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ABSTRACT This paper conducts a feasibility study regarding the use of the Wi-Fi channel state
information for user recognition based on in-air handwritten signatures. A novel system for identity
recognition is thus proposed to observe for distinctive signal distortions along the propagation path for
different users. The system capitalizes on the vast availability of Wi-Fi signals for signal analysis without
needing additional hardware infra-structure. Since the patterns of the raw Wi-Fi signals are sensitive to the
signer’s location, a transfer learning has been adopted to cope with the positional variation. Specifically,
features trained at one position are transferred to classify signals collected at another position via a single
shot retraining. A kernel and range space projection has been adopted for the single shot retraining. Our
experiments show encouraging results for the proposed system.

INDEX TERMS Biometrics, Wi-Fi, CSI, In-air signature recognition, Transfer learning, Kernel and range
space projection, Score-level fusion.

I. INTRODUCTION

According to [1]–[3], the biometric traits have played a
central role for user identity authentication in the networked
society. Generally, biometric based systems can be divided
into two categories depending on the adopted information: 1.
one that based on the user’s physiological characteristics such
as face, fingerprint, palmprint, iris, and 2. one that utilizes the
user’s behavioral traits such as signature, gait, and keystroke.
Comparing with the physiological characteristics based sys-
tems, the behavioral traits based systems are more robust to
the spoofing attack because the physiological characteristics
could be easily cloned or imitated due to their static nature
[4], [5].

Among those behavioral traits, the handwritten signature
has been widely used as means for large scale person identi-
fication [6], [7]. The handwritten signature uses personalized
patterns while the hand gestures include more general pat-
terns such as waving [8]. Hence, the handwritten signature
can be considered as one particular type of hand gestures.
The handwritten signature has several advantages over other
behavioral biometrics. These advantages include 1. the acqui-

sition procedure is non-invasive. 2. signatures are replaceable
even if the biometric information is stolen or compromised.
For example, it is very challenging to have the gait replaced
by a new walking pattern upon compromise since the walking
pattern has become a habit throughout one’s life. In contrast,
the handwritten signature can overcome this issue by creating
a new signature pattern to replace the compromised signa-
ture. Systems which adopt the handwritten signatures can
be classified into two categories according to the signature
acquisition method. They are namely, those which utilized
the offline signatures and those which used the online signa-
tures [4], [6]. The offline signature can be acquired by having
a signing instrument directly in contact with a scanning
device. This method has several problems compared with the
online signature. Firstly, it is vulnerable to imitation because
it leaves a traceable print on the surface [4]. Secondly, it
contains fewer features than online approaches. For exam-
ple, online signature contains dynamic information such as
signing velocity, degree of pressure, and degree of tilt while
the offline signature only contains the shape information [4].
Finally, it could distract the user activities in practice. A user
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has to stop what he/she was doing and move the focus onto
the system to write his/her signature on the restricted surface
where the sensing module is placed. Moreover, setting up the
contact-based sensing modules takes up space and could be
costly in practice.

In view of the above advantages of the online signature
systems, the online based in-air signature recognition sys-
tems have been gaining attention recently [4], [9]–[13]. These
systems were designed to recognize the user’s signature that
was written in the air. In [9], the in-air hand signature was
recognized by the trajectory image of the hand through a
visual sensor. In [10], a movement sensor in mobile phone
was utilized to capture the in-air signature. Although these
systems could avoid the costly setup issue by utilizing built-
in devices, these systems either require the users to hold
a certain type of device (e.g., mobile phone) or standing
towards a specific direction where the sensing module is
placed during the authentication process.

Recent studies present a variety of potential applications
of the Wi-Fi signal based human activity recognition system.
This includes the human fall detection [14], [15], keystroke
recognition [16], respiration monitoring [17], etc. The funda-
mental mechanism that forms the basis of these systems is
the identifiable interference caused by the human activities
along the Wi-Fi signal propagation. Utilizing the raw Wi-
Fi signals for activity recognition has several characteristics.
Firstly, the system is able to utilize the widely available
Wi-Fi devices as its platform. This helps to alleviate the
struggle associated with implementing the system in new
devices where an immediate use of the widely available Wi-
Fi devices becomes possible. Secondly, the system does not
require the user to hold or wear any additional device or
sensor. Thirdly, the system is able to identify human activities
from various locations and directions without needing to
position the sensors at specific locations. Finally, the Wi-Fi
based system is robust to illumination conditions compared
with vision based systems [17].

In this work, we propose to utilize the widely available
Wi-Fi signals for user identification based on the in-air
handwritten signature. As the user identification/recognition
consists of N number of one-to-one matching, the verifica-
tion accuracy is also included to supplement the recognition
performance. Here we note that the adoption of Wi-Fi signals
for human activity recognition poses new challenges. For
example, the Wi-Fi signals can be disturbed by distractors
such as the presence of movements other than the desired
signature patterns. Moreover, apart from contamination by
noises, the Wi-Fi signals can be attenuated physical distance
and barriers. Lastly, different from the consistency of offline
signature images acquired from contact based devices [9], the
Wi-Fi based system is observed to be sensitive to the position
of objects that reflect or interfere with the Wi-Fi Channel
State Information (CSI) signals. When the same person draws
an in-air signature at different locations, the captured Wi-Fi
signal shows different patterns (see Figure 1). Our task in this
work is to establish the feasibility and then design a system

for user recognition.

Wi-Fi signals captured
at Transmitter side

Wi-Fi signals captured 
at Receiver side

FIGURE 1. Samples of captured Wi-Fi signals at different positions from the
same user. These signals from the same user show different patterns.

Our proposed system addresses the last challenge by
adopting transfer learning [18]. Instead of training from
scratch at each position, we firstly train a Convolutional Neu-
ral Network (CNN) [19] using the Wi-Fi signature signals
collected from one position. Subsequently, the trained fea-
ture extractor is transferred to recognize the Wi-Fi signature
signals collected at another position. In view of the time
consuming retraining process by the gradient descent (GD)
algorithm [20], [21], we adopt a fast single shot algorithm for
fine tuning the transferred features. The single shot training
algorithm, called Kernel and the Range (KAR) space projec-
tion learning [22]–[25], shows an impressive learning speed
for optimizing relatively shallow networks. Our experiments
on the proposed system show up to 99.875% identification
accuracy. Apart from the pioneering effort in addressing
the issue of positional sensitiveness of Wi-Fi based in-air
signature for user identification, the proposed system delivers
a reasonable prediction output based on a relatively small
training dataset. This is an important advantage over many
deep learning methods which require a large pool of data for
effective learning.

The main distinctive attributes of our contribution are as
follows:

- Upon establishing the feasibility, we propose a system
for user identification based on the Wi-Fi handwritten
signature signals. The system can leverage on existing
Wi-Fi system for signal acquisition.

- We address the positional sensitiveness of Wi-Fi based
in-air handwritten signature signals by adopting transfer
learning. A single shot learning algorithm based on
kernel and range space projection has been adopted for
fine tuning the transferred features for computational ef-
ficiency. A score-level fusion is subsequently employed
for accuracy enhancement.

- In view of the lack of public datasets, we have con-
structed a dataset of 100 subjects for experimentation.

The paper is organized as follows: Section II provides
a brief review of related works. Section III introduces our
proposed system for user identity recognition. In Section IV
we present our experimental settings and evaluation of the
system. Concluding remarks are presented in Section V.
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TABLE 1. Overview of existing literature for in-air signature verification and identification.

(a) Vision/handheld-device based (b) Wi-Fi based

1) 2D in-air signature

i) Handcrafted feature based systems:
Katagiri et al. [26], Sajid et al. [27],
Khoh et al. [4].
ii) Deep learning based systems:
Nil.

i) Handcrafted feature based systems:
Moon et al. [11].
ii) Deep learning based systems:
Our preliminary work in conference [28].
Our extended work in this paper.

2) 3D in-air signature

i) Handcrafted feature based systems:
Casanova et al. [29], Bailador et al. [10],
Jeon et al. [9], Diep et al. [30],
Fang et al. [31], Malik et al. [13]
ii) Deep learning based systems:
Behera et al. [12].

i) Handcrafted feature based systems:
Nil.
ii) Deep learning based systems:
Nil.

