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Abstract. Forward secrecy is considered an essential design goal of modern key es-
tablishment (KE) protocols, such as TLS 1.3, for example. Furthermore, efficiency
considerations such as zero round-trip time (0-RTT), where a client is able to send cryp-
tographically protected payload data along with the very first KE message, are motivated
by the practical demand for secure low-latency communication. For a long time, it was
unclear whether protocols that simultaneously achieve 0-RTT and full forward secrecy
exist. Only recently, the first forward-secret 0-RTT protocol was described by Günther
et al. (Eurocrypt, 2017). It is based on puncturable encryption. Forward secrecy is
achieved by “puncturing” the secret key after each decryption operation, such that a
given ciphertext can only be decrypted once (cf. also Green and Miers, S&P 2015).
Unfortunately, their scheme is completely impractical, since one puncturing operation
takes between 30 s and several minutes for reasonable security and deployment param-
eters, such that this solution is only a first feasibility result, but not efficient enough
to be deployed in practice. In this paper, we introduce a new primitive that we term
Bloom filter encryption (BFE), which is derived from the probabilistic Bloom filter
data structure. We describe different constructions of BFE schemes and show how these
yield new puncturable encryption mechanisms with extremely efficient puncturing. Most
importantly, a puncturingoperation only involves a small number of very efficient com-
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putations, plus the deletion of certain parts of the secret key, which outperforms previous
constructions by orders of magnitude. This gives rise to the first forward-secret 0-RTT
protocols that are efficient enough to be deployed in practice. We believe that BFE will
find applications beyond forward-secret 0-RTT protocols.

Keywords. Bloom filter encryption, Bloom filter, 0-RTT, Forward secrecy, Key ex-
change, Puncturable encryption.

1. Introduction

One central ingredient to secure today’s Internet is key exchange (KE) protocols with
the most prominent and widely deployed instantiations thereof in the transport layer
security (TLS) protocol [45]. Using a KE protocol, two parties (e.g., a server and a
client) are able to establish a shared secret (session key) which afterward can be used
to cryptographically protect data to be exchanged between those parties. The process of
arriving at a shared secret requires the exchange of messages between client and server,
which adds latency overhead to the protocol. The time required to establish a key is
usually measured in round-trip times (RTTs). A novel design goal, which was introduced
by Google’s QUIC protocol [47] and is also adopted in TLS version 1.3 [45], aims at
developing zero round-trip time (0-RTT) protocols with strong security guarantees. So
far, quite some effort was made in the cryptographic literature, e.g., [35,49], and, indeed,
0-RTT protocols are probably going to be used heavily in the future Internet as TLS
version 1.3 adoption is growing rapidly. Besides TLS 1.3, Google’s QUIC protocol is
used on Google webservers and within the Chrome and Opera browsers to support 0-
RTT. Unfortunately, none of the above mentioned protocols are enjoying 0-RTT and full
forward secrecy at the same time. Only recently, Günther, Hale, Jager, and Lauer (GHJL
henceforth) [33] made progress and proposed the first 0-RTT key exchange protocol
with full forward secrecy for all transmitted payload messages. However, although their
0-RTT protocol offers the desired features, their construction is not yet practical.

In more detail, GHJL’s forward-secret 0-RTT key-exchange solution is based on punc-
turable encryption (PE), which they showed can be constructed in a black-box way from
any selectively secure hierarchical identity-based encryption (HIBE) scheme. Loosely
speaking, PE is a public-key encryption primitive which provides a Puncture algorithm
that, given a secret key and a ciphertext, produces an updated secret key that is able to de-
crypt all ciphertexts except the one it has been punctured on. PE has been introduced by
Green and Miers [31] (GM henceforth) who provide an instantiation relying on a binary-
tree encryption (BTE) scheme—or selectively secure HIBE—together with a key-policy
attribute-based encryption (KP-ABE) [30] scheme for non-monotonic (NM) formulas
with specific properties. In particular, the KP-ABE needs to provide a non-standard
property to enhance existing secret keys with additional NOT gates, which is satisfied
by the NM KP-ABE in [44]. Since then, PE has proved to be a valuable tool to construct
public-key watermarking schemes [20], forward-secret proxy re-encryption [24],1 or to
achieve chosen-ciphertext security for fully homomorphic encryption [17]. However, the

1We note that [24] uses the same techniques as in GHJL.
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mentioned PE instantiations from [17,20] are based on indistinguishability obfuscation
and, thus, do not yield practical schemes at all.

When looking at the two most efficient PE schemes available, i.e., GM and GHJL, they
still come with severe drawbacks. In particular, puncturing in GHJL is highly inefficient
and takes several seconds to minutes on decent hardware for reasonable deployment
parameters. In the GM scheme, puncturing is more efficient, but the cost of decryption
is very significant and increases with the number of puncturings. More precisely, cost
of decryption requires a number of pairing evaluations that depends on the number of
puncturings, and can be in the order of 210 to 220 for realistic deployment parameters.
These issues make both of them especially unsuitable for the application in forward-
secret 0-RTT key exchange in a practical setting.

Contributions In this paper, we introduce Bloom filter encryption (BFE), which can
be considered as a variant of PE [17,20,31,33]. The main difference to other existing
PE constructions is that in case of BFE, we tolerate a non-negligible correctness error.2

This allows us to construct PE with highly efficient puncturing and in particular where
puncturing only requires a few very efficient operations, i.e., to delete parts of the secret
key, but no further expensive cryptographic operations. Altogether, this makes BFE a
very suitable building block to construct practical forward-secret 0-RTT key exchange.
In more detail, our contributions are as follows:

– We formalize the notion of BFE by presenting a suitable security model. The intu-
ition behind BFE is to provide highly efficient decryption and puncturing. Interest-
ingly, puncturing mainly consists of deleting parts of the secret key. This approach
is in contrast to existing puncturable encryption schemes, where puncturing and/or
decryption is a very expensive operation.

– We propose efficient constructions of BFE. First, we present a direct construc-
tion which uses ideas from the Boneh–Franklin identity-based encryption (IBE)
scheme [12]. This construction allows us to achieve constant size public keys. Sec-
ond, we present a black-box construction from a ciphertext-policy attribute-based
encryption (CP-ABE) scheme that only needs to be small-universe (i.e., bounded)
and to support threshold policies, which allows us to achieve constant size ci-
phertexts. Third, we describe a generic construction from identity-based broadcast
encryption (IBBE), which is efficiently instantiable with the IBBE scheme by Del-
erablée [22]. This construction allows us to simultaneously achieve compact public
keys and constant size ciphertexts. Finally, we propose time-based BFE (TB-BFE),
an enhancement of BFE which additionally provides forward secrecy and thus pre-
vents message suppression attacks, and provide a generic construction of TB-BFE
from selectively secure HIBEs.

– We adapt the Fujisaki–Okamoto (FO) transformation [25] to obtain CCA security
in the random oracle model (ROM) to the BFE setting. This is technically non-
trivial, and therefore we consider it as another interesting aspect of this work.
In particular, the original FO transformation [25] works only for schemes with
perfect correctness. Recently, Hofheinz et al. [37] have described a variant which

2We discuss below why this is not only tolerable, but actually a very reasonable approach for applications
like 0-RTT key exchange.
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works also for schemes with negligible correctness error. We formalize additional
properties that are required to apply the FO transform, and show that our CPA-
secure constructions satisfy them. This serves as a template that allows an easy
application of the FO transform in a black-box manner to BFE schemes. Moreover,
we also discuss how to achieve CCA security in the standard model.

– We provide a construction of a forward-secret 0-RTT key exchange protocol (in
the sense of GHJL) from TB-BFE. Furthermore, we give a detailed comparison
of (TB-)BFE with other PE schemes and discuss the efficiency in the context of
the proposed application to forward-secret 0-RTT key exchange. In particular, our
construction of forward-secret 0-RTT key-exchange from TB-BFE has none of the
drawbacks mentioned in Introduction (at the cost of a somewhat larger secret key,
that, however, shrinks with the number of puncturings). Consequently, our forward-
secret 0-RTT key exchange can be seen as a significant step forward to construct
very practical forward-secret 0-RTT key exchange protocols.

On tolerating a non-negligible correctness error for 0-RTT The huge efficiency gain
of our construction stems partially from the relaxation of allowing a non-negligible
correctness error, which, in turn, stems from the potentially non-negligible false-positive
probability of a Bloom filter. While this is unusual for classical public-key encryption
schemes, we consider it as a reasonable approach to accept a small, but non-negligible
correctness error for the 0-RTT mode of a key exchange protocol, in exchange for the
huge efficiency gain.

For example, a 1/10000 chance that the key establishment fails allows to use 0-RTT in
9999 out of 10,000 cases on average, which is a significant practical efficiency improve-
ment. Furthermore, the communicating parties can implement a fallback mechanism
which immediately continues with running a standard 1-RTT key exchange protocol
with perfect correctness, if the 0-RTT exchange fails. Thus, the resulting protocol can
have the same worst-case efficiency as a 1-RTT protocol, while most of the time 0-RTT
is already sufficient to establish a key and full forward secrecy is always achieved.

Compared to other practical 0-RTT solutions, note that both TLS 1.3 [45] and QUIC [47]
have similar fallback mechanisms. Furthermore, to achieve at least a very weak form
of forward secrecy, they define so called tickets [45] or server configuration (SCFG)
messages [47], which expire after a certain time. Forward secrecy is only achieved af-
ter the ticket/SCFG message has expired and the associated secrets have been erased.
Therefore, the lifetime should be kept short. If a client connects to a server after the
ticket/SCFG message has expired, then the fallback mechanism is invoked and a full
1-RTT handshake is performed. In particular for settings where a client connects only
occasionally to a server, and for reasonably chosen parameters and a moderate life time
of the ticket/SCFG message, which at least guarantees some weak form of forward
secrecy, this requires a full handshake more often than with our approach.

Finally, note that puncturable encryption with perfect (or negligible) correctness error
inherently seems to require secret keys whose size at least grows linearly with the
number of puncturings. This is because any such scheme inherently must (implicitly
or explicitly) encode information about the list of punctured ciphertexts into the secret
key, which lower-bounds the size of the secret key [41]. By tolerating a non-negligible
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correctness error, we are also able to restrict the growth of the secret key to a limit which
seems tolerable in practice.

Remark on forward secrecy and time-based constructions In the literature, time-based
puncturable encryption schemes are often termed puncturable forward-secure encryption
schemes [31,33], which may seem confusing as the puncturable encryption schemes
already provide mechanisms to achieve forward secrecy. The motivation for why time-
based constructions was initially introduced is along the same lines and goes back to
Green and Miers [31]. They described a message suppression attack against the forward
secrecy of puncturable encryption. An adversary that suppresses message delivery can
break forward secrecy of the primitive by compromising the receiving party’s secret at
a later point in time, and retroactively decrypting all suppressed messages.

Hence, Green and Miers proposed to construct a time-based construction where the
attack is only feasible until both parties move to the next time slot, achieving a form
of delayed forward secrecy. As the time-based constructions were inspired by forward-
secure encryption, the qualifier “forward-secure” was added to the primitive’s name. For
a detailed discussion on the meaning of forward secrecy in non-interactive settings such
as 0-RTT, we refer to a recent work by Gellert and Boyd [14].

We believe a distinction between time-based and non-time-based constructions is
meaningful. It makes explicit that the non-time-based constructions puncture out cipher-
texts, in order to remove decryption capability for this ciphertext. In contrast, time-based
constructions additionally allow to puncture time slots, which removes decryption ca-
pability for all possible ciphertexts from previous time slots. For our constructions, this
also makes it possible to keep the size of secret keys smaller, as we explain in Sect. 4.

Differences to the conference version [23] In contrast to the conference version [23],
this extended version contains some additions and updates. First, we chose to present
all constructions explicitly as Bloom filter key encapsulation mechanisms (BFKEMs)
instead of referring to them as Bloom filter encryption (cf. Sect. 2 for a discussion).
Second, we provide an additional generic construction of a BFKEMfrom identity-based
broadcast encryption (IBBE) in Sect. 3.4. Furthermore, we have corrected some ambi-
guities and minor issues within the definitional framework. Third, we provide a more
elaborate discussion on the choice of parameters to provide more insights and decision
support for the practical application of our proposals.

Follow-up work After the conference version of this paper, there was some follow-up
work which we want to mention for completeness. Aviram et al. [3] study practical
forward secrecy for 0-RTT in TLS 1.3 and in particular the session resumption fea-
ture of TLS 1.3. Lauer et al. [40] introduce a single-pass circuit construction protocol
with forward secrecy for Tor, called Tor 0-RTT (T0RTT), which they construct from
BFE. Dallmeier et al. [21] use BFE to implement the first fully forward-secret 0-RTT
key exchange in Google’s QUIC protocol and analyze its performance. Finally, there
is follow-up work on puncturable encryption from Sun et al. [46] providing further
constructions with negligible correctness error and different trade-offs.
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Outline The remainder of this paper is organized as follows. In Sect. 2, we introduce
the concept of Bloom filter encryption including a discussion on how to choose suitable
Bloom filter parameters for our schemes. In Sect. 3, we present three constructions of
Bloom filter encryption alongside with a modified Fujisaki–Okamoto transformation to
achieve CCA security for our schemes. In Sect. 4, we formally define time-based Bloom
filter encryption and present a generic construction based on hierarchical identity-based
encryption. Section 5 explains that our time-based construction can be used to construct
forward-secret 0-RTT key exchange. In Sect. 6, we compare computational efficiency
and parameter size of our constructions with existing constructions in literature. Section
7 concludes the results of our work.

2. Bloom Filter Encryption

Notation Let λ ∈ N be the security parameter. For a finite set S, we denote by s ←$ S
the process of sampling s uniformly from S. For an algorithm A, let y ←$ A(λ, x)
be the process of running A on input (λ, x) with access to uniformly random coins and
assigning the result to y. (We may omit to mention the λ-input explicitly and assume that
all algorithms take λas input.) To make the random coins r explicit, we write A(λ, x; r).
We say an algorithm A is probabilistic polynomial time (PPT) if the running time of A
is polynomial in λ. A function f is negligible if its absolute value is smaller than the
inverse of any polynomial (i.e., if ∀ c ∃ k0 ∀ λ ≥ k0 : | f (λ)| < 1/λc). Furthermore, for
n ∈ N, let [n] := {1, . . . , n} and let BilGen be an algorithm that, on input a security
parameter 1λ, outputs (q, e, G1, G2, GT , g1, g2) ←$ BilGen(1λ), where G1, G2, GT are
groups of prime order q with bilinear map e : G1×G2 → GT and generators gi ∈ Gi for
i ∈ {1, 2}. Finally, we will use square brackets to access the individual bits of bitstrings,
i.e., T [i] denotes the i-th bit of a bitstring T = {0, 1}m , for m ∈ N.

Bloom Filter Encryption The key idea behind Bloom filter encryption (BFE) is that
the key pair of such a scheme is associated with a Bloom filter (BF) [10], a probabilistic
data structure for the approximate set membership problem with a non-negligible false-
positive probability in answering membership queries. A BF initially represents a bit
array of m bits, all set to 0. Insertion takes an element and inputs it to k different hash
functions each mapping the element to one of the m array positions, which are then
set to 1. When querying the BF on an element, it is considered to be in the BF if all
positions obtained by evaluating the hash evaluations are set to 1. The initial secret key
sk output by the key generation algorithm of a BFE scheme corresponds to an empty
BF. Encryption takes a message M and the public key pk, samples a random element s
(acting as a tag for the ciphertext) corresponding to the universeU of the BF and encrypts
a message using pk with respect to the k positions set in the BF by s. A ciphertext is
then basically identified by s and decryption works as long as at least one index pointed
to by s in the BF is still set to 0. Puncturing the secret key with respect to a ciphertext
(i.e., the tag s of the ciphertext) corresponds to inserting s in the BF (i.e., updating the
corresponding indices to 1 and deleting the corresponding parts of the secret key). This
basically means updating sk such that it no longer can decrypt any position indexed by
s.
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A note on modeling BFE For 0-RTT key establishment, our prime application in this
paper, we do not need a full-blown encryption scheme, but only a key-encapsulation
mechanisms (KEM) to transport a symmetric encryption key. Consequently, we chose
to focus on what we call Bloom filter key encapsulation mechanisms (BFKEMs). We
stress that defining BFKEM instead of BFE does not represent any limitation, as any
KEM can generically be converted into a secure full-blown encryption scheme [25]. Con-
versely, any secure encryption scheme trivially yields a secure KEM. For the reasons
mentioned before we, henceforth, may thus use the terms BFE and BFKEM interchange-
ably. Nonetheless, for completeness, we give stand-alone definitions of BFE tolerating
a non-negligible correctness error in “Appendix A.”

2.1. Formal Definition of Bloom Filters

A Bloom filter (BF) [10] is a probabilistic data structure for the approximate set mem-
bership problem. It allows a succinct representation T of a set S of elements from a
large universe U . For elements s ∈ S a query to the BF always answers 1 (“yes”),
i.e., its false-negative probability is 0. Ideally, a BF would always return 0 (“no”) for
elements s 	∈ S, but the succinctness of the BF comes at the cost that for any query to
s 	∈ S the answer can be 1, too, but only with small probability (called the false-positive
probability).

