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ABSTRACT The quick development of smart grids coupled with IoT devices has opened breaches of
security leading to cyberattacks done by attackers with different purposes. In this study, a behavior model
is proposed to investigate the risk of cyber attacks on power grids, where the utility value is determined
by subjective attack attitude and characteristics of candidate targets firstly, and then the behaviors of attack
target selection and attack resource allocation are described by the probability response and utility attenuation
model respectively based on data analysis of historical events. The simulation results on RTS79 system
indicate that the risk and the vulnerable nodes of the power grid vary with the characteristics of attack
behaviors and characteristic attributes of targets, which should be considered in the cyber security defense
dynamically.

INDEX TERMS Attack behaviors, probability response model, risk assessment, utility attenuation model,
utility value.

I. INTRODUCTION
With the quick development of Internet of Things and
communication technologies, the coverage of intelligent
devices allocated in power grids is expanding [1], [2] and the
interaction between external and internal parts of the system
is booming. Massive terminal interfaces and open protocols
opened breaches of cyber security and attracted serious
concerns [3]–[5]. Cyberattacks with different purposes and
of different classes, such as false data injection [6], [7],
GPS spoofing [8], denial-of-service (DoS) [9], attacks against
breaks [10], and etc., are one kind of the primary risks
of cyber systems. The Ukraine Blackout in Dec 2015 is
considered to be a milestone and the first known successful
cyberattack on a power grid [11]. The Venezuelan Blackout
in Mar 2019 reminds the world again that smart grids are
at severely heightened risk of cyberattacks and it is of great
significance to take recognition and precaution measures
against the risk.

The associate editor coordinating the review of this manuscript and

approving it for publication was Pietro Varilone .

There has been a number of studies on risk assessment
for cyberattacks on power systems with different models
of implementation process, intention and strategies of
cyberattacks. Topological models are most commonly used
to simulate the implementation of cyberattack in evaluation
of system risk or component vulnerability, such as Bayesian
models [10], attack graph [12], tree model [13] and limited
stochastic Petri net graph [14]. In order to investigate the
attack process in more detail, digital simulation platforms are
also employed to construct the interdependencies between
cyber and power systems [15], [16] and get some deep
insight into transmit mechanism within cyber systems and
between cyber and physical systems [17], [18]. Analysis
based on topological models or simulation platforms always
focus on implementation scheme rather than the decision
strategies of the attack and so the intention of the attacker and
other subjective factors are generally omitted. Some studies
concerning with attack intention employed game theory
and multilevel programming to model attack-and-defense
competition with optimal strategies, such as Static game
for attack probability modeling [19]–[21], Colonel Blotto
game and Stackelberg game for optimal attack resource
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allocation [22], [29], Markov game for dynamic attack
modeling [23]–[25], Tri-level programming model for vul-
nerability assessment and component protection [26]–[28].
However, the factors affecting attack decision making and
the diversity of attack intention have not been fully coved
in existing studies, primarily due to the difficulty of data
acquisition of necessary information for characterizing the
attack behaviors in detail.

Nowadays, the development of big data technologies cast
a new light on this problem to gain a more precise adjustment
of defensive scheme against cyberattacks and construct a
more secure power system. In this paper, a behavior model
is proposed to investigate the risk of cyberattacks on power
grids. Firstly, utility function is built to measure attacker’s
satisfaction, which is related with subjective attitude and
characteristics of the cyber and physical system, and the
utility value is used to reflect attackers’ behaviors, including
attack target selection and attack resource allocation. Sec-
ondly, According to the regional characteristic of attacks,
the probability response model and utility attenuation model
are proposed to analyze the attack target selection behavior
based on utility value and data analysis of historical events,
then the attack resource allocation behavior are analyzed
based on the result of selection, and the probabilities of
successful attacks are calculated based on attack-defense
efficiency analysis; With the uncertainty of the attack
capability and number of attack targets, a risk assessment
method considering the characteristics of attack behaviors is
presented finally, showing the risk distribution of the system
when confronting different attacking behaviors.

II. ATTACK ON CYBER SYSTEM
Supervisory Control and Data Acquisition (SCADA) system
is the heart of cyber system in a power grid. As shown
in Figure 1, a typical SCADA system consists of control
center local area network (LAN), multiple substation LANs
and communication links between control center and substa-
tions [10].

Hackers may attack any feasible access point of the
SCADA system to make impacts on the physical grid [10],
including:

1) Attacks on Control Center. Attackers bypass the firewall
with advanced intrusion tools and scan the hosts and services
of the network. Once obtaining the root privilege of the
application server, trip commands can be directly sent to the
IEDs or RTUs.

2) Attacks on Substation Networks. Attackers identify
IP addresses of substations by port-scanning tool and log
on routers by brute-force password attacks. After bypassing
the firewall and gaining access to the network of the
substation, IP scanning can be deployed for different user
interface intrusions to execute unauthorized operations, such
as reconfiguring parameters of field devices, manipulating
measurement data and GPS time, sending incorrect trip
commands to IEDs or RTUs.

FIGURE 1. A typical cyber architecture of the SCADA system.