II. RELATED WORKS
A. IN-AIR HUMAN SIGNATURE RECOGNITION
According to [2], the problem of identity recognition using
biometrics (e.g., signature) can be divided into two types
based on their operation. The first type is known as identi-
fication (also known as recognition) and the second type is
known as verification (also known as authentication). Iden-
tification is a 1-to-n matching problem, which means that
the given individual biometric template is compared with
all others in the database to locate the identity. In contrast,
verification is a 1-to-1 matching problem, which means that
the given biometric template is matched against a specific
biometric template to see whether it is a match or a non-
match. In other words, the available answer to verification
is either “match” or “non-match” (or am I who I claim I
am?). For identification, the answer to the 1-to-n is “who” is
the owner of the biometric template (or who am I?). Table 1
provides an overview of existing literature for in-air signature
recognition systems where their modes of operation (verifi-
cation or identification) can be found in Table 2. Although
these systems have different measurements in their respective
setups, their performances can nevertheless be quantified by
a common measure of either the accuracy of identification or
the Equal Error Rate (EER) of verification [8], [32].

As seen from Table 1, based on the signal capturing
method, these works on handwritten signatures can be cat-
egorized into two groups, namely (a) vision/handheld-device
based and (b) Wi-Fi based systems. The vision/handheld-
device based systems utilized either imaging sensors such as
RGB, NIR, ToF sensors or a handheld device for signature
motion capture or imaging. The Wi-Fi based systems utilized
either the CSI or the RSSI signals for capturing of signature
patterns. Based on the captured signature type, the related
works can be further classified into two categories, namely
1) 2D signature and 2) 3D signature. In terms of the adopted
methodology, we further divide the related works into i)
handcrafted feature based systems and ii) deep learning based
systems. Based on this categorization, we observed that most
of the earlier works utilized handcrafted features for in-air
signatures while only a few recent works used deep learning
technique where the feature extraction was performed in an
end-to-end manner. Our proposed system belongs to the cat-
egory of 2D handwritten signature recognition utilizing the

Wi-Fi CSI signals. Table 2 provides greater details of existing
literature in terms of adopted modality, data type, methodol-
ogy and the mode of operation. The following subsections
provide a brief account of these existing technologies.

1) Vision/handheld-device Based Systems
In [26], Katagiri et al. conducted a preliminary study of
in-air handwritten signature for person verification. In their
system, the user was prompted to draw his/her signature in
the air using a pen that came with a light-emitting diode
(LED). The highlighted trajectory of the in-air signature was
subsequently captured by a video camera. In [10], Bailador
et al. made use of the movement sensor in the mobile device
to capture in-air signatures. They also conducted experiments
under spoofing attack scenarios. Similarly, in [29] and [30],
an accelerometer embedded in the mobile device was utilized
to perform the verification task. Casanova et al. achieved an
EER of 2.5% by fusing the features of gesture accelerations
at decision level. In [30], Diep et al. achieved an EER of 0.8%
by using the Support Vector Machine (SVM) to differentiate
between the genuine users and the impostors.

In [9], Jeon et al. proposed a vision based in-air signa-
ture verification system. The system utilized a depth camera
(Kinect) to track the finger together with the palm motion
of the user. Unlike [10], [26], this system did not require a
person to hold any additional devices. In [27], Sajid et al.
proposed a vision based in-air signature verification system.
In this work, the Google-Glass was used to recording in-
air handwritten signatures. The extracted 2D coordinates
are matched and authenticated by Dynamic Time Warp-
ing (DTW). In [31], Fang et al. proposed a video-based
in-air signature verification system. The time and space
information of in-air signature were fused by DTW and
Fast Fourier Transform (FFT), and this fusion resulted in
a robust and accurate verification system. In [13], Malik
et al. utilized a depth sensor to capture the 3D hand joint
positions from in-air handwritten signatures. They employed
a Multi-dimensional DTW algorithm to match between the
preprocessed test signature and the corresponding feature.
Behera et al. [12] proposed a deep learning based matching
system. They employed a CNN based sequential classifier
to perform the identification task on the 3D in-air signature
dataset captured by a leap motion sensor. Recently, Khoh et
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TABLE 2. Existing works sorted according to their adopted modality, data type, methodology and operation modes.

Reference Modality Data type (#subjects /#samples) Methodology Operation mode
(a) Vision/handheld-device based previous work
Katagiri et al. [26] Pen with a LED, video camera 2D in-air signature (105/ 315) Commercial signature verification engine Verification
Bailador et al. [10] Accelerometer 3D in-air signature (96 / 768) HMM1, Bayes classifiers and DTW2 Verification
Casanova et al. [29] Accelerometer 3D in-air signature (34 / 942) Euclidean distance, DTW Verification
Jeon et al. [9] Kinect camera 3D in-air signature (50 / 500) Euclidean distance, DTW Verification
Sajid et al. [27] Google Glass 2D in-air signature (10 / 96) Euclidean distance, DTW Verification
Diep et al. [30] Motion sensor 3D in-air signature (30 / 1800) SVM3 Verification
Fang et al. [31] High-speed camera 3D in-air signature (14 / 560) FFT4, DTW Verification
Behera et al. [12] Leap motion sensor 3D in-air signature (50 / 700) CNN5 Identification
Malik et al. [13] Depth sensor 3D in-air signature (15 / 600) MD-DTW6 Verification
Khoh et al. [4] Kinect camera 2D in-air signature (100 / 2000) HOG7, Euclidean distance Both
(b) Wi-Fi based previous work
Moon et al. [11] Wi-Fi (CSI)5 1D in-air signature (13 / 1040) Euclidean distance, PCA8 Verification
Jung et al. [28] Wi-Fi (CSI) 2D in-air signature (50 / 4000) CNN Identification
Ours Wi-Fi (CSI) 1D&2D in-air signature (100 / 8000) CNN Both
1 Hidden Markov Model (HMM)
2 Dynamic Time Warping (DTW)
3 Support Vector Machine (SVM)
4 Fast Fourier Transform (FFT)
5 Convolutional Neural Network (CNN)
6 Multi Directional DTW (MD-DTW)
7 Histogram of Oriented Gradient (HOG)
8 Principal Component Analysis (PCA)

al. [4] proposed an in-air signature recognition system using
the Kinect camera to capture not only the RGB images but
also the depth information. They utilized several distance
measures to compute the dissimilarities among the extracted
features. Both the identification mode and the verification
mode were experimented to show the potential of the system.

2) Wi-Fi Based Systems
Comparing with the vision/handheld-device based systems
mentioned above, the Wi-Fi based in-air signature recogni-
tion system has less spatial constraint due to the vast accessi-
bility of the Wi-Fi signal via commercial devices. Recently,
Moon et al. [11] constructed a preliminary in-air signature
recognition system for user verification. The system was able
to authenticate in-air signatures which were captured through
the Wi-Fi CSI signals.

The above review shows that none of the previous systems
are designed to address the location sensitivity issue of Wi-Fi
based systems except the gesture recognition work of Ohara
et al. [33] where the Doppler shift effect was adopted to ex-
tract position-independent features. However, only features
parallel to the direction of the Wi-Fi signals can account for
the position change. The current paper reports an extension
of the preliminary study in [28] on an extended dataset from
[11], [28] using 100 subjects and incorporates score-level
fusion of multi-samples (i.e., 1-dimensional, 2-dimensional
Wi-Fi signals) for performance enhancement.

B. TRANSFER LEARNING
When there is insufficient data for training a deep network,
the technique of transfer learning [18], [34] can be exploited
to adapt the features of a pretrained network to another under
the similar domain. In [35], Oquab et al. proposed a CNN
which was pretrained using available labeled source and then
used it as a fixed feature extractor. To address the distribution
difference between the source used for pretraining and the
novel target domain, an adaptation layer was utilized to fine

tune the network to the novel target. In [36], Shin et al. trans-
ferred an ImageNet [37] pretrained CNN and then retrain the
network using a sub-domain of medical images to perform
skin lesion detection. They showed that this approach can
effectively address the problem of insufficient medical im-
ages and achieved the state-of-the-art performance. Wang et
al. [38] proposed an online training method to improve the
visual tracking performance. They transferred deep features
that was trained on a large visual dataset and was shown to
remarkably improve the performance on the small dataset.
Our proposed system has been inspired by these works. Since
our in-air Wi-Fi handwritten signatures captured at different
positions and orientations belong to a common domain, we
can utilize transfer learning to address the limited number of
samples acquired from a single orientation at each position.

