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ABSTRACT Due to the flexibility and mobility, unmanned aerial vehicle (UAV) can work as a movable sink
to receive the data collected by sensors in wireless sensor networks (WSNs). This paper analyzes the capacity
of UAV assisted data collection inWSNs, which provides a guideline for the parameters optimization of data
collection in the presence of UAVs. In this paper, the service area of UAVs covers the area where sensors
are distributed. The charging points for UAVs are placed around the service area, which provides energy
supply for UAVs. The charging point is the starting and ending point of a UAV’s trajectory. The service area
is partitioned into multiple service cells. UAVs traverse these service cells to receive the data collected by
the sensors in the service cells. The per-node capacity and average execution time of UAVs are used as two
metrics to measure the performance of data collection in WSN. The upper and lower bounds of per-node
capacity are derived respectively. It is discovered that the number of UAVs, the number of service cells and
the trajectories of UAVs affect the per-node capacity of WSN. The per-node capacity can be optimized by
adjusting the numbers of UAVs and service cells. Two path planning algorithms of UAVs are designed. With
path planning, the per-node capacity is optimized to be closer to the upper bound, which achieves highly
efficient data collection. The simulation results verify the correctness of the derived results.

INDEX TERMS Wireless sensor networks, unmanned aerial vehicle, data collection, capacity analysis, path
planning, trajectory optimization.

I. INTRODUCTION
Wireless sensor networks (WSNs) are widely applied in intel-
ligent transportation, forest monitoring, ocean monitoring,
etc. The number of sensors in the world will increase dra-
matically in the future. Under this situation, highly efficient
collection of sensing data will be crucial. However, there exist
significant challenges for the collection of sensing data in
some areas lacking the coverage of communication infras-
tructures, such as ocean, island and forest [1].

Moreover, for large-scaleWSNs, the data collection faces a
great challenge. Since the number of sensors inWSN is large,
the probability of network topology change or network failure
is correspondingly large. Compared with small-scale WSNs,
the realization of multi-hop information transfer and self-
adaptive functions in the large-scaleWSNs are more difficult,
the data transmission delay is larger and the network lifetime
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is shorter [2]. The highly efficient data collection method
is necessary for large-scale WSNs and the WSNs without
communication infrastructures.

Due to the advantages of flexibility and easy deployment,
unmanned aerial vehicle (UAV) canwork as amovable sink to
receive the data collected by sensors in WSNs. UAV assisted
data collection in WSNs can be realized in the absence of
infrastructure coverage. Besides, the number of hops of data
transmission can be reduced to enhance the survivability of
WSNs [3], [4], [5]. The network capacity can be improved
when exploiting the mobility of UAVs [6], [7]. Moreover,
UAV can monitor multiple moving targets [8], locate nodes
distributed randomly in the networks [9], and even temporar-
ily replace the faulty nodes of the networks to achieve the
functions of self-organization and adaption, which makes the
networks more robust [1].

To improve the capacity of UAV assisted data collection
in WSNs, the networking schemes of WSNs and the tra-
jectories of UAVs need to be designed. For example, the
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clustering, multiple access control and routing schemes of
WSNs need to be designed and the height, speed, trajectories,
energy supply and spectrum allocation of UAVs need to be
optimized. Some literatures have focused on designing the
optimal trajectories of UAVs to improve the capacity of data
collection. Guo et al. in [10] analyzed the performance of air-
to-ground (A2G) communication when UAVs are applied to
support the ground networks. Gong et al. in [11] designed the
trajectory of single UAV in a one-dimensional (1-D) network.
The data collection interval and the flight speed of UAV are
designed using dynamic programming (DP) to reduce the
UAV’s working time when each energy-constrained sensor
could upload a certain amount of data. Xue et al. designed
the trajectory of single UAV in two-dimensional (2-D) net-
work and three-dimensional (3-D) network in [12] and [13],
respectively. They maximized the minimum amount of data
collected by single UAV under the premise of constrained
energy of UAV. Yang et al. in [14] studied the suspension
height problem in the trajectories of multiple UAVs to reach
the best trade-off of energy consumption between the sen-
sors and UAVs. Liu et al. in [4] and Zhang et al. in [15]
applied deep reinforcement learning to design the trajectories
ofmultiple UAVs in smart cities, such that UAVs could collect
more data whereas consuming less energy. Zhang et al. in
[16] designed the trajectories of UAVs through directional
dynamic programming (DDP), which reduced the compu-
tational complexity and enabled UAVs to adapt to various
terrains. You et al. in [17] adopted the angle-dependent rician
fading channel instead of the probabilistic line-of-sight (LoS)
or non-line-of-sight (NLoS) channel in the study of UAV
assisted data collection in WSN. Moreover, 3-D trajectories
of multiple UAVs were designed to improve the minimum
data rate.

