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ABSTRACT
This paper deeply studies the principle of the recent reverse
JPEG compatibility attack [1]. This analysis allows us to
cast the problem of hidden data detection in DCT coeffi-
cients within hypothesis testing theory. The optimal LR test,
thought efficient, is rather computationally expensive. There-
fore, mild assumptions are used to simplify the detection
problem dramatically and design a test that is simple yet ex-
tremely efficient and reliable. It is shown that the proposed
detector is way more efficient than the original statistical
test [1], and allows highly reliable detection of data hidden
within JPEG images.

Index Terms— Steganalysis, Hypothesis testing, JPEG
compression, Statistical methods, Reliable Detection.

1. INTRODUCTION

Steganography and steganalysis form a cat-and-mouse game
in which steganography aims at hiding data within innocuous-
looking digital images. On the opposite, steganalysis aims
at detecting images that contain hidden data. Over the past
decades, steganography has been improved by the use of cod-
ing methods [2] that allows the hiding of a secret message
almost as efficiently as the optimal rate-distortion bound. On
the other hand, steganalysis has been developed by the use
of machine learning method. Very large features sets [3]
along with dedicated machine learning algorithms [4, 5] have
been specifically designed to perform hidden information
detection. However, it has also been observed that those
machine learning methods may be dramatically impacted by
the so-called cover-source mismatch: when the dataset used
for learning only slightly differ from the (testing) dataset of
interest, the performance may significantly drop.
This phenomenon poses a severe issue in an operational
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context where a highly reliable detection is crucial in order
to avoid false alarm. The problem of reliable steganalysis
has been a topic of research since almost two decades [6]:
supervised learning methods have been designed with this
goal [5, 7]. On the opposite to tackle this open problem of
(highly) reliable steganalysis, a few attempts have been pro-
posed using hypothesis testing theory [8]. However such
methods usually have much lower statistical performances
than those achieved by supervised learning techniques be-
cause a very accurate yet simple model of the cover signal is
very difficult to obtain. Very recently, a promising approach
has been proposed JPEG images with highest quality factor
based on the so-called Reverse JPEG compatibility [1]. To
present the principle, the paper [1] introduced an introduc-
tory statistical test, that is very sharp, upon which a machine
learning method is built. This machine learning method is
the main contribution of [1] and is more accurate than the
statistical test at a cost of a higher computational cost. The
present paper extends the prior work [1] in the sense it seek at
providing higher detection accuracy of the approach based on
hypothesis testing in order to keep a very low computational
cost.

The rest of the paper is organized as follows: Section 2
recalls the principle of JPEG compression and Reverse JPEG
compatibility attack [1]. Then Section 3 formally states the
problem of hidden data detection within hypothesis testing
theory to derive the Most Powerful Likelihood Ratio Test
(LRT). This test is hardly applicable in practice and, hence,
simplified in Section 4 which leads to a selection-channel
aware detector. Eventually, Section 5 presents numerical re-
sults that support the relevance of the present approach and
the sharpness of the proposed detector.

2. REVERSE JPEG COMPATIBILITY TEST

In order to understand reverse JPEG compatibility [1], let us
briefly recall how JPEG compression works. The main steps
of JPEG compression are recalled in Figure 1; the reader is
referred to [9] for details. In brief a color image is first con-
verted into the so-called YCbCr color space which separates



luminance (Y channel) and chrominance (CbCr). Then the
Discrete Cosine Transform (DCT) is applied block-wise on
each color channel independently over blocks of size 8 ×
8. The ensuing DCT coefficients are eventually quantized
adaptively using a quantization matrix; each DCT coefficient
is divided with a different factor prior to the rounding op-
eration. The DCT coefficients are eventually lossless com-
pressed (typically using Huffman coding). It is important to
note that all those operations can be implemented on float-
ing point variables at a price of slower computation. There-
fore, DCT is applied on integers which implies that pixels
values in YCbCr spatial domain are rounded to the nearest
integer prior application of the DCT. The very fact that stan-
dard JPEG compression libraries accept integer-valued vari-
able has been recently exploited in image forensics [10, 11]
yet remained unnoticed in steganalysis.
During decompression, DCT coefficients are lossless decom-
pressed then each block values are “scaled”, or more precisely
multiplied with the quantization factor; the inverse DCT is
used to convert coefficients back into the spatial domain be-
fore ultimate conversion from YCbCr to RGB color space to
get the final decompressed image.

