆i is changed only when sensor i itself reports
a vote (at time τ

+
i ,τ−i ) or its neighbors’ sets are changed.

Therefore, the updating equation (39) can be designed as
event-based, i.e., update the set ∆i only when k = τ

+
i or

k = τ
−
i or when its neighbors’ sets ∆ j ( j ∈ Ni) are updated

at last time step. By this design, the number of messages that
travel in the network is no larger than 2m ·M (every link at
most transmits 2m votes). Define the message complexity as
the amount of messages traveling through graph edges. The
message complexity of DVSPRT is O(mM), which is inde-
pendent of α,β ,h0,h1 and expected delay Eθ [T ]. This merit
attributes to the sparsity of the votes. In comparison, message
complexity of most of consensus-based algorithms (e.g. [12]
[15]) scales linearly with respect to detection time, i.e., the
message complexity is O(mMT ). As error probabilities α and
β approach zero, the message number of these algorithms goes
to infinity while the message number of our proposed scheme
is bounded.
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B. Performance analysis

DVSPRT differs from VSPRT in that the vote-counting
procedure of DVSPRT is carried out in a decentralized manner.
In the following, we first focus on the delay caused by
distributed vote counting and prove that the delay is bounded
by the diameter of the network topology graph.

Lemma 1 For arbitrary r satisfying 1 ≤ r ≤ m and arbitrary
admissible attack g, the stopping time Ti(r) of DVSPRT and
the stopping time τ(r) of VSPRT satisfy

max
i∈S

Ti(r)− τ(r)≤ diaG. (44)

Remark 6 The diameter of the graph is used to bound the
maximum time that a vote reaches all the other sensor nodes
in G (also know as flooding time in a graph). According
to the information transmission protocol defined in (39), the
difference between delay of distributed and centralized vote-
counting is upper bounded by the maximum flooding time,
i.e., diaG.

Proof Define the oracle voting list ∆ which includes the votes
immediately after it is generated, i.e., at time k the set is

∆(k),
⋃
i∈S

∆i(k). (45)

According to the vote transmission mechanism (39), a vote
travels one path length every time step and the following holds:

∆i(k+diaG)⊇ ∆(k). (46)

Therefore, the following holds for arbitrary i,r and Hθ :

T+
i (r) = inf

k∈Z+

{
k : |∆i(k)

⋂
Z+| ≥ r

}
≤ inf

k∈Z+

{
k : |∆(k)

⋂
Z+| ≥ r

}
+diaG = τ

+(r)+diaG.

Similarly, one obtains T−i (r)≤ τ−(r)+diaG. Combining the
results leads to

min{T+
i (r),T−i (r)} ≤min{τ+(r),τ−(r)}+diaG, ∀i ∈ S.

Recalling the definition of Ti(r) and τ(r) in (43) and (15), (44)
holds for arbitrary i,r and arbitrary hypothesis Hθ . �

Based on Lemma 1, one obtains the following upper bound.

Theorem 4 For arbitrary sensor i and r satisfying m/2 < r≤
m, in the presence of any admissible attack g on any set C with
0 ≤ |C| < m/2, the stopping times of DVSPRT and VSPRT
with the same error probability constraints α,β satisfy

tg,C
1,γ

(
T+

i (r)
)
≤ tg,C

1,γ

(
τ
+(r)

)
+diaG, (47)

tg,C
0,γ

(
T−i (r)

)
≤ tg,C

0,γ

(
τ
−(r)

)
+diaG. (48)

Remark 7 The result includes the case of |C|= 0, i.e., there
is no attack.

As shown in Theorem 4, DVSPRT inherits the performance
of VSPRT in the absence of attack (Corollary 1) and in
the presence of attack (Corollary 3), which is summarized
in the following corollary. The corresponding proof is in
Appendix D.