We will only be interested in the original construction of Bloom filters [10] and omit
a general abstract definition. Instead, we describe the construction from [10] directly.
For a general definition, we refer to [43].

Definition 1. (Bloom Filter) A Bloom filter B for set U consists of algorithms B =
(BFGen,BFUpdate,BFCheck), which are defined as follows.

BFGen(m, k): This algorithm takes as input two integers m, k ∈ N. It first sam-
ples k universal hash functions H1, . . . , Hk , where Hj : U →
[m], defines H := (Hj ) j∈[k] and T := 0m , and outputs (H, T ).

BFUpdate(H, T, u): Given H = (Hj ) j∈[k], T ∈ {0, 1}m , and u ∈ U , this algorithm
defines the updated state T ′ by first assigning T ′ := T . Then, it
sets T ′[Hj (u)] := 1 for all j ∈ [k], and finally returns T ′.

BFCheck(H, T, u): Given H = (Hj ) j∈[k], T ∈ {0, 1}m , and u ∈ U , this algorithm
returns a bit b := ∧

j∈[k] T [Hj (u)].

2.1.1. Relevant Properties of Bloom Filters

Let us summarize the properties of Bloom filters relevant to our work.

Perfect completeness. A Bloom filter always “recognizes” elements that have been
added with probability 1. More precisely, let S = (s1, . . . , sn) ∈ Un be any vector
of n elements of U . Let (H, T0) ←$ BFGen(m, k) and define

Ti = BFUpdate(H, Ti−1, si ) for i ∈ [n].
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Then, for all s∗ ∈ S and all (H, T0) ←$ BFGen(m, k) with m, k ∈ N, it holds that

Pr
[
BFCheck(H, Tn, s

∗) = 1
] = 1,

where the probability is taken over the random coins of BFGen.
Compact representation of S Independent of the size of the set S ⊂ U and the rep-

resentation of individual elements of U , the size of representation T is a constant
number of m bits. A larger size of S increases only the false-positive probability,
as discussed below, but not the size of the representation.

Bounded false-positive probability The probability that an element which has not yet
been added to the Bloom filter is erroneously “recognized” as being contained in
the filter can be made arbitrarily small, by choosing m and k adequately, given (an
upper bound on) the size of S.

More precisely, let S = (s1, . . . , sn) ∈ Un be any vector of n elements of U . Then, for
any s∗ ∈ U \ S, the false positive probability μ is bounded by

μ := Pr
[
BFCheck(H, Tn, s

∗) = 1
] ≤

(
1 − e− (n+1/2)k

m−1

)k
,

where (H, T0) ←$ BFGen(m, k), Ti = BFUpdate(H, Ti−1, si ) for i ∈ [n], and the
probability is taken over the random coins of BFGen. See Goel and Gupta [29] for a
proof of this bound.

Discussion on the choice of parameters In order to provide a first intuition on the
concrete selection of Bloom filter parameters and their impact on the size of ciphertexts,
public and secret keys for BFE, we subsequently give some examples.

Suppose we are given an upper bound n on the number of elements inserted into the
Bloom filter, and an upper bound p on the false positive probability for this number of
elements that we can tolerate. Our goal is to determine the size m of the Bloom filter
and the number k of hash functions to achieve a false positive probability of μ ≤ p with
respect to n. As already mentioned above, Goel and Gupta [29] proved that the false
positive probability μ of a Bloom filter is strictly bounded by

μ ≤
(

1 − e− (n+1/2)k
m−1

)k
.

Hence, if we set

m :=
⌈−(n + 1/2) log2 p

ln 2

⌉

+ 1 and k :=
⌈

(m − 1) ln 2

n + 1/2

⌉

, (1)

then due to our choice of k we obtain

(n + 1/2)k

m − 1
≤ (n + 1/2)

(m−1) ln 2
n+1/2

m − 1
= ln 2
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Table 1. Bloom filter parameters and size of public keys, secret keys, and ciphertexts of the construction from
Sect. 3.1 (with 120-bit security level and using the pairing-friendly BLS12-381 curve) for different choices
of the false positive probability p and the number of inserted elements n.


log2(p)� �log2(n)� �log2(m)� k |C | |pk| |sk|
−7 16 20 8 215 B 215 B 30.14 MB
−7 20 24 8 215 B 215 B 482.22 MB
−7 24 28 8 215 B 215 B 7.53 GB
−7 30 34 8 215 B 215 B 482.22 GB
−10 16 20 11 260 B 260 B 43.06 MB
−10 20 24 11 260 B 260 B 688.89 MB
−10 24 28 11 260 B 260 B 10.76 GB
−10 30 34 11 260 B 260 B 688.89 GB
−16 16 21 17 350 B 350 B 68.89 MB
−16 20 25 17 350 B 350 B 1.08 GB
−16 24 29 17 350 B 350 B 17.22 GB
−16 30 35 17 350 B 350 B 1.08 TB
−20 16 21 21 410 B 410 B 86.11 MB
−20 20 25 21 410 B 410 B 1.35 GB
−20 24 29 21 410 B 410 B 21.53 GB
−20 30 35 21 410 B 410 B 1.35 TB

and therefore

μ ≤
(

1 − e− (n+1/2)k
m−1

)k ≤ 1

2k
.

Furthermore, due to the choice of m in (1), we obtain a bound on k as

k ≥ (m − 1) ln 2

n + 1/2
≥

(−(n+1/2) log2 p
ln 2

)
ln 2

n + 1/2
= − log2 p

which yields the desired bound μ ≤ 2−k ≤ p on the false positive probability of the
Bloom filter.

Table 1 lists m and k for different values of p and n. In order to give an intuition of the
impact of different choices of p and n, Table 1 also lists the size of ciphertexts, secret and
public keys, when the BFE construction in Sect. 3.1 is instantiated for these parameters
using the pairing-friendly BLS12-381 curve, which provides a security level of about
“120-bit.”

Here, we need to emphasize that initially the secret key (representing the empty BF)
has its maximum size, but every puncturing (i.e., addition of an element to the BF),
reduces the size of the secret key. Moreover, we stress that the false-positive probability
represents an upper bound as it assumes that all n elements are added to the BF. The false
positive probability before n insertions, as a function of the number of inserted elements
and for given parameters m and k, is discussed below. Finally, we note that when we use
our time-based BFE approach (TB-BFE) from Sect. 4, we can even reduce the secret
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key size by reducing the maximum number of puncturings at the cost of switching the
time intervals more frequently.

False-positive probability p before n insertions So far we have argued that we can
bound the probability of an non-inserted element being recognized by a BF after n
elements have been added to the BF. However, we stress that this probability is far lower
if only a fraction of the n elements have been added. We can illustrate this by computing
the false-positive probability of an element after only α < n insertions.

Lemma 1. Let (H, Tα) be a Bloom filter where α random elements have been added.
The false-positive probability of a random element u ∈ U being recognized by the Bloom
filter is

Pr[BFCheck(H, Tn, u)] =
(

1 −
(

1 − 1

m

)αk
)k

.

We prove the above lemma in “Appendix B.”
To give some intuition how the false-positive probability evolves over time, we plot

the above function for n = 220 and k ∈ {8, 11, 17, 21} in Fig. 1. Furthermore, we provide
plots for n ∈ {216, 224, 230} in “Appendix C.” It is clearly visible that the false-positive
probability is overwhelmingly low if only a fraction of the n elements have been added
to the Bloom filter.

A remark on Bloom filters in adversarial environments For our bounds of the cor-
rectness error in the BFKEM, we assume that the puncturing inserts random elements
(ciphertexts) into the BF. Now, an adversary could more efficiently exhaust a BF by a
clever choice of the ciphertexts and thus violating our bounds. This would essentially
represent a denial-of-service (DoS) attack on the scheme. We, however, stress that this
class of attacks is hard to prevent in our application in general and thus we do not consider
this as an attack vector. Nevertheless, one approach to counter such types of attacks on
BFs is the concept of adversarial resilient Bloom-filters introduced by Naor and Yogev
in [43]. However, the efficient approach to construct such BFs in [43] requires a secret
(unknown to the adversary) to evaluate BF queries, and thus would not applicable in our
setting. Naor and Yogev additionally provide a construction secure against unbounded
adversaries, which, however, requires to know the precise set S upfront. This is not the
case in our application, and we leave the study of BFs in adversarial environments for
application in BFE for future work.

2.2. Formal Model of a BFKEM

Subsequently, we introduce the formal model for BFKEM, which is a KEM-variant of
puncturable encryption (PE) [17,20,31,33] with the difference that with BFKEM we
tolerate a non-negligible correctness error. Our Definition 2 is a variant of the one in [33],
except that we allow the key generation to take the additional parameters m and k (of the
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Fig. 1. The false-positive probability of a random element after α elements have been added to a Bloom filter
with n = 220 for k ∈ {8, 11, 17, 21}.

BF) as input, which specify the correctness error. As already mentioned in Introduction,
resorting to present BFKEMs instead of BFE does not represent any limitation.

Definition 2. (BFKEM) A Bloom filter key encapsulation scheme (BFKEM) with key
space K is a tuple (KGen,Enc,Punc,Dec) of PPT algorithms:

KGen(1λ,m, k) : Takes as input a security parameter λ, parametersm and k and outputs
a secret and public key (sk,pk) (we assume that K is implicit in pk, and that pk
is implicit in sk).

Enc(pk) : Takes as input a public key pk and outputs a ciphertext C and a symmetric
key K.

Punc(sk,C) : Takes as input a secret key sk, a ciphertext C and outputs an updated
secret key sk′.

Dec(sk,C) : Takes as input a secret key sk, a ciphertext C and deterministically com-
putes and outputs a symmetric key K or ⊥ if decapsulation fails.

Correctness We start by defining correctness of a BFKEM scheme. Basically, here
one requires that a ciphertext can always be decapsulated with unpunctured secret keys.
However, we allow that if punctured secret keys are used for decapsulation, then the
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probability that the decapsulation fails is bounded by some non-negligible function in
the scheme’s parameters m, k.

Definition 3. (Correctness) We require that the following holds for all λ,m, k ∈ N

and any (sk,pk) ←$ KGen(1λ,m, k).
For any (arbitrary interleaved) sequence of invocations of

sk j+1 ←$ Punc(sk j ,C j ),

where j ∈ {1, . . . , n}, sk1 := sk, and (C j ,K j ) ←$ Enc(pk), it holds that

Pr
[
Dec(skn+1,C

∗) 	= K ∗] ≤
(

1 − e− (n+1/2)k
m−1

)k + ε(λ),

where (C∗,K∗) ←$ Enc(pk) and ε(·) is a negligible function in λ. The probability is
over the random coins of KGen, Punc, and Enc.

Remark 1. The bound
(

1 − e− (n+1/2)k
m−1

)k
is motivated by the bound achievable by

Bloom filters, cf. Equation (1) and the subsequent discussion.

2.3. Additional Properties of a BFKEM

In this section, we will define additional properties of a BFKEM that we will use for the
application to 0-RTT key exchange from [33] and to construct a CCA-secure BFKEM
via the Fujisaki–Okamoto (FO) transformation, as described in Sect. 3.2. We will show
below that our constructions of CPA-secure BFKEMs satisfy these additional properties,
and thus are suitable for our variant of the FO transformation, and to construct 0-RTT
key exchange.

Extended correctness Intuitively, we first require an extended variant of correctness
which demands that (1) decapsulation always yields a failure when attempting to de-
capsulate under a secret key previously punctured for that ciphertext. This is analogous
to [33]. Second, we additionally demand that (2) decapsulating an honest ciphertext with
the unpunctured key does always succeed and (3) if decryption does not fail, then the
decapsulated value must match the key returned by the Enc algorithm, for any key sk′
obtained from applying any sequence of puncturing operations to the initial secret key
sk.

Definition 4. (ExtendedCorrectness) We require that the following holds for allλ,m, k, n ∈
N and any (sk,pk) ←$ KGen(1λ,m, k).

For any (arbitrary interleaved) sequence of invocations of

sk j+1 ←$ Punc(sk j ,C j )

where j ∈ {1, . . . , n}, sk1 := sk, and (C j ,K j ) ←$ Enc(pk), it holds that:
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1. Impossibility of false-negatives:
Dec(skn+1,C j ) = ⊥ for all j ≤ n.

2. Perfect correctness of the initial secret key:
Dec(sk,C) = K for all (C,K) ←$ Enc(pk).

3. Semi-correctness of punctured secret keys:
If Dec(sk j+1,C) 	= ⊥ then Dec(sk j+1,C) = Dec(sk,C).

Separable randomness We require that the encapsulation algorithm Enc essentially
reads the key K in (C,K) ←$ Enc(pk) directly from its random input tape. Intuitively,
this will later enable us to make the randomness r used by the encapsulation algorithm
Enc dependent on the key K computed by Enc.

Definition 5. (Separable Randomness) Let BFKEM = (KGen,Enc,Punc,Dec) be
a BFKEM. We say that BFKEMhas separable randomness, if one can equivalently write
the encapsulation algorithm Enc as

(C,K) ←$ Enc(pk) = Enc(pk; (r,K)),

for uniformly random (r,K) ∈ {0, 1}ρ+λ, where Enc(·; ·) is a deterministic algorithm
whose output is uniquely determined by pk and the randomness (r,K) ∈ {0, 1}ρ+λ.

Remark We note that one can generically construct a separable BFKEM from any
non-separable BFKEM. Given a non-separable BFKEM with encapsulation algorithm
Enc, a separable BFKEM with encryption algorithm Enc′ can be obtained as follows:

Enc′(pk; (r,K′)) : Run (C,K) ←$ Enc(pk; r), set C ′ := (C,K ⊕ K′) return (C ′,K′).
We need separability in order to apply our variant of the FO transformation, which is
the reason why we have to make it explicit. Alternatively, we could have started from
a non-separable BFKEM and applied the above construction. However, this adds an
additional component to the ciphertext, while the construction given in Sect. 3.1 will
already be separable, such that we can avoid this overhead.

Publicly checkable puncturing Finally, we need that it is efficiently checkable whether
the decapsulation algorithm outputs ⊥ = Dec(sk,C), given not the secret key sk, but
only the public key pk, the ciphertext C to be decrypted, and the sequence C1, . . . ,Cw

at which the secret key sk has been punctured.

Definition 6. (Publicly Checkable Puncturing) Let Q = (C1, . . . ,Cw) be any list of
ciphertexts. We say that BFKEMallows publicly checkable puncturing, if there exists an
efficient algorithm CheckPunct with the following correctness property.

1. Run (sk,pk) ←$ KGen(1λ,m, k).
2. Compute (Ci ,Ki ) ←$ Enc(pk) and sk = Punc(sk,Ci ) for i ∈ [w].
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Fig. 2. Indistinguishability-based security for BFKEMs.

3. Let C be any string. We require that

⊥ = Dec(sk,C) ⇐⇒ ⊥ = CheckPunct(pk,Q,C).

From a high-level perspective, this additional property will be necessary to simulate the
decryption oracle properly in the CCA security experiment when our variant of the FO
transformation is applied. Together with the second and third property of Definition 4,
it replaces the perfect correctness property required in the original FO transformation.

Min-entropyof ciphertexts Following [37], we require that ciphertexts of a randomness-
separable BFKEM have sufficient min-entropy, even if K is fixed:

Definition 7. (γ -Spreadness) LetBFKEM = (KGen,Enc,Punc,Dec)be a randomness-
separable BFKEM with ciphertext space C. We say that BFKEM is γ -spread, if for any
honestly generated pk, any key K and any C ∈ C

Pr
r ←$ {0,1}ρ

[
C = Enc(pk; (r,K))

] ≤ 2−γ .

2.4. Security Definitions

We define three security properties for BFKEMs. The two “standard” security no-
tions are indistinguishability under chosen-plaintext (IND-CPA) and chosen-ciphertext
(IND-CCA) attacks. In addition, we define one-wayness under chosen-plaintext attacks
(OW-CPA). The latter is the weakest notion among the ones considered in this paper
and implied by both IND-CPA and IND-CCA, but sufficient for our generic construction
of IND-CCA-secure BFKEMs.

Indistinguishability-based security Figure 2 defines the IND-CPA and IND-CCA ex-
periments for BFKEMs. The experiments are similar to the security notions for conven-
tional KEMs, but the adversary can arbitrarily puncture the secret key via thePunc oracle
and retrieve the punctured secret key via the Corr oracle, once it has been punctured on
the challenge ciphertext C∗.
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Fig. 3. OW-CPA security for BFKEMs.

Definition 8. (Indistinguishability-Based Security of BFKEM) For T ∈
{IND-CPA, IND-CCA}, we define the advantage of an adversary A in the T experi-
ment ExpTA,BFKEM(λ,m, k) as

AdvTA,BFKEM(λ,m, k) :=
∣
∣
∣
∣Pr

[
ExpTA,BFKEM(λ,m, k) = 1

]
− 1

2

∣
∣
∣
∣ .

A Bloom filer key-encapsulation schemeBFKEM isT ∈ {IND-CPA, IND-CCA} secure,
if AdvTA,BFKEM(λ,m, k) is a negligible function in λ for all m, k > 0 and all PPT
adversaries A.

