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Abstract
FrodoKEM is a lattice-based key encapsulation mechanism, currently a semi-finalist in NIST’s post-quantum standardisation
effort. A condition for these candidates is to use NIST standards for sources of randomness (i.e. seed-expanding), and as
such most candidates utilise SHAKE, an XOF defined in the SHA-3 standard. However, for many of the candidates, this
module is a significant implementation bottleneck. Trivium is a lightweight, ISO standard stream cipher which performs well
in hardware and has been used in previous hardware designs for lattice-based cryptography. This research proposes optimised
designs for FrodoKEM, concentrating on high throughput by parallelising the matrix multiplication operations within the
cryptographic scheme. This process is eased by the use of Trivium due to its higher throughput and lower area consumption.
The parallelisations proposed also complement the addition of first-order masking to the decapsulation module. Overall, we
significantly increase the throughput of FrodoKEM; for encapsulation we see a 16× speed-up, achieving 825 operations per
second, and for decapsulation we see a 14× speed-up, achieving 763 operations per second, compared to the previous state
of the art, whilst also maintaining a similar FPGA area footprint of less than 2000 slices.

Keywords Lattice-Based Cryptography · Hardware Security · FPGA · Post-Quantum Cryptography · FrodoKEM ·
Side-Channel Analysis

1 Introduction

The future development of a scalable quantum computer will
allowus to solve, in polynomial time, several problemswhich
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are considered intractable for classical computers. Certain
fields, such as biology and physics, would certainly bene-
fit from this “quantum speed up”; however, this could be
disastrous for security. The security of our current public-
key infrastructure is based on the computational hardness
of the integer factorisation problem (RSA) and the discrete
logarithm problem (ECC). These problems, however, will be
solved in polynomial time by amachine capable of executing
Shor’s algorithm [29].

To promptly react to the threat, the scientific community
started to study, propose, and implement public-key algo-
rithms, to be deployed on classical computers, but based
on problems computationally difficult to solve also using
a quantum or classical computer. This effort is supported
by governmental and standardisation agencies, which are
pushing for new and quantum resistant algorithms. The most
notable example of these activities is the open contest that
NIST [20] is running for the selection of the next public-key
standardised algorithms. The contest started at the end of
2017 and is expected to run for 5–7 years.

Approximately seventy algorithms were submitted to the
standardisation process,with the largemajority of thembeing
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basedon the hardness of lattice problems.Lattice-based cryp-
tographic algorithms are a class of algorithms which base
their security on the hardness of problems such as finding
the shortest non-zero vector in a lattice. The reason for such
a large number of candidates is because lattice-based algo-
rithms are extremely promising: they can be implemented
efficiently and they are extremely versatile, allowing to effi-
ciently implement cryptographic primitives such as digital
signatures, key encapsulation, and identity-based encryption.

As in the past case for standardising AES and SHA-3, the
parameters which will be used for selection include the secu-
rity of the algorithm and its efficiency when implemented
in hardware and software. NIST have also stated that algo-
rithms which can be made robust against physical attacks in
an effective and efficient way will be preferred [21]. Thus, it
is important, during the scrutiny of the candidates, to explore
the potential of implementing these algorithms on a variety
of platforms and to assess the overhead of adding counter-
measures.

To this end, this paper concentrates on FrodoKEM, a key
encapsulation mechanism submitted to NIST as a potential
post-quantum standard. FrodoKEM is a conservative candi-
date due to its hardness being based on standard lattices, as
opposed to Ring/Module-LWE, thus having limited practi-
cal evaluations. Thus, we explore the possibility to efficiently
implement it in hardware and estimate the overheadof protec-
tion against power analysis attacks using first-order masking.
To maximise the throughput, we rely on a parallelised imple-
mentations of the matrix multiplication. Although we do
not utilise specialised techniques for parallelising the matrix
multiplication, there exists a lot of prior art in this area of
research [14,24]. We also aim to have a relatively low FPGA
area consumption. To be parallelised, however, the matrix
multiplication requires the use of a smaller and more per-
formant pseudo-random number generator. We propose to
achieve the performance required for the randomness gen-
eration by using Trivium, an international standard under
ISO/IEC 29192-3 [13] and selected as part of the eSTREAM
project, specifically selected for its hardware performance.1

We utilise this instead of AES or SHAKE, as per the
FrodoKEM specifications.We do this as a design exploration
study and not (per se) as a recommendation; other alternative
ciphers or hash functionswith similar security arguments and
performance profiles in hardware could equally be applied.

The rest of the paper is organised as follows. Section 2
discusses the background and the related works. Section 3
introduces the proposed hardware architectures and the main
design decisions. Section 4 reports the results obtained while
synthesising our design on re-configurable hardware and
compares our performance against the state of the art. We
conclude the paper in Sect. 5.

1 https://www.ecrypt.eu.org/stream/e2-trivium.html.

2 Background and related work

In this section, we provide some background on previ-
ous hardware implementations post-quantum cryptographic
schemes, focusing on those which are candidates of NIST’s
standardisation effort. We will also elaborate more on
FrodoKEM and its implementations as well as recalling the
principles of masking.