Corollary 4 Assume G is strongly connected. Let m/2 < r≤
m, for abtrary i ∈ S , in the absence of attack, the expected
delays of DVSPRT satisfy:

E0[Ti(r)]≤
| logβ |

rD0
+O

(√
| logβ |

)
, (49)

E1[Ti(r)]≤
| logα|

rD1
+O

(√
| logα|

)
. (50)

Therefore, DVSPRT is of order-1 optimal in the absence of
attack. For any admissible attack strategy g, the expected
delays of DVSPRT satisfy:

Eg
0[Ti(r)]≤

| logβ |
(r− c)D0

+O
(√
| logβ |

)
, (51)

Eg
1[Ti(r)]≤

| logα|
(r− c)D1

+O
(√
| logα|

)
, (52)

where c is the number of compromised sensors.

DVSPRT has the same asymptotic performance as VSPRT
in both scenarios (with and without attack). On the one hand,
DVSPRT is order-1 optimal in the absence of attack. This
implies generalizing our proposed scheme to fully-distributed
scenario does not pay extra price (asymptotically). On the
other hand, in the presence of attack, DVSPRT inherits the
performance in Corollaries 2 and 3. In other words, DVSPRT
forms a Nash equilibrium with flip-attack strategy g∗, and
achieves the performance bound in Theorem 2 among all
possible detection strategies.

The optimality in absence of attack is significant for the
study of full-distributed detection schemes. Notice that other
detection schemes in fully-distributed scenario may not neces-
sarily be order-1 optimal, e.g., the consensus-innovation SPRT
(CISPRT) proposed in [28]. According to [29], CISPRT is
order-1 optimal if and only if the topology graph G is fully-
connected, i.e., each sensor can directly send messages to all
other sensors. In contrast, our proposed DVSPRT is order-1
optimal as long as G is connected, which is much weaker than
the fully-connectivity.

We list the stopping time notations in Table I for reference.
Notation τ is used in single sensor and fusion center context
while T is used in fully-distributed context.

TABLE I
TABLE OF STOPPING TIME NOTATIONS

Notation Meaning of the stopping time Definition at

τ
+
i (h1) or τ

+
i sensor i votes for H1 (9)

τ
−
i (h0) or τ

−
i sensor i votes for H0 (10)

τ+(r) r sensors votes for H1 (12)
τ−(r) r sensors votes for H0 (13)

τ(r)
fusion center get r votes:

min{τ+(r),τ−(r)} (15)

T+
i (r) sensor i collect r votes for H1 (40)

T−i (r) sensor i collect r votes for H0 (41)

Ti(r)
sensor i collect r votes:

min{T+
i (r),T−i (r)} (43)
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C. Resiliency under Communication Manipulation and Link
Failure

In the previous sections, we consider the scenario where
the attacker only manipulates the observations. However, the
influence of communication manipulation and link failure is
also significant in applying a fully-distributed algorithm and
discussed in this subsection. We first provide the solution to
communication manipulation. Suppose that the attacker can
manipulate the vote list ∆i(k) at each compromised senor
i ∈ C. In this case, besides voting for wrong hypothesis, the
corrupted sensor can also cast fake votes by impersonating
honest sensors. In the presence of such an attacker, every
sensor needs to validate whether votes in neighbors’ vote list
are real ones collected from honest sensors’ local votes or
impostor ones from the attacker. The problem can be solved
by implementing digital signature6 on each vote, i.e., every
vote is signed by the sensor who casts it, and every sensor is
able to authenticate the signature. In this case, we have the
following corollary whose proof is in Appendix E.

Corollary 5 Suppose that besides observation manipulation,
the malicious adversary can also manipulate the vote list ∆i.
In presence of such attack g on arbitrary set C with |C| = c,
if G is (c+1)-vertex connected7, the asymptotic performance
of DVSPRT with digital signature is given by (51) and (52)
for arbitrary honest sensor i ∈ S \C.

According to Corollrary 5, by filtering out fake votes using
digital signature, the honest sensors can achieve performance
bound (r− c)Dθ based on (51) and (52).