3) Attacks on Communication Links Between the Control
Center and Substations. By accessing the communication
network, attackers eavesdrop messages and analyze traffic
to complete attacks. After intercepting and decoding the
messages in the communication links, attackers can replace
some actual measurement, state or control data and replay
the fabricated data into the network [12]. When false
measurements and state data are sent to the state estimation
module, the control decisions may be misguided and cause
incorrect trips or load shedding [10]. Another way to hide
events and status of the power grid is to delay/interrupt
messages from reaching their intended destination through a
DoS attack on communication network [9]. The DoS attack
can make the control center fail to predict, perceive, and
take prompt actions against sustained or imminent failures,
resulting in a significant increase of failure rates and repair
times on the power grid.

FIGURE 2. Cyber-physical architecture of the CPPS.

To simplify the analysis, a station-level LAN can be
expressed as a cyber node. Cyber nodes and control center
communicate with each other through the communication
network which is usually structured as double-star network
and the mesh network [30]. As shown in Figure 2, a physical
node in the power grid usually represents a bus in practical,
and one cyber node mappings one or more buses to
monitor/control the physical components connected to their
mapping buses [30]. Thus attacking cyber nodes is an
effective way to compromise physical components.
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III. ATTACK BEHAVIORS
Cyberattack is a two-phase process, including preparation
and implementation. In the preparation phase, attacker selects
attack targets to reach his purpose. In implementation phase,
attacker invests resources to break through targets and make
the attack successful. The attack behavior can be described
as the action of selecting n(1 ≤ n ≤ T ) targets from T
candidates and investing resources to make attack successful
on the selected targets. In this work, cyber nodes are candidate
targets, which can be represented by a candidate set E =
{et |t = 1, 2, . . . ,T }, where T is the total number of
candidates and et is the tth candidate, while the control
center can be neglected in the following analysis due to
its extremely low risk of being broken through directly by
cyberattacks [10].

As a behavioral subject with different attitudes, attacker
always makes decisions depending on personal satisfaction
or preference. Measurement of personal satisfaction or
preference is one of the key issues in the study of attack
behavior. According to the theory of utilitarianism and
decision [31], [32], the criteria for decision among alterna-
tives is based on numerical representation of satisfaction or
preference of the decision maker, and utility is a commonly
accepted concept to measure the satisfaction or preference.
Typically, each alternative is assessed for desirability on
a number of scored criteria and utility function is used
as a transformation of alternative’s performance measured
in natural units into an equivalent value of satisfaction or
preference of the decision-maker [32]. And then utility value,
containing the attacker’s subjective attitude, is used to analyze
the behavior of target selection and resource allocation on the
candidate targets.

A. UTILITY VALUES OF TARGETS
Utility function has been widely used as an effective method
in the field of economics, finance, management and artificial
intelligence, etc., such as modeling of consumer’s preference
ordering over a choice set, or investor’s satisfaction over
different portfolios. In the field of artificial intelligence,
different utility functions are used to convey the value of
various outcomes to intelligent agents. However, expression
of utility function is a complex problem. It can be treated
as either cardinal or ordinal, or have a more precise
representation through big data analysis.

Since the utility value of each alternative attacking
decision is assessed according to multiple scored criteria and
subjective attitudes, scoring criteria in this paper, defined
as characteristic attribute, can be used to reflect certain
performances of the target candidate, and the attacker’s
attitude toward the characteristic attributes is defined as
preference.

1) CHARACTERISTIC ATTRIBUTES
Generally, there are three types of purposes to launch
cyberattacks on power grid: Power Destruction, Political

Intimidation and Difficulty Aversion [19], [21]. Different
purposes make attackers focus on different characteris-
tic attributes of the candidate targets. Attackers measure
candidate target’s characteristic attributes, including Attack
Complexity, Topology Relationship and Influence of Public
Opinion, and makes decision in favor of accomplishing
his purpose. The above attributes can be divided into two
categories according to their role in achieving expected
effect: 1) Benefit Attribute, having positive impact on the
attack, and being more beneficial with higher value. 2) Cost
Attribute, having negative impact on the attack, and being less
acceptable with higher value.

i) Attack Complexity, a cost attribute, refers to the
degree of difficulty in breaking through the candidate target
successfully. Given limited attack resources, the stronger the
defense, the harder the attack. From the view of difficulty
aversion, Lower difficulty of candidate target is more
attractive to the attacker. The attribute value can be quantified
as the defensive effect by exponential function [35]:

xdifft = 1− eαt s
d
t (1.1)

where et is the amount of defense resources allocated on
the tth candidate target Sai , which can be quantized hierar-
chically [39]–[41] or monetarily [19]. αt = − ln(DFt )/DCt
is the defense conversion coefficient, where DCt is the
defender’s elimination cost to reduce vulnerability and
increase defensive strength of Sai , DFt ∈ (0, 1] is the
defender’s elimination fraction, defined as the percentage of
availability for elimination cost allocated on Sai .

ii) Topology Relationship, a beneficial attribute, refers to
the closeness of the relationships between one candidate
target and the others. Based on the communication network
of the cyber nodes, the more the associated nodes, the more
critical the candidate. From the view of power destruction,
higher topology criticality is more attractive to the attacker.
The attribute value can be quantified as the betweenness for
the ith node [30]:

x topolt =

T∑
i

T∑
j

σi,j(t)
σi,j

(1.2)

where σi,j(t) is the number of shortest paths between nodes i
and j through node t and σi,j is the total number of shortest
paths between nodes i and j.

iii) Influence of Public Opinion, a beneficial attribute,
refers to the influencing degree of power outage or insuffi-
cient power supply on politics, economy, and social activities
in a specific area due to an attack. From the view of political
intimidation, the greater influential, the more attractive. The
influence of public opinion can be quantified in terms of
the economic or social value of the load loss, which can be
determined as the function of load level and social impact
coefficient [19]:

xsentit = µtDt (1.3)
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where Dt is the load of the physical node mapping with Sai ,
µt is the social impact coefficient of Sai , whose value can
reference operation manual [38] shown in TABLE 1.