C. MOORE-PENROSE INVERSE BASED NETWORK
LEARNING
The backpropagation algorithm using gradient descent [20],
[21] has achieved great success in deep learning. However,
gradient descent based learning algorithm comes at the ex-
pense of several costs such as selection of hyperparameters,
having local minima with time consuming iterations, and gra-
dient vanishing. The Moore-Penrose inverse based learning
for training the shallow (less than three layers) networks has
been recently reviewed in [39]. This approach aims to find
the global minima of the reformulated system in a single
learning shot without training iterations. Moreover, it does
not require hyper-parameters such as the learning rate and the
momentum setting. However, the learning has been limited to
shallow networks. Recently, a novel method to learn neural
networks with more than three layers was seen in [22]–
[25]. This learning approach aims to learn all the parameters
of the deep neural network in a single operating pass by
manipulating the KAR space of the reformulated system. We
shall utilize this learning method in the stage of retraining to
avoid iterative search. The details shall be provided in Section
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(a) Data acquisition Averaging
Linear 

Interpolation
Resampling

Shifting and 
Subtraction

(b) Preprocessing

Preprocessed 
1 and 2-dimensional data

(i) Large dataset

Input size : 4000 × 6 × 30 × 500

(ii) Small dataset

Input size : 800 × 6 × 30 × 500

Input size : 800 × 6 × 500

Input size : 4000 × 6 × 500

(i) Large dataset

(ii) Small dataset

(c) Transfer Learning based on 
the KAR space projection

1D 
CNN

1D 
CNN

2D 
CNN

2D 
CNN

New Classifier

∈ ℝn×c

retrained by 

KAR space projection learning

New Classifier

∈ ℝn×c

retrained by 

KAR space projection learning

Old Classifier

Old Classifier

(iii) Transferring

(iii) Transferring

(d) Score-fusion in test stage 

(iv) Retraining

(iv) Retraining

Retrained 1D model

F
Test Input size : 200 × 6 × 30 × 500

Test Input size : 200 × 6 × 500

Retrained 2D model

FIGURE 2. Overview of the proposed system. (a) Capture of in-air handwritten signature gesture using Wi-Fi CSI signals (b) Data preprocessing steps (c) User
identification process using transfer learning based on the KAR space projection learning (d) Score-fusion in the testing stage for accuracy enhancement. The
symbol “F" refers to fusion. Each of these processing steps is described in greater details in Section III.

III-B.

III. PROPOSED SYSTEM
In this section, we introduce our system for user identification
where its flow diagram is shown in Figure 2. Essentially, the
processing steps in the system can be divided into three stages
namely, i) data acquisition and preprocessing (see labels (a)
and (b) in the figure), ii) network pretraining and transfer
learning (see label (c) in the figure), and iii) decision fusion
(see label (d) in the figure). These processing stages are
described in greater detail in the following subsections. The
abbreviations and acronyms in this section are explained in
Table 3.

A. DATA ACQUISITION AND PREPROCESSING
1) Device and Environmental Setup

A VPCSB16FK VAIO laptop with Intel Core i5-2410M
2.3GHz 64bit CPU and 8Gb memory was used as the Wi-
Fi signal receiver. The receiver was equipped with the Linux
802.11n CSI tool [40] and an Intel 5300 Network Interface

TABLE 3. Meaning of abbreviations/acronyms in Section III.

Section Abbreviation/Acronym Meaning

III-A

NIC
CSI

DC component
LTS

Tx, Rx

Network Interface Controller
Channel State Information

Mean amplitude of the signal
Long Term Supported
Transmitter, Receiver

III-B KAR learning
GD algorithm

Kernel and Range space projection learning
Gradient Descent algorithm

III-C SVM
TER

Support Vector Machine
Total Error Rate minimization

Controller (NIC) to collect the CSI of the signals. The afore-
mentioned tool was implemented on an Ubuntu 12.04.05
LTS laptop. The receiver was set to receive each CSI at
every 0.0001 second (10kp/s) in view of higher packet loss
at lower packet rates as well as the relatively long range
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between the transceivers in our setting 1 [41]–[43]. In order
to gather as many packets as possible in multiple paths, 3
external antennas at the receiver side were deployed. An
IpTime A1004 router with 2 transmission antennas was used
as the Wi-Fi signal transmitter. The transmitter was set to
transmit Wi-Fi signals at 2.4 GHz frequency band. To the
best of our knowledge, the primary difference between the
2.4GHz and 5GHz signals are the speed and the range of
coverage. A 2.4GHz Wi-Fi signal is able to cover a larger
area but it sacrifices the speed. In contrast, the 5GHz band
provides a faster speed for a smaller area. We observed higher
noise in the collected signals via the 5GHz band than that via
the 2.4GHz band during the data collection process. In view
of the noise issue, we have utilized the 2.4GHz signals in
this study. Under this device setup, subjects were requested
to write their signatures in the air while sitting at two different
positions with four writing directions (see Figure 3 (a)). Since
our router utilizes the omnidirectional antennas, it can suffer
from wireless interference caused by other devices such as
microwave ovens and cordless phones. To minimize such
interference, we either turned off related devices during data
collection process or having them removed from the data
collection environment. The signals based on four facing
directions of the user were recorded to observe the impact
of user orientation.

The layout of the experimental environment is shown in
Figure 3 (b). The data collection was performed in a typi-
cal office room of dimension 4m×6m with desktop, tables,
chairs, and bookshelves. The locations of the transmitter (Tx)
and the receiver (Rx) were placed near the two ends of the
room. The distance between Rx and Tx was approximately
4.84m and they were placed about 82cm and 110cm above
the floor, respectively. The 3 external antennas at the receiver
end were placed at approximately 45cm apart. During data
acquisition, each user was asked to sit at one of the positions
labelled as Tx-side or Rx-side and perform his/her personal
gesture of in-air handwritten signature while the transmitter
and the receiver were put in operation. Some samples of the
received signals containing the disturbances caused by the
in-air signatures are shown in Figure 1.

2) Data Collection and Preprocessing
The above setup was used to collect the Wi-Fi CSI signals,
which contained signals distorted by the in-air handwritten
signatures, from 100 subjects. For each subject, 10 samples
were collected for each of the 2 sitting positions with each
position having 4 signature facing orientations. In order to
enact a realistic usage environment during the data collection
process, the users were seated at a comfortable posture at
each of the four orientations for each of the two positions
without any other restrictions of the body pose. The users can

1In [41], a finger-grained gestures based on the American sign language
has been reported to work well for transceivers located within 1 meter.
However, when the distance between the transceivers goes beyond 1 meter,
the patterns caused by finger gestures in CSI stream were reported to nearly
disappear.

use either the left or the right hand, with or without specific
finger posture, to perform the signature gesture according to
their habits or preferences. Moreover, there is neither the
need to use a specific language nor the need to use their
real signature for the experimentation so long as the same
signature pattern has been used for each orientation and
position. Each of the collected samples is of approximately
12 second duration. A total of 8000 signal sequences were
collected to form the database for experimentation.

The collected Wi-Fi CSI signals consist of several sub-
carriers for each packet in the Tx-Rx antenna pair. The CSI
of sub-carrier can be modeled as

hc = |hc|e∠θ, (1)

where c ∈ {1, 2, · · · , C} denotes the sub-carrier index, with
C being the maximum number of sub-carriers, |hc| and θ
respectively denote the amplitude and the phase of the sub-
carrier. Since our Intel 5300 NIC had a firmware issue in
extracting the phase information from sub-carriers at 2.4GHz
frequency band, we only exploited the amplitude of the CSI
of the collected signals. Under our 2×3 Tx-Rx configuration,
there are 6 (2 × 3) streams and each stream has 7,000 to
15,000 packets on average, and each packet has 30 sub-
carriers.

Table

Table

Experimenter

RxTx

4
1

2
3

4
1

2
3

4m

6m

160cm 160cm 164cm

Tx side Rx side

(b)

(a)

Receiver

Transmitter

Hans 45cm

45cm

FIGURE 3. (a) An illustration of the data acquisition process, where the
subject is to draw the in-air signature while sitting in between Tx and Rx. (b)
The environment layout for data collection. The user is positioned at either the
Tx-side or the Rx-side, each with four writing directions or orientations, during
data collection process. The experimenter is located outside the data
collecting zone.
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Since the collected signals at fast receiving rate are com-
putationally expensive and likely to contain missing values,
we adopt several preprocessing steps to reduce the compu-
tational load and enhance the signal quality for our user
identification system. Our preprocessing steps include linear-
interpolation, resampling, low-pass filtering and removal of
DC components. To reduce the computational complexity,
the C sub-carrier streams of each packet in the Tx-Rx an-
tenna pair were averaged into a single stream and this resulted
in an 1-dimensinal signal. The averaging process can be
written as:

h̃c =
1

C

C∑
c=1

|hc|, (2)

and the averaged signal stream can be expressed as:

h̃s = [h̃(1)c , h̃(2)c , · · · , h̃(P )
c ], (3)

where s ∈ {1, 2, · · · , S} denotes the streaming index, with S
denoting the maximum number of streams, and P denotes the
maximum number of collected CSI packets. Subsequently,
the signal streams are packed as:

ĥs =


|h(1)1 | |h

(2)
1 | . . . |h(P )

1 |
|h(1)2 | |h

(2)
2 | . . . |h(P )

2 |
...

