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ABSTRACT The wireless power terminals are deployed in harsh public places and lack strict control, facing
security problems. Thus, they are facedwith security problems such as illegal and counterfeit terminal access,
unlawful control of connected terminals, etc. The intrusion detection system based on machine learning and
artificial intelligence significantly improve the terminal side’s abnormal detection capacity. In this article,
we aim at identifying the abnormal behavior of wireless power terminals based on a double Hidden Markov
Model (HMM), which solves the computational complexity problem caused by high dimensions in intrusion
detection systems using a single HMM. The lower-layer HMM is used to identify the discrete single network
abnormal behavior. Simultaneously, the upper-layer can obtain more extended period attack behavior in
multiple independent abnormal events identified by the low-level. The experiment results indicate that the
intrusion detection system using proposed double HMM can effectively detect the terminal’s abnormal
behavior and identify the network attack behavior for an extended period.

INDEX TERMS HMM, abnormal detection, power IoT device.

I. INTRODUCTION
In recent years, the situation of network security is gradually
rigorous. Network attacks initiated by terminal devices often
occur. The destructive power of attacks increases obviously,
and the scope of influence tends to expand. In October 2016,
an anonymous attacker launched a large-scale DDoS attack
by illegally controlling webcam, DVR, and other terminal
devices, causing severe damage to Dyn, a DNS service
provider on the east coast of the United States. The attack
caused a total outage of several well-known Internet services
of its customers (including Twitter, Amazon, PayPal, etc.),
resulting in more than half of the Americans unable to
access the Internet. Gartner, a research organization, predicts
that by 2020, there will be more than 20 billion terminal
devices globally, and more than a quarter of network attacks
on enterprises will involve terminal devices. By the end
of 2019, a total of 2526 control servers have been found
to control more than 1254000 terminals, posing a serious
potential security threat to the stable operation of the Internet.
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The above situation shows that the trend of network attacks
extending to the terminal side is apparent. The number of
network attacks launched against terminals will continue to
grow in the future. Various terminal security at the end of the
network has become a key component of complete network
security.

With the development of the power IoT, the types of IoT
terminals connected to the smart grid are also increasing.
According to statistics, 25 kinds of 15.8512 million terminals
are connected to the State Grid management information
area. Among them, the number of wireless power terminals
is the largest, accounting for 84.87%. Due to the lack of
effective monitoring means, it is difficult to find the abnor-
mal behavior of wireless power terminals in time, which
will enable the abnormal behavior to continue to destroy,
obtain the company’s critical data, and further launch net-
work attacks. It is very urgent to design security measures
to prevent network security incidents in such a complex
and severe situation. However, it is unrealistic to avoid
security attacks altogether. We can only find and block the
abnormal behavior of wireless power terminals as far as
possible.
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The idea of abnormal behavior detection technology is
to establish a benchmark behavior model based on standard
network data and then compare the detected data with the
benchmark behavior to determine whether there is an abnor-
mal. Compared with other technologies, abnormal behavior
detection is sufficient to identify unknown attacks in network
flow. The development of machine learning technology fur-
ther improves the technical advantages of abnormal behav-
ior detection, which can detect abnormal flow and identify
existing threats, specific attack types, and unknown new
attack means. The anomaly detection mechanism’s essence
is to analyze, understand, and characterize network behav-
ior and identify or classify abnormal flow instances. There-
fore, from the perspective of machine learning, abnormal
detection is a classification problem. The methods usu-
ally include supervised, semi-supervised, and unsupervised
abnormal detection.

The supervised model requires a dataset with instances of
tagged normal and abnormal categories. In this case, the typi-
cal method is to establish a prediction model for standard and
abnormal classes and compare new data instances with the
model to determine which class it belongs to. Compared with
the standard cases in training data, the number of abnormal
cases is usually much less. Meanwhile, to obtain accurate and
representative tags, especially those for exception categories,
is challenging.

Semi-supervised mode assumes that the training data
only has tagged instances for standard categories. Since
semi-supervised mode does not require tags for exception
categories, it is more widely applicable than supervised tech-
niques. A typical method is to build a model for the class,
corresponding to normal behavior and use the model to iden-
tify anomalies in test data.

The unsupervised mode does not require training data and
is more challenging to achieve current goals. An implicit
assumption is needed: normal conditions occur much more
frequently than exceptions in the test data. If the hypothesis
does not exist, the false positive rate will be high.