TABLE 1. µt in different power supply periods.

Since candidate targets are part of the CPPS, the char-
acteristic attributes can reflect background information of
the power system which can be considered as constant in a
short-term perspective, while characteristic attribute values
can also be open to change in a long-term perspective.

2) ATTACK PREFERENCES
Commonly, those candidate targets with characteristic
attributes matching the attacking purpose better will be
more preferable to the attacker, which means that the same
candidate has different utilities for attackers due to different
preferences. Generally, attackers can be divided into three
types according to different purposes [19], [21]:

i) Terror attackers. Terror attackers are organizations or
individuals who use violent means to disrupt social security
and stability, and have obvious destructive intentions and
political purposes, who may sometimes carry out political
intimidation in a certain area at all costs. As to preferences,
Attack Complexity is not the key attribute claiming their
attention. They focus more on the Topology Relationship and
the Influence of Public Opinion.

ii) Efficient attackers. This type of attackers aims to destroy
the power grid but has limited resources and has to aim at the
targets being relatively important and having weaker cyber
defense to obtain high efficiency with limited resources. As to
preferences, efficient attackers focus more on the Topology
Relationship and the Attack Complexity. In the efficient
attack, the target on important position but with poor or
medium defense will be attacked.

iii) Ordinary attackers. There are also such attackers who
have poor attack skills and fewer resources. In the ordinary
attack, attacker seeks and hack on vulnerabilities of the cyber
system without detail information about the physical system.
As to preferences, ordinary attackers focus on the Attack
Complexity.

When measuring the utility of candidate targets, the char-
acteristic attribute will be transformed value from their
natural units into an equivalent value of attacker’s satisfaction
according to their preference attitudes. If one of the attributes
is preferred by the attacker, it will be scored higher, or it
will be scored lower. Thus, the attack preferences can be
taken as the form of weights for attribute value in the utility
measurement.

3) UTILITY VALUE CALCULATION
Since utility is calculated according to multiple attributes,
a multi-attribute utility function is needed, which is an

extension conception of Utility theory developed to help
decision-makers assign utility values, considering their
decision-making preferences, and combine the assign-
ments to obtain overall utility measures. There are dif-
ferent multi-attribute utility functions suitable for different
decision-making problems, whose axioms and additive
independence have been proved in some articles [31].
To construct an effective framework for multi-factor behavior
modeling of cyber-attack, an implementable and practical
utility function, which have been applied in other research
topics and proved to be effective [32], is adopted here as
expressed in equation (1.4).

ut =
∑K

k=1
wkvt,k (1.4)

vt,k =


xt,k − xmin

k

xmax
k − xmin

k

, xt,k is Benefit Attribute value

xmax
k − xt,k
xmax
k − xmin

k

, xt,k is Cost Attribute value
(1.5)

where ut is the utility value of et , K is the number of
characteristic attributes for each candidate target, wk is the
utility weight, which can be calculated by the Analytic
Hierarchy Process, representing the degree of preference for
the kth characteristic attribute. xt,k is the quantized value
of the kth characteristic attribute for et , and vt,k is the
normalization value of xt,k . xmax

k and xmin
k are the maximum

and the minimum values of the kth attribute respectively.

B. SELECTION OF ATTACK TARGETS
Historical cases of cyber-attacks show that, most of the
multi-target attacks aim at targets inside some specific area
and with relatively close connection between each other,
which implies that the targets out of some specific area is less
attractive to the attacker. However, even if the attacker aims
at some specific zone with preference, the target selection
within the zone is still rather uncertain, which means that
it cannot be modeled precisely by mechanism methods and
the numerical-simulation model based on data analysis of
historical events is more preferable. Therefore, considering
that attackers select targets according to the utility value and
carry out multi-target attacks around some center point of
the attack area, the behavior of multi-target selection can
be described as the selection of one primary target from the
candidate target set E at the first step and the selection of
other associated attack targets according to their connection
relationships at the second step.

Based on utility value, the Logit model and the utility
attenuation model are built to analyze the probability of
a candidate being selected as the primary target and the
selection of the other targets.

1) LOGIT MODEL AND PROBABILITY RESPONSE
Here, probabilistic model is built for target selection from a
strategic viewpoint. Logit model, having a firm theoretical
foundation in utility theory, is a common probabilistic
model to investigate the decision behaviors of humans [33].