...
. . .

...
|h(1)C | |h

(2)
C | . . . |h(P )

C |

 . (4)

The collected raw data tends to have missing packets and
shows irregular data collection packet sizes P (i.e., 7000
to 15000 under our configuration) despite the fixed packet
receiving rate. To address this issue, we firstly apply a linear-
interpolation [44] to fill the missing values. After the lin-
ear interpolation process, the CSI packets are filtered by a
Butterworth filter [45] to smoothen the highly jagged signal.
The Butterworth filter has been chosen for this application
since our signals of interest (signal distortions caused by
signatures) mainly lie in the low frequency range but contain-
ing much high frequency components due to environmental
noises. We have observed that the Butterworth filter has
high efficiency in handling a large number of packets in the
collected signals while showing good system performance.
Subsequently, we perform resampling [46] to uniformly ad-
just all the packet sizes from P to P ′, where P ′ denotes the
length of the resampled stream.

Since the Wi-Fi signals can be easily affected by sur-
rounding terrain (e.g., location of stuffs on the table), the
collected Wi-Fi signal contains DC component arising from
minor changes of the data acquisition process. A shifting and
subtraction algorithm described in [47] has been applied to
remove the DC component. Figure 4 shows an illustration of
the shifting and subtraction process.

Without and with consideration of the subcarrier varia-
tions, two types of CSI streams (called 1, 2-dimensional
signals respectively) have been considered and packed into
H̃1d ∈ RS×P ′

and H̃2d ∈ RS×C×P ′
as:

H̃1d =
[
h̃1 h̃2 · · · h̃S

]T
, (5)

H̃2d =
[
ĥ1 ĥ2 · · · ĥS

]T
. (6)

Considering the sampling instance, the data can be further
packed into tensor form X̃1d ∈ RN×S×P ′

and X̃2d ∈
RN×S×C×P ′

:

X̃1d =
[
H̃

(1)
1d H̃

(2)
1d · · · H̃

(N)
1d

]T
, (7)

X̃2d =
[
H̃

(1)
2d H̃

(2)
2d · · · H̃

(N)
2d

]T
, (8)

where N denotes the maximum number of samples. Under
our 2× 3 Tx-Rx configuration, the S,C respectively become
6, 30. P ′ and shifting distance k are empirically set at 500 and
5, respectively. A sample set of results for each preprocessing
step is shown in Figure 5.

𝑘 ⊝
Element-wise subtraction

DiscardReplaced by zeros

Input Shifting and Subtraction Output

FIGURE 4. An illustration of the shifting and subtraction preprocessing. For
visual simplicity, only a single averaged CSI stream is shown.

A sample of each preprocessing step

Collected raw 
CSI data

Linear interpolation &
Low-passF iltering

Resampling &
Shifting and Subtraction

FIGURE 5. Sample result of each preprocessing step. For visual simplicity,
only the 1-dimensional signal is shown.

B. NETWORK PRETRAINING AND TRANSFER
LEARNING
Part (c) of Figure 2 illustrates our transfer learning based
on the Kernel and the Range space projection (KAR learn-
ing). As explained in Section II-B, transfer learning is a
methodology where the network weights trained on a certain
source domain are taken and used in another target domain
for learning refinement. It has been studied to address the
problem of insufficient training data in deep learning [18].
Since our Wi-Fi in-air signature dataset is not large enough to
train a complex network structure, the conventional transfer
learning may not generalize well for prediction. Moreover,
most of the works that adopted the Gradient Descent Al-
gorithm to retrain the transferred model (called GD-retrain
hereafter) are iterative and time-consuming. To avoid the
iterative learning process in the retraining, we adopt the
KAR learning [22]–[25] in this work. The KAR learning
aims to solve the network in a single operating pass where
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no iterative search is needed. The main advantage of this
approach is that neither descent nor gradient computation is
needed for network learning. Moreover, It does not require
learning of hyper-parameters such as the learning rate and
the momentum setting.

1) Pretraining
Firstly, the model is pretrained utilizing every orientation at
say, the Tx (or Rx) position based on the gradient descent
algorithm [20], [21] where this position is not used for
identity prediction. Based on the CNN structure described
in [19], the feature extractor of the proposed pretraining
model consists of three convolutional layers with activation
functions followed by pooling layers. The activation function
and the pooling layer are the commonly used ReLU and
Max-pooling. Each convolution layer has several filters to
be trained. Each filter convolves with the input and forward
its result to the next layer. A Fully Connected Feedforward
Neural Network (FCN) serves as a classifier for pretraining.
The prevalent technique for CNN such as Batch Normal-
ization (BN) [48] can be utilized for the pretraining. The
pretrained model which shows the best result is saved and
the parameters of the saved feature extractor are transferred
for use in identity recognition at a different position. Let us
denote the pretrained weights by Ŵk, k = 2, ..., l, and these
pretrained weights will be used to perform weights update in
the retraining stage that utilizes data from a different position.

2) Retraining
After the pretraining stage, we have the feature extractor
pretrained with the Wi-Fi signature signals collected from
every orientation at the Tx side. Since the Wi-Fi signature
signals obtained from different positions are in the similar
data domain [11], we can treat the pretrained convolutional
layers as feature extractor and retrain only the classification
layers for identity recognition. We shall describe the proce-
dure of KAR learning for retraining our transferred model in
the sequel.

Next, consider the new input Wi-Fi signature signals col-
lected from say, the Rx (or Tx) side (for each single orienta-
tion) or even from a different collection environment. These
novel signals are fed into the pretrained model to generate
the transferred features. Suppose X ∈ Rn×m and Y ∈ Rn×q
denote respectively the input features to the FCN (in other
words, features generated from the transferred feature extrac-
tor) and the corresponding one-hot encoded matrix indicating
the class label from the new position. The symbols n,m, q
respectively denote the number of input samples, the number
of output features, and the number of identities. By utilizing
the pretrained weight matrices Ŵ2, · · · ,Ŵl obtained from
the above stage, the network can be retrained according to
[22], [24] utilizing the forward propagation of the network
and the functional inverse based solution for W1 as follows:

σ( · · ·σ(XW1)Ŵ2 · · · )Ŵl = Y, (9)

σ( · · ·σ(XW1)Ŵ2 · · · ) = YŴ†
l , (10)

σ(XW1) = ( · · ·σ−1(YŴ†
l ) · · · )Ŵ

†
2, (11)

W1 = X†σ−1( · · ·σ−1(YŴ†
l ) · · · )Ŵ

†
2), (12)

where σ(·), † respectively denote an invertible activation
function and the Moore-Penrose inverse operation [49].

After W1 is retrained following (12), it is back-substituted
into (9) to retrain W2 based on:

σ(XW1)W2 = (· · ·σ−1(YŴ†
l ) · · ·), (13)

W2 = (σ(XW1))
†(· · ·σ−1(YŴ†

l ) · · ·). (14)

This functional inverse based learning is repeated until Wl is
retrained as shown in (15):

Wl = (σ(· · ·σ(XW1)W2 · · ·)Wl−1)
†Y. (15)

After W1,W2, · · · ,Wl have been learned, the one-hot
output prediction matrix can be estimated as follows:

σ( · · ·σ(XW1)W2 · · · )Wl = Ŷ, (16)

where Ŷ ∈ Rn×q . We shall call this learning process for our
retraining as KAR-retrain.