Remark 8 In Lamport’s early study of Byzantine gener-
als [30], he analyzed different solutions under Byzantine
agents with oral messages and written (signed) messages. An
oral message is a piece of information whose contents are
completely under the control of the transponder. A written
message is a piece of information whose authenticity could be
verified by others, and the intermediary can not manipulate the
information. In Subsection V-A, sharing integers from ∆i(k)
with neighbors can be interpreted as passing oral messages,
and the signed votes in this subsection are written messages.

Besides the case where communication is under the manip-
ulation of a malicious adversary, sensor communications also
fail randomly because of noise, congestion, and internal errors.
We consider the problem where communication channels fail
at random times. It is conventional to model the graph with
Bernoulli random topology, e.g., [10] [31].

In the random topology model, the communication channel
(i, j) ∈ E fail at random times. The probability that edge
(i, j) is online at arbitrary time k is pi j (0 ≤ pi j ≤ 1). We
assume that for distinct pairs of edges, the corresponding
Bernoulli process is statistically independent. Let us collect
the probabilities as a matrix P with its entry on i-th row, j-th
column equals to pi j when (i, j) ∈ E and equals to 0 when

6A digital signature is a mathematical scheme for verifying the authenticity
of digital messages or documents. Some examples of the digital signature
algorithm are RSA, DSA, and ECDSA.

7Strongly connected digraph G is said to be κ-vertex connected if any
removal of κ−1 vertices leaves a strongly connected digraph.

(i, j) /∈ E . Define the probability measure with respect to such
a Bernoulli random topology under true hypothesis θ as PP

θ
.

Corrsponding expectation is denoted as EP
θ

. Define a graph
G = (V,E) with edge set E defined as the set of all edges with
positive link probability: E , {(i, j)∈ E|pi j > 0}. We have the
following assumption on G.

Assumption 5 G is strongly connected.

In order to quantify the delay caused by random link failure,
we define the weighted distance in the graph following [32].
Define a directed path w(i, j) from sensor node i to j as an
alternating sequence of vertices and edges:

w(i, j) = {i = v0,e1,v1, · · · ,en,vn = j},

such that for l = 1, . . . ,n, the vertices vl−1 and vl are the
endpoints of edge el , i.e., el = (vl−1,vl). Define the set of all
the paths from i to j in G as W(i, j). The weighted distance
between distinct sensor nodes i0 and j0 is defined as

disP(i0, j0) = min
w(i0, j0)∈W(i0, j0)

∑
(i, j)∈w(i0, j0)

1
pi j

. (53)

According to Assumption 5, for every pair of nodes i and j
in graph G, disP(i, j) < ∞. In this random topology network,
the expected detection delay of DVSPRT is quantified in the
following theorem.

Theorem 5 Given P satisfying Assumption 5, under same
error probability constraints α,β , the difference of expected
delay of DVSPRT in perfect network and in random failure
network parameterized by P is bounded, i.e., for all sensor i,
all possible r and hypothesis θ , we have

0≤ EP
θ [Ti(r)]−Eθ [Ti(r)]≤max

j∈V
disP( j, i). (54)

Theorem 5 indicates that for each decider sensor i, the
expected delay introduced by random topology failure is
bounded by a constant term maxi, j∈V disP( j, i). Combining
(54) with (49) and (50), one obtains

lim
α,β→0

EP
θ
[Ti(m)]

Eθ [T ∗(m)]
= 1, θ = 0,1, (55)

i.e., DVSPRT is still order-1 optimal when the communication
channels fail at random times as long as Assumption 5 is
satisfied. In comparison, the efficiency of consensus algorithms
relies on link probability P [10] [33], and their efficiency
(convergence rate) in random graph is strictly less than the effi-
ciency with perfect communication for certain class of P even
when G is strongly connected. Considering that the connectiv-
ity of G is a very weak assumption, DVSPRT has resiliency
advantage over consensus-based algorithms under random link
failure by taking advantage of the low-communication design
of the voting scheme.