148334 VOLUME 8, 2020



B. Chen et al.: Risk Assessment of Cyber Attacks on Power Grids Considering the Characteristics of Attack Behaviors

The probability of et being selected as a primary attack target
can be determined based on the utility value and the Logit
model, and is denoted as the response probability.

pRt =
eλut∑
et∈E e

λut
(2.1)

where λ(λ ≥ 0) is the attacker’s response sensitivity
to the utility value of candidate target. A high value of
λ means a significant inclination of primary attack target
selection, where the attacker has radical choice behavior,
and is more sensitive to the utility difference between the
candidate targets and more inclined to choose the candidate
target with higher utility value. A low value of λ means
an unclear inclination of primary attack target selection,
where attacker chooses the primary attack target with great
caution. All candidate targets have the same response
probability when λ is zero. Application of Logit model in
behavior studies has been investigated in some articles, such
as [33], where λ can be obtained by statistical analysis of
history data. In this paper, given the utility values of target
sets u and historical records of attack targets, where the
records are approximate to be independent and have the
same response probability, λ can be determined based on
Maximum Likelihood Estimation (MLE):

_

λ = argmax
λ

lnL(λ|u) (2.2)

L(λ|u) =
∏N

j=1
pRtj (λ|u) (2.3)

lnL(λ|u) =
∑N

j=1
ln
[
pRtj (λ|u)

]
(2.4)

where L(λ|u) is the MLE function for λ, N is the number
of historical records of the attacker’s primary attack target
choices, tj represents the scene that the et is chosen as primary
attack target in the jth historical record, and pRtj (λ|u) is the
probability of et being selected as primary attack target in the
jth historical record. Let Nt be the number of the cases that et
was selected as primary attack target. Then we have:

lnL(λ|u) =
∑T

t=1
Nt ln

[
pRt (λ|u)

]
(2.5)

=

∑T

t=1
Nt ln

[
eλut∑T
k=1 e

λuk

]
(2.6)

= λ
∑T

t=1
Ntut − N ln

(∑T

k=1
eλuk

)
(2.7)

Information security technologies, such as Security Infor-
mation and Event Management, Honeypots, Big DataMining
and etc., are under study and have made meaningful
progresses in the cyber security area. Based on the wide
application of these technologies in the future on cyber attack
monitoring, tracing and analyzing, relevant data analysis of
historical records can be achieved more easily and more
accurately.

2) UTILITY ATTENUATION MODEL
When the primary target is locked, attacker will undergo the
second selection process to choose other attack targets mostly
according to the associated relationship of candidates, which
can be measured by adjacent topology, where the attack
range is denoted by topology distance in cyberspace. As the
targets out of the range are less attractive to the attacker,
the variation of satisfaction with the increase of distance from
primary target is described as a decrease of utility attenuation
of the candidate. In other word, the utility value of each
candidate changes with its adjacent topology relationship and
its topology distance to the primary target.

When the bth candidate target is chosen as the primary
attack target, denoted as eb, the utility value of et changes
from ut to ub,t . To make it easy to distinguish, we name ut
the former utility value of et , and name ub,t the post utility
value of et on eb.

FIGURE 3. Schematic diagram of topological distance.

Figure 3 shows an example of topology relationship of
candidate targets (i.e. cyber nodes), where the topology
connection between two targets is a communication link
between cyber nodes. The farther from the primary target,
the less attractive to the attacker. Defined the topology
distance db,t (from eb to et ) as the number of links contained
in the shortest topology path from eb to et , the utility value
ub,t is calculated as

ub,t = εb,tut (3.1)

εb,t = e−db,t (3.2)

where εb,t is the distance attenuation coefficient. Obviously,
when b is equal to t , db,t is 0 and εb,t is 1, the utility value
of the primary target doesn’t change in the second selection
process. Although, there may be some other factors having
influence on the second target selection process, here are
the considerations for taking topology relationship as the
major factor: 1) Since numerical model based on data analysis
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of historical events is more preferable for target selection
simulation, the model with single parameter, number of
communication links due to adjacent topology relationship,
can be easily obtained from statistics of historical attacks;
2) The number, rather than the length, of communication
link is considered due to the distance in cyberspace is
different from that in the physical space, attackers can
implement remote attack without geographical restrictions,
and consequently without significant difference in the cost,
attackers care more about whether there is a cyber path to
the target than the cost due to the distance; 3) the simplified
representation can also reflect the characteristic that attacker
aims at targets inside specific area, and pays less attention to
those targets far away from the primary one.

When attackers attempt to choose n(1 ≤ n ≤ T ) targets
from T candidates, once the primary target eb is decided,
the other T − 1 candidates will be re-ranked in order of their
ub,t and the top n− 1 ones will be selected out.

C. NUMBER OF ATTACK TARGETS
The number of attack targets is limited by attack capabilities,
generally measured by attack resources [20]–[22], including
personnel or hackers assigned to the attack and technological
resources, such as advanced tools or malwares [22], [24].
Since the total amount of resources Sa is usually random
in natural, the number of attack targets n is also a random
variable associated with Sa. The probability distributions
of n and Sa can be obtained by historical event analysis
and statistics. Considering n with an uneven probability
distribution, the probability of n targets within E being
selected can be simulated based on Poisson distribution
model.

pNn =
ξn

n!
e−ξ , n = 1, 2, . . . , nmax (4.1)