C. DECISION FUSION
According to [50], multibiometrics can be utilized to over-
come limitations inherent in each unibiometric system. Ac-
cording to [50], [51], multibiometric fusion can be performed
at different levels namely, the data level, the feature level,
the score level, the rank level and the decision level. Among
these fusion levels, the score-level fusion is among the most
commonly used due to the ease of accessing scores generated
by commercial matchers [50], [51]. Moreover, it is known
to produce the best classification accuracy performance [47],
[50], [51]. For example, simple non-learning based algo-
rithms such as the SUM-rule, the MAX-rule and the MIN-
rule were performed and compared in [52]–[55]. Apart from
the above fusion means, learning based algorithms, such as
SVM [56] and TER [57], can be adopted for score level fu-
sion [47], [58]–[60]. However, learning based fusion requires
additional computational cost for training. For simplicity, we
adopt the score-level fusion based on the rule-based opera-
tion. To take advantage of multibiometric system, we prepare
two different kinds of signals in the preprocessing stage of the
proposed system, which can be regarded as multi-samples of
the same biometric modality captured with certain variations.
As illustrated in part (d) of Figure 2, let Ŷ1d ∈ Rn×q
and Ŷ2d ∈ Rn×q respectively denote the predicted score
matrices of the 1-dimensional and the 2-dimensional Wi-Fi
signals from the same user in our proposed system. After
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TABLE 4. Overview of experiments

Experiments Description Model/Algorithm Objective

Transfer Learning
Evaluation of

several pretraining models CNN
Selection of

CNN architecture
for each type of data

Evaluation of
retraining algorithm

For identification / verification:
i) KAR retrain, ii) GD algorithm To observe the performance

of each method
Non-transfer

learning

Evaluation of
training from scratch

using several learning models

For identification / verification:
i) SVM, ii) ELM, iii) CNN

Practical scenario

Evaluation of
environmental factors
such as interference

and receiving packet rates

KAR-retrain
To observe the

impacts of interference
and receiving packet rates

Comparison

Comparison of all the methods
in terms of:

i) identification accuracy
ii) Equal error rate

iii) Elapsed training time

Transfer learning:
i) KAR retrain, ii) GD algorithm:

Non-transfer learening:
i) SVM, ii) ELM, iii) CNN

To compare
the system

performances

a SoftMax normalization [61], the ranges of the scores for
the 1-deimensional and the 2-dimensional Wi-Fi signals are
both within [0, 1]. We fuse these two normalized scores by
an element-wise rule-based operation, such as SUM, MAX,
and MIN operations to get the final score matrix Ŷ ∈ Rn×q:

L(Ŷ1d, Ŷ2d) = Ŷ, (17)

where L denotes an element-wise rule-based operation, such
as using SUM, MAX, and MIN. After score fusion, the
classification accuracy can be calculated by comparing the
fused one-hot label with the ground truth label (i.e., Y).

IV. EXPERIMENTS
The main goal of this study is to verify the effectiveness of
the proposed system for user identification and verification
using the Wi-Fi based in-air handwritten signature signals.

Firstly, we introduce the details of our dataset and pa-
rameter settings in Section IV-A. Secondly, we provide the
experimental results and discussion in Section IV-B. Essen-
tially, we evaluate several pretraining models to utilize the
best architecture for each of the two differently preprocessed
data (i.e., the 1- and 2-dimensional data). Subsequently, we
compare the result of KAR learning with that of the GD
algorithm at the retraining stage. We also show results of non-
transfer learning based methods (i.e., training from scratch
at each orientation using SVM, ELM and CNN). Next, the
impacts of ambient wireless interference and packet rates are
evaluated. Finally, we compare all the methods in terms of
the verification and identification accuracies as well as the
elapsed training time. Table 4 summarizes our experiments
with brief descriptions.

A. EXPERIMENTAL SETTINGS
1) Datasets
Table 5 summarizes the dataset for our experimentation. An
expanded version of the Wi-Fi in-air signature dataset from
[11] is utilized. Under the acquisition setup described in
Section III-A, the dataset consists of 8000 samples collected
from 100 subjects. The subjects were requested to draw their
signature in the air while sitting at 2 different positions (i.e.,
the Tx side and the Rx side as shown in Figure 3 (b)). At each
position, the subjects were asked to face 4 different directions
(i.e., front, right, left and back). For each orientation, 10
samples were collected for each subject, resulting in 1000

samples per orientation (i.e., 10 samples × 8 orientations ×
100 subjects in total).

In order to evaluate the impact of ambient wireless signal
interference, another dataset has been collected with and
without ambient interference. The ambient interference has
been produced by two smartphones, which were carried by
each subject and the experimenter. This dataset has been col-
lected at a different location with the user sitting in between
the Tx side and the Rx side in order to observe also the
impact of geographical locations. Following the same acqui-
sition protocol described above, this dataset consists of 200
samples from 5 subjects (i.e., 10 samples × 4 orientations ×
5 subjects). According to [16], [62], [63], the performance
of a Wi-Fi CSI-based recognition system highly depends
on the granularity of the captured CSI signal. Therefore, in
order to study also the impact of receiving packet rates on
the recognition accuracy, the data has been collected using
two different receiving packet rates (1kp/s and 10kp/s). As
the set of genuine-users under the identification mode has
been relatively small for representative learning, only the
verification mode is studied here. Table 6 summarizes the
four subsets of data collected for this study.

TABLE 5. The acquired dataset without consideration of ambient Wi-Fi
interference

Number (#) of subjects Position Direction Number (#) of samples

100

Tx side

Front 1000
Right 1000
Left 1000
Back 1000

Rx side

Front 1000
Right 1000
Left 1000
Back 1000

Total 8000 samples

TABLE 6. The acquired dataset for interference evaluation

Number (#) of subejcts 5 subjects
Mobile

wireless interference w/ interference w/o interference

Packet rate 1kp/s 10kp/s 1kp/s 10kp/s

Direction

Front 50 50 50 50
Right 50 50 50 50
Left 50 50 50 50
Back 50 50 50 50

Total 200 200 200 200

2) Evaluation Protocol
The experiments were performed using a desktop computer
equipped with an i7 processor (3.70GHz), together with a
NVIDIA Geforce GTX 1080 Ti GPU and 32GB of RAM.
Both transfer-based learning and non-transfer-based learning
algorithms were evaluated.

For evaluations of transfer-based learning methods, in the
pretraining stage the dataset was divided into two groups,
namely a training set and a test set. For example, the dataset
(4000 samples) on four writing directions at the Tx side
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was separated into a training set (3200 samples, 80%) for
training, and a test set (800 samples, 20%) for evaluation.
A 5% portion from the training set (i.e., validation set)
was used to fine tune the hyper-parameters. In the retrain-
ing stage, the performances were evaluated and averaged
from five-fold cross-validation tests. For example, the dataset
(1000 samples) of single direction at the Rx side was di-
vided into a training set (800 samples, 80%), and a test set
(200 samples, 20%). Subsequently, these two positions were
swapped for pretraining (Rx side) and retraining (Tx side).
For non-transfer-based learning methods, the five-fold cross-
validation tests have been utilized for performance measure.

For the identification task, the rank-1 identification accu-
racy is adopted as the metric for performance evaluation. As
mentioned in Section III-C, the system produces the final
score matrix Ŷ ∈ Rn×q , where n, q respectively denote the
number of input samples and the number of identities. The
predicted identity label ŷ ∈ Rn can be obtained from Ŷ by
determining the rank-1 (the highest possibility of) identity
for each sample. The identification accuracy is calculated by
comparing between the predicted label ŷ and the ground truth
label y:

Identification accuracy =
n(ŷ ∩ y)

Total number of input samples n
.

(18)
For the verification task, the degree of matching between

two biometric templates is measured. In our implementa-
tion, the known target labels (1 for genuine-users and 0 for
impostors) of the template pairs from the training set has
been used to learn the networks (KAR-retrain, GD-retrain,
CNN-scratch) [64]. The genuine-users refer to matching of
templates drawn from the same user while the impostors refer
to matching of templates drawn from different users. The
verification accuracy is subsequently computed based on the
population of test matches obtained from the genuine-users
and the impostors in terms of the EER [32]. The EER is
obtained based on the intersection of the False Acceptance
Rate (FAR) and the False Rejection Rate (FRR) curves. The
FAR is the number of false accept counts over the size of the
impostor population. The FRR is the number of false reject
counts over the size of the genuine-user population. Since
the ratio of the genuine-user and the impostor populations
is highly imbalanced, we randomly subsample the impostor
pairs to make it having a balanced size with that of the
genuine pairs. Also, limited by our memory constraint for
KAR learning, only the 1-dimensional data is utilized for the
verification task. All the experiments are implemented using
the Pytorch [65] deep learning framework.

3) Parameter Settings for Transfer-based Learning.
Table 7 summarizes the parameter settings adopted in our
experiments. For preprocessing, the packet size for resam-
pling in (2) and (4) has been empirically fixed at 500 and the
shifting distance k in Figure 4 has been empirically selected
as 5. For the transfer learning (i.e., pretraining + retraining),
there are several parameters to be set. At the pretraining

stage of our proposed system, the CNN was trained starting
with a learning rate (η) of 0.0001 utilizing the Cross Entropy
Loss [66]. The Adam optimizer [67] with an L2 penalty of
0.0001 was adopted for the training. After half of the total
epoch had elapsed, the η value was halved. The training
epochs and batch size were empirically set at 120 and 64,
respectively. The trained feature extractor which showed the
best classification accuracy during training iterations was
subsequently saved and transferred.

In order to compare with the adopted KAR retrain at the
retraining stage, the GD algorithm was experimented starting
with an η value of 0.0001 for the 1-dimensional data and
0.0005 for the 2-dimensional data. Similar to the pretraining
stage, the η value was halved when the training iterations
passed half of the total epoch. The training epochs were
empirically set at 50. For the GD algorithm, all other settings
including the loss function, the optimizer and the batch size
were chosen to be the same as that of the pretraining stage. At
the testing stage, a score level fusion with element-wise rule-
based operations (i.e., SUM, MAX, and MIN) was adopted.