VI. SIMULATION

In this subsection, we assume that the probability dis-
tribution of two hypotheses are Gaussian distributions. The
background distribution of null hypothesis and alternative
hypothesis are H0 : N(−1,1) and H1 : N(1,1). In this case,
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the K–L divergences are D0 = D1 = 2, and variances are
V0 =V1 = 4.

We first evaluate the performance of VSPRT in the ab-
sence of attack, i.e., validate Theorem 1 and Corollary
1 by simulation. In Fig. 3, we choose four different m
(m = 2,4,10,20) with thresholds h0 = h1 = 10000. The
empirical distribution function of normalized stopping time(

τ−(m)− h0
D0

)
/
√

V0
D3

0
·h0 with 100 samples for each value of

m is illustrated in Fig. 3. The dashed lines are the corre-
sponding theoretical cumulative distribution function [Φ(·)]m.
Fig. 3 shows that the empirical distribution corresponds to the
theoretical distribution [Φ(·)]m.
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Fig. 3. CDF of random stopping time of VSPRT with r = m.

In order to simulate the error probability with higher ac-
curacy, the simulation experiments in the following adopt the
importance sampling approach [34]. To validate the result in
Corollary 1, the simulation is performed with m = 10 sensors
and h0 = h1. The values of the thresholds are chosen in an
increasing value list ranging from 50 to 1000. We calculate
the expected delay E0[τ(r)], the error probability e1 and the
corresponding constraint β . The result is shown in Fig. 4.
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Fig. 4. Performance of VSPRT with m = 10 sensors and different r in the
absence of attack.

As shown in Fig. 4, the absolute value of slope of every line
is approximately 2r (as denoted by black thin solid line), which
is in accordance with our asymptotic result | logβ |

E0[τ(r)]
∼ rD as

α,β→0. The probability constraint e1≤ β is satisfied (asterisk
mark is above the circle mark for every line). Moreover, the
gap between e1 and β is reasonably small, which corresponds
to the theory. The topology graph in fully-distributed scenario
simulation (Fig. 6 and Fig. 8) is denoted in Fig. 5.

1
2
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5
6

7

8

9

10

Fig. 5. Topology Graph of sensor network used for simulation in fully-
distributed case.

In the presence of attack, we validate Corollary 3 by show-
ing VSPRT and DVSPRT achieves the performance bound
under attack. In Fig. 6, we choose m = 10 and r = m− c. As
topology graph in Fig. 5 is a 4-connected graph, we choose
c = 0,1,2,3 in the simulation to prevent system degradation.
The compromised sensor sets are C = {1},C = {1,2}, and
C = {1,2,10} respectively. We use the local information at
sensor 1 for final decision. As shown in Fig. 6, the absolute
value of slope of every line is close to 2(m−2c) (as denoted
as black thin line), which validates Corollary 3.

0 100 200 300 400 500
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−0.4

−0.2

0
·104

expected delay

lo
g

e 1

VSPRT DVSPRT
c = 3
c = 2
c = 1
c = 0

Fig. 6. Performance of equilibrium strategy pair ( f ∗,g∗) when m = 10, r =
m− c with different c. The expected delay is Eg∗

0 [τ(m− c)] for VSPRT and
is Eg∗

0 [T1(m− c)] for DVSPRT.

In order to evaluate the efficiency of our proposed detection
scheme, we compare it with several detection schemes in
literature in the absence of attack. The following algorithms
are simulated with 10 sensors, and the fully-distributed algo-
rithms in Fig. 8 adopt the network topology in Fig. 5. The
parameter r in our proposed VSPRT and DVSPRT is chosen
as r = 10. Fig. 7 compares our proposed VSPRT with other
schemes in fusion center formulation. The simulation includes
the Decentralized SPRT (D-SPRT) proposed in [20] [35],
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Dual-SPRT and SPRT-CSPRT proposed in [21]. Moreover,
the order-2 optimal Centralized SPRT (CSPRT, see e.g., [23]
[36]) is also evaluated as a benchmark of optimality, which is
conventional in literature (e.g., [21] [23]). In Fig. 7, the slope
of every line represents the decrease rate of logarithm error
probability with respect to expected delay, i.e., the efficiency of
the corresponding algorithm. The maximum magnitude of the
slope equals to mD1 = 20, which corresponds to that of the
black thin line (theoretical optimal). The displayed schemes
are all at least order-1 optimal. The decrease rates (slopes) are
almost the same, which means VSPRT has almost the same
finite time efficiency as other schemes in absence of attacks.