ξ =
Sa

Sbase
(4.2)

where ξ is equal to the expected value of n and also to
its variance, Sbase is the basic amount of attack resources
required to attack a target successfully, nmax(1 ≤ nmax ≤ T )
is the maximum expected number of attack targets. Sbase and
nmax can be obtained by post evaluation.
Suppose that Sa obeys Normal distribution N (µ, σ 2),

where µ and σ are parameters related to the characteristics
of attackers and µ represents the average amount of attack
resources to perform a task. The empirical rule of Normal
distribution shows that 99% of the data will be distributed
within interval [µ − 3σ,µ + 3σ ]. In order to concentrate
on the modeling process and simplify the analysis, as shown
in TABLE 2, an extended interval [µ − 3.5σ,µ + 3.5σ ]
is discretized into seven subintervals, each of which is
represented by a median value, as µ − 3σ , µ − 2σ , µ − σ ,
µ, µ + σ , µ + 2σ , µ + 3σ , respectively. The ith possible
value of resource amount is denoted as Sai , and its probability
is pAi .

TABLE 2. The seven discretization representative values and
corresponding probabilities for Sa.

D. RESOURCE ALLOCATION AND PROBABILITY OF
SUCCESSFUL ATTACK
When a candidate target is selected, attacker will allocate
resources to ensure success. Meanwhile, defender will
launch defense resources against the attack, such as security
personnel, firewall, encryption device, antivirus software and
intrusion detection system and so on. From the viewpoint
of attack-defense competition, the success probability of an
attack is decided by the competition between the attacker and
the defender, so the resources invested in the competition
by the two adversaries can be used to model the success
probability [34], [35]. Consequently, when the tth candidate
et is selected as an attack target, the success probability
of this attack can be calculated based on an exponential
function [34], [35]:

pSt = pat (1− p
d
t ) (5.1)

pat = 1− e−βt s
a
t (5.2)

pdt = 1− e−αt s
d
t (5.3)

where pSt is the success probability of attack on et , sat is
the amount of attack resources allocated on et , sdt is the
amount of defense resources allocated on et , pat and p

d
t are

the attack efficiency and the defense efficiency of attack on
et respectively, βt and αt are the attack conversion coefficient
and the defense conversion coefficient, respectively. βt can
be calculated as βt = − ln(1 − AFt )/ACt [35], where ACt
is the minimum attack resources to increase the probability
of destruction of et , AFt ∈ (0, 1] is the fraction of attack
resources assigned on et to ACt .

Considering that attackers allocate resources according
to utility value ub,t , when primary target ebis locked, sat is
calculated as

sat =
Saeλub,t∑
et∈Ea eλub,t

(6)

where Ea is the set of attack targets. Since attack targets
are determined by attack capability and attack preference,
the attack resources allocation and the success probability
alters in different scenarios.
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IV. RISK ASSESSMENT MODEL
A. SCENARIO PROBABILITY
Due to the uncertainty of attack resources and target selection,
there may be multiple attack scenarios. Given an attack
scenario Qt,i,n with selected primary target et , total attack
target number n, and attack resources Sai , the occurrence
probability of Qt,i,n is calculated as

pQt,i,n = pRt p
A
i p

N
n (7)

There is attack target set Ea
t,i,n for Qt,i,n. Obviously, whether

an attack on a target succeeds or not has uncertainty, so are
the schemes to be successful. It is assumed that there are M
independent successful attack schemes forQt,i,n, and themth
(m = 1, 2, . . . ,M ) successful scheme is denoted by Zt,i,n,m,
the set including targets attacked successfully in Zt,i,n,m is
Ea
t,i,n,m(E

a
t,i,n,m ⊂ Ea

t,i,n). The occurrence probability of
Zt,i,n,m is

pZt,i,n,m =
∏

et∈Ea
t,i,n,m

pSt
∏

et∈Ea
t,i,n,et /∈E

a
t,i,n,m

(1− pSt ) (8)

B. ATTACK CONSEQUENCE
Once a target is accessible, attacker will carry out his
implementation plan by one or more technical methods, such
as sending incorrect tripping commands, injecting false data,
delaying or interrupting the transmittal messages and so on.
The resulting consequences of cyberattacks on power system
can be analyzed by simulation modeling of power system,
where Optimal Power Flow model is widely adopted and the
consequences can be quantified by the sum of the load loss
Ldirect directly caused by attacks and the load shedding Lshed

caused by operation constraints of the power grid [36].

L = Ldirect + Lshed (9.1)

where Lshed can be calculated by the optimal load shedding
model as follow.

Lshed = min
∑Nb

i=1
PC,i (9.2)

s.t. PL = BLAB−1(PG − PD + PC) (9.3)∑Nb

k=1
PG,k =

∑Nb

i=1
(PD,i − PC,i) (9.4)

− P̄L,j ≤ PL,j ≤ P̄L,j (9.5)

PG,k ≤ PG,k ≤ P̄G,k (9.6)

0 ≤ PC,i ≤ PD,i (9.7)

where Nb is the bus number of power grid, PL is the power
flow vector of transmission lines, PG is the vector of active
power injections to the buses, PD is the vector of load
demands at buses, PC is the vector of load shedding at buses,
BL is diagonal matrix of the admittance of transmission
lines, A is the incidence matrix, B is the admittance matrix.
Equation (9.2) is the objective function. Equation (9.3) and
(9.4) are DC model of power flow equation. The capacity
limits of transmission lines and generators are given in
constraint (9.5) and (9.6), respectively. Constraint (9.7)
guarantees that the load shedding is less than or equal to load
demand.