In addition to optimizing the trajectories of UAVs,
some studies have improved the capacity of data col-
lection by optimizing the networking schemes of WSNs.
Albu-Salih et al. in [18] designed the clustering algorithm of
sensors. Then, UAVs only collect the data of the cluster
head in each cluster. They found the optimal routing using
mixed-integer linear programming (MILP) to reduce the
number and the working time. According to the locations of
sensors, Say et al. in [19] classified the sensors into differ-
ent frames corresponding to different transmission priorities.
They designed a routing scheme to make data collection more
efficient, prolong the lifetime of WSN, and maximize the
throughput of WSN. Ebrahimi et al. in [20] clustered the
sensors and established the tree-shaped routing structure to
make data collection more efficient and minimize the number
of hops in data transmission.

Furthermore, the improvement of data collection capacity
was studied through the joint optimization of UAVs and
WSNs. Zhan et al. in [2] and Rao et al. in [5] jointly
optimized the wake-up scheme of sensors and the trajecto-
ries of UAVs whereas [2] aims to reduce the upper bound
of energy consumption of sensors and [5] aims to mini-
mize the energy consumption and delay of data transmission

simultaneously. Besides, [5] discovered a trade-off between
the network lifetime and the delay of data transmission.
Hua et al. in [21] and Zhan et al. in [22] jointly opti-
mized the wake-up scheme of sensors and the trajectories
of UAVs to reduce the time of UAVs’ mission execution
under the constraint that all the sensors could transmit a
certain amount of data with constrained energy. Liu et al.
in [23] set sensors to different levels of backbone sampling
points and designed the corresponding trajectories of UAVs to
reduce the energy consumption and redundancy of collected
data. Ghorbel et al. in [24] partitioned the coverage area of
UAVs and found the best locations of data sampling points.
Then, the corresponding trajectories of UAVs are designed
to minimize the energy consumption of sensors and UAVs.
According to the distribution of sensors, Bushnaq et al. in [25]
determined the appropriate number of data sampling points
and designed the corresponding trajectories of UAVs to reach
the best trade-off between the suspension time and flight
time of UAVs such that the working time of each UAV was
minimized.

In the research of UAV-assisted data collection in WSNs,
various optimization objectives can be established. Based on
these optimization objectives, the corresponding trajectories
of UAVs and networking schemes of WSN can be designed.
Considering that the capacity analysis is not comprehensive
enough, we set up a new optimization objective, i.e. capacity
optimization, which is different from the related works. This
paper aims to analyze the capacity of UAV assisted data col-
lection in WSNs. Then, the trajectories of UAVs are designed
with improving the capacity as the primary optimization
objective function, the execution time and energy consump-
tion of UAVs are thus confirmed. In Section V, the impact of
path planning algorithms on capacity is analyzed, which is
also different from the related works. Both single-UAV and
multi-UAV scenarios are considered. To solve this problem,
we assume that each UAV has just enough energy to fly along
a preset trajectory, receive the data collected by the sensors
and return to the starting point. Then, the amount of data
collected during a flight of UAV is equal to the amount of data
accumulated by the sensors during the interval between two
adjacent flights. According to this analysis, we can derive the
per-node capacity. By analyzing the upper and lower bounds
of the length of UAV’s trajectory, the upper and lower bounds
of per-node capacity in single-UAV and multi-UAV scenarios
can be derived. Two path planning algorithms are adopted to
shorten the length of UAV’s trajectory, such that the per-node
capacity is optimized to be closer to the upper bound, which
achieves highly efficient data collection. The simulation
results verify the correctness of the derived per-node capac-
ity. It is noted that compared with the conference version
[33], this paper derives the upper and lower bounds of the
capacity of data collection. Since the length of UAVs’ tra-
jectories has an impact on the capacity, two path planning
algorithms with different complexity are proposed for UAVs,
such that the capacity of UAV assisted data collection is
improved.
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The structure of this paper is arranged as follows. Section
II introduces the system model. Section III derives the upper
and lower bounds of the per-node capacity in single-UAV
and multi-UAV scenarios. Section IV designs the path plan-
ning algorithms to generate a short trajectory for each UAV.
Section V provides the simulation results, which verifies the
theoretical results. Section VI summarizes this paper.