100 200 300 400 500
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−0.5

0
·104

E0[τ(m)]

lo
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e 1
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CSPRT
VSPRT
DSPRT
DualSPRT
SPRT-CSPRT

Fig. 7. Performance of distributed detection schemes with fusion center where
m = 10.

Fig. 8 compares our proposed DVSPRT with other
schemes in fully-distributed formulation. The simulation
covers sample-dissemination-based distributed SPRT (SD-
DSPRT) and consensus-algorithm-based distributed SPRT
(CA-DSPRT) proposed in [23]. We also simulate our DVSPRT
scheme with random link failure. In the random topology
simulation, the link probability pi j of every directed edge in
the graph is generated randomly from the uniform distribution
on open interval (0,1). As shown in Fig. 8, the slope of
DVSPRT is close to that of other schemes and the theoretical
optimal. Thus, the finite time performance of DVSPRT in the
absence of attack is validated. Moreover, the performance of
DVSPRT with random link failure is asymptotically the same
as DVSPRT with perfect communication.

VII. CONCLUSION AND FUTURE WORK

This paper studies the sequential binary hypothesis testing
problem with Byzantine agents in both fusion center and fully-
distributed formulations. The performance metric is formu-
lated as the detection delay with type-I, type-II error proba-
bility constraints. We investigate the asymptotic performance
as error probabilities approach zero. In the absence of attack,
the definition of optimality and the theoretical optimal of a
detection strategy are introduced in Section II. We formulate
the VSPRT scheme in the fusion center formulation and the
DVSPRT scheme in the fully-distributed formulation based on
single sensor SPRT and a decide-by-vote mechanism.
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·104
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e 1
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SD-DSPRT
CA-DSPRT
DVSPRT

DVSPRT with
random link failure

Fig. 8. Performance of fully-distributed detection schemes with m = 10
sensors and network topology G in Fig. 5.

We prove that our proposed detection schemes VSPRT and
DVSPRT are order-1 optimal with voting parameter r = m in
the absence of attack. Moreover, in the presence of Byzantine
attacks, they both achieve the performance bound considering
the worst-case performance, and each of them forms a Nash
equilibrium pair with the flip-attack when choosing r = m−c.
The fact that the DVSPRT scheme inherits the performance of
VSPRT indicates that there is “no price of decentralization”
of our fully-distributed algorithm. Moreover, we prove that
DVSPRT still holds order-1 optimality under random link
failure with a mild assumption. The main results are verified
by numerical simulations.

Even though our proposed schemes can achieve the perfor-
mance bound in the presence of attack by choosing r = m−c,
this parameter choice does not lead to the most efficient
algorithm when there is no attack. Therefore, it can be the
object of future work to design a detection scheme that can
achieve optimality simultaneously in both scenarios (with and
without attack).

APPENDIX A
CENTRAL LIMIT THEOREM OF FIRST PASSAGE TIME

Assume that {x(n)}n≥1 is a sequence of i.i.d. random
variables with probability measure Px(·) and expectation Ex(·).
The expectation and variance of x(1) are denoted as

µx , Ex[x(1)], Vx , Ex[(x(1)−µx)
2]. (56)

Partial sum of x(n) is defined as W (n) , ∑
n
k=1 x(k). Denote

the first passage time of a positive threshold h as

τ
+(h), inf{n ∈ Z+|W (n)> h}. (57)

The following Central Limit Theorem (CLT) of positive first
passage time is from Allan Gut [37] Theorems 5.1, 5.2 and
Remarks 5.1, 5.3 in Chapter 2. The symmetrical result of
negative first passage time can be easily derived from it.
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Lemma 2 (Central Limit Theorem of first passage time)
Assume 0 < µx < ∞ and Vx < ∞, then the following holds:

τ+(h)− h
µx√

Vx
µ3

x
·h

d−→ N(0,1) as h→∞, (58)

where d−→ means convergence in distribution, and N(0,1) is
the standard normal distribution.

