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ABSTRACT In order to improve classification performance and operating efficiency of the hash algorithm,
this paper proposes a novel hash algorithm that combines three-dimensional global features and local energy
features. During the stage of three-dimensional features extraction, the image is firstly compressed by SVD
decomposition to form a secondary image. Then the statistical features of the secondary image at the three-
dimensional visual angle are extracted as the global features. Finally, the global feature hash is generated by
using the relationship between the statistical features of the image layers from different three-dimensional
visual angles. In the energy feature extraction stage, the luminance image is divided into blocks, and then the
energy value of each image sub-block is obtained. The multi-directional energy change features are taken
as the local features of the image. Subsequent experimental results prove the effectiveness of the proposed
algorithm. The algorithm not only has good robustness to the conventional content-preserving operations,
but also achieves a good balance between discrimination capability and robustness. In addition, compared
with several state-of-the-art schemes, this algorithm has the best ROC curve, the shortest running time and
the best local tamper detection ability.

INDEX TERMS Image hashing, image energy, three-dimensional global features, tampered detection

I. INTRODUCTION

DUE to the interconnected network environment and the
rapid development of free image editing software, the

editing and dissemination of digital images have become very
easy, which inevitably includes malicious editing and illegal
transmission, such as copying and editing the original image
for commercial profit; Spreading maliciously tampered im-
ages to damage the reputation of organizations or individuals,
so image authentication and image retrieval become more
and more important. Image hashing is a method of converting
human visual perception of images into short characters
for representation. Short characters do not change with the
specific data representation of the image, and the required
storage space is small, therefore, image hashing has been
widely used in image retrieval and content authentication.
The design principle of image hashing is mainly to be robust
against unintentional distortion caused by content-preserving
operations and geometric distortions, to be sensitive to mali-
cious tampering to image content, and have a certain degree
of security. The performance of the image hashing algorithm

depends largely on the method of extracting image features,
so the hash algorithm is divided into the following four cate-
gories according to the extraction method of image features.

A. BASED ON INVARIANT FEATURE
TRANSFORMATION
The hash algorithm based on invariant feature transformation
mainly uses the frequency coefficients of the image in the
transform domain to be robust to one or more attack oper-
ations. Ouyang et al. [1] utilized the amplitude correlation
of the low-frequency quaternion discrete Fourier transform
(QDFT) coefficients of the secondary image obtained by
polar coordinate transformation to construct hash sequence.
This algorithm can better resist rotation attacks. In scheme,
Qin et al. [2] performed Weber local binary patterns (W-
LBP) operation on the low-frequency sub-blocks obtained by
discrete wavelet transform (DWT) transformation to extract
local texture features, and utilized discrete cosine transform
(DCT) transform for the color angle matrix to extract the
color features. The texture and color features are combined
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to generate hash sequence. Tang et al. [3] utilized the phase
spectrum of Fourier transform (PFT) visual model for the lu-
minance Y component to generate visual saliency maps, ex-
tracted low-frequency characteristics from the visual saliency
maps transformed by the dual-tree complex wavelet trans-
form. The algorithm has good rotation robustness. Qin et al.
[4] performed DCT transformation on the image blocks con-
taining rich edge information, and the coefficient features and
position information were processed by principal component
analysis (PCA) dimensionality reduction to generate hash.
Vadlamudi et al. [5] performed two-dimensional DWT de-
composition on overlapping blocks containing feature points,
and used the row average of DWT approximation coefficients
to generate hash sequence. In scheme [6], Tang et al. applied
discrete Fourier transform (DFT) to each row of the image
processed by log-polar transformation (LPT), and used the
amplitude of the DFT coefficient to construct a rotation-
resistant feature matrix, and finally generated hash sequence
by multidimensional scale decomposition (MDS). Lei et al.
[7] first calculated the invariant moment of the image in the
Radon transform domain, and then constructed the hash using
the magnitude of the DFT coefficient of the invariant mo-
ment. Experiments show that the algorithm can effectively re-
sist most non-malicious attacks. Ou et al. [8] performed one-
dimensional DCT transform on multiple random direction
projections, and finally sorted the low-frequency coefficients
of each projection to generate image hash. In scheme [9],
Liu et al. combined the distance relationship between low-
frequency DWT coefficients of image blocks and the distance
relationship between invariant moments in the spatial domain
to generate hash. Sajjad et al. in scheme [10] utilized the main
DCT coefficients of the rich information image block and the
position information of the rich and sparse blocks of the edge
information to construct hash. This algorithm implements
real-time authentication in smart industrial applications.

B. BASED ON DIMENSION REDUCTION
Data dimensionality reduction can effectively reduce the
redundancy of the extracted features, facilitate the generate of
hash sequences of moderate length, and reduce the time com-
plexity of the algorithm. In scheme [11], Tang et al. applied
non-negative matrix factorization(NMF) decomposition on
the secondary image obtained by the ring segmentation, and
utilized the coefficient matrix of each image ring to construct
a compact hash sequence. Tang et al. [12] first randomly
selected mean image blocks to construct secondary image,
then performed local linear embedding (LLE) processing
on the secondary image, and utilized its embedded vector
variance to design hash sequence. The robust performance
and discrimination capability of the algorithm achieve an
ideal compromise. In scheme [13], Tang et al. performed two
dimensional DCT transformation on each small block of the
color vector angle matrix to obtain low-frequency coefficient
matrix, using the variance of the low-dimensional embed-
ding vector as hash sequence. In scheme [14], Davarzani et
al. constructed secondary image blocks by Singular Value