The rounding of the value right before the application of
DCT is extremely important in the present work. Indeed, the
very last lossy steps of JPEG compression are roughly, round-
ing (in spatial domain), DCT and quantization (division and
rounding in DCT domain). As already explained, the DCT
works on blocks of 8 × 8; hence, let us denote X1, . . . ,XN

the N blocks from an image. The DCT can be denoted as a
linear change of basis:

Zn = D>XnD, (1)

where matrix D is made of orthonormal vectors: D>D = I ;
For simplicity and clarity, first we will focus on a single block
and drop the index n and, second, we will rewrite the DCT
linear transformation, putting both matrices Z, X into column
vectors of 64 elements, as:

z = D?x, (2)

where z and x correspond to Z and X put into column vectors
and D? is a matrix of size 64 × 64 whose rows are given by
the product of rows of D.

The ultimate step of quantization can be expressed as two
steps, division and rounding:

z = Round (z� q) , (3)

with z the quantized DCT coefficients, q the vector that con-
tains the quantization factor (that generally differ for each co-
efficient) and the operation � stands for the element-wise di-
vision.

During the decompression, the DCT coefficients are
scaled before applying the inverse DCT coefficients:

x̃ = D?−1 (z� q) , (4)
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Fig. 1. Illustration of the main steps from JPEG compres-
sion and decompression; the quantization on which this paper
focuses is highlighted in red.

where x̃ is the decompressed pixels value, D?−1 is the matrix
that represents the inverse DCT transform, made in a similar
fashion as D? and� represents the operation of element-wise
multiplication.

It is obvious that neglecting the rounding error the JPEG
compression is reversible:

D?−1

((
D?x� q

)
� q

)
= x. (5)

Our ultimate goal is to model statistically the impact of
JPEG compression in spatial domain; to this end, let us define
the quantization noise ε by:

ε = Round (z� q)− (z� q) = z− (z� q) (6)

such that one can redefine the quantized DCT coefficients z
as corrupted by an additive noise:

z = Round (z� q) = z� q + ε. (7)

Using the previous notations for quantization (7) and
DCT (3) into pixel decompression (4), it is straightforward to
write:

x̃ = x + D?−1
(
ε� q

)
. (8)

Assuming that the rounding error of DCT coefficients ε can
be modeled as a uniform noise the error in spatial domain
x̃− x can be modeled, in virtue of Lindeberg’s Central Limit
Theorem (CLT) [12, Theorem 11.2.5], as a Gaussian random
variable.
The reverse JPEG compatibility as proposed in [1] is based
on this observation. While the pixels before quantization x
are not available, one can instead use the difference between
x̃ and Round (x̃) which hence follows a so-called “folded”
Gaussian distribution. When the quantization steps q are im-
portant, the distribution of rounding error in spatial domain
tends to become uniform; However, for small quantization
steps q (typically JPEG quality factors 100 and 99) the distri-
bution of rounding error in spatial domain allows the detec-
tion of increase of variance due to data hiding. This simple
observation leads to the following detection statistics in [1]:

Λ(x1, . . . ,xN ) =
1

64N

N∑
n=1

∥∥∥x̃n − Round (x̃n)
∥∥∥2

2
, (9)



which corresponds, with N the number of blocks from the
given image, to the estimated variance of rounding error in
spatial domain.

3. STATEMENT OF REVERSE JPEG
COMPATIBILITY WITHIN HYPOTHESIS TESTING

In order to model the impact of hidden data into DCT coeffi-
cients z on the value of pixels decompressed into the spatial
domain x̃, let us define the distribution of the rounding errors:

x̃− Round (x̃) ∼ NF (0,Σs), (10)

whereNF denotes the folded Gaussian distribution [1] whose
probability density function (pdf) is given by:

fµ,σ(x) =

{∑
k∈Z

1
σ
√

2π
exp

(
(x−k−µ)2

2σ2

)
∀x ∈ (−0.5, 0.5),

0 ∀|x| > 0.5.
(11)

It follows from (8) that the covariance matrix Σs is diagonal
whose element at location (i, i) is

∑64
k=1 d

?
i,k
−2× q2

k/12 with
d?i,k and qk the elements from D? and q respectively.