2.1 Previous post-quantum hardware
implementations

In order to provide a reference point on the state of the art in
hardware designs of post-quantum candidates, we provide a
brief summary here. Table 1 shows the area and throughput
performances of candidates, separated by their post-quantum
hardness type. Firstly, it is quite clear that SIKE is the largest
and slowest of the schemes, consuming quite a large portion
of the (expensive) FPGA they benchmark on. Hash-based
and code-based schemes on the other hand, whilst requiring
similarly large FPGA resources, make up for this and provide
a high throughput. Lattice-based schemes generally enjoy the
best-of-both-worlds in terms of area consumption and perfor-
mance, having a relatively small FPGAarea consumption and
a relatively high throughput. Not only is this seen in Table
1, but this is also true for other lattice-based schemes, pre
NIST’s post-quantum competition. Within the lattice-based
candidates, the ideal lattice schemes are, as expected, much
more efficient in terms area throughput performance com-
pared to standard lattices. This is essentially because of the
complexity of their respective multiplications; in standard
lattice schemes the matrix multiplications have O(n2) com-
plexity, whereas ideal and module schemes are able to use
a NTT polynomial multiplier, reducing the complexity to
O(n log n).

2.2 Implementations of FrodoKEM

FrodoKEM [19] is a key encapsulation mechanism (KEM)
based on the original standard lattice problem learning with
errors (LWE) [25]. FrodoKEM is a family of IND-CCA
secure KEMs, the structure of which is based on a key
exchange variant FrodoCCS [7]. FrodoKEM comes with
two parameter sets FrodoKEM-640 and FrodoKEM-976, a
summary of which is shown in Table 2. FrodoKEM key gen-
eration is shown in Algorithm 1, encapsulation is shown in
Algorithm 2, and decapsulation is shown in Algorithm 3.
The most computationally heavy operations in FrodoKEM
are in Line 7 of Algorithm 1, Line 7 of Algorithm 2, and
Line 11 of Algorithm 3, that is the matrix multiplication of
two matrices, sampled from the error sampler and PRNG,
respectively. The LWE instance is then completed by adding
an ‘error’ value (as in Eq. 1). Some smaller operations such
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Table 1 A summary of the current state of the art of hardware designs of NIST post-quantum candidates, implemented on FPGA

Crypto. implementation Device LUT FF Slice DSP BRAM MHz Ops/s

Code Niederreiter KeyGen [30] Stratix-V – – 39122 – 827 230 75

Niederreiter Encrypt [30] Stratix-V – 6977 4276 – 0 448 50000

Niederreiter Decrypt [30] Stratix-V – 48050 20815 – 88 290 12500

Isogeny SIKE 3-cores (Total) [17] Virtex-7 27713 38489 11277 288 61 205 27

SIKE 6-cores (Total) [17] Virtex-7 50084 69054 19892 576 55 202 32

SIKE 3-cores (Total) [26] Virtex-7 49099 62124 18711 294 23 226 32

Lattice NewHope KEX Server [18] Artix-7 20826 9975 7153 8 14 131 13699

NewHope KEX Client [18] Artix-7 18756 9412 6680 8 14 133 12723

NewHope KEX Server [22] Artix-7 5142 4452 1708 2 4 125 731

NewHope KEX Client [22] Artix-7 4498 4635 1483 2 4 117 653

FrodoKEM-640 KeyGen [12] Artix-7 3771 1800 1035 1 6 167 51

FrodoKEM-640 Encaps [12] Artix-7 6745 3528 1855 1 11 167 51

FrodoKEM-640 Decaps [12] Artix-7 7220 3549 1992 1 16 162 49

Hash SPHINCS-256 (Total) [3] Kintex-7 19067 3132 7306 3 36 525 654

OWF Picnic-L1 Sign [15] Artix-7 76472 21061 – – 53 125 3994

Picnic-L1 Verify [15] Artix-7 68614 16821 – – 34 125 4223

Table 2 Implemented FrodoKEM parameter sets

Security n q σ Ciphertext size

FrodoKEM-640 128-bit 640 215 2.8 9,720 Bytes

FrodoKEM-976 192-bit 976 216 2.3 15,744 Bytes

Algorithm 1 FrodoKEM key pair generation

1: procedure KeyGen(1�)
2: Generate random seeds s||seedE||z ←$ U ({0, 1}128)
3: Generate pseudo-random seedA ← H(z)
4: Generate A ∈ Z

n×n
q via A ← Frodo.Gen(seedA)

5: Generate S ← Frodo.SampleMatrix(seedE, n, n̄, Tχ , 1)
6: Generate E ← Frodo.SampleMatrix(seedE, n, n̄, Tχ , 2)
7: Compute B ← AS + E
8: return public key pk ← seedA||B and secret key

sk′ ← (s||seedA||B,S)

9: end procedure

as message encoding is also required. The ciphertexts are
the output of these calculations and are used to calculate a
shared secret (ss) via SHAKE. The matrices generated heav-
ily utilise the randomness sources, suggested by the authors
via AES or SHAKE. The output of these algorithms has nice
statistical properties, but the overhead required to achieve
this is high.