Decomposition (SVD) decomposition of the image blocks,
and then regarded the symbol information and amplitude
information of the local discrepancies of the image sub-
blocks as image features. This algorithm can effectively resist
various types of noise attacks. Tang et al. [6] combined LPT
and DFT to obtain the anti-rotation image feature matrix,
MDS was performed on the feature matrix to form a compact
and distinctive hash string. In scheme [15], Tang et al. con-
structed a tensor on the mean matrix of the brightness image
and then used Tucker decomposition (TD) to generate hash
sequences. In scheme [16], Liu et al. first performed low-
rank representation (LRR) operation on the image to obtain
a robust low-rank feature matrix, then performed DWT on
the feature matrix. Finally, the hashing is generated by com-
pressed sensing. This algorithm can achieve the recovery of
tampered images under the premise of good robust capability.

C. BASED ON LOCAL FEATURE POINTS
Qin et al. [17] extracted the texture features of the image
through dual-cross pattern (DCP) coding, and took the po-
sition information of the image block containing rich infor-
mation as the structural feature. Finally, the two features
are combined to generate image hashing. Shen et al. [18]
extracted the local color change information from the color
opponent component of the image, and applied quadtree
decomposition to the image intensity component to extract
the structural feature. The algorithm can locate the tampered
area under the premise of good robustness. Qin et al. [19]
combined edge detection and selective sampling to extract
the location information and main DCT coefficients of rich
edge information blocks, which were compressed by PCA
to generate hash. Wang et al. [20] used the adaptive Harris
operator to extract feature points from the low-frequency
sub-band. Qin et al. [21] combined visual features based on
color vector angles and prominent structural features based
on image rings and image blocks to construct image hashing.

D. BASED ON STATISTICAL CHARACTERISTICS
Many algorithms based on statistical features are constantly
mentioned. Such algorithms usually have good robustness in
geometric attacks such as noise blurring and compression
distortion. Tang et al. performed equal-area loop operation on
the image in scheme [22], and then used the distance between
the four statistical features of each image ring to construct
hash sequences. This algorithm can effectively resist rota-
tion attacks, but the discrimination capability needs to be
improved. In scheme [23], Srivastava et al. performed DCT
transformation on Radon coefficients in different directions,
and extracted the statistical value of the feature vector as
hash sequences. Tang et al. [24] utilized DWT to compress
the histogram of the image ring to generate image hash. In
scheme [25], Ouyang et al. used the amplitude coefficient
information of quaternion Zernike moments (QZMs) of the
image to generate hash characters. Huang et al. [26] extracted
the statistical features of the texture image such as contrast,
correlation, gradient, and homogeneity as the global features
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of the image, and combined them with the DCT transform
to construct the image hash. Hosny et al. [27] extracted
Gaussian-Hermite moments and variance of grayscale im-
ages as image features. Wang et al. [28] designed hash
sequences by combining the Watson visual model, Zernike
moments and DCT coefficients. The hash algorithm can
detect content changes and content forgeries caused by ma-
licious attacks, and has good perceived robustness. Zhao et
al. [29] used the Zernike moments of the luminance and
chroma components as the global features, and the location
information and texture information of the salient regions
as the local features. The algorithm not only can detect the
tampering of the image, but also locate the tampered area.
Tang et al. [30] combined the color vector angle with the
edge information obtained by the Canny operator, and used
its statistical features to construct the image hash.

Although the above-mentioned hash algorithms have their
own advantages, there are some hash algorithms whose
classification performance and operation efficiency cannot
be balanced; the robustness and discrimination capability
of some hash algorithms cannot achieve the performance
trade-off. In order to solve the above problems, we propose
a hash algorithm based on the global features from three-
dimensional visual angle in different directions and energy
features. Our contributions mainly include the following:

(1) The algorithm innovatively uses the statistical features
of the image in different three-dimensional visual angles as
the global features of the image, and the relationship between
the statistical features of the image layers from different
visual angles as the final image hash.

(2) The image energy adopted in this article is almost never
mentioned in the hash algorithms, but it has good robustness
to the conventional content-preserving operation, which has
been proved in subsequent section II-C. In this paper, the
energy matrix of the image block is used to construct the
energy matrix, and the multi-directional change feature of the
energy matrix is used to construct the energy local feature
hash. On the basis of excellent robustness of image energy,
the discrimination capability of the algorithm is improved.

(3) The hash sequence in this paper is compact, only 162
bits. It has good robustness to the conventional geometric
distortion. And its classification performance, operating ef-
ficiency, and local tampering detection are superior to five
state-of-the-art schemes. It also has a good detection result in
image copy detection.

The framework of this paper is mainly divided into the
following parts: the second part is the specific steps of feature
extraction and hash generation; the third part is a series of
experiments and experimental analysis; the fourth part is a
summary and prospects for future work.

II. PROPOSED IMAGE HASHING SCHEME
The main content of the hash algorithm in this paper is shown
in Fig. 1, which includes four parts: preprocessing, global
features extraction under different three-dimensional visual

angles, local features extraction of multi-directional energy
changes of image blocks and hash encryption.
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FIGURE 1. Flowchart of the proposed image hashing.