II. SYSTEM MODEL
The service area of UAVs covers the area where sensors
are distributed. The service area is partitioned into multiple
service cells. The charging points for UAVs are placed around
the service area, which provides energy supply for UAVs. The
charging point is the starting and ending point of a UAV’s
trajectory.

Without loss of generality, the shape of the service area is
assumed to be square. As illustrated in Fig. 1, m sensors are
deployed in the service area with side length L. The service
area is partitioned into n2 service cells with side length L

n .
4(n+1) charging points surrounding the service area act as the
starting and ending points of UAVs. The service area of UAVs
is not smaller than the coverage area of WSN. The coverage
area of WSN in the service area of UAVs can be in any shape,
such as the irregular area in Fig. 1.

FIGURE 1. The service area, charging points and coverage area of WSN.

A. CHANNEL MODEL
Both LoS and NLoS links are considered for the channel
between UAV and ground sensor, i.e., air-to-ground (A2G)
channel. The probabilities of A2G channel being LoS and
NLoS are denoted as PL and PNL, respectively. Applying the
Sigmod model in [26], [27], PL and PNL are expressed as
follows.

PL =
1

1+ a exp[−b− (θ − a)]
, (1)

PNL = 1− PL, (2)

where a and b are environment parameters characterizing the
number of obstacles in the A2G channel.

The circular coverage area of UAVs is considered. The
minimum radius of the coverage disk of UAVs covering a

service cell is

Rc =
L
√
2n
. (3)

The maximum distance between the UAV and a sensor in
the service cell covered by UAV is

d0 =
√
h2 + R2c, (4)

where h is the altitude of UAVs.
The elevation angle θ (in degree) of the UAV to sensor link

is thus given by

θ =
180
π

sin−1(
h
d0

). (5)

The transmit power of sensors is defined as Pd . The
received signal power at UAV is denoted as Pr . Path loss
fading is considered whereas small-scale fading is ignored in
this paper since it has a small impact on the capacity of UAV
assisted data collection. Thus, Pr can be expressed as [27]

Pr =

{
Pdd

−αe
0 , LoS

ηPdd0−αe , NLoS,
(6)

where η is the additional attenuation factor due to NLoS
propagation, and αe is the A2G channel’s path loss exponent.
As a result, the UAV’s average received signal-to-noise

ratio (SNR) is given by

β =
Pr
N

=
PLoSPd

√
(h2+ L2

2n2
)
−αe
+ηPNLoSPd

√
(h2+ L2

2n2
)
−αe

N
,

(7)

where N is the power of additive white Gaussian noise
(AWGN). The capacity of A2G channel is given by

Cre = Wu log2(1+ β), (8)

whereWu is the channel bandwidth of A2G channel.

B. DISTRIBUTION MODEL OF SENSORS
The service cell that does not contain any sensors is called
empty service cell. The service cell that contains at least
one sensor is called non-empty service cell. The number of
non-empty service cells is denoted as np. The number of
methods that m sensors are deployed in np service cells is
[28]

S2(m, np) =
1
np!

np∑
k=0

(−1)kCk
np (np − k)

m. (9)

The probability of the number of non-empty service cells
being np is formulated as

p(np) =
S2(m, np)A

np
n2

(n2)m
, (10)

where A
np
n2

is the permutations number.
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The expectation of np is formulated as

E(np) =



m∑
np=1

np · p(np), m < n2,

n2∑
np=1

np · p(np), m ≥ n2.

(11)

III. PER-NODE CAPACITY AND AVERAGE EXECUTION
TIME OF UAVs
In this paper, per-node capacity, denoted by λ, and aver-
age execution time of UAVs in one cycle, denoted by Tw,
are adopted as two metrics to measure the performance of
UAV assisted data collection in WSNs. λ is defined as the
maximum amount of data accumulated at each sensor and
collected by each UAV per unit time.