Naehrig et al. [19] report the results of the implementa-
tion on a 64-bit ARMCortex-A72 (with the best performance
achieved by using OpenSSL AES implementation that ben-
efits from the NEON engine) and an Intel Core i7-6700

Algorithm 2 FrodoKEM encapsulation
1: procedure Encaps(pk = seedA||b)
2: Choose a uniformly random key μ ← U ({0, 1}lenμ)

3: Generate pseudo-random values seedE||k||d ← G(pk||μ)

4: Generate S′ ← Frodo.SampleMatrix(seedE, m̄, n, Tχ , 4)
5: Generate E′ ← Frodo.SampleMatrix(seedE, m̄, n, Tχ , 5)
6: Generate A ∈ Z

n×n
q via A ← Frodo.Gen(seedA)

7: Compute B′ ← S′A + E′
8: Compute c1 ← Frodo.Pack(B′)
9: Generate E′′ ← Frodo.SampleMatrix(seedE, m̄, n̄, Tχ , 6)
10: Compute B ← Frodo.Unpack(b, n, n̄)

11: Compute V ← S′B + E′′
12: Compute C ← V + Frodo.Encode(μ)

13: Compute c2 ← Frodo.Pack(C)

14: Compute ss ← F(c1||c2||k||d)

15: return ciphertext c1||c2||d and shared secret ss
16: end procedure

(×64 implementation using AVX2 and AES-NI instruc-
tions). Employing modular arithmetic (q ≤ 216) results in
using efficient and easy to implement single-precision arith-
metic. The sampling of the error term (16 bits per sample)
is done by inversion sampling using a small look-up table
which corresponds to the discrete cumulative density func-
tions (CDT sampling).

There have been a number of software and hardware
optimisations of FrodoKEM. Howe et al. [12] report both
software and hardware designs for microcontroller and
FPGA. The hardware design focuses on a plain implementa-
tion by using only one multiplier in order to fairly compare
with previous work and the proposed software implementa-
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Algorithm 3 The FrodoKEM decapsulation
1: procedure Decaps(sk = (s||seedA||b,S), c1||c2||d)
2: Compute B′ ← Frodo.Unpack(c1)
3: Compute C ← Frodo.Unpack(c2)
4: Compute M ← C − B′S
5: Compute μ′ ← Frodo.Decode(M)

6: Parse pk ← seedA||b
7: Generate randomness seed′

E||k′||d′ ← G(pk||μ′)
8: Generate S′ ← Frodo.SampleMatrix(seed′

E, m̄, n, Tχ , 4)
9: Generate E′ ← Frodo.SampleMatrix(seed′

E, m̄, n, Tχ , 5)
10: Generate A ∈ Z

n×n
q via A ← Frodo.Gen(seedA)

11: Compute B′′ ← S′A + E′
12: Generate E′′ ← Frodo.SampleMatrix(seed′

E, m̄, n, Tχ , 6)
13: Compute V ← S′B + E′′ + Frodo.Encode(μ′)
14: if B′||C = B′′||C′ and d = d′ return ss ← F(c1||c2||k′||d)

15: else return ss ← F(c1||c2||s||d)

16: end procedure

tion. Due to their use of cSHAKE for randomness, they have
to pre-store a lot of the randomness into BRAM and then
constantly update these values. Due to this, the implemen-
tations do not have the ability to parallelise multipliers and
incurs high memory costs.

So far there has been little investigation of side-channel
analysis for FrodoKEM other than ensuring the implementa-
tions run in constant-time [12].Bos et al. [8] have investigated
FrodoKEM in terms of its resistance against power analysis.
They find that the secret key is recoverable for a number
of different scenarios, requiring a small amount of traces
(< 1000) for anyof the parameter sets. Theypropose a simple
countermeasure to thwart their attack by changing the order
during the inner product multiplication. A previous attack on
Frodo by Aysu et al. [4] also suggests using random shuffling
or by adding dummy instructions.

Thus, to counter this type of attack, it is important for
masking to be investigated, and evaluated in terms of its prac-
tical performance. NIST have also stated many times that
masking and countermeasures are an important evaluation
criteria for analysing these post-quantum candidates [2,21].

2.3 SHAKE as a seed expander

The pqm4 project nicely summarises the percentage of time
each post-quantum candidate spends using SHAKE in soft-
ware [16, Section 5.3]. This shows that Kyber, NewHope,
Round5, Saber, and ThreeBears spend upwards of 50% of
their total runtimes using SHAKE in some form or another.
For signature schemes, this value can reach upwards of 70%
in some cases.

There has been previous investigations of using alter-
natives to SHAKE in software for NIST post-quantum
standardisation candidates. Bos et al. [9] recently improved
the throughput of software implementations of FrodoKEM
by leveraging a different randomness source for generating

the matrix A; xoshiro128**, increasing the throughput by
5×. Round5 has also been shown to improve its performance
using an alternative randomness source [27], instead using
a candidate from NIST’s lightweight competition, which
shows a performance improvement by 1.4×. SPHINCS+,
using Haraka, has also been shown to have a 5× speed-up
when considered instead of SHAKE [5]. These recent reports
show there is room for further investigations (in hardware)
for using SHAKE in post-quantum cryptographic schemes.
Moreover, alternative random sources may be required for
these NIST PQC schemes once they are integrated into the
real world; e.g. in aHardware SecurityModule (HSM)which
require randomness from physical processes, i.e. a True
Random Number Generator (TRNG). Despite these investi-
gations into alternative randomness sources, utilising sources
not specified in the scheme’s specifications may break com-
patibility, which would be the case for FrodoKEM which
only considers AES and SHAKE.