4) Parameter Settings for Non-transfer-based Learning.
For non-transfer-based learning, we evaluate three learning
models, namely the SVM [56], the Extreme Learning Ma-
chine (ELM) [68], and a CNN training from scratch which
utilized a similar structure to that used in the pretraining
stage.

Before applying the SVM, the dimension of input signals
was reduced to d dimension using the Principal Component
Analysis (PCA) [69] in view of the heavy computational
overhead. Several reduced features d ∈ {50, 100, · · · , 300}
were selected and compared in Section IV-B2. Subsequently,
common kernel functions such as linear, polynomial, and
Radial Basis Function (RBF) kernels were also investigated
for the SVM. The degree of the polynomials and the RBF
kernel coefficients were empirically set as shown in Table 7.

In a similar manner, for ELM, the input features were
reduced to d dimension by PCA. Several sizes of the hidden
neurons α ∈ {2000, 4000, 6000, 8000} were compared in
Section IV-B2. The sigmoid function was used for the ac-
tivation function in ELM.

For training from scratch using CNN, the training epochs
and learning rate were empirically set at 100 and 0.0001,
respectively. All other settings (i.e., the loss function, the
optimizer and the batch size) were chosen to be similar to
that in the pretraining stage.

B. RESULTS AND DISCUSSION
1) Results of Transfer Learning Models
a: Evaluation of Pretraining Models.
Six CNN models have been experimented to figure out the
best architecture for pretraining each of the two different
types of experimental signals. Table 8 details the architec-
tures of the CNN models utilized for pretraining study. As
shown in the table, CNN1 and CNN3 have no BN layer
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TABLE 7. Summary of parameter settings for pretraining, transfer learning, non-transfer learning, and testing.

Stage Algorithm Parameter Meaning Attribute

Preprocessing Resampling P ′ Length of
resampled CSI stream 500

Shifting and
subtraction k

Shifting amount
to right columns 5

Transfer learning
(Pretraining)

Gradient descent
(CNN)

epochs Number (#) of
training iterations 120

batch size
Number (#) of

training samples present
in a single batch

64

η Learning rate 0.00001
Optimizer - Adam

Loss function - Cross Entropy Loss
Transfer learning

(Retraining)
Gradient descent

(FCN)
epochs - 50
η Learning rate 0.0001 (1D), 0.0005 (2D)

Non-transfer
learning

PCA d Number (#) of
reduced features 50, 100, · · · , 300 (Identification), 5 (Verification)

SVM

Kernel function - linear, polynomial, RBF

degree The degree of
the polynomial 2

γ
Kernel coefficient of

the polynomial and the RBF
0.01(poly, 1D), 0.001(RBF, 1D)

0.1(poly, 2D), 0.00001(RBF, 2D)

ELM α
Number (#) of
hidden neurons 2000, 4000, 6000, 8000

Gradient descent
(CNN)

epochs - 100
η Learning rate 0.0001

Test Score fusion Rules for
score fusion - SUM, MAX, MIN

[48] while CNN2, CNN4, and CNN5 have. CNN6 down-
samples the feature-map with strided convolution instead of
a pooling layer.

In order to increase the size of the dataset, a random
horizontal flipping and a random vertical flipping with prob-
ability 0.5 have been used for the 2-dimensional (2D) Wi-
Fi data while only a horizontal flipping is utilized for the
1-dimensional (1D) data. All the models are trained from
scratch using the dataset from every orientation at position
Tx side (or Rx side). The identification accuracies are pre-
sented in Table 9. For the 1D data, CNN6 shows the best
averaged identification accuracy whileCNN4 shows the best
result for the 2D data. Following this observation, we use
CNN6, CNN4 as a pretraining model for the 1D and the
2D data, respectively.

Under the verification mode, only the 1D data has been
experimented for the convolutional network method due to
our memory constraints. Therefore, only CNN6 for 1D data
is used for the pretraining. The EER performance of CNN6

is 4.3% at the Tx side and 2.7% at the Rx side.

b: Evaluation of Retraining Algorithms.
Table 10 shows the average identification accuracies of
the two retraining algorithms (KAR-retrain and GD-retrain)
evaluated under the parameter settings described in Section
IV-A. For the 1D data, the KAR-retrain yields higher average
accuracy (98.05% at Tx side and 98.65% at Rx side) than
that of the GD-algorithm (96.55% at Tx side and 98.175%
at Rx side) at the retraining stage (see the “1D” columns of
Table 10). For the 2D data, the GD-retrain (97.85% at Tx
side and 98.25% at Rx side) outperforms the KAR-retrain

(95.25% at Tx side and 96.45% at Rx side) as shown in the
“2D” columns of Table 10.

The KAR-retrain shows comparable or slightly higher
accuracy in case of utilizing score fusion (see “Score fusion”
columns of Table 10). Among the three fusion means (i.e.,
SUM, MAX and MIN), both learning algorithms achieve
the highest accuracy using the SUM-rule operation (named
fusion-SUM hereafter). With fusion-SUM, the KAR-retrain
shows marginally higher accuracy (99.75% at Tx side and
99.875% at Rx side) than that of the GD-retrain in the case
of using fusion-SUM.

Table 13 shows the EER performance of KAR-retrain
and GD-retrain under the verification mode. The GD-retrain
shows a slightly lower EER than that of the KAR-retrain at
both the Tx and the Rx sides (2.9% at Tx side and 2.2% at
Rx side).

2) Results of Non-transfer Learning Models
a: Evaluation of Training from scratch using SVM.
Since applying the SVM directly on the raw dataset is
computationally expensive, we utilize the PCA to reduce the
number of features (called PCA-SVM hereafter). Figure 6
shows the average identification accuracies plotted over the
reduced feature dimensions. For the 1D data, the SVM with
RBF kernel (SVM-RBF) shows the best performance over
all feature sizes except for the case of the reduced features
of 50 dimensions where the SVM with linear kernel (SVM-
linear) shows marginally better accuracy. For the 2D data, the
SVM-linear shows the best performance in all cases. Among
these studied cases, applying the SVM-linear to the reduced
features of 50 dimensions shows the best performance on
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TABLE 8. List of CNN models for pretraining study. The convolutional layer has four parameters (k, s, p, c) where the symbols c and k respectively indicate the
number of outputs and the channel size. We have k1 and k2 for respectively the 1D and the 2D signals. s and p respectively denote the stride and the padding. The
pooling layer has three parameters given by (k, s, p).

Layer CNN1 CNN2 CNN3 CNN4 CNN5 CNN6

Feature
extractor

Conv1, ReLU
(3, 1, 1, 16)

Conv1, BN, ReLU
(3, 1, 1, 16)

Conv1, ReLU
(3, 1, 1, 16)

Conv1, BN, ReLU
(3, 1, 1, 16)

Conv1, BN, ReLU
(3, 1, 1, 32)

Conv1, ReLU
(3, 1, 1, 32)

MaxPool
(2, 2, 0)

MaxPool
(2, 2, 0)

MaxPool
(2, 2, 0)

MaxPool
(2, 2, 0)

MaxPool
(2, 2, 0)

Conv2, ReLU
(3, 2, 1, 64)

Conv2, ReLU
(3, 1, 1, 32)

Conv2, BN, ReLU
(3, 1, 1, 32)

Conv2, ReLU
(3, 1, 1, 32)

Conv2, BN, ReLU
(3, 1, 1, 32)

Conv2, BN, ReLU
(3, 1, 1, 64)

Conv3, ReLU
(3, 1, 1, 128)

MaxPool
(2, 2, 0)

MaxPool
(2, 2, 0)

MaxPool
(2, 2, 0)

MaxPool
(2, 2, 0)

MaxPool
(2, 2, 0)

Conv4, BN, ReLU
(3, 2, 1, 256)

N/A N/A

Conv3, ReLU
(3, 1, 1, 64)

Conv3, BN, ReLU
(3, 1, 1, 64)

Conv3, BN, ReLU
(3, 1, 1, 128)

Conv5, BN, ReLU
(3, 1, 1, 256)

MaxPool
(2, 2, 0)

MaxPool
(2, 2, 0)

MaxPool
(2, 2, 0)

Conv6, BN, ReLU
(3, 2, 1, 256)

N/A N/A
Conv4, BN, ReLU

(3, 1, 1, 256)
Conv7, BN, ReLU

(3, 1, 1, 512)
MaxPool
(2, 2, 0) N/A

Classifier
1024, Tanh
512, Tanh

100, Softmax

TABLE 9. Test identification accuracy (%) of each pretrained CNN model at
each position.