Denoting s the additive stego-signal into DCT coeffi-
cients, the rounding error into spatial domain becomes, after
data hiding:

x̃− x = D?−1
(
ε� q

)
+ D?−1

(
s� q

)
. (12)

It thus follows that the rounding errors of a stego-image fol-
lows a shifted Gaussian folded distribution defined by:

x̃− Round (x̃) ∼ NF (D?−1s� q,Σs). (13)

Since, during the JPEG compression, the DCT is carried out
over each and every blocks of 8×8 pixels separately, one can
assume that those blocks are statistically independent. On the
top of this model, recent steganographic methods are content
adaptive, which means that each and every DCT coefficients
have a different probability of being used to hide data. Denot-
ing βk the probability of modifying k-th DCT coefficient in
n-th block, the joint probability of modifying together DCT
coefficients within a block is given by P[s = (s1, . . . , s64)] =
βs11 (1−β1)1−s1 × . . .×βs6464 (1−β64)1−s64 where sk is a bi-
nary variable that indicates a change at k-th DCT coefficient.
Even assuming that each DCT coefficient can be changed in
only one direction, the probability distribution of the rounding
errors in the spatial domain after embedding becomes:

fβµ,σ(x) =
∑
s?∈S

P[s = s?]fµ,σ

(
x+ D?−1s? � q

)
. (14)

Unfortunately, the exact statement (14) of such probability
distribution involved a sum over the set S all possible changes
whose cardinality is 264 terms; which becomes 364 if we as-
sume that DCT coefficients can be changed in both directions
±1 (at a cost of more complex notations).

The present paper focuses on reliable detection in the
sense that the probability of false-alarm must be controlled
and possibly set to a very low value. To this end one can
note that in the case where all parameters are known to
the detector, the problem is reduced to a test between sim-
ple hypotheses: H0 : {x̃− Round (x̃) ∼ NF (0,Σs)} and
H1 :

{
x̃− Round (x̃) ∼ Nβ

F (0,Σs)
}

. The pdf of those
distributions are respectively given in Eq. (10) and (14). In
such a context, that Neyman-Pearson lemma, see [12, Theo-
rem 3.2.1], states that among the tests δ with a probability of
false-alarm (PFA) bounded by α0:

P[δ(x) = H1|H0] ≤ α0, (15)

the most powerful test, which achieves the highest possible
detection power (often also referred to as the detection accu-
racy), defined as:

P [δ(x) = H1|H1] , (16)

is the Likelihood Ratio (LR) test defined, from the indepen-
dence of DCT blocks, by:

Λ(x1, . . . ,xN ) =

N∑
n=1

Λ(xn) =

N∑
n=1

fβµ,σ(xn)

fµ,σ(xn)
≷H1

H0
τ,

(17)
where the decision threshold τ is set, to satisfy the false-alarm
constraint (15), as the solution of the equation P[Λ(X) >
τ |H0] = α0.

4. SIMPLIFICATION FOR SELECTION CHANNEL
AWARE REVERSE JPEG COMPATIBILITY

The statement of hidden data detection problem, as described
in Section 3, clearly shows that the exact formulation of the
LR test must be simplified. This section aims at describing
a few simplifications that allow the applying of the detection
method in a fast and efficient way. The first simplification
that we propose is to ignore the “folded” aspect of the dis-
tribution; Indeed, this very matter makes the distribution in
the LR test (17) very complex to deal with. By assuming that
rounding error in spatial domain follows a Gaussian distribu-
tion:

x̃− Round (x̃) ∼ N
(

Round
(
D?−1s� q

)
,Σs

)
, (18)

the distribution of rounding error from steganographic images
can be modeled separately for each possible DCT coefficient
due to the orthnonormality of DCT transform. Using this sim-
plification, one can show that the LR test (17) becomes:

Λ?(xn) =

64∑
k=1

βk
2

(∥∥x̃− Round (x̃)
∥∥2

2
− (19)

∥∥∥x̃ + D?−11k � q− Round
(
x̃ + D?−11k � q

)∥∥∥2

2

)
,



with 1k the vector made of 0 except k-th element whose value
is 1; Note that test (19) corresponds to a matched subspace
detector [13].

One can note that the LR test (19) weights all possible
changes of DCT coefficients by the probability that this co-
efficient is used during embedding, see proof in [14]. This
is known in steganalysis as a “Selection-Channel” approach
which consists in taking into account knowledge from the em-
bedding during the detection.