A. PREPROCESSING
First, the resolution of the input image I0 is uniformly ad-
justed by bilinear interpolation to M ×M , which improves
the robustness against image scaling attacks of the algorithm.
In addition, input images of any size have the same hash
length, which facilitates subsequent performance analysis.
Then, Gaussian low-pass filtering is performed on the size-
normalized image. This operation can reduce the impact
of noise, compression and other minor operations on the
image [17]. Finally, the preprocessed image is converted to
YCbCr color space, and its luminance component is taken
for subsequent feature extraction.

B. GLOBAL FEATURES EXTRACTION OF 3D
PERSPECTIVE
Before extracting features from image, the luminance com-
ponent Y is first divided into non-overlapping blocks, the
block size is n× n, and an image block matrix B is formed.

B =


B1,1 B1,2 · · · B1,M/n

B2,1 B2,2 · · · B2,M/n

...
...

...
...

BM/n,1 BM/n,2 · · · BM/n,M/n

 (1)

where, Bi,j is the image block located in the i-th row and the
j-th column.

On the one hand, in order to reduce storage requirements
and improve algorithm efficiency, on the other hand, in order
to further improve the robustness of the algorithm to noise,
each image block Bi,j is further divided into four non-
overlapping sub-blocks with size of (n/2)× (n/2), and then
perform SVD decomposition on the image sub-block b

(k)
i,j

(k=1,2,3,4) according to (3).

Bi,j =

[
b
(1)
i,j b

(2)
i,j

b
(3)
i,j b

(4)
i,j

]
(2)

b
(k)
i,j = U

(k)
i,j S

(k)
i,j V

(k)
i,j (3)

where, b(k)i,j is the k-th image sub-block in image block Bi,j ,
U

(k)
i,j and V (k)

i,j are the unit orthogonal matrices of the image
sub-block b(k)i,j after SVD decomposition, S(k)

i,j is a diagonal
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matrix containing the square roots of eigenvalues from U
(k)
i,j

or V (k)
i,j in descending order.

The first singular vector u(k)i,j of U (k)
i,j and the first singular

vector v(k)i,j of V (k)
i,j are arranged and combined according to

(4) to form a secondary image block pi,j , with size of (n/2)×
8. All the secondary image blocks are rearranged according
to (5) to form the secondary image P with size of (M/2) ×
(8M/n).

pi,j =
[
u
(1)
i,j , u

(2)
i,j , u

(3)
i,j , u

(4)
i,j , v

(1)
i,j , v

(2)
i,j , v

(3)
i,j , v

(4)
i,j

]
(4)

P =


p1,1 p1,2 · · · p1,8M/n

p2,1 p2,2 · · · p2,8M/n

...
...

...
...

pM/2,1 pM/2,2 · · · pM/2,8M/n

 (5)

Taking the horizontal resolution of the secondary image P
as the x axis and the vertical resolution as the y axis, and
the pixel value of the coordinate (x, y) as the z axis. Through
the above operations, we can get the three-dimensional visual
angle of the secondary image shown in Fig. 2. Observing
Fig. 2, through the x-axis viewing angle and the y-axis
viewing angle respectively, we can get completely different
visual effects, as shown in Fig. 3. The following separately
extracts the statistical characteristics of image from different
three-dimensional visual angles to construct hash sequences.

 

FIGURE 2. Secondary image with three-dimensional visual angle.

At the x-axis perspective, the secondary image P is lay-
ered according to the y-axis resolution, and is divided into
M/2 layers, of which the i-th image layer is shown in
Fig. 4. Calculate the statistical characteristics of each layer
separately: mean, variance and kurtosis, and then form the
mean matrix mx, variance matrix vx and kurtosis matrix sx
with size of 1 × M/2. The three matrices jointly form a

 

(a)
 

(b)

FIGURE 3. Secondary image at different visual angles. (a) Secondary image
at x-axis visual angle. (b) Secondary image at y-axis visual angle.
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FIGURE 4. Image layer at the different viewing angles. (a) An Image layer at
the x-axis viewing angle. (b) An Image layer at the y-axis viewing angle.

statistical feature matrix Tx under the x-axis viewing angle,
with size of 3×M/2.

mx =
[
m1,m2,m3, · · · ,mM/2−1,mM/2

]
(6)

vx =
[
v1, v2, v3, · · · , vM/2−1, vM/2

]
(7)

sx =
[
s1, s2, s3, · · · , sM/2−1, sM/2

]
(8)

Tx =
[
mx, vx, sx

]
(9)

Similarly, construct the mean matrix my , the variance
matrix vy , the kurtosis matrix sy , and the statistical feature
matrix Ty from the y-axis viewing angle.

The matrix Tx is subjected to row standardization accord-
ing to (10) to obtain the matrix F .

Fi,j =
Ti,j − ui

σi
(10)

where, Ti,j is the i-th row and j-th column of the matrix Tx,
ui is the mean of the vector in the i-th row, and σi is the
standard deviation of the vector in the i-th row.

Similarly, the matrix Ty is subjected to the above normal-
ization operation to obtain the matrix Q.

Calculate the Euclidean distance of each column of matrix
F and matrix Q according to (11), and obtain an invariant
feature matrix h of size 1×M/2.

h(j) =

√√√√ 3∑
i=1

|Fi,j −Qi,j |2 (11)

where, Fi,j and Qi,j are the i-th row and j-th column of the
matrix F and Q, h(j) is the j-th element of the matrix h.
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By operating the invariant feature matrix h according to
(12), we can obtain the binary sequence HS with size of
M/2− 1.

HS(j) =

{
1, h(j + 1) > h(j)

0, otherwise
(12)

where, h(j) is the j-th element of matrix h, HS(j) is the j-th
element of sequence HS .