In order to comprehensively study the performance of UAV
assisted data collection in WSNs, we consider the scenarios
of single-UAV and multi-UAV. In single-UAV scenario, UAV
needs to receive the data collected by all the sensors in the
entire service area as shown in Fig. 2(a). UAV flies along
the trajectory denoted by the red line. The scenario where the
number of UAVs is at least 2 is called multi-UAV scenario. In
multi-UAV scenario, the entire service area is partitioned into
several parts. Each UAV needs to receive the data collected
by the sensors in its responsible part. Take the multi-UAV
scenario with two UAVs as an example, the responsible part
of each UAV is shown in Fig. 2(b). The lines in different
colors indicate trajectories of different UAVs. It is noted that
all the figures of multi-UAV scenario in this paper take two
UAVs as an example to make the illustration of figures more
concise.

FIGURE 2. The trajectories of UAVs in single-UAV and multi-UAV scenarios
to derive the lower bound of capacity.

We regard the sensors in the same service cell as a cluster
and select one sensor in the cluster as the cluster head. The
cluster head aggregates the data collected by all sensors in the
cluster. The UAV can indirectly collect data from all the sen-
sors in the service cell through the cluster heads when UAV
passes through the service cells. It is noted that the cluster

head does not necessarily lie in the center of the service cell.
The design of UAV’s trajectory near the cluster head can be
found in [29] when UAV communicates with the cluster head.
This paper mainly considers the design of UAVs’ trajectories
among multiple service cells. The UAV starts from a starting
point, traverses all the non-empty service cells in turn, and
then, returns to the starting point periodically. The UAV
continues to the next flight after energy replenishment at the
starting point.

A. SINGLE-UAV SCENARIO
In single-UAV scenario, the communication bandwidth that
the UAV can use isW . The channel bandwidth of a UAV is

Wu = W . (12)

To ensure that the UAV can receive all the data collected by
the sensors located in the service cell, we set the pause time
of UAV in each service cell, denoted by ts, as the ratio of the
total amount of data accumulated by the sensors located in
the service cell to the capacity of A2G channel.

ts =
mλsTw
npCre

, (13)

where Tw is the execution time of UAV in one cycle, λs is the
per-node capacity.

To maintain the UAV’s operation in a complete round-trip,
the supplemented energy for UAV at the starting point is

Eu = npts(Pd + Pf )+
S
v
Pf , (14)

where Pf is the power for flight, Pd is the transmit power of
sensors, v is the flying speed of UAV, S is the length of UAV’s
trajectory in one cycle.

Substituting (8), (12) and (13) to (14), the execution time
of UAV in one cycle and the per-node capacity can be written
as

Tw = npts +
S
v
=
vEu + SPd
v(Pd + Pf )

, (15)

λs =
(vEu − SPf )W log2(1+ β)

mvEu + mSPd
. (16)

According to (15), Tw is a monotonically increasing func-
tion of Eu and S, i.e., the execution time of UAV in one
cycle increases as the supplemented energy for UAV at the
starting point or the length of UAV’s trajectory in one cycle
increases. According to (16), λs is a monotonically decreas-
ing function of S, i.e., the per-node capacity in single-UAV
scenario decreases as the length of UAV’s trajectory in one
cycle increases.

UAV has the longest trajectory when all service cells con-
tain sensors as shown in Fig. 2(a), which is the algorithm
explained in [30]. We can derive the lower bound of per-node
capacity in this case.

np = n2, (17)

S =
(np + n)L

n
= (n+ 1)L. (18)
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FIGURE 3. The trajectories of UAVs in single-UAV and multi-UAV scenarios
to derive the upper bound of capacity.

Substituting (17) and (18) to (16), the lower bound of the
per-node capacity in single-UAV scenario is

λs,l =
[vEu − (n+ 1)LPf ]W log2(1+ β)

mvEu + m(n+ 1)LPd
. (19)

To derive the upper bound of λs, the extreme case is consid-
ered where UAV only flies over the non-empty service cells
as shown in Fig. 3(a).