2.4 Side-channel analysis

In their call for proposals, NIST specified that algorithms
which can be protected against side-channel attacks in an
effective and efficient way are to be preferred [21]. To pro-
vide a whole picture about the performance of a candidate,
it is thus important to evaluate also the cost of implement-
ing “standard” countermeasures against these attacks. In
FrodoKEM specifications, cache and timing attacks can be
mitigated using well-known guidelines for implementing the
algorithm. For timing attacks, these include to avoiding use
of data derived from the secret to access the addresses and in
conditional branches. To counteract cache attacks, it is nec-
essary to ensure that all the operations depending on secrets
are executed in constant-time.

Power analysis attacks can be addressed using masking
and hiding. Masking is one of the most widespread and
better understood techniques to protect against passive side-
channel attacks. In its most basic form, a mask is drawn
uniformly from random and added to the secret. The result-
ing masked value, which is effectively a one-time-pad, and
the mask are jointly called shares: if taken singularly they
are statistically independent from the secret, and they must
be combined to obtain the secret back.

Any operation that previously involved the secret has to
be turned into an operation over its shares. As long as they
are not combined, any leakage from them will be statisti-
cally independent of the secret too. In our context, we show
how masking can easily be applied to FrodoKEM at a very
low cost. We therefore argue the overhead that a masked
implementation of FrodoKEM in hardware incurs is mini-
mal, hence making it a strong candidate when side-channel
analysis is a concern. In FrodoKEM the only operation using
the secret matrix S is the computation of the matrix M as
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C − B′S during decapsulation. When S is split in two (or
more) shares Si using addition modulo q, the above multipli-
cationbyB′ canbe simply applied to all shares independently.
Results are then subtracted by C one by one, so that com-
putations never depend on both shares simultaneously. More
precisely, in a two-share scenario the flow of computation
would be that first B′S1 is generated and subtracted from C
to produce the first share ofM asM1 = C− B′S1; then, the
actual value of M is derived via M = M1 − B′S2. All inter-
mediate steps operate on values where at least one element
is unknown to the adversary and thus no classical DPA style
attack can succeed.

Masking can only be successful if an implementation fea-
tures a low enough signal-to-noise ratio. Otherwise, single
trace attacks, i.e. attacks where secrets can be extracted by
analysing each trace individually, will succeed. Masking in
itself cannot overcome this threat. Either an implementation
has sufficient parallelism to ensure that the signal-to-noise
ratio is sufficiently low, or, hiding countermeasures need to
be deployed. Hiding countermeasures in hardware can take
advantage of “unused” circuitry, e.g. it is possible to ensure
parts of the circuit are always active; in our implementation
we try to achieve this anyway to ensure high throughput.
Other hiding countermeasures often increase the noise for
the adversary by reordering of operations or the addition of
dummy operations. For example, in the context of matrix
multiplications, one can, with minimal overhead, change the
ordering of the processing of rows/columns and even the
ordering of the computation of the partial products. Such
measures typically imply a small amount of extra circuitry
when implemented in hardware, but they do not result in
a different architecture for the matrix multiplication across
different other choices.

3 Hardware design

Our main design goal is to improve the throughput of the
lattice-based key encapsulation scheme FrodoKEM [19]
when implemented in hardware. As described in Sect. 2,
FrodoKEM is one of the leading conservative candidates
submitted to the NIST post-quantum standardisation effort
[20], currently a semi-finalist in the process. Moreover, it
has been shown to have appealing qualities which make
it an ideal candidate for hardware implementations, such
as having a power-of-two modulus and significantly easier
parameter selection. However, a complete exploration of the
possible hardware optimisations applicable to FrodoKEM
has yet to be done. For instance, previous implementations
do not consider parallelisations or other design alternatives
capable of significantly improving the throughput.

As described in Sect. 2, FrodoKEM requires heavy use of
randomness generation and/or seed expanding. In the algo-

rithm specifications, it is suggested to use either SHAKE or
AES. In particular, themost computationally intensive opera-
tions, such as Line 11 of Algorithm 3, require 410 k or 953 k
16-bit pseudo-random values, depending on the parameter
set used. In order for the generation of randomness not to
be the bottleneck, it needs to achieve a very high through-
put (ideally with relatively low area consumption) typically
in the range of 16 bits per clock cycle. In a previous hard-
ware design, proposed by Howe et al. [12], high throughput
for the PRNG was achieved by pre-calculating randomness
and storing it in BRAM. Random data newly calculated were
then written into the memory, overwriting the random data
previously stored. This is an efficient approach, however, a
more efficient PRNG that would not require BRAM usage,
potentially increasing the operating frequency of the design,
and thus improve its throughput. Moreover, parallelisations
were not possible for this design, as this would either require
a faster SHAKE design, increasing the area consumption by
3–8× [6] or worse still having several SHAKE instances,
incurring an evenworse resource consumption overhead. The
area consumption of SHAKE (or AES) was an issue with
the previous hardware design. For example, cSHAKE used
within FrodoKEM-640 Encaps occupies 42% of the overall
hardware resources [12].