C. FEATURE EXTRACTION OF LOCAL ENERGY
For the luminance image Y of sizeM×M , the energyE(Y )
can be expressed as (13) [31]:

E(Y ) =
M∑
i=1

M∑
j=1

y2ij = trace(Y TY ) (13)

where, trace(·) represents the trace of the matrix, and yij
represents the pixel value of the luminance image Y .

When the image Y is disturbed by a small amount of W
during transmission, its energy will not change significantly,
the proof process is shown in (14). Because the conventional
content-preserving operation on the image will only have a
slight impact on the pixel values of the image, so it can be
considered that the image energy has good robustness for the
conventional content-preserving operation.

∆E = |E(Y +W )− E(Y )|
=
∣∣E(W ) + 2trace(Y TW )

∣∣
≤ E(W ) + 2

√
E(Y )× E(W ) (14)

where, ∆E is the amount of energy change caused by small
disturbances in the image.

When extracting the energy features of the image, firstly,
the luminance Y component is divided into non-overlapping
blocks, the block size is a × a, and the energy value of
each image sub-block is obtained in proper order to form
the energy matrix N1. The reasons for choosing to extract
the energy of each image block are mainly the following
three aspects: firstly, the energy of the image block has
good robust to the content-preserving operation; secondly,
different images may have the same image energy, but it
is difficult for different images to have exactly the same
image block energy; finally, the image block processing can
improve the algorithm’s robustness to subtle operations.

N1 =


n1,1 n1,2 · · · n1,M/a

n2,1 n2,2 · · · n2,M/a

...
...

...
...

nM/a,1 nM/a,2 · · · nM/a,M/a

 (15)

where, ni,j is the energy value of the image sub-block located
in the i-th row and j-th column.

Perform matrix operations on the energy matrix N1 in
four directions as shown in Fig. 5. The upper left energy
change matrix Nlu, the upper right energy change matrix
Nru, the lower left energy change matrix Nld, and the lower
right energy change matrix Nrd are obtained by sequentially

 

a 

 

(a)

 

b 

 

(b)

FIGURE 5. Energy changes. (a) Energy value of pixels in the central area. (b)
Energy value of pixels in the corner area.

subtracting the matrices LU , RU , LD and RD from the
center matrixCE. In order to obtain a concise feature matrix,
the above four matrices are processed according to (16), and
then the energy change matrix Nv is obtained.

Nv = Nlu ×Nru ×Nld ×Nrd (16)

In order to ensure the operating efficiency of the algorithm
and reduce the storage space redundancy, the energy change
matrix Nv is expanded into a matrix N by rows, and quan-
tized into a binary sequence HN according to (17).

HN (i) =

{
1, N(i+ 1) > N(i)

0, otherwise
(17)

where, N(i) and HN (i) are the i-th elements of the matrices
N and HN , respectively.

D. HASH GENERATION
The three-dimensional global statistical feature HS and the
energy local feature HN are combined to obtain the in-
termediate hash sequence Hm=[HS , HN ]. The lengths of
the binary sequences HS and HN are M/2 − 1 bits and
(M/a − 2)2 − 1 bits respectively, so the hash length L =
M/2 + (M/a− 2)2 − 2 bits.

In order to ensure the security of the algorithm, we re-
arrange the columns of Hm through the pseudo-random
number sequence S generated by the randperm (·) function
in MATLAB to obtain the final hash sequence H , as shown
in (18).

H(i) = Hm(S[i]) (18)

where, S[i] represents the i-th number in the pseudo-random
number sequence S ,H(i) is the i-th element of sequenceH .

E. DISTANCE MEASURE
In this paper, the hash sequence H1 of the original image and
the hash sequence H2 of the image to be tested are obtained
by the proposed algorithm, the difference between the two
sequences is measured by the normalized Hamming distance
D(H1, H2). When D(H1, H2)> T , it is considered that the
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test image has been malicious tampering or is different from
the original image; when D(H1, H2)≤ T , the test image and
the original image are similar image pairs, and the threshold
T is obtained through subsequent experiments.

D(H1, H2) =
1

L

L∑
i=1

|H1(i)−H2(i)| (19)

where, H1(i) and H2(i) are the i-th elements of the hash
sequences H1 and H2, and L is the total length of the hash
sequence of the proposed algorithm.

III. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, firstly, we conduct robust experiments and
discrimination experiments to test whether the proposed al-
gorithm can meet the requirements of the basic properties
of image hashing. Then we analyze the effect of parameters
on the performance of the proposed algorithm. The proposed
algorithm is compared with several state-of-the-art schemes
in various aspects. Finally, copy detection experiment and
local tampering detection experiment are carried out. All the
experiments were simulated by MATLAB R2014a platform,
and the computer was configured with Intel (R) Core (TM)
i5-7200U CPU @2.50GHz 2.7GHz and 8.00GB RAM.

A. PARAMETER SETTINGS
The specific settings of the proposed hash algorithm are as
follows: the size of normalized image and the standard devi-
ation of the Gaussian low-pass filter in the image preprocess-
ing section are 256 and 1, respectively. As for global feature
extraction at different three-dimensional visual angles, the
image block size is 16 × 16. In the feature extraction part
of local energy change, the image block size is 32× 32. That
is, M = 256, σ = 1, n = 16 and a = 32. According to
the above parameter settings, the hash length of this article is
L = M/2 + (M/a− 2)2 − 2 = 162 bits.