1 ≤ np < n2, (20)

S =
(np + 1)L

n
. (21)

Substituting (21) to (16), the upper bound of the per-node
capacity is

λs,u =
[vnEu − (np + 1)LPf ]W log2(1+ β)

mvnEu + m(np + 1)LPd
. (22)

B. MULTI-UAV SCENARIO
In multi-UAV scenario, each UAV is in charge of part of the
service area and occupies half of the frequency band, such
that adjacent UAVs do not interfere with each other. The
channel bandwidth of each UAV is

Wu =
W
2
. (23)

According to the definition of ts, it can be expressed as

ts =
mλmTw
np/uCre

, (24)

where u is the number of UAVs, Tw is the average execution
time of UAVs in one cycle, λm is the per-node capacity.

To maintain the UAVs’ operation in a complete round-trip,
the average supplemented energy for UAVs at the starting
points is

Eu =
np
u
ts(Pd + Pf )+

S
vu
Pf , (25)

where S is the summation of the length of UAVs’ trajectories
in one cycle.

Substituting (8), (23) and (24) to (25), the average execu-
tion time of UAVs in one cycle and the per-node capacity can
be written as

Tw =
np
u
ts +

S
vu
=

vEu + SPd
vu(Pd + Pf )

, (26)

λm =
(vuEu − SPf )W log2(1+ β)

2mvEu + 2mSPd
. (27)

According to (26), Tw is a monotonically decreasing func-
tion of u, i.e., the average execution time of UAVs in one
cycle decreases as the number of UAVs increases. According
to (27), λm is a monotonically increasing function of u, i.e.,
the per-node capacity in multi-UAV scenario increases as the
number of UAVs increases.

UAVs have the longest trajectories when all the service
cells contain sensors as shown in Fig. 2(b). Substituting (17)
and (18) to (27), the lower bound of the per-node capacity in
multi-UAV scenario is

λm,l =
[vuEu − (n+ 1)LPf ]W log2(1+ β)

2mvEu + 2m(n+ 1)LPd
. (28)

To derive the upper bound of λm, the extreme case is
considered where UAVs only fly over the non-empty service
cells as shown in Fig. 3(b).

S =
(np + u)L

n
. (29)

Substituting (29) to (27), the upper bound of the per-node
capacity is

λm,u =
[vunEu − (np + u)LPf ]W log2(1+ β)

2mvnEu + 2m(np + u)LPd
. (30)

IV. IMPACT OF PATH PLANNING ALGORITHMS ON
PER-NODE CAPACITY
According to Section III, the length of UAV’s trajectory has
an impact on the per-node capacity. To find the shortest
trajectory covering all the non-empty service cells and return
to the starting point, we study the path planning algorithms
in the two cases of fixed starting points and adaptive starting
points for UAVs in this section.

A. PATH PLANNING ALGORITHMS WITH FIXED STARTING
POINTS
In practice, UAVs pass through neither all the service cells
nor only the non-empty service cells when the distribution of
non-empty service cells is estimated. Thus, the path planning
algorithms need to be designed to discover the shortest path
to traverse the non-empty service cells.

The path planning algorithm with fixed starting points is
summarized in Algorithm 1. With the first and last columns
in the service area as the starting column col1 and ending
column col2 of UAVs, UAVs traverse each column in turn
between col1 and col2. The starting point of eachUAV is fixed
in front of the UAV’s starting column.
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Algorithm 1 The path planning algorithm with fixed starting
points.
1: j = col1;P1 = 0;
2: while j ≤ col2 do
3: if sum(Cj) ≥ 1 then
4: index = find(Cj);
5: else
6: index = 1;
7: end if
8: if j+ 1 ≤ n then
9: if sum(Cj+1) ≥ 1 then
10: index_next = find(Cj+1);
11: else
12: index_next = 1;
13: end if
14: else
15: index_next = index;
16: end if
17: i = max(index, index_next);
18: P1 = P1 + i× 2;
19: j = j+ 2;
20: end while
21: S = (P1 + col2 − col1 + 1)× L

n ;

In the initialization stage of Algorithm 1, j = col1 means
that UAVs start from the col1-th column and P1 = 0 means
that the number of service cells passed by UAVs is zero at
the beginning. In the 3-rd line of Algorithm 1, sum(Cj) > 0
means that there is at least one non-empty service cell in
the j-th column. In the 4-th and 10-th lines of Algorithm 1,
index and index_next record the maximal row numbers of
non-empty service cells in the j-th and (j + 1)-th columns
respectively. The larger one between index and index_next is
denoted by i.