C. DEFINITION OF RISK INDEX
In risk assessment, risk index of a scenario is usually
expressed as the product of probability and consequence of
the scenario and risk of a system is the sum of the risks
of all scenarios. Given the probabilities of attack behaviors
and related consequences, the risk of attack scenario Qt,i,n is
calculated as

rt,i,n =
∑Mt,i,n

m=1
pZt,i,n,mLt,i,n,m (10)

where Lt,i,n,m is the consequence of Zt,i,n,m. Discretizing the
attack resources into 7 levels and scoring them, assuming a
maximum number of attack targets nmax, the risk of the tth
target scenario with primary attack target et can be calculated
as

Rt =
∑7

i=1

∑nmax

n=1
pQt,i,nrt,i,n (11)

The total risk of one type of attack behaviors on the power
grid is accumulated.

R =
∑T

t=1
Rt (12)

D. RISK ASSESSMENT PROCESS
The Non-sequential Monte Carlo method is used here to
generate attack scenarios, and the risk assessment process is
shown in Figure 4. The main steps are described as follows:

1) Input parameters including the set of candidate targets,
values of characteristic attribute, and grid parameters, etc. Let
i = 1, n = 1, t = 1.
2) Let et be the primary attack target and calculate pRt .
3) Obtain Sai and calculate pAi .
4) Obtain n attack targets to constitute Ea and calculate pNn .
5) Calculate the success probability of each target

within Ea.
6) Select a successful scheme randomly based on the Non-

sequential Monte Carlo simulation.
7) Calculate the consequence of the successful scheme by

the optimal load shedding model and update rt,i,n.
8) If the stopping criterion of rt,i,n is satisfied, go to step

9); otherwise, return to step 6).
9) Update Rt according to formula (11).
10) Let n = n+ 1, if n is greater than nmax, go to step 11);

otherwise, return to step 4).
11) Let i = i + 1, if i is greater than 7, go to step 12);

otherwise, Let n = 1 and return to step 3).
12) Update R according to formula (12).
13) Let t = t + 1, if t is greater than T , go to step 14);

otherwise, Let n = 1, i = 1 and return to step 2).
14) Output risk assessment results.

E. VULNERABILITY CALCULATION
After evaluating the influence of a certain kind of attackers
on the power grid, we take kinds of attackers into account
and the vulnerability evaluation is one of the key methods
to identify which candidate targets are more easy-access.
In formulas (13.1)-(13.3), the vulnerability of target et is
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FIGURE 4. Risk assessment process.

defined as the expected success probability of all the attacks
on the target.

Vt =
1
Ns

∑Ns

i=1
PSt,i (13.1)

PSt,i =

{
0, It,i = 0(
1− e−βt s

a
t,i

) (
e−αt s

a
t
)
, It,i = 1

(13.2)

sat,i =
∑B

b=1
sat,i,b (13.3)

where Ns is the number of attack scenarios on et , B is the
number of attackers, It,i is a binary variable. When the tth
candidate target is selected in the ith scenario, It,i is 1,
otherwise It,i is 0. sat,i,b is the attack resource that the bth
attacker allocate to the tth candidate target in the ith scenario.
Non-sequential Monte Carlo method is also applied here to
generate attack scenarios and the main steps of vulnerability
index calculation are as follows:

1) Sampling the attackers for one scenario based on the
probability of different types of attackers.

2) Sampling attack resources based on the Normal
distribution of attack resources in one task.

3) Sampling number of attack targets based on the Poisson
distribution of target number in one task.

4) Sampling primary attack target based on response
probability.

5) Determining other targets based on the second target
selection model.

6) Determining attack resources allocation.
7) Calculating success probability of attacks on each target

according formulas (13.1)-(13.3).
8) Repeating step 1)-7) until satisfying terminating crite-

rion.
It should be noted that one simulated scenario is generated

after executing step 1) – 6), and the probability distribution of
each type of attackers can be acknowledged from historical
statistics.

The risk of cyberattack on the certain cyber node depends
both on its vulnerability and on the consequence once it is
intruded, which is expressed as

Wt = VtLt (14)

where Lt is the consequence when the tth candidate target is
intruded successfully. The CPPS has weak resilience on the
tth candidate target whenWt has high value.

V. NUMERICAL SIMULATIONS
Numerical simulations are carried out to show the analyzing
results by the proposed methods and show the influences on
risk by different characteristics attack behaviors. Generally,
it is not easy for attackers to make actual damage on physical
system by injecting false measurement data or interrupting
transmittal messages depends on limited knowledge of the
operation parameters and operation status of the power grid,
while sending incorrect control commands to trip physical
components can damage the power grid directly. So it is
assumed that once an attack on certain cyber node succeeds,
the correlated physical components (such as transformers,
generators and transmission lines) connected to its mapping
bus would be tripped by incorrect commands [10].

Simulations are carried out on the IEEERTS79 system [37]
with an 18-node mesh cyber network [17], [30] as shown
in Figure 5. There are 18 candidate targets and it is assumed
that the maximum number of attack targets in one attack
is three i.e. nmax = 3. Besides, we refer to the behavior
characteristics of the three types of attackers in practice and
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FIGURE 5. IEEE-RTS79 system with cyber topology.

use analytic hierarchy process to obtain their corresponding
utility weight parameters as shown in TABLE 3 which will
be used to show how different attack behaviors influence the
risk and vulnerability assessment.