One-wayness under chosen-plaintext attack Figure 3 defines the OW-CPA experi-
ment. The experiment is similar to the IND-CPA experiment, except that the goal of the
adversary is to recover the encapsulated key, given a random challenge ciphertext.

Definition 9. (One-Wayness Under Chosen-Plaintext Attack) We define the advantage
of an adversary A in experiment ExpOW-CPA

A,BFKEM(λ,m, k) as

AdvOW-CPA
A,BFKEM(λ,m, k) := Pr

[
ExpOW-CPA

A,BFKEM(λ,m, k) = 1
]
.

A BFKEM is OW-CPA secure, if AdvOW-CPA
A,BFKEM(λ,m, k) is a negligible function in λ

for all m, k > 0 and all PPT adversaries A.

Relation to “standard KEM security” We would like to point out that it is possible
to remove both the puncture and corrupt oracle and immediately send the secret key
(punctured at the challenge ciphertext) to the adversary. However, this security definition
is only equivalent to our security definition if an adversary cannot detect in which order
ciphertexts have been punctured. That is, this security definition only provides reasonable
security for schemes where the secret key does not reveal the order of puncturings. A
formalization of this can be found in [26].
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3. BFKEM Constructions

In this section, we present different BFKEMconstructions. We start with a CPA-secure
version inspired by the hashed Boneh–Franklin identity-based encryption (IBE)
scheme [12] in Sect. 3.1 and then show how we can obtain a CCA secure variant via the
Fujisaki–Okamoto (FO) transform [25] in the random oracle model (ROM) in Sect. 3.2.
Then, in Sect. 3.3 we present a construction of a CPA-secure BFKEMfrom ciphertext-
policy attribute-based encryption (CP-ABE) schemes and discuss how to obtain CCA
security via the FO transform in the ROM. Finally, in Sect. 3.4 we present a CPA secure
BFKEMfrom identity-based broadcast encryption (IBBE) and discuss how to obtain
CCA security via the FO transform in the ROM or the CHK transform [16] without
requiring random oracles.

3.1. BFKEM from Hashed IBE

Construction In the sequel, letParams := (q, e, G1, G2, GT , g1, g2) ←$ BilGen(1λ),
and gT = e(g1, g2). We will always assume that all algorithms described below implic-
itly receive these parameters as additional input. LetB = (BFGen,BFUpdate,BFCheck)
be a Bloom filter for set G1. Furthermore, let G : N → G2 and E : GT → {0, 1}λ
be cryptographic hash functions (which will be modeled as random oracles [7] in the
security proof).

Let BFKEM = (KGen,Enc,Punc,Dec) be defined as follows.

KGen(1λ,m, k) : This algorithm first generates a Bloom filter instance by running
(H, T ) ←$ BFGen(m, k). Then, it chooses α ←$

Zq and computes and returns

sk := (T, (G(i)α)i∈[m]) and pk := (gα
1 , H).

Remark The reader familiar with the Boneh–Franklin IBE scheme [12] may note that
the secret key contains m elements of G2, each essentially being a secret key of the
Boneh–Franklin scheme for “identity” i , i ∈ [m], with respect to “master public-key”
gα

1 .

Enc(pk) : This algorithm takes as input a public keypk of the above form. It samples

a uniformly random keyK ←$ {0, 1}λ and exponent r ←$
Zq . Then, it computes

i j := Hj (gr1) for (Hj ) j∈[k] := H , then y j = e(gα
1 ,G(i j ))r for j ∈ [k], and

finally

C := (
gr1, (E(y j ) ⊕ K) j∈[k]

)
.

It outputs (C,K) ∈ (G1 × {0, 1}kλ) × {0, 1}λ.

Remark Note that for each j ∈ [k], the tuple (gr1, E(y j ) ⊕ K) is essentially a “hashed
Boneh–Franklin IBE” ciphertext, encrypting K for “identity” i j = Hj (gr1) and with
respect to master public key gα

1 , where the identity is derived deterministically from a
“unique” (with overwhelming probability) ciphertext component gr1. Thus, the ciphertext
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C essentially consists of k Boneh–Franklin ciphertexts that share the same randomness
r , each encrypting the same key K for an “identity” derived deterministically from gr1.

Note also that this construction of Enc satisfies the requirement of separable random-
ness from Definition 5. Furthermore, ciphertexts are γ -spread according to Definition 7
with γ = log2 p, because gr1 is uniformly distributed over G1.

Punc(sk,C) : Given a ciphertext C := (
gr1, (E(y j ) ⊕ K) j∈[k]

)
and secret key sk =

(T, (sk[i])i∈[m]), the puncturing algorithm first computes T ′ = BFUpdate
(H, T, gr1). Then, for each i ∈ [m] it defines

sk′[i] :=
{
sk[i] if T ′[i] = 0, and

⊥ if T ′[i] = 1,

where T ′[i] denotes the i-th bit of T ′. Finally, this algorithm returns

sk′ := (T ′, (sk′[i])i∈[m]).

Remark Note that the above procedure is correct even if the procedure is applied
repeatedly with different ciphertexts C , since the BFUpdate algorithm only changes
bits of T from 0 to 1, but never from 1 to 0. So we can delete a secret key element
sk[i] once T ′[i] has been set to 1. Furthermore, we have sk′[i] = ⊥ ⇐⇒ T ′[i] =
1. Intuitively, this will ensure that we can use this key to decrypt a ciphertext C :=(
gr1, (E(y j ) ⊕ K) j∈[k]

)
if and only if BFCheck(H, T, gr1) = 0, where (H, T ) is the

Bloom filter instance contained in the public key. Note also that the puncturing algorithm
essentially only evaluates k universal hash functions H = (Hj ) j∈[k] and then deletes a
few secret keys, which makes this procedure extremely efficient. Finally, observe that
the filter state T can be efficiently re-computed given only public information, namely
the list of hash functions H contained in pk and the sequence of ciphertexts C1, . . . ,Cw

on which a secret key has been punctured. This yields the existence of an efficient
CheckPunct according to Definition 6.

Dec(sk,C) : Given a secret key sk = (T, (sk[i])i∈[m]) and a ciphertext C :=
(C[0],C[i1], . . . ,C[ik]) it first checks whether BFCheck(H, T,C[0]) = 1,
and outputs ⊥ in this case. Otherwise, note that BFCheck(H, T,C[0]) = 0
implies that there exists at least one index i∗ with sk[i∗] 	= ⊥. It picks the
smallest index i∗ ∈ {i1, . . . , ik} such that sk[i∗] = G(i∗)α 	= ⊥, computes

yi∗ := e(gr1,G(i∗)α),

and returns K := C[i∗] ⊕ E(yi∗).

Remark If BFCheck(H, Tn,C[0]) = 0, then the decryption algorithm performs a
“hashed Boneh–Franklin” decryption with a secret key for one of the identities. Note
that Dec(skn,C) 	= ⊥ ⇐⇒ BFCheck(H, T,C[0]) = 0, which guarantees the first
extended correctness property required by Definition 4. It is straightforward to verify
that the other two extended correctness properties of Definition 4 hold as well.
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Design choices We note that we have chosen to base our BFKEM on hashed Boneh–
Franklin IBE instead of standard Boneh–Franklin for two reasons. First, it allows us to
keep ciphertexts short and independent of the size of the binary representation of elements
of GT . This is useful, because the recent advances for computing discrete logarithms in
finite extension fields [39] apply to the target group of state-of-the-art pairing-friendly
elliptic curve groups. Recent assessments of the impact of these advances by Menezes et
al. [42] as well as Barbulescu and Duquesne [4] suggest that for currently used efficient
curve families such as BN [6] or BLS [5] curves a conservative choice of parameters for
the 128 bit security level yields sizes of GT elements of ≈ 4600−5500 bits. The hash
function allows us to “compress” these group elements in the ciphertext to 128 bits (the
size of a symmetric encryption key). Even if future research enables the construction
of bilinear maps where elements of GT can be represented by 2λ bits for λ-bit security
(which is optimal), it is still preferable to hash group elements to λ bits to reduce the
ciphertext by a factor of about 2. Second, by modeling E as a random oracle, we can
reduce security to a weaker complexity assumption.

Correctness error of this scheme We will now explain that the correctness error of this
scheme is essentially identical to the false-positive probability of the Bloom filter, up to
a statistically small distance which corresponds to the probability that two independent
ciphertexts share the same randomness r .

For m, k ∈ N, let (sk0,pk) ←$ KGen(1λ,m, k), let U := {C : (C,K) ←$ Enc(pk)}
denote the set of all valid ciphertext with respect to pk. Let S = (C1, . . . ,Cn) be a
list of n ciphertexts, where (Ci ,Ki ) ←$ Enc(pk), and run ski = Punc(ski−1,Ci ) for
i ∈ [n] to determine the secret key skn obtained from puncturing sk0 iteratively on all
ciphertexts Ci ∈ S.

Now let us consider the probability

Pr
[
Dec(skn,C∗) 	= K∗ : (C∗,K∗) ←$ Enc(pk),C∗ 	∈ S]

that a newly generated ciphertext C∗ 	∈ S is not correctly decrypted by skn . To this
end, let C∗[0] = gr

∗
1 denote the first component of ciphertext C∗ = (gr

∗
1 ,C∗

1 , . . . ,C∗
k ),

and likewise let Ci [0] denote the first component of ciphertext Ci for all Ci ∈ S.
Writing skn = (Tn, (skn[i])i∈[m]) and pk = (gα

1 , H), one can now verify that we have
Dec(skn,C∗) 	= K∗ ⇐⇒ BFCheck(H, Tn,C∗[0]) = 1, because
BFCheck(H, Tn,C∗[0]) = 0 guarantees that there exists at least one index j such
that skn[Hj (C∗[0])] 	= ⊥, so correctness of decryption follows essentially from cor-
rectness of the Boneh–Franklin scheme. Thus, we have to consider the probability that
BFCheck(H, Tn,C∗[0]) = 1. We distinguish between two cases:



Bloom Filter Encryption and Applications Page 19 of 59 13

1. There exists an index i ∈ [n] such that C∗[0] = Ci [0]. Note that this implies
immediately that BFCheck(H, Tn,C∗[0]) = 1. However, recall that C∗[0] = gr

∗
1

is a uniformly random element of G1. Therefore the probability that this happens
is upper bounded by n/q, which is negligibly small.

2. C∗[0] 	= Ci [0] for all i ∈ [n]. In this case, as explained in Sect. 2.1, the soundness
of the Bloom filter guarantees that

Pr[BFCheck(H, Tn,C
∗[0]) = 1] ≤

(
1 − e− (n+1/2)k

m−1

)k ≤ 2−k .

In summary, the correctness error of this scheme from the discussion in Sect. 2.1 is
approximately 2−k + n/q. Since n/q is negligibly small, this essentially amounts to the
correctness error of the Bloom filter, which in turn depends on the number of ciphertexts
n, and the choice of parameters m, k.

Flexible instantiability of this scheme Our scheme is highly parameterizable in the
sense that we can adjust the size of keys and ciphertexts by adjusting the correctness
error (determined by the choice of parameters m, k that in turn determine the false-
positive probability of the Bloom filter) of our scheme.

Additional properties As already explained in the remarks after the description of the
individual algorithms ofBFKEM, the scheme satisfies the requirements of Definitions 4,
5, 6, and 7.
IND-CPAsecurity. We base IND-CPA security on a bilinear computational Diffie–
Hellman variant in the bilinear groups generated by BilGen.

Definition 10. (BCDH [12]) We define the advantage of adversary Ain solving the
BCDH problem with respect to BilGenas

AdvBCDHA,BilGen(λ) := Pr
[
e(g1, h2)

rα ←$ A(Params, gr1, g
α
1 , gα

2 , h2)
]
,

where Params = (p, e, G1, G2, GT , g1, g2) ←$ BilGen(1λ), and (gr1, g
α
1 , gα

2 , h2) ←$

G
2
1 × G

2
2.

Theorem 1. From each efficient adversary Bthat issues u queries to random oracle
E, we can construct an efficient adversary Awith

AdvIND-CPAB,BFKEM(λ,m, k) ≤ ku · AdvBCDHA,BilGen(λ).

Proof. Algorithm Areceives as input a BCDH-challenge tuple (gr1, g
α
1 , gα

2 , h2). It runs
adversaryB as a subroutine by simulating theExpIND-CPA

B,BFKEM(λ,m, k) experiment, includ-
ing random oracles G and E , as follows.

First, it defines Q := ∅, runs (H, T ) ←$ BFGen(m, k), and defines the public key as
pk := (gα

1 , H). Note that this public key is identically distributed to a public key output
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by KGen(1λ,m, k). In order to simulate the challenge ciphertext, the adversary chooses
a random key K ←$ {0, 1}λ and k uniformly random values Y j ←$ {0, 1}λ, j ∈ [k] and
defines the challenge ciphertext as C∗ := (gr1, (Y j ) j∈[k]). Finally, it outputs (pk,C∗,K)

to B.
Whenever Bqueries Punc(sk, ·) on input C = (C[0], . . .), then Aupdates T by

running T = BFUpdate(H, T,C[0]), and Q ← Q ∪ {C}.
Whenever a random oracle query to G : N → G2 is made (either by Aor B), with

input � ∈ N, then Aresponds with G(�), if G(�) has already been defined. If not, then
Achooses a random integer r� ←$

Zq , and returns G(�), where

G(�) :=
{
h2 · gr�2 if � ∈ {Hj (gr1) : j ∈ [k]}, and

gr�2 otherwise.

This definition of G allows Ato simulate the Corr oracle as follows. When Bqueries
Corr, then it first checks whetherC∗ ∈ Q, and returns ⊥ if this does not hold. Otherwise,
note that we must have ∀ j ∈ [k] : T [Hj (gr1)] = 0, where H = (Hj ) j∈[k] and T [�]
denotes the �-th bit of T . Thus, by the simulation of G described above, Ais able to
compute and return G(�)α = (gr�2 )α = (gα

2 )r� for all � with � 	∈ {Hj (gr1) : j ∈ [k]},
and therefore in particular for all � with T [�] = 1. This enables the perfect simulation
of Corr.

Finally, whenever Bqueries random oracle E : GT → {0, 1}λ on input y, then
Aresponds with E(y), if E(y) has already been defined. If not, then Achooses a random
string Y ←$ {0, 1}λ, assigns E(y) := Y , and returns E(y). Now we have to distinguish
between two types of adversaries.

1. A Type-1 adversary Bnever queries E on input of a value y, such that there ex-
ists j ∈ [k] such that y = e(gα

1 ,G(Hj (gr1)))
r . Note that in this case the value

Y ′
j := E(e(gα

1 ,G(Hj (gr1)))
r ) remains undefined for all j ∈ [k] throughout the

entire experiment. Thus, information-theoretically, a Type-1 adversary receives no
information about the key encrypted in the challenge ciphertext C∗, and thus can
only have advantage AdvIND-CPA

B,BFKEM(λ,m, k) = 0, in which case the theorem holds
trivially.

2. A Type-2 adversary queries E(y) such that there exists j ∈ [k] with y
= e(gα

1 ,G(Hj (gr1)))
r . Auses a Type-2 adversary to solve the BCDH challenge as

follows. At the beginning of the game, it picks two indices (u∗, j∗) ←$ [u] × [k]
uniformly random. When Boutputs y in its u∗-th query to E , then Acomputes and
outputs W := y ·e(gα

1 , gr2)
−r� . SinceBis a Type-2 adversary, we know that at some

point it will query E(y) with y = e(gα
1 ,G(Hj (gr1)))

r for some j ∈ [k]. If this is
the u∗-th query and we have j = j∗, which happens with probability 1/(uk), then
we have

W = y · e(gr1, gα
2 )−r� = e(gα

1 ,G(Hj (g
r
1)))

r · e(gα
1 , gr2)

−r�

= e(gα
1 , h2 · gr�2 )r · e(gα

1 , gr2)
−r� = e(gα

1 , h2)
r · e(gα

1 , gr�2 )r · e(gα
1 , gr2)

−r�

and thus W is a solution to the given BCDH instance. Note that r� is chosen in the
simulation and therefore known. �
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OW-CPA-Security. The following theorem can either be proven analogous to Theo-
rem 1, or based on the fact that IND-CPA security impliesOW-CPA security. Therefore,
we give it without proof.

Theorem 2. From each efficient adversary Bthat issues u queries to random oracle
E, we can construct an efficient adversary Awith

AdvOW-CPA
B,BFKEM(λ,m, k) ≤ uq · AdvBCDHA,BilGen(λ).

Remark 2. The construction presented above allows to switch the roles of G1 and G2,
i.e., to switch all elements in G1 to G2 and vice versa. This might be beneficial regarding
the size of the secret key when instantiating our construction using a bilinear group
where the representation of elements in G2 requires more space than the representation
of elements in G1.

3.2. CCA Security of the BFKEM from Hashed IBE via Fujisaki–Okamoto

We obtain a CCA-secure BFKEM by adopting the Fujisaki–Okamoto (FO) transforma-
tion [25] to the BFKEM setting. Since the FO transformation does not work generically
for any BFKEM, we have to use the additional requirements on the underlying BFKEM
that are defined in Sect. 2.3. These additional properties enable us to overcome the
difficulty that the original Fujisaki–Okamoto transformation from [25] requires perfect
correctness. We remark that Hofheinz et al. [38] give a new, modular analysis of the
FO transformation, which also works for public key encryption schemes with negligi-
ble correctness error; however, it is not applicable to BFKEMs, because, due to their
non-negligible correctness error, the bounds given in [38] provide insufficient security
in this case.