The two adjacent columns can be a back and forth as shown
in Fig. 4. UAVs need to start from C1,j, farthest to Ci,j, the
next is Ci,j+1, back to C1,j+1, and the next round start from
the C1,j+2. Repeat the above rules until UAVs fly over the last
column col2.
The trajectories in single-UAV and multi-UAV scenarios

with Algorithm 1 are shown in Fig. 5(a) and Fig. 5(b) respec-
tively.

In multi-UAV scenario, the service area of each UAV is
smaller compared with single-UAV scenario. The summation
of the length of UAVs’ trajectories in one cycle, denoted by S,
are the same for single-UAV and multi-UAV scenarios with
Algorithm 1. The starting point of each UAV is fixed.

B. PATH PLANNING ALGORITHMS WITH ADAPTIVE
STARTING POINTS
There is still redundancy in the trajectories of UAVs when the
starting points are fixed. We choose the ant colony algorithm
[31] for path planning so that UAVs can choose the starting

FIGURE 4. A back and forth movement of UAV with Algorithm 1.

FIGURE 5. The trajectories of UAVs with Algorithm 1.

points adaptively according to the distribution of non-empty
service cells.

Ant colony algorithm belongs to the heuristic algorithms.
The heuristic algorithms simulate some natural phenomena
and obtain a feasible solution that is not necessarily the
optimal solution after a certain number of iterations. Ant
colony algorithm simulates the natural phenomena of ant-
foraging. The ants always tend to choose the shortest path
between the food and the nest no matter how many obstacles
in the path, because ants will release pheromones along the
way, such that more and more ants per unit of time will pass
through the shorter path where more pheromones will be
accumulated. Ants always tend to choose the path with the
most pheromones, which creates positive feedback to choose
the shortest path [31].

UAVs can only move between the adjacent service cells,
which means that UAVs can not slash in the 2D plane. The
Manhattan distance di,j is defined as the minimum number of
service cells to pass from service cell i to service cell j [32].
For example, di,j is 1 when service cell i and service cell j are
two adjacent service cells.

The visibility between service cell i and service cell j is
defined as

162824 VOLUME 8, 2020



Z. Wei et al.: Capacity of UAV Assisted Data Collection in WSNs

ηi,j =
1
di,j
. (31)

All the pheromone concentrations c0i,j between any two
service cells are initialized to 1 before the iteration begins.
After each iteration, the pheromone concentrations need to
be updated to

ck+1i,j = (1− ρ)cki,j +1c
k
i,j, (32)

where ρ is the pheromone concentration volatilization coef-
ficient.

The increment of pheromone concentration released by the
ant A and all ants between service cell i and service cell j in
the k-th iteration can be formulated as follows according to
the principle of ant colony algorithm [31]

1cki,j(A) =


Q
dA
, iA→ jA

0, otherwise,
(33)

1cki,j =
nant∑
A=1

1cki,j(A), (34)

where Q is a constant that represents the total amount of
pheromone concentration released by one ant in one cycle,
dA is the number of service cells that ant A passes through in
one cycle, and iA→ jA represents that ant A chooses to walk
from service cell i to service cell j in this cycle, nant is the
total number of ants in each iteration.

The probability that ant A walks from service cell i to
service cell j in the k-th iteration is formulated as follows
according to the principle of ant colony algorithm [31]

pki,j(A) =
|cki,j(A)|

α
· |ηi,j|

β∑
j=∈rA
|cki,j(A)|

α · |ηi,j|β
. (35)

The pheromone concentration heuristic factor is α. The ant
will have a larger probability to select the path that has been
passed before when α is larger. The search range of the ants
is smaller when the randomness of the search path is weaker.
The ants will no longer consider pheromone concentration
levels if α = 0.

The path heuristic factor is β. The ants are easier to select
the locally shorter path when β is larger. The set RA repre-
sents the set of the non-empty service cells that ant A has
not passed. The ant colony algorithm for path planning is
summarized in Algorithm 2.

In the 1-st line of Algorithm 2, the value of K is set before
the algorithm begins to iterate. Algorithm 2 can obtain a
feasible solution that is not necessarily the optimal solution
after K iterations. In the 11-th line of Algorithm 2, the
purpose is to find the minimal number of service cells passed
by from the paths of all the ants in the k-th iteration. In
the 14-th line of Algorithm 2, the purpose is to find the
minimal number of service cells passed by from the paths
of all the iterations. In the 16-th line of Algorithm 2, Pback is
the minimal number of service cells that need to pass from
service cell to the starting point.