B. PERCEPTUAL ROBUSTNESS
The experiments in this section mainly reflect the robust
performance of the hash algorithm between the input image
and the similar images generated by the content preservation
operation. In this paper, 20 color images are selected as
the robust experimental samples, some standard images are
shown in Fig. 6. Firstly, the 20 sample images are subjected
to 12 kinds of attack operations shown in Table 1, respec-
tively, and a total of 1380 similar images are generated;
Then use the proposed algorithm to obtain hash sequences
of sample images and similar images; Finally, the hash
distance between each sample image and its similar images
are calculated according to formula (19). Table 2 shows
the statistics of hash distance (minimum, maximum, average
and standard deviation) between 20 sample images and their
similar images under different attack types. In Table 2, except
for mean filtering and rotation attacks, for the remaining 10
attack operations, the minimum hash distance between the
sample image and its similar versions is 0, and the maximum

     

 

 FIGURE 6. Five standard images for robustness test.

TABLE 1. Operations and parameter settings.

Operation Parameter Parameter values
Rotation Angle 1, 2, · · · , 7, 8
Brightness adjustment Level -20, -10, 10, 20
Contrast adjustment Level -20, -10, 10, 20
Gamma correction Gamma 0.75, 0.9, 1.1, 1.25
3×3 Gaussian low-pass
filtering

Standard devia-
tion

0.1, 0.2, · · · , 0.9, 1

JPEG compression Quality 30, 40, · · · , 90, 100
Watermark embedding Transparency 0.3, 0.4, · · · , 0.7, 0.8
Mean filter Neighborhood 3×3, 5×5, 7×7, 9×9
Speckle noise Noise variance 0.002, 0.004, · · · , 0.01
Salt and Pepper noise Noise level 0.002, 0.004, · · · , 0.01
Gaussian noise Noise mean 0.002, 0.004, · · · , 0.01
Scaling Ratio 0.6, 0.8, 1.2, 1.4, 1.6, 1.8

distance does not exceed 0.1; Except for rotation attacks, the
mean and standard deviation of the hash distance for other
attack types are both less than 0.1; Therefore, this algorithm
can effectively resist other conventional content-preserving
operations except for rotation attacks.

Fig. 7 are the graphs of the robust experimental results
of 5 standard images (Airplane, Baboon, House, Lena and
Peppers) and their similar images under various types of
content-preserving operations, which is convenient for intu-
itively displaying the robust performance of the algorithm.
The horizontal coordinate of the sub-picture is the corre-
sponding conventional image processing parameter setting,
and the vertical coordinate is the Hamming distance between
the standard image and its corresponding conventional pro-
cessing images. As shown in Fig. 7, besides the rotation
attack, the distance curve of the same attack operation with
different parameter settings has small fluctuation range and
gentle change, which further illustrates that the propose al-
gorithm has good robustness to multiple image attacks. For
the rotation attack, the distance increases with the increase
of the rotation angle, so the algorithm in this paper cannot
effectively resist the large angle rotation.

C. DISCRIMINATION CAPABILITY
The discrimination experiments can effectively reflect the
classification performance of the algorithm. The experimen-
tal dataset consists of 1000 different images, of which 700
images are from the University of Washington Ground Truth
database [32], and 300 images are taken from the VOC2007
database [33]. Any two of the 1000 images are different
image pairs, and the total number of different image pairs
is C2

1000 = 499500 . Perform 11 kinds of content-preserving
operations on the above 1000 different images. The specific
attack types and parameter settings are shown in Table 3. The
total number of similar image pairs is C2

23×1000 = 253000.
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FIGURE 7. Performance of perceptual robustness. (a) Brightness adjustment. (b) Contrast adjustment. (c) Gamma correction. (d) Rotation. (e) Scaling. (f)
Watermark embedding. (g) JPEG compression. (h) Gaussian low-pass filtering. (i) Speckle noise. (j) Salt and pepper noise. (k) Gaussian noise. (l) Mean filter.

TABLE 2. Statistic values of hash distances.

Operation Min Max Mean Std
Scaling 0 0.0930 0.0357 0.0156
Rotation 0.1481 0.4877 0.3581 0.0842
Mean filter 0.0123 0.2284 0.0793 0.0475
Speckle noise 0 0.0432 0.0116 0.0091
Gaussian noise 0 0.0968 0.0429 0.0191
Gamma correction 0 0.0802 0.0322 0.0212
JPEG compression 0 0.0494 0.0080 0.0074
Contrast adjustment 0 0.0741 0.0152 0.0132
Salt and Pepper noise 0 0.0556 0.0159 0.0124
Brightness adjustment 0 0.0741 0.0197 0.0154
Watermark embedding 0 0.0494 0.0109 0.0097
3×3 Gaussian low-pass fil-
tering

0 0.0988 0.0242 0.0200

The distance distribution between similar image pairs and
different image pairs can be intuitively seen through Fig. 8,
where the red curve is the distance distribution between sim-
ilar image pairs and the blue curve is the distance distribution
between different image pairs. The abscissa of the red curve
is between 0 ∼ 0.2461, the abscissa of the blue curve is in
the range of 0.2222 ∼ 0.6728, the distance between the two
curves overlapping is 0.2222 ∼ 0.2461, because the overlap

distance is short, the number of overlaps is small, therefore,
an appropriate threshold can be selected to effectively distin-
guish between different images and similar images.