Hidden Markov Model (HMM) is a classical model for
modeling and analyzing sequence behavior. It has been
widely used in many fields, such as speech recognition,
natural language processing, and so on [1]. Due to the
temporal characteristics of intrusion behavior, HMM’s appli-
cation in the field of intrusion detection has been widely
concerned. However, the statistical learning algorithm used in
the existing HMM schemes will increase exponentially with
the increase of the analysis packets’ data volume. In large
dimension state space, HMM converge difficultly, which
leads to training failure. The behavior recognition of HMM
is only related to the current state; therefore, it will ignore the
multi-state network attacks across large time scales. In order
to solve the above problems, this article proposes an abnormal
detection architecture based on a double HMMwith two lay-
ers. The lower-layer realizes fine-grained abnormal behavior
detection by detecting the network data flow frame by frame.
Also, it identifies the specific abnormal attack behavior and

then obtains the time series of the attack behavior. On this
basis, the upper-layer realizes the identification of network
attacks in a considerable period.

The structure of this article is as follows: Section 2 intro-
duces the related work. Section 3 gives the framework of
abnormal behavior identification of wireless power terminals
based on double HMM. Section 4 tests the framework and
discusses its performance. The last section summarizes this
article.

II. RELATED WORK
In 1987, Denning first proposed the abstract model of abnor-
mal detection and regarded intrusion detection as a security
defense measure of computer systems [2]. According to the
statistics of behavior portraits, Denning’s general model is
mainly based on host audit records to generate system behav-
ior portraits and discover intrusion behavior. This model is
a real-time, intrusion detection system model. In addition to
the host audit record, the system call of the operating system
kernel also reflects the program’s running behavior in the
computer system. Reference [3] uses the system call data
set generated by different programs to accurately represent
the program’s normal behavior through the data modeling
method and is used to detect intrusion.

Wagner and Dean proposed an abnormal detection model
based on program analysis, which can construct a con-
trol flow model by static analysis of source code, instead
of building a learning model from program tracking [4].
In reference [5], the control flow abnormal detection can
be judged according to the control flow-sensitive attributes
(i.e., the ability to analyze the execution sequence of
statements) and the mutually orthogonal context-sensitive
attributes (the ability to distinguish the call context at run-
time). It proposes a static analysis algorithm to construct the
control flow and context-sensitive models, in which context
sensitivity can reduce the impossible control flow paths to be
considered in the intrusion detection system. In reference [6],
the Dyck model describes how NFA (nondeterministic finite
automaton) is related to context-sensitivity. There is a cer-
tain balance between context-sensitive and runtime over-
head. In reference [7], a context-sensitive automaton PDA
(push-down automaton) is constructed, reducing the time
complexity. In reference [8], several techniques are proposed
to improve context-sensitivity, such as renaming system calls
to distinguish different calls of the same function. The Dyck
model’s code connects the entry and returns the objective
function’s address with the call point.

The model can distinguish the call point and improve
the context-sensitivity. In reference [9], CFI (control flow
integrity) usually means that the program execution must
follow the predetermined CFG path. The CFI property’s exe-
cution can be realized by modifying the source code and
object code related to control flow transfer and embedding
control flow policy in the binary file. The subsequent CFI
technology improves the front and back edge processing and
kernel rootkit detection. In reference [10], static analysis can
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be used to reduce the cost of CFI. In reference [11], Zhang
and Sekar proposed a method based on static analysis, which
can be used on binary files to reduce CFI’s execution cost.

Furthermore, a control flow integrity framework is pro-
posed to demonstrate the replication of functions and function
pointers to prevent control-flow hijacking. Reference [12]
improves CFI technology, and the monitoring system real-
ized pays more attention to the call part of the control flow.
Both data flow and control flow have specific effects on
anomaly detection. Data dependency analysis has been used
to model and detect malicious behaviors. Research has con-
firmed the validity of system call modeling parameters, such
as anomaly detection according to the string distribution in
reference [13].

In reference [14], WIT (Write Integrity Testing) technol-
ogy can prevent memory error attacks. It can predict writable
objects through static analysis. Wit technology also realizes
the integrity of control flow and ensures the consistency of
indirect control transmission and control flow graph during
runtime. In reference [15], DFI (data flow integrity, DFI)
attribute, first proposed by Castro, Costa, and Harris, refers
to the consistency requirements between the runtime data
stream and the static predicted data stream and demonstrates
the detection process of DFI to control and uncontrolled data
attacks.