TABLE 3. Utility weights of different types of attackers.

A. RESPONSE PROBABILITY AND SCENARIO RISK
Assume that Sbase is 40,µ is 5, σ is 1, and λ is 10, all of which
are unit values, the normalization values of characteristic
attributes and the response probabilities of candidate targets
being selected as the primary attack target by different types
of attacks are shown in Figure 6, where e1, e13, e14, e17 have
weaker defense and lower attack complexity while e10 has the
highest attack complexity. e11, e6, e5, e4, e12 are in critical
topology position and e3, e5, e8, e10, e18 have great public
opinion influence. Since different types of attackers have
different preferences for target attributes, the utility value
of the same candidate target varies under different attacks,
so does the response probability. Figure 7 depicts the risk of
scenario with different cyber nodes selected as the primary
attack target under different types of attacks.

FIGURE 6. Behavioral response to targets’ characteristic attributes.
(a) normalization values of characteristic attributes; (b) response
probabilities of the primary attack targets for three types of attacks.

As shown in Figure 6, terror attackers focus more on
the topology relationship attribute and influence of public
opinion attribute, and tend to choose target in critical
topology position or having great public opinion influence
as the primary attack target, such as e5, e11 and e18, the
response probabilities of which are higher than the other
targets. Usually, these targets have significant impact on load
supplying too. So it can be seen from Figure 7 (a) that, when
these targets mentioned above are chosen as primary target,
the risks are higher.

As to efficient attacks, attackers focus more on the attack
complexity and the topology relationship of candidate targets,
and incline to launch attacks on targets with low attack
complexity or in critical topology position, such as e11 (in
the most critical topology position) and e1 (with the lowest
attack complexity). Although efficient attacks will not cause
extreme serious risk scenarios like terror attacks in general,
they have higher success rate in some cases. Comparing
(a) and (b) in Figure 7, this risk distribution for efficient
attacks are more even and affected area is wider.

As to ordinary attacks, attackers pay less attention to
the topology relationship and influence of public opinion
of candidates, but tend to select targets with low attack
complexity. Since the attack complexities of e1, e13, e14 are
far lower than the other targets, as shown in Figure 6, where
e1 is the one with lowest attack complexity and the highest
response probability, ordinary attackers will more likely to
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FIGURE 7. Risk of target scenario under different types of attacks. (a) terror attacks; (b) efficient attacks; (c) ordinary attacks.

launch attacks on these targets with weaker defense and cause
higher risk on them as observed in Figure 7 (c).

B. SYSTEM RISK
Assuming that µ ∈ [6, 12], λ ∈ [20, 80], comparison
of system risks caused by different types of attackers with
different attack resources, response sensitivities is depicted in
Figure 8, and given characteristic attribute values in Figure 6
are. It is found that, in either case, risk index increases with
attack resources, and risk of terror attack or efficient attack is
much higher than that of ordinary attacks. The reason is that
terror attackers tend to launch attacks on targets in critical
topology position or with great public opinion influence, and
efficient attackers favor to allocate attack resources more
effectively, while weak-defense targets that ordinary attackers
mostly concern are comparatively of less importance in the
system.

It can be also observed that, the risk of terror attack or
ordinary attack seems unchanged with λ, while the risk of
efficient attack increases with λ less than 60, and holds
constant with λ greater than 60. This is because of the higher
value of λ implying the higher likelihood of allocating attack
resources to the targets with high utility values. Due to the
marginal effect of attack resource, unit resource will bring
fewer attack efficiency on target when the amount of attack
resource assigned to the target increases continuously, which
results in a convergence value of the probability of successful
attacks.

The targets e5, e11 and e18, in more critical topology
position and having greater public opinion influence have
high utilities to terror attackers; targets e1, e13 and e14,
with lower attack complexity have high utilities to ordinary
attackers, the amount of attack resource assigned to these
targets increase significantly with λ, while the scenario

probability and scenario risk will not vary obviously due
to the marginal effect on attack resource. However, there
are not great differences between the targets’ utilities during
efficient attacks, and attack resources are not concentrated
on several targets so the marginal effect of attack resource
is not obviously. Thus, when the amount of attack resource
assigned to preferable targets increase significantly with λ,
the scenario probability and scenario risk will increase vary
obviously during efficient attacks.

C. VULNERABILITY OF TARGET
Assuming that Sbase is 40, µ is 5, σ is 1, λ = 10, and
probability of each type of attack is 0.05, all of which are unit
values, the target vulnerabilities for different types of attacks
are shown in Figure 9. The vulnerable point distributions
are totally different for different attack behaviors. Overall,
the candidate target with weaker defense (such as e1, e13, e14)
is vulnerable, but targets with stronger defense may be more
vulnerable than those with weaker defense in certain attack
scenario, such as e1 and e5 in terror attack scenario, for it
mostly depends on attack preferences.