The last simplification we proposed is similar to the one
adopted in [1]. It essentially consists in assuming that the
quantization step is small with respect to the noise, in which
case it has been proved [5, 15] that the above test (19) is
asymptotically equivalent to a test (9) on the variance, as orig-
inality proposed in [1]. However, when using this approach,
the test (19) should be weighted by the probability of using
each pixel. This is not straightforward since the test (9) oper-
ates on a block, of 64 pixels and DCT coefficients, while each
DCT coefficient has a different probability of embedding. To
this end, it is proposed to approximate the Selection-Channel
approach by the expected number of changes into each block.
Such simplified Selection-Channel Aware (sca) test is given
by:

Λsca(x1, . . . ,xN ) =

N∑
n=1

(
64∑
n=1

βk,n

)∥∥∥x̃n−Round (x̃n)
∥∥∥2

2
.

(20)
Last, we wish to improve this test which requires the

knowledge of the embedding scheme. To tackle this lack of
knowledge, we seek at finding a Seletion-Channel Aware ap-
proach that approximates the probabilities of using the DCT
coefficient that is quite accurate for a vast range of embedding
schemes. To this end, we have noted that adaptive stegano-
graphic schemes embed more in DCT blocks whose values
are large, as opposed to DCT coefficients made of small
values that represents generally smooth and simple blocks.
Therefore we propose the following weighted test:

Λw(x1, . . . ,xN ) =

N∑
n=1

wn

∥∥∥x̃n − Round (x̃n)
∥∥∥2

2
, (21)

in which the weights wn represents the sum of absolute value
of DCT coefficients: wn =

∑64
k=1 |zn,k| = ‖zn‖1.

Last, but not the least, the present work aims at provid-
ing a reliable test, whose statistical performance can be estab-
lished analytically. To this end, we propose to normalize the
above test (20)-(21) as:

Λ
w

(x1, . . . ,xN ) =, (22)

with µ0 ≈ 0.0657 the expected value of the decision statistics
‖x̃ − Round (x̃)‖22, under hypothesis H0, and σ2

0 ≈ 0.0625
its variance.
It is straightforward from the CLT that the normalized

test (22) follows a zero-mean Gaussian distribution with
unit variance:

Λ
w

(x1, . . . ,xN ) ∼ N (0, 1). (23)

This statistical distribution allows us to guarantees a pre-
scribed false-alarm rate α0:

P
[
Λ

w
(x1, . . . ,xN ) > τ

]
= α0, (24)

by setting the decision threshold as follows:

τ = Φ−1 (1− α0) , (25)

with Φ−1 the inverse of the normal cdf. As we shall see in
Section 5, the setting of a PFA is extremely accurate in prac-
tice.

5. NUMERICAL RESULTS

In order to show the relevance of the proposed approach, we
have carried out extensive numerical evaluations using both
BOSSbase [16] and ALASKA base [17] respectively made
of 10, 000 and 80, 000 images. We have used four different
embedding schemes, from rather rusty nsF5 [18] to state-of-
the-art adaptive J-UNIWARD [21] including EBS [19] (in its
non-side-informed version) and UED [20].

First of all, to show the improvement in terms of detec-
tion accuracy, Tables 1-3 contrast the detection power (16) of
the original detector, as proposed in [1], and the test proposed
in Section 4. Table 1 shows the empirical detection power
at PFA set to α0 = 0.001 obtain with UED [20] embedding
scheme at various embedding payload over BOSSbase [16].
First, one can note that the proposed detectors dramatically
improve the detection accuracy, especially for very low em-
bedding payload; note that numbers in bracket represent the
mean number of DCT coefficients changed. The proposed
detectors maintained a very high detection power around or
above 0.9 for as low as 340 changed DCT coefficients. Sur-
prisingly, the simplified LR test (19) has a lower detection
accuracy despite a much larger computational cost.

Next, Tables 2-3 show similar results, in terms detection
power, for JPEG quality factor 99 and for several embedding
schemes. Table 2 shows the detection accuracy for PFA of
α0 = 0.005 and embedding rate of 0.025 bpnzAC (bits per
non-zero AC coefficients). Table 3 shows the detection accu-
racy for PFA set to α0 = 0.001 and embedding rate of 0.04
bpnzAC. Again one can note the very large improvement es-
pecially for lowest number of changed DCT coefficients. One
can also note that the Selection-Channel Aware detector (20)
always reaches the highest accuracy; however, the proposed
weighted detector achieves very competitive detection perfor-
mance and has the advantages of not depending on the embed-
ding scheme.