Construction Let BFKEM = (KGen,Enc,Punc,Dec) be a BFKEM with separable
randomness according to Definition 5. This means that we can write Enc equivalently
as (C,K) ←$ Enc(pk) = Enc(pk; (r,K)) for uniformly random (r,K) ←$ {0, 1}ρ+λ.
In the sequel, let R be a hash function (modeled as a random oracle in the security
proof), mapping R : {0, 1}∗ → {0, 1}ρ+λ. We construct a new scheme BFKEM′ =
(KGen′,Enc′,Punc′,Dec′) as follows.

KGen′(1λ,m, k) : This algorithm is identical to KGen.
Enc′(pk) : Algorithm Enc′ samples K ←$ {0, 1}λ. Then it computes (r,K′) :=

R(K) ∈ {0, 1}ρ+λ, runs (C,K) ←$ Enc(pk; (r,K)), and returns (C,K′).
Punc′(sk,C) : This algorithm is identical to Punc.
Dec′(sk,C) : This algorithm first runs K ←$ Dec(sk,C), and returns ⊥ if K =

⊥. Otherwise, it computes (r,K′) = R(K), and checks consistency of the
ciphertext by verifying that (C,K) = Enc(pk; (r,K)). If this does not hold,
then it outputs ⊥. Otherwise it outputs K′.
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Correctness error and extended correctness Both the correctness error and the ex-
tended correctness according to Definition 4 are not affected by the Fujisaki–Okamoto
transform. Therefore, these properties are inherited from the underlying scheme. The
fact that the first property of Definition 4 is satisfied makes the scheme suitable for the
application to 0-RTT key establishment.
IND-CCA-security. The security proof reduces security of our modified scheme to the
OW-CPA security of the scheme from Sect. 3.

Theorem 3. Let BFKEM = (KGen,Enc,Punc,Dec) be a BFKEM scheme that
satisfies the additional properties ofDefinitions 4 and 6, andwhich is γ -spread according
to Definition 7. Let BFKEM′ = (KGen′,Enc′,Punc′,Dec′) be the scheme described
in Sect. 3.2. From each efficient adversary Athat issues at most qO queries to oracle O
and qR queries to random oracle R, we can construct an efficient adversary Bwith

AdvIND-CCAA,BFKEM′(λ,m, k) ≤ qR · AdvOW-CPA
B,BFKEM(λ,m, k) + qO/2γ .

Proof. We proceed in a sequence of games. In the sequel, Oi is the implementation of
the decryption oracle in Game i .

Game 0. This is the original IND-CCA security experiment from Definition 8, played
with the scheme described above. In particular, the decryption oracle O0 is implemented
as follows (we omit the check for C = C∗):

O0(C)

K ←$ Dec(sk,C)

If K = ⊥ thenreturn⊥
(r,K′) = R(K)

If (C,K) 	= Enc(pk; (r,K)) thenreturn⊥
ReturnK′

Recall that K0 denotes the encapsulated key computed by the IND-CCA experiment. K0
is uniquely defined by the challenge ciphertext C∗ via K0 := Dec(sk0,C∗), where sk0
is the initial (non-punctured) secret key, since the scheme satisfies extended correctness
(Definition 4, second property). Let A0 denote the event thatAever queriesK0 to random
oracle R. Note that Ahas zero advantage in distinguishing K′ from random, until A0 oc-
curs, because R is a random function. Thus, we have Pr[A0] ≥ AdvIND-CCA

A,BFKEM′(λ,m, k).
In the sequel, we denote with Ai the event that Aever queries K0 to random oracle R in
Game i .

Game 1. This game is identical to Game 0, except that after computingK ←$ Dec(sk,C)

and checking whetherK 	= ⊥, the experiment additionally checks whether the adversary
has ever queried random oracle R on input K, and returns ⊥ if not. More precisely, the
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experiment maintains a list

LR = {(K, (r,K′)) : A queried R(K) = (r,K′)}

to record all queries K made by the adversary to random oracle R, along with the
corresponding response (r,K′) = R(K). The decryption oracle O1 uses this list as
follows (boxed statements highlight changes to O0):

O1(C)

K ←$ Dec(sk,C)

If �(r,K′) : (K, (r,K′)) ∈ LR thenreturn⊥
(r,K′) = R(K)

If (C,K) 	= Enc(pk; (r,K)) thenreturn⊥
ReturnK′

Note that Games 0 and 1 are perfectly indistinguishable, unlessAever outputs a ciphertext
C with O1(C) = ⊥, but O0(C) 	= ⊥. Note that this happens if and only if Aoutputs C
such that C = Enc(pk; (r,K)), where r is the randomness defined by (r,K′) = R(K),
but without prior query of R(K).

The random oracle R assigns a uniformly random value r ∈ {0, 1}ρ to each query,
so, by the γ -spreadness of BFKEM, the probability that the ciphertext C output by the
adversary “matches” the ciphertext produced by Enc(pk; (r,K)) is 2−γ . Since Aissues
at most qO queries to O1, this yields Pr[A1] ≥ Pr[A0] − qO/2γ .

Game 2. We make a minor conceptual modification. Instead of computing (r,K′) =
R(K) by evaluating R, O2 reads (r,K′) from list LR . More precisely:

O2(C)

K ←$ Dec(sk,C)

If �(r,K′) : (K, (r,K′)) ∈ LR thenreturn⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR .
If (C,K) 	= Enc(pk; (r,K)) thenreturn⊥
ReturnK′

By definition of LR it always holds that (r,K′) = R(K) for all (K, (r,K′)) ∈ LR . Indeed
(r,K′), is uniquely determined by K, because (r,K′) = R(K) is a function. Since R is
only evaluated by O1 if there exists a corresponding tuple (K, (r,K′)) ∈ LR anyway,
due to the changes introduced in Game 1, oracle O2 is equivalent to O1 and we have
Pr[A2] = Pr[A1].

Game 3. This game is identical to Game 2, except that wheneverAqueries a ciphertext
C to oracleO3, thenO3 first runs theCheckPunct algorithm associated withBFKEM(cf.
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Definition 6). IfCheckPunct(pk,Q,C) = ⊥, then it immediately returns⊥. Otherwise,
it proceeds exactly like O2. More precisely:

O3(C)

If CheckPunct(pk,Q,C) = ⊥ thenreturn⊥
K ←$ Dec(sk,C)

If �(r,K′) : (K, (r,K′)) ∈ LR thenreturn⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR .
If (C,K) 	= Enc(pk; (r,K)) thenreturn⊥
ReturnK′

Recall that by public checkability (Definition 6) we have ⊥ = Dec(sk,C) ⇐⇒
⊥ = CheckPunct(pk,Q,C). Therefore, the introduced changes are conceptual, and
Pr[A3] = Pr[A2].
Game 4. We modify the secret key used to decrypt the ciphertext. Let sk0 denote the
initial secret key generated by the experiment (that is, before any puncturing operation
was performed).O4 usessk0 to computeK ←$ Dec(sk0,C) instead ofK ←$ Dec(sk,C),
where sk is a possibly punctured secret key. More precisely:

O4(C)

If CheckPunct(pk,Q,C) = ⊥ thenreturn⊥
K ←$ Dec(sk0,C)

If �(r,K′) : (K, (r,K′)) ∈ LR thenreturn⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR .
If (C,K) 	= Enc(pk; (r,K)) thenreturn⊥
ReturnK′

For indistinguishability from Game 3, we show that O4(C) = O3(C) for all cipher-
texts C . Let us first consider the case Dec(sk,C) = ⊥. Then, public checkability
guarantees that O4(C) = O3(C) = ⊥, due to the fact that Dec(sk,C) = ⊥ ⇐⇒
CheckPunct(pk,Q,C) = ⊥.

Now let us consider the case Dec(sk,C) 	= ⊥. In this case, the semi-correctness
of punctured keys (third requirement of Definition 4) guarantees that Dec(sk,C) =
Dec(sk0,C) = K 	= ⊥.

After computing Dec(sk0,C), O4 performs exactly the same operations as O3 after
computing Dec(sk,C). Thus, in this case both oracles are perfectly indistinguishable,
too. This yields that the changes introduced in Game 4 are purely conceptual, and we
have Pr[A4] = Pr[A3].

Remark Due to the fact that we are now using the initial secret key to decrypt C , we
have reached a setting where, due to the perfect correctness of the initial secret key sk0,
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essentially a perfectly correct encryption scheme is used—except that the decryption
oracle implements a few additional abort conditions. Thus, we can now basically apply
the standard Fujisaki–Okamoto transformation, but we must show that we are also able
to simulate the additional abort imposed by the additional consistency checks properly.
To this end, we first replace these checks with equivalent checks before applying the FO
transformation.

Game 5. We replace the consistency checks performed byO4 with an equivalent check.
More precisely, O5 works as follows:

O5(C)

If CheckPunct(pk,Q,C) = ⊥ thenreturn⊥
K ←$ Dec(sk0,C)

If �(r,K′) : ((K, (r,K′)) ∈ LR ∧ (C,K) = Enc(pk; (r,K))) thenreturn⊥
ReturnK′ such that (K, (r,K′)) ∈ LR ∧ (C,K) = Enc(pk; (r,K))

This is equivalent, so that we have Pr[A5] = Pr[A4].

Game 6. Observe that in Game 5 we check whether there exists a tuple (r,K′) with
(K, (r,K′)) ∈ LR and (C,K) = Enc(pk; (r,K), where K must match the secret key
computed by K ←$ Dec(sk0,C).

In Game 6, we relax this check. We test only whether there exists any tuple (K̃, (r̃ , K̃′)) ∈
LR such that (C, K̃) = Enc(pk; (r̃ , K̃) holds. Thus, it is not explicitly checked whether
K̃ matches the value K ←$ Dec(sk0,C). Furthermore, the corresponding value K̃′ is
returned. More precisely:

O6(C)

If CheckPunct(pk,Q,C) = ⊥ thenreturn⊥
K ←$ Dec(sk0,C)

If �(r̃ , K̃′) : ((K̃, (r̃ , K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃ , K̃))) thenreturn⊥
Return K̃′ such that (K̃, (r̃ , K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃ , K̃))

By the perfect correctness of the initial secret key sk0, we have

(C, K̃) = Enc(pk; (r̃ , K̃)) �⇒ Dec(sk0,C) = K̃,

so that we must have K = K̃. O6 is equivalent to O5, and Pr[A6] = Pr[A5].

Game 7. This game is identical to Game 6, except that we change the decryption oracle
again. Observe that the value K computed by K ←$ Dec(sk0,C) is never used by O6.
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Therefore, the computation of K ←$ Dec(sk0,C) is obsolete, and we can remove it.
More precisely, O7 works as follows.

O7(C)

If CheckPunct(pk,Q,C) = ⊥ thenreturn⊥
If �(r̃ , K̃′) : ((K̃, (r̃ , K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃ , K̃))) thenreturn⊥
ReturnK̃′ such that (K̃, (r̃ , K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃ , K̃))

We have only removed an obsolete instruction, which does not change the output dis-
tribution of the decryption oracle. Therefore, O7 simulates O6 perfectly, and we have
Pr[A7] = Pr[A6].
Reduction toOW-CPA-security.Now we are ready to describe theOW-CPA-adversary
B. Breceives (pk,C∗). It samples a uniformly random key K′ ←$ {0, 1}λ and runs the
IND-CCA-adversaryAas a subroutine on input (pk,C∗,K′). WheneverAissues aPunc-
or Corr-query, then Bforwards this query to the OW-CPA-experiment and returns the
response. In order to simulate the decryption oracle O, adversary B implements the
simulated oracle O7 from Game 7 described above. When Aterminates, then B picks a
uniformly random entry (K̂, (r̂ , K̂′)) ←$ LR , and outputs K̂.

Analysis of the reduction Let Q̂ denote the event thatAever queriesK0 to random oracle
R. Note that B simulates Game 7 perfectly until A7 occurs; thus, we have Pr[Q̂] ≥
Pr[A7]. Summing up, the probability that the value K̂ output by Bmatches the key
encapsulated in C∗ is therefore at least

Pr[Q̂]
qR

≥
AdvIND-CCA

A,BFKEM′(λ,m, k) − qO/2γ

qR
.

�

Remarkon the tightness Alternatively, we could have based the security of our IND-CCA-
secure scheme on the IND-CPA (rather than OW-CPA) security of BFKEM′. In this
case, we would have achieved a tighter reduction, as we would have been able to avoid
guessing the index (K̂, (r̂ , K̂′)) ←$ LR , at the cost of requiring stronger security of the
underlying scheme.
From IND-CCA-secure KEMs to IND-CCA-secure encryption. It is well known that
IND-CCA-secure KEMs can be generically transformed into IND-CCA-secure encryp-
tion schemes, by combining it with a CCA-secure symmetric encryption scheme [25].
This construction applies to BFKEMs as well.

3.3. BFKEM from CP-ABE

We now present an alternative, generic construction of a BFKEM from ciphertext-policy
attribute-based encryption (CP-ABE) [8]. In particular, the construction can be instanti-
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ated with any small-universe (i.e., bounded) CP-ABE scheme3 that is adaptively secure,
supports at least OR-policies, and allows to encrypt messages from an exponentially
large space. We note that since the formulation of KEMs in context of ABE is not
widely used, we opt to start from a CP-ABE scheme which we implicitly turn into a
KEM in the construction via the folklore compiler to obtain KEMs from encryptions
schemes.

In contrast to the basic BFKEM construction in Sect. 3.1, we are able to generically
obtain constant-size ciphertexts (independent of the parametersm and k) if the underlying
CP-ABE scheme beyond possessing the aforementioned properties, is also compact, i.e.,
provides constant-size ciphertexts, (as, e.g., [2,18] which are obtained from static and
parameterized assumptions, respectively). Compact-size ciphertexts come at the cost
of increased secret key size in existing schemes (at least quadratic in the number of
attributes). However, for forward-secret 0-RTT key-exchange storage cost at the server
is less expensive than communication bandwidth and thus can be considered a viable
trade-off.

CP-ABE Before we describe our construction let us briefly recall CP-ABE. Therefore,
let U be the universe of attributes and we require only small-universe constructions, i.e.,
U is fixed at setup and |U| is polynomially bounded in the security parameter λ (in our
BFKEM construction we will have |U| = m). Intuitively, in a CP-ABE scheme secret
keys are issued with respect to attribute sets U

′ ⊆ U and messages are encrypted with
respect to access structures (policies) defined over U. Decryption works iff the attributes
in the secret key satisfy the policy used to produce the ciphertext. Let us discuss this a
bit more formally.

Definition 11. (Access Structure [8]) Let U be the attribute universe. A collection
A ∈ 2U of non-empty sets is an access structure on U. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets. A collection
A ∈ 2U is called monotone if ∀ B,C ∈ A : if B ∈ A and B ⊆ C , then C ∈ A.

Subsequently, we do not require arbitrary monotone access structures, but only OR-
policies (i.e., threshold policies with threshold 1). In particular, for some attribute set
U

′ := (u1, . . . , un) ⊆ U we consider policies of the form u1 OR . . . OR un , representing
an access structure A := 2U

′ \ ∅.

Definition 12. (CP-ABE) A ciphertext-policy attribute-based encryption scheme is a
tuple CP-ABE = (Setup,KGen,Enc,Dec) of PPT algorithms:

Setup(1λ, U) : Takes as input a security parameter λ and an attribute universe de-
scription U and outputs a master secret and public key (msk,mpk). We assume
that all subsequent algorithms will implicitly receive the master public keympk
(public parameters) as input which implicitly fixes a message space M.

KGen(msk, U
′) : Takes as input the master secret key msk and a set of attributes

U
′ ⊆ U and outputs a secret key skU′ .

3Note that any large universe CP-ABE scheme yields a small-universe CP-ABE scheme but not vice versa.
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Fig. 4. IND-T security for small-universe CP-ABE: T ∈ {CPA,CCA}.

Enc(M, A) : Takes as input a message M ∈ M and an access structure A and
outputs a ciphertext C .

Dec(skU′ ,C) : Takes as input a secret key skU′ and a ciphertext C and outputs a
message M or ⊥ in case of decryption does not work.

Correctness of CP-ABE requires that for all
λ, all attribute sets U, all (msk,mpk) ←$ Setup(1λ, U), all M ∈ M, all A ∈ 2U \∅, all
U

′ ∈ A, all skU′ ←$ KGen(msk, U
′) we have that Pr[Dec(skU′ ,Enc(M, A)) = M] =

1.

Security of CP-ABE Figure 4 defines adaptive IND-T with T ∈ {CPA,CCA} security
for CP-ABE. We stress that we use a formalization for small-universe schemes where
the size of U is polynomially bounded in the security parameter λ (for large universe U

is not required for Setup). We denote this value by n and consider the attribute set to be
U = {1, . . . , n}.

