Appendix A. Derivation of formulas [1], [3], and [4]

Consider a vector \vec{v} in \mathbb{R}^{3} with coordinates (x, y, z). The angles (α, β, γ) between its projection onto the coordinate planes $e_{2}-e_{1}, e_{2}-e_{3}$, and $e_{3}-e_{1}$, and the first coordinate axis in each of these planes are given by

$$
\tan \alpha=\frac{x}{y}, \quad \tan \beta=\frac{z}{y}, \quad \tan \gamma=\frac{x}{z},
$$

which shows that

$$
\begin{equation*}
\tan \alpha=\tan \beta \tan \gamma \tag{A.1}
\end{equation*}
$$

Let us now consider the coordinates $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ and angles $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ of \vec{v} with respect to a new coordinate system that is obtained by rotating the original coordinate system around the z-axis, that is, around the origin in the $e_{2}-e_{1}$-plane through an angle δ (the pelvic tilt). Since such a rotation neither changes the z-coordinate nor the distance of (x, y) to the origin, we have

$$
\alpha^{\prime}=\alpha+\delta, \quad z^{\prime}=z, \quad x^{\prime 2}+y^{\prime 2}=x^{2}+y^{2} .
$$

Below we derive an expression for the new angles β^{\prime} and γ^{\prime} in terms of the known quantities α^{\prime}, β, and γ. From $x=z \tan \gamma, y=z / \tan \beta$, we find that

$$
\sin \alpha^{\prime}=\frac{x^{\prime}}{\sqrt{{x^{\prime}}^{2}+y^{\prime 2}}}=\frac{x^{\prime}}{\sqrt{x^{2}+y^{2}}}=\frac{x^{\prime}}{|z| \sqrt{\tan ^{2} \gamma+1 / \tan ^{2} \beta}} .
$$

It is no restriction to assume that $z>0$. Then from $\tan \gamma^{\prime}=\frac{x^{\prime}}{z^{\prime}}=\frac{x^{\prime}}{z}$, we have

$$
\begin{equation*}
\tan \gamma^{\prime}=\sin \alpha^{\prime} \sqrt{\tan ^{2} \gamma+1 / \tan ^{2} \beta} \tag{A.2}
\end{equation*}
$$

so that $\tan \beta^{\prime}=\frac{\tan \alpha^{\prime}}{\tan \gamma^{\prime}}$ shows that

$$
\begin{equation*}
\tan \beta^{\prime}=\frac{1}{\cos \alpha^{\prime} \sqrt{\tan ^{2} \gamma+1 / \tan ^{2} \beta}} \tag{A.3}
\end{equation*}
$$

Reading α, β and γ as sagittal tilt, coronal inclination and transverse version, respectively, formulas (A.1), (A.2), and (A.3) correspond to [1], [3], and [4], respectively
Remarks. - Obviously similar formulas can be obtained for rotations around the x - or y-axis. By applying such formulas successively, composite rotations around multiple axes can be handled as well.

- There are more options to define angles in each of the coordinate planes. For example, in view of the conventions in acetabular cup orientation, in the $e_{2}-e_{1}$ plane we measured angles between vectors and the e_{2}-axis. When replacing the e_{2} - by the e_{1}-axis, above formulas should be adapted by reading $(\sin \alpha, \cos \alpha, \tan \alpha)$ as $(\cos \alpha, \sin \alpha, 1 / \tan \alpha)$, and of course similar for angles involving α^{\prime}.

Korteweg-de Vries Institute (KdVI) for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The ${ }_{1}$ etherlands

E-mail address: R.P.Stevenson@uva.nl
Date: March 11, 2020.