APPENDIX B
PROOF OF THEOREM 1 AND COROLLARY 1

Proof (Proof of Theorem 1) We prove (18), and (17) could
be handled similarly. Define a normalized random variable

Z1(h1) =
τ
+
1 (h1)− h1

D1√
V1
D3

1
·h1

.

According to Lemma 2, we have Z1(h1)
d−→ N(0,1) as h1→∞.

According to definition in (16), one obtains

t1,γ
(
τ
+(r)

)
, inf

{
t
∣∣P1(τ

+(r)≤ t)≥ γ
}
.

For better readability, we denote t1,γ (τ+(r)) with t1,γ for the
rest of this subsection. As the probability P1(τ

+(r) ≤ t) is
non-decreasing with respect to t, one obtains

P1[τ
+(r)≤ t1,γ ] = γ.

Event {τ+(r) ≤ t1,γ} implies that there are r sensors that
already sent positive votes at time t1,γ . Assuming the set of
sensors that contribute to these r votes as R= {i1, i2, . . . , ir},
one obtains

γ =P1[τ
+(r)≤ t1,γ ] = P1

[
max
i∈R

τ
+
i ≤ t1,γ

]
≥
(
P1[τ

+
1 ≤ t1,γ ]

)r
.

The last inequality reduces to equality when r = m. One
obtains P1

[
τ
+
1 ≤ t1,γ

]
≤ γ

1
r or

P1

Z1(h1)≤
t1,γ − h1

D1√
V1
D3

1
·h1

≤ γ
1
r .

Because Z1(h1)
d−→ N(0,1), we have

t1,γ − h1
D1√

V1
D3

1
·h1

≤Φ
−1(γ

1
r )+o(1) as h1→∞, (59)

or equivalently

t1,γ(τ+(r))≤
h1

D1
+

√
V1

D3
1
·h1 Φ

−1(γ
1
r )+o

(√
h1

)
. (60)

The inequality in (60) becomes equality when r = m.
We proceed to deal with the error probabilities and first

prove that the error probability constraints e0 ≤ α and e1 ≤ β

are satisfied by choosing thresholds h0,h1 as in (8). Let us
define the following events for a single sensor i:

E −i ,

{
inf

k∈Z+
Si(k)≤−h0

}
, E +

i ,

{
sup

k∈Z+
Si(k)≥ h1

}
.

Notice that event E −i implies that sensor i reports a wrong vote
when the true hypothesis is H1. Event {τ−(r)< τ+(r)} implies
that there exists an index set R , {i1, i2, . . . , ir} ⊆ S such
that for every entry i in set R, event E −i occurs. Considering
the statistical independence of every cumulative log-likelihood
ratio, one obtains

P1[τ
−(r)< τ

+(r)]≤ ∑
|R|=r

∏
i∈R

P1
(
E −i
)
=

(
m
r

) r

∏
i=1

P1
(
E −i
)
.

Then the error probability with θ = 1 satisfies

e1 ≤
(

m
r

)(
P1[E

−
1 ]
)r ≤

(
m
r

)
exp(−rh0), (61)

and the last inequality holds because we have the following
characteristics of single sensor SPRT (see e.g. [38]):

P0[E
+

i ]≤ (1−P1[E
−

i ]) · exp(−h1)≤ exp(−h1),

P1[E
−

i ]≤ (1−P0[E
+

i ]) · exp(−h0)≤ exp(−h0).