Definition 13. (IND-T Security of CP-ABE) We define the advantage of an adversary
A in the IND-T experiment ExpIND-T

A,CP-ABE(λ, n) as

AdvIND-T
A,CP-ABE(λ, n) :=

∣
∣
∣
∣Pr

[
ExpIND-T

A,CP-ABE(λ, n) = 1
]

− 1

2

∣
∣
∣
∣ .

A ciphertext-policy attribute-based encryption scheme CP-ABE is IND-T, T ∈
{CPA,CCA}, secure, if AdvIND-T

A,CP-ABE(λ, n) is a negligible function in λ for all n > 0
and all PPT adversaries A.

Intuition of the BFKEM construction The intuition of constructing a CPA-secure
BFKEM from CP-ABE is very simple. Basically, we map the indices m in T ∈ {0, 1}m
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of a Bloom filter (H, T ) to the attribute universe U. Then, we generate for every at-
tribute i ∈ [m] (we consider U = {1, . . . ,m}) a secret key sk{i}, set our secret key of the
BFKEM scheme to be sk := (T, (sk{1}, . . . , sk{m})) and deletemsk. Encryption is with
respect to the attributes given by the indices I obtained from sending a randomly sam-
pled tag r through the hash functions Hj , j ∈ [k] of the Bloom filter. Decryption works
by using one secret key sk{i} indexed by I. Puncturing a ciphertext simply amounts to
discarding all the secret keys sk{i} indexed by I.

Construction Subsequently, we describe the generic CPA-secure BFKEM construction
from a CP-ABE scheme ABE. We, thereby, require a CP-ABE with exponentially large
message space M and assume that the key space K of the BFKEM scheme is equivalent
to M.

KGen(1λ,m, k) : Runs ((Hj ) j∈[k], T ) ←$ BFGen(m, k). Then it runs
(msk,mpk) ←$ ABE.Setup(1λ, [m]), and for all i ∈ [m] : sk{i} ←$

ABE.KGen(msk, {i}). Finally it sets and outputs

sk := (T, (sk{i})i∈[m]) and pk := (mpk, (Hj ) j∈[k]).

Enc(pk) : Takes as input a public keypk. It samples uniformly at random a keyK ←$ M,

as well as a value r ←$ {0, 1}λ, computes ∀ j ∈ [k] : i j = Hj (r), sets U
′ =

{i1, . . . , ik} and A = 2U
′ \ ∅. Finally, it computes C ′ ←$ ABE.Enc(K, A) and

outputs (C,K) where ciphertext C := (r,C ′).

Remark We remark that if a CP-ABE is used where K and M are different, one can
use standard randomness extraction techniques to extract a key k ∈ K from a uniformly
random message m ∈ M.

Punc(sk,C) : Takes as input a secret key sk := (T, (sk{i})i∈[m]) and ciphertext C :=
(r,C ′). It computes T ′ ←$ BFUpdate((Hj ) j∈[k], T, r) and for each i ∈ [m] it
defines

sk′{i} :=
{
sk{i} if T ′[i] = 0, and

⊥ if T ′[i] = 1,

where T ′[i] denotes the i-th bit of T ′. Finally, it returns an updated secret key
sk′ = (T ′, (sk′{i})i∈[m]).

Dec(sk,C) : Takes as input a secret key sk and a ciphertext C := (r,C ′). It computes
∀ j ∈ [k] : i j = Hj (r) and takes the first element sk{i j } from (sk{i})i∈[m] with
sk{i j } 	= ⊥. If such an sk{i j } exists it outputs K ←$ ABE.Dec(sk{i j },C ′) and ⊥
otherwise.

Correctness error of this scheme Under the same argumentation as in the correctness
proof in Sect. 3.1, we obtain that the correctness error is approximately 2−k + n/2λ.
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CPA security We directly relate the CPA security of our construction to the hardness
of breaking CPA security for the underlying CP-ABE.

Theorem 4. From each efficient adversary B against CPA security of our BFKEM,
we can construct an efficient adversary A which breaks CPA security of the underlying
CP-ABE, with

AdvIND-CPAA,CP-ABE(λ, n) ≥ AdvIND-CPAB,BFKEM(λ,m, k).

Proof. We present a reduction which uses an adversary B against CPA security of the
BFKEM to break CPA security of the CP-ABE. First, we engage with a CPA challenger
for a CP-ABE with respect to universe [m] to obtain mpk. Then, we complete the setup
by running the following KeyGen′ algorithm and obtain pk:

KeyGen′(mpk,m, k) : Runs ((Hj ) j∈[k], T ) ←$ BFGen(m, k), sets

pk := (mpk, (Hj ) j∈[k]),

and outputs pk.

Then, we choose (K0,K1) ←$ M × M, r ←$ {0, 1}λ, and compute ∀ j ∈ [k] : i j =
Hj (r), set U

′ = {i1, . . . , ik}, let A = 2U
′ \ ∅. We output (K0,K1, A) to the challenger

to obtain C ′∗. We start B on (pk, (r,C ′∗),K0) and simulate the oracles as follows:

Punc(sk,C) : Set P ← P ∪ {C}, and T ← BFUpdate((Hj )i∈[k], T, r).
Corr : If C∗ /∈ P return ⊥. Otherwise, ∀ j ∈ [k] : i j = T [ j], and, for all i j =

0 obtain sk j ← KGen( j) using the key generation oracle provided by the
challenger and return sk ← (T, {sk j } j∈[k],i j=0).

If B eventually outputs a bit b∗ we output b∗ to break CPA security of the CP-ABE
scheme with the same probability as B breaks the CPA security of the BFKEM. Note
that the Corr oracle can only be called after the challenge ciphertext C∗, and, therefore
r , is determined. This ensures that we only request “allowed” keys via the KGen oracle
provided by the challenger. �

Obtaining CCA security The construction satisfies the additional properties of Defi-
nitions 4, 5, and 6 with the same arguments as in Sect. 3.1. Additionally, γ -spreadness
(Definition 7) is given by construction: The randomness r is chosen uniformly at random
from {0, 1}λ. Thus, we can apply the Fujisaki–Okamoto [25] transform the same way as
done in Sect. 3.2 to achieve CCA security.

3.4. BFKEM from IBBE

In this section, we present our generic construction of a BFKEM from any identity-based
broadcast encryption (IBBE) scheme. We note that taking the path via IBBE allows us
to simultaneously obtain small ciphertexts and small public keys.
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Fig. 5. IND-sID-CPA security for IBBE.

Identity-Based Broadcast Encryption We recall the basic definition of IBBE and its
security.

Definition 14. (IBBE) An identity-based broadcast encryption (IBBE) scheme is a
tuple IBBE = (Setup,Extract,Enc,Dec) consisting of four probabilistic polynomial-
time algorithms with the following properties:

Setup(1λ, k) : Takes as input the security parameter λ and the maximal number of
receivers k and outputs a master public key pk and a master secret key msk.
We assume that pk implicitly defines the identity space ID.

Extract(msk, IDi ) : Takes as input the master secret key msk and an user identity
IDi and outputs and user private key skIDi .

Enc(pk,S) : Takes as input the master public key pk and a set of user identities S
and outputs a ciphertext C and a key K.

Dec(skIDi ,S,C) : Takes as input a user secret key skIDi , a set of user identities S
and a ciphertext C and outputs the key K.

Correctness for IBBE requires that for all λ, for all polynomially bounded k in λ, for
all (pk,msk) ←$ Setup(1λ, k), for all S = {ID1, . . . , IDi } ∈ IDi with i ≤ k, for all
(C,K) ←$ Enc(pk,S), it holds for all IDS ∈ S that

Pr
[
Dec(Extract(msk, IDS),S,C) = K

] = 1.

Definition 15. (IND-sID-CPA-security of IBBE) We define the advantage of an adver-
sary A in the IND-sID-CPA experiment ExpIND-sID-CPA

A,IBBE (λ, k) as

AdvIND-sID-CPA
A,IBBE (λ, k) :=

∣
∣
∣
∣Pr

[
ExpIND-sID-CPA

A,IBBE (λ, k) = 1
]

− 1

2

∣
∣
∣
∣ .

We say that an identity-based broadcast encryption scheme IBBE is IND-sID-CPA-
secure, if the advantage AdvIND-sID-CPA

A,IBBE (λ, k) is a negligible function in λ for all k > 0
and all PPT adversaries A.
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Construction Let B = (BFGen,BFUpdate,BFCheck) be a Bloom filter and let
IBBE = (Setup, Extract, Enc, Dec) be an identity-based broadcast encryption scheme.
We construct a Bloom filter key encapsulation mechanism BFKEM= (KGen,Enc,
Punc,Dec) as follows:
KGen(λ,m, k) : The key generation algorithm generates a Bloom filter instance by run-
ning (H, T ) ←$ BFGen(m, k) and generates an IBBE instance by invoking (pkIBBE,msk)
←$ IBBE.Setup(λ, k). For each i ∈ [m] it calls

ski ←$ IBBE.Extract(msk, i).

Finally, it sets

pk := (H,pkIBBE) and sk := (
T, (ski )i∈[m]

)
.

Remark Observe that the maximum number of recipients is set to the Bloom filter’s
optimal number of universal hash functions k and the user identity space is bound to the
Bloom filter’s entries m.
Enc(pk) : Given a public key pk = (H,pkIBBE), it samples a random value r ←$ {0, 1}λ
and generates indices i j := Hj (r) for (Hj ) j∈[k] := H . Then, it invokes (K,C ′)
←$ IBBE.Enc(pkIBBE,S), where S := {i j } j∈[k]. Finally, it outputs (C,K), where ci-
phertext C := (r,C ′).
Punc(sk,C) : Given a secret key sk = (T, (ski )i∈[m]) and a ciphertext C = (r,C ′), it
invokes T ′ = BFUpdate(H, T, r) and defines

sk′
i :=

{
ski , if T ′[i] = 0

⊥, if T ′[i] = 1.

Finally, the algorithm returns sk′ = (T ′, (sk′
i )i∈[m]).

Remark From an IBBE’s point of view, the puncturing procedure removes participants
from the broadcast network by deleting their respective user private keys.
Dec(sk,C) : The input is a secret key sk = (T, (ski )i∈[m]) and ciphertext C = (r,C ′).
Again, let S := {i j } j∈[k]. If BFCheck(H, T, r) = 0, then the algorithm returns ⊥.
Else, there exists at least one index n ∈ S such that skn 	= ⊥. The algorithm picks the
smallest index n that meets the previous requirements, computes

K := IBBE.Dec(skn,S,C ′)

and returns K.

Remark This algorithm essentially checks, if an user secret key of the user identities
in set S still exists. If so, the ciphertext can be decrypted.
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Correctness error With exactly the same arguments as for the scheme from Sect. 3.1,
one can verify that the correctness error of this scheme is essentially identical to the
false positive probability of the Bloom filter, unless a given ciphertext C = (r,C ′) has
a value of r which is identical to the value of r of any previous ciphertext. Since r is
uniformly random in {0, 1}λ, this probability is approximately 2−k + n · 2−λ.
IND-CPA-security. We prove the IND-CPA security of our construction, if the IBBE is
IND-sID-CPA-secure.

Theorem 5. Fromeachefficient adversaryBagainst IND-CPA security of ourBFKEM,
we can construct an efficient algorithm Aagainst the IND-sID-CPA security of the un-
derlying IBBE scheme with advantage

AdvIND-sID-CPAA,IBBE (λ, k) ≥ AdvIND-CPAB,BFKEM(λ,m, k).

Proof. We proceed by presenting a reduction which uses an adversary Bagainst the
IND-CPA security of the BFKEM to break the IND-sID-CPA security of the IBBE. The
reduction together withBthen formsA. In order to engage with the IND-CPAChallenger
(Chenceforth), we need to commit to a set of recipients S∗ we will attack.

We generate a new Bloom filter instance by invoking (H, T ) ←$ BFGen(m, k) and
sample an additional random value r∗ ←$ {0, 1}λ. Next, we compute indices i j :=
Hj (r∗) where (Hj ) j∈[k] := H are the k universal hash functions of the Bloom filter. We
define S∗ := {i j } j∈[k] and forward the set to C. Note that |S| = k.

The challenger Cgenerates a master public key pk and a master secret key msk
by invoking IBBE.Setup(λ, k) and sends us the master public key pk. Additionally,
Cprepares a challenge by running (C ′,K0) ←$ IBBE.Enc(pk,S∗) and samplingK1 ←$ K,
where K is the symmetric key space. The challenger sends us the challenge (C ′,Kb),
where b is a bit drawn uniformly at random.

We will initialize the adversary Bwith input (pk,C∗ = (r∗,C ′),Kb). In the sequel,
Bhas access to several oracles, which we simulate as follows:

• Punct(C = (r,C ′)): We invoke T := BFUpdate(H, T, r) and set Q := Q∪ {C}.
• Corr : If C∗ /∈ Q, return ⊥. Else query sk j := Extract( j) for all j ∈ [k] such that
T [ j] = 0. Note that we are allowed to callExtract on all user identities, since punc-
turing at C∗ removes all troublesome secret keys. We return (T, {sk j } j∈[k]∧T [ j]=0)

to A.

Eventually, Bwill output a bit b∗ which we will forward to the challenger C. Since all
queries are perfectly simulated, we get

AdvIND-sID-CPA
A,IBBE (λ, k) ≥ AdvIND-CPA

B,BFKEM(λ,m, k).

This concludes the proof. �

CCA security IND-CCA security can be achieved with the modified Fujisaki–Okamoto
transformation described in Sect. 3.2. The IBBE-based construction satisfies the addi-
tional properties of Definitions 4, 5, and 6 with the same arguments as in Sect. 3.1.
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Additionally, γ -spreadness (Definition 7) is given by construction: The randomness r is
chosen uniformly at random from {0, 1}λ.

Separable randomness is not achieved as the symmetric key K algebraically depends
on the IBBE (i.e., the symmetric key K is chosen by the IBBE and not by the generic
construction).4 It is, however, possible to transform any non-separable BFKEM into a
separable BFKEM as shown in Sect. 2.3. Note that this transformation adds an additional
component of size λ to the ciphertext.

Thus, we can apply the Fujisaki–Okamoto transform the same way as done in Sect. 3.2
to achieve CCA security. One notable drawback is that the transformation requires that
the encapsulation procedure be run once during each decapsulation. Should the encapsu-
lation procedure be computationally expensive and should the application strive for high
efficiency, it might be worth considering a different approach for achieving IND-CCA
security.

A different approach to achieve IND-CCA security for our construction would be
to directly use an IND-sID-CCA-secure IBBE. This can for example be achieved by
using a variant of the CHK transformation [16] sketched in [22]. The basic idea is to
derive one of the broadcasted identities from a verification key of a strongly unforgeable
one-time signature (sOTS) scheme, which then in turn is used to sign the ciphertext. A
reasonable choice for the signature scheme might be the Boneh–Lynn–Shacham signa-
ture scheme [13], which is strongly unforgeable due to its unique ciphertexts, or the sOTS
due to Groth [32] which avoids pairing evaluations. Drawbacks of the transformation
include an expansion of the ciphertext as both the signature verification key and the sig-
nature must be included. A formal description and security proof of the transformation
can be found in [26].

4. Time-Based Bloom Filter Encryption

For a standard BFKEM scheme, we have to update the public key after the secret key has
been punctured n-times, because otherwise the false-positive probability would exceed
an acceptable bound. In this section, we describe a construction of a scheme where
the lifetime of the public key is split into time slots. Ciphertexts are associated with
time slots, which assumes loosely synchronized clocks between sender and receiver of a
ciphertext. The main advantage is that for a given bound on the correctness error, we are
able to handle about the same number of puncturings per time slot as the basic scheme
during the entire life time of the public key. We call this approach time-based Bloom
filter encryption. It is inspired by the time-based approach used to construct puncturable
encryption in [31,33], which in turn is inspired by the construction of forward-secure
public-key encryption by Canetti, Halevi, and Katz [15].

Note that a time-based BFKEM (TB-BFKEM) scheme can trivially be obtained from
any BFE scheme, by assigning an individual public/secret key pair for each time slot.

4Depending on the instantiation, it might still be possible to directly achieve separable random-
ness. For this to work, the IBBE would need separable keys, that is, if we can equivalently write
(K,C) ←$ IBBE.Enc(mpk,S) = IBBE.Enc′(mpk,S;K) for uniformly random K ←$ {0, 1}λ, where Enc′
is a deterministic algorithm. This property is not necessarily given for IBBEs.
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However, if we want to split the life time of the public key into, say, 2t time slots,
then this would of course increase the size of keys by a factor 2t . Since we want to
enable a fine-grained use of time slots, to enable a very large number of puncturings
over the entire lifetime of the public key without increasing the false positive probability
beyond an unacceptable bound, we want to have 2t as large as possible, but without
increasing the size of the public key beyond an acceptable bound. To this end, we give a
direct construction which increases the size of secret keys only by an additive amount of
additional group elements, which is only logarithmic in the number of time slots. Thus,
for 2t time slots we have to add merely about t elements to the secret key, while the
size of public keys remains even constant. Recall also that due to the time slots, a TB-
BFKEM helps to counter message suppression attacks by achieving a form of delayed
forward secrecy.