The above work mainly analyzes the program statically’s
possible execution control flow, so it needs to deal with
the considerable program execution space. The system call
stack information of program execution reflects the pro-
gram’s actual execution process, so it can better reflect the
program’s behavior. Reference [16] proposed a new method
for abnormal detection using call stack information. Experi-
mental results show that this method can detect attacks that
other methods cannot detect. In reference [17], the combi-
nation method of static analysis and dynamic learning is
adopted. In this method, program tracing is used to define
the basic static generation model. The hybrid pushes down
automata (HPDA) to describe the call stack information
to obtain the program’s control flow efficiently. However,
this model is not a probabilistic method and cannot record,
model, and predict branches. In reference [18], probabilistic
data mining technology is used to analyze attack behav-
ior. Warrender et al. proposed the first probabilistic learning
work for program behavior modeling. Probabilistic abstract
interpretation in reference [19] is used to calculate and limit
the knowledge gain associated with information dissemi-
nation. In reference [20], the probability of program path
execution was estimated byMonte Carlo simulation. In refer-
ence [21], Sampson et al. Provided a framework for express-
ing and verifying the probability of variables in programs
based on the Bayesian network model. In reference [21],
a probabilistic modeling method is proposed to predict new
and invisible programs’ properties. An intrusion detection
model for recording and evaluating call sequences is based on
n-gram. This method collects call sequences (such as system
calls) to form a collection of allowed call sequences, and any

new or unordered call sequences are classified as exception
sequences. However, this method is limited to the need to
enumerate and store all possible call sequences, which affects
its scalability.

Hidden Markov Model (HMM) is a classical model for
modeling and analyzing sequence behavior and has been
widely used in many fields such as speech recognition, nat-
ural language processing, etc. Due to intrusion behavior’s
temporal characteristics, the application of HMM in intrusion
detection has also received extensive attention [22]. In refer-
ence [23], researchers proposed using HMM to compare two
parallel abnormal detection methods. The execution graph
model in reference [24] is constructed by learning the pro-
gram runtime’s execution mode, that is, the return address
on the call stack related to the system call, and using the
inductive attributes in the call sequence.

III. ABNORMAL DETECTION STRUCTURE OF WIRELESS
POWER TERMINALS BASED ON DOUBLE HMM
A. OVERALL STRUCTURE
According to the smart grid system’s security characteristics,
this article adopts the model of network isolation and security
access based on no connection. The model includes four
parts: communication front-end processor, network security
isolation (short for isolation), network security access gate-
way(short for gateway), acquisition front processor. Also, it is
equipped with a self-defined private protocol for communica-
tion. First, the overall access model is described with single
isolation and single gateway architecture, as shown in the
following(see Figure 1):

FIGURE 1. Overall structure with single isolation and single gateway.

Communication front-end processor CP: it has the socket
link to access and maintain a large number of terminals,
initiate a small number of sockets to connect to the isolator,
and have the ability to filter private protocols and forward
application layer messages (private protocols). Meanwhile,
the communication front-end and the acquisition front-end
interactive terminal access information to provide addressing
service for the messages sent by the master station.

Network security isolation N.I.: with physical isolation
and analytical isolation capabilities. In physical isolation,
the classic 2 + 1 physical isolation design idea is adopted,
composed of two systems: the front and post systems. The
high-speedmulti isolation card channel based on PCIe is used
to communicate with each other, and the TCP / IP protocol
of the network layer is shielded physically. The isolation
card uses a high-performance FPGA chip, adopts scalable
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FIGURE 2. Double HMM for abnormal behavior detection.

multi-channelmode to support high-speed isolated switching,
uses four channels by default, and single-channel can support
1Gbps traffic.

Network security access gateway N.G.: as a server, it pro-
vides socket access for isolation post and acquisition front.
The gateway has the ability of message encryption and
decryption. The gateway decrypts the data reported by the
terminal. After processing, the message is forwarded to the
acquisition front end in plaintext. The plaintext message sent
from the acquisition front is encrypted by the gateway and
sent to the ciphertext terminal.

Acquisition front processor A.P.: it encapsulates the private
protocol. It is used to address the C.P. The correspond-
ing to the private protocol’s encapsulation and landing
is the terminal side. After receiving the private protocol
from the gateway, the A.P. unpacks the private protocol,
extracts the business data, and transfers it to the master sta-
tion. It receives the business data from the master station
and assembles the private protocol. Next, the communication
front node is designated to assist in addressing the corre-
sponding terminal.