Moreover, targets’ characteristic attribute values as part
of the utility definition also have influence on vulnerability
index. For example, if Public Opinion attribute and Attack
Complexity attribute of e5 decrease while those of e13
and e14 increase due to social or economic activity or
defensive system rearrangement, named as comparative case
in Figure 9, terror attackers will shift their attention from
e5 to e13 and e14, while efficient attackers will focus on
e5 instead, and ordinary attackers will pay more attention
to e1 due to the decrease of defensive weakness of other
candidates. As a result, e13 and e14 are vulnerable for
terror attacks but relatively reliable for efficient attacks and
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FIGURE 8. Risk of power system under different types of attacks. (a) terror attacks; (b) efficient attacks; (c) ordinary attacks.

FIGURE 9. Vulnerability distribution for different types of attacks.
(a) terror attack; (b) efficient attack; (c) ordinary attack; (d) terror attack
for comparative case; (e) efficient attack for comparative case;
(f) ordinary attack for comparative case.

ordinary attacks, while e5 becomes more vulnerable when
encountering efficient attacks.

In general, comparing the three types of attacks, terror
attacks have the least probability but the highest resources;
while ordinary attacks have the least resources but the
highest probability. To observe the combined effects of
different attack behaviors, Figure 10 depicts the comparison
of consequence, vulnerability and risk of different candidate
targets superposing all kinds of attacks. Assume that λ is
10, the probabilities of terror attacks, efficient attacks and
ordinary attacks are 0.02, 0.04, 0.05, and the average amounts
of attack resources per unit are 12, 9 and 5, respectively, It can
be seen that, e1, e14, and e13 with rather high vulnerability
are the major weaknesses of the system. Compared the
vulnerability distribution for combined attacks with those for
single type of attacks in Figure 9 (a) (b) (c), the ordinary
attacks and efficient attacks obviously play the decisive role.
The consequence of primary attacks on e10 is the most
serious, then e5 and e11, however, cyberattacks on e5, e11
have higher risk to the system than that on e10 since the

FIGURE 10. Vulnerability and risk distribution considering combined
effects of different attack behaviors. (a) consequence ranking; (b
vulnerability distribution; (c) risk distribution.

vulnerability of the former two points are much higher than
that of the latter. Similarly, attacks on e1, e14 with lower
consequence have higher risk to the system due to their high
vulnerability. These points mentioned above deserve special
attention to take precautions against the risk.

D. MODEL COMPARISON
To further illustrate the significance of considering attack
behaviors on the risk and vulnerability assessment, we bench-
mark our model against the model without distinction of
attack behaviors proposed in [29].

Given the total amount of attack resources as 5 units and
nmax = 3, the resource allocation scheme of [29] determined
by optimal attack strategies is shown in TABLE 4.

Assume that λ is 10, the probabilities of terror attacks,
efficient attacks and ordinary attacks are 0.02, 0.04, 0.05, and
the total amounts of attack resources are 5 for each attacker,
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TABLE 4. The resource allocation scheme of [29].

calculate the risk considering combined effects of different
attack behaviors. On the other hand, replace the all three types
of attack behaviors above with behavior proposed in [29], and
calculate the risk indexwithout distinction of attack behaviors
for comparison under the same calculation conditions. The
comparison of risk indices based on the above two models is
shown in TABLE 5.

TABLE 5. Comparison of risk indices based on different models.

FIGURE 11. Vulnerability distribution (a) based on model without
distinction of attack behaviors; (b) considering combined effects of
different attack behaviors.

As shown in TABLE 5, the risk based on our model
is lower than the one based on the model in [29]. This
is because different behaviors rather than the only optimal
attack behaviors are considered in our model. Comparing
(a) and (b) in Figure 11, e7, e8, e17, e18 are the weaknesses
according to the optimal attack behaviors in [29] while
there are more other weaknesses under different behaviors
in (b). The optimal attack behaviors are always considered
to evaluate the risk in the worst-case scenario, but it cannot
recognize the varied vulnerabilities under different attack
behaviors. In fact, it is hard for attackers to obtain enough
expertise and information of the power system to implement
the optimal attack strategy. Attackers are most likely to
carry out attack according to their preferences and available
characteristic attributes of the system, which make the
weakness vary. Thus, considering characteristic and diversity
of attack behavior is significant for risk and vulnerability
assessment.

VI. CONCLUSION
In this paper, a behavior model is proposed to investigate the
risk of cyberattacks on power grids, where the utility value
and utility attenuation model are adopted to describe different
subjective attack attitudes and characteristics of candidate
targets. Simulation results based on IEEE RTS79 system
illustrate that: a) The risk of being invaded through specific
cyber node is totally different when suffering different
kinds of attackers, which means that the weak points of
the cyber-physical power system will change with the time
since different type of attack behaviors surges obviously
during different periods, and this will help to identify the
vulnerability of the system more precisely and coordinate
defense measurements more effectively. b) The parameters
of behavior modeling have certain impact on the evaluated
risk indices of the system. The parameters are supported
by big data analysis on cyber-attack monitoring, tracing and
analyzing, which is now deeply concerned and making con-
tinuous progresses in the cyber security area. However, due
to the constraint of practical data source, the model adopted
here may not be a precise one but just an implementable
one with lower precise. With the development and industrial
application of big data technology, more accurate models
can be constructed in the future work and get better results
in the risk assessment of cyberattacks. Besides, coordinated
cyber-attacks and complicated physical failure modes, such
as cascading outages, have not been considered in this work,
which need to be further studied in the future.
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