4.1. Formal Model of TB-BFKEM

Likewise to considering our BFKEMs as an instantiation of a puncturable KEM with
non-negligible correctness error, we can view the time-based approach analogously as
an instantiation of a forward-secret BFKEM [33] with non-negligible correctness error,
henceforth referred to as TB-BFKEM. We chose to align our model with the existing
formal framework for puncturable forward-secret KEMs. It is essentially our BFKEM
Definition 2, augmented by time slots and an additional algorithm PuncInt that allows
to puncture a secret key not with respect to a given ciphertext in a given time slot, but
with respect to an entire time slot.

Definition 16. (TB-BFKEM) A puncturable forward-secret key encapsulation (TB-
BFKEM) scheme is a tuple of the following PPT algorithms:

KGen(1λ,m, k, t) : Takes as input a security parameter λ, parameters m and k for
the Bloom filter, and a parameter t specifying the number of time slots. It
outputs a secret and public key (sk,pk), where we assume that the key-space
K is implicit in pk and that pk is implicit in sk.

Enc(pk, τ ) : Takes as input a public key pk and a time slot τ and outputs a ciphertext
C and a symmetric key K.

PuncCtx(sk, τ,C) : Takes as input a secret key sk, a time slot τ , a ciphertext C
and outputs an updated secret key sk′.

Dec(sk, τ,C) : Takes as input a secret key sk, a time slot τ , a ciphertext C and
deterministically computes and outputs a symmetric keyK or⊥ if decapsulation
fails.

PuncInt(sk, τ ) : Takes as input a time slot τ and a secret key sk for any time slot
≤ τ , and outputs an updated secret key sk′ for the time slot τ + 1.

Correctness Essentially, the correctness definition is based on that of a BFKEM, but
additionally considers time slots (see also [33]).
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Definition 17. (Correctness) We require that the following holds for all λ,m, k, t ∈ N,
for all z ∈ N with z ≤ t , and any (sk,pk) ←$ KGen(1λ,m, k, t).

– For any ordered sequence τ1, . . . , τz with 1 ≤ τ1 < . . . < τz ≤ t and

ski+1 ←$ PuncInt(ski , τi )

where i ∈ {1, . . . , z} and sk1 := sk, and
– for any arbitrary interleaved sequence of invocations of

skz+1, j+1 ←$ PuncCtx(skz+1, j , τz + 1,C j )

where j ∈ {1, . . . , n}, skz+1,1 := skz+1, and (C j ,K j ) ←$ Enc(pk, τz + 1)

it holds that

Pr
[
Dec(skz+1,n+1, τz + 1,C∗) 	= K ∗] ≤

(
1 − e− (n+1/2)k

m−1

)k + ε(λ)

where (C∗,K∗) ←$ Enc(pk, τz+1) and ε(·) is a negligible function in λ. The probability
is over the random coins of KGen and the random coins of Enc used to compute
C1, . . . ,Cn and C∗.

4.2. Additional Properties of a TB-BFKEM

Again, we will require additional properties for the TB-BFKEM, similar to those from
Sect. 2.3.

Definition 18. (Extended Correctness) We require that the following holds for all
λ,m, k, t, n ∈ N, for all z ∈ N with z ≤ t , and any (sk,pk) ←$ KGen(1λ,m, k, t).

– For any ordered sequence τ1, . . . , τz with 1 ≤ τ1 < . . . < τz ≤ t and

ski+1 ←$ PuncInt(ski , τi )

where i ∈ {1, . . . , z} and sk1 := sk, and
– for any arbitrary interleaved sequence of invocations of

skz+1, j+1 ←$ PuncCtx(skz+1, j , τz + 1,C j )

where j ∈ {1, . . . , n}, skz+1,1 := skz+1, and (C j ,K j ) ←$ Enc(pk, τz + 1)

it holds that:

1. No false-negatives in the current time interval:
Dec(skz+1,n+1, τz + 1,C j ) = ⊥ for all j ∈ [n]

2. No false-negatives with respect to ciphertexts from previous intervals:
Dec(skz+1,n+1, τ

∗,C) = ⊥ for all (C,K) ←$ Enc(pk, τ ∗) with τ ∗ < τz + 1.
3. Perfect correctness of the initial secret key:

Dec(sk, τ,C) = K for all 1 ≤ τ ≤ t and all (C,K) ←$ Enc(pk, τ ).
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4. Semi-correctness of punctured secret keys:
For all 1 ≤ τ ≤ t holds: IfDec(skz+1, j+1, τ,C) 	= ⊥ thenDec(skz+1, j+1, τ,C) =
Dec(sk, τ,C).

Definition 19. (Separable Randomness) Let TB-BFKEM =
(KGen,Enc,PuncCtx,Dec,PuncInt) be a TB-BFKEM. We say that TB-BFKEMhas
separable randomness, if one can equivalently write the encapsulation algorithm Enc
as

(C,K) ←$ Enc(pk, τ ) = Enc(pk, τ ; (r,K)),

for uniformly random (r,K) ∈ {0, 1}ρ+λ, where Enc(·, ·; ·) is a deterministic algorithm
whose output is uniquely determined by pk, τ and the randomness (r,K) ∈ {0, 1}ρ+λ.

Definition 20. (Publicly Checkable Puncturing) Let {Qτ j }kj=1 be any list of lists of

ciphertexts {(Cτ j ,1, . . . ,Cτ j ,w j )}kj=1. We say that TB-BFKEMallows publicly check-
able puncturing, if there exists an efficient algorithm CheckPunct with the following
correctness property.

1. Run (sk,pk) ←$ KGen(1λ,m, k, t).
2. For j ∈ [k] do

– Compute Ci ←$ Enc(pk, τ j ) and sk = PuncCtx(sk, τ j ,Ci ) for i ∈ [w j ].
– Compute sk ←$ PuncInt(sk, τ j )

3. Let C and τ be any string. We require that

⊥ = Dec(sk, τ,C) ⇐⇒ ⊥ = CheckPunct(pk, τ, {Qτ j }kj=1,C).

Definition 21. (γ -Spreadness) Let TB-BFKEM = (KGen,

Enc,PuncCtx,Dec,PuncInt) be a randomness-separable TB-BFKEM with cipher-
text space C. We say that it is γ -spread, if for any honestly generated pk, any key K, any
τ and any C ∈ C

Pr
r ←$ {0,1}ρ

[
C = Enc(pk, τ ; (r,K))

] ≤ 2−γ .

4.3. Security Definitions

The security of a TB-BFKEM scheme is defined in a selective-time experiment, where
the adversary has to commit to a time slot τ ∗ to attack before seeing the parameters of
the scheme. We present the IND-CPA and IND-CCA experiments in Fig. 6.

Definition 22. (s-T-Security of TB-BFKEM) We define the advantage of an adversary
A in the s-T experiment Exps-T

A,TB-BFKEM(λ,m, k, t) as

Advs-T
A,TB-BFKEM(λ,m, k, t) :=

∣
∣
∣
∣Pr

[
Exps-T

A,TB-BFKEM(λ,m, k, t) = 1
]

− 1

2

∣
∣
∣
∣ .
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Fig. 6. Security for TB-BFKEM: T ∈ {IND-CPA, IND-CCA}.

A puncturable forward-secret key-encapsulation scheme TB-BFKEM is
s-T, T ∈ {IND-CPA, IND-CCA}, secure, if Advs-T

A,TB-BFKEM(λ,m, k, t) is a negligi-
ble function in λ for all m, k, t > 0 and all PPT adversaries A.

4.4. A Generic Time-Based BFKEM Construction

Before we can present our construction, we recall hierarchical identity-based key en-
capsulation schemes (HIB-KEMs). HIB-KEMs represent a building block of our con-
struction.

HIB-KEMs Below we present the basic definition and the security properties of HIB-
KEMs.

Definition 23. A (t ′ + 1)-level hierarchical identity-based key encapsulation scheme
(HIB-KEM) with identity space D≤t ′+1, ciphertext space C, and key space Kconsists of
the following four algorithms:

HIBGen(1λ) : Takes as input a security parameter and outputs a key pair (mpk, skε).
We say that mpk is the master public key, and skε is the level-0 secret key.

HIBDel(skd ′ , d) : Takes as input secret key skd ′ and d ∈ D, and outputs a secret
key skd ′|d . (We refer to | as concatenation.)

HIBEnc(mpk, d) : Takes as input the master public key mpk and an identity d ∈
D≤t ′+1 and outputs a ciphertext C ∈ C and a key K ∈ K.

HIBDec(skd,C) : Takes as input a secret key skd and a ciphertext C , and outputs
a value K ∈ K ∪ {⊥}, where ⊥ is a distinguished error symbol.

Correctness forHIB-KEM. We require that for allλ ∈ N, for all (mpk, skε) ←$ HIBGen(1λ),
for all d ∈ D, for all skd ′|d ←$ HIBDel(skd ′ , d), for all d ∈ D≤t ′+1, for all
(C, K ) ←$ HIBEnc(mpk, d), we have that HIBDec(skd,C) = K holds.
Security definition for HIB-KEM. As for our generic construction, we will essentially
follow the proof strategy of the BFKEMconstruction and thus will rely on the weak
notion of one-wayness under selective-ID and chosen-plaintext attacks (OW-sID-CPA)
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Fig. 7. OW-sID-CPA security.

forHIB-KEM. We note that any IND-sID-CPA-secureHIB-KEMalso satisfies this notion
of OW-sID-CPA security.

Definition 24. (OW-sID-CPA Security of HIB-KEM) We define the advantage of an
adversary A in the OW-sID-CPA experiment ExpOW-sID-CPA

A,HIB-KEM (λ) as

AdvOW-sID-CPA
A,HIB-KEM (λ) := Pr

[
ExpOW-sID-CPA

A,HIB-KEM (λ) = 1
]
.

We call a HIB-KEMOW-sID-CPA-secure, if AdvOW-sID-CPA
A,HIB-KEM (λ) is a negligible function

in λ for all PPT adversaries A.

Time slots We will construct a TB-BFKEM scheme that allows to use t = 2t
′

time
slots. We associate the i-th time slot with the string in {0, 1}t ′ that corresponds to the
canonical t ′-bit binary representation of integer i .

Following [15,31,33], each time slot forms a leaf of an ordered binary tree of depth
t ′. The root of the tree is associated with the empty string ε. We associate the left-
hand descendants of the root with bit string 0, and the right-hand descendant with 1.
Continuing this way, we associate the left descendant of node 0 with 00 and the right
descendant with 01, and so on. We continue this procedure for all nodes, until we have
constructed a complete binary tree of depth t ′. Note that two nodes at level j ≤ t ′ of
the tree are siblings if and only if their first j − 1 bits are equal and that each bit string
in {0, 1}t ′ is associated with a leaf of the tree. Note also that the leafs in the tree are
ordered, in the sense that the leftmost leaf is associated with 0t

′
, its right neighbor with

0t
′−11, and so on.

Intuition of the construction The basic idea behind the construction combines the
binary tree approach of [15,31,33] with the BF-KEM construction described in Sect. 3.1.
We use a HIB-KEM with identity space

D = D1 × · · · × Dt ′+1 = {0, 1} × · · · × {0, 1}
︸ ︷︷ ︸

t ′ times

×[m].
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Each bit vector τ ∈ D1 × · · · × Dt ′ = {0, 1}t ′ corresponds to one time slot, and we set
Dt ′+1 = [m], where m is the size of the Bloom filter. The hierarchical key delegation
property of the HIB-KEM enables the following features:

First, given a HIB-KEM key skτ for some “identity” (= time slot) τ ∈ {0, 1}t ′ , we
can derive keys for all Bloom filter bits from skτ by computing

skτ |d ←$ HIBDel(skτ , d) for all d ∈ [m].

Second, in order to advance from time slot τ to τ + 1, we first compute

skτ |d ←$ HIBDel(skτ , d) for all d ∈ [m].

As soon as we have computed all Bloom filter keys for time slot τ , we “puncture” the
tree “from left to right,” such that we are able to compute all skτ ′ with τ ′ > τ , but not
any skτ ′ with τ ′ ≤ τ . Here, we proceed exactly as in [15,31,33]. That is, in order to
puncture at time slot τ , we first compute the HIB-KEM secret keys associated with all
right-hand siblings of nodes that lie on the path from node τ to the root (if existent), and
then we delete all secret keys associated with nodes that lie on the path from node τ to the
root, including skτ itself. This yields a new secret key, which contains m level-(t ′ + 1)

HIB-KEM secret keys plus at most t ′ HIB-KEM secret keys for levels ≤ t ′, even though
we allow for 2t

′
time slots.

Construction Let (HIBGen,HIBDel,HIBEnc,HIBDec) be a (t ′+1)-level HIB-KEM
with key space Kand identity space D = D1 × · · · × Dt ′+1, where D1 = · · · =
Dt = {0, 1}, Dt ′+1 = [m], and m is the size of the Bloom filter. Since we will
only need selective security, one can instantiate such a HIB-KEM very efficiently, for
example in bilinear groups based on the Boneh–Boyen–Goh [11] scheme, or based
on lattices [1]. In the sequel, we will write {0, 1}t ′ shorthand for D1 × · · · × Dt ′ ,
but keep in mind that the HIB-KEM supports more fine-grained key delegation. Let
B = (BFGen,BFUpdate,BFCheck) be a Bloom filter for set {0, 1}λ. Furthermore,
let G ′ : K → {0, 1}λ be a hash function (which will be modeled as a random oracle [7]
in the security proof).

We define TB-BFKEM = (KGen,Enc,PuncCtx,Dec,PuncInt) as follows.
KGen(1λ,m, k, t = 2t

′
) : This algorithm first runs ((Hj ) j∈[k], T ) ←$ BFGen(m, k) to

generate a Bloom filter, and (mpk, skε) ←$ HIBGen(1λ) to generate a key pair. Finally,
the algorithm generates the keys for the first time slot. To this end, it first computes the
HIB-KEM key for identity 0t

′
by recursively computing

sk0d ←$ HIBDel(sk0d−1 , 0) for all d ∈ [t].
5 Then, it computes the m Bloom filter keys for time slot 0t

′
by computing

sk0t ′ |d ←$ HIBDel(sk0t ′ , d) for all d ∈ [m],
5Implicitly, we set ε := 00.
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and setting skBloom := (sk0t ′ |d)d∈[m]. Finally, it punctures the secret key skε at position

0t
′
, by computing

sk0d−11 ←$ HIBDel(sk0d−1 , 1) for all d ∈ [t ′],

and setting sktime := (sk0d−1|1)d∈[t ′]. The algorithm outputs

sk := (T, skBloom, sktime) and pk := (mpk, (Hj ) j∈[k]).

Enc(mpk, τ ) : On input mpk and time slot identifier τ ∈ {0, 1}t ′ , this algorithm first

samples a random string c ←$ {0, 1}λ and a random key K ←$ {0, 1}λ. Then, it defines k
HIB-KEM identities as d j := (τ, Hj (c)) ∈ D for j ∈ [k], and generates k HIB-KEM
key encapsulations as

(C j ,K j ) ←$ HIBEnc(mpk, d j ) for j ∈ [k].

Finally, it outputs the ciphertext C := (c, (C j ,G ′(K j ) ⊕ K) j∈[k]).
Note that the ciphertexts essentially consists of k + 1 elements of {0, 1}λ, plus k

elements of C, where k is the Bloom filter parameter.
PuncCtx(sk,C) : Given a ciphertext C := (c, (C j ,G ′(K j ) ⊕ K) j∈[k]), and secret key
sk = (T, skBloom, sktime) where skBloom = (skτ |d)d∈[m], the puncturing algorithm
first computes T ′ = BFUpdate((Hj ) j∈[k], T, c). Then, for each i ∈ [m], it defines

sk′
τ |i :=

{
skτ |i if T ′[i] = 0, and

⊥ if T ′[i] = 1,

where T ′[i] denotes the i-th bit of T ′. Finally, this algorithm sets sk′
Bloom = (sk′

τ |d)d∈[m]
and returns sk′ = (T ′, sk′

Bloom, sktime).

Remark We note again that the above procedure is correct even if the procedure is
applied repeatedly, with the same arguments as for the construction from Sect. 3.1.
Also, the puncturing algorithm essentially only evaluates k universal hash functions and
then deletes a few secret keys, which makes this procedure extremely efficient.
Dec(sk,C) : Given sk = (T, skBloom, sktime) where skBloom = (skτ |d)d∈[m] and
ciphertext C := (c, (C j ,G j ) j∈[k]). If skτ |Hj (c) = ⊥ for all j ∈ [k], then it outputs ⊥.
Otherwise, it picks the smallest index j such that skτ |Hj (c) 	= ⊥, computes

K j = HIBDec(skτ |Hj (c),C j ),

and returns K = G j ⊕ G ′(K j ).
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Remark Again we have Dec(sk,C) 	= ⊥ ⇐⇒ BFCheck(H, T, c) = 0, which
guarantees extended correctness in the sense of Definition 18.
PuncInt(sk, τ ) : Given a secret key sk = (T, skBloom, sktime) for time interval τ ′ ≤ τ ,
the time puncturing algorithm proceeds as follows. First, it resets the Bloom filter by
setting T := 0m . Then, it uses the key delegation algorithm to first compute skτ . This
key can be computed from the keys contained in sktime, because sk is a key for time
interval τ ′ ≤ τ . Then, it computes

skτ |d ←$ HIBDel(skτ , d) for all d ∈ [m],

and redefines skBloom := (skτ |d)d∈[m]. Finally, it updates sktime by computing the HIB-
KEM secret keys associated with all right-hand siblings of nodes that lie on the path
from node τ to the root and adds the corresponding keys to sktime. Then, it deletes all
keys from sktime that lie on the path from τ to the root.