HMM, abnormal detection HAD: with terminal abnormal
behavior detection ability. After the terminal access authenti-
cation, HAD has real-time analysis of terminal transmission
message content to ensure that the legitimate terminal will not
be used as a springboard to carry out network attacks. The
HAD uses the HMM to analyze and predict terminal trans-
mission behavior and excavate terminal behavior deviation.
Thus, HAD prevents the legitimate terminal from abnormal
behavior attacks.

B. DOUBLE HIDDEN MARKOV MODEL
HMM is a parameterized probability model used to describe
the statistical characteristics of a random process. It is a
double random process. One is the Markov chain, which
describes states’ transition, and the other random process
describes the relationship between states and observations.
HMM defines three kinds of probability: the initial state
probability vector α, the state transition probability matrix P,

and the observation probability matrix O. HMM can be
expressed by these three probabilities, namely λ = {A,Bπ}.
A represents the state transition matrix of the implicit state,
which describes the transition probability between each state
in the HMM model; B represents the observable state chain,
which is related to the implicit state in themodel;π represents
the initial probability matrix, which refers to the probability
matrix of the initial implicit state.

According to the characteristics of attack behavior, each
attack behavior event can be described by several attack
actions, and each attack action is composed of a set of abnor-
mal behavior data time series. Therefore, we can construct a
double HMMwith two layers to describe aggressive behavior
characteristics in a considerable period (see Figure 2).

Each layer is an HMM sequence, and the upper HMM uses
the possible visible state sequence of each HMM in the lower
layer to construct the second layer’s training data. It will be
used to train the upper HMM, which will use information
from the lower HMM to learn new patterns that the lower
HMM may not recognize.

Use M = {A1,B1, π1,A2,B2, π2,H} to represent the
double HMM, A1,B1, π1 and A2,B2, π2 represent the lower
and upper HMM, respectively. H represents the conditional
probability matrix of the upper HMM to the lower HMM.

For a specific network behavior, its parameter set M is:
1) State transition matrix Ai: In the i-th HMM, the current

state can only be transferred to the next state but cannot
return to the previous state, a(i)1,2 = P(S(i)t = Si2 |S

(i)
t−1 = Si1),

i = 1, 2.
2) The state output probability matrix Bi, which represents

the probability that the state will output an observation value
at the current moment. defined as:

BiJ =

 b
(i)
1 (ci1) . . . b(i)1 (cik )
...

...

b(i)5 (ci1) . . . b(i)5 (cik )


While b(i)2 (cim) = P(cim |S

(i)
t = Si2), i = 1, 2.
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3) The initial state probability distribution πi, since the
transition of the state always starts from the SB state, it has the
following definition: π

(i)
J = {π

(i)
1 = 1,π (i)

2 = 0, . . . ,π (i)
5 =

0}, i = 1, 2
4) The conditional probability matrix of the upper HMM

to the lower HMM as H:

H (1,2)
=


h(1,2)1,1 h(1,2)1,2 0 0 0

0 h(1,2)2,2 h(1,2)2,3 0 0

0 0 h(1,2)3,3 h(1,2)3,4 0

0 0 0 h(1,2)3,4 h(1,2)4,5

0 0 0 0 h(1,2)5,5


H represents the probability that there is a lower-layer

attack action time sequence under the condition of the
upper-layer attack action sequence state, for example, where

h(1,2)2,3 = P(S(1)t = S23|S
(2)
t = S12). The initial value selection

in the parameter training is:

H (1,2)
0 =


0.5 0.5 0 0 0
0 0.5 0.5 0 0
0 0 0.5 0.5 0
0 0 0 0.5 0.5
0 0 0 0 0.5


Suppose the observation sequence is O = {O1,

O2, . . . ,OT }, where each observation value is composed
of observation values based on large-scale attack behavior
features, and small-scale attack behavior features, using
Ot = {c1t , c

2
t } represents the observed value at the t-the

moment. The observation vector length is T state sequence,
S = {(S11,S

2
1), (S

1
2,S

2
2), . . . , (S

1
T ,S

2
T )}. Therefore, a series of

unknown network behaviors {O1,O2, . . . ,On} and a parame-
ter set λ(1,2)j describing behavior J are given. Unknown behav-
ior Oc = {(c11, c