To improve the parallelism of our implementation, we
further the discussions in Sect. 2.3. That is, we further the
investigations that research alternative sources of random-
ness in post-quantum cryptographic schemes and translate
this into hardware. As with other design explorations, this
means we do not completely comply with the specifications
(and test vectors) by not using a NIST standard. However,
their security arguments that AES is an ‘ideal cipher’ for
use as an seed expander still apply as we replace this with
Trivium, as it has analogous security properties of being
indistinguishable from random. Trivium does not provide
the same level of classical security as AES or SHAKE;
however, it is used to randomly generate a public element
and suffices to eliminate the possibility of backdoors and
all-for-the-price-of-one attacks [19]. Moreover, with NIST’s
lightweight competition happening in parallel, it is likely that
there will be future NIST standards that are more efficient
than SHAKE. We may also see specific use cases where an
alternative PRNG is preferred to SHAKE. Thus, considering
alternative PRNGs as a design exploration is an important
contribution to the standardisation process.

We explored several options for the randomness source
used in the Frodo.Gen operation, that is, sampling the matrix
A, and we decided to integrate an unrolled×32 Trivium [10]
implementation into our design. The use of alternative PRNG
sources is discussed in the FrodoKEM specifications, specif-
ically they state that “the distribution ofmatrixA from a truly
uniform distribution to one generated from a public random
seed in a pseudorandom fashion does not affect the security of

123



Journal of Cryptographic Engineering

FrodoKEM or FrodoPKE, provided that the pseudorandom
generator is modelled either as an ideal cipher (when using
AES128) or a random oracle (when using SHAKE128)”;
thus, we use Trivium as our ‘ideal cipher’, which also main-
tains good statistical pseudo-randomness properties as well
as the high throughput performanceswe need for our designs.

3.1 Hardware optimisations

In order to fully explore the potential of FrodoKEM in
hardware, we propose several architectures characterised by
different design goals (in terms of throughput). We use the
proposed architecture to implement key generation, encapsu-
lation, and decapsulation, on two sets of parameters proposed
in the specifications: FrodoKEM-640 and FrodoKEM-976.
Our designs use 1×, 4×, 8×, and 16× parallel multipli-
cations during the most computationally intensive parts in
FrodoKEM. These operations are the LWE matrix multipli-
cations of the form:

B = SA + E, (1)

required in key generation, encapsulation, and decapsulation.
In the previous hardware implementations of FrodoKEM,
the operations of the type of Eq. 1 took approximately
97.5% of the overall runtime of the designs [12]. As in
the literature, we exploit DSP slices on the FPGA for
the multiply-and-accumulate (MAC) operations required for
matrix multiplication. Hence, each parallel multiplication
of the proposed designs requires its own DSP slice. The
LWE matrix multiplication component incurs a large com-
putational overhead. Because of this, it is an ideal target for
optimisations, and for our optimisations we heavily rely on
parallelisations. Firstly, we describe the basic LWE multi-
plier that includes just one multiplication component. Then,
we describe how this core is parallelised, allowing us to sig-
nificantly improve the throughput.

Figure 1 shows a high-level overview of the hardware
architecture and the following descriptions will link to the
design overview. The Arithmetic part of the LWE core
is essentially made by vector–matrix multiplication (that
is, S[row] × A), addition of a Gaussian error value
(that is, E[row, col]), and, when needed, an addition of the
Encoding of message data. Since the matrix S consists of
a large number of column entries (either 640 or 976) but
only 8 row entries (for both parameter sets), we decided to
implement a vector–matrix multiplier, instead of (a larger)
matrix–matrix one. By doing this, we can reuse the same
hardware architecture for each row of S, saving significant
hardware resources. Each run of the row–columnMACoper-
ation exploits a DSP slice on the FPGA, which fits within the
48-bit MAC size of the FPGA. The DSP slice is ideal for
these operations, but it also ensures constant computational

Fig. 1 A high-level overview of the proposed hardware designs for
FrodoKEM for k parallel multipliers. The architecture is split into sec-
tions ‘PRNGs’ for Triviummodules, ‘Error Sampling’ for the Gaussian
sampler, ‘Arithmetic’ for the LWE multiplier, and ‘Outputs’ for the
shared-secret and ciphertexts

runtime, since each multiplication requires one clock cycle.
Once each row–column MAC operation is completed, an
error value is added from the CDT sampler. These outputted
ciphertext values are also consistently added into an instan-
tiation of SHAKE, which is required to calculate the shared
secret. This process is pipelined to ensure high throughput
and constant runtime.

To avoid using BRAM (for pre-computing some of the
matrix A) and while keeping the throughput needed by the
MAC operations of the matrix multiplications, the designs
require 16 bits of pseudo-randomness per multiplication per
clock cycle. Thus, for every two parallel multiplications we
require one Trivium instantiation, whose 32-bit output per
clock cycle is split up to form two 16-bit pseudo-random
integers.2 This is shown inPRNGspart of Fig. 1. This pseudo-
randomness forms the matrix A in Eq. 1, whereas the matrix
S andE require randomness taken from Gaussian sampler.
The cumulative distribution table (CDT) sampler technique
has been shown to be the most suitable one for hardware
[11], and thus, we use it in our designs. However, com-
pared with previous works, we replace the use of AES as
a pseudo-random input with Trivium. This ensures the same
high throughput, but requires significantly less area on the
FPGA.