Remark Note that puncturing between time intervals may become relatively expensive.
Depending on the choice of Bloom filter parameters, in particular on m, this may range
between 215 and 225 HIBKEM key delegations. However, the main advantage of BFKEM
over previous constructions of puncturable encryption is that these computations must
not be performed “online,” during puncturing, but can actually be computed separately
(for instance, parallel on a different computer, or when a server has low workload, etc.).

Correctness error of this scheme Note that within each time slot we can use the same
argumentation as for the scheme from Sect. 3.1 and one can verify that the correctness-
error probability of this scheme is essentially identical to the false-positive probability of
the Bloom filter, unless a given ciphertext C = (c, (C j ,G j ) j∈[k]) has a value of c which
is identical to the value of c of any previous ciphertext. Since c is uniformly random in

{0, 1}λ, this probability is bounded by
(

1 − e− (n+1/2)k
m−1

)k+n·2−λ. Furthermore, due to the

perfect correctness of the underlying HIB-KEMscheme, this yields the error-correctness
bound of TB-BFKEM.

More formally, we have that for all λ,m, k, t ′ ∈ N, for all t = 2t
′
, for all z ∈ N with

z ≤ t , and any (sk,pk) ←$ KGen(1λ,m, k, t):

– For any ordered sequence τ1, . . . , τz ∈ {0, 1}t ′ and

ski+1 ←$ PuncInt(ski , τi )

where i ∈ {1, . . . , z} and sk1 := sk, and
– for any arbitrary interleaved sequence of invocations of

skz+1, j+1 ←$ PuncCtx(skz+1, j , τz + 1,C j )

where j ∈ {1, . . . , n}, skz+1,1 := skz+1, and (C j ,K j ) ←$ Enc(pk, τz + 1)
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it holds that

Pr
[
Dec(skz+1,n+1, τz + 1,C∗) 	= K ∗] ≤

(
1 − e− (n+1/2)k

m−1

)k + n · 2−λ

where (C∗,K∗) ←$ Enc(pk, τz + 1), due to the perfect correctness of HIB-KEM, the
bounded false-positive probability property of the underlying Bloom filter (depending
on m and k, see Section 2.1), and the bounded negligible loss n · 2−λ occurred due to
collisions of uniform c-values in the ciphertexts.

Concerning the extended correctness, see that

1. Dec(skz+1,n+1, τz + 1,C j ) = ⊥ for all j ∈ [n], i.e., no false-negatives in the
current time interval due to the perfect-completeness property of the BF B and
deleting the respective HIB-KEM secret keys.

2. Dec(skz+1,n+1, τ
∗,C) = ⊥ for all (C,K) ←$ Enc(pk, τ ∗) with τ ∗ < τz + 1, i.e.,

no false-negatives with respect to ciphertexts from previous intervals due to the
security properties of HIB-KEM.

3. Dec(sk, τ,C) = K for all 1 ≤ τ ≤ t and all (C,K) ←$ Enc(pk, τ ), i.e., perfect
correctness of the initial secret key due to the perfect correctness property of
HIB-KEMand perfect completeness of B.

4. For all 1 ≤ τ ≤ t holds: IfDec(skz+1, j+1, τ,C) 	= ⊥ thenDec(skz+1, j+1, τ,C) =
Dec(sk, τ,C), i.e., semi-correctness of punctured secret keys due to perfect cor-
rectness property of HIB-KEMand perfect completeness of B.

CPA Security Below we state theorem for CPA security of our scheme.

Theorem 6. From each efficient adversary Bthat issues u queries to random oracle
G ′, we can construct an efficient adversary Awith

Advs-IND-CPAB,TB-BFKEM(λ,m, k) ≤ uk · AdvOW-sID-CPA
A,HIB-KEM (λ).

The proof is almost identical to the proof of Theorem 1 and a straightforward reduction
to the security of the underlying HIB-KEM. We sketch it below.

Proof. (Sketch). We sketch the proof of Theorem 6. Recall that a ciphertext has the
form

C := (c, (C j ,G
′(K j ) ⊕ K) j∈[k]).

Essentially, one argues exactly as in Theorem 1 that the adversary receives no information
about the keyK encapsulated by the Bloom filter encryption scheme, unless it ever queries
K j to random oracle G ′ for some j ∈ [k]. Therefore, assume that Bqueries some K j to
G ′ in its u∗-th query.

At the beginning of the reduction, Afirst guesses index j ←$ [k] and u∗ ←$ [u]. It also
samples the random string c ←$ {0, 1}λ used for the challenge BFKEM ciphertext at the
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beginning of the game, generates a Bloom filter

((Hj ) j∈[k], T ) ←$ BFGen(m, k),

and requests a challenge ciphertext for identity d∗ = (τ ∗|Hj (c)), where τ ∗ is the time
slot selected by B. The challenge ciphertext received back from the HIB-KEM exper-
iment is then embedded in the TB-BFKEM challenge ciphertext. The PuncCtx and
PuncInt(sk, ·) queries of Bcan trivially be simulated by A. The Corr queries can be
answered using the HIBDeloracle provided by the OW-sID-CPA security experiment of
the HIB-KEM.

When Bmakes its u∗-th query to G ′ on value K′, then Aterminates and outputs K′.
We know that any non-trivial adversary Bqueries K j to G ′ for some j . If Ahas guessed
u∗ and j correctly, which happens with probability 1/(uk), then it holds that K′ = K j ,
which yields the claim. �

CCA Security In order to apply the Fujisaki–Okamoto [25] transform in the same way
as done in Sect. 3.2 to achieve CCA security, we need to show that the time based
variants of the properties presented in Sect. 2.3 are satisfied (i.e., Definitions 18, 19, 20,
and 21). First, using a full-blown HIBE as a starting point yields a separable HIB-KEM
as discussed in Sect. 2.3. Hence, the separable randomness (Definition 19) is satisfied.
Moreover, the publicly checkable puncturing (Definition 20) is given by construction
(as in Sect. 3.1). Regarding extended correctness (Definition 18), the impossibility of
false-negatives is given by construction, the perfect correctness of the non-punctured
secret key is given by the perfect correctness of the HIBE and the semi-correctness of
punctured secret keys is given by construction. Finally, γ -spreadness (Definition 21) is
also given by construction: the ciphertext component c is chosen uniformly at random
from {0, 1}λ. Consequently, all properties are satisfied. We note that one could omit c in
the ciphertext if the concretely used HIBE ciphertexts are already sufficiently random.
Considering the HIBE of Boneh–Boyen–Goh [11], HIBE ciphertexts are of the form
(gr , (hI1

1 · · · hIt
t · h0)

r , H(e(g1, g2)
r )⊕K), for honestly generated fixed group elements

g, g1, g2, h0, . . . , ht , universal hash function H , fixed K and fixed integers I1, . . . , It .
Consequently, we have that the ciphertext has at least min-entropy log2 q with q being
the order of the groups. We want to mention that also many other HIBE construction
satisfy the required properties, including, for example [19,27,48].

Remark on CCA Security Alternatively to applying the FO transform to a TB-BFKEM
satisfying the additional properties of extended correctness, separable randomness, pub-
licly checkable puncturing and γ -spreadness to obtain CCA security, we can add another
HIBE level to obtain IND-CCA security via the CHK transform [15] in the standard
model, and thus to avoid random oracles if required.6

6We note, however, that one cannot straightforwardly apply the CHK transform in a black-box way, but
needs to take care that all k HIB-KEMciphertexts C j , j ∈ [k] need to use the same verification key of the
strong one-time signature used to sign the overall ciphertext.
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5. Forward-Secret 0-RTT Key Exchange

In [33] (with full version in [34]), Günther, Hale, Jager, and Lauer (GHJL) provide a
formal model for forward-secret one-pass key exchange (FSOPKE) by extending the
one-pass key exchange [36] by Halevi and Krawczyk. They provide a security model for
FSOPKE which requires both forward secrecy and replay protection from the FSOPKE
protocol and captures unilateral authentication of the server and mutual authentication
simultaneously.

We recap the definition of FSOPKE with a slightly adapted KGen and correctness
notion to allow for a non-negligible correctness error, which constitutes the main dif-
ference to the work of [33,34]. We remark that we do not change the security model of
[34, Sec. 3.2] (i.e., the new input parameters added to KGen do only affect FSOPKE
correctness and not the FSOPKE security model).

In particular, we now take into account the maximum number of server and client
runs n ∈ N and a false-positive probability p of succeeding the runs (in computing the
same session key for a particular time step). Looking ahead, this changes are necessary
to instantiate FSOPKE with our TB-BFKEM. (See Sec. 2.1 for parameter selections of n
and p and corresponding BF parameter m and k if one wants to instantiate the FSOPKE
with a BF.)

Definition 25. (FSOPKE) An FSOPKE scheme FSOPKE providing mutual or unilat-
eral (server-only) authentication consists of the PPT algorithms
(FSOPKE.KGen,FSOPKE.RunC,FSOPKE.RunS,FSOPKE.TimeStep):

FSOPKE.KGen(1λ, r, τmax , n, p) : Takes as input a security parameter 1λ, a role
r ∈ {server, client}, the maximum number of time slots τmax ∈ N, and the
maximum number of server and client runs n ∈ N with false-positive probabil-
ity p, outputs public and secret keys (pk, sk) for a specific role r (we assume
that the key-space K is implicit in pk).

FSOPKE.RunC(sk,pk) : Takes as input a secret key sk, a public key pk, and
outputs a (potentially modified) secret key sk′, a session key K ∈ {0, 1}∗ ∪{⊥},
and a message M ∈ {0, 1}∗ ∪ {⊥}.

FSOPKE.RunS(sk,pk, M) : Takes as input a secret key sk, a public key pk, and
a message M ∈ {0, 1}∗ and outputs a (potentially modified) secret key sk′ and
a session key K ∈ {0, 1}∗ ∪ {⊥}.

FSOPKE.TimeStep(sk, r) : Takes as input a secret key sk and an according role
r ∈ {client, server} and outputs a (potentially modified) secret key sk′.

Server and client flow within an FSOPKE scheme A server and a client are engaging
in an FSOPKE scheme as follows. According to their role, a server (i.e., when the role
is server) and a client (i.e., when the role is client) execute

(pks, sks,1,1) ← FSOPKE.KGen(1λ, server, τmax , n, p),

(pkc, skc,1,1) ← FSOPKE.KGen(1λ, client, τmax , n, p)
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to generate initial public and private keys for a server and client, respectively (where
λ, τmax , n, and p are pre-determined). For all i ∈ [τmax ] and j ∈ [n], by execut-
ing sks,i+1,1 ← FSOPKE.TimeStep(sks,i, j , server) and skc,i+1,1 ← FSOPKE.

TimeStep(skc,i, j , client), the server and the client progresses from one time slot i to
the next slot i + 1 to receive (potentially modified) secret keys sks,i+1,1 and skc,i+1,1,
respectively.

Similarly, within a time step i ∈ [τmax ] and for all j ∈ [n − 1], the client proceeds
with

(skc,i, j+1,Kc,i, j , M) ← FSOPKE.RunC(skc,i, j ,pks),

for client’s private key skc,i, j and a server’s public key pks , to receive a (potentially
modified) secret key skc,i, j+1, a session key Kc,i, j , and a message M (e.g., a ciphertext)
which is transmitted to the server (associated with pks). The server obtains M and
executes

(sks,i, j+1,Ks,i, j ) ← FSOPKE.RunS(sks,i, j ,pkc, M),

for the server’s secret key sks,i, j and the client’s public key pkc to receive a (potentially
modified) secret key sks,i, j+1 and a session key Ks,i, j .

By our adapted correctness notion of the FSOPKE (see Definition 26 below), we
have that Kc,i, j = Ks,i, j except with potentially non-negligible probability (bounded by
μ(n, p) + ε(λ), for a potential non-negligible function μ(·, ·) that only depends on n
and p, as well as a negligible function ε(·) that depends on λ).

Definition 26. ((Non-negligible) correctness of FSOPKE) For all λ, τmax , n ∈ N and
false-positive probability p, for all

(pks, sks,1,1) ← FSOPKE.KGen(1λ, server, τmax , n, p),

(pkc, skc,1,1) ← FSOPKE.KGen(1λ, client, τmax , n, p),

for all i ∈ [τmax − 1] and all j ∈ [n], for any

sks,i+1,1 ← FSOPKE.TimeStep(sks,i, j , server),

skc,i+1,1 ← FSOPKE.TimeStep(skc,i, j , client),

for all j ∈ [n − 1] and i ∈ [τmax ], for any

(skc,i ′, j ′+1,Kc,i ′, j ′ , M) ← FSOPKE.RunC(skc,i ′, j ′ ,pks),

(sks,i ′, j ′+1,Ks,i ′, j ′) ← FSOPKE.RunS(sks,i ′, j ′ ,pkc, M) (if mutual auth.),

(sks,i ′, j ′+1,Ks,i ′, j ′) ← FSOPKE.RunS(sks,i ′, j ′ ,⊥, M) (if unilateral auth.),

for all j ′′ ∈ [n] and i ′′ ∈ [τmax ], we have that

Pr
[
Ks,i ′′, j ′′ 	= Kc,i ′′, j ′′

] ≤ μ(n, p) + ε(λ),
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where μ(·, ·) is some (possibly non-negligible) function that depends on n and p, and
ε(·) is a negligible function that depends on λ.

Security of FSOPKE The security model of FSOPKE is the same as in defined in [34,
Section 3.2], and we omit it here. (See that the additional parameter n and p only
affect correctness.) All security guarantees from [34, Theorem 2] directly translate to
our FSOPKE construction and we restate the security claim in Corollary 1. (However,
we have to argue about the correctness property of our FSOPKE construction where we
now allow for a potential non-negligible correctness probability depending on λ, n, and
p compared to perfect correctness of the FSOPKE scheme of [34, Definition 12].)

5.1. Construction of an Unilateral FSOPKE Scheme from a TB-BFKEM

The unilateral-authenticated7 FSOPKE construction in [33,34] builds on PFSKEM; our
TB-BFKEM is defined analogously (cf. Definition 16), but we have to account for the
non-negligible correctness errors (in particular, for parameters n and p).

Let TB-BFKEM = (KGen,Enc,PuncCtx,Dec,PuncInt) be a TB-BFKEM. We
construct an FSOPKE FSOPKE = (FSOPKE.KGen,

FSOPKE.RunC,FSOPKE.RunS,FSOPKE.TimeStep) as follows:

FSOPKE.KGen(1λ, r, τmax , n, p) : On input security parameter 1λ, role
r ∈ {server, client}, maximum number of time steps τmax ∈ N, maximum number of
server and client runs n ∈ N with false-positive probability p, proceed as follows:

if r = server, then compute (PK , SK1,1) ← KGen(1λ,m, k, τmax ) (for suit-
able choices of m, k according to Sec. 2.1 depending on n and p) and set
pks := (PK , τmax ) and sks,1,1 := (SK1,1, 1, τmax ), and output (pks, sks,i,1).
if r = client, then set (pkc, skc,1,1) := (⊥, 1).

FSOPKE.RunC(skc,i, j ,pks) :Outputs (skc,i, j+1,Kc,i, j , M) as follows: forskc,i, j =
i andpks = (PK , τmax ), if i > τmax , then set (skc,i, j+1,Kc,i, j , M) := (skc,i, j ,⊥,⊥),
otherwise obtain (C,Kc,i, j ) ← Enc(pks, i) and set (skc,i, j+1,Kc,i, j , M) := (τ,Kc,i, j ,

C).
FSOPKE.RunS(sks,i, j ,pkc, M) : Outputs (sks,i, j+1,Ks,i, j ) as follows: forsks,i, j =
(SKi, j , i, τmax ) andpkc = ⊥, if SKi, j ,= ⊥ or i > τmax , then set (sks,i, j+1,Ks,i, j ) :=
(sks,i, j ,⊥) and abort. Obtain Ks,i, j ← Dec(SKi, j , M). If Ks,i, j = ⊥, then set
(sks,i, j+1,Ks,i, j ) = (sks,i, j ,⊥), otherwise obtain SKi, j+1 ← PuncCtx(SKi, j , M)

and set (sks,i, j+1,Ks,i, j ) = ((SKi, j+1, i, τmax ),Ks,i, j ).
FSOPKE.TimeStep(sk{s,c},i, j , r) : Outputs sk{s,c},i+1,1 as follows:

if r = server, then forsks,i, j = (SKi, j , i, τmax ): if i ≥ τmax , then setsks,i+1,1 :=
(⊥, i+1, τmax ) and abort, otherwise compute SKi+1,1 ← PuncInt(SKi, j , i) and
set sks,i+1,1 := (SKi+1,1, i + 1, τmax ) and abort.
if r = client, then for skc,i, j = i , set skc,i+1,1 := i + 1.