2
1), (c

1
2, c

2
2), . . . , (c

1
T , c

2
T ) and the similarity of

the multi-scale feature HMM of behavior J (see Equation 1)
by Bayes Criterion Formula P(Oc|λ

(1,2)
j ) is obtained.

a1 (i, j) = π
(1)
i π

(2)
i b(1)i

(
c11
)
b(2)j

(
c21
)
, one ≤ i, j ≤ 5

at (i, j) = b(1)i
(
c1t
)
b(2)j

(
c2t
)∑

,∑
=

∑
m,n

[al (m, n) a
(1)
m,i, a

(2)
m,j,h

(1,2)
m,j ] (1)

Likelihood probability (see Equation 2):

P
(
Oc | l

(1,2)
J

)
=

∑
∀m,n

[aT (m, n)] (2)

C. OBSERVABLE STATE CHARACTERISTICS OF ABNORMAL
TERMINAL BEHAVIOR
How to extract data with abnormal behavior characteristics
from monitoring sequence and observe these characteristics
to reflect the terminal’s abnormal behavior plays a vital
role in determining abnormal detection accuracy. A total of
4 statistical observation features are selected to determine the

terminal’s behavior, which not only fully shows the change
of terminal behavior, but also effectively avoids the complex-
ity of calculation. The four-movement characteristics are as
follows:

(1) Familiar characteristics FChTM i : the higher the number
of historical communications between the terminal and the
communication front-end, the greater the familiarity between
them. Familiarity will affect the terminal’s trust under evalua-
tion, and the familiarity between them depends mainly on the
number of communications after the terminal is connected.
Therefore, the familiar characteristics of the terminal can be
expressed by Equation (3):

F.C.hTMi =
sum{FLTMi}∑n
i=1 sum{FLTMi}

=



h(1,2)1,1 h(1,2)1,2 0 0 0

0 h(1,2)2,2 h(1,2)2,3 0 0

0 0 h(1,2)3,3 h(1,2)3,4 0

0 0 0 h(1,2)3,4 h(1,2)4,5

0 0 0 0 h(1,2)5,5



=


0.5 0.5 0 0 0
0 0.5 0.5 0 0
0 0 0.5 0.5 0
0 0 0 0.5 0.5
0 0 0 0 0.5

 (3)

(2) Similar characteristics of business behavior BChTM i :
In order to calculate the similarity trust degree of business
behaviors, the same number of message types transmitted by
the terminal TM i Moreover, the same type of terminal can be
used to calculate. Therefore, if the terminal TM i The terminal
of the same type transmits more of the same message type,
that is, participating in the same business activity; it will have
a higher degree of trust. Equation (4) gives the calculation
of the similarity trust of business behaviors. Use PT sameTM i

to
indicate the number of the same message type transmitted by
the terminal TM i and the same type of terminal, and PT allTM i
to indicate the total number of message types transmitted by
the terminal. If most of the message types transmitted by the
terminal are the same as those transmitted by other terminals
of the same type, the credibility of this terminal is higher.
Conversely, although it cannot be directly determined that the
terminal is untrustworthy, it can be suspected that the terminal
has been attacked and abnormal behavior has occurred.

BChTMi

=

∑
(PTsame

TMi −PT
all
TMi)(PT

same
Type−PT

all
Type)√∑

(PTsame
TMi −PT

all
TMi)

2
√∑

(PTsame
Type−PT

all
Type)

2
(4)

(3) Access behavior characteristics AChTM i : The smart
grid edge computing terminal’s network access behavior has
a certain regularity, so the network access behavior of the
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terminal can also reflect its abnormal state. The calculation
method is given in Equation (5):

AChTMi

=

 1−
ε(DAtTMi

,DAoldTMi
)

L
, ε(DAtTMi

,DAoldTMi
) ≥L

0, others
(5)

ε(DAtTMi
,DAoldTMi

) represents the difference between the
terminal’s destination address access behavior in the current
time and its historical access address, which can be solved by
editing distance. When the difference of its access behavior is
more significant than a value L, the trust degree is zero. This
formula shows that the more regular the terminal’s access
behavior, the higher the trust degree. If the access behavior
is too different, it means that the terminal node has minimal
data contact with the destination address node it visits or that
the terminal node has abnormal behavior.