Algorithm 2 The ant colony based path planning algorithm.
1: for k = 1; k ≤ K ; k = k + 1 do
2: for A = 1; A ≤ nant ; A = A+ 1 do
3: Ant A randomly selects one of non-empty service

cells to start walking;
4: for nc = 1; nc ≤ np; nc = nc + 1 do
5: Find the set of the non-empty service cells that

ant A has not passed, which is denoted by RA;
6: Calculate pki,j(A) as shown in (35);
7: Select the service cell with the highest pki,j(A) as

the next step of the path;
8: end for
9: Calculate the number of service cells passed by ant

A in the k-th iteration PkA;
10: end for
11: Pk = min(PkA);
12: Update ck+1i,j as shown in (32);
13: end for
14: P2 = min(Pk );
15: Find the nearest charging point as the starting point;
16: S = (P2 + 2× Pback )× L

n ;

The trajectories in single-UAV and multi-UAV scenarios
with Algorithm 2 are shown in Fig. 6(a) and Fig. 6(b) respec-
tively.

FIGURE 6. The trajectories of UAVs with Algorithm 2.

The summation of the length of UAVs’ trajectories in one
cycle S in multi-UAV scenario obtained with Algorithm 2 is
larger than that in single-UAV scenario, which is different
from the case with Algorithm 1. In Algorithm 2, the length of
UAVs’ trajectories is related to the distribution of sensors and
the number of UAVs. The most suitable charging point can be
selected as the starting point for each UAV automatically.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we verify the theoretical results of the num-
ber of non-empty service cells and the bounds of per-node
capacity by simulation results. Through themethod of control
variables, we study the relationship between some dependent
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variables and independent variables. The dependent variables
we studied include the number of non-empty service cells, the
per-node capacity, and the average execution time of UAVs.
The independent variables we studied include the number of
sensors, service cells and UAVs. The values of key simulation
parameters are shown in Table 1. Detailed description of
figures and analysis are given as follows.

TABLE 1. The parameters in simulation.

The theoretical results of the number of non-empty service
cells are verified by Monte Carlo simulation in Fig. 7 and
Fig. 8. According to Fig. 7, the number of non-empty ser-
vice cells is approximately equal to the number of sensors.
According to Fig. 8, the number of non-empty service cells
can hardly be affected by the number of service cells when
n is large, i.e., the probability that multiple sensors are in the
same service cell is almost zero when n is large.

FIGURE 7. The relationship between number of non-empty service cells
np and number of sensors m with n = 30.

The relationship between the per-node capacity and the
number of sensors in single-UAV and multi-UAV scenarios
are analyzed and compared in Fig. 9 and Fig. 10. The relation-
ship between the per-node capacity and the number of service
cells in single-UAV and multi-UAV scenarios are compared
and illustrated in Fig. 11 and Fig. 12. The simulation results
of the per-node capacity are obtained with Algorithm 1 and
Algorithm 2 respectively. The upper and lower bounds of the
per-node capacity are obtained from the derivation. Accord-
ing to Fig. 9, Fig. 10, Fig. 11 and Fig. 12, the simulation
results of per-node capacity with Algorithm 1 and Algo-
rithm 2 are always between the upper and lower bounds
of per-node capacity, which verifies the superiority of two
path planning algorithms over the algorithm in [30] and the
correctness of derived upper and lower bounds of per-node

FIGURE 8. The relationship between number of non-empty service cells
np and number of service cells n2 with m = 15.

FIGURE 9. The relationship between per-node capacity λs and number of
sensors m in single-UAV scenario with n = 30.

FIGURE 10. The relationship between per-node capacity λm and number
of sensors m in multi-UAV scenario with n = 30 and u = 10.

capacity. The per-node capacity obtained with Algorithm 2
are always larger than that with Algorithm 1. As shown in
Fig. 9 and Fig. 10, the per-node capacity decreases when the
number of sensors increases with a fixed number of service
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FIGURE 11. The relationship between per-node capacity λs and number
of service cells n2 in single-UAV scenario with m = 15.