7That is server-side authentication only.
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Correctness of FSOPKE. Since the underlying TB-BFKEM scheme TB-BFKEMhas
a potential non-negligible error correctness that is bounded by μ′(m, k) + ε′(λ), this
directly translates to the correctness of the FSOPKE scheme FSOPKE in the sense
that the TB-BFKEM-decapsulation Dec fails with potential non-negligible probability
μ(n, p)+ε(λ) ≤ μ′(m, k)+ε′(λ) which in turn translates toFSOPKE.RunS returning
(sks,i, j+1,Ks,i, j 	= Kc,i, j ) with potential non-negligible probability depending on λ, n,
and p.

Security guarantees hold due to [34, Theorem 2]. (In particular, see that the parameters
n and p we introduce in our FSOPKE definition above only affect the correctness error
of the FSOPKE and all FSOPKE security guarantee are required to be independent not
only of the time steps (as discussed in [34]), but also independent of n and p.) We state
the following corollary:

Corollary 1. Let TB-BFKEM be a TB-BFEKEM as defined in Definition 16 with ad-
vantage functionAdvs-IND-CCAA,TB-BFKEM(λ,m, k, t) (cf. Definition 22). For any PPT adversary
B in the FSOPKE-sec security experiment defined in [34, Definition 11], we have

AdvFSOPKE-sec
B,FSOPKE (λ) ≤ τmax · nI · ns · Advs-IND-CCAA,TB-BFKEM(λ,m, k, t),

for FSOPKE’s advantage functionAdvFSOPKE-sec
B,FSOPKE (λ) as defined in [34, Definition 11],

for τmax the maximum number of time slots per session, nI the maximum number of
identities, and ns the maximum number of sessions (where nI and ns are given as in [34,
Sec. 3.2]). Furthermore, m and k depend on n and p as described in Sect. 2.1.

6. Analysis

BFKEM.Finally, we compare our different BFKEM instantiations as presented in Sect. 3
regarding their time and space complexity (also see Table 2). Regarding computational
efficiency of Dec and Punc, all schemes are roughly the same. The space complexity in
the direct construction is optimal with respect to the size of public and secret keys, and
we achieve ciphertexts of size O(k). Our construction based on CP-ABE can achieve
constant size ciphertexts when instantiated with an ABE scheme that achieves constant
size ciphertexts. We, however, note that all ABE schemes achieving constant size cipher-
text we are aware of (i.e., [2,18]) come at the cost of large public and secret keys. Those
key sizes also carry over to our BFKEM construction. Finally, our construction from
IBBE can be viewed as the dual to our direct construction in terms of space complexity.
That is, the scheme based on IBBE is optimal regarding the size of ciphertexts and secret
keys, while it requires O(k) sized public keys.

When taking concrete values regarding space complexity into account, our IBBE based
construction is the favorable one. In particular, when we use the IBBE by Delerablée
[22] (for convenience we recall it in “Appendix D”), we obtain ciphertextsC ∈ {0, 1}λ ×
G1 × G2 and secret keys sk ∈ {0, 1}m × G

m
1 . That is, ciphertexts are shorter and secret

key entries are only half the size of the ones in our direct construction. It is, however,
important to note that those efficiency gains come at the cost of a stronger assumption
(whose validity was analyzed in the generic bilinear group model in [22]).
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Table 2. Performance Comparison.

Table 3. Overview of the existing approaches to PFSKEM (resp. TB-BFKEM).

By p we denote the number of times a secret key has already been punctured, and by � we denote the maximum
number of time slots. We consider the GHJL [33] instantiation with the BKP-HIBE of [9], the GM [31] and
our instantiations with the BBG-HIBE [11], though other HIBE schemes may lead to different parameters.
Finally, note that p ≤ 220, k and m refer to the parameters in the Bloom filter, where k is some orders of
magnitude smaller than λ, i.e., k = 10 vs. λ = 128, and |Gi | denotes the bitlength of an element from Gi

TB-BFKEM. In Table 3, we provide an overview of all existing practically instantiable
approaches to construct a PFSKEM and compare them to the TB-BFKEM proposed in
this paper.8 We compare all schemes for an arbitrary number � of time slots, where for
sake of simplicity we assume � = 2t for some integer t , (corresponding to our time-
based BFKEM) and only count the expensive cryptographic operations, i.e., such as
group exponentiations and pairings.

To quickly summarize the schemes: The most interesting characteristic of our ap-
proach compared to previous approaches is that our scheme allows to offload all ex-
pensive operations to an offline phase, i.e., to the puncturing of time intervals. Here,
in addition to the O(w2) operations which are common to all existing approaches, we
have to generate a number of keys, linear in the size m of the Bloom filter. We believe
that accepting this additional overhead in favor of blazing fast online puncturing and
decryption operations is a viable tradeoff. For the online phase, our approach has a
ciphertext size depending on k (where k = 10 is a reasonable choice), decryption de-
pends on k, the secret key shrinks with increasing amount of puncturings and one does
only require to securely delete secret keys during puncturing.9 In contrast, decryption
and puncturing in GHJL is highly inefficient and takes several seconds to minutes on
decent hardware for reasonable deployment parameters as it involves a large amount
of O(λ2) HIBE delegations and consequently expensive group operations. In the GM

8We consider all but the PE schemes from indistinguishability obfuscation [17,20].
9First, note that all constructions have to implement a secure-delete functionality for secret keys within

puncturing anyways. Second, note that the question regarding which data structures to choose so that imple-
mentations can actually benefit from the shrinking keys is out of scope here. Note that low-level optimizations
for sparse files are typically implemented by modern operating systems and file systems [28]. This way one
would even benefit when the memory for the secret keys is allocated as a single monolithic block and the
deleted keys are simply zeroed out.
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scheme,10 puncturing is efficient, but the size of the secret key and thus cost of de-
cryption grows in the number of puncturings p. Hence, it gets impractical very soon.
More precisely, cost of decryption requires a number of pairing evaluations that depends
on the number of puncturings and can be in the order of 220 for realistic deployment
parameters.

7. Conclusion

In this paper, we introduced the new notion of Bloom filter encryption as a variant of
puncturable encryption which tolerates a non-negligible correctness error. We presented
various BFKEM constructions. The first one is a simple and very efficient construction
which builds upon ideas known from the Boneh–Franklin IBE. It achieves constant size
public keys. The second one is a generic construction from CP-ABEs, where a suitable
choice of the CP-ABE achieves constant size ciphertexts are available. Those constant
size ciphertexts, however, come at the cost of larger keys in existing schemes. The third
one is a generic construction from IBBEs, which can be instantiated with the IBBE by
Delerablée [22]. This instantiation simultaneously yields constant size ciphertexts and
compact public keys. Furthermore, we extended the notion of BFKEM to the forward-
secrecy setting and also presented a construction of what we call a time-based BFKEM
(TB-BFKEM). This construction is based on HIBEs and in particular can be instantiated
very efficiently using the Boneh–Boyen–Goh HIBE [11]. Our time-based BFKEM can
directly be used to instantiate forward-secret 0-RTT key exchange (fs 0-RTT KE) as
in [33].

From a practical viewpoint, our motivation stems from the observation that forward-
secret 0-RTT KE requires very efficient decryption and puncturing. Our framework—for
the first time—allows to realize practical forward-secret 0-RTT KE, even for larger server
loads: while we only require to delete secret keys upon puncturing, puncturing in [33] re-
quires, besides deleting secret-key components, additional computations in the order of
seconds to minutes on decent hardware. Likewise, when using [31] in the forward-secret
0-RTT KE protocol given in [33], one requires computations in the order of the current
number of puncturings upon decryption, while we achieve decryption independent of
this number. Finally, we believe that BFE will find applications beyond forward-secret
0-RTT KE protocols.

10Although GM supports an arbitrary number d of tags in a ciphertext, we consider the scheme with only
using a single tag (which is actually favorable for the scheme) to be comparable to GHJL as well as our
approach.
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A Formal Definitions for Bloom Filter Encryption

Definition 27. (BloomFilterEncryption) A Bloom filter encryption (BFE) scheme is a tuple (KGen,Enc,Punc,Dec)
of PPT algorithms:

KGen(1λ,m, k) : Takes as input a security parameter λ, parameters m and k and outputs a secret and
public key (sk,pk).

Enc(pk, M) : Takes as input a public key pk, a message M ∈ M and outputs a ciphertext C .
Punc(sk,C) : Takes as input a secret key sk, a ciphertext C and outputs an updated secret key sk′.
Dec(sk,C) : Takes as input a secret key sk, a ciphertext C and outputs a message M ∈ M or ⊥ if

decryption fails.

Definition 28. (Correctness) We require that the following holds for all λ,m, k ∈ N, all arbitrary sequences
of messages (M1, . . . , Mn , M∗) ∈ Mn+1 and any (sk, pk) ←$

KGen(1λ,m, k).
For any (arbitrary interleaved) sequence of invocations of

sk j+1 ←$ Punc(sk j ,C j ),

where j ∈ {1, . . . , n}, sk1 := sk, and C j ←$ Enc(pk, Mj ), it holds that

Pr
[
Dec(skn+1,C∗) 	= M∗] ≤

(

1 − e−
(n+1/2)k
m−1

)k
+ ε(λ),

where C∗ ←$ Enc(pk, M∗) and ε(·) is a negligible function in λ. The probability is over the random coins of
KGen, Punc, and Enc.

http://creativecommons.org/licenses/by/4.0/
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Fig. 8. IND-T security for BFE: T ∈ {IND-CPA, IND-CCA2}.

Note that the correctness is essentially our BFKEM definition ported to the encryption setting. As in Sect. 2.3,
we can define the extended correctness, separable randomness, publicly checkable puncturing andγ -spreadness.
As this is straightforward, we do not explicitly repeat the definitions here.

Security notions Subsequently, in Fig. 8, we define the IND-CPA/IND-CCA2-
experiment for BFE. The experiment is identical to IND-CPA/IND-CCA2 security for conventional public-
key encryption, but in addition, the adversary in the second phase can arbitrarily puncture the secret key and
retrieve the punctured secret key as long as the key has been punctured on the challenge ciphertext C∗. This
still should not help the adversary to obtain any information about the message hidden in C∗.

Definition 29. (IND-T Security of BFE) We define the advantage of an adversaryA in the IND-T-experiment
ExpIND-T

A,BFE(λ,m, k) as

AdvIND-T
A,BFE(λ,m, k) :=

∣
∣
∣
∣Pr

[
ExpIND-T

A,BFE(λ,m, k) = 1
]

− 1

2

∣
∣
∣
∣ .

A Bloom filter encryption schemeBFE is IND-T-secure,T ∈ {IND-CPA, IND-CCA2}, ifAdvIND-T
A,BFE(λ,m, k)

is a negligible function in λ for all m, k > 0 and all PPT adversaries A.

B Proof of Lemma 1

We begin by computing the expected number of bits set to one in the BF after α random elements have
been added. Let T0 = b0b1 . . . bm be the sequence of bits of a BF with size m. After initialization, we
have bi := 0 for all i ∈ [m]. With each added element, we set up to k bits to one, that is we sample k
elements a1, . . . , ak ∈ [m] with replacement and set bai := 1. At the end of α time steps, we have at most
αk bits equal to one and at least 1 bit equal to one. Let Xt

i be the event that bi is set at time t , that is,
Xt
i = 1 �⇒ bi = 1 has already been set to one at time t . Thus, the number bits set to one after α time steps

is
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Fig. 9. The false-positive probability of a random element after α elements have been added to a Bloom filter
with n = 216 for k ∈ {8, 11, 17, 21}.

m∑

i=1

Xαk
i .

To compute the expected number of bits set to one at time t , we need to compute the expected value of each
Xi . Then, the expected number of bits set to one after α time steps is

Xα =
m∑

i=1

Xα
i =

m∑

i=1

Pr[Xα
i ] =

m∑

i=1

(
1 − Pr[Xα

i ]
)

=
m∑

i=1

1 −
(

1 − 1

m

)αk

= m ·
(

1 −
(

1 − 1

m

)αk
)

.

We can now bound the probability by applying a simple combinatorial argument. When choosing a random
bit bi , we have a probability of Xα/m to choose an index i with bi = 1. Independently repeating this process
k times, leads us to the expected false-positive probability of a random element u ∈ U being recognized by
the Bloom filter:
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Fig. 10. The false-positive probability of a random element after α elements have been added to a Bloom
filter with n = 224 for k ∈ {8, 11, 17, 21}.

Fig. 11. The false-positive probability of a random element after α elements have been added to a Bloom
filter with n = 230 for k ∈ {8, 11, 17, 21}.
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Pr[BFCheck(H, Tn , u)] =

⎛

⎜
⎜
⎝

m ·
(

1 −
(

1 − 1
m

)αk
)

m

⎞

⎟
⎟
⎠

k

=
(

1 −
(

1 − 1

m

)αk
)k

.

�

C Growth of the False-Positive Probability

Figures 9, 10, and 11 show the growth of the false-positive probability after α elements have been added to a
Bloom filter with n ∈ 216, 224, 230 for k ∈ {8, 11, 17, 21}. Note that both axes are scaled logarithmically.

D Identity-based Broadcast Encryption with Constant Size Ciphertexts and
Private Keys

The subsequent construction is the identity-based broadcast encryption scheme by Delerablée [22]. The main
advantages of her scheme are the constant size ciphertexts and private keys.
Let (p, e, G1, G2, GT ) ←$ BilGen(1λ) be public parameters of a bilinear map e : G1×G2 → GT with prime
orders p and |p| = λ. Let H : Z

∗
q → Z

∗
q be a cryptographic hash function. We construct an identity-based

broadcast encryption scheme IBBE = (Setup, Extract, Enc, Dec) as follows:
Setup(λ, k) : The key generation algorithm chooses two generators g1 ∈ G1 and g2 ∈ G2 and a secret value

γ ←$
Z

∗
q . Finally, we set and output the public key pk and master secret key msk as

pk :=
(

w = gγ
1 , v = e(g1, g2), gγ

2 , . . . , gγ k

2

)

and msk := γ.

Extract(msk, ID) : The key extraction algorithm takes as input the master secret key msk = γ and an identity
ID. Output is an extracted secret key

skID = g
1

γ+H(ID)

1 .

Enc(pk,S) : Given a public key pk = (w, v, gγ
2 , . . . , gγ k

2 ) and a set of identities S = {ID j } j∈[s] with s ≤ k,

it samples a symmetric key K by choosing a secret value ρ ←$
Zq and computing K := vρ = e(g1, g2)ρ .

Finally, the algorithm computes a ciphertext C = (c1, c2) with

c1 := w−ρ and c2 := g
ρ·∏s

j=1(γ+H(ID j ))

2 .

It outputs (K,C).
Dec(skID j

,S,C) : Given a ciphertext C = (c1, c2), it computes

K =
(

e

(

c1, g
pi,S (γ )

2

)

· e(skID j
, c2)

) 1∏s
j=1, j 	=i H(ID j ) , where

pi,S (γ ) = 1

γ

⎛

⎝
s∏

j=1, j 	=i

(γ + H(ID j )) −
s∏

j=1, j 	=i

H(ID j )

⎞

⎠

and returns K.
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Note that indeed the ciphertext is C ∈ G1 × G2 and an extracted secret key is skID j
∈ G1.

Remark on computation of pi,S . The decapsulation algorithm uses a function p whose description is de-
pendent of γ . However, neither γ nor any other secret value is needed to compute it. Instead, we can compute

g
pi,S
2 by only using public values.

Let cv(a1, . . . , an) be a function that on input of n values returns the sum of all possible pairwise distinct
v-combinations of the input values, i.e., c2(a, b, c) = ab + ac + bc, and let Si = {H(ID j )| j ∈ S \ {i}}.
Then, we can rewrite

pi,S (γ ) = 1

γ

⎛

⎝
s∏

j=1, j 	=i

(γ + H(ID j )) −
s∏

j=1, j 	=i

H(ID j )

⎞

⎠

= 1

γ

⎛

⎝γ s−1 + γ s−2c1(Si ) + . . . + γ cs−2(Si ) + cs−1(Si ) −
s∏

j=1, j 	=i

H(ID j )

⎞

⎠

= γ s−2 + γ s−3c1(Si ) + . . . + cs−2(Si ).

In our case, it suffices to compute

g
pi,S (γ )

2 = g
γ s−2+γ s−3c1(Si )+...+cs−2(Si )
2

= gγ s−2

2 ·
(

gγ s−3

2

)c1(Si )

· . . . · gcs−2(Si )
2 .

As s ≤ k, all gγ
2 -like values are publicly known and thus, g

pi,S
2 is computable without any secret knowledge.

The given argument also holds for the computation of ciphertext c2 in the key encapsulation.

Security of the IBBE In [22], Delerablée also analyzes the security of the above scheme under the so
called (g, f, F)-GDDHE assumption. This is a variant of a generalization of the Diffie–Hellman exponent
assumption introduced in [11] and analyzed in the generic bilinear group model in [22]. For the sake of
completeness, we restate the theorem from [22].

Theorem 7. From each efficient adversary Bagainst IND-sID-CPA security of the IBBE scheme, we can
construct an efficient algorithm Aagainst the (g, f, F)-GDDHE assumption with advantage

AdvGDDHE
A (g, f, F) ≥ 1

2
· AdvIND-sID-CPAB,IBBE (λ, k).
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