Substituting h0 with
− logβ+log(m

r)
r in (61) leads to e1 ≤ β .

Similarly, one can prove e0≤α . Recalling the choices of h0,h1
in (8), one obtains h1∼ | logα|

r . Replacing h1 in (60) with | logα|
r

leads to (18). �

Proof (Proof of Corollary 1) According to Theorem 1, one
obtains

t1,γ(τ+(m))− | logα|
mD1√

V1
mD3

1
· | logα|

= Φ
−1(γ

1
r )+o(1) as α→0.

This is equivalent to

τ+(m)− | logα|
mD1√

V1
mD3

1
| logα|

d−→ Nm(0,1).

The other one could be proved similarly. We proceed to prove
(19), and (20) can be tackled in the same way. It can be verified
that the expectation of a random variable with CDF [Φ(x)]m

(m > 1) is strictly positive, i.e.,

E1

τ+(m)− | logα|
mD1√

V1
mD3

1
| logα|

=
E1 [τ

+(m)]− | logα|
mD1√

V1
mD3

1
| logα|

=C(α)> 0,

where C(α) is a constant for each given α . Thus, one obtains

E1[τ(m)]≤ E1[τ
+(m)]≤ | logα|

rD1
+O

(√
| logα|

)
. � (62)

APPENDIX C
PROOF OF THEOREM 3

Proof We prove (32) and (31) could be dealt with similarly.
We claim the following inequalities hold for arbitrary attack
g, arbitrary time t and same threshold h0,h1:

Pg
1[τ

+(r− c)≤ t]≥ P1[τ
+(r)≤ t], (63)

Pg
0[τ
−(r− c)≤ t]≥ P0[τ

−(r)≤ t], (64)
Pg

1[τ
−(r)≤ τ

+(r)]≤ P1[τ
−(r− c)≤ τ

+(r− c)], (65)
Pg

0[τ
+(r)≤ τ

−(r)]≤ P0[τ
+(r− c)≤ τ

−(r− c)]. (66)
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We prove (63) and (65). The other two can be proved in the
same way. For any time t, we have that {τ+(r) ≤ t} in the
absence of attack implies {τ+(r−c)≤ t} under any admissible
attack, since the number of manipulated votes is at most c.
Therefore, inequality (63) holds. Similarly, for (65), event
{τ−(r)≤ τ+(r)} under attack implies that at least r−c honest
sensors have reported votes for H1, which is equivalent to the
occurrence of event {τ−(r− c)≤ τ+(r− c)} in the absence of
attack. We proceed to prove (32). Based on (60) and (63), one
obtains

tg
1,γ

(
τ
+(r)

)
≤ t1,γ

(
τ
+(r+ c)

)
≤ h1

D1
+

√
V1

D3
1
·h1 Φ

−1(γ
1
m )+o

(√
h1

)
. (67)

We proceed to prove that the probability constraints are
satisfied. According to (66), one obtains

eg
0 ≤ P0[τ

+(r− c)≤ τ
−(r− c)]≤

(
m

r− c

)
exp(−(r− c)h1),

where the last inequality comes from the symmetric result of
(61). Recalling the choice of h1 in (30), one concludes that the
error probability constraint eg

0 ≤ α is satisfied. Notice that the
choice of h1 in (30) leads to limα,β→0

| logα|
h1
≥ r−c. Therefore,

substituting h1 in (67) with | logα|
r−c will increase the right-hand-

side of (67), i.e.,

tg
1,γ

(
τ
+(r)

)
≤ | logα|

(r− c)D1
+

√
V1| logα|
(r− c)D3

1
Φ
−1(γ

1
m )

+o
(√
| logα|

)
. �

APPENDIX D
PROOF OF COROLLARY 4

Proof According to (60) and Lemma 1, one obtains

E1[T+
i (r)]≤ h1

rD1
+O

(√
h1

)
+diaG.