Data Position CNN1 CNN2 CNN3 CNN4 CNN5 CNN6

1D Tx side 87 87 84 90 95 96
Rx side 92 92 91 94 96 97

Average 89.5 89.5 87.5 92 95.5 96.5

2D Tx side 92 93 94 94 91 92
Rx side 92 94 94 95 93 93

Average 92.5 93.5 94 94.5 92 92.5

both types of data (i.e., 1D and 2D data) in terms of the aver-
age identification accuracy while the SVM with polynomial
kernel (SVM-poly) shows the worst performance. Therefore,
we utilize the former case for score fusion to compare with
the proposed system. The “PCA-SVM” column of Table 11
shows the results of score fusion. Among the three fusion
rules, fusion-SUM achieves the highest result (96.075% at
Tx side and 96.825% at Rx side).

For the verification task, the PCA-SVM shows an average
EER of 12.5% at the Tx side and 7.8% at the Rx side (see
Table 13). The number of reduced features adopted was five
and the kernel of SVM adopted was RBF.

b: Evaluation of Training from scratch using ELM.
Similar to the SVM case, we reduce the number of features
using PCA before applying ELM on the dataset (named
PCA-ELM hereafter). Figure 7 shows the average accuracies
of PCA-ELM plotted over the reduced dimensions. For the
1D data, the ELM with 8,000 hidden neurons (ELM-8000)
shows the best performance in all cases. Among these studied
cases, applying the ELM-8000 to the reduced features of 50
dimensions shows the best result. For the 2D data, the ELM
with 6,000 hidden neurons (ELM-6000) shows comparable
results with that of ELM-8000. However, applying the ELM-
6000 to the reduced features of 50 dimensions shows the
best performance over the other cases. Therefore, similar to

applying the SVM, we utilize the former case for score fusion
to compare with the proposed system. The results of score
fusion are presented in the “PCA-ELM” column of Table
11. Among the three fusion rules, fusion-SUM achieves the
highest performance (96.275% at Tx side and 96.725% at Rx
side).

For the verification task, the PCA-ELM shows an average
EER of 11.7% at the Tx side and 8.8% at the Rx side. Similar
to the above case (SVM), five reduced features with 8000
hidden neurons have been adopted.

c: Evaluation of Training from scratch using CNN.
We train the CNN from scratch using data collected at each
direction as described in Section IV-A. The “CNN” column
of Table 11 shows the results of training from scratch using
CNN (called CNN-scratch hereafter). The selected CNN
architecture is indicated next to each data type. As seen from
the table, the average accuracy at the Tx side is 95.1% for
the 1D data and 94.7% for the 2D data while the average
accuracy at the Rx side is 97.35% for the 1D data and 97.05%
for the 2D data. Similar to the SVM and ELM cases, we
can see that using score fusion with rule-based operation
improves the performance. Among the three fusion rules, the
highest result can be found for the case of using fusion-SUM
(99.45% at the Tx side and 99.85% at the Rx side).

The accuracy of verification forCNN6 is reported in Table
13 in terms of the EER. The results show an average EER of
3.0% at the Tx side and 2.3% at the Rx side for CNN6.

3) Results of KAR-retrain under interference and packet rate
considerations
Table 12 shows the average accuracy results (in terms of
the verification EER%) recorded based on 5-fold cross-
validation tests. Under the scenarios with wireless interfer-
ence, the data subset collected at the higher packet rate
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TABLE 10. The identification accuracy (%) of each learning algorithm at the retraining stage evaluated from all four facing directions and two subject positions. All
the performances are averaged results of 5-fold cross validation tests.

Pretraining
Position

Retraining
Position Direction

KAR learning Gradient descent

1D 2D Score fusion 1D 2D Score fusion
SUM MAX MIN SUM MAX MIN

Rx side Tx side

Front 97.5 92.3 99.5 97.9 97.2 95.4 96.9 99.9 99.5 98
Right 97.9 97.4 99.9 99.4 99.4 96.9 98 100 99.8 99.5
Left 98.7 95.9 100 99.6 99.8 98 98.5 98.9 98.7 98.7
Back 98.1 95.4 99.6 99.5 98.7 95.9 98 99.9 99.2 99.4

Average 98.05 95.25 99.75 99.1 98.775 96.55 97.85 99.675 99.3 98.9

Tx side Rx side

Front 98.8 94.7 99.8 99.6 99 98 97.7 99.6 99.6 98.8
Right 98.8 97.9 99.9 99.4 99.6 98.8 98.6 99.8 99.1 99.2
Left 98 96.6 99.9 99.4 99.3 98 98.3 99.5 99.3 99.5
Back 99 96.6 99.9 99.6 99.6 97.9 98.4 100 99.9 100

Average 98.65 96.45 99.875 99.5 99.375 98.175 98.25 99.725 99.475 99.375

(a) (b)

FIGURE 6. Results of Non-transfer Learning Model (SVM): identification accuracies (%) averaged from all the four facing directions and two subject positions
plotted over number (#) of reduced features. “None” means no PCA is applied. (a) Average accuracy plot using 1-dimensional data (b) Average accuracy plot using
2-dimensional data

(10kps, 0.56%) shows a lower average EER than that at the
lower packet rate (1kps, 3.94%). Similarly, with no wireless
interference, a lower average EER is observed at the higher
packet rate (10kps, 0.13%) than that at the lower packet rate
(1kps, 2.56%). In terms of the total average, the performance
without interference (1.34%) is seen to have a lower EER
(better performance) than that of the case with interference
(2.25%).

4) Comparison of all the Methods

a: Comparison of Identification Accuracy and Equal Error
Rate.

Figure 8 plots the average identification accuracies (from
all four facing directions at each position) of all the com-
pared learning algorithms over each signature orientation.
According to Figure 8(a), the PCA-SVM and the PCA-ELM
show comparable average accuracies (96.075% and 96.275%
at Tx side and 96.825% and 96.725% at Rx side). These
accuracies are significantly lower than that of KAR-retrain,
GD-retrain and CNN-scratch. Figure 8(b) shows an enlarged
plots for KAR-retrain, GD-retrain and CNN-scratch. These
results show either better or comparable accuracy of KAR-
retrain relative to GD-retrain and CNN-scratch.

Table 13 shows the EER of all the compared methods.
Similar to identification case, the PCA-SVM and the PCA-
ELM show similar average EERs (12.5% and 11.7% at
Tx side and 7.8% and 8.8% at Rx side) which is worse
than that of KAR-retrain, GD-retrain and CNN6. However,
KAR-retrain shows comparable EER with that of the GD-
retrain and CNN6 (about 0.8% higher EER on average) in
verification mode.

b: Comparison of Elapsed Training Time.
Table 14 shows the time taken to train the compared algo-
rithms in seconds. All the compared algorithms have been
trained using the GPU except for PCA-SVM which has been
trained using the CPU due to the unavailability of codes for
GPU.

Non-transfer learning methods: among the non-transfer
learning methods in the table, the CNN-scratch shows the
longest training time among the three evaluated methods.
Attributed to the shadow architecture, both PCA-SVM and
PCA-ELM show a much faster training time than that of the
CNN-scratch. However, this speed comes with the price of a
compromised identification accuracy.

Transfer learning methods: for the two evaluated methods
based on transfer learning, the retraining time is compared
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(a) (b)

FIGURE 7. Results of Non-transfer Learning Model (ELM): identification accuracies (%) averaged from all the four facing directions and two subject positions
plotted over number (#) of reduced features. “None” means no PCA is applied. (a) Average accuracy plot using 1-dimensional data (b) Average accuracy plot using
2-dimensional data

TABLE 11. The identification accuracy (%) of training from scratch using PCA-SVM with fusion-SUM and CNN evaluated from all four facing directions and two
subject positions. All the performances are averaged from 5-fold cross validation tests.