When the selected threshold is too small, similar image
pairs are easily misjudged as different image pairs, resulting
in a large error detection rate PE [34]; when the selected
threshold is large, different image pairs are easily mistaken
for similar image pairs, resulting in a large collision rate PC

[34], that is, the collision rate and the error detection rate
are mutually suppressed. Therefore, the threshold should be
selected when the collision rate and the error detection rate
are small, so that the robustness and discrimination capability
of the algorithm reach a good trade-off. The formulas of
collision rate and error detection rate are shown in (20).
The collision rate PC and the error detection rate PE under
specific thresholds are shown in Table 4, and T = 0.24 is
chosen in this paper.

PC =
NC

ND
,

PE =
NE

NS
(20)

where, NC is the total number of different image pairs
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TABLE 3. Operations and parameter settings.

Operation Parameter Parameter values
JPEG compression Quality 40, 80
Contrast adjustment Level -20, 20
Brightness adjustment Level -20, 20
Scaling Ratio 0.8, 1.6
Watermark embedding Transparency 0.3, 0.8
3×3 Gaussian low-pass
filtering

Standard deviation 0.2, 0.6

Gamma correction Gamma 0.75, 1.25
Mean filter Neighborhood 3×3, 5×5
Speckle noise Noise variance 0.002, 0.006
Gaussian noise Noise mean 0.002, 0.006
Salt and Pepper noise Noise level 0.002, 0.006

TABLE 4. Collision probability and error detection probability with different
threshold values.

Threshold T PC PE

0.22 0 1.976× 10−5

0.23 2.002× 10−6 1.976× 10−5

0.235 2.002× 10−6 7.905× 10−6

0.24 2.002× 10−6 3.953× 10−6

0.25 4.004× 10−6 0

misjudged as similar image pairs, NE is the total number of
similar image pairs misjudged as different image pairs, and
ND and NS are the total number of different image pairs and
similar image pairs, respectively.
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D. IMPACT OF IMPORTANT PARAMETERS ON
ALGORITHM PERFORMANCE
In the process of extracting energy change features, because
the brightness image is processed by non-overlapping block,
so the size of the image block will affect the performance of
the proposed hash algorithm. Therefore, other experimental
parameters are unchanged, the performances are compared
with different a, that is a = 8, a = 16, and a = 32.

We analyze the impact of image block size on algorithm
classification performance by plotting by plotting (Receiver
Operating Characteristics) ROC curves [35] at different val-
ues of a. This experiment still uses 499500 different image
pairs and 253000 similar image pairs mentioned in section
III-C, and the horizontal and vertical coordinates of the ROC
curve can be obtained by (21).

PFPR =
NF

ND
,

PTPR =
NT

NS
(21)

where, NF is the total number of image pairs misjudged as
similar image pairs, NT is the total number of similar image
pairs correctly judged, and ND and NS are the total number
of different image pairs and similar image pairs, respectively.

Fig. 9 shows the ROC curves at different values of a. First
of all, it can be seen intuitively that when a = 32, a = 16,
and a = 8, the ROC curve is all close to the upper left
corner, indicating that the classification performance of the
algorithm is good. Secondly, when a = 32, the ROC curve of
the algorithm is closest to the upper left corner, so it can be
considered that the algorithm achieves the best classification
performance when a = 32. In addition, the hash length and
average hash generation time when a = 32, a = 16 and
a = 8 are summarized in Table 5. It is not difficult to find
that when a = 32, the hash length is the shortest and the
time required is the least, which is more in line with the
low storage and high efficiency requirements of the hash
algorithm. In summary, we set a = 32.
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FIGURE 9. ROC curves with different a values.

E. PERFORMANCE COMPARISON
In this section, the algorithm of this paper is compared with
five state-of-the-art schemes for performance comparison
experiments, i.e., Davarzani et al.’s scheme [14], Tang et
al.’s scheme [15], Shen et al.’s scheme [18], Huang et al.’s
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TABLE 5. Average time and hash length of different a values.

a Length of hash Average time
8 1026 bits 0.0387s
16 322 bits 0.0312s
32 162 bits 0.0287s

scheme [26], Tang et al.’s scheme [30]. The performance of
the above algorithms is mainly measured by three aspects:
classification performance, storage requirements, and hash
generation efficiency. In order to ensure the fairness of the
experimental results, we abide by the following three rules
during the experiment: do not change the original parameter
settings of the comparison algorithm, all algorithms use the
same data set, and all experiments are completed on the same
computer.

1) Comparison of classification performance

In the classification performance comparison experiment, the
ROC curve is also used as the theoretical analysis tool. The
data set in this experiment is consistent with section III-C,
with 499500 different image pairs and 253000 similar image
pairs. It can be seen intuitively from Fig. 10 that the ROC
curve of the proposed algorithm is closest to the upper left
corner of the square area. Since the upper left corner area
represents that when PFPR has a smaller value, PTPR has
a larger value, so this algorithm has the best classification
performance. In fact, when PFPR = 0, the PTPR of the
proposed algorithm and schemes [14], [15], [18], [26] and
[30] are 0.99997, 0.9985, 0.865, 0.9997, 0.8823 and 0.0861,
respectively. When PTPR ≈ 1, the PFPR of the proposed
algorithm and schemes [14], [15], [18], [26] and [30] are
8.008 × 10−6, 0.1121, 0.0830, 6.126 × 10−5, 0.0963 and
0.3501 in order. That is, under the same conditions, the
proposed algorithm has the largest PTPR and the smallest
PFPR compared with other algorithms.
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FIGURE 11. The distributed of different images and visually similar images of
different schemes. (a) Our scheme. (b) Scheme [14]. (c) Scheme [15]. (d)
Scheme [18]. (e) Scheme [26].(f) Scheme [30].