To conclude with the comparison of detectors’ accu-
racy, Figure 2, proposes a ROC curve including results from



Payload Test [1] Λsca (20) Λw (21) LR (19)
0.1 (4055) 0.8819 1.0000 1.0000 1.0000
0.06 (2339) 0.8326 0.9999 0.9991 0.9999
0.04 (1512) 0.7824 0.9991 0.9968 0.9987
0.025 (913) 0.7058 0.9975 0.9931 0.9968
0.015 (527) 0.5902 0.9930 0.9796 0.9830
0.01 (340) 0.4352 0.9728 0.9441 0.8876
0.006 (196) 0.1560 0.8374 0.7288 0.5502

Table 1. Comparison of efficiency of prior work and pro-
posed steganalysis tests over BOSSbase [16], compressed
with quality factor 100, against UED embedding scheme.
Test performance is measured using detection power (16), i.e.
true positive rate, for PFA of 0.1%.

Embedding Test [1] Λsca (20) Λw (21) LR (19)
UED (822) 0.0994 0.5973 0.4998 0.5624
EBS (509) 0.0428 0.2356 0.1854 0.0894

J-UNIWARD (606) 0.0489 0.3728 0.2108 0.2653

Table 2. Comparison of efficiency of prior work and pro-
posed steganalysis tests over BOSSbase [16], compressed
with quality factor 99, for various embedding scheme with
payload 0.025 bpnzAC. Test performance is measured using
detection power (16), i.e. true positive rate, for PFA of 0.5%.

Embedding Test [1] Λsca (20) Λw (21) LR (19)
UED (1364) 0.1297 0.7214 0.6352 0.6580
EBS (886) 0.0513 0.3825 0.2923 0.1074

J-UNIWARD (1020) 0.0553 0.4744 0.3068 0.2892

Table 3. Comparison of efficiency of prior work and pro-
posed steganalysis tests over BOSSbase [16], compressed
with quality factor 99, for various embedding scheme with
payload 0.04 bpnzAC. Test performance is measured using
detection power (16), i.e. true positive rate, for PFA of 0.1%.
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Fig. 2. Comparison of detectors performance through ROC
curves; results obtained with UED (solid lines) [20] and
J-UNIWARD (dashed lines) [21] embedding schemes over
ALASKA base [17].

prior work [1] along with Selection-Channel aware (20) and
weighted detectors (21). Those results have been obtained
with UED embedding scheme [20] (straight lines) and J-
UNIWARD [21] (dashed lines) with payload 0.01 bpnzAC
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Fig. 3. Comparison between theoretical and empirical false
alarm rate as a function of decision threshold for BOSS-
base [16] and ALASKA base [17]

over the 80, 000 images from ALASKA base [17]. This large
dataset of images allows us to draw with higher accuracy
detection power for very low false alarm rate (typically up to
10−4). Again, one can note that the proposed detectors allow
achieving up to twice higher detection accuracy over prior
work [1].

Eventually, besides improvements of detection accuracy,
the second main contribution of present paper lies in the con-
trol of the false-alarm probability (22). To show the rele-
vance of the proposed methodology, Figure 3 contrasts the
theoretical false alarm rate and the empirical ones over two
different datasets of images, BOSSbase [16] and ALASKA
base [17]. One can note that the theoretical false-alarm rate
deduced from CLT matches very well with empirical false-
alarm rate up to below 10−4. Those results show both the rel-
evance of the proposed approach, which allows setting a de-
cision threshold as a function of the desired false-alarm rate,
as well as the sharpness of the statistical model.

6. CONCLUSION

The present work aims at extending the recent Reverse JPEG
compatibility [1] for steganalysis of JPEG images com-
pressed with highest quality factor. We have proposed an
approach based on hypothesis testing theory. The present
work shows the relevance of the approach proposed in [1]
since highest detection accuracy is obtained using the same
approach, which subpar the results obtained using simplified
LR test. We show, however, that testing theory allows the
designing of a Selection-Channel Aware test that achieves a
much higher detection performance as well as a false alarm
rate that can be controlled with high accuracy, which is of
crucial importance in an operational context.
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