(4) Data load behavior characteristics DChTM i : After the
terminal is connected, the real-time data load characteristics
in the data interaction process also reflect the terminal’s trust
to a certain extent. Under normal conditions, the data load
of the terminal DATATM should present a regular Gaussian
distribution. When the terminal is attacked or used to carry
out an attack, the terminal’s data load will be mainly attacked,
deviating from the average data load. Therefore, the char-
acteristics related to the terminal data load behavior can be
calculated by Equation (6):

D.C.hTMi

=


1/ log1+q

DATATMi−δ
(
DATATMtype

)
δ
(
DATATMtype

)
10

+ 1+ q

 ,
DATATMi ≥ δ(DATATMtype )

1, others
(6)

Use the above four different behavior characteristics to
construct an observable state set of terminal behavior:

OTMi =
{
F.C.hTMi ,B.C.hTMi ,A.C.hTMi ,D.C.hTMi

}
On this basis, a terminal behavior observation feature

matrix within the observation period can be constructed.
Each column of the matrix T represents the terminal’s TM i
familiarity characteristics, business behavior, similar charac-
teristics, access behavior, similar characteristics, data load
behavior characteristics, and constructed observation charac-
teristics. The matrix is as follows:

OT
TMi
=


F.C.h1TMi

F.C.h2TMi
· · · F.C.htTMi

B.C.h1TMi
B.C.h2TMi

· · · B.C.htTMi

A.C.h1TMi
A.C.h2TMi

· · · A.C.htTMi

D.C.h1TMi
D.C.h2TMi

· · · D.C.htTMi


By observing and analyzing the above characteristics,

we can detect and analyze the abnormal behavior of the smart
grid edge computing terminal caused by the type of attack

to evaluate the terminal risk. So far, we have determined
the input and output parameter set of the HMM model (see
Figure 3).

D. CALCULATION OF STATE TRANSITION PROBABILITY OF
ABNORMAL TERMINAL BEHAVIOR
The traditional Markov risk assessment model assumes that
the state transition probability matrix of the system does not
change with time. However, in the smart grid edge network
environment, the state transition probability is continually
changing, especially in network attacks. Therefore, this arti-
cle updates the state transition probability matrix in real-time
according to the time transition probability of the attack state
switching on the network from the perspective of time. First,
we determine the difficulty of each stage of the attack by
calculating the ratio of the time spent in each attack stage to
the time it takes to complete the entire attack to objectively
calculate the difficulty of state transition between each stage
of the same attack. Second, the attack state’s transition prob-
ability can be calculated according to the difficulty of transi-
tion between different attacks. The smaller the difficulty, the
greater the transition probability and vice versa.

We define T as the time cost of the whole process,
and ti represents the attack time cost of state i of the
whole attack process. We define the attack process as A =
{Ai} , one ≤i ≤ M . Ai represents the state i of the attack,
andM representing the division of the attack phase. With the
above definition, we can define the difficulty of an attack as
D = {Di} , one ≤i ≤ M .Di represents the state i of attack
difficulty in Equation 7.

Di =
ti∑M
i=1 ti

, ti ∈ T (7)

Then give the general formula of the state transition prob-
ability matrix P,

pij =
1
/
dij∑M

i=1 1
/
Di

(8)

Di ∈ D, dij represents the difficulty form from state i to
state j. Here:

dij =


Dj, i < j
Di, i = j
Di, i > j

Equation 8 expresses the transition probability of a node
from state i to state j to be attacked.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. TEST ENVIRONMENT CONSTRUCTION
To verify the effectiveness and performance of the algorithm
proposed in this article, related experiments have been done
in a laboratory environment. The topology of the experimen-
tal environment is shown below (see Figure 4):

The configuration of the relevant experimental environ-
ment is shown (see Table 1).
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FIGURE 3. Input and output parameter set of double HMM model.

FIGURE 4. The topology of the experiment environment.

B. ANALYSIS OF EXPERIMENTAL RESULTS OF ABNORMAL
BEHAVIOR DETECTION AND EVALUATION
First, acquiring the data set from the NS2 simulation
database, and dividing it into three different attack stages,
according to the details and specific functions of each data set.
The attack stages include the data collection stage, continued
attack stage, and the node occupation stage. Second, calculate
the average attack time based on each attack’s statistical
analysis (see Table 2–4).

From Table 2–4, calculate the average attack time of each
stage, then using Equation 8 to obtain the probability transi-
tion matrix:

P =

PGG PGA PGC
PAG PAA PAC
PCG PCA PCC


=

 0.994 0.00596 0.00004
0.0898 0.910 0.0002
0.007 0.003 0.990



Then, we give the initial probability of the node at each
stage. Assuming the initial probability of nodes in different
stages: π = {π1, π2, π3} = {1, 0, 0}, where

∑
πi = 1.