In order to further show the classification performance of
the hash algorithm, we have drawn the distance distribution
maps of various algorithms. As shown in Fig. 11, the sub-
graphs (a) ∼ (f) in Fig. 11 correspond to the algorithm of
this paper and the schemes [14], [15], [18], [26] and [30].
The red part in the distance distribution diagram represents
similar image pairs, and the blue part represents different
image pairs. It can be seen intuitively from these distance
distribution graphs that the overlapping area of the red part
and the blue part of the proposed algorithm is the smallest, in-
dicating that the classification performance of this algorithm
is the best.

2) Comparison of computational complexity

When the number of test images is huge, the storage require-
ments of hash sequences and the efficiency of hash gener-
ation are particularly important, so shorter hash generation
time and shorter hash length should be the basic requirements
for the proposed algorithm. In the comparison experiment
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of hash generation time between different hash algorithms,
under the premise that the external parameters such as the
experimental parameter settings, computer configuration, and
experimental database are same, we recorded the total time of
producing hashes of 1000 different images, and then divide
the total time by 1000 to get the average generation time.
The average time to generate 1000 different image hash
sequences of proposed algorithm and schemes [14], [15],
[18], [26] and [30] are 0.0287s, 0.2213s, 0.3021s, 0.0617s,
0.1376s and 2.9783s respectively, so the proposed algorithm
takes the shortest time to generate hash. The hash length
of the proposed algorithm is 162 bits, and the hash lengths
of literatures [14], [15], [18], [26] and [30] are 64 decimal
digits, 96 bits, 452 decimal digits, 720 bits and 400 bits. Since
a decimal number requires at least 4 binary numbers, the
hash length of the proposed algorithm is only slightly longer
than that of scheme [15], but its classification performance
and hash generation efficiency are significantly better than
scheme [15].

According to the performance comparison results of the
above six hash algorithms, it can be seen that the proposed
algorithm not only has the best classification performance but
also requires the shortest hash generation time. The specific
comparison results of the six algorithms are summarized in
Table 6.

F. APPLICATION OF IMAGE COPY DETECTION
By choosing an appropriate threshold, the algorithm in this
paper can effectively detect the copied images. The exper-
imental data set contains 3600 test images, of which 1000
are different images downloaded from the network, 100
randomly selected from the above different images as query
images, 13 content retention operations are performed on
each query image to generate 2600 copies images, specific
attack types and corresponding parameter settings are shown
in Table 7. The copy detection capability of the algorithm
is described by the recall rate R and precision rate P [36]
under different thresholds. The definition of the recall rate
and precision rate is defined as (22), the specific results are
shown in Table 8. When the threshold is 0.27, the algorithm
can detect all the copied images, but the accuracy rate needs
to be improved; when the threshold is 0.31, the precision can
also achieve good level.

P =
Np

Nq
,

R =
Np

Na
(22)

where, Np is the number of copy images in the query result
that correctly match the query images, Nq is the number of
all copied images included in the query result, and Na is the
number of all copied images in the test image set.

G. APPLICATION OF IMAGE TAMPERING DETECTION
When the image is partially tampered, the hash distance
between the tampered image and the original image should

be greater than the distance between similar image pairs
and smaller than the distance between different image pairs.
The total number of different image pairs in this experiment
is 499500, and the total number of similar image pairs is
253000, which are the data sets used in section III-C. The
tampered image set contains 15000 original images and
15000 tampered images. The original images are taken from
the VOC2012 database [37], and 20% of the original image
area is added to each original image to form tampered im-
ages. Fig. 12 shows the distance distribution between similar
image pairs, original images and tampered images, and dif-
ferent image pairs. The red curve is the distance distribution
between similar image pairs, ranging from 0 to 0.247; the
blue curve is the distance distribution between the original
images and the tampered images, and the endpoint values are
0.0123 and 0.401; the green curve is the distance distribution
between different image pairs, ranging from 0.222 to 0.673.
It can be seen intuitively from Fig. 12 that the blue curve
is between the red curve and the green curve, the horizontal
coordinate of the intersection point T1 of the blue curve and
the red curve is 0.0710, and the horizontal coordinate of the
intersection point T2 of the blue curve and the green curve
is 0.3364. When the distance between the test image and the
original image is less than T1, the test image and the original
image are considered to be similar image pairs; when it is
greater than T2, the test image and the original image are
different from each other; when the distance is between T1
and T2 , The detect image is regarded as partial tampering
image. When the threshold value is T1, the probability of the
proposed algorithm correctly identifying similar image pairs
is 93.29%; when the threshold value is T2, the probability
of the algorithm correctly identifying different image pairs is
99.89%; the probability of the algorithm correctly identifying
local tampered images is 94.17%.
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Regarding the effect of a value on the tampering detection
results, we obtained the results shown in Table 9 through
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TABLE 6. Overall performance comparison of hashing schemes.

Scheme Capability of classification Length of hash Average time Optimal TPR when FPR =0 Optimal FPR when TPR =1
Scheme [14] Moderate 64 decimal digits 0.2213 s 0.9985 0.1121
Scheme [15] Moderate 96 bits 0.3021 s 0.865 0.0830
Scheme [18] Good 452 decimal digits 0.0617 s 0.9997 6.126× 10−5

Scheme [26] Moderate 720 bits 0.1376 s 0.8823 0.0963
Scheme [30] Poor 400 bits 2.9783 s 0.0861 0.3501
Our scheme Best 162 bits 0.0287 s 0.99997 8.008× 10−6

TABLE 7. Operations and parameter settings.