The technique we use to parallelise Eq. 1 is to vertically
partition the matrix A into k equal sections, where k is the
number of parallel multiplications, and DSPs, used. This is
shown in Fig. 2 for k = 4 parallel multiplications, utilising
4 DSP slices for MAC. Each vector on the LHS of Fig. 2

2 For comparison, the AES implementation used in [23] generates 128
bits of randomness in 13 cycles and requires 349 slices and 2BRAMs on
the FPGA. This makes Trivium 3.25× faster than AES whilst required
less hardware resources.
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…

DSP1 DSP2 DSP3 DSP4

… … … …

… … … …

Fig. 2 Parallelising matrix multiplication, for S×A, used within LWE
computations for an example of k = 4 parallel multiplications, using
k = 4 DSPs on the FPGA

remains the same for each of the k operations. We repeat this
vector–matrix operation for the n̄ = 8 rows of the matrix
S. This technique is used across all designs for the three
cryptographic modules to ensure consistency.

In order to produce enough randomness for these multi-
plications to have no delays, we need one instance of our
PRNG, Trivium, for every two parallel multiplications. This
is because each element of the matrix A is set to be a 16-bit
integer and each output from Trivium is 32 bits, that is, two
16-bit integers. As the Trivium modules are relatively small
in area consumption on the FPGA (169 slices), an increase
in k is fairly scalable as an impact on the overall design.

3.2 Efficient first-order masking

We implement first-order masking scheme (discussed in
Sect. 2.4) to the decapsulation operationM = C−B′S, as this
is the only instancewhere secret-key information is used.Our
design allows us to implement this masking schema without
affecting the area consumption or throughput. Essentially,
this is achieved by re-using the parallelised matrix multiplier
used through the proposed hardware design for FrodoKEM.
ThematrixS is split using the same technique fromFig. 2 and
our secret shares are generated by using the Triviummodules
as a PRNG source. By computing these calculations in paral-
lel, the masked calculation ofM has the same runtime as the
one needed to complete the calculation when masking is not
used. We ensure that the same row–column operation during
the matrix multiplication is not computed in each parallel
operation, to circumvent any attack that might combine the
power traces and essentially remove the masking. To ensure
this countermeasure operates effectively and has no imple-
mentation mistakes, one should further this by performing
TVLA analysis.

3.3 A note on software implementations

The reason the performance of Trivium was investigated for
use within FrodoKEM is due to Trivium’s outstanding per-
formance specifically in hardware, which was the reason it
was chosen for the eSTREAM project. However, one should
not expect a similar performance gain by using Trivium in
FrodoKEM in software. To demonstrate, we can take the
performance of the AES implementation [28] used by pqm4
[16] which operates at 101 cycles per byte on ARM Cortex
M3/M4 and a Trivium implementation [1] which operates at
36 cycles per byte on ARM Cortex M0.3 We should addi-
tionally consider that in the FrodoKEM-640 implementation
using AES; key generation, encapsulation, and decapsula-
tion, respectively, use AES for 73.6%, 77.1%, and 76.3% of
its overall clock cycles. Thus, all other things being equal,
when replacing AES with Trivium we might see an increase
of 1.9–2× in the overall runtime of FrodoKEM-640 imple-
mentation.

4 Results

In this section, we present the results obtained when imple-
menting our FrodoKEM architecture. We provide a table of
results for each of the key generation, encapsulation, and
decapsulation designs in Tables 3, 4, and 5, respectively.
We also provide results for the PRNG and Gaussian sam-
pler in Table 6. All tables give comparative results of the
previous FrodoKEM design in hardware, which utilise 1×
LWE multiplier per clock cycle and completely conform to
the FrodoKEM specifications by using cSHAKE where we
are using Trivium. Moreover, all results are benchmarked
on the same FPGA device as previous work, Xilinx Artix-7
XC7A35T FPGA, running on Vivado 2019.1.

The first analysis is directed towards the performance of
the PRNG. When compared to cSHAKE, the PRNG pre-
viously used in literature, Trivium (the PRNG we propose
to use), occupies 4.5× less area on the FPGA (measured in
slices). This means that when we instantiate a higher number
of parallel multipliers, we consume far less FPGA area than
what would be needed when using cSHAKE, as discussed
in the algorithm proposal. The increase in area occupation,
due to parallelising, is essentially the only reason for area
increase when we move from a base design to a design of the
same module with a higher number of parallel multipliers.
This is because the vector being multiplied remains constant,
we just require some additional registers to store these extra

3 Some differences between the ARM Cortex M0, M3, and M4 exist
which may affect this comparison, such as the advanced data process-
ing bit field manipulations on the M3 and M4, or the SIMD and fast
multiply-and-accumulate on the M4.
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Table 3 FPGA resource
consumption of the proposed
FrodoKEM KeyGen designs,
using 1, 4, 8, and 16 parallel
multipliers, for both parameter
sets, on a Xilinx Artix-7 FPGA