FIGURE 12. The relationship between per-node capacity λm and number
of service cells n2 in multi-UAV scenario with m = 15 and u = 10.

FIGURE 13. The relationship between per-node capacity λ and number of
sensors m with Algorithm 1 with n = 30.

cells. In Fig. 11 and Fig. 12, the per-node capacity increases
as the number of service cells increases when n is small, the
per-node capacity can hardly be affected by the number of
service cells when n is large.

FIGURE 14. The relationship between per-node capacity λ and number of
sensors m with Algorithm 2 with n = 30.

FIGURE 15. The relationship between average execution time of UAVs in
one cycle Tw and number of sensors m with Algorithm 1 with n = 30.

In actual application, the service area is usually partitioned
into an appropriate number of service cells according to the
number of available UAVs and the distribution of sensors. The
length of UAVs’ trajectories will be large when the number
of service cells is not large enough, which will reduce the
per-node capacity of data collection in WSNs. Therefore, the
high value of per-node capacity can be obtained by adjusting
the value of the number of service cells.

The relationship between the per-node capacity and the
number of UAVs with Algorithm 1 and Algorithm 2 are
shown in Fig. 13 and Fig. 14. It is discovered that the per-node
capacity changes as the number of UAVs changes. The
per-node capacity is the smallest when the number of UAVs
is 2. The per-node capacity in multi-UAV scenario is smaller
than that in single-UAV scenario when the number of UAVs
is not larger than 3. We explain this phenomenon as follows.
The per-node capacity increases since multiple UAVs operate
simultaneously. The per-node capacity decreases since the
bandwidth of each UAV is reduced by half. The increment
does not compensate for the decrement when the number
of UAVs is not larger than 3. The per-node capacity in
multi-UAV scenario is larger than that in single-UAV scenario
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FIGURE 16. The relationship between average execution time of UAVs in
one cycle Tw and number of sensors m with Algorithm 2 with n = 30.

FIGURE 17. The relationship between average execution time of UAVs in
one cycle Tw and number of service cells n2 with Algorithm 1 with
m = 15.

when the number of UAVs is larger than 3, which is due to
the fact that the increment of per-node capacity exceeds the
decrement of per-node capacity. Therefore, the high value of
per-node capacity can be obtained by adjusting the number of
UAVs and bandwidth of the communication channel.

The relationship between the average execution time of
UAVs and the number of sensors with Algorithm 1 and Algo-
rithm 2 are shown in Fig. 15 and Fig. 16. The relationship
between the average execution time of UAVs and the number
of service cells with Algorithm 1 and Algorithm 2 are shown
in Fig. 17 and Fig. 18. As illustrated in Fig. 15, Fig. 16, Fig. 17
and Fig. 18, the average execution time of UAVs in one cycle
significantly decreases in multi-UAV scenario compared to
the scenario of single-UAV. The average execution time of
UAVs with Algorithm 2 is always smaller than that with
Algorithm 1. Regardless of Algorithm 1 or Algorithm 2, the
average execution time of UAVs decreases as the number
of UAVs increases. As the number of UAVs continues to
increase, the average execution time of UAVs decreases to a
certain value and does not continue to decrease. The average
execution time of UAVs increases as the number of sensors

FIGURE 18. The relationship between average execution time of UAVs in
one cycle Tw and number of service cells n2 with Algorithm 2 with
m = 15.

increases. The average execution time of UAVs is almost
unchanged as the number of service cells changes.

VI. CONCLUSION
This paper studies the capacity of UAV assisted data collec-
tion in WSNs. The per-node capacity and the average execu-
tion time of UAVs are derived in the scenarios of single-UAV
and multi-UAV. Two path planning algorithms for UAVs are
designed in the scenarios of single-UAV and multi-UAV. The
theoretical analyses are verified by the simulation results. The
simulation results reveal that Algorithm 2 performs better
than Algorithm 1. Compared to Algorithm 1, Algorithm 2
can achieve the per-node capacity closer to its theoretical
upper bound within a shorter average execution time of
UAVs in one cycle. However, Algorithm 1 has a much lower
complexity compared with Algorithm 2. A higher value of the
per-node capacity can be obtained by adjusting the number of
service cells and UAVs. The per-node capacity increases as
the number of UAVs increases. The average execution time
of UAVs in one cycle decreases significantly as the number
of UAVs increases.
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