Training
Position Direction

PCA-SVM PCA-ELM CNN
Score fusion Score fusion 1D(CNN6) 2D(CNN4) Score fusion

SUM MAX MIN SUM MAX MIN SUM MAX MIN

Tx side

Front 94.3 90.1 88.6 97 95.5 92.3 92.2 91.2 99 98 89.1
Right 97.5 92.5 93.3 96.4 95.2 88 96.2 96 99.8 99.3 98.9
Left 96.4 93.7 91 95.9 94.7 88 95.2 94.8 99.4 98.9 98.7
Back 96.1 91.5 93 95.8 94.5 86.5 96.8 96.8 99.6 98.4 99

Average 96.075 91.95 91.475 96.275 94.975 88.7 95.1 94.7 99.45 98.65 96.425

Rx side

Front 97.8 94.9 93.2 97.1 95.1 87.8 98 97.6 99.8 99.6 98.9
Right 96.9 91.8 94.9 96.9 94.9 88.1 97.4 97.2 99.9 99.8 99.2
Left 96.4 92.4 91.9 97 95.4 86.1 97 96.6 99.9 99.6 99
Back 96.2 92.2 92.3 95.9 94.4 85.6 97 96.8 99.8 99.6 99.2

Aveage 96.825 92.825 93.075 96.725 94.95 86.9 97.35 97.05 99.85 99.65 99.075

TABLE 12. Verification accuracy (EER, %) of KAR-retrain with and without
ambient interference at a different location at two different packet rates. The
results have been recorded based on 5-fold cross-validation tests.

Presence of
wireless interference w/ interference w/o interference

Packet rate 1kp/s 10kp/s 1kp/s 10kp/s

Orientation

Front 3.50 0.25 0 0
Right 1.25 1.00 1.25 0
Left 4.00 0.50 4.00 0.25
Back 7.00 0.50 5.00 0.25

Average 3.94 0.56 2.56 0.13
Total Average 2.25 1.34

between that of KAR-retrain and GD-retrain. The results in
Table 14 show a much faster training speed of KAR-retrain
than that of GD-retrain, both of which have been built upon a
pretaining overhead (with pretraining time = 64.49 secs (1D),
162.41 secs (2D) utilizing data of all four directions).

Comparing between the transfer learning methods and
the non-transfer learning methods, the former shows faster
adaptation when there are more unseen user positions (apart
from the studied Tx and Rx positions) for retraining. In other
words, the transfer learning in our system trains only the last
three layers in a single shot manner whenever a new user

position is added while not compromising the identification
accuracy. Such a fast adaptation to new user positions is
a clear advantage over training from scratch for real world
applications.

TABLE 13. The verification performance (EER, %) of each learning algorithm
evaluated from all four facing directions and two subject positions. All the
performances are averaged results of 5-fold cross validation tests.

Training
Position Direction Transfer learning Non-transfer learning

KAR-retrain GD-retrain PCA-SVM PCA-ELM CNN-scratch

Tx side

Front 5.1 4.5 15.0 16.4 3.8
Right 6.9 2.6 12.5 10.2 2.9
Left 6.8 2.8 12.7 11.4 2.4
Back 8.8 2.2 9.9 8.8 2.5

Average 6.9 2.9 12.5 11.7 3.0

Rx side

Front 3.5 2.1 9.1 7.3 2.6
Right 3.3 2.2 7.3 14 2.1
Left 2.9 2.3 7.7 5.9 2.4
Back 2.4 2.2 7.1 7.8 1.9

Average 3.025 2.2 7.8 8.8 2.3

5) Summary of results
The results are summarized and discussed as follows:

- As observed from Table 9, making the CNN architecture
deeper does not help to improve the performance for the
2D data while it shows enhanced performance for the
1D data. We infer that this is because the 2D data has the
same number of samples as that of the 1D data, but with
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(a)

(a)

(b)

FIGURE 8. Plots of identification accuracies (%) of all the methods in case of using fusion-SUM. “Average” means the classification accuracy averaged from all four
facing directions (i.e., front, right, left and back). (a) Plots of identification accuracies at two positions. (b) A zoom-in view of (a).

richer features. This may indicate that training CNN on
2D data needs much more number of samples in view
of the higher dimensional features. Hence, training the
deeper CNN using 2D data shows lower performance
than that of the shallower CNN.

- From Figure 8, the proposed KAR-retrain outperforms
the compared methods in terms of the average identifi-
cation accuracy. Although the GD-retrain shows com-
parable accuracy compared with the KAR-retrain (see
Table 10 for details), the KAR-retrain is shown to learn
the transferred features with much lower computational
cost (see the “Transfer learning” column of Table 14).
This is because learning a classifier (i.e., FCN) using
the GD algorithm requires iterative search while the
KAR learning learns the weights of classifier in a single
operating pass.

- Among the compared methods, the CNN-scratch also
shows a competitive accuracy (see Figure 8). However,
its computational cost is about 10 to 16 times heavier
than that of the KAR-retrain when the pretraining over-
head is not considered. The main reason is due to the
iterative search of the GD algorithm to train the CNN-
scratch.

- Although the PCA-SVM and the PCA-ELM classify the
data with high computational efficiency (see Table 14),

they achieve the lowest identification accuracy among
the compared methods. Besides, the two learning algo-
rithms incur an additional cost of using PCA for dimen-
sion reduction. Comparing with GD-retrain and CNN-
scratch, the KAR-retrain provides a balance between
identification accuracy and computational efficiency.

- Since the proposed system trains only the final three lay-
ers of the network for transfer learning, the adaptation
of the network to new user positions and orientations is
much faster than that of training from scratch.

- Under the verification mode, the EER performance for
KAR-retrain is observed to be much better than that of
PCA-SVM and PCA-ELM and comparable to that of
GD-retrain and CNN6 (see Table 13).

- The difference in experimental location does not have
apparent impact on the verification performance (see
Table 12).

- A higher receiving packet rate at 10kp/s shows a bet-
ter verification accuracy than that at a lower receiving
packet rate of 1kp/s. We have observed that even though
severe packet loss has occurred during data acquisition,
the higher packet rate at 10kp/s can capture about 1.5
to 2 times more packets than that at 1kp/s. Hence,
setting the receiving packet rates as high as possible is
advantageous for capturing accurate in-air signature.
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TABLE 14. The elapsed training time (sec) for the case of using fusion-SUM for all the learning algorithms measured based on each of the four facing directions
and the two positions. All the training times are averaged from 5-fold cross validation tests except pretraining time.

Training
Position Direction Transfer learning Non-transfer learning

KAR-retrain GD-retrain PCA-SVM* PCA-ELM CNN-scratch

Tx side

Front 1.404 9.731 2.33 + 0.141 2.33 + 0.153 28.149
Right 1.386 6.942 2.32 + 0.134 2.32 + 0.157 18.168
Left 1.384 10.995 2.26 + 0.132 2.26 + 0.164 18.249
Back 1.385 8.901 2.27 + 0.127 2.27 +0.155 20.214

Total time 5.559 36.569 9.714 9.809 84.780

Rx side

Front 1.376 8.435 2.29 + 0.135 2.29 + 0.151 16.054
Right 1.394 7.609 2.28 + 0.141 2.28 + 0.152 11.061
Left 1.372 7.654 2.31 + 0.142 2.31 + 0.142 14.026
Back 1.368 8.095 2.28 + 0.145 2.28 + 0.145 13.427

Total time 5.510 31.793 9.723 9.750 54.568
* Training on CPU

- Under the presence of wireless interference, the veri-
fication accuracy is observed to be slightly degraded
comparing with that without ambient interference (see
Table 12). This shows the feasibility of the proposed
system for application under practical scenario.

- In this feasibility study, the improvements in terms
of recognition accuracy and training time have been
obtained based on the data sets captured under a similar
setting. Moreover, as shown in Table 12, the proposed
KAR-retrain performs favorably well on the dataset
captured at a different location (0.13% at most in terms
of EER). This is a clear sign that our system can effec-
tively handle the varying patterns of captured signals at
a different location by adopting the functional inverse
based transfer learning.

6) Future works
Comparing with the studied methods, the proposed KAR-
retrain shows promising performance with low retraining
time. The study using different packet rates shows improved
verification accuracy for the higher transmission rate. More-
over, the interference study shows minor degradation of
verification accuracy with ambient interference. In order to
improve the robustness of the system to work in the pro-
duction environment, several aspects can be investigated in
future. These investigations include recognition of multiple
in-air signatures and handling of spoofing attacks. In other
words, as the signature gesture can be visible during authen-
tication, a challenging topic for future research would be
whether any forgery of the personal signature gesture can be
detected. Also, recognition of multiple users could be another
challenging topic.

V. CONCLUSION
In this paper, a novel Wi-Fi enabled system for in-air hand-
written signature was proposed for user identification after
the feasibility has been established. The proposed system
utilized the variation of CSI amplitude information caused

by the in-air writing movements as patterns for recognition.
To address the sensitiveness of captured patterns towards
different user positions, the transfer learning was adopted
to avoid training from scratch for each position. A KAR
learning was adopted in the retraining stage to reduce the
learning computational cost. Subsequently, two differently
preprocessed features were fused at the score level for per-
formance enhancement. Our experimental results based on
a moderate size of in-air signature dataset showed promising
identification accuracy of the proposed system with relatively
low computational cost during transfer.
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