Recalling the definition in (45), one obtains ∆i(k)⊆ ∆(k) for
arbitrary i ∈ S,k ∈ Z+. Therefore, if sensor i is the decider
sensor, the error probability satisfies

e1 ≤ P1

(
∃k, |∆i(k)

⋂
Z−| ≥ r

)
≤ P1

(
∃k, |∆(k)

⋂
Z−| ≥ r

)
≤
(

m
r

)(
P1[E

−
1 ]
)r ≤

(
m
r

)
exp(−rh0),

which coincides with (61). This means the error probability
constraints of DVSPRT is satisfied. Recalling the choices
of h0,h1 in (8), one obtains h1 ∼ | logα|

r . Replacing h1 with
| logα|

r leads to E1[Ti(r)]≤E1[T+
i (r)]≤ | logα|

rD1
+O

(√
| logα|

)
.

Therefore, (50) is proved, and the other one can be obtained
in the same way. We proceed to prove (52), and (51) can be
dealt with similarly. Based on Theorem 4, by taking maximum
among all |C|= c, one obtains

tg
1,γ

(
T+

i (r)
)
≤ tg

1,γ

(
τ
+(r)

)
+diaG

≤ | logα|
(r− c)D1

+

√
V1| logα|
(r− c)D3

1
Φ
−1(γ

1
m )+o

(√
| logα|

)
,

where the last inequality comes from (32) in Theorem 3. This
leads to

Eg
1[T

+
i (r)]≤ | logα|

(r− c)D1
+O(

√
| logα|).

Recalling the definition of Ti(r) , min{T−i (r),T+
i (r)}, we

have Eg
0[Ti(r)]≤ Eg

0[T
−

i (r)]. Therefore, (52) is proved. �

APPENDIX E
PROOF OF COROLLARY 5

Proof We study the set ∆i of arbitrary honest decider sensor
i∈S \C. As G is (c+1)-vertex connected, for arbitrary sensor
j, there is a path from j to i where all the intermediate
vertices are honest sensors. On the one hand, if arbitrary
sensor j has cast a vote, the signed vote will reach sensor
i and be included in ∆i with delay bounded by diaG. On
the other hand, if j has not cast any vote, with the help
of digital signature, vote of j will never be included in ∆i.
Therefore, ∆i(k) ⊆ ∆(k) and ∆i(k + diaG) ⊇ ∆(k) still hold
under communication manipulation. Recalling the proof of
Lemma 1, one obtains that the result (44) still holds in this
scenario. As a result, Theorem 4 and Corollary 4 still hold,
and thus (51) and (52) are obtained. �

APPENDIX F
PROOF OF THEOREM 5

Proof The lower bound zero is trivial and we concentrate on
the upper bound. For a vote at sensor node i0, the time that it
reaches i1 is

∞

∑
k=1

k(1− pi0i1)
k−1 pi0i1 =

1
pi0i1

, 0 < pi0i1 ≤ 1.

For an arbitrary w(i0, in) = {i0,(i0, i1), i1, · · · ,(in−1, in), in},
considering the statistical independence of the Bernoulli pro-
cess, the expected time that a vote travel from i0 to in in
w(i0, in) is ∑

n−1
l=0 (1/pil il+1). Since in will receive a vote cast

by i0 as soon as there is a message passed through any path in
W(i0, in), recalling the definition in (53), the expected voting
time lag from i0 to in is less than or equals to disP(i0, in).
Therefore, considering all possible votes cast by any j ∈ V ,
we have for all r,θ satisfing 1≤ r ≤ m,θ = 0,1,

EP
θ [T

+
i (r)]−Eθ [τ

+(r)]≤max
j∈V

disP( j, i). (68)

Since the delay only depends on link probability P and
holds for different types of votes, (68) also holds for
T−i (r) and τ−(r). Considering the definition that τ(r) =
min{τ−(r),τ+(r)} and Ti(r)=min{T−i (r),T+

i (r)}, the second
inequality in (54) is obtained. �
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