Operation Parameter Parameter values
Mosaic Square size 6, 10
Plus subtitles Font size 10, 20
JPEG compression Quality 40, 80
Contrast adjustment Level -20, 20
Brightness adjustment Level -20, 20
Scaling Ratio 0.8, 1.6
Watermark embedding Transparency 0.3, 0.8
3×3 Gaussian low-pass
filtering

Standard deviation 0.2, 0.6

Gamma correction Gamma 0.75, 1.25
Mean filter Neighborhood 3×3, 5×5
Speckle noise Noise variance 0.002, 0.006
Gaussian noise Noise mean 0.002, 0.006
Salt and Pepper noise Noise level 0.002, 0.006

TABLE 8. The recall rate and precision rate with different thresholds.

Threshold Recall rate Precision rate
0.27 100% 94.54%
0.29 99.89% 95.19%
0.31 97.67% 96.30%
0.33 90.79% 96.85%

 

   

 

 

    

 

 

 
 

 
 

 

 FIGURE 13. Original images.

 

  

 

 

    

  
 

 

 

 FIGURE 14. Tampered images.

experiments. It can be found from Table 9 that as the side
length of the image block decreases and the number of image
blocks increases, the algorithm can detect more detailed
changes of the image, which is conducive to the tamper
detection of the proposed algorithm, and also illustrates the
effectiveness of the algorithm in this paper to detect tampered
images.

Next, the tampering detection capabilities of the proposed
algorithm (a = 32) and the comparison algorithms will be
further explained through some tampering examples. The
original image and the corresponding partial tampering im-
age are shown in Fig. 13 and Fig. 14, where the type of
tampering includes local color tampering and local content
tampering (including the deletion of objects and the addition
of objects).In Fig. 13, from left to right and from top to
bottom are (a1) to (l1). In Fig. 14, from left to right and
from top to bottom are (a2) to (l2). Since Schemes [15], [26]
and [30] in the comparison algorithm do not mention the
algorithm’s ability to tamper detection in the original article,
the detection result may be unsatisfactory, but all algorithms
use the same data sets. In addition, the hash distance mea-
surement standards of this article and schemes [14], [15],
[18], [26] and [30] are normalized hamming distance, cor-
relation coefficient, hamming distance, L2 norm, correlation
coefficient, and correlation coefficient, respectively. From
Table 10, we can find that the distance between the original
image and the tampered image for the proposed algorithm is
all between T1 and T2, and other schemes cannot completely
detect the tampered image, therefore, the proposed algorithm
has a certain detection ability for tampered images.

IV. CONCLUSIONS
This algorithm uses the three-dimensional statistical features
from different visual angles as the image global features, and
the energy variation features in the four directions as the local
features. Finally, the three-dimensional global features and
the multi-directional local variation features are combined
and scrambled to obtain the final hash sequences. It can be
seen that the algorithm achieves a good trade-off between dis-
crimination capability and robustness from the collision rate
and error detection rate under different thresholds. Compared
with five state-of-the-art schemes, the proposed algorithm
has the advantages of the best ROC curve, compact hash
sequence, the most excellent operating efficiency and the best
tamper detection performance. However, the algorithm in this
paper also has some shortcomings, such as the inability to
effectively resist large-angle rotation attack operations, the
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TABLE 9. Detection probability of different a values.

Probability of correctly identifying Probability of correctly identifying Probability of correctly identifying
The value of a similar image pairs tampered image pairs different image pairs
8 93.11% 99.43% 97.02%
16 91.36% 98.95% 98.74%
32 93.29% 94.17% 99.89%

TABLE 10. Hash distances of original image and tampered image pairs of different algorithms.

Images Scheme [14] Scheme [15] Scheme [18] Scheme [26] Scheme [30] Proposed scheme
(a1) and (a2) 0.9550 1 742.2668 0.8948 0.9619 0.2037
(b1) and (b2) 0.9627 7 1137 0.9989 0.9040 0.0802
(c1) and (c2) 0.9441 20 761.4329 0.9778 0.6652 0.1296
(d1) and (d2) 0.9188 21 744.3037 0.9984 0.1574 0.2037
(e1) and (e2) 0.9572 9 556.6750 0.9973 -0.3646 0.1728
(f1) and (f2) 0.8072 6 434.5469 0.9513 0.7802 0.1605
(g1) and (g2) 0.7824 8 744.3037 0.9479 0.8939 0.2222
(h1) and (h2) 0.8893 0 1072.7 0.9564 0.6655 0.1728
(i1) and (i2) 0.9889 10 473.2811 0.9899 1 0.0802
(j1) and (j2) 0.9760 13 316.0823 0.9681 0.8984 0.1235
(k1) and (k2) 0.9654 9 998.6651 0.9842 0.3018 0.0988
(l1) and (l2) 0.9071 3 1071.9 0.9366 0.9770 0.1420
(T1) ∼ (T2) 0.5771 ∼ 0.9621 2.8802 ∼ 10.023 273.6 ∼ 1028.2 0.7664 ∼ 0.7949 0.5002 ∼ 0.9233 0.0710 ∼ 0.3364

inability to effectively detect subtle tampering images. The
next research work will focus on improving these shortcom-
ings.
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