The experience of the observation matrix can be based on
the expert’s experience and set as:

Q =

 qG(G) qG(A) qG(C)
qA(G) qA(A) qA(C)
qC(G) qC(A) qC(C)

 =
 0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8


Next, use the γ kt Viterbi algorithm to calculate the abnor-

mal value. First, understand the general process of the Viterbi
algorithm, as follows:
Step 1: Initialization. γ (i)

t = πkbt (Ok ), 1 ≤ i ≤ N , 1 ≤
k ≤ sum(Number of nodes).
Step 2: Recursion or loop.
γt (j) = max1≤j≤N

⌊
γt−1 (i) pij

⌋
bt (Ot ), 2 ≤ t ≤ T, 1 ≤

j ≤ N.
Step 3: Result. P∗ = max1≤j≤N bγt (i)c.
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TABLE 1. Specific configuration parameters of the experimental
environment.

Calculate γtk = [0.8, 0.1, 0.1]. and assume ξ k = 0,
10, 30, ϕkt = {ϕ1, ϕ2, ϕ3} = {0.28, 0.33, 0.39}. We can
obtain γ kt ϕ

k
t = {0.54, 0.215, 0.245}. Finally, give the known

abnormal value of the node: (may wish to set the value of the
first node) R1t

R1t = φ
1
t ∗ ξ

1
=
[
0.54 0.215 0.245

] 0
10
30


In the same way, we can obtain the abnormal value of

the remaining nodes. R2t = 6,R3t = 6.5,R4t = 5.5,R5t =
5R6t = 7,R7t = 7.5.

TABLE 2. Attack time statistics during the data collection stage.

TABLE 3. Attack time statistics during the continued attack stage.

TABLE 4. Attack time statistics during the node occupation stage.

According to the abnormal value of the seven nodes in
the simulation, the entire network’s abnormal value can be
calculated. First, determine the time weight in the Equation.
The attacks of nodes are different at different times, and
the degree of exposure is also different. Take one day as
an example. The time of the day is divided into three time
periods: T1 : 0 : 00 ∼ 8 : 00,T2 : 8 : 00 ∼ 16 : 00,T3 : 16 :
00 ∼ 24 : 00. The attacks in the second period are the most
active. It also has the greatest impact on the entire network.
Followed by the third period, and finally, the first period. The
quantitative value of the importance of these periods based
on professional knowledge. The relative importance weights
of the three-time periods can be obtained after normalization:
wT1 = 0.11,wT2 = 0.67,wT3 = 0.22
From the above, we can get the abnormal value of the entire

network R′t = 1.49.
As the time slice is divided into 3 hours, the attacks

in Table 4 were applied to network nodes between 9 o’clock
and 12 o’clock, and 21 o’clock to 24 o’clock, and the
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FIGURE 5. Validation of this article method.

FIGURE 6. Comparison of calculation time required by different methods.

abnormal value increased significantly from the normal state
(no attack), as shown by the red circle in the figure (see
Figure 5). Among them, a total of 3 attacks in Table 4 were
applied between 21:00 and 24:00, and the abnormal valuewas
significantly increased from 12:00 (one attack), which was
about twice the value at 12:00. The experimental simulation
results show that this article method can effectively identify
and evaluate the terminal’s abnormal behavior in the network.

As shown in Figure 6, compared with the Probabilistic
Risk Assessment and Dynamic probabilistic risk assessment
methods, the anomaly recognition and evaluation calculation
method proposed in this article requires the shortest calcu-
lation time under different network scales. Moreover, with
the increase of the network scale, the time required for this
article’s method shows a slow increase trend, so the method
proposed in this article can be better suited for large-scale
network environments.

V. CONCLUSION
This article proposes a method for identifying abnormal
behaviors of wireless access power terminals based on double
HMM, which solves the computational complexity prob-
lem caused by high dimensions in intrusion detection sys-
tems. The lower-layer is used to identify discrete individual

network abnormal behaviors. The upper-layer obtains a
longer span of attack behavior from multiple independent
abnormal events identified by the lower-layer. The experi-
ment shows that our method can effectively detect the ter-
minal’s abnormal behavior and identify the network attack
behavior through a long-time span.
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