FrodoKEM LUT FF SlicesDSP/BRAM MHz Ops/sec Area × time
Protocol (slices × sec)

KeyGen-640 1× 971 433 290 1/0 191 59 4.92

KeyGen-640 4× 1174 781 355 4/0 185 226 1.58

KeyGen-640 8× 1679 1570 532 8/0 182 445 1.20

KeyGen-640 16× 2587 2994 855 16/0 172 840 1.02

KeyGen-640 [12] 3771 1800 1035 1/6 167 51 20.29

KeyGen-976 1× 1243 441 362 1/0 189 25 14.48

KeyGen-976 4× 1458 792 440 4/0 184 97 4.54

KeyGen-976 8× 1967 1576 617 8/0 178 187 3.30

KeyGen-976 16× 2869 3000 908 16/0 169 355 2.56

KeyGen-976 [12] 7139 1800 1939 1/8 167 22 88.14

Table 4 FPGA resource
consumption of the proposed
FrodoKEM Encapsulation
designs, using 1, 4, 8, and 16
parallel multipliers, for both
parameter sets, on a Xilinx
Artix-7 FPGA

FrodoKEM LUT FF Slices DSP/BRAM MHz Ops/sec Area × time
Protocol (slices × sec)

Encaps-640 1× 4246 2131 1180 1/0 190 58 20.34

Encaps-640 4× 4620 2552 1338 4/0 183 221 6.05

Encaps-640 8× 5155 3356 1485 8/0 177 427 3.48

Encaps-640 16× 5796 4694 1692 16/0 171 825 2.05

Encaps-640 [12] 6745 3528 1855 1/11 167 51 36.37

Encaps-976 1× 4650 2118 1272 1/0 187 25 50.88

Encaps-976 4× 4996 2611 1455 4/0 180 94 15.47

Encaps-976 8× 5562 3349 1608 8/0 175 183 8.79

Encaps-976 16× 6188 4678 1782 16/0 168 350 5.09

Encaps-976 [12] 7209 3537 1985 1/16 167 22 90.22

random elements. There is obviously an increase when we
move from parameter sets due to the matrix A increasing
from 640 to 976 elements. Additionally, we are able to use
a much smaller version of SHA-3 for generating the random
seeds (< 400 FPGA slices) and shared secrets as the com-
putational requirements for it have significantly decreased.

There is a significant increase in area consumption of all
the decapsulation results which do not utilise BRAM. This is
mainly due to the need of storing public-key and secret-key
matrices. We provide results for both architectures with and
without BRAM. The design without BRAM has a signifi-
cantly higher throughput, due to the much higher frequency.
These results are reported in Fig. 4, which shows the effi-
ciency of each design (namely their throughput) per FPGA
slice utilised. Figure 3 shows a slice count summary of all
the proposed designs, showing a consistent and fairly linear
increase in slice utilisation as the number of parallel multi-
pliers increases. We note on decapsulation results in Fig. 3
where the results would lie if BRAM is used, hence the total
results for without BRAM include both red areas (i.e. they
overlap). Inmost cases, slice counts at least double for decap-
sulation when BRAM is removed, with only slight increases
in throughout; hence, it might be not be useful in some use

cases. BRAM usage, however, is not as friendly when hard-
ware designs are considered for ASIC; thus, it is useful to
consider designs both with and without BRAM.

By changing our source of randomness and parallelising
themost computationally heaving components inFrodoKEM,
we have shown significant improvements in FPGA area
consumption and throughput performance compared to the
previous works. For instance, comparing to FrodoKEM
module [12] (that is using one multiplier) we reduce slice
consumption by 3.6× and 5.4× for key generation and
1.6× for encapsulation, all whilst not requiring any BRAM,
whereas previous results utilise BRAM. For decapsulation,
we decrease the amount of slices used between 1.6× and
2.6×whenBRAMis used and similarly decrease slice counts
by 1.5× and 1.1× when BRAM is not used. These savings
are expected since more than half of this is due to storage
otherwise used in BRAM.

Tables 3, 4, and 5 also contain a metric to analyse the area-
time efficiencyof the proposed designs. Thismetric takes into
account the hardware design’s utilisation of slices (i.e. not
BRAM) and the time taken (in this case, seconds) for a full
key generation, encapsulation, or decapsulation operation to
complete. There is a common trend when analysing these
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Table 5 FPGA resource
consumption of the proposed
FrodoKEM Decapsulation
designs, using 1, 4, 8, and 16
parallel multipliers, for both
parameter sets, on a Xilinx
Artix-7 FPGA

FrodoKEM LUT FF Slices DSP/BRAM MHz Ops/sec Area × time
Protocol (slices × sec)

Decaps-640 1× 10, 518 2299 2933 1/0 190 57 51.46

Decaps-640 4× 11, 581 2818 3424 4/0 174 208 16.46

Decaps-640 8× 13, 128 3737 3710 8/0 164 391 9.49

Decaps-640 16× 14, 528 5335 4020 16/0 160 763 5.27

*Decaps-640 1× 4466 2152 1254 1/12.5 162 49 25.59

*Decaps-640 4× 4841 2661 1345 4/12.5 161 192 7.00

*Decaps-640 8× 5476 3479 1558 8/12.5 156 372 4.19

*Decaps-640 16× 6881 5081 1947 16/12.5 149 710 2.74

Decaps-640 [12] 7220 3549 1992 1/16 162 49 40.65

Decaps-976 1× 14, 217 2295 3956 1/0 188 25 158.24

Decaps-976 4× 16, 234 2853 4648 4/0 170 88 52.82

Decaps-976 8× 17, 451 3687 4985 8/0 161 167 29.85

Decaps-976 16× 18, 960 5285 5274 16/0 157 325 16.23

*Decaps-976 1× 4888 2153 1390 1/19 162 21 66.19

*Decaps-976 4× 5259 2662 1450 4/19 160 83 17.47

*Decaps-976 8× 5888 3490 1615 8/19 155 161 10.03

*Decaps-976 16× 7213 5087 2042 16/19 148 306 6.67

Decaps-976 [12] 7773 3559 2158 1/24 162 21 102.76

*Designs that used BRAM

Table 6 FPGA resource
consumption of the proposed
PRNG and error sampler
designs on a Xilinx Artix-7
FPGA

FrodoKEM LUT FF Slices DSP/BRAM MHz Ops/s
Protocol

Error+Trivium 401 311 179 0/0 211 211 m

Trivium 296 299 169 0/0 220 220 m

Error+AES [12] 1901 1140 756 0/0 184 184 m

cSHAKE [12] 2744 1685 766 0/0 172 1 m

results; the hardware designs become significantly more per-
formant when the number of parallel multipliers are increase.
We also see this in the increase in throughput performance
in Fig. 4. Moreover, we can use this metric to compare with
previous work by Howe et al. [12] to see that in all cases,
parallelising results provide significant speed-ups; up to 35×
improvement for key generation.

Since the majority of our proposed designs operate with-
out BRAM4, we are able to attain a higher frequency than
previous works. Overall our throughput outperforms pre-
vious comparable results, by factors between 1.13× and
1.19× [12]. Moreover, whilst maintaining less area con-
sumption than previous research, we are able to increase the
amount of parallel multipliers. As a result, we can achieve
up to 840 key generations per second (a 16.5× increase),
825 encapsulations per second (a 16.2× increase), and 710
operations per second (a 15.6× increase). We also main-

4 We ensure BRAM is not inferred in our designs by setting
-max_bram to zero for synthesis in Vivado.

tain the constant runtime which the previous implementation
attains, as well as implementing first-order masking dur-
ing decapsulation.5 The masking is also done using parallel
multiplication and thus does not affect the runtime of the
decapsulation module. The clock cycle counts for each mod-
ule are easy to calculate; key generation requires (n2n̄)/k
clocks, encapsulation requires (n2n̄ + n̄2n)/k clocks, and
decapsulation requires (n2n̄ + 2n̄2n)/k clocks, for dimen-
sions n = 640 or 976, n̄ = 8, and k referring to the number
of parallel multipliers used.

5 Conclusions

The main contribution of this research is to evaluate the per-
formance potential of FrodoKEM[19], aNISTpost-quantum

5 This masking could also be used in key generation (Line 7 of Algo-
rithm 1), however the hardware results provided only show this for
decapsulation.
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Fig. 3 Visualisation of FPGA slice consumption of FrodoKEM’s key
generation, encaps, and decaps on aXilinx Artix-7. Decaps values over-
lap to show results with (*) and without BRAM
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Fig. 4 Comparison of the throughput performance per FPGA slice on
a Xilinx Artix-7

candidate for key encapsulation, when utilising a signifi-
cantly more performant PRNG in hardware. We develop
designs which can reach up to 825 operations per second,
where most of the designs fit in under 1500 slices. Area con-
sumption results are less than the previous state of the art and
are much lower than many of the other post-quantum hard-
ware designs shown in Table 1. We significantly improve
the throughput performance compared to the state of the art,
by increasing the number of parallel multipliers we use dur-
ing matrix multiplication. In order to do this efficiently, we
replace an inefficient PRNG previously used, cSHAKE, with
a much faster and smaller PRNG, Trivium. As a result, we
are able to obtain either a much lower FPGA footprint (up to
5x smaller) or a much higher throughput (up to 16× faster)

compared to previous research. Our implementations run in
constant computational time and the designs comply with
the Round 2 version of FrodoKEM in all aspects except for
this PRNG choice. To further evaluate the performance of
FrodoKEM, we implemented first-order masking for decap-
sulation, and we showed that it can be achieved with almost
no effect on performance. We expect this research would
have an impact on real-world use cases such as in TLS, as
shown previously from key exchange version of Frodo [7],
potentially making its performance competitive with classi-
cal cryptographic schemes used today.

The results show that FrodoKEM is an ideal candidate
for hardware designs, showing potential for high-throughput
performances whilst still maintaining relatively small FPGA
area consumption. Moreover, compared to other NIST
lattice-based candidates, it has a lot more flexibility, such as
increasing throughput without completely re-designing the
multiplication component, compared to, for example, a NTT
multiplier.
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